WO2007116542A1 - 磁気エンコーダおよびその製造方法 - Google Patents

磁気エンコーダおよびその製造方法 Download PDF

Info

Publication number
WO2007116542A1
WO2007116542A1 PCT/JP2006/318992 JP2006318992W WO2007116542A1 WO 2007116542 A1 WO2007116542 A1 WO 2007116542A1 JP 2006318992 W JP2006318992 W JP 2006318992W WO 2007116542 A1 WO2007116542 A1 WO 2007116542A1
Authority
WO
WIPO (PCT)
Prior art keywords
scale
molded body
magnetic encoder
cored bar
groove
Prior art date
Application number
PCT/JP2006/318992
Other languages
English (en)
French (fr)
Inventor
Michiyuki Kamiji
Yoshihiro Itoh
Takashi Kaneike
Original Assignee
Nakanishi Metal Works Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakanishi Metal Works Co., Ltd. filed Critical Nakanishi Metal Works Co., Ltd.
Priority to EP06798317A priority Critical patent/EP2003424B1/en
Publication of WO2007116542A1 publication Critical patent/WO2007116542A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/80Manufacturing details of magnetic targets for magnetic encoders

Definitions

  • the present invention relates to a magnetic encoder used for detecting the rotational speed (rotational speed) of a rotating body, for example, a device for detecting the rotational speed of a wheel of an automobile or a rotational speed detecting device for a relative rotating bearing portion.
  • the present invention relates to a magnetic encoder used for the above and a manufacturing method thereof.
  • an axial type magnetic encoder employed in a rotational speed detection device for detecting the rotational speed of a wheel of an automobile is provided on an annular reinforcing metal core and one surface of the metal core. And an annular scale having a magnet force magnetized in multiple poles in the circumferential direction.
  • the sensor force for detecting a change in the magnetic field is arranged close to the annular scale of the magnetic encoder.
  • the change in the magnetic field generated from the annular scale of the rotating magnetic encoder is detected by a sensor, and the rotational speed is detected.
  • the rubber magnet material a material obtained by dispersing and blending a magnetic powder such as ferrite in a rubber material such as synthetic rubber (magnetic rubber material) is generally used.
  • this magnetic rubber material is vulcanized and molded into multiple poles so that N poles and S poles alternate in the circumferential direction to produce an annular scale molded body.
  • the compact is baked and fixed on one surface of a core metal with an adhesive to produce a magnetic encoder.
  • plastic magnets Compared to rubber magnets, plastic magnets have a higher orientation rate of magnetic powder by magnetic field molding, so they can be expected to improve detection accuracy with high magnetic force, and can be manufactured efficiently by thermoforming, etc. You can expect a lot.
  • Patent Document 1 JP-A-11 281659
  • Patent Document 2 JP 2005-315782 (Claims)
  • an automobile wheel rotational speed detection device is used under severe conditions such as high temperature, low temperature and in a muddy water environment or in a high salinity environment for preventing freezing.
  • severe conditions such as high temperature, low temperature and in a muddy water environment or in a high salinity environment for preventing freezing.
  • the vehicle may be exposed to an extremely low temperature of about 40 ° C when the vehicle is stopped.
  • the vehicle is exposed to a high temperature of about 120 ° C due to heat transfer from the engine and the temperature rise of the rotation of the bearing. There are times.
  • the magnetic encoder for automobiles is used even under severe temperature environment.
  • the plastic as the annular scale molded body in the 1S magnetic encoder has a larger coefficient of thermal expansion than the metal as the core metal.
  • the difference in thermal expansion between the two causes a large amount of deformation stress acting on the plastic scale molded body, causing cracks in the scale molded body.
  • the adhesion deteriorates, and in some cases, the core metal peels off or falls off.
  • an insert molding method using the core metal as an insert member, or an independent scale molded body by thermoforming the plastic magnet material in an annular shape in advance is adopted in which the scale molded body is bonded and fixed to the core metal with an adhesive.
  • the present invention solves the above-described problems of the prior art, can sufficiently secure the adhesion strength of the plastic magnet scale molded body to the core metal, and can prevent the molded body from being cracked or cracked.
  • Another object of the present invention is to provide a magnetic encoder that can be manufactured at low cost with high production efficiency and a manufacturing method thereof.
  • the present invention provides the following means.
  • a plurality of radial grooves extending in the radial direction and opening in the inner diameter direction are formed side by side in the circumferential direction on one surface of the cored bar,
  • a magnetic encoder characterized by being formed integrally with the scale molding.
  • the inner surface of the side wall of the radial groove is disposed on a virtual radial line extending radially from the center of the core bar, and is formed so that the width of the radial groove becomes narrower toward the inner diameter direction.
  • the magnetic encoder according to 1 or 2 above.
  • a rising piece is provided on the outer peripheral edge of the core bar to prevent the scale molded body from peeling off in the axial direction by engaging with the outer peripheral end surface of the scale molded body.
  • the magnetic encoder according to any one of items 1 to 4, wherein the force is one.
  • a wrap-around molded part made of a plastic magnet material is integrally formed on an inner peripheral part of the scale molded body, and the wrap-formed molded part is formed from one surface of the core metal to an inner peripheral edge. Any of the preceding items 1 to 4 arranged so as to wrap around the other surface of the cored bar through
  • a method for manufacturing a magnetic encoder comprising:
  • a ring-shaped cored bar in which a plurality of radial grooves extending in the radial direction and opening in the radial direction are arranged in a circumferential direction on one surface;
  • a filling molding part is formed by the molding material filled in the radiation groove, and the filling molding part is Forming a scale formed body integrally therewith, and obtaining a magnetic encoder.
  • a plurality of radiation grooves are formed on one surface of the core metal, a scale molded body is formed on one surface of the core metal, and the scale molded body is integrated with the radiation groove. Since the filling molding part is formed, the scale molding is structurally fixed to the radiation groove through the filling molding part. For this reason, it is possible to effectively prevent the scale formed body from being peeled off or displaced from the core metal, and can be firmly fixed with sufficient strength.
  • the present invention forms a radial groove extending in the radial direction and opening in the inner radial direction in the core bar, and is filled with a filling resin portion in the radial groove. It is possible to prevent the occurrence of cracks and cracks due to the difference in thermal expansion of the feature. That is, when the scale molded body shrinks and expands with respect to the metal core, the scale molded body maintains the similar shape and shrinks and expands along the radial direction as a whole. Shrinkage of the scale molded body As the Z expands, it moves in the radial direction along the radial groove. This movement can prevent stress from concentrating on the scale molded body and the filled resin part, and can prevent the scale molded body from being damaged such as cracks and cracks. wear.
  • the magnetic encoder of the present invention can be manufactured by thermoforming that can be mass-produced such as insert molding, so that the production efficiency can be improved and the cost can be reduced.
  • the filling molding portion is While deforming to narrow its width, it smoothly and smoothly displaces radially inward along the radial groove.
  • the filling molded portion is deformed so as to widen its width, and is smoothly and smoothly displaced radially outward along the radial groove. In this way, during the contraction Z expansion of the kale molded body, the filled molded part moves smoothly and smoothly along the radial groove, so that it is possible to prevent the stress from being generated in the filled molded part and eventually the scale molded body. It is possible to more reliably prevent defects such as cracks and cracks from occurring in the scale molded body.
  • the protrusion for preventing peeling is provided on the inner surface of the side wall of the radiation groove, the filling molding portion in the radiation groove is locked to the protrusion for preventing separation.
  • the scale molded body can be more reliably prevented from peeling off in the axial direction with respect to the core metal, and the scale molded body can be firmly fixed to the core metal in a more stable state.
  • the rising piece is provided on the outer peripheral edge of the core metal, and the rising piece is engaged with the outer peripheral end surface of the scale forming body. Can be more reliably prevented, and the scale molded body can be tightly bonded to the core metal in a more stable state.
  • the wrap-around molded portion formed integrally with the scale molded body is formed so as to wrap around the inner peripheral portion of one surface of the core metal and the inner peripheral portion of the other surface. Therefore, the wrap-around molded part engages with the core bar, so that the scale molded body can be prevented from peeling in the axial direction with respect to the core bar. Can be more reliably prevented, and can be tightly bonded in a more stable state.
  • the invention [7] specifies one form of a method of manufacturing the magnetic encoder having the configuration of the invention [1], and therefore, a magnetic encoder having the same operation and effect as described above is manufactured. Can do.
  • FIG. 1 is a perspective view showing a magnetic encoder according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view showing the magnetic encoder of the first embodiment with a part cut away.
  • FIG. 3 is a perspective view showing a cored bar member applied to the magnetic encoder of the first embodiment.
  • FIG. 4 is a perspective view showing a part of the cored bar member of the first embodiment by cutting away.
  • FIG. 5 is an enlarged perspective view showing a part of the cored bar member of the first embodiment.
  • FIG. 6 is a plan view showing the cored bar member of the first embodiment.
  • FIG. 7 is an enlarged plan view showing a portion surrounded by a one-dot chain line in FIG.
  • FIG. 8 is a schematic diagram for explaining a groove configuration of a radiation groove.
  • FIG. 9 is a perspective view showing a core bar member that is a first modification of the present invention with a part thereof cut away.
  • FIG. 10 is an enlarged perspective view showing a part of a cored bar member according to a first modification of the present invention.
  • FIG. 11 is a perspective view showing a part of a magnetic encoder which is a second modified example of the present invention.
  • FIG. 12 is a perspective view of the cored bar member applied to the magnetic encoder of the second modified example with a part cut away.
  • FIG. 13 is a perspective view for explaining a problem in the magnetic encoder of the second modified example.
  • FIG. 14 is a perspective view showing a magnetic encoder of a sealing device according to a second embodiment of the present invention.
  • FIG. 15 is a perspective view showing the magnetic encoder of the second embodiment with a part cut away.
  • FIG. 16 is a perspective view showing a magnetic encoder of a sealing device according to a third embodiment of the present invention.
  • FIG. 17 is a perspective view showing the magnetic encoder of the third embodiment with a part cut away.
  • FIGS. 3 to 7 are views showing a cored bar member (10) applied to the encoder (1).
  • the magnetic encoder (1) of the first embodiment includes a substantially annular cored bar member (10) and an annular scale formed body made of a plastic magnet material (40). With /!
  • the cored bar member (10) includes an annular plate-shaped cored bar (20) and a cylindrical mounting piece (30) provided in a standing manner on the outer peripheral edge of the cored bar (20) And a metal press-molded product.
  • the metal core member (10) is formed, for example, by subjecting a metal plate such as a magnetic steel plate to press working such as punching or drawing.
  • the material of the cored bar member (10) it is necessary to have an adsorptivity with the plastic magnet material, and in order not to deteriorate the magnetic properties with the magnet material, a metal material having magnetism is used. Charges are used. Considering the formability in press working in particular, it is preferable to use a low carbon steel plate such as a cold rolled steel plate (SPCC) as a material for the cored bar member (10).
  • SPCC cold rolled steel plate
  • the radiation groove (21) has a rectangular cross-sectional shape, and an end portion in the inner diameter direction is opened inward, and an end portion in the outer diameter direction is formed on the core metal (20). By being arranged on the inner side of the outer peripheral edge, the outer side is closed.
  • the radiating groove (21) has an inner surface (22) on both side walls,
  • the center of (20) is arranged to match the virtual radiation (L) extending radially from (C).
  • the width of the radiating groove (21) is formed so as to become gradually narrower toward the inner diameter direction.
  • the inner surface (22) of both side walls is tapered so that the radiation groove (21) has a substantially trapezoidal groove in the plan view shown in FIG. Formed in the form of a fan-shaped groove!
  • the radiating grooves (21) when the number of the radiating grooves (21) is set to the same number as the total number of N poles and S poles of the scale molded body (40) described later, the radiating grooves ( This is preferable because the influence on the magnetic properties due to the formation of 21) is made uniform.
  • the method of forming the radiating groove (21) is not particularly limited, and cutting, pressing, electric discharge and the like can be used. Among them, in consideration of mass productivity, the pressing is used. preferable.
  • a punch mold in which a large number of convex portions corresponding to the shape of the groove (21) are uniformly arranged along the circumferential direction is used. All radial grooves (21) can be formed simultaneously by pressing.
  • an annular metal core (20) made of a metal plate such as a steel plate is sandwiched from above and below by a pair of punches, and the punch die is eaten and inserted and pressed (coining force). To do.
  • the radiating groove (21) may be formed by half blanking.
  • the groove depth of the radiating groove (21) is preferably set to 25 to 50% of the thickness of the cored bar (20) in the case of coining kayaking. That is, if the radiating groove (21) is too shallow, the plastic magnet material constituting the scale molded body (40) is sufficiently placed in the groove (21) as described later. It cannot be entangled by filling, and the adhesion strength of the scale molded body (40) to the core metal (20) may be reduced. On the other hand, if the radiating groove (21) is too deep, the degree of processing increases, and warping or deformation may occur, which may reduce dimensional accuracy.
  • annular scale formed body (40) made of a plastic magnet material is formed on one surface of the core metal (20).
  • the inner periphery of the scale molded body (40) is integrally formed with the wraparound molded section (41) force scale molded body (40) made of a plastic magnet material.
  • the wrap-around part (41) is arranged so as to pass through the inner peripheral edge of the core bar and the inner peripheral edge of the other surface through the inner peripheral edge of the core bar.
  • each radiation groove (21) a filling molding part (42) made of a plastic magnet material is formed integrally with the scale molding (40).
  • the plastic magnet material constituting the scale molded body (40) including the molded parts (41) (42) is obtained by mixing a plastic material as a binder (binder) with magnetic powder. It is comprised by the rosin composition.
  • rare earth magnetic powders such as neodymium and samarium are used in addition to ferrite magnetic powders such as strontium ferrite and barium ferrite.
  • thermoplastic resin material for injection molding As the plastic material used as the binder of the magnetic powder, a thermoplastic resin material for injection molding is used. Needless to say, the resin material to be used is appropriately selected in consideration of properties such as strength, heat resistance, chemical resistance, and magnetic properties, moldability, compoundability, and cost.
  • a resin material such as polyamide 6 (PA6), polyamide 12 (PA12), polyamide 612 (PA612), and polyphenylene sulfide (PPS) can be suitably used.
  • the content of the magnetic powder in the plastic magnet material is preferably set to 45 to 75% by volume. That is, if the content of the magnetic powder is too small, the magnetic characteristics are inferior and multipolar magnetism becomes difficult, and there is a risk that the detection accuracy at the time of rotational speed detection, which will be described later, is lowered. On the other hand, when the content of the magnetic powder is too large, the blended amount of the binder resin is relatively reduced, and thermoforming becomes difficult and the strength of the compact may be lowered.
  • the magnetic encoder (1) is manufactured by insert molding using the plastic magnet material. That is, injection molding is performed in a magnetic field using the plastic magnet material as a molding material and the cored bar member (10) as an insert member without using an adhesive.
  • a scale molded body made of plastic magnet material (in the region from one surface of the core bar (20) through the inner peripheral edge to the inner peripheral edge of the other surface) 40) and a wrap-around part (41) are formed in the body, and a filling resin part (42) made of a plastic magnet material is formed in each radial groove (21) of the core metal (20). Formed integrally with the molded body (40).
  • the insert molded product thus obtained is demagnetized and then subjected to a predetermined multipolar magnetism using a separately prepared magnetizing device, thereby producing a plastic magnet as shown in FIG.
  • the material scale molding (40) is magnetized in multiple poles so that the N and S poles alternate in the circumferential direction. Thereby, the magnetic encoder (1) is manufactured.
  • this magnetic encoder (1) When this magnetic encoder (1) is used as a rotational speed detection device for a rolling bearing or the like, the cylindrical mounting piece (30) of the core metal member (10) is externally fitted to a rotating shaft portion such as a bearing inner ring. While being press-fitted and fixed to the state, a sensor (not shown) for detecting a change in the magnetic field is arranged close to the scale molded body (40) of the magnetic encoder (1). Then, a change in the magnetic field generated from the scale molded body (40) of the magnetic encoder (1) that rotates in synchronization with the rotating shaft is sensed by the sensor, and the rotational speed is detected.
  • a large number of radial grooves (21) extending in the radial direction are formed on one surface of the core metal (20) at a predetermined pitch in the circumferential direction.
  • a plastic magnet scale molded body (40) is formed on one surface of the core bar, and a plastic magnet filling molded part (42) is integrated with the scale molded body (40) in each radiation groove (21). Therefore, the scale molded body (40) is mechanically fixed to the radial groove (21) through the filling molding section (42).
  • the scale molded body (40) is also closely attached to the core metal (20) by magnetic attraction, this magnetic attraction action can also be used to more reliably prevent peeling in the axial direction.
  • the wrap-around molded part (41) formed integrally with the scale molded body (40) is caused to wrap around the inner peripheral part of one surface of the core metal (20).
  • the magnetic encoder (1) is manufactured by thermoforming that can be mass-produced such as insert molding, the production efficiency can be improved and the cost can be reduced.
  • the step of applying the adhesive is omitted because the scale forming body (40) is formed by covering the cored bar (20) by insert molding without using an adhesive. As a result, production efficiency can be further improved and costs can be further reduced.
  • a number of radial grooves (21) extending in the radial direction and opening in the radial direction are formed in the core metal (20) at a predetermined pitch in the circumferential direction. Since the filled resin portion (42) is formed in the groove (21), even if the scale molded body (40) contracts with respect to the core metal (20), the scale molded body (40) has an overall diameter. Dimensional force shrinks while keeping a similar shape so that it becomes smaller. In other words, since the scale compact (40) shrinks as a whole along the radial direction, the filling molding part (42) in the radial groove (21) radiates as the scale compact (40) contracts. It moves in the inner diameter direction along the groove (21).
  • the behavior and dimensional change at the time of shrinkage in the filling molded part (42) in the radiation groove (21) will be described in detail.
  • the thermal expansion coefficient of the plastic magnet material constituting the scale molded body (40) of this embodiment is “ ⁇ ”, and the radial groove (2
  • the width of the outer peripheral edge before shrinkage due to the temperature change of “At” was set to “A” and the width of the outer peripheral edge after shrinkage was set to “a” in the filling molding part (42) in the radial groove (21). Then, the relationship of the following (3) and (4) is established.
  • the width dimension of the outer peripheral edge of the filling molded part (42) is assumed to be approximately equal to the distance on the arc line, and the adjacent radial grooves (21) The gap between them is calculated as “0”.
  • equation (5) is derived from equations (2) and (4).
  • the following formula (6) is derived by calculating the shrinkage ratio (Aa) ZA of the outer peripheral edge width of the filling molded part (42) from the formulas (3) to (5).
  • both side surfaces of the filling molded part (42) are virtual radiation (L) connecting the both side surfaces and the center (C) of the scale molded body (40). It contracts and deforms so as to displace along the inner diameter.
  • the inner surfaces (22) of the side walls of the radiation groove (21) are placed on the virtual radiation (L) extending radially from the center (C) of the core metal (20). Since the groove width of the radiating groove (21) is gradually reduced toward the inner diameter direction when the scale molded body (40) contracts, the filling molding part (42) While deforming to narrow its width, it is displaced radially inward along the radiation groove (21).
  • the inner wall surface (22) of the radiating groove (21) is disposed on the radiation (L), and the inner wall surface ( It is good to tilt 22)! ,.
  • the radiation grooves (21) are formed at equal intervals as in the present embodiment, the larger the number of grooves, the smaller the amount of shrinkage of the resin filling portion (42) in each groove. Time stress can be reduced, and cracks and delamination can be more reliably prevented.
  • FIG. 9 and FIG. 10 are perspective views showing a cored bar member (10) of a magnetic encoder which is a first modification of the present invention.
  • the radiation groove (21) of the cored bar (20) in the cored bar member (10) is formed in the shape of a groove. That is, the inner surfaces (22) of both side walls of the radiating groove (21) are formed on an inclined surface inclined inward, and the opening width of the radiating groove (21) is formed narrower than the groove bottom width. And the opening edge part of the both side walls in the radiation groove (21) is configured as a peeling prevention protrusion part (25) protruding inside the groove.
  • Other configurations are the same as those in the above embodiment.
  • the filling molding part (42) in the radiating groove (21) is locked to the protrusion part (25) for preventing peeling. It is possible to more reliably prevent the molded body (40) from being peeled from the cored bar (20) in the opening direction of the radial groove (21), that is, in the axial direction, and in a more stable state ( 40) can be tightly fixed to the metal core (20).
  • the peeling preventing protrusion (25) is formed continuously in the length direction of the radiation groove (21).
  • the present invention is not limited to this, and in the present invention, A protrusion for preventing peeling may be formed in a part of the radiation groove (21).
  • the formation method may be, for example, between the radiation grooves on one surface side of the core metal (20).
  • a method of forming the protrusion for preventing peeling (25) by moving the pressed meat in the groove direction by partially pressing the flat portion by press working can be employed.
  • FIG. 11 is a perspective view showing a part of a magnetic encoder (1) according to a second modification of the present invention
  • FIG. 12 is a perspective view showing a part of a cored bar member (10) applied to the second modification. is there.
  • the radial groove (21) in the cored bar (20) of the cored bar member (10) is formed by half punching. That is, in the above embodiment, radiation
  • the groove (21) is a force formed by pressing (coining).
  • the flesh of the groove formed by pressing the radial groove (21) with the pressing punch is placed on the back side (the other side). It is formed by half-punching that causes plastic flow.
  • Other configurations are the same as in the above embodiment.
  • the groove depth is set to the thickness of the core metal (20) while maintaining a predetermined accuracy. It can be formed to about 90%.
  • the groove depth is limited to about 50% or less with respect to the thickness of the core metal (20) as described above.
  • a built-up portion (11) is formed on the other surface side of the cored bar (20) corresponding to the radiation groove (21). Therefore, the wrap-around part (41) of the scale molded body (40) coated and molded so as to wrap around from the one side to the other side of the core bar (20) It should be formed so as not to reach 12). That is, as shown in FIG. 13, the wrap-around part (41) is formed to a position exceeding the outer end step part (12) of the bulge bulge part (11) on the other side of the core bar.
  • the wraparound formed portion (41) becomes the outer end stepped portion. It becomes impossible to follow the contraction behavior by engaging (12). For this reason, a great amount of deformation stress is generated around the step portion of the wrap-around part (41), and cracks and cracks may occur. Therefore, it is preferable that the wraparound portion (41) is configured not to cover the outer end step portion (12) of the built-up portion (11) on the other side of the core metal!
  • FIG. 14 and 15 are perspective views showing a magnetic encoder (2) according to the second embodiment of the present invention.
  • the magnetic encoder (2) of the second embodiment constitutes a part of a sealing device called a knock seal or a bush seal.
  • the inner diameter side (inner ring side) slinger (110) corresponds to the cored bar member (10) of the first embodiment.
  • the magnetic encoder (2) of the present embodiment includes a substantially annular slinger (110) and an annular scale formed body (140).
  • the slinger (110) is composed of an annular cored bar (120) and a cylindrical mounting piece (130) provided in a rising force ⁇ at the inner peripheral edge of the cored bar (120). It consists of a metal press-formed product.
  • a number of radial grooves (121) extending along the radial direction are arranged at a predetermined pitch in the circumferential direction as described above. It is formed with.
  • the material of the slinger (110) a metal material having magnetism and good formability can be used as in the first embodiment.
  • stainless steel plates such as ferritic stainless steel (SUS430, etc.) and martensitic stainless steel (SUS410, etc.) can be suitably used.
  • an annular scale formed body (140) is formed so as to cover the one surface.
  • the scale molded body (110) is composed of a plastic magnet.
  • a filling molding part (142) made of a plastic magnet material is formed integrally with the scale molding body (110).
  • the magnetic encoder (2) of the second embodiment is manufactured in the same manner as described above.
  • the cylindrical mounting piece (130) of the slinger (110) is fixed to the bearing inner ring in an externally fitted state, and the slinger ( 110) a metal core (120) is disposed in the opening between the bearing inner ring and the outer ring with the scale molded body (140) facing outward.
  • a sealing device such as a hub seal having the magnetic encoder (2) of the present embodiment
  • an outer diameter side slinger is fixed to the bearing outer ring in an internally fitted state, and a seal provided on the outer diameter side slinger. Lip force It is comprised so that the outer peripheral part of the other surface (inner surface) in the metal core (120) of the said slinger (110) may be contacted.
  • the magnetic field detection sensor is disposed opposite to the scale molded body (140), and the rotational speed is detected in the same manner as described above.
  • the core bar (120) of the slinger (110) when the radial groove (121) is formed on one surface (outer surface) of the core bar (120) of the slinger (110) by press carriage, the core bar ( There is a possibility that a minute build-up part is formed at a position corresponding to the radiation groove (121) on the other surface (inner surface).
  • the other surface side of the cored bar (120) is a contact surface that contacts the seal lip of the outer diameter side slinger, so it is desirable to form it flat so that the seal lip can contact properly. For this reason, it is preferable not to form the radiating groove (121) at the position where the seal lip contacts the metal core (120). In other words, it is preferable that the outermost position of the radiation groove (121) is disposed inside the contact position of the seal lip.
  • the thickness of the groove pressed by the punch is greatly moved to the other surface side (inner surface side) to form a large overlaid portion. Therefore, it is preferable to set the outermost position of the radiation groove (121) so that the built-up portion does not interfere with the seal lip.
  • FIG. 16 and 17 are perspective views showing a magnetic encoder (3) according to a third embodiment of the present invention.
  • this magnetic encoder (3) is employed in a sealing device called a knock seal or a bushile as in the second embodiment, and has an inner diameter side ( The inner ring side slinger (110) corresponds to the cored bar member (10) of the first embodiment.
  • a rising piece (126) is formed on the outer peripheral edge of the core bar (120) of the slinger (110) so as to protrude to one surface side (outer surface side) in the axial direction.
  • the rising piece (126) is formed so as to be inclined toward the inner diameter side, and the inner surface of the rising piece (126) is formed as an inclined surface inclined toward the inner diameter side.
  • the outer peripheral end surface of the scale formed body (140) of the rising piece (126) is configured to be joined to the inner surface of the rising piece (126) in a conforming state.
  • a rising piece (126) is formed on the outer peripheral edge of the metal core (120) in the slinger (110), and the scale formed body (140) is formed on the rising piece (126). Since the outer peripheral end surfaces of the scale molded body (140) are joined to the rising piece (126) inclined toward the inner diameter side, the scale molded body (140) is moved in the axial direction. Can be more reliably prevented, and the scale formed body (140) can be tightly bonded to the slinger (110) in a more stable state.
  • a magnetic encoder (1) of the same form was produced in the same manner as in the first embodiment shown in FIGS.
  • the core metal member (10) is made of SUS430
  • the thickness of the core metal (20) is 0.6 mm
  • the depth of the radiating groove (21) is 0.25 mm
  • the fraction (number) was set to 90 (total number of poles 90).
  • the radiating groove (21) is formed in the form of a fan-shaped groove in which the inner surfaces (22) of both side walls are arranged along the radiation (L) from the center of the cored bar (20) as in the first embodiment.
  • the radial grooves in the cored bar member were formed in the form of parallel grooves in which the inner surfaces of both side walls were parallel from the outer diameter end to the inner diameter end. Otherwise, the magnetic encoder of Example 2 was fabricated in the same manner as in Example 1 above.
  • the core metal member was formed with no radiation grooves and one surface of the core metal being flat, and an adhesive was applied to the resin molding surface of the core metal member, and insert molding was performed in the same manner as described above. Otherwise, the magnetic encoder of Comparative Example 1 was fabricated in the same manner as in Example 1 above.
  • Example 2 As the core metal member, a material having no radial groove formed and a flat core metal surface was prepared. On the other hand, the same plastic magnet material as in Example 1 was injection-molded to prepare a single scale molded body. Then, a scale molded body was attached to one side of the core bar of the core bar member using an adhesive. Otherwise, the magnetic encoder of Comparative Example 2 was produced in the same manner as in Example 1 above.
  • Example 1 Example 2 Comparative example 1 Comparative example 2 Existence of radiating grooves Existence (fan-shaped grooves) Existence (parallel grooves) Existence of adhesives Existence Existence Manufacturing method Insert molding Insert 4 molding Insert molding Adhesion after molding Thermal shock test 1 0 0 0 Cycle 1 0 0 0 Cycle 2 2 Cycle 4 3 7 Cycle (No. of Fracture Silence) No Abnormality ⁇
  • the magnetic encoders of Examples 1 and 2 related to the present invention had an abnormality such as a crack or a crack in the scale molded body even in the thermal history impact test of 1000 cycles. It was an unacceptable force. Therefore, it is considered that the magnetic encoder of the embodiment can be used without any trouble even in a severe temperature environment.
  • the magnetic encoder of Comparative Example 1 has an extremely inferior heat resistance because the scale molded body cracked early during the test. Met. Furthermore, in the magnetic encoder of Comparative Example 2, the scale molded body was cracked during the test and was inferior in heat resistance. Therefore, it can be considered that the magnetic encoders of Comparative Examples 1 and 2 are difficult to use in a severe temperature environment.
  • the present invention relates to a magnetic encoder used for detecting the rotational speed (rotational speed) of a rotating body, for example, a device for detecting the rotational speed of a wheel of an automobile, or a rotational speed detecting device for a relatively rotating bearing portion. It can be applied to a magnetic encoder used for such as.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

 スケール成形体の密着強度を十分確保でき、成形体に亀裂や割れなどが発生するのを防止でき、さらに生産効率良く安価に製造できる磁気エンコーダを提供する。  本発明は、円環状の芯金20と、芯金20の一面に設けられ、かつ周方向に多極に着磁されたプラスチック磁石材料により構成される円環状のスケール成形体42と、を備えた磁気エンコーダを対象とする。本エンコーダは、芯金20の一面に、径方向に沿って延び、かつ内径方向に開口する放射溝21が周方向に並んで複数形成され、放射溝21内に充填されたプラスチック磁石材料によって構成される充填成形部42が、スケール成形体40と一体に形成されている。

Description

明 細 書
磁気エンコーダおよびその製造方法
技術分野
[0001] この発明は、回転体の回転数(回転速度)を検出する際に用いられる磁気ェンコ一 ダ、たとえば自動車の車輪の回転数を検出する装置や相対回転する軸受部の回転 数検出装置などに使用される磁気エンコーダおよびその製造方法に関する。
背景技術
[0002] 従来、自動車の車輪の回転速度を検出するための回転速度検出装置に採用され る磁気エンコーダにおいてアキシャルタイプのものは、円環状の補強用芯金と、その 芯金の一面に設けられ、かつ周方向に多極に着磁された磁石力 なる円環状のスケ 一ノレと、を備えている。
[0003] この磁気エンコーダ力 回転部位としての回転軸の端部に固定される一方、磁場の 変化を検出するセンサ力 磁気エンコーダの円環状スケールに対向するように近接 配置される。そして回転する磁気エンコーダの円環状スケールから生じる磁場の変化 をセンサにより感知させて、回転速度を検出するようにして 、る。
[0004] 従来、上記のような磁気エンコーダにおける円環状スケールとしては下記特許文献 1などに示すように、ゴム磁石材料が多く使用されている。
[0005] ゴム磁石材料は、合成ゴムなどのゴム材料にたとえば、フェライトなどの磁性粉末を 分散配合させたもの (磁性ゴム材料)が一般に使用されている。
[0006] すなわちこの磁性ゴム材料を加硫成形して、円周方向に N極と S極とが交互になる ように多極に着磁させて円環状のスケール成形体を作製し、そのスケール成形体を 芯金の一面に、接着剤を介して焼付け固定して、磁気エンコーダを作製するもので ある。
[0007] 一方、磁気エンコーダの技術分野、特に自動車用のものでは、検出精度の向上、 生産性の向上およびコストの削減などが可及的に追求されている。その対策の一つ に、磁気エンコーダの円環状スケールを構成する材料として、従来より広く一般に使 用されているゴム磁石に代えて、下記特許文献 2に示すようにプラスチック磁石材料 を用いる技術が検討されて 、る。
[0008] プラスチック磁石は、ゴム磁石に比べて、磁場成形による磁粉の配向率が高いため 、磁力が大きく検出精度の向上を期待できるとともに、熱成形などによって効率良く 製造できるため、生産性の向上も大ぃに期待することができる。
特許文献 1 :特開平 11 281659号
特許文献 2:特開 2005— 315782号 (特許請求の範囲)
発明の開示
発明が解決しょうとする課題
[0009] ところで、自動車の車輪回転数検出装置は、高温、低温および泥水中の環境下や 、凍結防止用の高塩分中の環境下などの過酷な条件下で使用される。たとえば寒冷 地においては停車時に 40°C程度の極低温に曝される場合があり、逆に運転時に はエンジンからの伝熱や軸受の回転昇温などの影響により 120°C程度の高温に曝さ れることちある。
[0010] このように自動車用の磁気エンコーダは、過酷な温度環境下においても使用される 1S 磁気エンコーダにおける円環状のスケール成形体としてのプラスチックは、芯金 としての金属に対し熱膨張率が大きい上、ゴムとは異なり伸縮性にも劣るため、上記 過酷な温度環境下においては両者の熱膨張の相違によってプラスチック製スケール 成形体に多大な変形応力が作用して、スケール成形体に亀裂が生じたり、密着性が 低下して場合によっては、芯金から剥離、脱落するという問題があった。
[0011] 一方、プラスチック磁石材料を芯金に接合固定するには、芯金をインサート部材と するインサート成形法や、あるいは、プラスチック磁石材料を予め円環状に熱成形し て独立状態のスケール成形体を作製しておき、そのスケール成形体を接着剤により 芯金に接着固定する方法が一般に採用される。
[0012] し力しながら 、ずれの方法にぉ 、ても、プラスチック磁石材料を芯金に接着剤を介 して接合するものであるため、接着剤の塗布作業が必要となりその分、工程数が増加 して、生産性の低下およびコストの増大を来すという問題があった。
[0013] さらに芯金に接着剤を塗布してインサート成形を行う場合には、上記過酷な温度環 境の悪影響に加えて、熱成形直後に成形収縮によってプラスチック磁石材料 (スケ ール成形体)に内部応力も発生するため、スケール成形体の亀裂や剥離を助長させ るおそれがあった。
[0014] なおプラスチック磁石材料の芯金に対する接着性を向上させるために、特殊な改 質材を配合する対策や、特殊な接着剤を使用する対策も提案されているが、これら の対策はいずれもコストの増大を来すため、現状では採用することは困難である。
[0015] この発明は、上記従来技術の問題を解消し、プラスチック磁石製スケール成形体の 芯金に対する密着強度を十分に確保できるとともに、成形体に亀裂や割れなどが発 生するのを防止でき、さらに生産効率良く安価に製造することができる磁気ェンコ一 ダおよびその製造方法を提供することを目的とする。
課題を解決するための手段
[0016] 上記目的を達成するため、本発明は下記の手段を提供する。
[0017] [1] 円環状の芯金と、前記芯金の一面に設けられ、かつ周方向に多極に着磁さ れたプラスチック磁石材料により構成される円環状のスケール成形体と、を備えた磁 気エンコーダであって、
前記芯金の一面に、径方向に沿って延び、かつ内径方向に開口する放射溝が周 方向に並んで複数形成され、
前記放射溝内に充填されたプラスチック磁石材料によって構成される充填成形部 力 前記スケール成形体と一体に形成されたことを特徴とする磁気エンコーダ。
[0018] [2] 前記芯金および前記スケール成形体間に接着剤が設けられない前項 1に記 載の磁気エンコーダ。
[0019] [3] 前記放射溝の側壁内面が、前記芯金の中心から放射状に延びる仮想の放射 線上に配置されて、前記放射溝の幅が内径方向に向かうに従って細くなるように形 成される前項 1または 2に記載の磁気エンコーダ。
[0020] [4] 前記放射溝の側壁内面に、前記スケール成形体が軸心方向へ剥離するのを 防止するための剥離防止用突出部が設けられる前項 1〜3のいずれか 1項に記載の 磁気エンコーダ。
[0021] [5] 前記芯金の外周縁部に、前記スケール成形体の外周端面に係止して、前記 スケール成形体が軸心方向へ剥離するのを防止するための立ち上がり片が設けられ る前項 1〜4のいずれ力 1項に記載の磁気エンコーダ。
[0022] [6] 前記スケール成形体の内周部にプラスチック磁石材料により構成される回り 込み成形部が一体に形成されるとともに、その回り込み成形部が前記芯金の一面か ら内周端縁を通って前記芯金の他面に回り込むよう配置される前項 1〜4のいずれか
1項に記載の磁気エンコーダ。
[0023] [7] 円環状の芯金と、前記芯金の一面に設けられ、かつ周方向に多極に着磁さ れたプラスチック磁石材料により構成される円環状のスケール成形体と、を備えた磁 気エンコーダを製造するための方法であって、
一面に、径方向に沿って延び、かつ内径方向に開口する放射溝が周方向に並ん で複数形成された円環状の芯金を得る工程と、
プラスチック磁石材料を成形材料とし、前記芯金をインサート部材として、磁場内で 射出成形を行うことにより、前記放射溝内に充填された成形材料により充填成形部を 形成するとともに、その充填成形部を一体に有する前記スケール成形体を形成して、 磁気エンコーダを得る工程と、を含むことを特徴とする磁気エンコーダの製造方法。 発明の効果
[0024] 上記発明 [1]における磁気エンコーダによれば、芯金の一面に放射溝を複数形成 し、芯金一面にスケール成形体を形成するとともに、放射溝内にスケール成形体と一 体に充填成形部を形成するものであるため、スケール成形体が充填成形部を介して 放射溝に構造的に固定される。このためスケール成形体が芯金に対し、剥離したり 位置ずれするのを有効に防止でき、十分な強度に密着固定することができる。
[0025] さらに本発明は、芯金に、径方向に延びかつ内径方向に開口する放射溝を形成し 、その放射溝に充填榭脂部を充填形成するものであるため、芯金およびスケール成 形体の熱膨張差に起因する亀裂や割れの発生を防止することができる。すなわちス ケール成形体が芯金に対し収縮 Z膨張した際に、スケール成形体は相似形状を保 つて、径方向に沿って全体的に収縮 Z膨張するため、放射溝内の充填成形部は、ス ケール成形体の収縮 Z膨張に伴って、放射溝に沿って径方向に移動する。そしてこ の移動によってスケール成形体や充填榭脂部に応力が集中して発生するのを防止 でき、スケール成形体に亀裂や割れなどの不具合が発生するのを防止することがで きる。
[0026] また本発明の磁気エンコーダは、インサート成形などの量産可能な熱成形によって 製造できるため、生産効率の向上およびコストの削減を図ることができる。
[0027] 上記発明 [2]における磁気エンコーダによれば、接着剤を用いずに、芯金にスケー ル成形体を被覆成形するものであるため、接着剤を塗布する工程を省略できる分、 生産効率をより一層向上できるとともに、コストをさらに削減することができる。
[0028] 上記発明 [3]における磁気エンコーダによれば、放射溝の溝幅を内径方向に向か うに従って細くなるように形成しているため、たとえばスケール成形体の収縮時には、 充填成形部はその幅を狭めるように変形しつつ、放射溝に沿って径方向内側に無理 なくスムーズに変位していく。逆にスケール成形体の膨張時には、充填成形部はそ の幅を広げるように変形しつつ、放射溝に沿って径方向外側に無理なくスムーズに 変位していく。このようにケール成形体の収縮 Z膨張時時に、充填成形部は放射溝 に沿って無理なくスムーズに移動するため、充填成形部、ひいてはスケール成形体 に多大な応力が発生するのを防止でき、スケール成形体に亀裂や割れなどの不具 合が発生するのをより一層確実に防止することができる。
[0029] 上記発明 [4]における磁気エンコーダによれば、放射溝の側壁内面に剥離防止用 突出部を設けるものであるため、放射溝内の充填成形部が剥離防止用突出部に係 止することにより、スケール成形体が芯金に対し軸心方向に剥離するのを、より確実 に防止することができ、より安定した状態にスケール成形体を芯金に密着固定するこ とがでさる。
[0030] 上記発明 [5]における磁気エンコーダによれば、芯金外周縁部に立ち上がり片を 設けて、その立ち上がり片にスケール成形体の外周端面に係止させるものであるた め、スケール成形体の軸心方向への剥離を、より一層確実に防止することができ、ス ケール成形体を芯金に、より一層安定した状態に密着接合することができる。
[0031] 上記発明 [6]における磁気エンコーダによれば、スケール成形体と一体に形成され た回り込み成形部を、芯金の一面内周部力 他面内周部に回り込ませるように形成 しているため、この回り込み成形部が、芯金に係合することによって、スケール成形体 が芯金に対し軸心方向に剥離するのを防止することができ、スケール成形体の剥離 を、なお一層確実に防止できて、なお一層安定した状態に密着接合することができる
[0032] 上記発明 [7]は、上記発明 [1]の構成を有する磁気エンコーダを製造する方法の 一形態を特定するものであるため、上記と同様の作用効果を有する磁気エンコーダ を製造することができる。
図面の簡単な説明
[0033] [図 1]この発明の第 1実施形態である磁気エンコーダを示す斜視図である。
[図 2]第 1実施形態の磁気エンコーダの一部を切り欠いて示す斜視図である。
[図 3]第 1実施形態の磁気エンコーダに適用された芯金部材を示す斜視図である。
[図 4]第 1実施形態の芯金部材の一部を切り欠いて示す斜視図である。
[図 5]第 1実施形態の芯金部材の一部を拡大して示す斜視図である。
[図 6]第 1実施形態の芯金部材を示す平面図である。
[図 7]図 6の一点鎖線で囲まれる部分を拡大して示す平面図である。
[図 8]放射溝の溝形態を説明するための模式図である。
[図 9]この発明の第 1変形例である芯金部材の一部を切り欠いて示す斜視図である。
[図 10]この発明の第 1変形例である芯金部材の一部を拡大して示す斜視図である。
[図 11]この発明の第 2変形例である磁気エンコーダの一部を切り欠いて示す斜視図 である。
[図 12]第 2変形例の磁気エンコーダに適用された芯金部材の一部を切り欠いて示す 斜視図である。
[図 13]第 2変形例の磁気エンコーダに問題点を説明するための斜視図である。
[図 14]この発明の第 2実施形態である密封装置の磁気エンコーダを示す斜視図であ る。
[図 15]第 2実施形態の磁気エンコーダの一部を切り欠いて示す斜視図である。
[図 16]この発明の第 3実施形態である密封装置の磁気エンコーダを示す斜視図であ る。
[図 17]第 3実施形態の磁気エンコーダの一部を切り欠いて示す斜視図である。
符号の説明 1〜3 磁気エンコーダ
20 芯金
21 放射溝
22 側壁内面
25 剥離防止用突出部
40 スケール成形体
41 回り込み成形部
42 充填成形部
120 芯金
121 放射溝
126 立ち上がり片
140 スケール成形体
142 充填成形部
C 芯金中心
L 仮想放射線
発明を実施するための最良の形態
[0035] <第 1実施形態 >
図 1および図 2はこの発明の第 1実施形態である磁気エンコーダ(1)を示す図で、 図 3〜7はそのエンコーダ(1)に適用された芯金部材(10)を示す図である。これらの 図に示すように、本第 1実施形態の磁気エンコーダ(1)は、略円環状の芯金部材(1 0)と、プラスチック磁石材料カゝらなる円環状のスケール成形体 (40)とを備えて!/ヽる。
[0036] 芯金部材(10)は、円環板状の芯金(20)と、その芯金(20)の外周縁部に立ち上が り状に設けられる円筒状の取付片(30)とを一体に有する金属製のプレス成形品をも つて構成されている。
[0037] この芯金部材(10)はたとえば、磁性を有する鋼板などの金属板に打ち抜き加工、 絞り加工などのプレス加工を施して形成される。
[0038] また芯金部材(10)の材料としては、上記プラスチック磁石材料との吸着性が必要 であることや、磁石材料との磁気特性を低下させないために、磁性を有する金属材 料が使用される。特にプレス加工での成形性も考慮すると、冷間圧延鋼板 (SPCC) などの低炭素鋼板を芯金部材(10)の材料として使用するのが好ましい。
[0039] 芯金部材(10)における円環状の芯金(20)の一面には、径方向に沿って延びる放 射溝 (21)が、周方向に所定のピッチで均等に多数並んで形成されている。
[0040] この放射溝 (21)は、矩形状の断面形状を有しており、内径方向の端部が内側に開 放されるとともに、外径方向の端部は、芯金(20)の外周縁部よりも内側に配置される ことにより、外側に対し閉塞されている。
[0041] さらに図 6および図 7に示すように、放射溝(21)は、その両側壁内面(22)が、芯金
(20)の中心 (C)から放射状に延びる仮想の放射線 (L)に一致するように配置されて
、放射溝(21)の幅が内径方向に向かうに従って漸次細くなるように形成されて!、る。 このように放射溝(21)は、両側壁内面(22)がテーパ状に形成されて、図 7に示す平 面視にお!/ヽて略台形溝な!ヽし扇形溝の形態に形成されて!ヽる。
[0042] また本実施形態にぉ 、て、放射溝(21)の数を、後述のスケール成形体 (40)の N 極および S極の合計数と同数に設定する場合には、放射溝(21)の形成による磁気 特性への影響が均一化されるので、好ましい。
[0043] 放射溝(21)の形成方法は、特に限定されるものではなぐ切削加工、プレス加工、 放電カ卩ェなどを用いることができ、中でも量産性を考慮すると、プレス加工を用いる のが好ましい。
[0044] プレス加工により放射溝 (21)を形成する場合、溝 (21)の形状に対応した凸部が、 周方向に沿って多数均等に配置されたパンチ金型を用いることによって、一度のプ レス加工で全ての放射溝(21)を同時に形成できる。この場合、鋼板などの金属板製 の円環状芯金(20)を、一対のパンチによって上下から挟み込むようにして、パンチ 金型を食 、込ませて押圧加工 (コイニング力卩ェ)して形成するものである。
[0045] なお後に詳述する第 2変形例のように、放射溝 (21)を半抜き加工によって形成して ても良い。
[0046] 放射溝(21)の溝深さは、コイニングカ卩ェによる場合、芯金(20)の厚みに対し 25〜 50%に設定するのが好ましい。すなわち放射溝(21)が浅過ぎる場合には、後述す るようにスケール成形体 (40)を構成するプラスチック磁石材料を溝(21)内に十分に 充填させて絡みつけることができず、スケール成形体 (40)の芯金(20)に対する密 着強度が低下するおそれがある。逆に放射溝 (21)が深過ぎる場合には、加工度合 が大きくなり、反りや変形などが生じて、寸法精度が低下するおそれがある。
[0047] 図 1および図 2に示すように、芯金(20)の一面には、プラスチック磁石材料により構 成される円環状スケール成形体 (40)が形成されて!ヽる。
[0048] さらにスケール成形体 (40)の内周部には、プラスチック磁石材料により構成される 回り込み成形部 (41)力スケール成形体 (40)と一体に形成される。この回り込み成形 部 (41)は、芯金一面の内周縁部力 芯金内周端縁を通って他面の内周縁部にかけ て配置されている。
[0049] さらに各放射溝(21)内には、プラスチック磁石材料により構成される充填成形部 (4 2)がスケール成形体 (40)と一体に形成されて!、る。
[0050] 本実施形態にぉ 、て、成形部 (41) (42)を含めてスケール成形体 (40)を構成する プラスチック磁石材料は、磁性粉末に結合剤 (バインダー)としてプラスチック材料を 混合した榭脂組成物によって構成される。
[0051] 磁性粉末としては、ストロンチウムフェライトやバリウムフェライトなどのフェライト系磁 性粉末の他、ネオジム系、サマリウム系などの希土類磁性粉末が好適に使用される。
[0052] 磁性粉末のバインダーとして用いられるプラスチック材料としては、射出成形用の熱 可塑性榭脂材料が用いられる。なお言うまでもなぐ使用する榭脂材料は、強度、耐 熱性、耐薬品性、磁気特性などの性質や、成形性、配合性、コストなどを考慮して適 宜選定されるものである。たとえば本実施形態では、ポリアミド 6 (PA6)、ポリアミド 12 (PA12)、ポリアミド 612 (PA612)、ポリフエ-レンサルファイド(PPS)などの榭脂材 料を好適に使用することができる。
[0053] 本実施形態にぉ 、て、プラスチック磁石材料中における磁性粉末の含有量は、 45 〜75体積%に設定するのが好ましい。すなわち磁性粉末の含有量が少過ぎる場合 には、磁気特性に劣り多極磁ィ匕が困難となり、後述する回転速度検出時における検 出精度の低下を来すおそれがある。逆に磁性粉末の含有量が多過ぎる場合には、 相対的にバインダー榭脂の配合量が少なくなり、熱成形が困難になるとともに、成形 体強度も低下するおそれがある。 [0054] 本実施形態においては、上記プラスチック磁石材料を用いてインサート成形するこ とによって、磁気エンコーダ(1)を製作するものである。すなわち上記のプラスチック 磁石材料を成形材料とし、上記の芯金部材(10)をインサート部材として接着剤を用 いずに、磁場内で射出成形を行う。これにより図 1および図 2に示すように、芯金(20 )の一面から内周端縁を通って他面の内周縁部に至る領域に、プラスチック磁石材 料により構成されるスケール成形体 (40)および回り込み成形部 (41)がー体に形成 されるとともに、芯金(20)の各放射溝 (21)内に、プラスチック磁石材料により構成さ れる充填榭脂部 (42)が、スケール成形体 (40)と一体に形成される。
[0055] こうして得られたインサート成形品に対し、脱磁を行った後、別途準備した着磁装置 を用いて所定の多極磁ィ匕を行うことにより、図 2に示すように、プラスチック磁石材料 のスケール成形体 (40)を、周方向に N極と S極とが交互になるように多極に着磁する 。これにより磁気エンコーダ(1)が製造される。
[0056] この磁気エンコーダ(1)を転がり軸受などの回転速度検出装置として用いる場合に は、芯金部材 (10)の円筒状取付片 (30)を、軸受内輪などの回転軸部に外嵌状態 に圧入固定する一方、磁場の変化を検出するセンサ(図示省略)を、磁気エンコーダ (1)のスケール成形体 (40)に対向させるように近接配置する。そして回転軸部と同 期して回転する磁気エンコーダ(1)のスケール成形体 (40)から生じる磁場の変化を 上記センサにより感知させて、回転速度を検出するものである。
[0057] 以上のように本実施形態の磁気エンコーダ(1)によれば、芯金(20)の一面に、径 方向に延びる放射溝(21)を周方向に所定のピッチで多数形成して、芯金一面にプ ラスチック磁石製のスケール成形体 (40)を形成するとともに、各放射溝(21)内に、 プラスチック磁石製の充填成形部 (42)をスケール成形体 (40)と一体に形成するも のであるため、スケール成形体 (40)が充填成形部 (42)を介して放射溝 (21)〖こ機械 的に固定される。このためスケール成形体 (40)が芯金(20)に対し、軸心方向に剥 離したり、周方向へ位置ずれするのを有効に防止でき、優れた密着性能を得ることが できる。特にスケール成形体 (40)は磁気吸着によっても芯金(20)〖こ密着するため、 この磁気吸着作用も相まって、軸心方向への剥離をより確実に防止することができる [0058] さらに本実施形態においては、スケール成形体 (40)と一体に形成された回り込み 成形部 (41)を、芯金(20)の一面内周部力 他面内周部に回り込ませるように形成 しているため、この回り込み成形部 (41)力 芯金(20)〖こ係合することによつても、ス ケール成形体 (40)が芯金(20)に対し軸心方向に剥離するのを防止することができ 、スケール成形体 (40)の剥離を一層確実に防止できて、安定状態に密着接合する ことができる。
[0059] また本実施形態においては、磁気エンコーダ(1)を、インサート成形などの量産可 能な熱成形によって製造するものであるため、生産効率を向上できるとともに、コスト を削減することができる。
[0060] さらに本実施形態においては、接着剤を用いずに、インサート成形して芯金(20) にスケール成形体 (40)を被覆成形するものであるため、接着剤を塗布する工程を省 略でき、その分、生産効率をより一層向上できるとともに、コストをより一層削減するこ とがでさる。
[0061] また本実施形態にお!、ては、回り込み成形部 (41)および充填成形部 (42)を含む スケール成形体 (40)と、芯金(20)との熱膨張率の相違による不具合を確実に防止 することができる。すなわち温度環境変化や、熱成形直後の成形収縮によって、スケ ール成形体 (40)が芯金(20)に対し成形後に大きく収縮した場合、スケール成形体 (40)が芯金(20)に追従できずスケール成形体 (40)に亀裂や剥離が生じるおそれ がある。そこで本実施形態の磁気エンコーダ(1)においては、芯金(20)に、径方向 に延びかつ内径方向に開口する放射溝(21)を、周方向に所定のピッチで多数形成 し、その放射溝(21)に充填榭脂部 (42)を形成するものであるため、スケール成形体 (40)が芯金(20)に対し収縮したとしても、スケール成形体 (40)は全体的に径寸法 力 、さくなるように相似形状を保って収縮する。つまりスケール成形体 (40)は、径方 向に沿って全体的に収縮するため、放射溝(21)内の充填成形部 (42)は、スケール 成形体 (40)の収縮に伴って、放射溝(21)に沿って内径方向に移動する。この移動 によって熱膨張差が無理なく吸収されるため、スケール成形体 (40)や充填榭脂部( 42)に応力が集中して発生することがなぐスケール成形体 (40)などに亀裂や割れ などの不具合が発生するのを確実に防止することができる。 [0062] 逆に温度環境変化などによって、スケール成形体 (40)が芯金(20)に対し膨張し た場合には、スケール成形体 (40)が径方向に全体的に膨張するため、放射溝 (21) 内の充填成形部 (42)は、スケール成形体 (40)の膨張に伴って、放射溝(21)に沿 つて外径方向に移動して、熱膨張差が無理なく吸収される。このためスケール成形 体 (40)や充填榭脂部 (42)に応力が集中して発生することがなぐスケール成形体( 40)などに亀裂や割れなどの不具合が発生するのを確実に防止することができる。
[0063] ここで本実施形態にぉ 、て、放射溝(21)内の充填成形部 (42)における収縮時の 挙動や寸法変化について詳細に説明する。まず図 8に示すように本実施形態のスケ ール成形体 (40)を構成するプラスチック磁石材料の熱膨張係数を「 α」、放射溝 (2
1)の総数を「2η」として、「At」の温度変化によって、円環状スケール (40)の直径が 「φϋ ^「φ(1」に小さくなつたとき、以下の(1)式の関係が成立し、その(1)式から(
2)式が導き出される。
D-d= aD- At---(l)
d=D- αϋ· At---(2)
また放射溝(21)内の充填成形部 (42)において、「At」の温度変化による収縮前 の外周端縁の幅を「A」、収縮後の外周端縁の幅を「a」としたとき、以下の(3) (4)式 の関係が成立する。ただしこれらの式においては、発明の理解を容易にするため、充 填成形部 (42)の外周端縁の幅寸法は円弧線上の距離にほぼ等 、ものとし、隣合 う放射溝 (21)間の隙間は「0」として計算する。
Figure imgf000014_0001
さらに(2)式と (4)式とから、以下の(5)式が導き出される。
a= πϋ(ΐ- - At)/2n---(5)
そして(3)〜(5)式から、充填成形部 (42)の外周端縁幅の収縮率 (A— a) ZAを 求めると、以下の(6)式が導き出される。
(A-a)/A= (A— π -D(A-a)/AD(l- a · At)/2n)/A
= 1-(π -D/2n) (2η/π -D) (1— a · At)
=1一(1一 a · At) = a · A t- - - (6)
さらに(1)式と(6)式とを比較すると、スケール成形体 (40)における直径方向の収 縮率 (D— d) ZDと、充填成形部 (42)の外周端縁幅の収縮率 (A— a) ZAとは等し いことが判る。
[0064] つまりスケール成形体 (40)が収縮する場合、充填成形部 (42)の両側面は、その 両側面とスケール成形体 (40)の中心 (C)とを結ぶ仮想の放射線 (L)に沿って内径 方向に変位するように収縮変形するものである。
[0065] そこで本実施形態においては既述したように、放射溝 (21)の両側壁内面(22)を、 芯金(20)の中心 (C)から放射状に延びる仮想の放射線 (L)上に配置させて、放射 溝(21)の溝幅を内径方向に向かうに従って漸次細くなるように形成しているため、ス ケール成形体 (40)が収縮した際に、充填成形部 (42)はその幅を狭めるように変形 しつつ、放射溝(21)に沿って径方向内側に変位していく。このようにケール成形体( 40)の収縮時に、充填成形部 (42)は放射溝(21)に沿って無理なくスムーズに移動 するため、充填成形部 (42)、ひいてはスケール成形体 (40)に多大な応力が発生す るのを防止でき、スケール成形体 (40)に亀裂や割れなどの不具合が発生するのをよ り確実に防止することができる。
[0066] また逆にスケール成形体 (40)が芯金(20)に対し膨張する場合には、充填成形部
(42)は、その幅を広げるように変形しつつ、放射溝(21)に沿って径方向外側に変 位していく。従ってスケール成形体 (40)の膨張時においても上記と同様、充填成形 部 (42)、ひいてはスケール成形体 (40)に多大な応力が加わることがなぐ亀裂や割 れなどの不具合が発生するのを確実に防止することができる。
[0067] なお放射溝 (21)の側壁内面 (22)を放射線 (L)に沿って形成する場合、放射溝 (2 1)の形成数が多いと、放射溝 (21)の内端幅と外端幅との寸法差が小さぐ側壁内面 (22)の傾斜も緩くなる。このため放射溝 (21)の形成数が多い場合には、溝 (21)の 側壁内面 (22)を放射線 (L)上に配置せずに、放射溝 (21)の内端幅と外端幅とが等 しくて、溝幅が一定の平行溝形態に形成するようにしても良い。
[0068] 具体的には、放射溝(21)の形成数が 30以下の場合には、放射溝(21)の側壁内 面(22)を放射線 (L)上に配置して、側壁内面(22)を傾斜させるのが良!、。 [0069] また本実施形態のように放射溝 (21)を等間隔に形成する場合、溝数が多い方が、 各溝内の榭脂充填部 (42)の収縮量が小さくなるため、収縮時の応力を小さくでき、 亀裂や剥離が発生するのを、より確実に防止することができる。
[0070] <第 1変形例 >
図 9および図 10はこの発明の第 1変形例である磁気エンコーダの芯金部材(10)を 示す斜視図である。両図に示すように、本実施形態では、芯金部材(10)における芯 金(20)の放射溝 (21)がァリ溝状に形成されている。すなわち、放射溝 (21)におけ る両側壁内面(22)が内側に傾斜する傾斜面に形成されて、放射溝(21)の開口幅 に溝底幅よりも狭く形成されている。そして放射溝(21)における両側壁の開口縁部 力 溝内側に突出する剥離防止用突出部(25)として構成されている。その他の構成 は、上記実施形態と同様である。
[0071] この構成の芯金部材(10)を用いた磁気エンコーダにおいては、放射溝(21)内の 充填成形部 (42)が、剥離防止用突出部(25)に係止するため、スケール成形体 (40 )が芯金(20)に対し放射溝 (21)の開口方向、つまり軸心方向に剥離するのを、より 確実に防止することができ、より安定した状態にスケール成形体 (40)を芯金(20)に 密着固定することができる。
[0072] なおこの第 1変形例においては、放射溝 (21)の長さ方向に連続して剥離防止用突 出部(25)を形成しているが、それだけに限られず、本発明においては、放射溝 (21) 内の一部に剥離防止用突出部を形成するようにしても良い。
[0073] また本発明において、放射溝 (21)の側壁側面に剥離防止用突出部 (25)を形成 する場合、その形成方法としてはたとえば、芯金(20)の一面側における放射溝間の 平坦部をプレス加工により部分的に押圧することにより、押された肉を溝方向に移動 させて、剥離防止用突出部 (25)を形成する方法を採用することができる。
[0074] <第 2変形例 >
図 11はこの発明の第 2変形例である磁気エンコーダ(1)の一部を示す斜視図、図 12は第 2変形例に適用された芯金部材(10)の一部を示す斜視図である。両図に示 すように、この第 2変形例においては、芯金部材(10)の芯金(20)における放射溝( 21)を半抜き加工により形成するものである。すなわち上記実施形態において、放射 溝(21)は、押圧加工 (コイニング加工)によって形成している力 この第 2変形例にお いては、放射溝 (21)を押圧パンチにより押し付けた溝部の肉を背面側 (他面側)に 塑性流動させる半抜き加工により形成している。その他の構成は、上記実施形態と同 様である。
[0075] この第 2変形例のように、半抜き加工により放射溝 (21)を形成する場合には、所定 の精度を維持しつつ、溝深さを芯金(20)の肉厚に対し 90%程度まで形成すること ができる。なお上記実施形態のようにコイニング加工により放射溝(21)を形成した場 合には、既述したように、溝深さは芯金(20)の肉厚に対し 50%程度以下に制限され る。
[0076] またこの第 2変形例の磁気エンコーダ(1)においては、芯金(20)の他面側には、 放射溝 (21)に対応して、肉盛り部(11)が形成されるため、芯金(20)の一面側から 他面側に回り込ませるように被覆成形したスケール成形体 (40)の回り込み成形部 (4 1)を、肉盛り部(11)の外端段差部(12)まで到達しないように形成するのが良い。す なわち図 13に示すように回り込み成形部 (41)を、芯金他面側における肉盛り膨出 部(11)の外端段差部(12)を超える位置まで形成して、回り込み成形部 (41)によつ て外端段差部(12)を被覆させると、上記した榭脂収縮によって、スケール成形体 (4 0)が収縮した際に、回り込み成形部 (41)が外端段差部(12)に係合して収縮挙動 に追従できなくなる。このため、回り込み成形部 (41)の段差部周辺に多大な変形応 力が発生して、亀裂や割れが発生することがある。従って回り込み成形部 (41)によ つて、芯金他面側における肉盛り部(11)の外端段差部(12)を被覆しな!、ように構 成するのが好ましい。
[0077] もっとも本発明においては、回り込み成形部 (41)を必ずしも形成する必要はなぐ 芯金(20)の他面側に榭脂を回り込ませずに、芯金(20)の一面側のみに榭脂成形 体 (スケール成形体)を形成するようにしても良 、。
[0078] <第 2実施形態 >
図 14および図 15はこの発明の第 2実施形態である磁気エンコーダ (2)を示す斜視 図である。両図に示すようにこの第 2実施形態の磁気エンコーダ(2)は、ノ ックシール ゃノ、ブシールと称される密封装置の一部を構成するものであり、その密封装置にお ける内径側(内輪側)のスリンガ(110)が、上記第 1実施形態の芯金部材(10)に対 応するものである。
[0079] すなわち本実施形態の磁気エンコーダ(2)は、略円環状のスリンガ(110)と、円環 状のスケール成形体(140)と、を備えている。
[0080] スリンガ(110)は、円環状の芯金(120)と、その芯金(120)の内周縁部に立ち上 力 ^状に設けられる円筒状の取付片(130)とを一体に有する金属製のプレス成形品 をもって構成されている。
[0081] このスリンガ(110)における円環状芯金(120)の一面(外面)には、上記と同様に 径方向に沿って延びる放射溝(121)が、周方向に所定のピッチで多数並んで形成 されている。
[0082] なおスリンガ(110)の材料としては、上記第 1実施形態と同様に、磁性を有し、良好 な成形性を有する金属材料を用いることができる。さらにこれらの性質に加えて、耐 泥水性や、耐食性などを考慮すると、フェライト系ステンレス(SUS430等)、マルテン サイト系ステンレス(SUS410等)などのステンレス鋼板を好適に使用することができ る。
[0083] スリンガ(110)の一面には、その一面を被覆するように円環状のスケール成形体(1 40)が形成されている。このスケール成形体(110)は、プラスチック磁石により構成さ れている。
[0084] さらにスリンガ(110)の放射溝(121)内には、プラスチック磁石材料により構成され る充填成形部(142)がスケール成形体(110)と一体に形成されている。
[0085] その他の構成は、上記実施形態等と実質的に同様であるため、同一または相当部 分に、同一または相当符号を付して、重複説明は省略する。
[0086] さらにこの第 2実施形態の磁気エンコーダ(2)は、上記と同様にして製造されるもの である。
[0087] 以上のように構成された第 2実施形態の磁気エンコーダ(2)は、そのスリンガ(110) の円筒状取付片(130)が、軸受内輪に外嵌状態に固定されて、スリンガ(110)の芯 金(120)が、スケール成形体(140)を外向きにした状態で、軸受内輪および外輪間 の開口部に配置される。 [0088] さらに本実施形態の磁気エンコーダ(2)を有するハブシールなどの密封装置にお いては、軸受外輪に外径側スリンガが内嵌状態に固定され、その外径側スリンガに 設けられたシールリップ力 上記スリンガ(110)の芯金(120)における他面(内面)の 外周部に接触するよう構成されている。
[0089] そしてこの密封装置では、磁場検出用センサを、スケール成形体(140)に対向配 置させて、上記と同様に、回転速度を検出するものである。
[0090] この密封装置における磁気エンコーダ(2)においても、上記と同様に同様の効果を 得ることができる。
[0091] なおこの第 2実施形態の磁気エンコーダ(2)においては、スリンガ(110)における 芯金(120)の一面 (外面)に放射溝(121)をプレスカ卩ェにより形成すると、芯金(12 0)の他面(内面)における放射溝(121)に対応する位置に、微小な肉盛り部が形成 される可能性がある。既述したように、芯金(120)の他面側は、外径側スリンガのシ ールリップを接触させる接触面であるため、シールリップが適切に接触できるよう平坦 に形成するのが望ましい。このため芯金(120)におけるシールリップが接触する位置 には、放射溝(121)を形成しないようにするのが良い。換言すれば、放射溝(121) の最外側位置を、シールリップの接触位置よりも内側に配置しておくのが良い。
[0092] 特に放射溝(121)を半抜きプレス加工により形成する場合には、パンチにより押圧 した溝の肉が他面側(内面側)に大きく移動して、大きい肉盛り部が形成されるため、 その肉盛り部がシールリップと干渉しないように、放射溝(121)の最外側位置を設定 しておくのが好ましい。
[0093] <第 3実施形態 >
図 16および図 17はこの発明の第 3実施形態である磁気エンコーダ (3)を示す斜視 図である。両図に示すようにこの磁気エンコーダ(3)は、上記第 2実施形態と同様、 ノ ックシールゃノ、ブシールと称される密封装置に採用されるものであり、その密封装 置おける内径側(内輪側)のスリンガ(110)が、上記第 1実施形態の芯金部材(10) に対応するものである。
[0094] この磁気エンコーダ(3)においては、スリンガ(110)における芯金(120)の外周端 縁に、軸方向の一面側(外面側)に突出する立ち上がり片(126)が形成されている。 この立ち上がり片(126)は、内径側に傾斜するように形成されて、立ち上がり片(126 )の内面が内径側に傾斜する傾斜面として形成されている。そして立ち上がり片(12 6)のスケール成形体(140)の外周端面が、立ち上がり片(126)の内面に適合状態 に接合するよう構成されて ヽる。
[0095] その他の構成は、上記第 2実施形態と実質的に同様であるため、同一または相当 部分に、同一または相当符号を付して、重複説明は省略する。
[0096] この第 3実施形態の磁気エンコーダ(3)においても、上記第 1および第 2実施形態 と同様に同様の効果を得ることができる。その上さらに本実施形態においては、スリン ガ(110)における芯金(120)の外周端縁に立ち上がり片(126)を形成して、その立 ち上がり片(126)にスケール成形体(140)の外周端面を接合させているため、スケ ール成形体(140)の外周端面が内径側に傾斜した立ち上がり片(126)に係止する ことによって、スケール成形体(140)の軸心方向への剥離を、より一層確実に防止す ることができ、スケール成形体(140)をスリンガ(110)に、より一層安定した状態に密 着接合することができる。
実施例
[0097] <実施例 1 >
図 1〜7に示す第 1実施形態と同様にして、同形態の磁気エンコーダ(1)を作製し た。このとき芯金部材(10)として、 SUS430からなるものを用い、芯金(20)の厚さを 0. 6mm、放射溝 (21)の深さを 0. 25mm,放射溝 (21)の等分数 (数)を 90 (総極数 90)に設定した。さらに放射溝 (21)を上記第 1実施形態と同様に、両側壁内面 (22) が芯金(20)の中心からの放射線 (L)に沿って配置される扇形溝の形態に形成した。
[0098] またスケール成形体 (40)を形成するためのプラスチック磁石材料として、ポリアミド 6 (バインダー榭脂)に対し、ストロンチウムフェライト (磁性粉末)が 60体積0 /0含有され た榭脂組成物を用いた。そしてこの榭脂組成物を成形材料とし、芯金部材(10)をィ ンサート部材として、上記第 1実施形態と同様にインサート成形を行って、芯金部材( 10)に、厚さ 0. 9mmのスケール成形体 (40)を形成して、実施例 1の磁気エンコーダ を作製した。なおこの実施例 1では、接着剤は使用しなカゝつた。つまり芯板(10)の榭 脂成形面 (接着面)に接着剤を塗布せずに、インサート成形を行った。 [0099] <実施例 2>
芯金部材における放射溝を、その両側壁内面を外径端部から内径端部にかけて 平行にした平行溝の形態に形成した。それ以外は、上記実施例 1と同様にして、実 施例 2の磁気エンコーダを作製した。
[0100] <比較例 1 >
芯金部材として、放射溝が形成されず、芯金一面が平坦なものを用い、さらに芯金 部材の榭脂成形面に接着剤を塗布して、上記と同様にインサート成形を行った。そ れ以外は、上記実施例 1と同様にして、比較例 1の磁気エンコーダを作製した。
[0101] <比較例 2>
芯金部材として、放射溝が形成されず、芯金一面が平坦なものを準備する一方、実 施例 1と同様なプラスチック磁石材料を射出成形することにより、単独のスケール成 形体を準備した。そして芯金部材の芯金一面に接着剤を用いてスケール成形体を貼 り付けた。それ以外は、上記実施例 1と同様にして、比較例 2の磁気エンコーダを作 製した。
[0102] <評価試験 >
上記実施例および比較例の各磁気エンコーダに対し、 150°Cで 30分加熱して、 -
40°Cで 30分冷却する処理を 1サイクルとする熱履歴衝撃試験を、 1000サイクル行つ た。その試験結果および各磁気エンコーダの主な構成を表 1に示す。
[0103] [表 1]
実施例 1 実施例 2 比較例 1 比較例 2 放射溝の有無 有 (扇形溝) 有 (平行溝) 無 接着剤の有無 有 有 製造 方法 インサ ト成形 インサ 4成形 インサ ト成形 成形後に接着 熱衝撃試験 1 0 0 0サイクル 1 0 0 0サイクル 2 2サイクル 4 3 7サイクル (破壊サイ レ数) 異常無し Γ|ί) し 割れ発生 割れ発生 [0104] 表 1から明らかなように、本発明に関連した実施例 1, 2の磁気エンコーダは、 1000 サイクルの熱履歴衝撃試験に対しても、スケール成形体に、亀裂や割れなどの異常 が認められな力つた。従って実施例の磁気エンコーダは、過酷な温度環境下におい ても、支障なく使用できるものと考えられる。
[0105] これに対し本発明の要旨を逸脱する比較例のうち、比較例 1の磁気エンコーダは、 試験中に早期に、スケール成形体に割れが発生し、極端に耐熱性に劣っているもの であった。さらに比較例 2の磁気エンコーダにおいても、試験途中で、スケール成形 体に割れが発生し、耐熱性に劣っているものであった。従って比較例 1, 2の磁気ェ ンコーダはいずれも、過酷な温度環境下での使用は困難であると考えられる。
[0106] さらに上記の熱履歴衝撃試験後において、実施例 1, 2の磁気エンコーダの磁気特 性を検査したところ、磁気特性に変化は認められず、良好な磁気特性を維持してい た。
[0107] また熱履歴衝撃試験後に実施例 1, 2の磁気エンコーダにおいて、 40°Cに冷却 した状態でスケール成形体の芯金に対するガタツキを観察したところ、実施例 1の磁 気エンコーダには全くガタツキが認められず、安定状態に密着されていた。これに対 し実施例 2の磁気ェンコーダは、実施例 1のものに比べて僅かにガタツキが認められ たものの、実使用上問題のない程度であった。
[0108] この出願は、 2006年 3月 31日付で出願された日本国特許出願特願 2006— 9879 2号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成す るものである。
[0109] ここで用いられた用語及び説明は、この発明に係る実施形態を説明するために用 いられたものであって、この発明はこれに限定されるものではない。この発明は請求 の範囲内であれば、その精神を逸脱するものでない限りいかなる設計的変更をも許 容するものである。
産業上の利用可能性
[0110] この発明は、回転体の回転数(回転速度)を検出する際に用いられる磁気ェンコ一 ダ、たとえば自動車の車輪の回転数を検出する装置や相対回転する軸受部の回転 数検出装置などに使用される磁気ェンコーダに適用可能である。

Claims

請求の範囲
[1] 円環状の芯金と、前記芯金の一面に設けられ、かつ周方向に多極に着磁されたプ ラスチック磁石材料により構成される円環状のスケール成形体と、を備えた磁気ェン コーダであって、
前記芯金の一面に、径方向に沿って延び、かつ内径方向に開口する放射溝が周 方向に並んで複数形成され、
前記放射溝内に充填されたプラスチック磁石材料によって構成される充填成形部 力 前記スケール成形体と一体に形成されたことを特徴とする磁気エンコーダ。
[2] 前記芯金および前記スケール成形体間に接着剤が設けられな 、請求項 1に記載 の磁気エンコーダ。
[3] 前記放射溝の側壁内面が、前記芯金の中心から放射状に延びる仮想の放射線上 に配置されて、前記放射溝の幅が内径方向に向かうに従って細くなるように形成され る請求項 1または 2に記載の磁気エンコーダ。
[4] 前記放射溝の側壁内面に、前記スケール成形体が軸心方向へ剥離するのを防止 するための剥離防止用突出部が設けられる請求項 1〜3のいずれか 1項に記載の磁 気エンコーダ。
[5] 前記芯金の外周縁部に、前記スケール成形体の外周端面に係止して、前記スケー ル成形体が軸心方向へ剥離するのを防止するための立ち上がり片が設けられる請 求項 1〜4のいずれ力 1項に記載の磁気エンコーダ。
[6] 前記スケール成形体の内周部にプラスチック磁石材料により構成される回り込み成 形部が一体に形成されるとともに、その回り込み成形部が前記芯金の一面から内周 端縁を通って前記芯金の他面に回り込むよう配置される請求項 1〜4のいずれか 1項 に記載の磁気エンコーダ。
[7] 円環状の芯金と、前記芯金の一面に設けられ、かつ周方向に多極に着磁されたプ ラスチック磁石材料により構成される円環状のスケール成形体と、を備えた磁気ェン コーダを製造するための方法であって、
一面に、径方向に沿って延び、かつ内径方向に開口する放射溝が周方向に並ん で複数形成された円環状の芯金を得る工程と、 プラスチック磁石材料を成形材料とし、前記芯金をインサート部材として、磁場内で 射出成形を行うことにより、前記放射溝内に充填された成形材料により充填成形部を 形成するとともに、その充填成形部を一体に有する前記スケール成形体を形成して、 磁気エンコーダを得る工程と、を含むことを特徴とする磁気エンコーダの製造方法。
PCT/JP2006/318992 2006-03-31 2006-09-25 磁気エンコーダおよびその製造方法 WO2007116542A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06798317A EP2003424B1 (en) 2006-03-31 2006-09-25 Magnetic encoder and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-098792 2006-03-31
JP2006098792A JP4685683B2 (ja) 2006-03-31 2006-03-31 磁気エンコーダおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2007116542A1 true WO2007116542A1 (ja) 2007-10-18

Family

ID=38580846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318992 WO2007116542A1 (ja) 2006-03-31 2006-09-25 磁気エンコーダおよびその製造方法

Country Status (3)

Country Link
EP (1) EP2003424B1 (ja)
JP (1) JP4685683B2 (ja)
WO (1) WO2007116542A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110884029A (zh) * 2018-09-07 2020-03-17 中西金属工业株式会社 磁编码器的制造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6432125B2 (ja) 2013-10-24 2018-12-05 中西金属工業株式会社 磁気エンコーダ、及び磁気エンコーダを備えた軸受装置
KR102113048B1 (ko) 2013-11-13 2020-05-20 현대모비스 주식회사 마그네틱 엔코더 구조
JP6447310B2 (ja) * 2014-06-04 2019-01-09 中西金属工業株式会社 磁気エンコーダ及びその製造方法
JP6424481B2 (ja) 2014-06-11 2018-11-21 中西金属工業株式会社 磁気エンコーダ及びその製造方法
US20160313139A1 (en) * 2015-04-27 2016-10-27 United Technologies Corporation Magnetic encoder assembly
JP7279327B2 (ja) * 2018-09-27 2023-05-23 株式会社プロテリアル ヨーク一体型ボンド磁石の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281659A (ja) 1998-03-26 1999-10-15 Uchiyama Mfg Corp トーンホィール付シール
JP2005233923A (ja) * 2004-01-22 2005-09-02 Nsk Ltd 転がり軸受
JP2005241289A (ja) * 2004-02-24 2005-09-08 Nsk Ltd 磁気エンコーダ及び当該磁気エンコーダを備えた転がり軸受
JP2005308559A (ja) * 2004-04-22 2005-11-04 Nok Corp 磁気式ロータリエンコーダ用パルサーリング
JP2005315782A (ja) 2004-04-30 2005-11-10 Nsk Ltd 磁気エンコーダ及び当該磁気エンコーダを備えた転がり軸受
JP2006098792A (ja) 2004-09-29 2006-04-13 Fujikura Ltd 光機能部品の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827604A (en) * 1987-10-01 1989-05-09 Amp Incorporated Method of making an encoding substrate
JP2004053410A (ja) * 2002-07-19 2004-02-19 Uchiyama Mfg Corp 磁気エンコーダ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281659A (ja) 1998-03-26 1999-10-15 Uchiyama Mfg Corp トーンホィール付シール
JP2005233923A (ja) * 2004-01-22 2005-09-02 Nsk Ltd 転がり軸受
JP2005241289A (ja) * 2004-02-24 2005-09-08 Nsk Ltd 磁気エンコーダ及び当該磁気エンコーダを備えた転がり軸受
JP2005308559A (ja) * 2004-04-22 2005-11-04 Nok Corp 磁気式ロータリエンコーダ用パルサーリング
JP2005315782A (ja) 2004-04-30 2005-11-10 Nsk Ltd 磁気エンコーダ及び当該磁気エンコーダを備えた転がり軸受
JP2006098792A (ja) 2004-09-29 2006-04-13 Fujikura Ltd 光機能部品の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2003424A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110884029A (zh) * 2018-09-07 2020-03-17 中西金属工业株式会社 磁编码器的制造方法
CN110884029B (zh) * 2018-09-07 2022-09-30 中西金属工业株式会社 磁编码器的制造方法

Also Published As

Publication number Publication date
EP2003424B1 (en) 2011-07-27
JP2007271506A (ja) 2007-10-18
JP4685683B2 (ja) 2011-05-18
EP2003424A9 (en) 2009-04-15
EP2003424A2 (en) 2008-12-17
EP2003424A4 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
WO2007116542A1 (ja) 磁気エンコーダおよびその製造方法
US7116026B2 (en) Adhesion structure for motor, having thickness determining means
US6916118B2 (en) Rolling bearing with rotation sensor
US20180090740A1 (en) Battery parts having retaining and sealing features and associated methods of manufacture and use
US20100296896A1 (en) Composite Sealing Device
JP4508925B2 (ja) 回転電機のヨークおよびヨークの製造方法
US20070122696A1 (en) Battery cover
JP2010142038A (ja) 回転電機のロータ製造方法及びロータ
JP5560917B2 (ja) 回転電機用ロータの製造方法及び回転電機用シャフト素材
WO2017015195A1 (en) Retaining clamp for molded plastics
EP2865996B1 (en) Magnetic encoder and bearing device including magnetic encoder
US20120313329A1 (en) Vented Dual Lip Seal And Method Of Making
JP4298713B2 (ja) 球面滑り軸受
JP4336984B2 (ja) 磁気式ロータリエンコーダのパルサーリング
TW201409901A (zh) 罐構造之電動馬達中的經分割之定子鐵芯零件及使用該零件之定子鐵芯與電動馬達
CN104918728A (zh) 通过磁卷边组装的方法
CN104302418A (zh) 护罩的制造方法及该制造方法中使用的冲压模具
JP5162753B2 (ja) トルクリミッタ
JP2015094706A (ja) 磁気エンコーダ及び転がり軸受
US9739318B2 (en) Clutch piston assembly
US20080054754A1 (en) End plate for electric motor
JP2013099161A (ja) ステータ固定構造
JP2009025200A (ja) トーンホイールの製造方法
CN109790870B (zh) 用于制造毂单元的方法
JPH0976370A (ja) シール部材の製造方法及び密封装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06798317

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2006798317

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE