WO2007114127A1 - エチルベンゼンの転化方法およびパラキシレンの製造方法 - Google Patents

エチルベンゼンの転化方法およびパラキシレンの製造方法 Download PDF

Info

Publication number
WO2007114127A1
WO2007114127A1 PCT/JP2007/056547 JP2007056547W WO2007114127A1 WO 2007114127 A1 WO2007114127 A1 WO 2007114127A1 JP 2007056547 W JP2007056547 W JP 2007056547W WO 2007114127 A1 WO2007114127 A1 WO 2007114127A1
Authority
WO
WIPO (PCT)
Prior art keywords
xylene
ethylbenzene
raw material
separation
benzene
Prior art date
Application number
PCT/JP2007/056547
Other languages
English (en)
French (fr)
Inventor
Ryoji Ichioka
Eiichi Minomiya
Shinobu Yamakawa
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to EP07739985A priority Critical patent/EP2008988A4/en
Priority to KR1020087026319A priority patent/KR101357387B1/ko
Priority to CN2007800113703A priority patent/CN101410354B/zh
Priority to US12/295,006 priority patent/US20100179360A1/en
Publication of WO2007114127A1 publication Critical patent/WO2007114127A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2702Catalytic processes not covered by C07C5/2732 - C07C5/31; Catalytic processes covered by both C07C5/2732 and C07C5/277 simultaneously
    • C07C5/2724Catalytic processes not covered by C07C5/2732 - C07C5/31; Catalytic processes covered by both C07C5/2732 and C07C5/277 simultaneously with metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/08Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule
    • C07C4/12Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene
    • C07C4/14Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene splitting taking place at an aromatic-aliphatic bond
    • C07C4/18Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/04Benzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/08Xylenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2702Catalytic processes not covered by C07C5/2732 - C07C5/31; Catalytic processes covered by both C07C5/2732 and C07C5/277 simultaneously
    • C07C5/2708Catalytic processes not covered by C07C5/2732 - C07C5/31; Catalytic processes covered by both C07C5/2732 and C07C5/277 simultaneously with crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for converting ethylbenzene and a method for producing noraxylene.
  • a method of hydrodeethylating and converting ethylbenzene contained in C8 aromatic hydrocarbons, hydrodeethylating and converting ethylbenzene contained in C8 aromatic hydrocarbons, and xylene The present invention relates to a method and an apparatus for producing para-xylene for isolating para-xylene.
  • paraxylene is the most important one.
  • Paraxylene is currently used as a raw material for polyester monomer, terephthalic acid, which is the main polymer, along with nylon. In recent years, demand for it has been strong mainly in Asia.
  • Noraxylene is usually subjected to a modification treatment of naphtha, followed by aromatic extraction or fractionation of C8 aromatic hydrocarbon mixture obtained by aromatic extraction or fractional distillation, or cracked gasoline produced as a by-product by thermal decomposition of naphtha.
  • C8 aromatic hydrocarbon mixture obtained by distillation.
  • the composition of this C8 aromatic hydrocarbon mixture material vary widely, from 10 to 40 weight normal E Ji Rubenzen 0/0, the paraxylene from 12 to 25 weight 0/0, the meta-xylene 30-5 0% by weight, Contains 12-25% by weight of ortho-xylene.
  • C8 aromatic hydrocarbon mixture feedstock contains high-boiling components with 9 or more carbon atoms, so it is removed by distillation, and the resulting C8 aromatic hydrocarbon is supplied to the paraxylene separation process. Separated and collected.
  • the boiling points of para-xylene and meta-xylene are 138.4 ° C and 139 ° C, respectively, the difference being only about 1 ° C, and recovery by distillation without force is extremely inefficient industrially. Therefore, there are generally a cryogenic separation method using a melting point difference or an adsorption separation method using a zeolite adsorbent to make use of a difference in adsorptivity.
  • the paraxylene-deficient C8 aromatic hydrocarbons that exit the separation process are then sent to the isoisomerization process, where they are isomerized to a paraxylene concentration close to the thermodynamic equilibrium composition mainly by the zeolite catalyst and reduced by distillation separation. After removing the boiling by-product, it is mixed with the above new C8 aromatic hydrocarbon feedstock and Recycled to a distillation tower that removes boiling components, distills off high-boiling components with 9 or more carbon atoms, and then separates and recovers para-xylene again in the xylene separation step.
  • This series of circulation systems is hereinafter referred to as the “separation isomeric cycle”.
  • FIG. 2 shows the flow of this “separation isomeric cycle”.
  • This “separated isomeric cycle” basically consists of C8 aromatic hydrocarbon mixed raw materials (hereinafter referred to as “fresh raw materials”) and recyclable raw materials such as isocratic process power.
  • High boiling point component distillation separation process 1 to recover aromatic hydrocarbons and separate and remove high boiling point components
  • Paraxylene separation step 2 to separate product paraxylene, low paraxylene concentration, C8 aromatic hydrocarbon raw material (hereafter Xylene isomerization process in which xylene isomerization and ethylbenzene conversion are performed. 3.
  • Low boiling point component distillation that separates and recovers low-boiling components such as benzene and toluene produced as by-products in the isomerization process. It has a separation step 4.
  • the C8 aromatic hydrocarbon mixed raw material is sent to the high boiling point component distillation separation step 1 from the supply line indicated by stream 5, and the high boiling point component is removed through the line indicated by stream 7.
  • the C8 aromatic hydrocarbon feedstock from which the high-boiling components have been removed is sent to the paraxylene separation process 2 through the line indicated by stream 6, and the line force product paraxylene indicated by stream 8 is separated and recovered.
  • the C8 aromatic hydrocarbon raw material having a low paraxylene concentration is sent to the xylene isomerization process 3 through the line shown by stream 9, and ethylbenzene is converted to xylene via benzene or C8 naphthene paraffin as described later.
  • ethylbenzene is converted to xylene via benzene or C8 naphthene paraffin as described later.
  • rough rice xylene with a low noraxylene concentration is isomerized to a paraxylene concentration close to the thermodynamic equilibrium composition.
  • hydrogen or a gas containing hydrogen is also sent to the isomeric process through the line indicated by stream 10.
  • C8 aromatic hydrocarbons containing by-products from the isomeric process are sent to the low-boiling component distillation separation process 4 through the line shown in stream 11, and by-produced benzene and toluene are by-produced in the isomeric process.
  • Such low boiling point components are separated and removed through the line indicated by stream 12, and paraxylene-rich recycle feedstock containing high boiling point components is sent to the high boiling component distillation separation process 1 through the line indicated by stream 13. It is done.
  • this high boiling point component distillation separation step 1 the high boiling point component is removed and recycled to the paraxylene separation step 2 again.
  • the C8 aromatic hydrocarbon supplied to the "separation isomerization cycle” contains a considerable amount of ethenylbenzene.
  • this ethenylbenzene is removed. Instead, it remains in the cycle and ethylbenzene accumulates.
  • an amount of ethylbenzene according to the removal rate circulates in the “separation isomeric cycle”.
  • the isomerization method has an equilibrium between ethylbenzene and xylene, so that the ethylbenzene conversion rate is only about 20-30%, whereas the above dealkylation reaction is a substantially non-equilibrium reaction. It is possible to increase the ethylbenzene conversion rate. Therefore, at present, the method of removing ethylbenzene by the dealkylation method is common.
  • the C8 aromatic hydrocarbon mixture supplied to the "separation isomerization cycle" is operated at a very high ethylbenzene conversion rate, no matter how much ethylbenzene is removed. Since the raw material originally contains ethylbenzene, the amount supplied to the paraxylene separation process cannot be reduced by the amount of ethylbenzene.
  • Patent Documents 1 and 2 disclose a method for reducing the supply amount to the paraxylene separation process by almost dealkylating ethylbenzene in fresh raw material to be converted into benzene by one pass and distilling and separating it. Yes.
  • FIG. 3 is a flow diagram showing the embodiment. Deethylation in which ethylbenzene is deethylated in one pass in advance. Xylene isomerization step 15 and benzene converted by deethylation of ethylbenzene by distillation are separated. A low-boiling component distillation separation process 16 to be recovered and a high-boiling point component distillation separation process 14 for newly separating and removing the high-boiling component contained in the C8 aromatic hydrocarbon mixed raw material are newly added.
  • the high boiling point component that becomes the catalyst poison in the high boiling point component distillation separation step 14 is streamed through the line shown by stream 5 in the high boiling point component distillation separation step 14.
  • the distillate is separated through the line indicated by 18 and the distillate is sent to the deethylation 'xylene isomerization process 15 via the line indicated by stream 17.
  • hydrogen or a gas containing hydrogen is also sent along the line indicated by stream 19.
  • C8 aromatic hydrocarbons that have been highly deethylated and contain by-products are sent to the low-boiling point distillation separation process 16 through the line shown by stream 20, and are produced as a by-product in the deethylation process.
  • Boiling component distillation separation After removing low boiling point components including benzene in step 4, ethyl benzene concentration shown in stream 13 is very low and paraxylene concentration which is characterized by being sent to high boiling point component distillation separation process 1 and paraxylene separation process 2
  • a method for producing silene is disclosed in Patent Document 4. This method is called the direct feed method, and it is possible to easily modify the equipment such as increasing the number of catalysts in the xylene isomerization process or replacing it with a highly active catalyst without installing a separate equipment for the deethylation process. Therefore, the production of para-xylene can be increased with relatively little capital investment.
  • Patent Document 4 even in this direct feed method, from the viewpoint of preventing the deterioration of the catalytic activity, if the fresh raw material contains a high-boiling component having 9 or more carbon atoms, this is distilled. There is a statement that it is necessary to remove it in advance by separation, and even in this case, it is necessary to install a high boiling point component distillation separation process14, and it is inevitable that equipment investment and increase in the amount of utility use will be increased. .
  • non-aromatics such as normal paraffin and isoparaffin.
  • non-aromatics produced by the above-mentioned nuclear hydrogenation reaction are mixed into benzene obtained by distillation separation, so that it is necessary to further perform so-called extraction treatment such as a sulfolane step.
  • extraction treatment such as a sulfolane step.
  • Patent Document 3 describes that in the xylene isomerization process, ethylbenzene is converted using a raw material containing C9 and C10 aromatic hydrocarbons, which are high-boiling components. There is no disclosure of using ethyl toluene as a C9 + aromatic hydrocarbon and converting it. That is, in the examples of the same document 3, ethylbenzene conversion was carried out using a feedstock containing less than 0.01% by weight of C9 + aromatic hydrocarbon, and as a result of this reaction, 0.1% by weight or 0.2% by weight. It is described that a reaction product containing No. 9 + aromatic hydrocarbon was obtained.
  • Patent Document 3 further discloses, as an optional case, a method in which toluene is intentionally mixed to suppress xylene loss due to a disproportionation reaction between xylenes.
  • this intentionally mixed toluene is also an important basic raw material with high value used in many applications such as high octane number gasoline base materials, solvents, and raw materials for disproportionation processes. If there is a method to suppress xylene loss, avoid mixing into raw materials as much as possible! /, A component.
  • Patent Document 1 Japanese Patent Laid-Open No. 01-056626
  • Patent Document 2 US Patent No. 6342649
  • Patent Document 3 US Patent No. 5977429
  • Patent Document 4 Japanese Patent Laid-Open No. 08-143483
  • An object of the present invention is to provide a method for converting ethylbenzene in a raw material containing a C8 aromatic hydrocarbon, which converts ethylbenzene into benzene at a high conversion rate.
  • the present invention converts ethylbenzene in a raw material containing a C8 aromatic hydrocarbon into benzene, and at the time of xylene isomerization, the conversion of ethylbenzene is high and the loss of xylene is small.
  • the objective is to provide an economically advantageous method.
  • the present invention recovers benzene with high purity from a reaction product that has undergone an isomerization step in which xylene is isomerized while ethenylbenzene in a raw material containing C8 aromatic hydrocarbons is converted. It is an object to provide a method.
  • the present inventors include ethyltoluene in the raw material and are strong against catalyst poisons in the presence of H.
  • the present inventors have found that the above-mentioned problems can be achieved by contacting with an acid catalyst to carry out a deethylation reaction of ethylbenzene.
  • the present invention has the following constitutional power.
  • a method for converting ethylbenzene wherein the raw material contains a C9-C10 aromatic hydrocarbon containing ethyltoluene, and the ethylbenzene is converted to toluene together with the conversion of ethylbenzene.
  • a C8 aromatic hydrocarbon mixed raw material containing ethylbenzene and xylene is subjected to the method described in (1) or (2) above, to convert ethylbenzene into benzene and to make xylene different.
  • a method for producing paraxylene comprising a step and a step of separating paraxylene from the obtained reaction product.
  • a C8 aromatic hydrocarbon mixed raw material containing ethylbenzene and xylene is subjected to the method described in the above (3) to convert ethylbenzene into benzene and isomerize xylene.
  • a step of separating para-xylene from the reaction product obtained in the deethylation 'xylene isomerization step and the first deethylation' xylene isomerization step, and in the separation residue of the separation step A step of subjecting the xylene contained in the second xylene isoformation step to carry out the isomerization, and a reaction product force of the second xylene isoformation step, and a step of separating the paraxylene again. Production method.
  • a C8 aromatic hydrocarbon mixed raw material containing ethylbenzene and xylene is subjected to the method described in the above (3) to convert ethyl ether into benzene and isomerize xylene.
  • 'Xylene isomerization step and deethylation' step of separating paraxylene from the reaction product obtained in the xylene isomerization step, and separating the residue of the separation step into the deethylation 'xylene isomerization step A process for producing noxylene, including the step of supplying it to the factory again.
  • C9 and CIO aromatic hydrocarbons containing ethiruluene are mixed with a C8 aromatic hydrocarbon mixed raw material containing ethylbenzene, and these are mixed from metals of Group VII and Group VIII in the presence of hydrogen.
  • an acid catalyst containing at least one selected metal an isomerization process for converting ethylbenzene to benzene and isomerizing xylene is carried out to reduce xylene loss and to a high degree.
  • Ethylbenzene can be hydrodeethylated and converted to benzene.
  • Ethyltoluene in the raw material is converted to useful toluene by deethylation and can be recovered as a by-product.
  • FIG. 1 In the para-xylene production apparatus for performing the first deethylation 'xylene isomerization step, the norxylene separation step, and the second xylene isomerization step, the first deethylation step 'Conceptual diagram showing the flow when a bypass line that does not pass through the xylene isomerism process is provided.
  • FIG. 2 is a conceptual diagram showing a flow of a “separation-differentiation cycle” for general para-xylene production without introducing a deethylation step.
  • FIG. 3 is a conceptual diagram showing a flow of a “separation isomerization cycle” for producing general paraxylene with a deethylation process introduced.
  • FIG.4 A general raw material is characterized by mixing fresh raw materials with rough rice xylene without introducing a deethylation process and sending it to a xylene isomerization process that has a high deethylation function. It is a conceptual diagram which shows the flow of a direct 'feed method.
  • the present invention is characterized in that, in the deethylation reaction of ethylbenzene, the C8 aromatic hydrocarbon mixed raw material containing ethylbenzene to be supplied contains ethyltoluene. C8 aromatic hydrocarbons supplied to 5 to 15% by weight is contained in the high-boiling component of the raw material. For this reason, usually, it is possible to substantially omit the distillation column that has distilled off the high-boiling components during the treatment in the deethylation step.
  • FIG. 1 shows one embodiment of the U-flow preferred for carrying out the present invention, but the high boiling point component distillation separation step 14 shown in FIG. 3 or FIG. 4 of the prior art flow can be omitted.
  • the present invention includes the same feedstock containing C9 and C10 aromatic hydrocarbons when carrying out the deethylation reaction of ethylbenzene in the feedstock supplied in the deethylation step.
  • the deethylation reaction of ethyltoluene By simultaneously carrying out the deethylation reaction of ethyltoluene and converting this to toluene, it is possible to obtain toluene by effectively using ethyltoluene. In addition, it is not necessary to bother mixing useful toluene, which has many other uses.
  • the disproportionation reaction of xylene, or the transalkylation reaction of benzene and xylene deethylated from ethylbenzene, which causes the xylene loss described above, is an equilibrium reaction.
  • the presence of toluene obtained by the conversion suppresses the promotion of these side reactions and reduces the loss of xylene.
  • the catalyst used in the method of the present invention is an acid type catalyst obtained by doping a solid acid with a predetermined metal described later, and examples of the solid acid include acid type zeolite.
  • the zeolite that can be used in the present invention as the acid-type zeolite include pentasil-type zeolite.
  • pentasil-type (MFI-type) zeolite having 10-membered oxygen ring pores for example, Japanese Patent Publication No. 60-35284.
  • Example 1 on page 4-5 and Example 1 on page 7 of JP-B-46-10064 can be used.
  • As the zeolite either natural products or synthetic products can be used, but synthetic zeolite is preferable.
  • Such a pentasil-type zeolite itself and its production method are well known, and one example of its synthesis method is also specifically described in the following examples. Even if the zeolite structure is the same, its catalytic properties depend on the composition, especially the silica Z alumina molar ratio (SiO 2 / A10 molar ratio) and the size of the zeolite crystallites.
  • the preferred range of the silica Z-alumina molar ratio constituting the zeolite depends on the zeolite structure.
  • the preferred silica / alumina The molar ratio is 10 to 70, more preferably 20 to 55. This can be achieved by controlling the composition ratio of each component during zeolite synthesis.
  • an acid aqueous solution such as hydrochloric acid or an aluminum chelating agent such as ethylenediaminetetraacetic acid (EDTA)
  • EDTA ethylenediaminetetraacetic acid
  • an aqueous solution containing aluminum ions such as an aqueous aluminum nitrate solution or an aqueous sodium aluminate solution
  • aluminum is introduced into the zeolite structure to reduce the silica Z alumina molar ratio of the zeolite and the preferred silica.
  • a Z-alumina molar ratio is also possible.
  • the measurement of the silica Z-alumina molar ratio can be easily made by atomic absorption, fluorescent X-ray diffraction, ICP (inductively coupled plasma) emission spectroscopy.
  • synthetic zeolite is generally a powder, it is preferably molded for use.
  • the molding method include a compression molding method, a rolling method, and an extrusion method, and the extrusion method is more preferable.
  • binders such as alumina sol, alumina gel, bentonite, and kaolin and surfactants such as sodium dodecylbenzenesulfonate, span (trade name), and twin (trade name) are molded into synthetic zeolite powder, if necessary. It is added as an auxiliary agent and kneaded.
  • a machine such as an ader is used.
  • a metal oxide such as alumina or titer may be added at the time of zeolite molding to increase the amount of the metal added to the catalyst or improve the dispersibility.
  • the kneaded kneaded product also pushes out the screen force.
  • an extruder called an etastruder is used.
  • Screen force The extruded kneaded product becomes a noodle-like product.
  • the size of the molded body is determined by the screen diameter to be used. The screen diameter is preferably 0.2 to 1.5 ⁇ .
  • the noodle-shaped molded product extruded from the screen is preferably treated with a Malmerizer (trade name) in order to round off the corners.
  • the molded body thus molded is preferably dried at 50 to 250 ° C. After drying, it is preferably fired at 250 to 600 ° C, more preferably 350 to 600 ° C in order to improve the molding strength.
  • ion exchange treatment is performed by using an ion exchange compound with a compound containing ammonia ions (for example, NH 4 Cl, NH NO, (NH 2) SO 2).
  • a compound containing ammonia ions for example, NH 4 Cl, NH NO, (NH 2) SO 2).
  • Zeolite with a method or a compound containing acid directly for example, HC1, HNO, HPO, etc.
  • the latter is preferably subjected to ion exchange treatment with the former, that is, a compound containing ammonia ions, because there is a risk of destroying the zeolite structure.
  • solid acidity can be imparted to the zeolite by introducing divalent or trivalent metal ions into the zeolite ion exchange site.
  • divalent metal ions include alkaline earth metal ions Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ .
  • trivalent metal ions include rare earth metal ions such as Ce 3+ and La 3+ .
  • the ion exchange treatment is performed by a batch method or a distribution method in which the carrier such as the zeolite is treated with a solution containing the above ions, usually an aqueous solution.
  • the treatment temperature is usually from room temperature to 100 ° C.
  • the hydrogenation active metal platinum, noradium, rhenium, or the like is preferably used.
  • the preferred loading varies depending on the metal to be carried. For example, in the case of platinum, and 0.005 to 0.5% by weight relative to the total catalyst, more preferably 0.01 to 0.3 wt 0/0. In the case of palladium, 0.05 to 1% by weight is preferably used. In the case of rhenium, the preferred loading is 0.01 to 5.0% by weight, more preferably 0.1 to 2% by weight.
  • aromatic hydrocarbons are nuclear hydrogenated, which is not preferable.
  • platinum Ingredients include chloroplatinic acid, ammonium salt of chloroplatinic acid, noradium components include palladium acetate, acetylethylacetone palladium, palladium chloride, palladium nitrate, etc., and rhenium components include perrhenic acid, Perrhenium ammonia is used.
  • the catalyst thus prepared is preferably dried at 50 to 250 ° C for 30 minutes or longer. Prior to use, the catalyst is preferably calcined at 350 to 600 ° C for 30 minutes or longer.
  • one type of catalyst may be used, or two or more types of catalysts may be used in combination.
  • the catalyst prepared as described above can be carried out according to various reaction operations well known in the art.
  • a fixed bed reaction system is particularly preferred because of the ease of force operation in which any of fixed bed, moving bed and fluidized bed methods can be used.
  • the catalyst can be used under the following reaction conditions. That is, the reaction operating temperature is 200 to 500 ° C, preferably 250 to 450 ° C.
  • the reaction operation pressure is from atmospheric pressure to 10 MPa, preferably from 0.3 to 2 MPa.
  • the weight hourly space velocity (WHSV) representing the contact time of the reaction is 0.1 to 50 hr—preferably 0.5 to 20.0 hr— 1 .
  • the reaction is carried out in the presence of H
  • the molar ratio of H to feedstock oil is 0.5-10 mol / mol, preferably 1.5-5.0 mol / mol.
  • H can be present by introducing hydrogen gas into the reaction system.
  • the fuel oil can be in liquid or gas phase.
  • Ethyltoluene to be contained in the feedstock oil may be an isomer mixture which may be any of paraethyltoluene, metaethyltoluene and orthoethyltoluene. It is preferred that all of these ethyltoluenes are present in the feedstock in an amount of 1% by weight or more, more preferably 3% by weight or more, and more preferably 5% by weight or more. The upper limit is usually preferably 20% by weight or less, more preferably 15% by weight or less. Further, since the C8 aromatic hydrocarbon mixture obtained from naphtha by modification and fractionation contains ethyl chloride as described above, it may be used as it is. Therefore, it is possible to omit the installation of a distillation column that removes the high-boiling components that was required in the past.
  • Ethyltoluene may be added to the raw material in the form of addition to the raw material.
  • ethyltoluene alone may be mixed, or it may be mixed in the form of a mixture containing other C9 to C10 aromatic hydrocarbons and included in the feedstock.
  • it is 50% by weight or more, more preferably 70% by weight or more, and particularly preferably, in the embodiment, a high amount of 80% by weight or more.
  • ethyl ether contained in the raw material can be removed by conversion, it is possible to obtain a large amount of toluene useful for suppressing xylene loss even in raw materials having a low ethyl ether concentration.
  • benzene produced as a by-product by the dealkylation reaction of ethylbenzene is usually purified by distillation separation and extraction separation such as sulfolane process.
  • distillation separation and extraction separation such as sulfolane process.
  • cyclohexane the production of non-aromatic components such as methylcyclopentane, normal hexane, etc., which have relatively low boiling points and are difficult to separate by distillation, eliminates the extraction process and yields high-purity benzene by distillation alone. Can do.
  • the benzene purity in the present invention refers to the benzene purity obtained from this product benzene purity estimation formula.
  • the hydrogenation ability is relatively mild, and aromatic loss due to nuclear hydrogenolysis is small, so the above boiling point is relatively close to that of benzene.
  • the product has an estimated purity of 99.8% by weight or more as defined by the above formula with less impurity generation. Distilled and separated benzene is converted to high-grade benzene without any further purification such as the extraction process. It can be obtained as a product.
  • the toluene produced from the dealkylation reaction of ethyltoluene is recovered by distillation separation and can be used for effective applications such as gasoline base material solvent, or raw material of disproportionation process for producing xylene and benzene. .
  • the ethylbenzene is simply converted to benzene by performing the above-described ethylbenzene conversion method using the C8 aromatic hydrocarbon mixed raw material containing ethylbenzene and xylene.
  • Separation of para-xylene from the reaction product can be performed by a well-known method, for example, a cryogenic separation method using a difference in melting point, or a separation using an adsorbent difference with a zeolite adsorbent.
  • the adsorption separation method can be used.
  • xylene isomerization by providing a second xylene isomerization step for rough rice xylene which is a poor separation residue of paraxylene after the separation of paraxylene.
  • the isomerization method can be carried out by a usual method, and the same step as the above-mentioned “deethylation 'xylene isomerization step” Can also be carried out as a second xylene isomerization step.
  • the reaction product force obtained in the second xylene isomerization step can also separate paraxylene again.
  • the second separation residue after the separation of para-xylene may be recycled after being mixed with the C8 aromatic hydrocarbon mixed raw material supplied to the first deethylen-xylene isomerization process. It can be recycled to the second xylene isomerization process along with the first separation residue to form a “separation-isomerization cycle”.
  • a C8 aromatic hydrocarbon mixed raw material containing ethenylbenzene and xylene is used, and ethylbenzene, which is the same step as the first deethylated 'xylene isomerization step, is used.
  • the separation residue is the above-mentioned deethylation 'xylene isomerization step
  • Paraxylene can be produced by a method of supplying it again.
  • This method can also be used in the direct feed method described above, and the ethyltoluene-containing C8 aromatic hydrocarbon mixed raw material in which the high-boiling point distillation separation process is omitted is separated from the rough rice toxylene after separation of the xylene.
  • Mixed and acid Paraxylene can be separated again from the reaction product obtained by deethylation of xylene by sending it to the xylene isomerization process in which the type catalyst is introduced, de-ethylating ethylbenzene at a high conversion rate. That is, when the above acid type catalyst is introduced into the xylene isomerization step, the high boiling point component distillation separation step 14 can be omitted in FIG. 4 showing the concept of a general direct feed method.
  • the bypass line that is, the deethylated xylene heterogeneous process bypass line 23 in FIG. It is preferable to provide a bypass line.
  • Ethylation xylene isomerization process Despite skipping the xylene isomerization process, ethyl benzene can be converted at a high conversion rate, and xylene isomerization can be performed with little xylene loss. Therefore, the influence of not passing through the first deethylated xylene isomerization process can be minimized.
  • tartaric acid powder (tartaric acid content 99.7% by weight, H 0 content 0.3% by weight,
  • Amount%, A1 0 content 2.4% by weight, Na 0 content 1.6% by weight, nip seal VN 3, Nippon Silica 111.5 g was gradually added with stirring to prepare a uniform slurry-like aqueous reaction mixture.
  • the composition ratio (molar ratio) of this reaction mixture was as follows.
  • reaction mixture was sealed in a 1000 ml autoclave, and then reacted at 160 ° C for 72 hours with stirring at 250 rpm. After the reaction, wash with distilled water 5 times and repeat filtration
  • silica Z-alumina molar ratio of this pentasil-type zeolite is the result of fluorescent X-ray diffraction analysis.
  • a molded body containing pentasil (MFI) type zeolite was prepared and exchanged for ammonium ions and calcium ions.
  • 20 g of a dried product of this ion-exchanged pentasil-type zeolite molded product was immersed in 40 ml of a perrhenic acid aqueous solution containing 80 mg of Re at room temperature and left for 2 hours. Stir every 30 minutes. The liquid was then drained and dried overnight at 120 ° C.
  • the reaction test was conducted by filling the reaction tubes for the catalysts A and B.
  • Table 1 shows the composition of the four feedstocks used.
  • composition analysis of the feedstock and reaction products used three gas chromatographs with a hydrogen flame detector.
  • the separation column is as follows.
  • the temperature was increased from 68 ° C to 180 ° C at a rate of 2 ° CZ.
  • the temperature was increased from 67 ° C to 1 ° CZ, and from 80 ° C to 2 ° CZ to 200 ° C.
  • EB ethylbenzene
  • PX represents paraxylene
  • MX represents metaxylene
  • 0X represents orthoxylene
  • ET represents ethylethyltoluene
  • C9 + represents a compound having C9 or more carbon atoms.
  • Raw materials A to D are assumed to be raw materials that enter the deethylic process, which is attached before the “separation isomerization” cycle. This assumes a mixture of aromatic hydrocarbons.
  • Example 1 From the results of Example 1, the xylene yield was improved by treating the raw material containing ethyl toluene with an acid-type zeolite catalyst supporting rhenium, a hydrogenation active metal. I understand. This is thought to be because toluene is produced by dealkylation of ethyltoluene and the progress of the transalkylation reaction of xylene and benzene (generated by deethylation of ethylbenzene), which is a side reaction of xylene loss, is suppressed. Furthermore, the yield is improved by 0.2% when ET is added to the raw material by 1% (comparison between Comparative Example 1-B and Example 1-C).
  • the reaction product obtained in Example 1 has a low ethylbenzene concentration and a high paraxylene concentration, and the paraxylene production in the “separation isomerization” cycle, particularly the paraxylene separation step, uses a zeolite adsorbent. It can be seen that it is very advantageous in carrying out the adsorption separation used.
  • the raw material ⁇ is a raw material that assumes the case where C9 + removal is omitted in the direct feed method, but it is understood that it is effective even in the direct feed method.
  • Example 1 In the method (analysis conditions described in (2) in the sentence of Example 1) in which the non-aromatics concentration in the reaction solution obtained using Catalyst V and catalyst D of Example 3 can be analyzed in detail The concentration was measured. As a result, as shown in Table 5 below, the concentration of cyclohexane and methylcyclopentane, which are contaminant impurities having a boiling point close to that of benzene, is lower when the catalyst ⁇ of Example 1 is used. The estimated purity of the product benzene (benzene purity) calculated in Example 1 was as high as 99.8% by weight or more in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 C8芳香族炭化水素を含む原料中のエチルベンゼンを高い転化率でベンゼンに変換するエチルベンゼンの転化方法が開示されている。エチルベンゼンの転化方法は、エチルベンゼンを含むC8芳香族炭化水素混合原料を、H2存在下でVII族及びVIII族の金属から選ばれる少なくとも1種の金属を含有してなる酸型触媒と接触させて、エチルベンゼンをベンゼンに転化する方法であり、原料がエチルトルエンを含んだC9~C10芳香族炭化水素を含有し、前記エチルベンゼンの転化と共に該エチルトルエンをトルエンに転化する。

Description

明 細 書
ェチルベンゼンの転ィ匕方法およびパラキシレンの製造方法
技術分野
[0001] 本発明は、ェチルベンゼンの転ィ匕方法、ノラキシレンの製造方法に関するものであ る。さらに詳しくは、 C8芳香族炭化水素に含まれるェチルベンゼンを水素化脱ェチ ルして転化する方法、 C8芳香族炭化水素に含まれるェチルベンゼンを水素化脱ェ チルして転ィ匕し、キシレンを異性ィ匕してパラキシレンを分離するパラキシレンの製造 方法およびその製造装置に関するものである。
背景技術
[0002] キシレン異性体のうち、最も重要なものはパラキシレンである。パラキシレンは、現在 ナイロンと並んで主要ポリマーであるポリエステルのモノマー、テレフタル酸の原料に 使われており、近年その需要はアジアを中心として旺盛である。
[0003] ノラキシレンは、通常ナフサを改質処理し、その後芳香族抽出或いは分留により得 られる C8芳香族炭化水素混合物、又は、ナフサの熱分解により副生する分解ガソリ ンを芳香族抽出或いは分留により得られる C8芳香族炭化水素混合物などから製造 される。この C8芳香族炭化水素混合物原料の組成は広範囲に変わるが、通常ェチ ルベンゼンを 10〜40重量0 /0、パラキシレンを 12〜25重量0 /0、メタキシレンを 30〜5 0重量%、オルソキシレンを 12〜25重量%含む。通常 C8芳香族炭化水素混合物原 料は炭素数 9以上の高沸点成分を含んでいるため、これを蒸留により除去し、得られ た C8芳香族炭化水素をパラキシレン分離工程に供給されパラキシレンは分離回収 される。し力しながらパラキシレンとメタキシレンの沸点はそれぞれ、 138.4°C、 139°Cと その差が僅か約 1°Cし力なく蒸留分離による回収は工業的に極めて非効率である。 従って一般的に融点差を利用して分離する深冷分離法か、ゼォライト吸着剤により 吸着性の差を利用して分離する吸着分離法がある。分離工程を出たパラキシレンに 乏しい C8芳香族炭化水素は次に異性ィ匕工程に送られ、主にゼォライト触媒により熱 力学的平衡組成に近いパラキシレン濃度までに異性化され、蒸留分離により低沸点 である副生物を除去した後、上記の新たな C8芳香族炭化水素原料と混合されて高 沸点成分を除去する蒸留塔にリサイクルされ、炭素数 9以上の高沸点成分を蒸留除 去後、ノ キシレン分離工程で再度パラキシレンを分離回収する。この一連の循環 系を以後「分離 異性ィ匕サイクル」と呼ぶ。
図 2に、この「分離 異性ィ匕サイクル」のフローを示す。この「分離 異性ィ匕サイクル 」は、基本的にリフォーマー等力も得られた C8芳香族炭化水素混合原料 (以後、フレ ッシュ原料と呼ぶ)と異性ィ匕工程力ゝらのリサイクル原料に含まれる C8芳香族炭化水 素を回収し高沸点成分を分離除去する高沸点成分蒸留分離工程 1、製品パラキシレ ンを分離するパラキシレン分離工程 2、パラキシレン濃度の乏 、C8芳香族炭化水 素原料 (以後、ラフイネ一トキシレンと呼ぶ)のキシレン異性ィ匕とェチルベンゼン転ィ匕 を行うキシレン異性化工程 3、異性ィ匕工程で副生したベンゼン及びトルエンのような 低沸点成分を分離回収する低沸点成分蒸留分離工程 4を有する。まず C8芳香族炭 化水素混合原料は、ストリーム 5で示される供給ラインから高沸点成分蒸留分離工程 1に送られ、高沸点成分をストリーム 7で示されるラインを通じて除去する。高沸点成 分が除去された C8芳香族炭化水素原料はストリーム 6で示されるラインを通じてパラ キシレン分離工程 2に送られ、ストリーム 8で示されるライン力 製品パラキシレンを分 離回収する。そしてパラキシレン濃度の乏しい C8芳香族炭化水素原料は、ストリーム 9で示されるラインを通じてキシレン異性ィ匕工程 3に送られ、ェチルベンゼンは後で 述べるように、ベンゼン、或いは C8ナフテンパラフィンを経由してキシレンに転ィ匕する とともに、ノ ラキシレン濃度の乏しいラフイネ一トキシレンは、熱力学的平衡組成に近 いパラキシレン濃度まで異性ィ匕される。尚、異性ィ匕工程にはストリーム 10で示される ラインを通じて水素又は水素を含むガスも送られる。異性ィヒ工程から出てきた副生物 を含む C8芳香族炭化水素は、ストリーム 11で示されるラインを通じて、低沸点成分 蒸留分離工程 4に送られ、異性ィ匕工程で副生したベンゼン及びトルエンのような低沸 点成分をストリーム 12で示されるラインを通じて分離除去し、高沸点成分を含んだパ ラキシレンリッチなリサイクル原料力 Sストリーム 13で示されるラインを通じて高沸点成 分蒸留分離工程 1に送られる。この高沸点成分蒸留分離工程 1で高沸点成分を除去 し、再度パラキシレン分離工程 2にリサイクルされる。尚、この「分離—異性ィ匕サイクル 」に蒸留塔を 1塔組み入れてオルソキシレンも併産するオプションもある。 [0005] この「分離 異性ィ匕サイクル」に供給される C8芳香族炭化水素は上記の通り、かな りの量のェチルベンゼンを含んでいる力 上記「分離 異性化サイクル」においては 、このェチルベンゼンは除去されずに、サイクル中に残り、ェチルベンゼンが蓄積し てしまう。このェチルベンゼンの蓄積を防ぐために、何らかの方法でェチルベンゼン を除去すれば、その除去率に応じた量のェチルベンゼンが「分離 異性ィ匕サイクル」 を循環する。このェチルベンゼンの循環量が少なくなれば全体の循環量も少なくなる ので、ノ ラキシレン分離工程以降の工程の用役使用量が少なくなり経済的なメリット が大きい。つまり、同じ循環量ベースでみれば、サイクル中のェチルベンゼン濃度が 低下した分に応じて、パラキシレンの増産が可能となる。
[0006] ェチルベンゼン除去として一般的な方法は 2つあり、 1つは異性化工程でキシレン の異性化を行うと同時にェチルベンゼンをキシレンに異性ィ匕する改質法、もう 1つは 同じくキシレンの異性ィ匕工程でェチルベンゼンを水素化脱アルキルしてベンゼンに 転換し、その後の蒸留分離工程でベンゼンを蒸留分離する脱アルキル化法である。 しかし異性化法はェチルベンゼンとキシレンとの間にある平衡により、ェチルベンゼ ン転ィ匕率は 20〜30%程度しかならないのに対し、上記脱アルキル化反応は実質的 に非平衡反応であるので、ェチルベンゼン転ィ匕率を高くすることが可能である。故に 現在は脱アルキルィ匕法でェチルベンゼンを除去する方法が一般的である。然しなが ら、異性ィ匕工程において、非常に高いェチルベンゼン転ィ匕率で運転し、どんなにェ チルベンゼンを除去しても、「分離 異性ィ匕サイクル」に供給される C8芳香族炭化水 素混合原料にはもともとェチルベンゼンが含まれて ヽるため、パラキシレン分離工程 への供給量も、このェチルベンゼンの含有量分だけは下げることができな 、。
[0007] この「分離 異性ィ匕サイクル」へのェチルベンゼン供給量さえもほとんど低減して、 ノ ラキシレン分離工程へのェチルベンゼン供給量を更に下げるために、事前に「分 離 異性ィ匕サイクル」に供給するフレッシュ原料中のェチルベンゼンをワンパスでほ とんど脱アルキルィ匕してベンゼンに転化、蒸留分離することにより、パラキシレン分離 工程への供給量を下げる方法が、特許文献 1、 2に開示されている。し力しその具体 的に記載された方法は、実質的には触媒活性劣化防止の観点から、いずれももとも とフレッシュ原料に含まれる炭素数 9以上の高沸点成分の濃度を下げるため、脱アル キル化反応の前に蒸留分離により当該高沸点成分を除去しておく必要がある。
[0008] 図 3はその実施態様を示すフロー図である力 事前にェチルベンゼンをワンパスで 脱ェチルイ匕する脱ェチル化.キシレン異性ィ匕工程 15と、ェチルベンゼンが脱ェチル 化して転化したベンゼンを蒸留分離回収する低沸点成分蒸留分離工程 16、及びも ともと C8芳香族炭化水素混合原料に含まれる高沸点成分を蒸留分離除去する高沸 点成分蒸留分離工程 14が新たに加えられる。即ち、脱ェチルイ匕工程で使用される 触媒の保護のため、ストリーム 5で示されるラインを通じて C8芳香族炭化水素混合原 料を高沸点成分蒸留分離工程 14で触媒被毒物となる高沸点成分をストリーム 18で 示されるラインを通じて蒸留分離し、留分をストリーム 17で示されるラインを通じて脱 ェチル化 'キシレン異性ィ匕工程 15に送られる。脱ェチルイ匕工程にはストリーム 19で 示されるラインを通じて水素又は水素を含むガスも一緒に送られる。高度にェチルベ ンゼンが脱ェチルイ匕され、かつ副生物を含む C8芳香族炭化水素は、ストリーム 20で 示されるラインを通じて、低沸点成分蒸留分離工程 16に送られ、脱ェチル化工程で 副生したベンゼン及びトルエンのような低沸点成分をストリーム 21で示されるラインを 通じて分離除去し、高沸点成分力ストリーム 22で示されるラインを通じて先述の「分 離 異性化」サイクルに送られる。しかしこの場合、高沸点成分蒸留分離工程 14及 び低沸点成分蒸留分離工程 16を新たに組み込むことにより、一方で用役使用量が 増加し、導入メリットを下げてしまう問題がある。
[0009] また、上述の実施態様の場合は、当然のことながら脱ェチル化工程の設備を新設 する建設コストが余分に力かる力 専用の脱ェチルイ匕工程を独立して設置せずに、も ともとの「分離 異性化」サイクルにあるキシレン異性ィ匕工程に、通常のキシレン異性 化能だけでなくェチルベンゼンを高度に脱ェチルイ匕する機能を有した触媒を導入し 、図 4に示すとおり、ストリーム 17で示されるフレッシュ原料を、ストリーム 9で示される ノラキシレン分離工程力も来るラフイネ一トキシレンと混合して、直接異性ィ匕工程 3に 供給し、高い転化率でェチルベンゼンを脱ェチル化し、これを低沸点成分蒸留分離 工程 4でベンゼンを含む低沸点成分を除去した後、ストリーム 13で示される、ェチル ベンゼン濃度が非常に低ぐ且つパラキシレン濃度に富んだリサイクル原料を、高沸 点成分蒸留分離工程 1及びパラキシレン分離工程 2に送ることを特徴とする、パラキ シレンを製造する方法が特許文献 4に開示されている。この方法はダイレクト'フィー ド法と呼ばれ、脱ェチルイ匕工程の設備を単独に設置しなくても、キシレン異性ィ匕工程 の触媒の積み増し或いは高活性な触媒への入れ替え等の簡単な設備改造で済む ため、比較的少ない設備投資でパラキシレンの増産が可能となる。然しながら、特許 文献 4によれば、このダイレクト 'フィード法においても、実質的には触媒活性劣化防 止の観点から、フレッシュ原料中に炭素数 9以上の高沸点成分を含む場合は、これ を蒸留分離により事前除去する必要がある旨の記載があり、この場合においても高 沸点成分蒸留分離工程 14の設置が必要で、これを組み込むことによる設備投資、 及び用役使用量の増加は避けられない。
[0010] 一般に高度にェチルベンゼンを転ィ匕するためには、反応温度を上げたり高活性な 触媒と接触させる。ェチルベンゼンの転ィ匕率が高くなると、キシレンの収率低下が顕 在化するが、そのロスの内訳としては、(1)ェチルベンゼンが脱ェチル化したベンゼ ンとキシレンとのトランスアルキルィ匕反応によりトルエンに転ィ匕するロス、が最も多ぐ その他には、(2)キシレン同士の不均化反応によりトルエンとトリメチルベンゼンを転 化するロス、(3)キシレンが核水添反応してシクロパラフィン或 、はノルマルパラフィ ン、イソパラフィンといったノンァロマチックスに転ィ匕するロスがある。更には上記核水 添反応により生成したノンァロマチックスは蒸留分離により得られたベンゼン中に混 入するため、スルフォラン工程などいわゆる抽出処理をさらに行う必要があり、その抽 出工程処理量増加による用役使用量の増加といった経済デメリットも出てくる。
[0011] 特許文献 3には、キシレンの異性ィ匕工程において、高沸点成分である C9及び C10 芳香族炭化水素を含んだ原料を用い、ェチルベンゼンを転ィ匕することが記載されて いるが、 C9 +芳香族炭化水素として、ェチルトルエンを用いること、及びそれを転ィ匕 することは開示されていない。すなわち同文献 3の実施例には 0.01重量%未満の C9 +芳香族炭化水素を含む供給原料を用いてェチルベンゼンの転ィ匕を行ったこと、こ の反応の結果、 0.1重量%あるいは 0.2重量%のじ9 +芳香族炭化水素を含む反応生 成物が得られたことが記載されている。同文献における C9 +芳香族炭化水素が関 与する副反応についての説明によれば、上記反応における C9 +芳香族炭化水素の 増加はキシレンやェチルベンゼンの不均化反応によるトリメチルベンゼン、ジェチル ベンゼンの生成や、ェチルベンゼンとキシレンのトランスアルキル化反応によるメチル ェチルベンゼン、ジメチルェチルベンゼンの生成等の副反応が生起して 、るものと 思料される。また、特許文献 3には更に、オプショナルケースとして、トルエンを意図 的に混入させて、キシレン同士の不均化反応によるキシレンロスを抑える方法が開示 されている。然しながら、この意図的に混入させるトルエンは、ハイオクタン価のガソリ ン基材や溶剤、不均化工程の原料など、多くの用途で使用される価値の高い重要な 基礎原料でもあることから、他にキシレンロス抑制の方法があるのであれば、できるだ け原料への混合投入を避けた!/、成分である。
[0012] 特許文献 1 :特開平 01— 056626号公報
特許文献 2:米国特許第 6342649号明細書
特許文献 3 :米国特許第 5977429号明細書
特許文献 4:特開平 08— 143483号公報
発明の開示
発明が解決しょうとする課題
[0013] 本発明は、 C8芳香族炭化水素を含む原料中のェチルベンゼンを高い転ィ匕率でベ ンゼンに変換するェチルベンゼンの転ィ匕方法を提供することを課題とする。
[0014] また、本発明は、 C8芳香族炭化水素を含む原料中のェチルベンゼンをベンゼンに 変換すると共に、キシレンの異性ィ匕を行うに際し、ェチルベンゼンの転化率が高ぐ かつキシレンのロスが少な 、、経済的に優位な方法を提供することを課題とする。
[0015] さらに本発明は、 C8芳香族炭化水素を含む原料中のェチルベンゼンを転ィ匕すると 共にキシレンを異性ィ匕する異性ィ匕工程を経た反応物中から、純度の高 、ベンゼンを 回収する方法を提供することを課題とする。
課題を解決するための手段
[0016] 本発明者らは、原料中にェチルトルエンを含ませ、 H存在下で触媒被毒物に強い
2
酸型触媒と接触させて、ェチルベンゼンの脱ェチルイ匕反応を行うことにより、上記課 題を達成し得ることを見出し、本発明に到達した。
[0017] すなわち、本発明は下記の構成力もなる。
[0018] (1) ェチルベンゼンを含む C8芳香族炭化水素混合原料を、 H存在下で VII族及び V III族の金属から選ばれる少なくとも 1種の金属を含有してなる酸型触媒と接触させて
、ェチルベンゼンをベンゼンに転化する方法であって、前記原料がェチルトルエンを 含んだ C9〜C10芳香族炭化水素を含有し、前記ェチルベンゼンの転化と共に該ェ チルトルエンをトルエンに転化することを含むェチルベンゼンの転化方法。
[0019] (2) 反応により生成したベンゼンを蒸留分離して純度 99.8重量%以上のベンゼンを 回収することをさらに含む前記 (1)記載のェチルベンゼンの転ィ匕方法。
[0020] (3) ェチルベンゼン及びキシレンを含む C8芳香族炭化水素混合原料を前記 (1)又 は (2)記載の方法に付し、ェチルベンゼンをベンゼンに転ィ匕すると共にキシレンを異 性化する工程と、得られた反応生成物から、パラキシレンを分離する工程を含むパラ キシレンの製造方法。
[0021] (4) ェチルベンゼン及びキシレンを含む C8芳香族炭化水素混合原料を前記 (3)記 載の方法に付し、ェチルベンゼンをベンゼンに転ィ匕すると共にキシレンを異性ィ匕する 、第 1の脱ェチル化'キシレン異性ィ匕工程と、該第 1の脱ェチル化'キシレン異性ィ匕ェ 程で得られた反応生成物から、パラキシレンを分離する工程と、該分離工程の分離 残中に含まれるキシレンを第 2のキシレン異性ィ匕工程に付して異性ィ匕を行う工程と、 該第 2のキシレン異性ィ匕工程の反応生成物力 再度パラキシレンを分離する工程を 含む、パラキシレンの製造方法。
[0022] (5) ェチルベンゼン及びキシレンを含む C8芳香族炭化水素混合原料を前記 (3)記 載の方法に付し、ェチルベンゼンをベンゼンに転ィ匕すると共にキシレンを異性ィ匕する 、脱ェチル化 'キシレン異性化工程と、該脱ェチル化 'キシレン異性化工程で得られ た反応生成物から、パラキシレンを分離する工程と、該分離工程の分離残を前記脱 ェチル化'キシレン異性ィ匕工程に再度供給する工程を含む、ノ キシレンの製造方 法。
[0023] (6) 前記 (4)記載の第 1の脱ェチル化'キシレン異性ィ匕工程、パラキシレン分離工程、 第 2のキシレン異性ィ匕工程を行うためのパラキシレン製造装置を用いるパラキシレン の製造方法であって、前記装置は、第 1の脱ェチル化'キシレン異性ィ匕工程を通らな V、バイパスラインを具備し、ェチルトルエンを含んだ C9〜C10芳香族炭化水素を混 合した前記 C8芳香族炭化水素混合原料を、必要に応じ、前記パラキシレン分離ェ 程に供給することを含むパラキシレンの製造方法。
発明の効果
[0024] 本発明によれば、ェチルベンゼンを含む C8芳香族炭化水素混合原料にェチルト ルェンを含む C9、 CIO芳香族炭化水素を混合して、これを水素存在下で VII族及び VIII族の金属から選ばれる少なくとも 1つの金属を含有してなる酸型触媒と接触させ て、ェチルベンゼンをベンゼンに転ィ匕すると共にキシレンを異性ィ匕する異性ィ匕工程 を行なうことにより、キシレンロスを抑え、高度にェチルベンゼンを水素化脱ェチル化 してベンゼンに転ィ匕することが出来る。また原料中のェチルトルエンは脱ェチルイ匕に より有用なトルエンに転ィ匕され、副製品として回収できる。
[0025] また、本発明によれば、 C8芳香族炭化水素を含む原料中のェチルベンゼンを転 化して生成した反応物中から、純度の高 、ベンゼンを回収する方法を提供すること ができる。これにより、回収後に、抽出工程を通さずに製品化することができる。
図面の簡単な説明
[0026] [図 1]第 1の脱ェチル化'キシレン異性ィ匕工程、ノ ラキシレン分離工程、第 2のキシレ ン異性ィ匕工程を行うためのパラキシレン製造装置において、第 1の脱ェチル化'キシ レン異性ィ匕工程を通らないバイパスラインを設けた場合のフローを示す概念図である
[図 2]脱ェチル化工程を導入しない、一般的なパラキシレン製造のための「分離ー異 性化サイクル」のフローを示す概念図である。
[図 3]脱ェチルイ匕工程を導入した一般的なパラキシレン製造のための「分離 異性 化サイクル」のフローを示す概念図である。
[図 4]脱ェチル化工程を導入せず、フレッシュ原料をラフイネ一トキシレンと混合して、 高度にェチルベンゼンを脱ェチルイ匕する機能を持つキシレン異性ィ匕工程に送ること を特徴とする一般的なダイレクト 'フィード法のフローを示す概念図である。
発明を実施するための最良の形態
[0027] 本発明はェチルベンゼンの脱ェチル化反応の際、供給するェチルベンゼンを含む C8芳香族炭化水素混合原料がェチルトルエンを含むことを特徴とするものであるが 、通常ェチルトルエンは「分離 異性ィ匕サイクル」に供給される C8芳香族炭化水素 を含む原料の高沸点成分に 5〜 15重量%含まれている。そのため、通常、脱ェチル 化工程で処理する際に高沸点成分を蒸留分離していた蒸留塔を実質的には省略す ることが可能となる。図 1は本発明を実施するのに好ま Uヽフローの一実施態様を示 すが、従来技術フローの図 3あるいは図 4にあった高沸点成分蒸留分離工程 14が省 略できるものである。
[0028] 即ち本発明は、脱ェチル化工程にて供給される原料中のェチルベンゼンの脱ェチ ル化反応を行う際に、同じぐこの C9及び C10芳香族炭化水素を含んだ供給原料に 含まれるェチルトルエンの脱ェチルイ匕反応を同時に行 、、これをトルエンに転ィ匕する ことで、ェチルトルエンを有効利用してトルエンを得ることができ、例えば特許文献 3 に代表されるような従来技術のように、他用途の多い有用なトルエンをわざわざ混入 する必要がない。さらに、上記説明したキシレンロスの原因となっている、キシレンの 不均化反応、或いは、ェチルベンゼンが脱ェチル化したベンゼンとキシレンとのトラ ンスアルキル化反応は、平衡反応であるため、ェチルトルエンの脱ェチル化により得 られたトルエンの存在により、これら副反応の促進を抑えられ、キシレンのロスを低減 するものである。
[0029] 本発明の方法で使用される触媒は、固体酸に後述する所定の金属をドープした酸 型触媒であり、固体酸としては、酸型ゼオライトを挙げることが出来る。酸型ゼオライト として本発明に利用できるゼォライトとしては、ペンタシル型ゼオライトを挙げることが でき、例えば 10員酸素環の細孔を有するペンタシル型 (MFI型)ゼォライト (例えば、 特公昭 60— 35284号公報第 4— 5頁の実施例 1、特公昭 46— 10064号公報第 7頁 の例 1参照)を使用することができる。ゼォライトとしては、天然品、合成品何れでも使 用できるが、好ましくは、合成ゼォライトである。このようなペンタシル型ゼオライト自体 及びその製造方法は周知であり、下記実施例にもその合成方法の 1例が具体的に 記載されている。又、同じゼォライト構造であっても、その組成、特に、シリカ Zアルミ ナモル比(SiO /A1 0モル比)ゃゼオライト結晶子の大きさ等によってもその触媒性
2 2 3
能は変化する。
[0030] ゼォライトを構成するシリカ Zアルミナモル比の好ましい範囲は、ゼォライト構造にも 依存している。例えば、合成ペンタシル型ゼオライトでは、好ましいシリカ/アルミナ モル比は 10〜70、より好ましくは 20〜55である。ゼォライト合成時の各成分の組成 比を制御することによって、達成できる。更には、ゼォライト構造を構成するアルミ-ゥ ムを塩酸等の酸水溶液、或いは、アルミニウムキレート剤、例えば、エチレンジァミン 4酢酸 (EDTA)等で除去することにより、ゼォライトのシリカ Zアルミナモル比を増加 させることが出来る。又、逆に、アルミニウムイオンを含む水溶液、例えば、硝酸アルミ -ゥム水溶液、アルミン酸ソーダ水溶液等で処理することによりゼォライト構造の中に アルミニウムを導入しゼォライトのシリカ Zアルミナモル比を減少させ好ましいシリカ Zアルミナモル比にすることも可能である。シリカ Zアルミナモル比の測定は、原子吸 光法、蛍光 X線回折法、 ICP (誘導結合プラズマ)発光分光法等で容易に知ることが 出来る。
[0031] 合成ゼォライトは、一般に粉末であるので、使用に当たっては、成型することが好ま しい。成型法には、圧縮成型法、転動法、押出法等が例として挙げられるが、より好 ましくは、押出法である。押出法では、合成ゼォライト粉末にアルミナゾル、アルミナ ゲル、ベントナイト、カオリン等のバインダー及び必要に応じて、ドデシルベンゼンス ルフォン酸ナトリウム、スパン (商品名)、ツイン (商品名)などの界面活性剤が成型助 剤として添加され、混練りされる。
[0032] 必要によっては、エーダーなどの機械が使用される。更には、触媒に添加する金属 によっては、ゼォライト成型時にアルミナ、チタ-ァ等の金属酸化物を加え、触媒に 添加する金属の担持量を増加させたり、分散性を向上させたりする。混練りされた混 練り物は、スクリーン力も押し出される。工業的には、例えば、エタストリューダーと呼 ばれる押出機が使用される。スクリーン力 押し出された混練り物はヌードル状物とな る。使用するスクリーン径により成形体の大きさが決定される。スクリーン径としては、 好ましくは 0.2〜1.5πιπι φが用いられる。スクリーンから押し出されたヌードル状成形 体は、角を丸めるために、マルメライザ一(商品名)により処理されるのが好ましい。こ のようにして成型された成型体は、好ましくは 50〜250°Cで乾燥される。乾燥後、成形 強度を向上させる為、好ましくは 250〜600°C、さらに好ましくは 350〜600°Cで焼成さ れる。
[0033] このようにして調製された成形体は、固体酸性を付与するためのイオン交換処理が 行われる。固体酸性を付与する方法としては、アンモ-ゥムイオンを含む化合物(例 えば、 NH Cl、 NH NO 、 (NH ) SO等)でイオン交換処理し、ゼォライトのイオン交換
4 4 3 4 2 4
サイトに NHイオンを導入し、し力る後、乾燥、焼成により、水素イオンに変換する方
4
法、或いは、直接、酸を含む化合物(例えば、 HC1、 HNO 、 H PO等)で、ゼォライト
3 3 4
のイオン交換サイトに水素イオンを導入する方法もあるが、後者は、ゼォライト構造を 破壊する恐れがあるので、好ましくは前者、即ち、アンモ-ゥムイオンを含む化合物 でイオン交換処理される。或いは、 2価、 3価金属イオンをゼオライトイオン交換サイト に導入することによつてもゼオライトに固体酸性を付与することが出来る。 2価金属ィ オンとしては、アルカリ土類金属イオンである Mg2+、 Ca2+、 Sr2+、 Ba2+を例として挙げるこ とが出来る。 3価金属イオンとしては、希土類金属イオンである Ce3+、 La3+等を例として 挙げることが出来る。 2価及び Z又は 3価金属イオンを導入する方法とアンモ-ゥムィ オン或 、は直接水素イオンを導入する方法と組み合わせて用いることもできるし、より 好ましい時もある。イオン交換処理は、上記イオンを含む溶液、通常水溶液で前記ゼ オライト等の担体を処理する、バッチ法或いは流通法で行われる。処理温度は、室温 から 100°Cで行われるのが通常である。
このようにしてイオン交換処理された後、水素化活性金属として VII族、 VIII族の金 属の中から選択される少なくとも一つの金属が担持される。触媒反応系に Hを存在さ
2 せ、水素化活性金属を担持することにより、触媒の経時劣化を防止することが出来る 。水素化活性金属としては、白金、ノラジウム、レニウム、等が好ましく用いられる。担 持する金属により好ましい担持量は異なる。例えば、白金の場合は、触媒全体に対し て 0.005〜0.5重量%であり、より好ましくは 0.01〜0.3重量0 /0である。パラジウムの場合 は、 0.05〜1重量%が好ましく用いられる。レニウムの場合には好ましい担持量は 0.01 〜5.0重量%であり、より好ましくは 0.1〜2重量%である。水添金属担持量が多くなる と芳香族炭化水素が核水添され好ましくない。また水添金属担持量が少なくすぎると 、脱ェチルイ匕反応の際の水素供給が十分でなくなるため触媒活性低下を招く。従つ て選ばれる金属種類、及び組み合わせと、その担持量は目標性能にあわせ適宜調 整する必要がある。これら金属の担持法は、白金、パラジウム、レニウムのうちいずれ か少なくとも一つを含む溶液、一般には、水溶液に触媒を浸漬し、担持される。白金 成分としては、塩化白金酸、塩ィ匕白金酸アンモ-ゥム等が、ノラジウム成分としては、 酢酸パラジウム、ァセチルアセトンパラジウム、塩化パラジウム、硝酸パラジウム等が、 レニウム成分としては、過レニウム酸、過レニウムアンモ-ゥム等が利用される。
[0035] このようにして調製された触媒は、 50〜250°Cで 30分以上乾燥することが好ましぐ 使用に先立って、 350〜600°Cで 30分以上焼成することが好ま 、。
[0036] なお、触媒としては、 1種類の触媒を用いることもできるし、 2種以上の触媒を組み 合わせて用いることもできる。
[0037] 以上、述べたようにして調製された触媒は、それ自体この分野で周知である種々の 反応操作に準じて行うことが出来る。反応方式は、固定床、移動床、流動床何れの 方法も用いられる力 操作の容易さから固定床反応方式が、特に、好ましい。これら 反応方式で、触媒は、次のような反応条件のもとで使用することができる。即ち、反応 操作温度は 200〜500°C、好ましくは、 250〜450°Cである。反応操作圧力は大気圧か ら 10MPa、好ましくは、 0.3〜2MPaである。反応の接触時間を表す重量時間空間速度 (WHSV)は 0.1〜50hr— 好ましくは 0.5〜20.0hr— 1である。反応は、 H存在下で行なわ
2
れ、 H対供給原料油のモル比率は 0.5〜10mol/molで、好ましくは 1.5〜5.0mol/molで
2
ある。 Hは、反応系に水素ガスを導入することにより存在させることができる。供給原
2
料油は、液相或いは気相状態どちらでもよ 、。
[0038] 供給原料油に含有させるェチルトルエンは、パラェチルトルエン、メタェチルトルェ ン、オルソェチルトルエン、いずれでもよぐ異性体混合物であってもよい。これらェ チルトルエン全体が供給原料中に 1重量%以上、より好ましくは 3重量%以上、より好 ましくは 5重量%以上存在していることが好ましい。上限としては通常 20重量%以下 であることが好ましぐ 15重量%以下であることがより好ましい。また、ナフサから、改 質処理、分留により得られる C8芳香族炭化水素混合物には前記のとおりェチルトル ェンが含まれるので、これをこのまま用いてもよい。そのため、従来必要としていた高 沸点成分を除去する蒸留塔の設置を省略することも可能である。
[0039] また、ェチルトルエンは原料に添加する形で原料に含有させてもよい。原料に添カロ する場合にはェチルトルエン単独で混合してもよいし、これとその他の C9〜C10芳 香族炭化水素を含む混合物の形で混合して供給原料に含ませても良い。 [0040] 上記酸型触媒を使用する本発明の方法では、 50重量%以上、さらに好ましい態様 にお ヽては 70重量%以上、特に好まし 、態様にぉ 、ては 80重量%以上の高 、転 化率で原料に含まれるェチルトルエンを脱ェチルイ匕することができるため、ェチルト ルェン濃度が低い原料においても、キシレンロス抑制に役立つトルエンを多く得るこ とがでさる。
[0041] 更にはェチルベンゼンの脱アルキルィ匕反応により副生したベンゼンは通常蒸留分 離、及び、スルフォラン工程などの抽出分離により精製されるが、上記酸型触媒を使 用する場合、シクロへキサン、メチルシクロペンタン、ノルマルへキサンなどといった、 ベンゼンに比較的沸点が近く蒸留分離が困難なノンァロマチックス成分の生成が少 ないため、抽出処理を省略し蒸留分離のみで高純度のベンゼンを得ることができる。
[0042] 反応生成液組成から、蒸留分離した製品ベンゼンの純度推定式として、例えば、特 表 2002-504946号公報に記載されて 、るような下式が紹介されて 、る。本発明にお けるベンゼン純度はこの製品ベンゼンの純度推定式により求められるベンゼン純度 をいう。
[0043] 製品ベンゼン推定純度 = ( [ベンゼン濃度] Z (a+b+c+d+ [ベンゼン濃度] ) X 100(%)) ここで、 a〜dは以下に定義される。
a = 0.1 X [n— C6ノ ラフィン濃度]
b = 0.7 X [メチルシクロペンタン濃度]
c = 1.0 X [シクロへキサン濃度]
d= 1.0 X [C7ナフテンパラフィン濃度]
[0044] 酸型触媒に含有させる金属としてレニウムを用いる場合には、比較的水素化能力 がマイルドであるため、核水素化分解による芳香族ロスが少ないため、ベンゼンに比 較的沸点の近い上記不純物の生成が少なぐ上式で定義される製品ベンゼン推定 純度が 99.8重量%以上となり、蒸留分離したベンゼンを、抽出工程のような更なる精 製を経ずとも高純度のベンゼンをケミカルグレードの製品として得ることができる。一 方、ェチルトルエンの脱アルキルィ匕反応から生成したトルエンは、蒸留分離により回 収され、ガソリン基材ゃ溶剤、或いは、キシレン、ベンゼンを製造する不均化工程の 原料といった有効用途に使うことができる。 [0045] また本発明にお ヽては、ェチルベンゼン及びキシレンを含む C8芳香族炭化水素 混合原料を用いて前記したェチルベンゼンの転ィ匕方法を行うことにより、ェチルベン ゼンをベンゼンに転ィ匕するだけでなぐキシレンも異性ィ匕できる(このェチルベンゼン をベンゼンに転化し、キシレンを異性ィ匕する工程を、「脱ェチル化 'キシレン異性ィ匕ェ 程」もしくは「第 1の脱ェチル化'キシレン異性ィ匕工程」と称する)。これによりェチルベ ンゼン転ィ匕率が高いだけでなぐキシレンロスの少ない反応生成物が得られる。この 反応生成物からパラキシレンを分離することにより、 ノラキシレンを得ることができる。 反応生成物からのパラキシレンの分離自体は周知の方法により行なうことができ、例 えば、融点差を利用して分離する深冷分離法や、ゼォライト吸着剤により吸着性の差 を利用して分離する吸着分離法により行なうことができる。
[0046] さらに、本発明では上記パラキシレンを分離した後のパラキシレンの乏しい分離残 であるラフイネ一トキシレンを、第 2のキシレン異性ィ匕工程を設けてキシレンの異性ィ匕 を行うこともできる。この第 2のキシレン異性ィ匕工程で行われる異性ィ匕方法には特に 制限はなぐ通常行われる方法で行うことができるし、上記「脱ェチル化'キシレン異 性ィ匕工程」と同様の工程を第 2のキシレン異性ィ匕工程として行うこともできる。そして、 この第 2のキシレン異性ィ匕工程で得られた反応生成物力も再びパラキシレンを分離 することができる。このパラキシレン分離後の第二の分離残は、再び第 1の脱ェチル ィ匕 'キシレン異性ィ匕工程に供給する C8芳香族炭化水素混合原料に混合してリサイク ルしてもよいし、第二のキシレン異性ィ匕工程に第 1の分離残とともにリサイクルし、「分 離―異性ィ匕サイクル」を形成してもよ ヽ。
[0047] また、本発明にお 、ては、ェチルベンゼン及びキシレンを含む C8芳香族炭化水素 混合原料を用い、上記第 1の脱ェチル化'キシレン異性ィ匕工程と同様の工程である、 ェチルベンゼンをベンゼンに転化し、キシレンを異性化する脱ェチル化 ·キシレン異 性化工程で得られた反応生成物から、パラキシレンを分離した後、その分離残を前 記脱ェチル化'キシレン異性ィ匕工程に再度供給する方法によりパラキシレンを製造 することができる。この方法は、先述のダイレクトフィード法においても利用することが 可能で、高沸点成分の蒸留分離処理を省略したェチルトルエン含有 C8芳香族炭化 水素混合原料を、ノ キシレンを分離した後のラフイネ一トキシレンと混合し、上記酸 型触媒を導入したキシレン異性ィ匕工程に送り、高 ヽ転ィ匕率でェチルベンゼンを脱ェ チル化し、キシレンを異性化した反応生成物から、再びパラキシレンを分離すること ができる。つまり、上記酸型触媒をキシレン異性ィ匕工程に導入した場合、一般的なダ ィレクト ·フィード法の概念を示す図 4にお 、て、高沸点成分蒸留分離工程 14が省略 できるものである。
[0048] さらに上記第 1の脱ェチル化'キシレン異性ィ匕工程、ノラキシレン分離工程、第 2の キシレン異性化工程を行う場合、あるいは、それにさらに「分離—異性ィ匕サイクル」を 行う場合、それを行うためのパラキシレン製造装置において、第 1の脱ェチル化'キシ レン異性ィ匕工程を通らな 、バイパスライン、すなわち図 1の脱ェチルイ匕 ·キシレン異 性ィ匕工程バイパスライン 23に示すような、バイパスラインを設けることが好ましい。
[0049] 何故ならば、当該脱ェチルイ匕反応工程の定修ストップ、あるいはトラブル等による緊 急ストップがあった場合、「分離 異性化サイクル」への C8芳香族炭化水素混合原 料の供給を当該バイパスライン経由に切り替えることにより、後工程の「分離 異性 化サイクル」全体を停止する必要がなく、パラキシレンの減産分を最小限に抑えること ができるためである。さらに、キシレン異性ィ匕工程として、前記した脱ェチル化'キシレ ン異性ィ匕工程を用いる場合には、 C8芳香族炭化水素含有原料に含まれるェチルベ ンゼンの転化も同時に行うため、第 1の脱ェチル化 ·キシレン異性ィ匕工程をスキップ するにもかかわらず、ェチルベンゼンを高い転ィ匕率で転ィ匕することができ、かつ、キ シレンロスも少なぐキシレンの異性ィ匕を行うことができるため、第 1の脱ェチル化'キ シレン異性ィ匕工程を通さないことによる影響を最小限に押さえることができる。
実施例
[0050] 1.ペンタシル型ゼオライトの合成
苛性ソーダ水溶液 (NaOH含量 48.0重量%、 H 0含量 52.0重量%、東亞合成株式会
2
社) 54.2グラム、酒石酸粉末 (酒石酸含量 99.7重量%、 H 0含量 0.3重量%、株式会社力
2
ーク) 16.6グラム、を水 698.6グラムに溶解した。この溶液にアルミン酸ソーダ溶液 (A1
2
〇含量 13.4重量%、 Na 0含量 13.8重量%、 H 0含量 43.9重量%、住友化学工業株式会
3 2 2
社) 9.9グラムをカ卩え、均一な溶液とした。この混合液に含水ケィ酸 (SiO含量 89.4重
2
量%、 A1 0含量 2.4重量%、 Na 0含量 1.6重量%、ニップシール VN 3、 日本シリカェ 業株式会社) 111.5グラムを撹拌しながら徐々に加え、均一なスラリー状水性反応混 合物を調製した。この反応混合物の組成比(モル比)は次のとおりであった。
[0051] SiO /A1 0 :77
2 2 3
OHフ SiO: 0.3002
2
A/A1 0: 5.14 (A:酒石酸塩)
2 3
H O/SiO: 25
2 2
[0052] 反応混合物は、 1000ml容のオートクレーブに入れ密閉し、その後 250rpmで撹拌し ながら 160°Cで 72時間反応させた。反応終了後、蒸留水で 5回水洗、濾過を繰り返し
、約 120°Cでー晚乾燥した。
[0053] 得られた生成物を、 Cu管球、 K a線を用いる X線回折装置で測定した結果、得ら れたゼオライトはペンタシル型ゼオライトであることがわ力つた。
[0054] このペンタシル型ゼオライトのシリカ Zアルミナモル比は蛍光 X線回折分析の結果、
49.0であった。
[0055] 2.触媒の製造
(1) 触媒 Aの製造 (触媒 Aの使用は本発明の範囲外)
上記のようにして合成されたペンタシル型ゼオライトを絶対乾燥基準 (500°C、 20分 間焼成した時の灼熱減量から計算)で 10グラム、擬ベーマイト構造を有する含水アル ミナ (住友ィ匕学工業株式会社製)を絶対乾燥基準で 30グラム、アルミナゾル (A1 0含
2 3 量 10重量 %、 日産化学工業株式会社製)を 60グラム加え、充分混合した。その後、 12 0°Cの乾燥器に入れ、粘土状になるまで、乾燥した。その混練り物を 1.2mm φの穴を 有するスクリーンを通して押出した。押出し成形物を、 120°Cで一晩乾燥し、次いで、 3 50°Cから徐々に 540°Cに昇温し、 540°Cで 2時間焼成した。このペンタシル型ゼォライ ト成型体 20グラムを対成型体絶対乾燥基準 100重量部あたり、 11重量部の NH C1と 5
4 重量 CaClを溶かした水溶液に入れ、純水にて固液比 2.0Kg/Lに調製し、温度 80°C、
2
1時間保持した。その後、純水で洗浄し、純水でバッチ的に 6回水洗した。このイオン 交換したペンタシル型ゼオライト成型体を 120°Cで一晩乾燥した。触媒反応での使用 に先立って、硫化水素気流中 250°Cで 2時間硫化処理を行い、大気中にて 540°Cで 2 時間焼成し、触媒 Aとした。 [0056] (2) 触媒 Bの製造
触媒 Aの製造と同様にペンタシル (MFI)型ゼオライトを含む成型体を作り、アンモ- ゥムイオン、及びカルシウムイオン交換を行った。このイオン交換したペンタシル型ゼ オライト成型体の乾燥品 20グラムを、 Reとして 80ミリグラム含む過レニウム酸水溶液 40 ml中に室温で浸漬し、 2時間放置した。 30分毎に撹拌した。その後、液を切り、 120°C で一晩乾燥した。触媒反応での使用に先立って、硫化水素気流中 250°Cで 2時間 硫化処理を行い、大気中にて 540°C、 2時間焼成し、触媒 Bとした。触媒 Bに担持され た Reを ICP発光分析で分析した結果、触媒 Bに担持されて ヽるレニウムは Reとして 20 10重量 ppmであった。
[0057] 実施例 1,比較例 1
上記触媒 Aと Bについてそれぞれ反応管に充填して反応テストを行った。使用した 供給原料 4種類の組成を下記表 1に示す。尚、供給原料及び反応生成物の組成分 析は水素炎検出器付きガスクロマトグラフィー 3台を用いた。分離カラムは次の通りで ある。
[0058] (1)ガス成分(ガス中のメタンから n ブタンまでの成分):
充填剤:〃ュ-パック s" ("Unipak S" (商品名) ) 100〜150メッシュ、
カラム:ステンレス製 長さ 4m、内径 3mm φ
N :1.65kg/cm2-G
2
温度: 80°C
[0059] (2)液成分中のベンゼン周りの沸点を有する成分 (液中に溶解して!/、るメタン力 n ブタンと液成分の 2—メチル ブタンからベンゼン成分まで):
充填剤 25%ポリエチレングリコール 20M/担体〃シマライド 60〜80メッシュ、 カラム:ステンレス製 長さ 12m、内径 3mm φ
N :2.25kg/cm2-G
2
温度: 68°Cから 2°CZ分の昇温速度で 180°Cまで実施した。
[0060] (3)液成分ベンゼンより沸点の高 、成分 (ベンゼン力 ヘビーエンド成分まで): スペルコ ワックス フューズド シリカキヤピラリィー; 長さ 60m、内径 0.32mm φ、膜厚 0.5 μ m He線速; 23cm/秒
温度; 67°Cから 1°CZ分の昇温速度、 80°Cから 2°CZ分の昇温速度で 200°Cまで実施 した。
[0061] [表 1]
Figure imgf000020_0001
Figure imgf000020_0002
[0062] 尚、 EBはェチルベンゼン、 PXはパラキシレン、 MXはメタキシレン、 0Xはオルソキ シレン、 ETはェチルトルエンを表す。また C9 +は C9以上の炭素数を有する化合物 を表す。原料 A〜Dは「分離 異性化」サイクルの前につける脱ェチルイヒ工程に入 れる原料を想定したもので、原料 Eは、ダイレクト 'フィード法においてェチルトルエン 及び C9以上の炭素数を有する化合物を含む C8芳香族炭化水素混合原料を想定し たものである。
[0063] 上記原料油について、触媒 A又は Bを反応管に 7.5グラム充填して次の条件で反応 させた。
[0064] 反応条件
WHSVChr"1): 4.2
反応温度 (°C) : 405
反応圧力 (MPa): 0.9
H /Feed(mol/mol):3.5
2
[0065] 表 2にそのテスト結果を示す。
[0066] [表 2] (単位:重量%)
Figure imgf000021_0001
[0067] 実施例 1の結果より、水素化活性金属であるレニウムを担持した酸型ゼオライト触媒 を用いて、ェチルトルエンを含む原料を処理することにより、キシレンの収率が改善さ れているのが解る。これはェチルトルエンの脱アルキル化によりトルエンを生成し、キ シレンロスの副反応であるキシレンとベンゼン(ェチルベンゼンの脱ェチル化により生 成)のトランスアルキルィ匕反応の進行を抑制するためと考えられる。さらに ETを 1%、 原料に添加すると収率が 0.2%改善されているが(比較例 1-Bと実施例 1-Cの比較)、 一般的に 1時間当たり数十トン以上の大量の原料を処理する工業的生産において、 この収率改善は極めて大きな経済効果をもたらすことになる。また、実施例 1におい て得られる反応生成物は、ェチルベンゼン濃度が低くてパラキシレン濃度に富んで おり、「分離 異性化」サイクルでのパラキシレン製造、特にパラキシレン分離工程が ゼォライト系吸着剤を使用した吸着分離を実施する場合において、非常に有利であ ることが解る。
[0068] 尚、比較例 1-Aの結果より、水素化活性金属を担持していない触媒 (触媒 A)では ェチルベンゼン及びェチルトルエンの脱ェチル化活性が低いことがわかる。
[0069] 実施例 2
触媒 Bの製造と同様にしてアンモ-ゥム及びカルシウム交換したペンタシル型ゼォ ライト成型体の乾燥品 20グラムを、 Ptとして 4ミリグラム含む塩化白金酸水溶液 40ml中 に室温で浸漬し、 2時間放置した。 30分毎に撹拌した。その後、液を切り、 120°Cで一 晚乾燥した。触媒反応での使用に先立って、硫化水素気流中 250°Cで 2時間硫化処 理を行い、大気中にて 540°C、 2時間焼成し、触媒 Cとした。触媒 Cに担持された Ptを I CP発光分光分析で分析した結果、触媒 Cに担持されている白金は Ptとして 169重量 p pmで fcつた。
[0070] 上記原料油 Dについて、触媒 Cを反応管に 7.5グラム充填して実施例 1と同じ条件 で反応させた。結果を下記表 3に示す。
[0071] 実施例 3
触媒 Bと同様にして調製したアンモ-ゥム及びカルシウム交換したペンタシル型ゼ オライト成型体の乾燥品 20グラムを、 Pdとして 40ミリグラム含む塩化パラジウム水溶液 40ml中に室温で浸漬し、 2時間放置した。 30分毎に撹拌した。その後、液を切り、 120 °Cで一晩乾燥した。触媒反応での使用に先立って、硫ィ匕水素気流中 250°Cで 2時 間硫化処理を行い、大気中にて 540°C、 2時間焼成し、触媒 Dとした。触媒 Dに担持さ れた Pdを ICP発光分光分析で分析した結果、触媒 Dに担持されて ヽるパラジウムは P dとして 1480重量 ppmであった。
[0072] 上記原料油 Dについて、触媒 Dを反応管に 7.5グラム充填して実施例 1と同じ条件 で反応させた。結果を下記表 3に示す。
[0073] 実施例 4
触媒 Bと同様にして調製したアンモ-ゥム及びカルシウム交換したペンタシル型ゼ オライト成形体の乾燥品 20グラムを、 Niとして 40ミリグラム含む硝酸ニッケル水溶液 40 ml中に室温で浸漬し、 2時間放置した。 30分毎に撹拌した。その後、液を切り、 120°C で一晩乾燥した。触媒反応での使用に先立って、硫ィ匕水素気流中 250°Cで 2時間硫 化処理を行い、大気中にて 540°C、 2時間焼成し、触媒 Eとした。触媒 Eに担持された PdNiを ICP発光分光分析で分析した結果、触媒 Eに担持されて ヽる Niとして 1680重 量 ppmであった。
[0074] 上記原料油 Dについて、触媒 Eを反応管に 7.5グラム充填して実施例 1と同じ条件で 反応させた。結果を下記表 3に示す。
[0075] [表 3] (単位: 重量%)
Figure imgf000023_0001
[0076] 実施例 5
触媒 Bの製造と同様にしてアンモ-ゥム及びカルシウム交換したペンタシル型ゼォ ライト成型体の乾燥品 20グラムを、 Reとして 200ミリグラム含む酸ィ匕レニウム水溶液 40m 1中に室温で浸漬し、 2時間放置した。 30分毎に撹拌した。その後、液を切り、 120°C で一晩乾燥した。触媒反応での使用に先立って、硫ィ匕水素気流中 250°Cで 2時間硫 化処理を行い、大気中にて 540°C、 2時間焼成し、触媒 Fとした。触媒 Fに担持された Reを ICP発光分光分析で分析した結果、触媒 Fに担持されて ヽるレニウムは Reとして 4800重量 ppmであった。
[0077] 上記原料油 Eについて、触媒 B、及び Fを反応管に 7.5グラム充填して、次の条件で 反応させた。結果を下記表 4に示す。
[0078] 反応条件
WHSVChr"1): 5.3
反応温度 (°C): 390
反応圧力 (MPa): 0.9
H /Feed(mol /mol ):2.5
2
[0079] [表 4] (単位: 重量%)
Figure imgf000024_0001
[0080] 表 4から、レニウムの担持量が多くなるとキシレンの回収率が良くなることが解る。ま た原料 Εはダイレクト ·フィード法にぉ 、て C9 +除去省略したケースを想定した原料 であるが、ダイレクト ·フィード法にぉ 、ても有効であることが解る。
[0081] 実施例 6
触媒 Β、及び実施例 3の触媒 Dを用いて得られた反応液中のノンァロマチックス濃 度が詳細分析ができる方法 (実施例 1の文中にある(2)に記載の分析条件)にて、そ の濃度を測定した。その結果、下記表 5の通り、ベンゼンと沸点の近いコンタミ不純物 である、シクロへキサン、メチルシクロペンタンの濃度は実施例 1の触媒 Βを使用した 場合のほうが低ぐ下記ベンゼン純度推定式を用いて計算した製品ベンゼン推定純 度 (ベンゼン純度)は、実施例 1で 99.8重量 %以上と高純度である。
[0082] [表 5]
(単位: 重量%)
Figure imgf000024_0002
製品ベンゼン推定純度 = ( [ベンゼン濃度]/ (a+b+c+d+ [ベンゼン濃度] ) X 100(%)) ここで、 a〜dは以下に定義される。
a = 0.1 X [n— C6ノ ラフィン濃度]
b = 0.7 X [メチルシクロペンタン濃度] c = 1.0 X [シクロへキサン濃度] d=1.0X [C7ナフテンパラフィン濃度]

Claims

請求の範囲
[I] ェチルベンゼンを含む C8芳香族炭化水素混合原料を、 H存在下で VII族及び VIII
2
族の金属から選ばれる少なくとも 1種の金属を含有してなる酸型触媒と接触させて、 ェチルベンゼンをベンゼンに転化する方法であって、前記原料がェチルトルエンを 含んだ C9〜C10芳香族炭化水素を含有し、前記ェチルベンゼンの転化と共に該ェ チルトルエンをトルエンに転化することを含むェチルベンゼンの転化方法。
[2] 前記原料中のェチルトルエン濃度が 1重量%以上である請求項 1記載の方法。
[3] 前記原料中のェチルトルエン濃度が 3重量%以上である請求項 2記載の方法。
[4] 前記原料中のェチルトルエン濃度が 5重量%以上である請求項 3記載の方法。
[5] 前記原料中のェチルトルエンが転ィ匕率 50%以上で転ィ匕する請求項 1から 4のいず れか 1項に記載の方法。
[6] 前記酸型触媒が、白金、パラジウム及びレニウム力 成る群より選ばれる少なくとも
1つの金属を含有してなる請求項 1から 5のいずれか 1項記載の方法。
[7] 前記酸型触媒が、レニウムを含有する請求項 6記載の方法。
[8] 前記酸型触媒中のレニウム含有量が 0.01重量%〜5重量%である請求項 7記載の 方法。
[9] 前記酸型触媒中のレニウム含有量が 0.1重量%〜2重量%である請求項 8記載の 方法。
[10] 反応により生成したベンゼンを蒸留分離して純度 99.8重量%以上のベンゼンを回 収することをさらに含む請求項 1から 9のいずれか 1項記載の方法。
[II] 前記酸型触媒が、シリカ/アルミナモル比が 10〜70のペンタシル型ゼオライトであ る請求項 1〜10のいずれ力 1項記載の方法。
[12] ェチルベンゼン及びキシレンを含む C8芳香族炭化水素混合原料を請求項 1〜: L 1 の!、ずれ力 1項の記載の方法に付し、ェチルベンゼンをベンゼンに転化すると共に キシレンを異性ィ匕する工程と、得られた反応生成物から、ノ キシレンを分離するェ 程を含むパラキシレンの製造方法。
[13] ェチルベンゼン及びキシレンを含む C8芳香族炭化水素混合原料を請求項 12記 載の方法に付し、ェチルベンゼンをベンゼンに転ィ匕すると共にキシレンを異性ィ匕する 、第 1の脱ェチル化'キシレン異性ィ匕工程と、該第 1の脱ェチル化'キシレン異性ィ匕ェ 程で得られた反応生成物から、パラキシレンを分離する工程と、該分離工程の分離 残中に含まれるキシレンを第 2のキシレン異性ィ匕工程に付して異性ィ匕を行う工程と、 該第 2のキシレン異性ィ匕工程の反応生成物力 再度パラキシレンを分離する工程を 含む、パラキシレンの製造方法。
[14] 前記第 2のキシレン異性ィ匕工程力 前記分離残を H存在下で、 VII族及び VIII族の
2
金属から選ばれる少なくとも 1種の金属を含有してなる酸型触媒と接触させることを含 む請求項 13記載の方法。
[15] ェチルベンゼン及びキシレンを含む C8芳香族炭化水素混合原料を請求項 12記 載の方法に付し、ェチルベンゼンをベンゼンに転ィ匕すると共にキシレンを異性ィ匕する 、脱ェチル化 'キシレン異性化工程と、該脱ェチル化 'キシレン異性化工程で得られ た反応生成物から、パラキシレンを分離する工程と、該分離工程の分離残を前記脱 ェチル化'キシレン異性ィ匕工程に再度供給する工程を含む、ノ キシレンの製造方 法。
[16] 前記分離残を、前記 C8芳香族炭化水素混合原料と混合して、前記脱ェチル化 ·キ シレン異性ィ匕工程に再度供給する工程をさらに含む請求項 15記載の方法。
[17] 請求項 13または 14に記載の第 1の脱ェチル化'キシレン異性ィ匕工程、パラキシレ ン分離工程、第 2のキシレン異性ィ匕工程を行うためのパラキシレン製造装置を用いる ノ ラキシレンの製造方法であって、前記装置は、第 1の脱ェチル化'キシレン異性ィ匕 工程を通らな 、バイパスラインを具備し、ェチルトルエンを含んだ C9〜C10芳香族 炭化水素を混合した前記 C8芳香族炭化水素混合原料を、必要に応じ、前記パラキ シレン分離工程に供給することを含むパラキシレンの製造方法。
PCT/JP2007/056547 2006-03-29 2007-03-28 エチルベンゼンの転化方法およびパラキシレンの製造方法 WO2007114127A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07739985A EP2008988A4 (en) 2006-03-29 2007-03-28 PROCESS FOR CONVERTING ETHYLBENZENE AND METHOD FOR PRODUCING PARA-XYLENE
KR1020087026319A KR101357387B1 (ko) 2006-03-29 2007-03-28 에틸벤젠의 전화 방법 및 파라크실렌의 제조 방법
CN2007800113703A CN101410354B (zh) 2006-03-29 2007-03-28 乙苯的转化方法和对二甲苯的制备方法
US12/295,006 US20100179360A1 (en) 2006-03-29 2007-03-28 Method for conversion of ethylbenzene and process for production of para-xylene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006091948 2006-03-29
JP2006-091948 2006-03-29

Publications (1)

Publication Number Publication Date
WO2007114127A1 true WO2007114127A1 (ja) 2007-10-11

Family

ID=38563396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056547 WO2007114127A1 (ja) 2006-03-29 2007-03-28 エチルベンゼンの転化方法およびパラキシレンの製造方法

Country Status (8)

Country Link
US (1) US20100179360A1 (ja)
EP (1) EP2008988A4 (ja)
KR (1) KR101357387B1 (ja)
CN (1) CN101410354B (ja)
MY (1) MY153671A (ja)
RU (1) RU2448937C2 (ja)
TW (1) TWI432409B (ja)
WO (1) WO2007114127A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116561A1 (ja) * 2008-03-19 2009-09-24 東レ株式会社 エチルベンゼンの転化方法及びパラキシレン製造方法
JP2011512237A (ja) * 2007-12-12 2011-04-21 ユーオーピー エルエルシー 芳香族異性化触媒とそれらの使用方法
WO2016069136A1 (en) * 2014-10-31 2016-05-06 Exxonmobil Chemical Patents Inc. Xylene isomerization process with sulfidation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8058496B2 (en) * 2010-03-31 2011-11-15 Uop Llc Process for xylene and ethylbenzene isomerization using UZM-35
US9365468B2 (en) * 2014-05-06 2016-06-14 Uop Llc Methods and systems for reforming and transalkylating hydrocarbons
WO2018118208A1 (en) 2016-12-21 2018-06-28 Uop Llc Composition of matter and structure of zeolite uzm-55 and use in isomerization of aromatic molecules
WO2020205357A1 (en) * 2019-03-29 2020-10-08 Exxonmobil Chemical Patents Inc. Novel zeolite, process for making same, and use thereof in converting aromatic hydrocarbons
CN112573986B (zh) * 2019-09-29 2023-05-05 中国石油化工股份有限公司 由c8芳烃生产对二甲苯的方法
CN112573983B (zh) * 2019-09-29 2023-03-28 中国石油化工股份有限公司 一种由含乙苯的c8芳烃生产对二甲苯的方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4341622A (en) * 1980-12-04 1982-07-27 Mobil Oil Corporation Manufacture of benzene, toluene and xylene
JPS5877828A (ja) * 1981-11-02 1983-05-11 Toray Ind Inc エチルベンゼンを含むキシレン類の変換方法
JPS6035284B2 (ja) 1981-01-27 1985-08-14 東レ株式会社 ペンタシル型ゼオライトの製造法
JPS62228031A (ja) * 1981-06-03 1987-10-06 Toray Ind Inc 芳香族炭化水素の変換方法
JPS6456626A (en) 1987-08-25 1989-03-03 Toray Industries Method for converting ethylbenzene in 8c aromatic hydrocarbon mixture
JPH0291031A (ja) * 1988-09-29 1990-03-30 Teijin Yuka Kk キシレンの異性化法
JPH04504577A (ja) * 1989-12-13 1992-08-13 モービル・オイル・コーポレイション C↓9+芳香族原料の接触転化方法
JPH08119882A (ja) * 1994-10-07 1996-05-14 Chevron Usa Inc 不純トルエンの芳香族化及び選択的不均化の併用による高純度ベンゼン及びパラに富むキシレンの製造法
JPH08143483A (ja) 1994-03-03 1996-06-04 Mitsubishi Oil Co Ltd p−キシレンの製造方法及び装置
JPH10513498A (ja) * 1995-02-10 1998-12-22 モービル・オイル・コーポレイション 重質芳香族化合物の処理
US5977429A (en) 1996-08-22 1999-11-02 Eastman Chemical Company Synthetic polyester absorbent materials
US6342649B1 (en) 1995-05-10 2002-01-29 Denim Engineering, Inc Method for removing ethylbenzene from a para-xylene feed stream
JP2002504946A (ja) 1997-06-13 2002-02-12 モービル・オイル・コーポレイション 重質芳香族化合物の処理
JP2002371018A (ja) * 2001-05-18 2002-12-26 Fina Technol Inc 重質芳香族の転化法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702886A (en) * 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US4188282A (en) * 1978-06-12 1980-02-12 Mobile Oil Corporation Manufacture of benzene, toluene and xylene
CA1299588C (en) * 1987-08-25 1992-04-28 Kuniyuki Tada Process for conversion of ethylbenzene in c _aromatic hydrocarbon mixture
US4973784A (en) * 1988-10-06 1990-11-27 Mobil Oil Corp. Process for reducing the durene content of effluent resulting from the catalytic conversion of C1 -C4 oxygenates to gasoline
AU4779293A (en) * 1992-07-24 1994-02-14 Chevron Chemical Company Reforming process for producing high-purity benzene
PT739873E (pt) * 1995-04-24 2000-06-30 Uop Inc Isomerizacao de aromaticos c8 usando um catalisador contendo um peneiro molecular de silicoaluminofosfato modificado
FR2797593B1 (fr) * 1999-08-19 2002-05-24 Inst Francais Du Petrole Catalyseur comprenant au moins une zeolithe de type structural nes et du rhenium et son utilisation en transalkylation d'hydrocarbures alkylaromatiques
RU2233260C2 (ru) * 2000-09-13 2004-07-27 Юоп Ллк Селективная изомеризация ксилолов и конверсия этилбензола
US7247762B2 (en) * 2003-09-12 2007-07-24 Exxonmobil Chemical Patents Inc. Process for xylene isomerization and ethylbenzene conversion
CN100512954C (zh) * 2003-12-30 2009-07-15 环球油品公司 用于c8烷基芳烃异构化的方法和催化剂
ITMI20040077A1 (it) * 2004-01-22 2004-04-22 Polimeri Europa Spa Procedimento per la idrodealchilazione catalitica di idrocarburi alchilaromatici

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4341622A (en) * 1980-12-04 1982-07-27 Mobil Oil Corporation Manufacture of benzene, toluene and xylene
JPS6035284B2 (ja) 1981-01-27 1985-08-14 東レ株式会社 ペンタシル型ゼオライトの製造法
JPS62228031A (ja) * 1981-06-03 1987-10-06 Toray Ind Inc 芳香族炭化水素の変換方法
JPS5877828A (ja) * 1981-11-02 1983-05-11 Toray Ind Inc エチルベンゼンを含むキシレン類の変換方法
JPS6456626A (en) 1987-08-25 1989-03-03 Toray Industries Method for converting ethylbenzene in 8c aromatic hydrocarbon mixture
JPH0291031A (ja) * 1988-09-29 1990-03-30 Teijin Yuka Kk キシレンの異性化法
JPH04504577A (ja) * 1989-12-13 1992-08-13 モービル・オイル・コーポレイション C↓9+芳香族原料の接触転化方法
JPH08143483A (ja) 1994-03-03 1996-06-04 Mitsubishi Oil Co Ltd p−キシレンの製造方法及び装置
JPH08119882A (ja) * 1994-10-07 1996-05-14 Chevron Usa Inc 不純トルエンの芳香族化及び選択的不均化の併用による高純度ベンゼン及びパラに富むキシレンの製造法
JPH10513498A (ja) * 1995-02-10 1998-12-22 モービル・オイル・コーポレイション 重質芳香族化合物の処理
US6342649B1 (en) 1995-05-10 2002-01-29 Denim Engineering, Inc Method for removing ethylbenzene from a para-xylene feed stream
US5977429A (en) 1996-08-22 1999-11-02 Eastman Chemical Company Synthetic polyester absorbent materials
JP2002504946A (ja) 1997-06-13 2002-02-12 モービル・オイル・コーポレイション 重質芳香族化合物の処理
JP2002371018A (ja) * 2001-05-18 2002-12-26 Fina Technol Inc 重質芳香族の転化法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2008988A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512237A (ja) * 2007-12-12 2011-04-21 ユーオーピー エルエルシー 芳香族異性化触媒とそれらの使用方法
WO2009116561A1 (ja) * 2008-03-19 2009-09-24 東レ株式会社 エチルベンゼンの転化方法及びパラキシレン製造方法
JP4735774B2 (ja) * 2008-03-19 2011-07-27 東レ株式会社 エチルベンゼンの転化方法及びパラキシレン製造方法
US8071832B2 (en) 2008-03-19 2011-12-06 Toray Industries, Inc. Method of converting ethylbenzene and process for producing p-xylene
KR101124005B1 (ko) * 2008-03-19 2012-03-23 도레이 카부시키가이샤 에틸벤젠의 전화 방법 및 파라크실렌 제조 방법
CN101965323B (zh) * 2008-03-19 2013-06-12 东丽株式会社 乙苯的转化方法和对二甲苯制造方法
WO2016069136A1 (en) * 2014-10-31 2016-05-06 Exxonmobil Chemical Patents Inc. Xylene isomerization process with sulfidation

Also Published As

Publication number Publication date
US20100179360A1 (en) 2010-07-15
TWI432409B (zh) 2014-04-01
EP2008988A4 (en) 2009-10-28
EP2008988A1 (en) 2008-12-31
KR20080114824A (ko) 2008-12-31
TW200745008A (en) 2007-12-16
KR101357387B1 (ko) 2014-02-03
MY153671A (en) 2015-03-13
CN101410354B (zh) 2012-07-25
CN101410354A (zh) 2009-04-15
RU2008142763A (ru) 2010-05-10
RU2448937C2 (ru) 2012-04-27

Similar Documents

Publication Publication Date Title
WO2007114127A1 (ja) エチルベンゼンの転化方法およびパラキシレンの製造方法
KR101599491B1 (ko) p-자일렌의 제조를 위한 통합공정
RU2357946C2 (ru) Способ изомеризации неравновесных потоков сырья, содержащих ксилолы
TWI498311B (zh) 對-取代芳香族碳化氫的製造方法
EP1908743A1 (en) (alkylphenyl)alkylcyclohexane and method for producing (alkylphenyl)alkylcyclohexane or alkylbiphenyl
KR20150132458A (ko) 자일렌 이성질화를 위한 mfi 알루미노실리케이트 분자체 및 그의 이용 방법
US11845718B2 (en) Process for producing p-xylene and ethylbenzene from C8 aromatic containing ethylbenzene
JP5292699B2 (ja) エチルベンゼンの転化方法およびパラキシレンの製造方法
RU2727190C2 (ru) Улучшенный катализатор превращения этилбензола в способе изомеризации ксилола
JP4735774B2 (ja) エチルベンゼンの転化方法及びパラキシレン製造方法
JP2004203877A (ja) メシチレンおよびズレンの製造方法
JP4830944B2 (ja) エチルベンゼンの脱アルキル化及びキシレンの異性化二元機能触媒
TW460437B (en) Meta-xylene production process
US20060111596A1 (en) Process for the preparation of adamantanes
CN108367279B (zh) 催化剂组合物、其制备方法和使用这类组合物的方法
JP7571131B2 (ja) エチルベンゼンを含むC8芳香族化合物からp-キシレンおよびエチルベンゼンを製造する方法
JP2009084227A (ja) ベンゼンの製造方法
JP2005120025A (ja) アダマンタン類の製造方法
JP3019707B2 (ja) ジメチルナフタレンの異性化方法
JP2022127708A (ja) ベンゼンの製造方法
JP4919086B2 (ja) 2,7−ジメチルナフタレンの精製方法
EP2017246A1 (en) Method for production of adamantane
JPH09278681A (ja) メタキシレンの製造方法
JPH04128244A (ja) アルキルナフタレン混合物の改質方法
JPH06116175A (ja) キシレンの異性化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739985

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12008502115

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 200780011370.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12295006

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007739985

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087026319

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2008142763

Country of ref document: RU

Kind code of ref document: A