CN112573983B - 一种由含乙苯的c8芳烃生产对二甲苯的方法 - Google Patents

一种由含乙苯的c8芳烃生产对二甲苯的方法 Download PDF

Info

Publication number
CN112573983B
CN112573983B CN201910932231.9A CN201910932231A CN112573983B CN 112573983 B CN112573983 B CN 112573983B CN 201910932231 A CN201910932231 A CN 201910932231A CN 112573983 B CN112573983 B CN 112573983B
Authority
CN
China
Prior art keywords
ethylbenzene
aromatic hydrocarbon
xylene
paraxylene
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910932231.9A
Other languages
English (en)
Other versions
CN112573983A (zh
Inventor
杨彦强
王德华
王辉国
马剑锋
王红超
李犇
刘宇斯
乔晓菲
高宁宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Priority to CN201910932231.9A priority Critical patent/CN112573983B/zh
Publication of CN112573983A publication Critical patent/CN112573983A/zh
Application granted granted Critical
Publication of CN112573983B publication Critical patent/CN112573983B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/005Processes comprising at least two steps in series
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/80Mixtures of different zeolites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

一种由含乙苯的C8芳烃生产对二甲苯的方法,包括将含乙苯的C8芳烃送入乙苯转化装置,脱除乙苯转化产物中的C2烃和苯,得到低乙苯含量的C8芳烃组分,将其送入对二甲苯吸附分离装置,其中的对二甲苯被吸附剂床层吸附,不被吸附的组分作为抽余液排出吸附剂床层,用解吸剂冲洗吸附剂床层脱附其中的对二甲苯得到抽出液,分别脱除抽出液和抽余液中解吸剂,得到对二甲苯产品和抽余油,将抽余油送入二甲苯异构化装置,在二甲苯异构化催化剂作用下进行二甲苯异构化,将异构化产物进行分馏,分馏得到的C7‑芳烃和C9+芳烃排出装置,C8芳烃作为吸附分离装置的原料。该法可有效提高吸附分离的效率,提高对二甲苯产量。

Description

一种由含乙苯的C8芳烃生产对二甲苯的方法
技术领域
本发明为一种由含乙苯的C8芳烃生产对二甲苯的方法,具体地说,是一种通过液相吸附分离生产对二甲苯的方法。
背景技术
对二甲苯是重要的化工原料,用于生产对苯二甲酸和对苯二甲酸二甲酯,用于合成纺织用品及各种塑料制品。
二甲苯的来源主要有煤焦油馏分、石油重整产物和热裂解产物等。通过精馏可以得到富含乙苯和二甲苯的C8芳烃化合物。C8芳烃包括乙苯、对二甲苯、间二甲苯和邻二甲苯。在现有技术中,对二甲苯主要是从C8芳烃中通过分离得到,为生产更多的对二甲苯需要将吸附分离得到的间二甲苯和邻二甲苯转化为对二甲苯,再循环回吸附分离装置分离其中的对二甲苯。
对上述吸附分离对二甲苯技术的改善是本领域研究的重要方向,不仅涉及到每个单元步骤的改善,还涉及整个系统或多个步骤的结合。
CN100506765C公开了一种对二甲苯与苯乙烯的联产方法,将含二甲苯、乙苯和C9~C10烃的物料送入蒸馏塔,通过蒸馏分离其中的C8芳烃和C9~C10烃,将所述的C8芳烃通入模拟移动床的吸附塔,将C8芳烃中的对二甲苯(PX)分离出来,其它组分进入乙苯脱氢反应区使其中的乙苯生成苯乙烯,从脱氢产物中分离出苯乙烯,其余未转化的乙苯、间二甲苯和邻二甲苯与异构化催化剂接触进行液相异构化反应,异构化反应产物再循环回蒸馏塔。
CN1886357B公开了一种包括一个吸附步骤和两个异构化步骤的制备对二甲苯的方法,用包含至少5个区的模拟移动床将含乙苯和二甲苯的C8芳烃分成含有90~95wt%对二甲苯的抽出液;富含乙苯和部分间二甲苯、邻二甲苯的中间残液;基本上含间二甲苯和邻二甲苯的残液2。将中间残液在气相中异构化,使其中的乙苯转化为二甲苯,将残液2在液相低温下异构化。
CN103373891B公开了一种从C8芳烃中吸附分离生产对二甲苯和乙苯的方法,将C8芳烃用液相吸附分离,得到含对二甲苯的抽出油和含乙苯、间二甲苯和邻二甲苯的抽余油,将抽余油通过气相变压吸附分离得到乙苯;气相变压吸附得到的间二甲苯和邻二甲苯在温和的条件下进行异构化反应。
CN103201240B公开了一种对二甲苯的制备方法,在从C8芳烃中分馏对二甲苯后,将贫对二甲苯的物料分成两部分在并联的液相异构化单元和气相异构化单元中加工;并在实施例中证实这样的操作方式可以降低生产对二甲苯的能量消耗。
发明内容
本发明的目的是提供一种由含乙苯的C8芳烃生产对二甲苯的方法,该法在分离对二甲苯之前增设乙苯转化装置,通过化学反应去除原料中的乙苯,从而增加吸附分离C8芳烃中对二甲苯的效率,提高对二甲苯产量。
本发明提供的由含乙苯的C8芳烃生产对二甲苯的方法,包括如下步骤:
(1)将含乙苯的C8芳烃送入乙苯转化装置,使其中的乙苯在脱乙基型催化剂的作用下脱除乙基,将乙苯转化产物分离,脱除其中的C2烃和苯,得到低乙苯含量的C8芳烃组分,
(2)将低乙苯含量的C8芳烃组分送入对二甲苯吸附分离装置的吸附塔中,其中的对二甲苯被吸附剂床层中的吸附剂吸附,不被吸附的组分作为抽余液排出吸附剂床层,用解吸剂冲洗吸附剂床层脱附其中的对二甲苯得到抽出液,分别脱除抽出液和抽余液中的解吸剂,得到对二甲苯产品和抽余油,
(3)将(2)步所得的抽余油送入二甲苯异构化装置,在二甲苯异构化催化剂作用下进行二甲苯异构化,将异构化产物进行分馏,分馏得到的C7-芳烃排出装置,其余芳烃作为(2)步吸附分离装置的原料。
本发明方法将含乙苯的C8芳烃先进行乙苯转化,降低其中的乙苯含量,再吸附分离其中的对二甲苯,其余C8芳烃进行异构化,形成一个低乙苯含量的对二甲苯分离和二甲苯异构化的生产回路,可有效提高吸附分离的效率,提高对二甲苯产量。
附图说明
图1为现有技术由C8芳烃生产对二甲苯的流程示意图。
图2为本发明由C8芳烃生产对二甲苯的流程示意图。
具体实施方式
本发明方法在吸附分离C8芳烃的装置前设置乙苯转化装置,使含乙苯和二甲苯的C8芳烃中的乙苯脱乙基生成苯和C2烃,二甲苯进行异构化,脱除乙苯转化产物中的苯和C2烃,得到低乙苯含量的C8芳烃。将低乙苯含量的C8芳烃送入对二甲苯吸附分离装置进行吸附分离,其中的对二甲苯作为产品排出,其余组分进入二甲苯异构化装置进行异构化反应生成对二甲苯,再将异构化产物返回对二甲苯吸附分离装置。所述方法使吸附分离对二甲苯及异构化反应的回路中,参与循环的乙苯含量降低,因而可使对二甲苯吸附分离装置的分离更加高效,异构化装置操作苛刻度降低。与现有技术相比,在对二甲苯产量相同的情况下,所用吸附剂、异构化催化剂和C8芳烃原料均有所降低。
本发明(1)步为C8芳烃中的乙苯转化,在二甲苯异构化的同时,使乙苯脱乙基生成苯和乙烷。为使原料中的乙苯转化率更高,优选使含乙苯的C8芳烃在较高温度下与催化剂接触进行反应。所述含乙苯的C8芳烃优选在380~420℃、通过脱乙基型催化剂的质量空速(进料质量空速)为7~10h-1、氢/烃摩尔比 1.0~2.0的条件下进行乙苯转化反应。所述反应温度更优选380~410℃,反应压力优选0.2~1.0MPa。
(1)步所得的乙苯转化产物脱除其中的苯和乙烷后得到低乙苯含量的C8芳烃。优选地,将乙苯转化产物送入气液分离器,C2烃从气液分离器排出,其它物料从其底部排出后进入精馏塔,经过精馏,苯从精馏塔顶排出,C8芳烃组分从精馏塔底排出。
本发明(2)步优选采用液相模拟移动床吸附分离对二甲苯,吸附分离温度为110~200℃、压力为0.4~2.0MPa。
(2)步吸附分离所用吸附剂优选包括95~99.5质量%的X沸石和0.5~5质量%的粘结剂,所述的X沸石的阳离子位为Ba或者为Ba和K占据。详细制备方法可参见CN101497022B。
优选地,(2)步吸附分离所用解吸剂为甲苯或对二乙苯。
(2)步所用液相模拟移动床吸附塔吸附剂床层数优选8~24,更优选8~17。吸附原料、解吸剂、抽出液、抽余液四股进出物料将吸附塔中的吸附剂床层分成四个功能区,解吸剂和抽出液之间的吸附剂床层为解吸区,抽出液和吸附进料之间的吸附剂床层为提纯区,吸附进料和抽余液之间的吸附剂床层为吸附区,抽余液和解吸剂之间的吸附剂床层为缓冲区,解吸区、提纯区、吸附区、缓冲区的床层数比例为16~26%:37~47%:20~30%:7~17%。
(2)步脱除抽出液和抽余液中的解吸剂后得到抽出油和抽余油,抽出油为对二甲苯产品,抽余油富含邻二甲苯和间二甲苯。优选地,分别采用精馏塔分离抽出液和抽余液中的解吸剂,精馏塔操作温度和压力根据所用解吸剂沸点确定,并确定解吸剂从塔顶或从塔底排出,精馏所得的解吸剂可重新利用。
本发明(3)步为将(2)步所得抽余油进行二甲苯异构化,所述二甲苯异构化反应温度为210~360℃,压力为0.1~4.0MPa,抽余油通过催化剂的质量空速优选11~20h-1,氢/烃摩尔比优选0~0.9,即异构化可在临氢或非临条件下进行,在临氢条件下进行时,氢/烃摩尔比优选0.1~0.9。
由于异构化装置进料中的乙苯含量大幅降低,异构化的操作苛刻度可以降低,气相反应时,温度优选330~360℃,压力优选0.1~2.0MPa,液相反应时,温度优选210~300℃,压力优选1.5~4.0MPa,仅需将低于溶解度极限的氢气通入液相进料中。
由于二甲苯异构化反应物中乙苯含量减少,反应条件相对温和,反应产物中的苯、甲苯和C9+芳烃等副产物较少,异构化反应后的分馏负荷降低,脱除的C7-芳烃和C9+芳烃量均较少,尤其是C9+芳烃量很少,因而可不设置脱除 C9+芳烃的分馏设备,仅用一个分馏塔分离C7-芳烃和C8+芳烃,C8+芳烃作为(2) 步吸附分离装置的原料。也可将异构化产物分馏,优选用两个精馏塔进行分馏,得到的C7-芳烃和C9+芳烃排出装置,C8芳烃作为(2)步吸附分离装置的原料。
本发明中(1)步所述脱乙基型催化剂与(3)步所述二甲苯异构化催化剂相同,所述的二甲苯异构化催化剂优选包括15~90质量%的ZSM-5和/或 ZSM-11沸石以及10~85质量%的氧化铝。
优选地,所述二甲苯异构化催化剂包括15~90质量%的ZSM-5和/或 ZSM-11沸石、1~5质量%的丝光沸石和5~84质量%的氧化铝。其制备方法可参见CN103418422B。
本发明方法(2)步中,优选在(1)步所得低乙苯含量的C8芳烃组分中再外加第二股低乙苯含量的C8芳烃组分。
加入的第二股低乙苯含量的C8芳烃组分与(1)步所得低乙苯含量的C8芳烃组分的质量比为0.1~0.8。
本发明(1)步所述的低乙苯含量的C8芳烃组分及(2)步外加的第二股低乙苯含量的C8芳烃组分中乙苯含量不大于4质量%,优选不大于3.5质量%。该低乙苯含量的C8芳烃原料可为甲苯歧化产物、甲苯歧化与烷基转移产物、甲苯甲醇甲基化产物的物料中的一种或几种。
本发明中,(1)步所述含乙苯的C8芳烃中乙苯含量为10~30质量%、优选10~25质量%。该富含乙苯和二甲苯的C8芳烃原料可为煤焦油、重整产物、烷基转移产物和其它含有C8芳烃化合物的物料中的一种或几种。
下面结合附图详细说明本发明。
图1为现有技术由C8芳烃生产对二甲苯的流程示意图。含乙苯和二甲苯的 C8芳烃通过管线1和来自管线8的循环物料混合,经管线2送至对二甲苯吸附分离装置10,经吸附分离,得到富含对二甲苯的抽出液,脱除抽出液中的解吸剂,得到对二甲苯纯度为99.5质量%或更高的抽出油,经管线3排出,为对二甲苯产品,得到的贫对二甲苯C8芳烃物料为抽余液,脱除其中的解吸剂后得到的抽余油经管线4送至气相二甲苯异构化装置20进行二甲苯异构化,将邻二甲苯和间二甲苯转化为对二甲苯。所述过程得到的抽出液和抽余液中的解吸剂均采用精馏塔脱除(图1中未画出)。可选地,在通过管线11提供的氢气存在下,气相二甲苯异构化过程可将其中含有的乙苯转化形成苯和乙烷或者将乙苯转化为接近热力学平衡的二甲苯。二甲苯异构化产物经管线5送至分馏装置30,一般采用两个精馏塔分馏,第一分馏塔分馏得到的C7-烃物料由管线6排出,第二分馏塔所得的C9+芳烃的物料经管线7排出,所得的C8芳烃通过管线8循环回管线2,再由管线2进入对二甲苯吸附分离装置10。可选地,将一股外加的低乙苯含量的C8芳烃由管线9加入管线2,所述外加C8芳烃中的乙苯含量低于由管线1进入的C8芳烃中的乙苯含量。
图2为本发明由C8芳烃生产对二甲苯的流程示意图。含乙苯和二甲苯的 C8芳烃通过管线101送入乙苯转化装置140中的反应器,控制反应条件使其中的乙苯尽量转化为苯和C2烃,乙苯转化反应产物经分离,优选将其送入气液分离器,C2烃从顶部排出,经管线114排出,底部物流进入精馏塔,经过精馏,苯从精馏塔顶排出,经过管线112排出,从精馏塔底排出低乙苯含量的C8芳烃组分,经过管线113和管线102送至二甲苯分离装置110(乙苯转化装置中的反应器、气液分离器和精馏塔未画出)。
送至二甲苯分离装置110的物料经吸附分离,得到富含对二甲苯的抽出液,脱除抽出液中的解吸剂,得到对二甲苯纯度为99.5质量%或更高的抽出油,经管线103排出,为对二甲苯产品,得到的不被吸附剂吸附的贫对二甲苯C8芳烃物料为抽余液,脱除其中的解吸剂后得到的抽余油经管线104送至二甲苯异构化装置120进行二甲苯异构化。上述吸附过程得到的抽出液和抽余液分别由设置的精馏塔(图2中未画出)通过精馏脱除其中的解吸剂。由于送至二甲苯分离装置110的C8芳烃物料中乙苯含量低,吸附分离对二甲苯的效率提高,能耗下降。
所述的抽余油经管线104送至二甲苯异构化装置120进行二甲苯异构化,将邻二甲苯和间二甲苯转化为对二甲苯。所述的二甲苯异构化可采用气相或液相反应进行。若采用气相异构化反应,可选地,通过管线111提供适量氢气,以延长催化剂使用寿命。由于管线104送入二甲苯异构化装置120的反应物中乙苯含量低,异构化反应可在较低的反应温度和氢/烃摩尔比的缓和条件下操作,可以降低二甲苯异构化反应中的二甲苯损失并降低操作费用。
二甲苯异构化装置120得到的二甲苯异构化产物经管线105送至分馏装置 130进行分馏,优选采用精馏塔分馏,分馏所得的C7-芳烃物料由管线106排出, C9+芳烃的物料经管线107排出,C8芳烃通过管线108循环回管线102,再由管线102进入对二甲苯吸附分离装置110。可选地,将一股外加的低乙苯含量的 C8芳烃由管线109加入管线102。
由于本发明所述的二甲苯异构化产生的副产物少,分馏装置130可采用两个精馏塔分别分离C7-芳烃和C9+芳烃,也可不脱除C9+芳烃,而采用一个分馏塔分离C7-芳烃和C8+芳烃。
下面通过实例进一步说明本发明,但本发明并不限于此。
实例1
按CN101497022B实例2的方法制备对二甲苯吸附剂B。
(1)制备小晶粒X沸石:在100升合成釜中加入16.4千克偏铝酸钠溶液 (其中含Al2O3 17.3质量%,Na2O 21.0质量%)、11.0千克去离子水和2.9千克氢氧化钠,搅拌使固体碱完全溶解,然后加入11.8千克硅酸钠溶液(其中含 SiO2 28.3质量%,Na2O 8.8质量%),搅拌至混合均匀,25℃静置老化20小时制得导向剂。
25℃,向2000升釜中加入255千克硅酸钠溶液、1001千克去离子水、37 千克氢氧化钠,搅拌使之充分混合,并在搅拌下加入227千克偏铝酸钠,然后加入15千克的导向剂,继续搅拌至混合均匀,升温至100℃,静止晶化4小时。产物经水洗至洗涤液pH值小于10,过滤、80℃干燥12小时得到NaX型沸石。由晶胞常数计算得到该沸石的SiO2/Al2O3摩尔比为2.19,扫描电镜观测其平均晶粒粒径为0.7微米。
(2)滚球成型:将88千克(干基质量,下同)(1)步制备的NaX型沸石与9千克高岭土(含高岭石90质量%,山西临汾产)和3.4千克田菁粉混合均匀形成混合粉料,放入转盘中边滚动边喷入适量的浓度为5.0质量%的碳酸钠水溶液,以使固体混合粉料附聚成小球,滚球时喷入的碳酸钠水溶液量为固体混合粉料的28质量%。筛取直径为0.35~0.80毫米的小球,80℃干燥10小时,空气流中540℃焙烧4小时。
(3)原位晶化:将上述焙烧后的小球按液/固体积比2.0∶1的比例,用氢氧化钠和硅酸钠的混合溶液,所述混合溶液中含Na2O 4.3质量%、SiO2 2.1质量%,在96℃静置处理4.0小时,使其中的高岭土原位晶化转化为X沸石。原位晶化处理后所得的小球用去离子水洗涤至洗涤液pH值为9.0,80℃干燥12 小时,500℃焙烧2小时,测定其甲苯吸附容量为0.230克/克,相当于聚结小球中X沸石的含量为97.9质量%。
(4)离子交换:取原位晶化处理并焙烧后的小球用常规柱式连续法进行离子交换,交换液为0.18moL/L的硝酸钡溶液,在92℃、常压、交换液体积空速4.0时-1的条件下进行钡离子交换10小时,所用硝酸钡溶液与小球的体积比为40:1。交换完成后,用10倍小球体积的去离子水洗涤,220℃氮气流中干燥6小时,制得吸附剂B,600℃焙烧2小时测定其灼减量为4.5质量%,Na2O 为0.55质量%。
实例2
按CN103418422B实例9的方法制备二甲苯异构化催化剂C。
取SiO2/Al2O3摩尔比为70的ZSM-11沸石、丝光沸石(SiO2/Al2O3摩尔比为11)和γ-氧化铝粉料按58.5:1.5:40的干基质量比混匀,加入占粉料总质量50%的浓度为2质量%的硝酸水溶液混捏成型,120℃干燥2小时,600℃空气中焙烧3小时,再用浓度为3质量%的NH4Cl水溶液于90℃进行离子交换3 小时,将固体于60℃干燥6小时,空气中500℃焙烧4小时,制得复合载体a。
取复合载体a装入反应器升温至500℃,通入含水蒸汽的空气处理8小时,所述空气通过催化剂的体积空速为800小时-1,空气中水含量为25体积%,得复合载体b。
将复合载体b用氯铂酸溶液,以液/固体积比为2:1的比例浸渍12小时,氯铂酸溶液中铂含量应使复合载体中铂含量为0.02质量%(相对于干基载体)。将浸渍后固体于60℃干燥6小时,空气中500℃焙烧4小时,得载铂催化剂C,其中以复合载体为基准计的铂含量为0.02质量%,复合载体中含58.5质量%的 HZSM-11沸石、1.5质量%的氢型丝光沸石和40质量%的γ-氧化铝。
对比例1
按图1所示的现有技术方法,按年产1000千吨的规模由C8芳烃生产对二甲苯。
来自管线1的富含乙苯和二甲苯的C8芳烃与来自管线8的二甲苯异构化的 C8芳烃混合后经管线2进入对二甲苯吸附分离装置10。经过对二甲苯吸附分离,得到的抽出油由管线3排出,为对二甲苯产品,得到的抽余油经管线4进入二甲苯异构化反应装置20进行气相异构化反应,反应所需氢气由管线11进入二甲苯异构化反应装置20,反应产物经管线5进入分馏装置30,分馏装置30设两个精馏塔,第一分馏塔塔顶分馏得到的C7-芳烃物料由管线6排出,塔底组分进入第二分馏塔,塔底所得的C9+芳烃由管线7排出,塔顶得到的C8芳烃由管线8返回,再由管线2进入对二甲苯吸附分离装置10。主要管线物流组成及流量见表1。
对二甲苯吸附分离装置10为液相模拟移动床吸附分离装置,吸附塔装填的吸附剂为实例1所述的对二甲苯吸附剂B,装填量为1165吨,操作温度为 170℃,操作压力为0.8MPa,解吸剂为对二乙基苯,模拟移动床吸附剂床层数为24,循环周期为28分钟,解吸区、提纯区、吸附区和缓冲区的床层数分别为5、10、6和3。
二甲苯异构化反应装置20反应器装填的催化剂为实例2所述的异构化催化剂C,装填量为57.3吨,二甲苯异构化反应温度为370℃,压力为0.6MPa,反应器进料质量空速为8h-1,氢/烃摩尔比1.0。
第一分馏塔塔底温度161℃,压力为0.04MPa,塔板数为42。
第二分馏塔塔底温度195℃,压力为0.04MPa,塔板数为51。
表1
Figure BDA0002220625440000081
表中EB—乙苯,PX—对二甲苯,MX—间二甲苯,OX—邻二甲苯实例3
按图2所示的本发明方法,按年产1000千吨的规模由C8芳烃生产对二甲苯。
富含乙苯和二甲苯的C8芳烃经管线101送至乙苯转化装置140中的反应器,反应产物送入气液分离器,C2烃从顶部排出,由管线114排出,底部物料进入精馏塔,经分馏,苯从精馏塔顶排出,由管线112排出,塔底得到的低乙苯含量的C8芳烃组分由管线113排出,与来自管线108的异构化产物中的C8芳烃混合经管线102进入对二甲苯吸附分离装置110。经过对二甲苯吸附分离,得到的抽出油由管线103排出,为对二甲苯产品,得到的抽余油经管线104进入二甲苯异构化反应装置120进行气相异构化反应,反应产物经管线105进入分馏装置130,分馏装置130设两个精馏塔,第一分馏塔塔顶分馏得到的C7- 芳烃物料由管线106排出,塔底组分进入第二分馏塔,塔底所得的C9+芳烃由管线107排出,塔顶得到的C8芳烃由管线108返回,再由管线102进入对二甲苯吸附分离装置110。主要管线物流组成及流量见表2。
乙苯转化装置140中反应器装填的催化剂为实例2中所述的异构化催化剂C,装填量为19.7吨,反应温度为390℃,压力为0.8MPa,反应器进料质量空速8h-1,氢/烃摩尔比1.2。
对二甲苯吸附分离装置110为液相模拟移动床吸附分离装置,吸附塔装填的吸附剂为实例1所述的对二甲苯吸附剂B,装填量为990吨,操作温度为 170℃,操作压力为0.8MPa,解吸剂为对二乙基苯,模拟移动床床层数为16,循环周期为28分钟,解吸区、提纯区、吸附区和缓冲区的床层数分别为3、7、 4和2。
二甲苯异构化反应装置120反应器装填的催化剂为实例2所述的异构化催化剂C,装填量为35.5吨,二甲苯异构化反应温度为350℃,压力为0.5MPa,反应器进料质量空速为12h-1,氢/烃摩尔比0.8。
第一分馏塔和第二分馏塔及操作条件均同对比例1。
表2
Figure BDA0002220625440000091
对比例1、实例3原料消耗及吸附剂、催化剂装填量对照表见表3。由表3 可知,对于年产1000千吨的对二甲苯装置,实例3方法与对比例1方法相比,原料消耗减少0.5%,异构化催化剂C总装量共计减少2.1吨,减少3.7%,吸附剂B装量减少共计175吨,减少15%。
表3
对比例1 实例3
含乙苯的C<sub>8</sub>芳烃原料,千吨/年 1262.4 1256.7
异构化催化剂C总装量,吨 57.3 55.2(35.5+19.7)
对二甲苯吸附剂B总装量,吨 1165 990
对二甲苯产量,千吨/年 1000 1000
对比例2
按对比例1的方法由图1所示流程,由C8芳烃生产对二甲苯,不同的是由管线9外加一股低乙苯含量的C8芳烃,与管线1进入的C8芳烃混合后,经管线2进入对二甲苯吸附分离装置10。主要管线物流组成及流量见表4。
对二甲苯吸附分离装置10的操作与对比例1相同,不同的是吸附剂B装填量为1138吨。
二甲苯异构化反应装置20的操作与对比例1相同,不同的是催化剂C的装填量为55.5吨。
表4
Figure BDA0002220625440000101
实例4
按实例3的方法由图2所示流程,由C8芳烃生产对二甲苯,不同的是由管线109外加一股低乙苯含量的C8芳烃,与管线113进入的C8芳烃混合后,经管线102进入对二甲苯吸附分离装置110。主要管线物流组成及流量见表5。
乙苯转化装置140的操作与实例3相同,不同的是催化剂C装填量为12.3 吨。
对二甲苯吸附分离装置110的操作与实例3相同,不同的是吸附剂B装填量为990吨。
二甲苯异构化反应装置120的操作与实例3相同,不同的是催化剂C的装填量为35.4吨。
表5
Figure BDA0002220625440000111
对比例2、实例4原料消耗及吸附剂、催化剂装填量对照表见表6。由表6 可知,对于年产1000千吨的对二甲苯装置,实例4方法与对比例2方法相比,原料消耗减少1.1%,异构化催化剂C总装量共计减少7.8吨,减少14.1%,吸附剂B装量减少共计148吨,减少13.0%。
表6
Figure BDA0002220625440000112
/>

Claims (14)

1.一种由含乙苯的C8芳烃生产对二甲苯的方法,包括如下步骤:
(1)将含乙苯的C8芳烃送入乙苯转化装置,使其中的乙苯在脱乙基型催化剂的作用下脱除乙基,将乙苯转化产物分离,脱除其中的C2烃和苯,得到低乙苯含量的C8芳烃组分,所述的低乙苯含量的C8芳烃组分中乙苯含量不大于4质量%,
(2)将低乙苯含量的C8芳烃组分送入对二甲苯吸附分离装置的吸附塔中,其中的对二甲苯被吸附剂床层中的吸附剂吸附,不被吸附的组分作为抽余液排出吸附剂床层,用解吸剂冲洗吸附剂床层脱附其中的对二甲苯得到抽出液,分别脱除抽出液和抽余液中的解吸剂,得到对二甲苯产品和抽余油,
(3)将(2)步所得的抽余油送入二甲苯异构化装置,在二甲苯异构化催化剂作用下进行二甲苯异构化,将异构化产物进行分馏,分馏得到的C7-芳烃排出装置,其余芳烃作为(2)步吸附分离装置的原料。
2.按照权利要求1所述的方法,其特征在于(1)步中含乙苯的C8芳烃在380~420℃、C8芳烃通过脱乙基型催化剂的质量空速为7~10h-1、氢/烃摩尔比1.0~2.0的条件下进行乙苯转化反应。
3.按照权利要求1所述的方法,其特征在于(1)步中将乙苯转化产物送入气液分离器,C2烃从气液分离器排出,其它物料从其底部排出后进入精馏塔,经过精馏,苯从精馏塔顶排出,C8芳烃组分从精馏塔底排出。
4.按照权利要求1所述的方法,其特征在于(2)步采用液相模拟移动床吸附分离对二甲苯,吸附分离温度为110~200℃、压力为0.4~2.0MPa。
5.按照权利要求1所述的方法,其特征在于(2)步模拟移动床吸附塔吸附剂床层数为8~24。
6.按照权利要求1所述的方法,其特征在于(2)步吸附分离所用吸附剂包括95~99.5质量%的X沸石和0.5~5质量%的粘结剂,所述的X沸石的阳离子位为Ba或者为Ba和K占据。
7.按照权利要求1所述的方法,其特征在于(2)步吸附分离所用解吸剂为甲苯或对二乙苯。
8.按照权利要求1所述的方法,其特征在于(3)步二甲苯异构化反应温度为210℃~360℃,压力为0.1~4.0MPa,抽余油通过催化剂的质量空速为11~20h-1,氢/烃摩尔比为0~0.9。
9.按照权利要求1所述的方法,其特征在于(3)步中将异构化产物进行分馏,分馏得到的C7-芳烃和C9+芳烃排出装置,C8芳烃作为(2)步吸附分离装置的原料。
10.按照权利要求1所述的方法,其特征在于(2)步在(1)步所得低乙苯含量的C8芳烃组分中再外加第二股低乙苯含量的C8芳烃组分。
11.按照权利要求10所述的方法,其特征在于加入的第二股低乙苯含量的C8芳烃组分与(1)步所得低乙苯含量的C8芳烃组分的质量比为0.1~0.8。
12.按照权利要求1所述的方法,其特征在于(1)步所述含乙苯的C8芳烃中乙苯含量为10~30质量%。
13.按照权利要求1所述的方法,其特征在于(1)步所述脱乙基型催化剂与(3)步所述二甲苯异构化催化剂相同,所述的二甲苯异构化催化剂包括15~90质量%的ZSM-5和/或ZSM-11沸石以及10~85质量%的氧化铝。
14.按照权利要求13所述的方法,其特征在于二甲苯异构化催化剂包括15~90质量%的ZSM-5和/或ZSM-11沸石、1~5质量%的丝光沸石和5~84质量%的氧化铝。
CN201910932231.9A 2019-09-29 2019-09-29 一种由含乙苯的c8芳烃生产对二甲苯的方法 Active CN112573983B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910932231.9A CN112573983B (zh) 2019-09-29 2019-09-29 一种由含乙苯的c8芳烃生产对二甲苯的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910932231.9A CN112573983B (zh) 2019-09-29 2019-09-29 一种由含乙苯的c8芳烃生产对二甲苯的方法

Publications (2)

Publication Number Publication Date
CN112573983A CN112573983A (zh) 2021-03-30
CN112573983B true CN112573983B (zh) 2023-03-28

Family

ID=75111103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910932231.9A Active CN112573983B (zh) 2019-09-29 2019-09-29 一种由含乙苯的c8芳烃生产对二甲苯的方法

Country Status (1)

Country Link
CN (1) CN112573983B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874065B (zh) * 2022-05-07 2023-09-15 中海油天津化工研究设计院有限公司 一种顺序式模拟移动色谱分离对二甲苯和乙苯的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1887423A (zh) * 2005-06-30 2007-01-03 中国石油化工股份有限公司 一种烷基芳烃异构化催化剂及使用方法
CN101684058A (zh) * 2008-09-27 2010-03-31 中国石油化工股份有限公司 一种烷基芳烃异构化所产不凝气的利用方法
CN104418698A (zh) * 2013-08-29 2015-03-18 中国石油化工股份有限公司 一种从c8芳烃组分中吸附分离生产对二甲苯和乙苯的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101357387B1 (ko) * 2006-03-29 2014-02-03 도레이 카부시키가이샤 에틸벤젠의 전화 방법 및 파라크실렌의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1887423A (zh) * 2005-06-30 2007-01-03 中国石油化工股份有限公司 一种烷基芳烃异构化催化剂及使用方法
CN101684058A (zh) * 2008-09-27 2010-03-31 中国石油化工股份有限公司 一种烷基芳烃异构化所产不凝气的利用方法
CN104418698A (zh) * 2013-08-29 2015-03-18 中国石油化工股份有限公司 一种从c8芳烃组分中吸附分离生产对二甲苯和乙苯的方法

Also Published As

Publication number Publication date
CN112573983A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
US20100228066A1 (en) Integrated Process for the Production of P-Xylene
CN112573985B (zh) 由c8芳烃生产对二甲苯和乙苯的方法
KR102326358B1 (ko) 톨루엔, p-크실렌 및 경질 올레핀 중 적어도 하나를 제조하기 위한 촉매의 원위치 제조 방법 및 반응 공정
KR101917491B1 (ko) 크실렌의 제조 방법
JPS6012325B2 (ja) アルキル芳香族炭化水素の製法
CN112573987B (zh) 一种由含乙苯的c8芳烃生产对二甲苯和乙苯的方法
CN113087585B (zh) 由混合c8芳烃生产对二甲苯和乙苯的方法
CN112573983B (zh) 一种由含乙苯的c8芳烃生产对二甲苯的方法
CN112573986B (zh) 由c8芳烃生产对二甲苯的方法
KR101912398B1 (ko) 선택도가 높은 파라자일렌을 제조하고 프로필렌을 공동 생성하는 방법
CN103508837B (zh) 一种由吸附-结晶过程生产对二甲苯的方法
CN112299941B (zh) 一种均四甲苯的制备方法
JP2006502215A (ja) 臨界相アルキル化方法
CN111187132A (zh) 一种由甲醇和/或二甲醚制备汽油联产对二甲苯的方法
US6359185B1 (en) Selective aromatics disproportionation process
CN112028730B (zh) 一种二甲苯异构化方法
CN114716291B (zh) 一种由混合芳烃多产对二甲苯的工艺系统和工艺方法
CN114656323B (zh) 一种多产对二甲苯的工艺系统和工艺方法
CN114716290B (zh) 由混合芳烃多产对二甲苯的工艺系统和工艺方法
KR100319301B1 (ko) 방향족 화합물로 부터 고순도 벤젠 및 고순도 파라-자일렌을제조하는 방법
CN116924880A (zh) 一种利用吸附分离技术从重芳烃中分离高纯度连三甲苯的方法
KR810000478B1 (ko) P-크실렌의 제조방법
CN101056834B (zh) 2,6-二甲基萘的制备方法
US20210040016A1 (en) Process for Co-Production of Mixed Xylenes and High Octane C9+ Aromatics
KR101585471B1 (ko) 2,6-디아이소프로필나프탈렌 제조용 개질 촉매, 그 제조방법 및 상기 개질 촉매를 이용하여 2,6-디아이소프로필나프탈렌의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant