WO2007119015A1 - Procede et dispositif de controle de la regeneration d'un systeme de depollution - Google Patents

Procede et dispositif de controle de la regeneration d'un systeme de depollution Download PDF

Info

Publication number
WO2007119015A1
WO2007119015A1 PCT/FR2007/051047 FR2007051047W WO2007119015A1 WO 2007119015 A1 WO2007119015 A1 WO 2007119015A1 FR 2007051047 W FR2007051047 W FR 2007051047W WO 2007119015 A1 WO2007119015 A1 WO 2007119015A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
temperature
engine
exhaust
exhaust line
Prior art date
Application number
PCT/FR2007/051047
Other languages
English (en)
Inventor
Jean-Marc Duclos
Frédéric LIPPENS
Mohammed Ouazzani-Chahdi
Original Assignee
Renault S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S. filed Critical Renault S.A.S.
Priority to EP07731851A priority Critical patent/EP2007976A1/fr
Priority to US12/297,005 priority patent/US20100132334A1/en
Priority to JP2009504788A priority patent/JP2009533597A/ja
Priority to CN2007800176007A priority patent/CN101443534B/zh
Publication of WO2007119015A1 publication Critical patent/WO2007119015A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/005Electrical control of exhaust gas treating apparatus using models instead of sensors to determine operating characteristics of exhaust systems, e.g. calculating catalyst temperature instead of measuring it directly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/12Combinations of different methods of purification absorption or adsorption, and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/08Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/025Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1445Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being related to the exhaust flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention is in the field of internal combustion engines and more particularly diesel type engines, since they reject particles. Indeed, this invention relates in particular to the management of f ilt res except icules or FAP.
  • NOxTrap nitrogen oxide trap
  • these systems operate discontinuously or alternatively, that is, in normal operation they trap the pollutants, to treat them only during regeneration phases.
  • these filters, or traps require specific combustion modes, in order to guarantee the necessary thermal and / or richness levels.
  • the regeneration of a particulate filter can use the heat produced by an oxidation catalyst generally placed upstream of the particulate filter, and that of the catalytic phase which is coated with the catalytic particle filter.
  • the latter performs the oxidation function of hydrocarbons and carbon monoxide untreated by the oxidation catalyst. It can also use the heat produced by the oxidation phase of the catalytic particle filter, when there is no oxidation catalyst upstream thereof.
  • the activation of the various regeneration aid means is generally controlled by the engine control computer, which determines, as a function of several parameters, including the soot loading of the particulate filter, the instant of the regeneration, as well as its duration and injection parameters during this phase.
  • the heat required for the regeneration of the particle storage elements is generated by means of additional injections, either during the expansion phase of the cylinder, either directly in the exhaust line.
  • the adjustment of the injection is generally carried out by a loop on the temperature at the outlet of the oxidation catalyst T SD ocau by a Pl D (Proportional, Integrator, Derivator), which applies a correction calculated to regulate this temperature .
  • the two actuators available to achieve the expected exotherm in the catalytic phase of the exhaust line, are not equal before the fuel dilution criterion in the lubricating oil.
  • the object of the present invention is to maximize the regeneration performance of the particulate filter, by favoring the injection of reducers into the exhaust line at the post-injection, in order to limit the dilution cost associated with the use of the post-injection.
  • the fuel flow introduced be assigned to direct injections into the exhaust line and / or delayed injections in the combustion chambers, depending on the value of the wall temperature.
  • the injection of fuel into the exhaust line is limited to a zone of the lowest loads, and to a zone of the highest loads of the engine, and the fuel flow injected into the exhaust line is limited to a maximum flow, beyond which the fuel injected would not be completely oxidized therein.
  • the invention also proposes a device comprising a first temperature sensor upstream of the turbine, an oxidation catalyst, a second temperature sensor measuring the inlet temperature of a heating system. depollution, the pollution control system, and means for determining the wall temperature of the exhaust line.
  • FIG. 1 shows an example of application of the invention
  • FIG. 2 shows the distribution of the injections as a function of exhaust conditions
  • FIG. 3 presents the method for determining the wall temperature
  • FIG. 4 is a block diagram of the command
  • FIG. 5 shows saturation traces of the quantity of fuel injected into the exhaust line (fifth injector) for three times per hour.
  • Figure 1 illustrates in a non-limiting manner the application of the invention to a vehicle engine. It reveals a four-cylinder engine 1, the turbine 2 and the compressor 3 of a turbocharger, as well as an EGR loop and its cooler 4.
  • DOC oxidation catalyst 7
  • FAP particulate filter 8
  • An exhaust fuel injector 9, called the fifth injector is placed upstream of the catalyst 7.
  • the various associated sensors are a front turbine temperature sensor (T avt ) 11, a filter inlet temperature sensor.
  • the additional inj ector positioned in the exhaust line, or fifth inj ector 9, can however be placed, either upstream or downstream of the turbine, without this location having any incidence. on the proposed strategy.
  • the device concerned by the invention therefore comprises the following elements: an injector at the exhaust 9, a first temperature sensor 11 upstream of the turbine, an oxidation catalyst 8, a second temperature sensor 12 measuring the temperature
  • the wall temperature means may be a calculation model integrated in the computer, or a wall temperature sensor (not shown).
  • the pollution control system 8 may be either a particulate filter or another system such as a nitrogen oxide trap, and the exhaust nozzle 9 may be positioned upstream or downstream. , of the turbine.
  • the invention provides for distributing the quantity of fuel Q re d, making it possible to reach the desired temperature at the inlet of the particle filter, between an additional injector implanted in the passage of the exhaust gases, and the post-injection.
  • the quantity of gear reducers Q red controlled by the input filter temperature control strategy of the particulate filter will be assigned to the additional injector, Q 5 ,,,, first and / or to the post injection Q p0 , , according to the instantaneous value of the temperature of the wall T par0 ⁇ , of the exhaust line.
  • the invention assumes that the exhaust injector can not be used over the entire operating range of the engine. Indeed, the area characterized by a low exhaust gas flow rate and a low wall temperature, does not allow a satisfactory vaporization of the fuel injected. For safety, it may also be preferable not to use the exhaust injector in areas characterized by high exhaust gas flow and high wall temperature, due to the residence time of the reducers.
  • the injection of fuel into the exhaust line is therefore used only in certain operating ranges of the engine, and limited for example to a zone of the lowest loads, and to a zone of the highest loads of the engine. engine.
  • the wall thickness can be determined either by a sensor or by a model integrated in the engine computer, according to different parameters.
  • a sensor or a calculation model integrated for example in the engine control computer, which makes it possible to give an instantaneous value of T parol .
  • This temperature is a function of various parameters mentioned in FIG. 3, including the temperature of the exhaust gases before the turbine of a turbocharger T avt , the water temperature T water of the engine, the flow of the exhaust gases Q eCh , and Q alr airflow
  • the model can use all or only some of these parameters depending on the engine operating point.
  • the quantity of fuel to be injected Q red depends on the temperature of the wall, the temperature at the outlet of the oxidation catalyst DOC or the inlet temperature of the FAP T efap , and the operating point of the engine. (exhaust gas flow).
  • the quantity of fuel Q re d is calculated by means of a module integrated in the engine control computer. This module, illustrated in FIG. 4, is composed of a basic setting of the injector gearing rate (assumed to be independent of the actuator), mapping by operating point governed by the motor torque, and a correction generated by a corrector of PID type (Proportional Integrator Derivator) dependent on the deviation of the input temperature measurement of the particulate filter at the set temperature T cons .
  • PID type Proportional Integrator Derivator
  • the conversion capacity of the DOC which depends on the temperature of the wall and the flow rate of the gases passing therethrough, defines a maximum flow rate for the fifth injector, beyond which part of the reducers injected into the exhaust will not be oxidized.
  • the invention provides that the flow rate of fuel Q 5mj injected into the exhaust line is limited to a maximum flow Q ⁇ nJ max, beyond which the injected fuel would not be completely oxidized therein .
  • the fuel is injected in priority in the exhaust line, as long as the injected flow rate Q mj is lower than the maximum flow oxidizable completely in it Q lnJ max-
  • FIG. 5 illustrates the principle of high throughput saturation of the fifth injector, for different wall temperatures T parol i, T parol 2,
  • the fifth injector When the use of the fifth injector is allowed, it is saturated first, so as to favor its use until saturation, by postponing the surplus ordered on the post-injection:
  • the excess fuel Q p0 is introduced by delayed injections into the combustion chambers of the engine.
  • the computer 22 of the motor controls the fuel flow Q re d in the dedicated injector of the exhaust line 9, to a saturation level of the oxidation catalyst 7, before transferring the surplus controlled by the regeneration of the filter 8 on delayed fuel injections into the combustion chambers of the engine.
  • the latot ality of the injected fuel follows a progression ramp, to reach the setpoint, so as to avoid that a part injected fuel passes through the catalyst without reacting. With such an injection profile, the reducers passing through the catalyst, in the event of high exhaust gas flow and high wall temperature, are more likely to oxidize.
  • the present invention proposes to vary firstly the flow rate of the injector to the exhaust in response to a variation of the overall flow rate.
  • the post - injection is insensitive to the variation of the set point.
  • the invention provides for restoring equilibrium (that is to say, to have the maximum flow of possible reducers to the exhaust and the minimum in the combustion chambers of the engine) by progressively increasing the flow of exhaust reducers.
  • the strategy model of injection of reducers in the exhaust line is integrated into the vehicle ECU.
  • the main steps of the strategy are: • the model first determines an additional quantity of fuel to be injected (Q red ) for the operating point under consideration, based on a map.
  • control then manages the distribution of the additional fuel between the fifth injector (Q 51n ) and the post injection (Q po n) according to the characteristics of the exhaust gases (T parol and Q E C H ) - It is possible that only the fifth injector, or only the late injection, does not work.
  • the accuracy of the wall temperature calculation model may limit the use of the proposed strategy. Indeed, it is important to be able to use the additional injector over the highest possible load speed range, but it is also important not to use it when the wall temperature is too low. The margin taken on the value of the parcel, will directly impact the field regime / load accessible.

Abstract

Procédé de cont rôle de la régénérat ion d'un syst ème de dépollut ion (8), reposant sur l'int roduct ion de carburant dans les gaz d'échappement par des inj ect ions ret ardées de carburant dans cert aines chambres de combust ion du mot eur et/ ou par inj ect ions direct es dans la ligne d'échappement en amont du f ilt re, en f onct ion de la t empérat ure en ent rée du syst ème, caract ér isé en ce que le débit de carbur ant (Qred) int roduit est af f ect ée aux inj ect ions direct es dans la ligne d'échappement et/ ou aux inj ect ions ret ardées dans les chambres de combust ion selon la valeur la t empérat ure de la paroi (Tparoi) de la ligne d'échappement .

Description

PROCEDE ET Dl SPOSI Tl F DE CONTROLE DE LA REGEN ERATI ON D'UN
SYSTEME DE DEPOLLUTI ON
La présente invention se situe dans le domaine des moteurs à combustion interne et plus particulièrement les moteurs type Diesel, puisqu'ils rejettent des particules. En effet, cette invention concerne notamment la gest ion des f ilt res à part icules ou FAP.
Elle s'applique notamment sur tout véhicule équipé d'un filtre à particules, mais aussi dans le cas de l'utilisation d'un injecteur additionnel pour des stratégies de purge d'un piège à oxyde d'azote (NOxTrap), ou sa désuif atat ion.
Contrairement à un catalyseur d'oxydation traditionnel, ces systèmes fonctionnent de manière discontinue ou alternative, c'est à dire qu'en fonctionnement normal ils piègent les polluants, pour les traiter uniquement lors de phases de régénération. Pour être régénérés, ces filtres, ou pièges, nécessitent des modes de combustion spécifiques, afin de garantir les niveaux de thermique et /ou de richesse nécessaires.
Pour régénérer les filtres à particules, on peut procéder à une ou plusieurs injections retardées dans les chambres de combustion du moteur, après le point mort haut (FMH), lors de la phase de détente, ces injections ayant pour effet d'augmenter la température des gaz à l'échappement. Le gasoil injecté longtemps après le PMH, ne brûle pas dans la chambre de combustion, mais dans la partie catalytique de la ligne d'échappement. Toujours afin de diminuer les émissions polluantes, on peut en effet disposer en plus du FAP, soit un catalyseur d'oxydation (DOC) dans la ligne d'échappement, en amont du FAP, soit directement un matériau catalytique (tel que le platine) au sein du FAP. Cest sur ces sites catalytiques, que les HC et CO des injections tardives s'oxydent, augmentant la température des gaz. Enfin, en augmentant le débit d'une post injection éloignée, celle-ci provoque de fortes émissions de HC et de CXD en sortie du moteur. Ces agents réducteurs réagissent dans le catalyseur d'oxydation avec l'oxygène présent dans les gaz d'échappement, en produisant de la chaleur, qui contribue à augmenter la température des gaz d'échappement en entrée du filtre à particules.
Ainsi, la régénération d'un filtre à particules peut utiliser la chaleur produite par un catalyseur d'oxydation généralement placé en amont du filtre à particules, et celle de la phase catalytique dont est revêtu le filtre à particules catalytique. Cette dernière réalise la fonction d'oxydation des hydrocarbures et du monoxyde de carbone non traités par le catalyseur d'oxydation. Elle peut aussi utiliser la chaleur produite par la phase d'oxydation du filtre à particules catalytique, lorsqu'il n'y a pas de catalyseur d'oxydation en amont de celui-ci.
La mise en action des différents moyens d'aide à la régénération, est généralement pilotée par le calculateur de contrôle moteur, qui détermine, en fonction de plusieurs paramètres, dont le chargement en suies du filtre à particules, l'instant de la régénération, ainsi que sa durée et les paramètres d' inj ect ion pendant cette phase.
Or, pour améliorer l'efficacité de la régénération, il est nécessaire de produire une température interne au filtre, favorable à l'oxydation des suies
(570-6500C), supérieure à la température normale de l'échappement, et ce quel que soit le point de fonctionnement du moteur. De même, pour optimiser le traitement de l'ensemble des polluants, il est nécessaire de gérer au mieux les phases de stockage et de régénération de ces pièges. Ces opérations nécessitent donc de contrôler la température en entrée du filtre à particules, au moment des phases de régénération, et la dilution due à la post injection.
Actuellement, la chaleur nécessaire à la régénération des éléments de stockage de particules, est générée au moyen d'injections supplémentaires, soit pendant la phase de détente du cylindre, soit directement dans la ligne d'échappement. Le réglage de l'injection s'effectue en général par un bouclage sur la température en sortie du catalyseur d'oxydation TSDocau moyen d'un Pl D (Proportionnel, Intégrateur, Dérivateur), qui applique une correction calculée pour réguler cette température.
Les deux actionneurs dont on dispose pour réaliser l'exotherme attendu dans la phase catalytique de la ligne d'échappement, ne sont pas égaux devant le critère dilution de carburant dans l'huile de lubrification.
L'utilisation d'une post- injection dans le cylindre crée un surcoût important en matière de dilution, alors que le recours à l'injection directe à l'échappement, peut permettre d'assouplir la mise au point du système sur cet aspect .
La présente invention a pour objectif de maximiser les performances de régénération du filtre à particules, en privilégiant l'injection de réducteurs dans la ligne d'échappement à la post-injection, afin de limiter le coût dilution lié à l'utilisât ion de la post -injection.
Dans ce but, elle propose que le débit de carburant introduit, soit affecté aux injections directes dans la ligne d'échappement et/ou aux injections retardées dans les chambres de combustion, selon la valeur de la température de la paroi.
De préférence, l'injection de carburant dans la ligne d'échappement est limitée à une zone des plus faibles charges, et à une zone des plus fortes charges du moteur, et le débit de carburant injecté dans la ligne d'échappement est limité à un débit maximum, au delà duquel le carburant injecté ne serait pas complètement oxydé dans celle-ci.
L'invention propose aussi un dispositif comprenant un premier capteur de température en amont de la turbine, un catalyseur d'oxydation, un deuxième capteur de température mesurant la température en entrée d'un système de dépollution, le système de dépollution, et un moyen de détermination de température de paroi de la ligne d'échappement.
D'autres caractéristiques et avantages de l'invention apparaîtront clairement à la lecture de la description suivante, d'un mode de réalisation non limitatif de celle-ci, en se reportant aux dessins, sur lesquels :
- la figure 1 montre un exemple d'application de l'invention,
- la figure 2 montre la répartition des injections en fonction des condit ions à l'échappement ,
- la figure 3 présente la méthode de détermination de la température de paroi,
- la f igure 4 est un schéma bloc de la commande, et
- la figure 5, présente des tracés de saturation de la quantité de carburant injecté dans la ligne d'échappement (cinquième injecteur), pour trois t empér at ur es de par oi . La figure 1 illustre de façon non limitative l'application de l'invention sur un moteur de véhicule. Elle fait apparaître un moteur à quatre cylindres 1, la turbine 2 et le compresseur 3 d'un turbocompresseur, ainsi qu'une boucle EGR et son ref roidisseur 4. Dans la ligne d'échappement, on trouve un catalyseur d'oxydation 7 (DOC), suivi d'un filtre à particules 8 (FAP). Un injecteur de carburant à l'échappement 9, dit cinquième injecteur, est placé en amont du catalyseur 7. Les différents capteurs associés, sont un capteur de température avant turbine (Tavt) 11, un capteur de température d'entrée de filtre à particules (Tefap) 13, un capteur de température en sortie de filtre à particules (Tesfap) 14, une sonde à oxygène 16, et un capteur de pression différentielle 17, ou capteur de pression relative, entre l'amont du filtre et l'atmosphère. Enfin, le schéma mentionne le papillon d'admission du moteur 8, la valve EGR 19, et les moyens d'isolation de la ligne d'échappement 21. Le calculateur moteur associé 22, reçoit et traite les signaux émis par les capteurs mentionnés, ainsi que d'autres informations en provenance de consommateurs électriques 23, du groupe moto ventilateur 25, d'un thermostat piloté 26, et de capteurs de température et de pression atmosphérique 27, 28.
Dans le cadre de l'invention, l'inj ecteur supplémentaire positionné dans la ligne d'échappement, ou cinquième inj ecteur 9, peut cependant être placé, soit en amont soit en aval de la turbine, sans que cet emplacement ait d'incidence sur la stratégie proposée. Le dispositif concerné par l'invention comprend donc les éléments suivants: un inj ecteur à l'échappement 9, un premier capteur de température 11 en amont de la turbine, un catalyseur d'oxydation 8, un deuxième capteur de température 12 mesurant la température
Tefap en entrée d'un système de dépollution, le système de dépollution 8, et un moyen de détermination de température de paroi Tparol, de la ligne d'échappement. Conformément à l'invention, le moyen de température de paroi peut être un modèle de calcul intégré dans le calculateur, ou un capteur de température de paroi (non représenté). Enfin, le système de dépollution 8 peut être, soit un filtre à particules, soit un autre système tel qu'un piège à oxydes d'azotes, et l'inj ecteur à l'échappement 9 peut être positionné en amont, ou en aval, de la turbine.
Comme indiqué plus haut, l'invention prévoit de répartir la quantité du carburant Qred, permettant d'atteindre la température désirée en entrée du filtre à particule, entre un inj ecteur supplémentaire implanté dans le passage des gaz d'échappement , et la post-inj ect ion.
Rus précisément, la quantité de réducteurs Qred commandée par la stratégie de contrôle de température en entrée du filtre à particules sera affectée à l'inj ecteur supplémentaire, Q5,^, en premier lieu et/ ou à la post injection Qp0,, selon la valeur instantanée de la température de la paroi Tpar0ι, de la ligne d'échappement . L'invention part du principe que l'inj ecteur à l'échappement ne peut pas être utilisé sur l'ensemble de la plage de fonctionnement du moteur. En effet, la zone caractérisée par un faible débit des gaz à l'échappement et une faible température de la paroi, ne permet pas une vaporisation satisfaisante du carburant injecté. Par sécurité, il peut aussi être préférable de ne pas utiliser l'inj ecteur à l'échappement dans les zones caractérisées par un fort débit des gaz à l'échappement et une température de paroi élevée, ceci en raison de temps de séjour des réducteurs dans le catalyseur d'oxydation trop faibles, pour permettre d'oxyder la totalité des réducteurs. Conformément à la figure 2, l'injection de carburant dans la ligne d'échappement est donc utilisée uniquement dans certaines plages de fonctionnement du moteur, et limitée par exemple à une zone des plus faibles charges, et à une zone des plus fortes charges du moteur.
La t empér at ur e de la paroi peut être déterminée, soit par un capteur, soit par un modèle intégré dans le calculateur du moteur, en fonction de différents paramètres. Afin de déterminer la température de la paroi Tpar0ι, il est en effet possible d'utiliser un capteur ou un modèle de calcul, intégré par exemple dans le calculateur de contrôle moteur, qui permet de donner une valeur instantanée de Tparol. Cette température est une fonction de différents paramètres mentionnés sur la figure 3, incluant la température des gaz d'échappement avant la turbine d'un turbocompresseur Tavt, la température d'eau Teau du moteur, le débit des gaz d'échappement QeCh, et le débit d'air Qalr
(mesuré par exemple à l'admission). Le modèle peut utiliser tous ces paramètres, ou seulement une partie d'entre eux, en fonction du point de fonctionnement moteur.
La quantité de carburant à injecter Qred dépend de la température de la paroi, de la température en sortie du catalyseur d'oxydation DOC ou de la température en entrée du FAP Tefap, et du point de fonctionnement moteur (débit des gaz d'échappement). La quantité de carburant Qred est calculée au moyen d'un module intégré dans le calculateur contrôle moteur. Ce module, illustré par la figure 4, est composé d'un réglage de base du débit de réducteur à injecter (supposé indépendant de l'actionneur), cartographie par point de fonctionnement régi me/ couple moteur, et d'une correction généré par un correcteur de type PID (Proportionnel Intégrateur Dérivateur) dépendant de l'écart de la mesure de température d'entrée du filtre à particules à la température de consigne Tcons.
La capacité de conversion du DOC, qui dépend de la température de la paroi et du débit des gaz le traversant, définit un débit maximum pour le cinquième injecteur, au-delà duquel une partie des réducteurs injecté à l'échappement ne sera pas oxydée. Pour tenir compte de cette contrainte, l'invention prévoit que le débit de carburant Q5mj injecté dans la ligne d'échappement soit limité à un débit maximum QιnJmax, au delà duquel le carburant injecté ne serait pas complètement oxydé dans celle-ci. Rus précisément, le carburant est injecté en priorité dans la ligne d'échappement, tant que le débit injecté Qmj est inférieur au débit maximum oxydable complètement dans celle-ci QlnJmax-
La figure 5 illustre le principe de saturation haute de débit du cinquième injecteur, pour différentes températures de paroi Tparoli, Tparol2,
TParoi3- Dans les deux zones où cet injecteur ne peut pas être utilisé, la post- injection sera autorisée, si la stratégie de contrôle de température à l'entrée du FAP requiert la production d'un exotherme dans le DOC.
Lorsque l'utilisation du cinquième injecteur est autorisée, il est saturé en premier, de manière à privilégier son utilisation jusqu'à saturation, en reportant le surplus commandé sur lapost-injection :
- si Qred <05mj maxi, alors Q51n] = Qred et Qpon= O - si Qred
Figure imgf000010_0001
maxi, alors Q5lnJ ≈Qsmj maxi et Qpol1=Qred - Q5lnJ maxi.
Ainsi, le surplus de carburant Qp0, par rapport au débit oxydable dans la ligne d'échappement Qmjmax, est introduit par des injections retardées dans les chambres de combustion du moteur. De préférence, le calculateur 22 du moteur commande le débit de carburant Qred dans l'injecteur dédié de la ligne d'échappement 9, jusqu'à un niveau de saturation du catalyseur 7 d'oxydation, avant de reporter le surplus commandé par la régénération du filtre 8 sur des injections retardées de carburant dans les chambres de combustion du moteur. En cas d'activation simultanée de l'injection à l'échappement et de la post injection, il est préférable que latot alité du carburant injectée suive une rampe de progression, pour rejoindre la valeur de consigne, de manière à éviter qu'une partie du carburant injectée traverse le catalyseur sans avoir réagi. Avec un tel profil d'injection, les réducteurs traversant le catalyseur, en cas de fort débit des gaz à l'échappement et de température de paroi élevée, ont plus de chance de s'oxyder.
Afin d'améliorer la dynamique du système, la présente invention propose de faire varier en priorité le débit de l'injecteur à l'échappement en réponse à une variation de la consigne de débit globale. De cette façon, la post - injection est insensible à la variation de la consigne. Cependant, comme il est préférable de diminuer au maximum la dilution due à la post -injection, l'invention prévoit de rétablir l'équilibre (c'est-à-dire, d'avoir le débit maximal de réducteurs possible à l'échappement et le minimal dans les chambres de combustion du moteur) en augmentant progressivement le débit de réducteurs à l'échappement.
Le modèle de stratégie d'injection de réducteurs dans la ligne d'échappement est intégré à l'ECU du véhicule. Les principales étapes de la stratégie sont les suivantes : • le modèle détermine tout d'abord une quantité supplémentaire de carburant à injecter (Qred) pour le point de fonctionnement considéré, à partir d'une cartographie.
• la mesure de la température en sortie du DOC (ou en entrée du FAP) permet de corriger cette quantité de réducteur, afin de se rapprocher le plus près possible de la température désirée (température consigne) en ent rée du FAP (TSDoc = TEFAP)-
• la commande gère ensuite la répartition du carburant supplémentaire entre le cinquième injecteur (Q51n]) et lapost injection (Qpon) suivant les caractéristiques des gaz d'échappement (Tparol et QECH)- II est possible que seul le cinquième injecteur, ou que seule l'injection tardive, ne fonctionne.
En dernier lieu, il faut préciser que la précision du modèle de calcul de température de paroi, peut limiter l'utilisation de la stratégie proposée. En effet, il est important de pouvoir utiliser l'injecteur additionnel sur la plage de régime charge la plus importante possible, mais il est également important de ne pas l'utiliser, lorsque latempérature de paroi est trop faible. La marge prise sur la valeur de la Tparoi, va directement impacter le champ régime/ charge accessible.

Claims

REVENDICATIONS
1. Procédé de contrôle de la régénération d'un système de dépollution comprenant un catalyseur d'oxydation et un filtre (8), reposant sur l'introduction de carburant dans les gaz d'échappement par des injections retardées de carburant dans certaines chambres de combustion du moteur et/ ou par injections directes dans la ligne d'échappement en amont du filtre grâce à un injecteur (9) dédié de la ligne d'échappement, en fonction de la température en entrée du système, caractérisé en ce que le débit de carburant (Qred) introduit est affecté aux injections directes dans la ligne d'échappement et /ou aux injections retardées dans certaines chambres de combustion selon la valeur la température de la paroi (Tparol) de la ligne d'échappement.
2. Procédé de contrôle selon la revendication 1, caractérisé en ce que l'injection de carburant dans la ligne d'échappement est utilisée uniquement dans certaines plages de fonctionnement du moteur.
3. Procédé de contrôle selon la revendication 1, caractérisé en ce que l'injection de carburant dans la ligne d'échappement est limitée à une zone des plus faibles charges et à une zone des plus fortes charges du moteur.
4. Procédé de contrôle selon la revendication 1, 2 ou 3, caractérisé en ce que la température de la paroi est déterminée par un capteur.
5. Procédé de contrôle selon la revendication 1, 2 ou 3, caractérisé en ce que la température de paroi (Tparol) est déterminée par un modèle intégré dans le calculateur du moteur, en fonction de paramètres incluant la température des gaz d'échappement avant la turbine d'un turbocompresseur (T3Vt), la température d'eau (Teau), le débit des gaz d'échappement (QeCh), et le débit d'air (Qaιr)-
6. Procédé de contrôle selon l'une des revendications précédentes, caractérisé en ce que le débit de carburant (QlnJ) injecté dans la ligne d'échappement est limité à un débit maximum (QlnJmax) au delà duquel, le carburant injecté ne serait pas complètement oxydé dans celle-ci par le catalyseur d'oxydation.
7. Procédé de contrôle selon l'une des revendications précédentes, caractérisé en ce le carburant est injecté en priorité dans la ligne d'échappement tant que le débit injecté (Qmj) est inférieur au débit maximum oxydable complètement dans celle-ci (Qmjmax)-
8. Procédé de contrôle selon la revendication 7, caractérisé en ce que le surplus de carburant (Qpol) par rapport au débit oxydable dans la ligne d'échappement (QlnJmax) est introduit par des injections retardées dans les chambres de combustion du moteur.
9. Procédé de contrôle selon l'une des revendications précédentes, caractérisé en ce que le débit total de carburant (Qred) est corrigé sur chaque point de fonctionnement du moteur par un facteur dépendant de l'écart entre la température d'entrée du filtre (Tefap) et la température de consigne de régénération (Tcons)-
10. Procédé de contrôle selon l'une des revendications précédentes, caractérisé en ce que le calculateur (22) du moteur commande le débit de carburant (Qred) dans injecteur dédié de la ligne d'échappement (9) jusqu'à un niveau de saturation d'un catalyseur d'oxydation (7), avant de reporter le surplus commandé par la régénération du filtre (8) sur des injections retardées de carburant dans les chambres de combustion du moteur.
11. Procédé de contrôle selon la revendication 10, caractérisée en ce que le débit de l'inj ecteur à l'échappement varie en priorité en réponse à une variation de la consigne de débit globale.
12. Procédé de contrôle selon l'une des revendications précédentes, caractérisé en ce que le système dépollution (8) est un filtre à particules.
13. Dispositif de mise en œuvre d'un procédé conforme à l'une des revendications précédentes, caractérisé en ce qu'il comprend un injecteur dédié à l'échappement (9), un premier capteur de température (11) en amont d'une turbine de turbocompresseur, un catalyseur d'oxydation (8), un deuxième capteur de température (12) mesurant la température (Tefap) en entrée du système de dépollution, le système de dépollution (8), et un moyen de détermination de température de paroi (Tpar0ι) de la ligne d'échappement.
14. Dispositif de contrôle selon la revendication 13, caractérisé en ce que le moyen de température de paroi est un modèle de calcul intégré dans un calculateur (22).
15. Dispositif de contrôle selon la revendication 13 ou 14, caractérisé en ce que l 'injecteur de carburant (9) est disposé en amont d'une turbine de turbocompresseur (2).
16. Dispositif de contrôle selon la revendication 13 ou 14, caractérisé en ce que l 'injecteur de carburant (9) est disposé en aval d'une turbine de turbo compresseur (2).
17. Dispositif de contrôle selon l'une des revendications 13 à 16, caractérisé en ce que le premier capteur de température (11) est disposé en amont d'une turbine de turbo compresseur (2).
18. Dispositif de contrôle selon l'une des revendications 13 à 17, caractérisé en ce qu'il comporte un quatrième capteur (14) de température en sortie du système de dépollut ion (Tsfap).
19. Dispositif de contrôle selon l'une des revendications 13 à 17, caractérisé en ce que le système de dépollution (8) est un filtre à particules.
20. Dispositif de contrôle selon l'une des revendications 13 à 17, caractérisé en ce que le système de dépollution (8) est un piège à oxydes d'azote.
PCT/FR2007/051047 2006-04-14 2007-03-30 Procede et dispositif de controle de la regeneration d'un systeme de depollution WO2007119015A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07731851A EP2007976A1 (fr) 2006-04-14 2007-03-30 Procede et dispositif de controle de la regeneration d'un systeme de depollution
US12/297,005 US20100132334A1 (en) 2006-04-14 2007-03-30 Method and device for monitoring the regeneration of a pollution-removal system
JP2009504788A JP2009533597A (ja) 2006-04-14 2007-03-30 汚染防止システムの再生をモニタする方法および装置
CN2007800176007A CN101443534B (zh) 2006-04-14 2007-03-30 用于监控除污染系统的再生的方法和设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0651361A FR2899932A1 (fr) 2006-04-14 2006-04-14 Procede et dispositif de controle de la regeneration d'un systeme de depollution
FR0651361 2006-04-14

Publications (1)

Publication Number Publication Date
WO2007119015A1 true WO2007119015A1 (fr) 2007-10-25

Family

ID=36933565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/051047 WO2007119015A1 (fr) 2006-04-14 2007-03-30 Procede et dispositif de controle de la regeneration d'un systeme de depollution

Country Status (7)

Country Link
US (1) US20100132334A1 (fr)
EP (1) EP2007976A1 (fr)
JP (1) JP2009533597A (fr)
CN (1) CN101443534B (fr)
FR (1) FR2899932A1 (fr)
RU (1) RU2435043C2 (fr)
WO (1) WO2007119015A1 (fr)

Families Citing this family (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998326B2 (ja) * 2008-02-27 2012-08-15 いすゞ自動車株式会社 排気ガス浄化システムの制御方法及び排気ガス浄化システム
US8265852B2 (en) * 2008-09-19 2012-09-11 GM Global Technology Operations LLC Temperature control system and method for particulate filter regeneration using a hydrocarbon injector
FR2937080A3 (fr) * 2008-10-15 2010-04-16 Renault Sas Suppression de methane lors de la regeneration d'un piege des oxydes d'azote
US8327621B2 (en) * 2009-04-22 2012-12-11 GM Global Technology Operations LLC Oxidation catalyst outlet temperature correction systems and methods
US9574483B2 (en) * 2010-01-14 2017-02-21 GM Global Technology Operations LLC System and method for controlling exhaust gas temperature during particulate matter filter regeneration
US20110271657A1 (en) * 2010-05-04 2011-11-10 Gm Global Technology Operations, Inc. Control system and method for improved efficiency of particulate matter filter regeneration
WO2012047192A1 (fr) * 2010-10-04 2012-04-12 International Engine Intellectual Property Company, Llc Commande d'injection d'hydrocarbures pour régénération de filtre
SE537854C2 (sv) * 2011-01-31 2015-11-03 Scania Cv Ab Förfarande och system för avgasrening
JP5510749B2 (ja) * 2011-02-17 2014-06-04 株式会社デンソー 排気浄化装置
US9371763B2 (en) * 2011-03-21 2016-06-21 GM Global Technology Operations LLC Method of operating an exhaust gas treatment system to prevent quenching during regeneration
JP2013044238A (ja) * 2011-08-22 2013-03-04 Toyota Industries Corp 排気ガス浄化装置
GB2496876B (en) * 2011-11-24 2017-12-06 Ford Global Tech Llc Detection of soot burn in a vehicle
JP2013122182A (ja) * 2011-12-09 2013-06-20 Yanmar Co Ltd エンジン
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
WO2014016635A1 (fr) * 2012-07-26 2014-01-30 Renault Trucks Système et procédé de nettoyage d'un filtre à particules
JP6136994B2 (ja) * 2014-03-05 2017-05-31 トヨタ自動車株式会社 内燃機関の制御装置
US11504192B2 (en) 2014-10-30 2022-11-22 Cilag Gmbh International Method of hub communication with surgical instrument systems
FR3030620B1 (fr) * 2014-12-22 2018-03-09 Renault S.A.S Procede de purge d'un piege a oxydes d'azote et dispositif de motorisation associe
US10799833B2 (en) 2015-08-03 2020-10-13 Cummins Emission Solutions Inc. Sensor configuration for aftertreatment system including SCR on filter
US10066575B2 (en) * 2016-07-15 2018-09-04 Ford Global Technologies, Llc Method and system for gasoline particulate filter operations
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11510741B2 (en) 2017-10-30 2022-11-29 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
US11229436B2 (en) 2017-10-30 2022-01-25 Cilag Gmbh International Surgical system comprising a surgical tool and a surgical hub
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11291510B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11026687B2 (en) 2017-10-30 2021-06-08 Cilag Gmbh International Clip applier comprising clip advancing systems
US11317919B2 (en) 2017-10-30 2022-05-03 Cilag Gmbh International Clip applier comprising a clip crimping system
US11564756B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11311342B2 (en) 2017-10-30 2022-04-26 Cilag Gmbh International Method for communicating with surgical instrument systems
US10980560B2 (en) 2017-10-30 2021-04-20 Ethicon Llc Surgical instrument systems comprising feedback mechanisms
US11410259B2 (en) 2017-12-28 2022-08-09 Cilag Gmbh International Adaptive control program updates for surgical devices
US11051876B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Surgical evacuation flow paths
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11376002B2 (en) 2017-12-28 2022-07-05 Cilag Gmbh International Surgical instrument cartridge sensor assemblies
US11234756B2 (en) 2017-12-28 2022-02-01 Cilag Gmbh International Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US10755813B2 (en) 2017-12-28 2020-08-25 Ethicon Llc Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform
US11571234B2 (en) 2017-12-28 2023-02-07 Cilag Gmbh International Temperature control of ultrasonic end effector and control system therefor
US11069012B2 (en) 2017-12-28 2021-07-20 Cilag Gmbh International Interactive surgical systems with condition handling of devices and data capabilities
US11364075B2 (en) 2017-12-28 2022-06-21 Cilag Gmbh International Radio frequency energy device for delivering combined electrical signals
US11273001B2 (en) 2017-12-28 2022-03-15 Cilag Gmbh International Surgical hub and modular device response adjustment based on situational awareness
US11969216B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US11045591B2 (en) 2017-12-28 2021-06-29 Cilag Gmbh International Dual in-series large and small droplet filters
US10943454B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Detection and escalation of security responses of surgical instruments to increasing severity threats
US11056244B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks
US11076921B2 (en) 2017-12-28 2021-08-03 Cilag Gmbh International Adaptive control program updates for surgical hubs
US11672605B2 (en) 2017-12-28 2023-06-13 Cilag Gmbh International Sterile field interactive control displays
US11308075B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US11266468B2 (en) 2017-12-28 2022-03-08 Cilag Gmbh International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
US11419667B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11419630B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Surgical system distributed processing
US10987178B2 (en) 2017-12-28 2021-04-27 Ethicon Llc Surgical hub control arrangements
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11446052B2 (en) 2017-12-28 2022-09-20 Cilag Gmbh International Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11311306B2 (en) 2017-12-28 2022-04-26 Cilag Gmbh International Surgical systems for detecting end effector tissue distribution irregularities
US20190201118A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Display arrangements for robot-assisted surgical platforms
US11304763B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11464535B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Detection of end effector emersion in liquid
US10966791B2 (en) 2017-12-28 2021-04-06 Ethicon Llc Cloud-based medical analytics for medical facility segmented individualization of instrument function
US11589888B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US11013563B2 (en) 2017-12-28 2021-05-25 Ethicon Llc Drive arrangements for robot-assisted surgical platforms
US11324557B2 (en) 2017-12-28 2022-05-10 Cilag Gmbh International Surgical instrument with a sensing array
US11160605B2 (en) 2017-12-28 2021-11-02 Cilag Gmbh International Surgical evacuation sensing and motor control
US11147607B2 (en) 2017-12-28 2021-10-19 Cilag Gmbh International Bipolar combination device that automatically adjusts pressure based on energy modality
US11844579B2 (en) 2017-12-28 2023-12-19 Cilag Gmbh International Adjustments based on airborne particle properties
US11253315B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Increasing radio frequency to create pad-less monopolar loop
US11304699B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11832840B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical instrument having a flexible circuit
US11771487B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Mechanisms for controlling different electromechanical systems of an electrosurgical instrument
US11100631B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Use of laser light and red-green-blue coloration to determine properties of back scattered light
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US11432885B2 (en) 2017-12-28 2022-09-06 Cilag Gmbh International Sensing arrangements for robot-assisted surgical platforms
US11602393B2 (en) 2017-12-28 2023-03-14 Cilag Gmbh International Surgical evacuation sensing and generator control
US11423007B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Adjustment of device control programs based on stratified contextual data in addition to the data
US10892995B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11540855B2 (en) 2017-12-28 2023-01-03 Cilag Gmbh International Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
US11291495B2 (en) 2017-12-28 2022-04-05 Cilag Gmbh International Interruption of energy due to inadvertent capacitive coupling
US11969142B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US11633237B2 (en) 2017-12-28 2023-04-25 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11696760B2 (en) 2017-12-28 2023-07-11 Cilag Gmbh International Safety systems for smart powered surgical stapling
US10932872B2 (en) 2017-12-28 2021-03-02 Ethicon Llc Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set
US11278281B2 (en) 2017-12-28 2022-03-22 Cilag Gmbh International Interactive surgical system
US11096693B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US10849697B2 (en) 2017-12-28 2020-12-01 Ethicon Llc Cloud interface for coupled surgical devices
US11304745B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical evacuation sensing and display
US11464559B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US11529187B2 (en) * 2017-12-28 2022-12-20 Cilag Gmbh International Surgical evacuation sensor arrangements
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US11257589B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US11304720B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Activation of energy devices
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11179208B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Cloud-based medical analytics for security and authentication trends and reactive measures
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11424027B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Method for operating surgical instrument systems
US11559308B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method for smart energy device infrastructure
US11317937B2 (en) 2018-03-08 2022-05-03 Cilag Gmbh International Determining the state of an ultrasonic end effector
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
US10944728B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Interactive surgical systems with encrypted communication capabilities
US10892899B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Self describing data packets generated at an issuing instrument
US11559307B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method of robotic hub communication, detection, and control
US11284936B2 (en) 2017-12-28 2022-03-29 Cilag Gmbh International Surgical instrument having a flexible electrode
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US11179175B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Controlling an ultrasonic surgical instrument according to tissue location
US11259830B2 (en) 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11337746B2 (en) 2018-03-08 2022-05-24 Cilag Gmbh International Smart blade and power pulsing
US11399858B2 (en) 2018-03-08 2022-08-02 Cilag Gmbh International Application of smart blade technology
US10973520B2 (en) 2018-03-28 2021-04-13 Ethicon Llc Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
US11207067B2 (en) 2018-03-28 2021-12-28 Cilag Gmbh International Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
US11471156B2 (en) 2018-03-28 2022-10-18 Cilag Gmbh International Surgical stapling devices with improved rotary driven closure systems
US11219453B2 (en) 2018-03-28 2022-01-11 Cilag Gmbh International Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
US11589865B2 (en) 2018-03-28 2023-02-28 Cilag Gmbh International Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems
US11166716B2 (en) 2018-03-28 2021-11-09 Cilag Gmbh International Stapling instrument comprising a deactivatable lockout
US11096688B2 (en) 2018-03-28 2021-08-24 Cilag Gmbh International Rotary driven firing members with different anvil and channel engagement features
JP7124536B2 (ja) * 2018-08-07 2022-08-24 トヨタ自動車株式会社 内燃機関の制御装置
US11751872B2 (en) 2019-02-19 2023-09-12 Cilag Gmbh International Insertable deactivator element for surgical stapler lockouts
US11317915B2 (en) 2019-02-19 2022-05-03 Cilag Gmbh International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
US11357503B2 (en) 2019-02-19 2022-06-14 Cilag Gmbh International Staple cartridge retainers with frangible retention features and methods of using same
US11369377B2 (en) 2019-02-19 2022-06-28 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11298130B2 (en) 2019-02-19 2022-04-12 Cilag Gmbh International Staple cartridge retainer with frangible authentication key
USD950728S1 (en) 2019-06-25 2022-05-03 Cilag Gmbh International Surgical staple cartridge
USD964564S1 (en) 2019-06-25 2022-09-20 Cilag Gmbh International Surgical staple cartridge retainer with a closure system authentication key
USD952144S1 (en) 2019-06-25 2022-05-17 Cilag Gmbh International Surgical staple cartridge retainer with firing system authentication key

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1298291A2 (fr) 2001-10-01 2003-04-02 Toyota Jidosha Kabushiki Kaisha Dispositif de purification de gaz d'échappement pour un moteur à combustion interne et procédé de commande d'un tel dispositif
US6615580B1 (en) * 1999-06-23 2003-09-09 Southwest Research Institute Integrated system for controlling diesel engine emissions
WO2004079168A1 (fr) * 2003-01-31 2004-09-16 Jean Claude Fayard Procede de post injection de liquide de regeneration du type hydrocarbure, alcool et/ou agent reducteur (e.g. gazole et/ou uree et/ou solution ammoniacale) pour la regeneration de systemes de filtration des gaz d'echappement de moteur diesel

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6293096B1 (en) * 1999-06-23 2001-09-25 Southwest Research Institute Multiple stage aftertreatment system
DE60107765T2 (de) * 2000-06-29 2005-05-12 Toyota Jidosha K.K., Toyota Vorrichtung zur Reinigung des Abgases einer Brennkraftmaschine
DE10064481A1 (de) * 2000-12-22 2002-07-04 Mann & Hummel Filter Brennkraftmaschine mit Sekundärluftaufladung und Verfahren zur Regelung des Sekundärluftladers
US6848439B2 (en) * 2001-11-08 2005-02-01 Hitachi Unisia Automotive, Ltd. Air-fuel ratio control apparatus, air-fuel ratio detecting apparatus and methods thereof for engine
JP4135495B2 (ja) * 2002-12-20 2008-08-20 いすゞ自動車株式会社 燃料噴射制御装置
JP2005016394A (ja) * 2003-06-25 2005-01-20 Toyota Motor Corp 内燃機関の排気浄化システム
JP2005048678A (ja) * 2003-07-30 2005-02-24 Nissan Motor Co Ltd 内燃機関の燃焼制御装置
JP4075755B2 (ja) * 2003-09-22 2008-04-16 トヨタ自動車株式会社 内燃機関のフィルタ過昇温抑制方法
FR2863008B1 (fr) * 2003-12-02 2006-01-21 Renault Sas Procede de regulation de temperature a convergence rapide pour la regeneration d'un filtre a particules, et dispositif pour sa mise en oeuvre
JP4908759B2 (ja) * 2004-01-14 2012-04-04 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 排気ガス温度調節のための方法及び制御装置
JP4049113B2 (ja) * 2004-03-11 2008-02-20 トヨタ自動車株式会社 内燃機関排気浄化装置の粒子状物質再生制御装置
JP4244841B2 (ja) * 2004-03-29 2009-03-25 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4161932B2 (ja) * 2004-04-09 2008-10-08 いすゞ自動車株式会社 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP4151630B2 (ja) * 2004-08-04 2008-09-17 トヨタ自動車株式会社 内燃機関の排気浄化方法
JP4311316B2 (ja) * 2004-09-21 2009-08-12 三菱自動車工業株式会社 内燃機関の排気浄化装置
JP2006090260A (ja) * 2004-09-27 2006-04-06 Toyota Motor Corp ディーゼルエンジンの排気浄化システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6615580B1 (en) * 1999-06-23 2003-09-09 Southwest Research Institute Integrated system for controlling diesel engine emissions
EP1298291A2 (fr) 2001-10-01 2003-04-02 Toyota Jidosha Kabushiki Kaisha Dispositif de purification de gaz d'échappement pour un moteur à combustion interne et procédé de commande d'un tel dispositif
WO2004079168A1 (fr) * 2003-01-31 2004-09-16 Jean Claude Fayard Procede de post injection de liquide de regeneration du type hydrocarbure, alcool et/ou agent reducteur (e.g. gazole et/ou uree et/ou solution ammoniacale) pour la regeneration de systemes de filtration des gaz d'echappement de moteur diesel

Also Published As

Publication number Publication date
RU2435043C2 (ru) 2011-11-27
FR2899932A1 (fr) 2007-10-19
US20100132334A1 (en) 2010-06-03
RU2008144967A (ru) 2010-05-20
CN101443534B (zh) 2011-02-09
JP2009533597A (ja) 2009-09-17
EP2007976A1 (fr) 2008-12-31
CN101443534A (zh) 2009-05-27

Similar Documents

Publication Publication Date Title
WO2007119015A1 (fr) Procede et dispositif de controle de la regeneration d&#39;un systeme de depollution
EP2106498B1 (fr) Procede de controle de la temperature des gaz d&#39;echappement d&#39;un moteur thermique
FR2901839A1 (fr) Systeme de purification de gaz d&#39;echappement et procede de purification de gaz d&#39;echappement
EP2855902A1 (fr) Moteur a combustion interne muni d&#39;un systeme de recirculation des gaz d&#39;echappement (egr) et procede de commande de la recirculation des gaz associe
FR2907162A3 (fr) Procede et dispositif de controle d&#39;un systeme de depollution et vehicule muni du dispositif
EP3535483A1 (fr) Système d&#39;injection d&#39;air dans un circuit d&#39;échappement de gaz d&#39;un moteur thermique suralimenté
EP1650420B1 (fr) Système et procédé de régularisation de la régénération d&#39;un filtre à particules de moteur à combustion interne
EP1314875B2 (fr) Système de contrôle du fonctionnement d&#39;un moteur diesel de véhicule automobile
EP2066882B1 (fr) Procede et dispositif de controle d&#39;un systeme de depollution et vehicule muni du dispositif
WO2009101316A2 (fr) Procede et dispositif pour la regeneration d&#39;un dispositif de post-traitement de gaz d&#39;echappement
FR2813098A1 (fr) Dispositif pour detecter un mauvais fonctionnement du systeme d&#39;echappement d&#39;un moteur
FR3088957A1 (fr) Dispositif et procédé de commande de la régénération d&#39;un filtre à particules d&#39;une ligne d&#39;échappement d&#39;un moteur à combustion interne
EP1759100B1 (fr) Procede de controle de la regeneration d&#39;un filtre a particules
FR2943095A1 (fr) Procede de regeneration d&#39;un filtre a particules
EP2299094A1 (fr) Procédé de commande d&#39;un moteur diesel suralimenté à recirculation de gaz d&#39;échappement à basse pression
EP2444640A1 (fr) Procédé de commande de la régéneration d&#39;un filtre à particules
EP1411228A1 (fr) Procédé de régénération d&#39;un filtre à particules et dispositif de mise en oeuvre
FR2907846A1 (fr) Dispositif et procede de regulation d&#39;une quantite de carburant a injecter tardivement pour la regeneration d&#39;un filtre a particules de moteur a combustion interne
EP2078839A1 (fr) Strategie de chauffage rapide pour compenser le vieillissement d&#39;un catalyseur d&#39;oxydation d&#39;un moteur diesel
FR2921122A3 (fr) Systeme de regulation de temperature des gaz d&#39;admission d&#39;un moteur a combustion interne, et procede associe
EP1413720A2 (fr) Procédé de détermination de la température interne d&#39;un filtre à particules, procédé de commande de la génération du filtre à particules, système de commande et filtre à particules correspondant
EP4163484A1 (fr) Procédé de contrôle du couple délivré par un moteur à combustion interne de véhicule automobile à cycle asymétrique
JP2022090200A (ja) ディーゼルエンジン
FR2983531A1 (fr) Alimentation en mode riche d&#39;un moteur a combustion interne a double pre-injection
FR3090737A1 (fr) Ligne d’échappement et procédé de pilotage associé

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07731851

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007731851

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009504788

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008144967

Country of ref document: RU

Ref document number: 200780017600.7

Country of ref document: CN

Ref document number: 9495/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12297005

Country of ref document: US