WO2007110165A1 - Verwendung eines wärmeaustauscherrohrs - Google Patents

Verwendung eines wärmeaustauscherrohrs Download PDF

Info

Publication number
WO2007110165A1
WO2007110165A1 PCT/EP2007/002379 EP2007002379W WO2007110165A1 WO 2007110165 A1 WO2007110165 A1 WO 2007110165A1 EP 2007002379 W EP2007002379 W EP 2007002379W WO 2007110165 A1 WO2007110165 A1 WO 2007110165A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
exchanger tube
tube according
tube
heat
Prior art date
Application number
PCT/EP2007/002379
Other languages
English (en)
French (fr)
Inventor
Andreas Beutler
Johann Gschaider
Robert Klöckler
Hans-Achim Kuhn
Eberhard Lepin
Christoph Walther
Rolf Wamsler
Martin Straub
Wolfgang Zeiler
Original Assignee
Wieland-Werke Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland-Werke Ag filed Critical Wieland-Werke Ag
Priority to DK07711975.8T priority Critical patent/DK1996739T3/da
Priority to CN2007800079346A priority patent/CN101395289B/zh
Priority to JP2009500752A priority patent/JP2009530581A/ja
Priority to US12/225,514 priority patent/US20090301701A1/en
Priority to AT07711975T priority patent/ATE518013T1/de
Priority to EP07711975A priority patent/EP1996739B1/de
Publication of WO2007110165A1 publication Critical patent/WO2007110165A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/085Heat exchange elements made from metals or metal alloys from copper or copper alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Definitions

  • the present invention relates to the use of a heat exchanger tube made of a copper alloy.
  • CO2 as a natural refrigerant that does not contribute to the destruction of the ozone layer and is neutral in its direct contribution to the greenhouse effect, is an ecologically interesting and economically viable alternative to the HFC refrigerants currently used in Europe, depending on the application and context.
  • the working range of the refrigerant CO2 is at pressures up to 130 bar and thus far above the usual for CFC and HFC safety refrigerants pressures up to 35 bar. But Depending on the application, permissible pressures of up to 50 bar are also required for evaporators, in particular if hot gas defrosting is provided.
  • Heat exchangers are used, difficult to realize, since very large pipe wall thicknesses are to be used, with corresponding negative effects on the processability, in particular the expansion and bending, the weight of the heat exchanger and the equipment costs. Instead, it is now state of the art to use pipes made of hot-dip galvanized steel or stainless steel, with which the said pressures are relatively easy to control.
  • the invention includes the technical teaching, a heat exchanger tube consisting of a copper alloy containing the alloying elements [in% by weight] 0.05-3% Fe, 0.01-0.15% P, and optionally 0.05- 0.2% Zn 0.02 - 0.05% Sn and the remainder contains Cu and unavoidable impurities to be used as a gas cooler, condenser or evaporator tube of a CO2 refrigerating machine or heat pump.
  • the invention is based on the consideration that a heat exchanger tube with an inside substantially smooth or textured surface for use in the gas cooler, condenser or evaporator of a working with CO2 chiller or heat pump is used. In this context, the term includes on the inside substantially smooth also by welding seams resulting surfaces.
  • the working medium CO2 flows on the inside of the heat exchanger tubes and, depending on the temperature conditions of the specific application, has a pressure position that clearly stands out from the pressures known for CFC and HFC safety refrigerants and places high demands on the pressure resistance of the tubes used.
  • the particular advantage is that by the higher-strength Cu alloys according to the invention, which allow small wall thicknesses even at high pressure levels, thus significant material savings and thus weight and cost advantages can be achieved.
  • these Cu alloys have excellent processing properties, especially expansion, bending and brazing.
  • the pipe outside diameter may be in the range of 3 to 16 mm.
  • the ratio of the wall thickness to the pipe outside diameter can be advantageously selected in the range of 0.025 to 0.08. This results in pipe wall thicknesses which are in the similar size range as today for HFC safety refrigerants usually used copper tubes are made of Cu-DHP and thus can be expected very good properties with respect to the further processing,
  • the pipe material may have a yield strength R p o , 2 over 160 N / mm 2 . It is further preferred that the tube material has a tensile strength R m above 300 N / mm 2 . This results, for example, for a pipe with an outer diameter of 9.52 mm and an operating pressure of 130 bar necessary pipe wall thicknesses of at most 0.55 mm and thus a material saving of more than 40% compared to pipes made of Cu-DHP.
  • the heat exchanger tube may be formed of a strip material and have a weld.
  • welds come into consideration, which extend in the axial direction or are spirally encircling.
  • As a possible joining method for pipe production is particularly suitable for the high-frequency welding process. This results in particular advantages over other joining methods on the one hand, realizable high production speeds and, secondly, a microstructure state, which after a usually following annealing process has no loss of strength over the material not influenced by the joining process.
  • the heat exchanger tube may be seamless.
  • seamless tubes and welded tubes may be considered equivalent in the use of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

Die Erfindung betrifft die Verwendung eines Wärmeaustauscherrohrs, bestehend aus einer Kupferlegierung, welche die Legierungselemente [in Gew.-%] 0,05 - 3 % Fe, 0,01 - 0,15 % P, und wahlweise 0,05 - 0,2 % Zn 0,02 - 0,05 % Sn und Rest Cu sowie unvermeidliche Verunreinigungen enthält, als Gaskühler-, Kondensator- oder Verdampferrohr einer mit CO2 arbeitenden Kältemaschine oder Wärmepumpe.

Description

B e s c h r e i b u n g
Verwendung eines Wärmeaustauscherrohrs
Die vorliegende Erfindung betrifft die Verwendung eines Wärmeaustauscherrohrs aus einer Kupferlegierung.
Nachdem die chlorhaltigen Sicherheitskältemittel (FCKW) aufgrund ihrer ozonschädigenden Wirkung durch chlorfreie Sicherheitskältemittel (HFKW) ersetzt wurden, kam schon bald die Diskussion um deren hohes Treibhauspotential auf. Vermehrt in den Blick rückten aus diesem Grund die natürlichen Kältemittel, vor allem CO2.
CO2 ist als natürliches Kältemittel, das nicht zur Zerstörung der Ozonschicht beiträgt und sich bezüglich des direkten Beitrags zum Treibhauseffekt neutral verhält, eine ökologisch interessante und je nach Anwendung und Rahmenbedingung wirtschaftliche Alternative zu den heute in Europa überwiegend eingesetzten HFKW-Kältemittefn.
So sind in der Kältetechnik Anwendungen im Kaskadenbetrieb mit NH3 bekannt, in denen CO2 Verdampfer und Kondensatoren im unterkritischen Betrieb eingesetzt werden, aber auch transkritische CO2-Kälteprozesse und -Wärmepumpen, in denen der Verdampfer unterhalb und der dem Kondensator entsprechende Gaskühler oberhalb des kritischen Punktes von CO2 arbeiten.
Insbesondere im letzteren Fall des Gaskühlers liegt der Arbeitsbereich des Kältemittel CO2 bei Drücken bis zu 130 bar und somit weit oberhalb der bei FCKW- und HFKW-Sicherheitskältemitteln üblichen Drücke bis zu 35 bar. Aber auch für Verdampfer werden je nach Anwendung zulässige Drücke bis 50 bar gefordert, insbesondere wenn eine Heißgasabtauung vorgesehen ist.
Diese Druckanforderungen sind mit Kupferrohren aus Cu-DHP, welche üblicher- weise in mit FCKW- und HFKW-Sicherheitkältemitteln betriebenen
Wärmeaustauschern eingesetzt werden, nur schwer zu realisieren, da sehr große Rohrwandstärken einzusetzen sind, mit entsprechend negativen Auswirkungen auf die Verarbeitbarkeit, insbesondere das Aufweiten und Biegen, das Gewicht des Wärmeaustauschers und die Apparatekosten. Stattdessen ist es heute Stand der Technik, Rohre aus feuerverzinktem Stahl oder Edelstahl einzusetzen, mit denen die genannten Drücke relativ einfach zu beherrschen sind.
Allerdings weisen auch die bisher eingesetzten Rohre aus Stahl bzw. Edelstahl deutliche Nachteile gegenüber Kupfer in Bezug auf die Verarbeitbarkeit, die Effizienz und die Kosten auf, so dass der Erfindung die Aufgabe zugrunde liegt, Alternativlösungen zu suchen, die auch bei hohen Drucklagen den Einsatz von Kupferlegierungen bei kleinen Rohrwandstärken erlauben.
Die Erfindung wird durch die Merkmale des Anspruchs 1 wiedergegeben. Die weiteren rückbezogenen Ansprüche betreffen vorteilhafte Aus- und Weiterbildungen der Erfindung.
Die Erfindung schließt die technische Lehre ein, ein Wärmeaustauscherrohr, bestehend aus einer Kupferlegierung, welche die Legierungselemente [in Gew.-%] 0,05 - 3 % Fe, 0,01 - 0,15 % P, und wahlweise 0,05 - 0,2 % Zn 0,02 - 0,05 % Sn und Rest Cu sowie unvermeidliche Verunreinigungen enthält, als Gaskühler-, Kondensator- oder Verdampferrohr einer mit CO2 arbeitenden Kältemaschine oder Wärmepumpe zu verwenden. Die Erfindung geht dabei von der Überlegung aus, dass ein Wärmeaustauscherrohr mit einer innenseitig im Wesentlichen glatten oder strukturierten Oberfläche zum Einsatz im Gaskühler, Kondensator oder Verdampfer einer mit CO2 arbeitenden Kältemaschine oder Wärmepumpe verwendet wird. In diesem Zusammenhang schließt der Begriff innenseitig im Wesentlichen glatt auch durch Schweißnähte entstehende Oberflächen mit ein. Das Arbeitsmedium CO2 fließt dabei auf der Innenseite der Wärmeaustauscherrohre und weist abhängig von den Temperaturbedingungen der speziellen Anwendung eine Drucklage auf, die sich deutlich von den für FCKW- und HFKW-Sicherheitskältemitteln bekannten Drücken abhebt und hohe Anforderungen an die Druckbeständigkeit der eingesetzten Rohre stellt.
Bisher wurden in entsprechenden Anwendungen zumeist Edelstahle und Stähle bevorzugt eingesetzt, da die in der Kälte-/Klimatechnik sonst üblichen Kupferrohre aus Cu-DHP aufgrund der Drucklage und der erforderlichen großen Wandstärken bisher hohe Kostennachteile aufwiesen.
Der besondere Vorteil besteht darin, dass durch die erfindungsgemäßen höherfesten Cu-Legierungen, die auch bei hohen Drucklagen kleine Wandstärken erlauben, somit deutliche Materialeinsparungen ermöglicht und dadurch Gewichts- und Kostenvorteile erzielt werden. Zudem weisen diese Cu-Legierungen exzellente Eigenschaften bei der Verarbeitung, insbesondere dem Aufweiten, Biegen und Löten auf.
In bevorzugter Ausgestaltung der Erfindung kann der Rohraußendurchmesser im Bereich von 3 -16 mm liegen. In diesem Zusammenhang kann das Verhältnis der Wandstärke zum Rohraußendurchmesser vorteilhafterweise im Bereich von 0,025 bis 0,08 gewählt werden. Hierdurch ergeben sich Rohrwandstärken, welche im ähnlichen Größenbereich wie heute für HFKW-Sicherheitskältemittel üblicherweise verwendete Kupferrohre aus Cu-DHP liegen und somit sehr gute Eigenschaften bzgl. der Weiterverarbeitbarkeit erwarten lassen,
In bevorzugter Weiterbildung kann das Rohrmaterial eine Dehngrenze Rpo,2 Über 160 N/mm2 aufweisen. Es ist weiterhin bevorzugt, dass das Rohrmaterial eine Zugfestigkeit Rm über 300 N/mm2 besitzt. Hierdurch ergeben sich zum Beispiel für ein Rohr mit Außendurchmesser 9,52mm und einem Betriebsdruck von 130 bar notwendige Rohrwandstärken von höchstens 0,55 mm und damit eine Materialeinsparung von mehr als 40 % gegenüber Rohren aus Cu-DHP.
Vorzugsweise kann das Wärmeaustauscherrohr aus einem Bandmaterial geformt sein und eine Schweißnaht aufweisen. Dabei kommen auch Schweißnähte in Betracht, die sich in axialer Richtung erstrecken oder spiralig umlaufend sind. Als mögliches Fügeverfahren zur Rohrherstellung eignet sich insbesondere das Hochfrequenzschweißverfahren. Hierdurch ergeben sich als besondere Vorteile gegenüber anderen Fügeverfahren zum einen realisierbare hohe Fertigungsgeschwindigkeiten und zum anderen ein Gefügezustand, der nach einem üblicherweise folgenden Glühprozess keine Festigkeitseinbußen gegenüber dem vom Fügeprozess nicht beeinflussten Material aufweist.
Alternativ kann das Wärmeaustauscherrohr nahtlos sein. Nahtlose Rohre und geschweißte Rohre können jedoch in der erfindungsgemäßen Verwendung als gleichwertig angesehen werden.
Weitere Vorteile ergeben sich, wenn die Oberfläche der Innenseite des Rohres strukturiert ist. Hierdurch lassen sich der Wärmeübergangskoeffizient und damit die Wärmeübertragungsleistung steigern.

Claims

P a t e n t a n s p r ü c h e
1. Verwendung eines Wärmeaustauscherrohrs, bestehend aus einer Kupferlegierung, welche die Legierungselemente [in Gew.-%]
0,05 - 3 % Fe, 0,01 - 0,15 % P, und wahlweise 0,05 - 0,2 % Zn 0,02 - 0,05 % Sn und Rest Cu sowie unvermeidliche Verunreinigungen enthält, als Gaskühler-, Kondensator- oder Verdampferrohr einer mit CO2 arbeitenden Kältemaschine oder Wärmepumpe.
2. Verwendung eines Wärmeaustauscherrohrs nach Anspruch 1 , dadurch gekennzeichnet, dass der Rohraußendurchmesser im Bereich von 3 -16 mm liegt.
3. Verwendung eines Wärmeaustauscherrohrs nach Anspruch 2, dadurch gekennzeichnet, dass das Verhältnis der Wandstärke zum
Rohraußendurchmesser im Bereich von 0,025 bis 0,08 liegt.
4. Verwendung eines Wärmeaustauscherrohrs nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Rohrmaterial eine Dehngrenze Rpo,2 über 160 N/mm2 aufweist.
5. Verwendung eines Wärmeaustauscherrohrs nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Rohrmaterial eine Zugfestigkeit
Rm über 300 N/mm2 aufweist.
6. Verwendung eines Wärmeaustauscherrohrs nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Wärmeaustauscherrohr aus einem Bandmaterial geformt ist und eine Schweißnaht aufweist.
7. Verwendung eines Wärmeaustauscherrohrs nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Wärmeaustauscherrohr nahtlos ist.
8. Verwendung eines Wärmeaustauscherrohrs nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Oberfläche der Innenseite des
Rohres strukturiert ist.
PCT/EP2007/002379 2006-03-23 2007-03-17 Verwendung eines wärmeaustauscherrohrs WO2007110165A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DK07711975.8T DK1996739T3 (da) 2006-03-23 2007-03-17 Anvendelse af et varmevekslerrør
CN2007800079346A CN101395289B (zh) 2006-03-23 2007-03-17 热交换器管的使用
JP2009500752A JP2009530581A (ja) 2006-03-23 2007-03-17 熱交換器管の使用方法
US12/225,514 US20090301701A1 (en) 2006-03-23 2007-03-17 Use of a Heat Exchanger Tube
AT07711975T ATE518013T1 (de) 2006-03-23 2007-03-17 Verwendung eines wärmeaustauscherrohrs
EP07711975A EP1996739B1 (de) 2006-03-23 2007-03-17 Verwendung eines wärmeaustauscherrohrs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006013384A DE102006013384B4 (de) 2006-03-23 2006-03-23 Verwendung eines Wärmeaustauscherrohrs
DE102006013384.6 2006-03-23

Publications (1)

Publication Number Publication Date
WO2007110165A1 true WO2007110165A1 (de) 2007-10-04

Family

ID=38072155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/002379 WO2007110165A1 (de) 2006-03-23 2007-03-17 Verwendung eines wärmeaustauscherrohrs

Country Status (9)

Country Link
US (1) US20090301701A1 (de)
EP (1) EP1996739B1 (de)
JP (1) JP2009530581A (de)
CN (1) CN101395289B (de)
AT (1) ATE518013T1 (de)
DE (1) DE102006013384B4 (de)
DK (1) DK1996739T3 (de)
ES (1) ES2370352T3 (de)
WO (1) WO2007110165A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5446163B2 (ja) * 2008-08-04 2014-03-19 ダイキン工業株式会社 熱交換器用溝付き管
CN104428430A (zh) * 2012-04-16 2015-03-18 株式会社Uacj 平绕盘管、平绕盘管的制造方法、交叉翅片管型热交换器以及交叉翅片管型热交换器的制造方法
FR2995383B1 (fr) 2012-09-12 2015-04-10 Kme France Sas Alliages de cuivre pour echangeurs de chaleur
AT518424B1 (de) * 2016-09-13 2017-10-15 Josef Höller Gmbh Kühl- und Wärmeplatte
CN114085978A (zh) * 2021-10-15 2022-02-25 福建捷思金属科技发展有限公司 一种耐受超高压力的制冷系统用铜铁合金管件及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476428A (en) * 1977-11-30 1979-06-19 Mitsubishi Metal Corp Seamless pipe-forming cu alloy
JPS5534616A (en) * 1978-08-29 1980-03-11 Furukawa Electric Co Ltd:The High tensile copper alloy with high electric conductivity
JPS58153747A (ja) * 1982-03-05 1983-09-12 Nippon Denso Co Ltd 熱交換器のフイン用耐食性銅合金
EP0626459A1 (de) * 1993-05-27 1994-11-30 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Rohr aus korrosionsbeständige Kupferlegierung und Rippenrohrwärmeaustauscher
EP1630240A1 (de) * 2003-03-03 2006-03-01 Sambo Copper Alloy Co., Ltd Hitzebeständige kupferlegierungswerkstoffe

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2373116A (en) * 1941-10-31 1945-04-10 Bundy Tubing Co Method of uniting metals
US4064914A (en) * 1974-05-08 1977-12-27 Union Carbide Corporation Porous metallic layer and formation
JPS5853057B2 (ja) * 1974-05-20 1983-11-26 株式会社神戸製鋼所 高導電性銅基合金
JPS53149121A (en) * 1977-06-01 1978-12-26 Tamagawa Kikai Kinzoku Kk Flexible pipe made of copperrbased alloy
US4674566A (en) * 1985-02-14 1987-06-23 Olin Corporation Corrosion resistant modified Cu-Zn alloy for heat exchanger tubes
JPH0688177A (ja) * 1992-09-10 1994-03-29 Kobe Steel Ltd 銅合金管の製造方法
JP3813317B2 (ja) * 1997-08-12 2006-08-23 東芝キヤリア株式会社 冷凍サイクル装置
JPH11211378A (ja) * 1998-01-23 1999-08-06 Hitachi Cable Ltd 熱交換器用伝熱管
JP3303778B2 (ja) * 1998-06-16 2002-07-22 三菱マテリアル株式会社 0.2%耐力および疲労強度の優れた熱交換器用継目無銅合金管
US20030066632A1 (en) * 2001-10-09 2003-04-10 Charles J. Bishop Corrosion-resistant heat exchanger
JP3794341B2 (ja) * 2002-03-28 2006-07-05 株式会社コベルコ マテリアル銅管 内面溝付管及びその製造方法
JP4550451B2 (ja) * 2004-03-11 2010-09-22 古河電気工業株式会社 内面溝付伝熱管及び内面溝付伝熱管を用いた熱交換器
JP4441467B2 (ja) * 2004-12-24 2010-03-31 株式会社神戸製鋼所 曲げ加工性及び耐応力緩和特性を備えた銅合金
CN1687684A (zh) * 2005-04-05 2005-10-26 佛山市顺德区精艺万希铜业有限公司 内螺纹管及其制作方法
MX2012006044A (es) * 2009-11-25 2012-09-28 Luvata Espoo Oy Aleaciones de cobre y tubos de intercambio de calor.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476428A (en) * 1977-11-30 1979-06-19 Mitsubishi Metal Corp Seamless pipe-forming cu alloy
JPS5534616A (en) * 1978-08-29 1980-03-11 Furukawa Electric Co Ltd:The High tensile copper alloy with high electric conductivity
JPS58153747A (ja) * 1982-03-05 1983-09-12 Nippon Denso Co Ltd 熱交換器のフイン用耐食性銅合金
EP0626459A1 (de) * 1993-05-27 1994-11-30 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Rohr aus korrosionsbeständige Kupferlegierung und Rippenrohrwärmeaustauscher
EP1630240A1 (de) * 2003-03-03 2006-03-01 Sambo Copper Alloy Co., Ltd Hitzebeständige kupferlegierungswerkstoffe

Also Published As

Publication number Publication date
US20090301701A1 (en) 2009-12-10
CN101395289B (zh) 2011-10-12
DE102006013384A1 (de) 2007-09-27
DE102006013384B4 (de) 2009-10-22
CN101395289A (zh) 2009-03-25
EP1996739B1 (de) 2011-07-27
EP1996739A1 (de) 2008-12-03
ES2370352T3 (es) 2011-12-14
ATE518013T1 (de) 2011-08-15
DK1996739T3 (da) 2011-11-21
JP2009530581A (ja) 2009-08-27

Similar Documents

Publication Publication Date Title
CA2767242C (en) Copper alloy for heat exchanger tube
EP1996739B1 (de) Verwendung eines wärmeaustauscherrohrs
JP4694527B2 (ja) 耐熱高強度熱交換器用銅合金管及びその製造方法
JP2010534766A (ja) 向上した機械的強度を有するAl−Mnアルミニウム合金製の押出製品
DE69429303T2 (de) Rohr aus korrosionsbeständige Kupferlegierung und Rippenrohrwärmeaustauscher
JP7203753B2 (ja) 延性ステンレス鋼管
JP2006045667A (ja) アルミニウム製熱交換管およびその製造方法
EP3643999A1 (de) Absorptionskühler
JP5111922B2 (ja) 熱交換器用銅合金管
US20130264040A1 (en) Copper Alloys and Heat Exchanger Tubes
JP4818179B2 (ja) 銅合金管
CN104264005A (zh) 耐腐蚀铝合金及空调换热器
JP5078410B2 (ja) 銅合金管
JP5638999B2 (ja) 銅合金管
JP2010085064A (ja) 機械装置の製造方法及びこの方法で製造した冷凍サイクル装置
JP2004218083A (ja) アルミニウム管およびその製造方法
JP2002235132A (ja) 銅合金製内面溝付溶接管及びそれを使用したフィンチューブ型熱交換器
US20100276039A1 (en) Copper alloy, method of producing the same, and copper tube
DE1295983U (de)
CN109234578A (zh) 铝合金、管材、换热器、空调与制冷设备
DE202009018440U1 (de) Verbindungsanschluss eines Wärmetauscherblocks und Wärmetauscherblock
JP2005068534A (ja) ハイドロフォーミング性およびバーリング性に優れた溶接鋼管およびその製造方法
JPH05320799A (ja) バルジ張出用アルミニウム合金管
DE102008047560A1 (de) Verwendung einer Aluminiumlegierung, Herstellung eines Verdampfers unter Verwendung der Aluminiumlegierung und Verdampfer für eine insbesondere mit CO2 betriebene Kraftfahrzeugklimaanlage
DE102009009478A1 (de) Kühl- und/oder Gefriergerät

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07711975

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007711975

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009500752

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780007934.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12225514

Country of ref document: US