WO2007108185A1 - 電動機駆動装置及び圧縮機駆動装置 - Google Patents

電動機駆動装置及び圧縮機駆動装置 Download PDF

Info

Publication number
WO2007108185A1
WO2007108185A1 PCT/JP2006/324709 JP2006324709W WO2007108185A1 WO 2007108185 A1 WO2007108185 A1 WO 2007108185A1 JP 2006324709 W JP2006324709 W JP 2006324709W WO 2007108185 A1 WO2007108185 A1 WO 2007108185A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
electric motor
drive device
vibration
compressor
Prior art date
Application number
PCT/JP2006/324709
Other languages
English (en)
French (fr)
Inventor
Yosuke Shinomoto
Koichi Arisawa
Kazunori Sakanobe
Michio Yamada
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to JP2007538208A priority Critical patent/JP4657301B2/ja
Priority to AU2006335684A priority patent/AU2006335684C1/en
Priority to CN2006800083883A priority patent/CN101142738B/zh
Priority to EP06834464A priority patent/EP1871003A4/en
Publication of WO2007108185A1 publication Critical patent/WO2007108185A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an electric motor drive device and a compressor drive device, and more particularly to a small capacity capacitor of a capacitor that smoothes a DC voltage.
  • a conventional electric motor drive device and compressor drive device for example, "... create a voltage command value, output a PWM signal having a pulse width corresponding to the voltage command value, and at the same time, pulse of the PWM signal.
  • the width increase control when the inverter output voltage corresponding to the voltage command value is saturated, the PWM signal output timing is advanced to advance the inverter output voltage phase.
  • the control circuit (20, 66, 112) for driving the inverter unit pulsation voltage detection means (24, 68, 114) detects the pulsation voltage (Er, Erd) and the pulsation voltage
  • the output (Vi) of the reference wave or reference vector pattern is compensated by the detected value (Er, Erd) to output a compensated PWM output waveform for the DC pulsation voltage. It has been proposed (see, for example, Patent Document 3).
  • a rectifier circuit including an AC power supply as an input and connected to a diode bridge and a small capacity reactor connected to an AC input side or a DC output side of the diode bridge; and an output of the rectifier circuit
  • An inverter for converting DC power into AC power, and a DC link capacitor with a very small capacity between the DC buses of the inverter There has been proposed one in which a unidirectional rectifier is provided between the primary side capacitor of the switching control power supply unit and the DC bus of the inverter (see, for example, Patent Document 4).
  • Patent Document 1 Japanese Patent Laid-Open No. 10-150795 (summary, Fig. 1)
  • Patent Document 2 JP 2002-51589 A (Claim 1)
  • Patent Document 3 JP-A-6-153534 (Summary, Fig. 2)
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-253282 (Claim 1, FIG. 1)
  • the conventional electric motor drive device and compressor drive device have a small capacity or no capacitor for smoothing the DC voltage after rectification of the AC power supply, and achieve a small size, light weight, and low cost.
  • a control that reduces DC voltage pulsation due to a small amount of capacitors, or a high-efficiency and high-harmonic current suppression has been proposed.
  • the present invention has been made to solve the above-described problems, and a first object is to reduce the capacity or not to provide a capacitor for smoothing the DC voltage after rectification of the AC power supply.
  • the present invention provides a motor drive device and a compressor drive device that achieve a small, light weight and low cost and reduce the influence of DC voltage pulsation on DC loads other than the motor.
  • the second object is to provide a motor drive device and a compressor that reduce the vibration of the motor that occurs when the capacitor for smoothing the DC voltage after rectification of the AC power supply is reduced in size or not provided.
  • a drive device is obtained.
  • An electric motor drive apparatus includes a first rectifier that rectifies an AC voltage into a DC voltage, to which an AC power is input, and a DC voltage rectified by the first rectifier.
  • Power conversion means for converting to AC and supplying to the motor
  • second rectification means for receiving an AC power supply and rectifying the AC voltage into a direct current voltage
  • a smoothing capacitor that smoothes the subsequent DC voltage and supplies it to the DC load.
  • the electric motor drive device of the present invention is provided on the DC output side of the second rectifying means and the second rectifying means for rectifying the AC voltage into a DC voltage, and smoothes the DC voltage after rectification to make a DC negative
  • a smoothing capacitor that supplies the load to the load, even if the DC voltage input to the power converter that supplies the AC voltage to the motor pulsates, the DC voltage pulsation to the DC load other than the motor The impact can be reduced.
  • FIG. 1 is a diagram showing a configuration of an electric motor drive device according to Embodiment 1 of the present invention.
  • FIG. 2 is a control block diagram of an inverter control unit in Embodiment 1 of the present invention.
  • FIG. 3 is a graph showing the relationship between the capacitance of the smoothing capacitor and the voltage waveform after rectification.
  • FIG. 4 is a diagram showing a current waveform of a motor current at the time of output torque pulsation.
  • FIG. 5 is a circuit block diagram illustrating a virtual current source according to Embodiment 1 of the present invention.
  • FIG. 6 is a current waveform diagram for explaining superposition of harmonic current components.
  • FIG. 7 is a diagram showing a configuration of an air conditioner according to Embodiment 1 of the present invention.
  • FIG. 8 is a diagram showing a configuration of an electric motor drive device according to Embodiment 2 of the present invention.
  • FIG. 9 is a current waveform diagram showing suppression of harmonic current in Embodiment 2 of the present invention.
  • FIG. 10 is a diagram showing a configuration of an electric motor drive device according to Embodiment 3 of the present invention.
  • FIG. 11 is a diagram showing a configuration of an electric motor drive device according to Embodiment 4 of the present invention.
  • FIG. 12 is a diagram showing a configuration of an electric motor drive device in a fifth embodiment of the present invention.
  • FIG. 13 is a diagram showing a relationship between load torque and vibration of a compressor according to Embodiment 6 of the present invention.
  • FIG. 14 is a diagram showing a configuration of a vibration detector in a sixth embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of an electric motor drive device according to Embodiment 1 of the present invention
  • FIG. 2 is a control block diagram of an inverter control unit according to Embodiment 1 of the present invention.
  • the motor drive device includes a first rectifier 2 for full-wave rectification of a single-phase AC power supplied from a single-phase AC power supply 1, a capacitor 3 connected to the output side of the first rectifier 2 and a rectifier.
  • the inverter main circuit unit 4 is a power conversion means for converting the DC voltage into AC voltage, and the output of the inverter main circuit unit 4 is connected to an electric motor 5 mounted on a compressor or the like.
  • the electric motor drive device is connected in parallel to the input side of the first rectifying means 2, the second rectifying means 7 for full-wave rectifying the AC power supplied from the single-phase AC power supply 1, and the single-phase AC power supply 1 Connected to the output side of the reactor 6 and the second rectifier 2 that are connected in series between the first rectifier 7 and the second rectifier 7 to suppress the harmonic current of the current flowing from the single-phase AC power source 1.
  • the smoothing capacitor 8 is connected, the rectified DC voltage is converted to AC voltage, the fan inverter 9 connected to the fan motor 10 mounted in the air conditioner etc., and further connected in parallel with the smoothing capacitor 8.
  • the control power generation unit 11 generates a control power source, and the inverter control unit 20 is a power conversion control unit that is supplied with power from the control power generation unit 11 and controls the inverter main circuit unit 4.
  • the inverter control unit 20 is a current detector 21 that detects a current flowing through the motor 5, a command value and power supply voltage information are input, and an output voltage calculation that calculates an output voltage that is output to the motor 5 according to the detected current.
  • PWM generator 23 that outputs a PWM signal to the inverter 22 and inverter main circuit 4 The voltage phase is input, and the phase current of the motor 5 is converted to a current value in the rotation orthogonal coordinate system and output to the output voltage calculator 22 It is composed of the coordinate conversion unit 24.
  • the configuration of the inverter control unit 20 is not limited to coordinate conversion, but other configurations. Alternatively, the motor 5 may be driven and controlled.
  • FIG. 3 is a diagram showing the relationship between the capacitance of the smoothing capacitor and the voltage waveform after rectification.
  • Fig. 3 (a) shows the DC voltage waveform of the capacity of the capacitor for smoothing in a general motor drive device (hereinafter referred to as the conventional capacity), and the voltage pulsation is a small fluctuation.
  • the output torque of a motor controlled by a typical motor drive device can be controlled to a substantially constant value.
  • Fig. 3 (b) shows the DC voltage waveform when the smoothing capacitor has a very small capacity compared to the conventional capacity or cannot be installed (hereinafter referred to as a smaller capacity). Since the DC voltage pulsates greatly due to the small capacity, and it has almost the same shape as the full-wave rectified waveform of the power supply voltage, if the motor is controlled in the same way as the DC voltage shown in Fig. 3 (a), the DC When the voltage drops significantly, the torque drops and the control becomes unstable near the power supply zero cross.
  • the conventional capacity is, for example, about 1000 to 3000 uF, and the capacity for reducing the capacity is about 10 to 50 uF.
  • the capacitor capacity for smoothing is C
  • the inductance of the motor is L
  • the rated current is I
  • the allowable DC voltage pulsation (variation) is V
  • the conventional capacity and the reduced capacity vary depending on the capacity of the motor and the allowable pulsation voltage, and are not limited to the above values.
  • the calculation of the approximate value is only a rough calculation because the smoothing capacitor is charged by the charge supplied also with the single-phase AC power supply power, and does not represent a complete physical phenomenon by the above calculation method. Let me add that.
  • the capacitance of the capacitor 3 provided on the DC output side of the first rectifier is less than the capacitance of the smoothing capacitor 8 provided on the output side of the second rectifier.
  • the capacity is set so that the DC voltage has substantially the same shape as the full-wave rectified waveform of the power supply voltage as described above.
  • This capacitor 3 is connected to absorb noise and spike voltage generated by switching of the inverter.
  • the present invention is not limited to this, and the configuration without the capacitor 3 may be used.
  • the first rectifying means 2 rectifies and outputs the output of the single-phase AC power supply 1.
  • the inverter main circuit unit 4 to which the rectified DC voltage is input switches the rectified output of the first rectifying means 2 based on the operation signal input from the inverter control unit 20 so that the AC of variable voltage / variable frequency is switched.
  • the output is converted to output and supplied to the motor 5.
  • the DC voltage waveform output from the first rectifier 2 to the inverter main circuit section 4 is a pulsating waveform as shown in FIG.
  • the inverter control unit 20 detects the current flowing to the motor 5 by the current detector 21 and converts the detected current into a current value of the rotation orthogonal coordinate system by the coordinate conversion unit 24 to output the voltage calculation unit 22. Output to.
  • the output voltage calculation unit 22 calculates the output voltage to be output to the motor 5 according to the input current value, and the PWM generation unit 23 outputs an operation signal to the inverter main circuit unit 4. At this time, the output voltage calculation unit 22 receives the power supply voltage information and calculates the output voltage so as to control the output torque in synchronization with the shape of the power supply voltage.
  • the motor 5 is driven and becomes an output torque pulsation synchronized with a DC voltage having substantially the same shape as the full-wave rectified waveform of the power supply voltage, and the current flowing through the motor 5 is a DC voltage pulsation as shown in FIG.
  • the pulsating flow is synchronized with the movement.
  • the current flowing through the motor has a current waveform with no pulsation as shown in Fig. 4 (a).
  • the output torque of the electric motor 5 pulsates by the above operation
  • the input current flowing from the single-phase AC power source 1 to the first rectifying means 2 is approximately sinusoidal by synchronizing the output torque of the electric motor 5 with the power supply voltage. It becomes a wave state, and the harmonics of the input current can be reduced. That is, the inverter main circuit unit 4 and the electric motor 5 can be considered as virtual current sources. This virtual current source will be described with reference to FIG.
  • FIG. 5 is a circuit block diagram illustrating the virtual current source according to Embodiment 1 of the present invention.
  • the virtual current source 30 causes the output current synchronized with the DC voltage to flow, thereby Since the capacitance is small, the parallel circuit 31 of the virtual current source 30 and the capacitor 3 is synonymous with a resistor.
  • the input current becomes a current having the same phase and similar waveform as the voltage of the single-phase AC power supply 1, and the harmonic current can be reduced.
  • the inverter control unit 20 detects power supply voltage information, for example, phase information of the power supply voltage, zero point of the power supply voltage, instantaneous value of the power supply voltage, or instantaneous pulsation voltage of the DC voltage, and the like.
  • power supply voltage information for example, phase information of the power supply voltage, zero point of the power supply voltage, instantaneous value of the power supply voltage, or instantaneous pulsation voltage of the DC voltage, and the like.
  • the voltage for the control circuit may also pulsate, causing the control circuit to become inoperable.
  • actuators that use DC voltage, fan motor inverters, etc. will not be able to operate or noise vibration due to voltage pulsation will be promoted in addition to motors that require only control circuits. .
  • a DC load In a conventional electric motor drive device, when a DC voltage supplied to such a control circuit, an actuator, an inverter for a fan motor or the like (hereinafter referred to as a DC load) is required, a rectifying means is used to generate the control voltage.
  • a smoothing capacitor for a DC load is further provided on the output side of the output via a diode to generate a DC voltage with suppressed voltage pulsation.
  • the harmonic current that flows due to power consumption is superimposed on the current controlled by the motor. Such superposition of harmonic current components will be described with reference to FIG.
  • FIG. 6 is a current waveform diagram for explaining superposition of harmonic current components.
  • the inverter control unit can be controlled so that a resistive load current flows in the configuration with only the motor.
  • the rectifier is also used as described above, the current flows only at the peak of the power supply voltage due to the power consumed by the DC load, so the input current as shown in Fig. 6 (b) flows.
  • FIG. 6 (c) a current as shown in FIG. 6 (c), which is a combination of both, flows.
  • Fig. 6 (c) when trying to respond by controlling the electric motor so that the current does not protrude near the current peak, in addition to performing complex control that balances the electric motor and input current control, this current is further reduced. If projecting control is added, the control becomes extremely complicated, and the motor may not be driven. Or, the harmonic current of the input current cannot be reduced.
  • FIG. 7 is a diagram showing a configuration of the air conditioner according to Embodiment 1 of the present invention.
  • the electric motor 5 is disposed inside the compressor 40 and drives the compressor 40.
  • the compressor 40 is generally provided with soundproofing measures as an air conditioner against the sound of the electric motor 5 such as refrigerant gas sound during refrigerant compression.
  • the soundproofing measures of the fan 41 rotated by the fan motor 10 are generally such that the fan 41 can be attached to the mounting portion of the fan motor 10 via rubber feet. For this reason, the fan motor 10 is designed with a stricter condition than the electric motor 5 for noise directly heard from the motor.
  • the DC voltage input to the fan inverter 9 that controls the drive of the fan motor 10 pulsates, torque pulsation synchronized with the voltage occurs, and noise caused by torque pulsation occurs.
  • the fan inverter 9 that drives the fan motor 10 is connected to both ends of the smoothing capacitor 8 that is separated from the electric power system that drives and controls the electric motor 5.
  • the smoothing capacitor 8 sets a capacity capable of sufficiently storing the charge required by the fan motor 10. Therefore, since the voltage across the smoothing capacitor 8 is stable without pulsation, the noise directly heard from the fan motor 10 due to voltage pulsation can be suppressed to a level equivalent to the state in which the capacitor 3 has a conventional capacity. Furthermore, since the DC voltage input to the control power generation unit 11 connected to both ends of the smoothing capacitor 8 is also stabilized, the inverter control unit 20 does not become inoperable.
  • the power consumption of a DC load such as an air conditioner actuator such as the fan motor 10 is very small compared to the power consumption of the motor 5.
  • the air conditioner Consumption is about 10% of the total. Therefore, by separating the rectifying means for the electric motor 5 and the DC load, the current capacity of the second rectifying means 7 can be realized with a smaller capacity than that of the first rectifying means 2. Further, the reactor 6 connected in series between the single-phase AC power source 1 and the second rectifier 7 and suppressing the harmonic current of the current flowing from the single-phase AC power source 1 can be realized with a very small current capacity.
  • the harmonic current can be reduced by a small-capacity reactor, the resonance frequency with the smoothing capacitor 8 can be increased, and a small and lightweight one can be used. Furthermore, the capacity of the smoothing capacitor 8 can be realized with a small capacity compared to a conventional smoothing capacitor.
  • the power consumption line in the motor 5 and the other power consumption lines are separated by providing a second rectifying device 7 so that the harmonic current can be reduced independently. It can be done.
  • FIG. 8 is a diagram showing the configuration of the electric motor drive device according to Embodiment 2 of the present invention
  • FIG. 9 is a current waveform diagram showing suppression of harmonic currents according to Embodiment 2 of the present invention.
  • a switching unit 50 which is a harmonic current control means that also has a full-wave rectifier circuit and a switching element force, is provided. .
  • the current capacity of the switching unit 50 can be realized with a small capacity.
  • the power source power factor is greatly improved as compared with the case where only the reactor 6 is inserted, and the current peak of the harmonic current shown in FIG. 9 (a) is shown in FIG. 9 (b).
  • the harmonic current due to power consumption at the DC load can be reduced.
  • the switching unit 50 is arranged on the AC side of the second rectifying means 7. May be provided on either the DC side or the DC side.
  • FIG. 10 is a diagram showing the configuration of the electric motor drive device according to Embodiment 3 of the present invention.
  • an insulating section 60 that insulates the inverter main circuit section 4 and the inverter control section 20 is provided.
  • the inverter control unit 20 detects the current of the electric motor 5 and outputs an operation signal to the inverter main circuit unit 4, the inverter main circuit unit 4 and the inverter control unit 20 have a common reference potential (hereinafter referred to as "the reference potential"). Therefore, input current harmonics are generated by wraparound from GND. In order to cut off this sneak current, insert the insulation part 60 and insulate between the inverter main circuit part 4 and the inverter control part 20 to cut off the input current harmonic due to the sneak current from GND. Can do.
  • FIG. 11 is a diagram showing the configuration of the electric motor drive device according to Embodiment 4 of the present invention.
  • the reactor 6 is connected between the second rectifier 7 and the single-phase AC power supply 1, but in this embodiment, in addition to that, as shown in FIG.
  • the reactor 70 is inserted between the means 2 and the single-phase AC power source 1.
  • the single-phase AC power supply 1 has a small impedance
  • insertion of the reactor 70 can suppress the resonance phenomenon between the power-supply impedance of the single-phase AC power supply 1 and the capacitor 3.
  • Inrush current flows from the power supply at the time of the polarity change of the power supply voltage, that is, immediately after the zero crossing.
  • the inrush current can be suppressed by inserting the reactor 70, and the harmonic current due to the inrush current can be suppressed.
  • the reactor 70 having a small inductance value is preferable, and the resonance frequency f obtained by the following equation is the capacitance C [F] of the capacitor 3 and the inductance L [H] of the reactor 70. It is desirable that the power frequency be 40 to 50 times or more.
  • FIG. 12 is a diagram showing the configuration of the electric motor drive device according to Embodiment 5 of the present invention.
  • the surface of the compressor 40 driven by the electric motor 5 is provided with a vibration detector 80 as vibration detecting means.
  • the vibration detector 80 detects information on at least one of the vibration amplitude and vibration frequency of the compressor 40 and inputs it to the inverter control unit 20. It should be noted that functions that have the same effects as described above are not shown.
  • the inverter control unit 20 controls the rotational frequency of the electric motor 5 so that the rotational frequency of the electric motor 5 does not match the vibration frequency of the compressor 40 input from the vibration detector 80. .
  • the configuration of the present embodiment is the same as that of the fifth embodiment.
  • the inverter control unit 20 controls the output torque of the electric motor 5 according to the vibration amplitude and vibration frequency detected by the vibration detector 80.
  • vibration generated from the compressor 40 Vibration generated from compressor 40
  • Tm-T1 the load torque of the compressor 40.
  • FIG. 13 (b) shows the difference Tm-T1 between the output torque Tm and the load torque shown in Fig. 13 (a).
  • the inverter control unit 20 reverses the phase of the vibration waveform of the compressor 40 obtained based on at least one of the input vibration amplitude and vibration frequency and the phase of the pulsation waveform of the output torque of the motor 5.
  • the output of the inverter main circuit 4 is controlled so as to be in phase.
  • the vibration detector 80 can eliminate the wiring by configuring the vibration detector 80 with an IC chip and packaging the battery and the wireless IC in the same package. Even such a configuration has the same effect.
  • the IC chip can constitute the vibration detector 80 with a semiconductor that detects a change in capacitance by a movable dielectric 81 and a fixed electrode 82. It can be configured at a lower cost than the detector.
  • the vibration frequency is detected by the vibration detector 80.
  • the present invention is not limited to this, and the same operation is possible regardless of whether the noise frequency is detected or the vibration frequency is detected. Has an effect. More specifically, the vibration detector 80 is configured to detect vibration, but the same effect can be obtained even if the vibration is estimated.
  • the inverter control unit 20 can estimate the output torque Tm because the voltage applied to the electric motor 5 and the current flowing through the electric motor 5 are known. Further, since the motor speed is controlled, the speed is known. Using the estimated output torque and the known speed, the load torque T1 can also be estimated. is there.
  • Tm-Tl it is possible to control Tm-Tl to be 0, and by controlling Tm-Tl having a relative relationship with vibration, an effect equivalent to vibration control can be obtained.
  • the degree of control of vibration is less than when the vibration detector 80 is used, but the configuration is less expensive than that using the vibration detector 80 and is generated due to a small capacity.
  • the pulsating torque can be used for vibration control.
  • examples of utilization of the present invention include products having a function of consuming power other than the compressor and the compressor as one product form, such as a dehumidifier, a refrigerator, and a washing dryer. Even if it is not a compressor, a product that consumes most of the power of the product and a function that consumes power other than that motor, such as a vacuum cleaner, a washing machine, a washing dryer, etc. Is mentioned. In particular, noise countermeasures for electric motors that mainly consume electric power are sufficiently implemented, and other products that have an actuator that consumes DC voltage power have the same effect.

Abstract

 交流電源の整流後の直流電圧を平滑するコンデンサを小容量化又は設けない構成とし、小型・軽量・低コスト化を図り、且つ、電動機以外の直流負荷への直流電圧脈動の影響を軽減する電動機駆動装置及び圧縮機駆動装置を得る。  交流電源が入力され、交流電圧を直流電圧に整流する第1の整流手段と、第1の整流手段により整流された直流電圧を交流電圧に変換して電動機に供給する電力変換手段と、交流電源が入力され、交流電圧を直流電圧に整流する第2の整流手段と、第2の整流手段の直流出力側に設けられ、整流後の直流電圧を平滑化して直流負荷に供給する平滑コンデンサとを備えたものである。

Description

明 細 書
電動機駆動装置及び圧縮機駆動装置
技術分野
[0001] 本発明は、電動機駆動装置及び圧縮機駆動装置に関し、特に、直流電圧を平滑 化するコンデンサの小容量ィ匕に関する。
背景技術
[0002] 従来の電動機駆動装置及び圧縮機駆動装置は、例えば「· · ·電圧指令値を作成し 、その電圧指令値に応じたパルス幅の PWM信号を出力すると共に、当該 PWM信 号のパルス幅の増大制御時において、電圧指令値に相当したインバータ出力電圧 が得られない飽和状態となったときに、 PWM信号の出力タイミングを早めてインバー タ出力電圧の位相を進ませる制御を行う。」ようにしたものが提案されている(例えば 、特許文献 1参照)。
[0003] また、例えば「単相交流電源を入力とする単相ダイオード全波整流回路と、これに 接続される従来のダイオード全波整流回路用の平滑コンデンサの 1/100程度の小 容量平滑コンデンサと、制御用 PWMインバータとモータとで構成された制御回路と によって、あら力じめモータのトルクを電源の 2倍の周波数で制御することにより、ダイ オード全波整流回路の入力力率と波形の改善を実現する」ようにしたものが提案され ている(例えば、特許文献 2参照)。
[0004] また、例えば「インバータ部を駆動するための制御回路(20、 66、 112)力 脈動電 圧検出手段 (24、 68、 114)により脈動電圧 (Er、 Erd)を検出し、脈動電圧検出値( Er、 Erd)により基準波または基準ベクトルパターンの出力(Vi)を補償して直流脈動 電圧に対して、補償された PWM出力波形を出力するようにしている。」ようにしたもの が提案されている (例えば、特許文献 3参照)。
[0005] さらに、例えば「交流電源を入力とし、ダイオードブリッジと、前記ダイオードブリッジ の交流入力側または直流出力側に接続される小容量のリアクタで構成される整流回 路と、前記整流回路の出力である直流電力から交流電力に変換するインバータと、 前記インバータの直流母線間には、極めて小容量の DCリンクコンデンサとを備え、ス イッチング制御電源部の 1次側コンデンサと前記インバータの直流母線間に単方向 整流手段を設ける」ようにしたものが提案されて ヽる (例えば、特許文献 4参照)。
[0006] 特許文献 1 :特開平 10— 150795号公報(要約、図 1)
特許文献 2 :特開 2002— 51589号公報 (請求項 1)
特許文献 3 :特開平 6— 153534号公報 (要約、図 2)
特許文献 4:特開 2005— 253282号公報 (請求項 1、図 1)
発明の開示
発明が解決しょうとする課題
[0007] 従来の電動機駆動装置及び圧縮機駆動装置は、交流電源の整流後の直流電圧 を平滑ィ匕するコンデンサを小容量ィ匕又は設けない構成とし、小型 '軽量'低コストィ匕を 図り、且つ、コンデンサの少量化に伴う直流電圧脈動の軽減する制御をしたもの、若 しくは高効率かつ高調波電流を抑制したものが提案されて 、る。
[0008] し力しながら、これらの電動機駆動装置を空気調和機などのシステムに適用しようと する場合、空気調和機の圧縮機に使用する電動機以外にも、電圧脈動による振動 の影響が大きいファンモータ又は直流電圧により駆動されるァクチユエータなどが多 数存在する。このようなァクチユエータ等は、コンデンサを小容量ィ匕した場合における 直流電圧脈動の影響を受け、直流電圧脈動による振動'騒音や誤動作を起こす、と いう問題点があった。
[0009] 本発明は、上記のような課題を解決するためになされたもので、第 1の目的は、交 流電源の整流後の直流電圧を平滑するコンデンサを小容量化又は設けない構成と し、小型 '軽量'低コスト化を図り、且つ、電動機以外の直流負荷への直流電圧脈動 の影響を軽減する電動機駆動装置及び圧縮機駆動装置を得るものである。
[0010] また、第 2の目的は、交流電源の整流後の直流電圧を平滑化するコンデンサを小 容量化又は設けない構成としたときに発生する電動機の振動を軽減する電動機駆動 装置及び圧縮機駆動装置を得るものである。
課題を解決するための手段
[0011] 本発明に係る電動機駆動装置は、交流電源が入力され、交流電圧を直流電圧に 整流する第 1の整流手段と、第 1の整流手段により整流された直流電圧を交流電圧 に変換して電動機に供給する電力変換手段と、交流電源が入力され、交流電圧を直 流電圧に整流する第 2の整流手段と、第 2の整流手段の直流出力側に設けられ、整 流後の直流電圧を平滑化して直流負荷に供給する平滑コンデンサとを備えたもので ある。
発明の効果
[0012] 本発明の電動機駆動装置は、交流電圧を直流電圧に整流する第 2の整流手段と、 第 2の整流手段の直流出力側に設けられ、整流後の直流電圧を平滑化して直流負 荷に供給する平滑コンデンサとを備えたことにより、電動機に交流電圧を供給する電 力変換手段に入力される直流電圧が脈動する場合であっても、電動機以外の直流 負荷への直流電圧脈動の影響を軽減することができる。
図面の簡単な説明
[0013] [図 1]本発明の実施の形態 1における電動機駆動装置の構成を示す図。
[図 2]本発明の実施の形態 1におけるインバータ制御部の制御ブロック図。
[図 3]平滑ィ匕用のコンデンサの容量と整流後の電圧波形の関係を示す図。
[図 4]出力トルク脈動時の電動機電流の電流波形を示す図である。
[図 5]本発明の実施の形態 1における仮想電流源を説明する回路ブロック図。
[図 6]高調波電流成分の重畳について説明する電流波形図。
[図 7]本発明の実施の形態 1における空気調和機の構成を示す図。
[図 8]本発明の実施の形態 2における電動機駆動装置の構成を示す図。
[図 9]本発明の実施の形態 2における高調波電流の抑制を示す電流波形図。
[図 10]本発明の実施の形態 3における電動機駆動装置の構成を示す図。
[図 11]本発明の実施の形態 4における電動機駆動装置の構成を示す図。
[図 12]本発明の実施の形態 5における電動機駆動装置の構成を示す図。
[図 13]本発明の実施の形態 6における圧縮機の負荷トルクと振動の関係を示す図。
[図 14]本発明の実施の形態 6における振動検出器の構成を示す図。
符号の説明
[0014] 1 単相交流電源、 2 第 1の整流手段、 3 コンデンサ、 4 インバータ主回路部、 5 電動機、 6 リアクタ、 7 第 2の整流手段、 8 平滑コンデンサ、 9 ファンインバータ 、 10 ファンモータ、 11 制御電源生成部、 20 インバータ制御部、 21 電流検出器 、 22 出力電圧演算部、 23 PWM生成部、 24 座標変換部、 30 仮想電流源、 31 並列回路、 40 圧縮機、 41 ファン、 50 スイッチング部、 60 絶縁部、 70 リアク タ、 80 振動検出器、 81 誘電体、 82 電極。
発明を実施するための最良の形態
実施の形態 1.
図 1は本発明の実施の形態 1における電動機駆動装置の構成を示す図、図 2は本 発明の実施の形態 1におけるインバータ制御部の制御ブロック図である。図において 、電動機駆動装置は、単相交流電源 1より供給された単相交流電源を全波整流する 第 1の整流手段 2、第 1の整流手段 2の出力側に接続されるコンデンサ 3、整流された 直流電圧を交流電圧に変換する電力変換手段であるインバータ主回路部 4により構 成され、インバータ主回路部 4の出力は、圧縮機などに搭載される電動機 5と接続さ れる。
さらに、電動機駆動装置は、第 1の整流手段 2の入力側に並列に接続され、単相交 流電源 1より供給された交流電源を全波整流する第 2の整流手段 7、単相交流電源 1 と第 2の整流手段 7との間に直列に接続され単相交流電源 1から流れる電流の高調 波電流を抑制する高調波制御手段であるリアクタ 6、第 2の整流手段 2の出力側に接 続される平滑コンデンサ 8、整流された直流電圧を交流電圧に変換し、空気調和装 置などに搭載されるファンモータ 10と接続されるファンインバータ 9、さらに、平滑コン デンサ 8と並列に接続され、制御用電源を生成する制御電源生成部 11、制御電源 生成部 11より電源を供給されインバータ主回路部 4を制御する電力変換制御手段で あるインバータ制御部 20により構成されて 、る。
また、インバータ制御部 20は、電動機 5に流れる電流を検出する電流検出器 21、 指令値及び電源電圧情報が入力され、検出した電流に応じて電動機 5に出力する 出力電圧を演算する出力電圧演算部 22、インバータ主回路部 4へ PWM信号を出 力する PWM生成部 23、電圧位相が入力され、電動機 5の相電流を回転直交座標 系の電流値に変換して出力電圧演算部 22に出力する座標変換部 24により構成され ている。尚、インバータ制御部 20の構成は座標変換によるものに限らず、他の構成 により電動機 5を駆動制御するものでも良い。
[0016] まず、コンデンサの容量と整流後の直流電圧の関係について説明する。一般的に 整流手段の出力側には整流後の直流電圧を平滑化するコンデンサを設け直流電圧 の脈動を防止し、トルク脈動による振動を削減する。しかし、高調波対策を優先させる 場合又は小型 ·軽量 '低コストィ匕を図る場合は、コンデンサを小容量ィ匕又は設けない 構成とする方法がとられている。このコンデンサの容量により、コンデンサの両端電圧 である直流電圧の挙動が決定する。その動作波形を図 3に示す。
[0017] 図 3は平滑ィ匕用のコンデンサの容量と整流後の電圧波形の関係を示す図である。
図 3 (a)は、一般的な電動機駆動装置での平滑ィ匕用のコンデンサの容量 (以下、従 来容量という)の直流電圧波形であり、電圧の脈動は小さな変動量であるため、一般 的な電動機駆動装置で制御される電動機の出力トルクは略一定値に制御可能であ る。一方、図 3 (b)は、平滑用のコンデンサが従来容量よりも極めて小容量ィ匕又は設 けない構成 (以下、小容量化という)した場合の直流電圧波形である。小容量ィ匕によ り直流電圧が大きく脈動し、電源電圧の全波整流波形と略同一形状となっているた め、図 3 (a)に示す直流電圧と同様に電動機を制御すると、直流電圧が大きく低下し たときにトルクが低下し、電源ゼロクロス付近で制御が不安定となる。
[0018] ここで、従来容量とは、例えば、 1000〜3000uF程度であり、小容量化の容量は、 10〜50uF程度の値である。また、平滑ィ匕用のコンデンサ容量を C、電動機のインダ クタンスを L、定格電流を I、許容可能な直流電圧の脈動量 (変動分)を Vとすると、ェ ネルギー保存則により以下が成り立つ。
[0019] [数 1] 丄 丄 2
2 2
[0020] 上記式力も概算値を算出することできる。例えば、電動機のインダクタンス L= 10m H、定格電流 I= 10Aとすると、許容脈動電圧 = 20V (図 3 (a)の変動分)で駆動する 場合の平滑ィ匕用のコンデンサ容量は、 C = 2500uFとなる。また、許容脈動電圧 = 2 80V (図 3 (b)の変動分)で駆動する場合の平滑ィ匕用のコンデンサ容量は、 C = 13u Fとなる。上記のように直流電圧の脈動の許容電圧値を増加することで、平滑化用の コンデンサを小容量ィ匕できることが概算値からも明らかである。尚、従来容量及び小 容量化した容量は電動機の容量及び許容脈動電圧に応じて変化するものであり上 記値に限るものではない。また、上記概略値の算出は、単相交流電源力も供給され る電荷により平滑コンデンサが充電されるため、前述の算出方法にて完全な物理現 象を表している訳でなぐあくまでも概略計算であることを付け加えておく。
[0021] 本実施の形態 1では、第 1の整流手段の直流出力側に設けられたコンデンサ 3の容 量を、第 2の整流手段の出力側に設けられた平滑コンデンサ 8の容量より小さい容量 に小容量化し、上述のように直流電圧が電源電圧の全波整流波形と略同一形状とな るような程度の容量を設定する。このコンデンサ 3は、インバータのスイッチングに伴 い発生するノイズ、スパイク電圧の吸収用に接続されるものである。尚、本実施形態 では、容量を小容量ィ匕したコンデンサ 3を接続した場合について説明するが、本発明 はこれに限るものでなく、コンデンサ 3を設けな 、構成としても良 、。
[0022] 次に、コンデンサ 3を小容量ィ匕した場合の電動機 5の駆動制御について図 1〜図 4 により説明する。図において、第 1の整流手段 2は、単相交流電源 1の出力を整流し て出力する。整流された直流電圧が入力されるインバータ主回路部 4は、インバータ 制御部 20より入力される動作信号に基づき、第 1の整流手段 2の整流出力をスィッチ ングして可変電圧 ·可変周波数の交流出力に変換し電動機 5に供給する構成となつ ている。ここで、コンデンサ 3の容量は小容量化しているので、第 1の整流手段 2から インバータ主回路部 4に出力される直流電圧波形は、図 3 (b)に示すような脈動波形 となる。また、インバータ制御部 20は、電動機 5へ流れる電流を電流検出器 21にて 検出し、検出した電流を座標変換部 24にて回転直交座標系の電流値に変換して出 力電圧演算部 22に出力する。出力電圧演算部 22は、入力された電流値に応じて電 動機 5に出力する出力電圧を演算し、 PWM生成部 23にてインバータ主回路部 4へ 動作信号を出力する。この際、出力電圧演算部 22は、電源電圧情報が入力され、電 源電圧の形状と同期した出力トルクに制御するように出力電圧を演算する。これによ り、電動機 5は駆動し、電源電圧の全波整流波形と略同一形状の直流電圧に同期し た出力トルク脈動となり、電動機 5に流れる電流は図 4 (b)に示すような直流電圧の脈 動に同期した脈流となる。尚、従来容量 (直流電圧の脈動が図 3 (a)に示す波形)の 場合は、電動機に流れる電流は図 4 (a)に示すように脈流のない電流波形になる。
[0023] 上記動作により、電動機 5の出力トルクは脈動するが、電動機 5の出力トルクを電源 電圧と同期することにより、単相交流電源 1から第 1の整流手段 2へ流れる入力電流 は略正弦波状態となり、入力電流の高調波を低減することができる。即ち、インバー タ主回路部 4及び電動機 5が仮想電流源と考えることができる。この仮想電流源につ いて図 5により説明する。
[0024] 図 5は本発明の実施の形態 1における仮想電流源を説明する回路ブロック図である 。図 5に示すように、インバータ主回路部 4及び電動機 5は仮想電流源 30と等価であ るとすると、仮想電流源 30が直流電圧と同期した出力電流を流すことにより、コンデ ンサ 3の容量は小容量ィ匕されているため、仮想電流源 30とコンデンサ 3の並列回路 3 1は抵抗と同義になる。その結果、入力電流が単相交流電源 1の電圧と同位相、相 似波形の電流となり、高調波電流が低減できる。
[0025] そこで、インバータ制御部 20は、電源電圧情報、例えば、電源電圧の位相情報や 電源電圧のゼロ点、電源電圧の瞬時値、または、直流電圧の瞬時脈動電圧などを検 出し、インバータ主回路部 4へ流れこむ電流が単相交流電源 1と相似形になるように 電動機 5を制御することで、電動機 5を駆動しつつ、入力電流の高調波電流低減制 御も両立することができる。このようにインバータ主回路部 4を前述の仮想電流源 30 と等価になるように制御すれば、出力トルク脈動はあるものの、高調波電流を抑制し た電動機 5の駆動が可能となる。
[0026] 次に、平滑化用のコンデンサの容量を小容量化し駆動する電動機以外の機器へ の直流電圧の供給について説明する。一般的な電動機駆動装置で用いられる従来 容量の平滑ィ匕用のコンデンサであれば、整流後の直流電圧がほとんど脈動しないた め、平滑ィ匕用のコンデンサの両端電圧力も直流電圧を必要とする制御回路などのた めの制御電圧を生成し、制御回路などへ印加することで制御電力を供給することが 可能であるが、平滑ィ匕用のコンデンサの容量を小容量ィ匕した場合、図 3 (b)に示すと おり、直流電圧は ov付近まで低下する。例えば、平滑ィ匕用のコンデンサの両端電圧 力 制御回路のための制御電圧を生成するとした場合、制御回路のための電圧も脈 動し、制御回路が動作不能に陥る可能性がある。また、空気調和機などに適用する 場合、制御回路だけでなぐ電動機以外にも直流電圧を使用しているァクチユエータ 、ファンモータ用インバータなどが動作不能又は電圧脈動による騒音振動が助長さ れる恐れがある。
[0027] 従来の電動機駆動装置では、このような制御回路、ァクチユエータ、ファンモータ用 インバータなど (以下、直流負荷という)に供給する直流電圧が必要な場合、制御電 圧の生成のため、整流手段の出力側にダイオードを介して直流負荷のための平滑ィ匕 用のコンデンサをさらに設け、電圧脈動を抑制した直流電圧を生成している。しかし ながら、このような構成の場合、電圧脈動の影響によるファンモータの騒音の問題や 制御回路のための制御電圧の問題を解決できるが、整流手段が兼用しているため、 これらの直流負荷の電力消費により流れる高調波電流が電動機制御による電流に 重畳される。このような高調波電流成分の重畳について図 6により説明する。
[0028] 図 6は高調波電流成分の重畳について説明する電流波形図である。図 6 (a)に示 すように、電動機のみの構成であれば、抵抗負荷的な電流を流すようにインバータ制 御部は制御可能である。しかし、上述のように整流手段を兼用すると、直流負荷によ り消費する電力によって、電源電圧のピーク時のみ電流が流れるので、図 6 (b)に示 すような入力電流が流れる。
[0029] 従って、両者の合成となる図 6 (c)のような電流が流れる。図 6 (c)に示すような電流 ピーク付近で電流が突出しないよう電動機の制御により対応しょうとする場合、電動 機と入力電流制御を両立する複雑な制御をしている上に、さらにこの電流突出の制 御が加わると、極めて複雑な制御となり、電動機を駆動できなくなる場合がある。若し くは、入力電流の高調波電流が低減できなくなる。
[0030] また、整流手段の交流側にリアクタを設けることで図 6 (c)のような電流のピークの突 出を抑制することはできるが、リアクタと平滑コンデンサとが共振し、その共振周波数 によって高調波電流が増加する。そのため、容量の大きいリアクタを接続すると共振 周波数が電源周波数の十数倍まで近接する。 [0031] 以上のような従来の問題点を解決し、高調波電流成分の重畳を回避すると共に、コ ンデンサ 3の容量を小容量化し、電動機 5の駆動制御と入力電流制御を両立したィ ンバータ制御に対し、電動機 5以外の直流負荷への直流電圧脈動の影響を無くすた め、本発明は、図 1に示すように、第 1の整流手段 2の入力側に並列に第 2の整流手 段 7を設け、電力系統を分離することで直流負荷への電圧脈動の影響をなくしている 次に、本発明の電動機駆動装置を適用した空気調和機の動作について図 7により 説明する。
[0032] 図 7は本発明の実施の形態 1における空気調和機の構成を示す図である。図 7に 示すように、電動機 5は圧縮機 40の内部に配置され、圧縮機 40を駆動する。この圧 縮機 40は、冷媒の圧縮時における冷媒ガス音など、電動機 5の音に対して空気調和 機として防音対策が設けてあることが一般的である。一方、ファンモータ 10により回 転するファン 41の防音対策はファンモータ 10の取り付け部にゴム足を介して取り付 けられる程度であるのが一般的である。そのため、ファンモータ 10は、モータから直 接聴こえる騒音に対しては、電動機 5より厳しい条件で製品設計されている。また、フ アンモータ 10の駆動を制御するファンインバータ 9に入力される直流電圧が脈動した 場合、電圧と同期したトルク脈動が発生し、トルク脈動に起因された騒音が発生する
[0033] そこで、図 1に示すとおり、ファンモータ 10を駆動するファンインバータ 9は、電動機 5を駆動制御する電力系統と分離された平滑コンデンサ 8の両端に接続する。平滑コ ンデンサ 8は、ファンモータ 10が必要とする電荷を十分蓄電可能な容量を設定する。 そのため、平滑コンデンサ 8の両端電圧は脈動がなく安定するので、電圧脈動による ファンモータ 10から直接聴こえる騒音はコンデンサ 3が従来容量であった状態と同等 レベルに抑制することができる。さらに、平滑コンデンサ 8の両端に接続された制御電 源生成部 11に入力される直流電圧も安定ィ匕するので、インバータ制御部 20が動作 不能に陥ることがなくなる。
[0034] また、ファンモータ 10を始めとする空気調和機のァクチユエータなどの直流負荷で の電力消費量は、電動機 5の電力消費量に比べ非常に小さぐ例えば、空気調和機 全体の 1割程度の消費である。従って、電動機 5と直流負荷との整流手段を分離する ことによって、第 2の整流手段 7の電流容量は、第 1の整流手段 2と比較して小さい容 量で実現可能となる。また、単相交流電源 1と第 2の整流手段 7との間に直列に接続 され、単相交流電源 1から流れる電流の高調波電流を抑制するリアクタ 6は、非常に 小さい電流容量で実現できるため、小容量のリアクタにより高調波電流を低減でき且 つ、平滑コンデンサ 8との共振周波数を高くすることができると共に、小型軽量なもの を使用できる。さらに、平滑コンデンサ 8の容量は、従来容量の平滑コンデンサに比 較して小さ!/、容量で実現可能である。
[0035] また、電動機 5での電力消費ラインとそれ以外の電力消費ラインとは、第 2の整流手 段 7を設けて分離することにより、両者を独自に高調波電流を低減するように構成す ることがでさる。
[0036] 実施の形態 2.
図 8は本発明の実施の形態 2における電動機駆動装置の構成を示す図、図 9は本 発明の実施の形態 2における高調波電流の抑制を示す電流波形図である。本実施 の形態 2は、上記実施の形態 1の構成に加え、図 8に示すように、全波整流回路とス イッチング素子力もなる高調波電流制御手段であるスイッチング部 50を設けた構成と する。
[0037] 上記実施の形態 1で説明したように、直流負荷での消費電力は小さいので、スイツ チング部 50の電流容量は小さい容量で実現可能である。このような、スイッチング部 50を設けることによりリアクタ 6の挿入のみの場合より、電源力率が大きく向上し、図 9 (a)に示す高調波電流の電流ピークが図 9 (b)に示すように抑制され、直流負荷での 消費電力による高調波電流を低減できる。
[0038] 従って、上述した図 6 (a)に示す電動機 5からの電流波形に重畳されても大きく波形 変形が成されないため、入力電流の高調波電流が電動機 5以外の直流負荷によつ て増加することを抑制することができる。つまり、電動機 5以外の直流負荷での消費 電力による高調波電流が少なければ、図 6 (c)に示すような高調波成分、即ち、ピー ク付近の突出した電流は発生しない。尚、スイッチング部 50は、第 2の整流手段 7より 交流側に配置しているが、高調波電流を抑制することが可能な構成であれば、交流 側、直流側に何れに設けても良い。
[0039] 実施の形態 3.
図 10は本発明の実施の形態 3における電動機駆動装置の構成を示す図である。 本実施の形態 3は、上記実施の形態 1の構成に加え、図 10に示すように、インバータ 主回路部 4とインバータ制御部 20とを絶縁する絶縁部 60を設ける。
[0040] インバータ制御部 20は、電動機 5の電流を検出し、インバータ主回路部 4に動作信 号を出力するため、インバータ主回路部 4とインバータ制御部 20とは共通の基準電 位(以下、 GNDという)とする必要がある、このため GNDからの回り込みによる入力 電流高調波が発生する。このような回り込み電流を遮断する為、絶縁部 60を挿入し、 インバータ主回路部 4とインバータ制御部 20との間を絶縁することにより、 GNDから の回り込み電流による入力電流高調波を遮断することができる。
[0041] 実施の形態 4.
図 11は本発明の実施の形態 4における電動機駆動装置の構成を示す図である。 上記実施の形態 1〜3では、第 2の整流手段 7と単相交流電源 1との間にリアクタ 6を 接続したが、本実施形態ではそれに加え、図 11に示すように、第 1の整流手段 2と単 相交流電源 1との間にリアクタ 70を挿入する。
[0042] 単相交流電源 1にも小さいながらにもインピーダンスがあるため、リアクタ 70の挿入 により、単相交流電源 1の電源インピーダンスとコンデンサ 3との共振現象を抑制する ことができる。また、電源電圧の極性変化時点、即ち、ゼロクロス直後において電源よ り突入電流が流れるが、リアクタ 70の挿入により突入電流を抑制でき、突入電流によ る高調波電流を抑制できる。
[0043] 尚、このリアクタ 70は小容量のインダクタンス値のものが好ましぐコンデンサ 3の静 電容量 C [F]とリアクタ 70のインダクタンス L [H]とした以下の式で求まる共振周波数 f は、電源周波数の 40〜50倍以上とすることが望ましい。
[数 2] 1
ブニ
2;r -し
[0044] 実施の形態 5.
図 12は本発明の実施の形態 5における電動機駆動装置の構成を示す図である。 本実施の形態 5は、上記実施の形態 1の構成に加え、図 12に示すように、電動機 5 により駆動される圧縮機 40の表面に振動検出手段である振動検出器 80を備えた構 成とする。振動検出器 80は圧縮機 40の振動振幅及び振動周波数の少なくとも一方 の情報を検出し、インバータ制御部 20へ入力する。尚、前述までと同様効果を奏す る機能は図示を省略している。
[0045] 上述したように直流電圧脈動により、電動機 5の出力トルクは脈動し、振動が発生 する。また、騒音が発生することが予期される。このとき圧縮機 40の振動周波数に対 し、電動機 5の回転周波数が一致すると機械共振を起こす可能性がある。特に、圧 縮機 40の冷媒圧縮による負荷トルクも脈動して 、るため、この負荷トルクの脈動と電 動機 5からの出力トルクの脈動とがハンチングし、機械共振と相まって非常に大きい 振動が発生する。しかし、機械共振や負荷トルクと出力トルクのハンチングによる振動 を予期し、製品化可能なレベルまで抑制することは困難である。
[0046] 従って、本実施形態において、インバータ制御部 20は、電動機 5の回転周波数と 振動検出器 80より入力された圧縮機 40の振動周波数とがー致しないよう電動機 5の 回転周波数を制御する。
このように電動機 5を制御することにより、機械共振周波数との周波数の一致を避け ることが可能となり、機械共振が抑制することができる。
[0047] 実施の形態 6.
本実施形態の構成は、上記実施の形態 5と同様の構成である。
本実施形態において、インバータ制御部 20は、振動検出器 80により検出された振 動振幅及び振動周波数に応じて電動機 5の出力トルクを制御する。
[0048] ここで、圧縮機 40から発生する振動について説明する。圧縮機 40から発生する振 動は、機械系の伝達関数によって求められるが、その発生源は電動機 5であり、電動 機 5より出力される出力トルクを Tm、電動機 5に連結されている圧縮機の圧縮構造機 械による負荷トルクを T1とすると、 Tm— T1=0であれば、振動は発生しない。言い換 えると、振動は (Tm— T1)の差分に比例して発生するため、この出力トルク Tmと負荷 トルク T1の差を 0にするようにインバータ制御部 20にて出力トルクを制御すれば振動 を抑制することができる。図 13の(a)に示す波形は、圧縮機 40の負荷トルクである。 図 13 (a)の負荷トルクに対し、出力トルク Tmとの差分 Tm— T1を図 13 (b)に示す。こ の図 13 (b)の波形形状と相似な波形形状の振動が発生し、振動検出器 80より出力 される。よって、図 13 (b)に示す逆相の成分を出力トルク Tmに重畳すれば、 Tm— T 1=0となり、振動を抑制することが可能となる。
[0049] そこで、インバータ制御部 20は、入力された振動振幅及び振動周波数の少なくとも 一方の情報に基づき求まる圧縮機 40の振動波形の位相と、電動機 5の出力トルクの 脈動波形の位相とが逆相となるように、インバータ主回路部 4の出力を制御する。 このように動作することにより、平滑コンデンサ 3の容量を小容量ィ匕することにより発 生した脈動トルクを逆に振動抑制に利用することができ、脈動トルクを有効に利用で きる。
[0050] 尚、振動検出器 80を ICチップにより構成し、電池と無線 ICとを同一パッケージィ匕す ることで、配線レス化することも可能である。このような構成にしても同等の効果を有 する。また、 ICチップは、例えば、図 14に示すように、可動式の誘電体 81と固定式の 電極 82によりキャパシタンス変化を検出するような半導体で振動検出器 80を構成で き、一般的な振動検出器より安価に構成できる。
[0051] 尚、上記説明では振動検出器 80にて振動周波数を検出したが、これに限らず騒音 検出器を用いても振動周波数を検出しても同様な動作が可能で有り、前述と同等効 果を有する。更にいえば振動検出器 80にて振動を検出するよう構成したが、振動を 推測するよう構成しても同等の効果を有する。例えば、インバータ制御部 20は、電動 機 5に印可する電圧と電動機 5に流れる電流が既知であるため、出力トルク Tmを推 定することが可能である。さらに、モータ速度制御しているため速度は既知である。前 記の推定した出力トルクと既知である速度を利用すれば、負荷トルク T1も推定可能で ある。従って、 Tm—Tlが 0となるように制御することも可能であり、振動と相対関係が ある Tm—Tlを制御することにより、振動制御することと等価な効果^ |IJ出できる。以 上のように構成することにより、前記振動検出器 80を用いた場合より振動の制御度合 いが少なくなるが、振動検出器 80を用いるより安価な構成で、小容量ィ匕により発生し た脈動トルクを振動制御に利用することが可能になる。
産業上の利用可能性
本発明の活用例として、空気調和機のほか、圧縮機と圧縮機以外に電力消費する 機能を 1つの製品形態として有する製品、例えば、除湿器や冷蔵庫、洗濯乾燥機な どが考えられる。また、圧縮機ではなくとも、製品の大部分の電力消費をする電動機 とその電動機以外に電力を消費する機能を 1つの製品形態として有する製品、例え ば、掃除機や洗濯機、洗濯乾燥機などが挙げられる。また特に、主に電力を消費す る電動機に対する騒音対策は充分実施されており、その他に直流電圧力 電力を消 費するァクチユエータを搭載する製品であれば、同様な効果がある。

Claims

請求の範囲
[1] 交流電源が入力され、交流電圧を直流電圧に整流する第 1の整流手段と、
前記第 1の整流手段により整流された直流電圧を交流電圧に変換して電動機に供 給する電力変換手段と、
前記交流電源が入力され、交流電圧を直流電圧に整流する第 2の整流手段と、 前記第 2の整流手段の直流出力側に設けられ、整流後の直流電圧を平滑化して直 流負荷に供給する平滑コンデンサと
を備えたことを特徴とする電動機駆動装置。
[2] 前記第 1の整流手段と前記電力変換手段との間にコンデンサを設けたことを特徴と する請求項 1記載の電動機駆動装置。
[3] 前記第 1整流手段の直流出力側に設けられたコンデンサの容量は、前記第 2の整 流手段の出力側に設けられた平滑コンデンサの容量より小さい容量であることを特徴 とする請求項 1又は 2記載の電動機駆動装置。
[4] 前記第 2の整流手段の出力側に設けられた平滑コンデンサにより平滑化された直 流電圧が供給され、前記電力変換手段を制御する電力変換制御手段を備えたこと を特徴とする請求項 1〜3の何れかに記載の電動機駆動装置。
[5] 前記第 2の整流手段の出力側に設けられた平滑コンデンサにより平滑化された直 流電圧が供給される直流負荷の消費電力は、前記電力変換手段により交流電圧が 供給される電動機の消費電力より少ないことを特徴とする請求項 1〜4の何れかに記 載の電動機駆動装置。
[6] 前記第 2の整流手段の出力側に設けられた平滑コンデンサにより平滑化された直 流電圧が供給される直流負荷の電力消費により発生する高調波電流を抑制する高 調波電流抑制手段を備えたことを特徴とする請求項 1〜5の何れかに記載の電動機 駆動装置。
[7] 請求項 1〜6の何れかに記載の電動機駆動装置と、
前記電動機駆動装置により制御される電動機と、
前記電動機により駆動される圧縮機と
を備えることを特徴とする圧縮機駆動装置。
[8] 前記圧縮機の振動周波数を検出する振動検出手段を備え、
前記電力変換制御手段は、前記振動検出手段により検出された前記振動周波数 の情報が入力され、前記振動周波数と前記電動機の回転周波数とがー致しないよう に前記電動機の回転周波数を制御することを特徴とする請求項 7記載の圧縮機駆動 装置。
[9] 前記圧縮機の振動振幅及び振動周波数の少なくとも一方を検出する振動検出手 段を備え、
前記電力変換制御手段は、前記振動検出手段により検出された前記振動振幅及 び振動周波数の少なくとも一方の情報が入力され、入力された前記圧縮機の振動振 幅及び振動周波数の少なくとも一方の情報に基づき前記圧縮機の振動を抑制する よう前記電動機の出力トルクを制御することを特徴とする請求項 7記載の圧縮機駆動 装置。
PCT/JP2006/324709 2006-03-15 2006-12-12 電動機駆動装置及び圧縮機駆動装置 WO2007108185A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007538208A JP4657301B2 (ja) 2006-03-15 2006-12-12 電動機駆動装置及び圧縮機駆動装置
AU2006335684A AU2006335684C1 (en) 2006-03-15 2006-12-12 Electric motor driving device and compressor driving device
CN2006800083883A CN101142738B (zh) 2006-03-15 2006-12-12 电动机驱动装置和压缩机驱动装置
EP06834464A EP1871003A4 (en) 2006-03-15 2006-12-12 ENGINE ATTACK DEVICE AND COMPRESSOR ATTACK DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-070166 2006-03-15
JP2006070166 2006-03-15

Publications (1)

Publication Number Publication Date
WO2007108185A1 true WO2007108185A1 (ja) 2007-09-27

Family

ID=38522222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324709 WO2007108185A1 (ja) 2006-03-15 2006-12-12 電動機駆動装置及び圧縮機駆動装置

Country Status (5)

Country Link
EP (1) EP1871003A4 (ja)
JP (1) JP4657301B2 (ja)
CN (1) CN101142738B (ja)
AU (1) AU2006335684C1 (ja)
WO (1) WO2007108185A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112585A (ja) * 2008-11-04 2010-05-20 Daikin Ind Ltd ヒートポンプ装置
JP2014103738A (ja) * 2012-11-19 2014-06-05 Toyota Motor Corp 交流電動機の制御システム
JP2016007113A (ja) * 2014-06-20 2016-01-14 株式会社神戸製鋼所 圧縮機の駆動装置
WO2018020657A1 (ja) * 2016-07-29 2018-02-01 三菱電機株式会社 電力変換装置および空気調和装置
CN111149287A (zh) * 2017-09-29 2020-05-12 大金工业株式会社 功率转换装置
WO2023067723A1 (ja) * 2021-10-20 2023-04-27 三菱電機株式会社 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
WO2023095264A1 (ja) * 2021-11-25 2023-06-01 三菱電機株式会社 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
WO2023105676A1 (ja) * 2021-12-08 2023-06-15 三菱電機株式会社 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2543503C1 (ru) * 2011-01-18 2015-03-10 Дайкин Индастриз, Лтд. Устройство преобразования мощности
CN102345916B (zh) * 2011-08-29 2013-11-20 深圳市锐钜科技有限公司 一种变频空调频率共振消除方法及系统
JP5931148B2 (ja) * 2014-09-10 2016-06-08 ファナック株式会社 静電容量計算部を有するpwm整流器
WO2016052215A1 (ja) * 2014-10-01 2016-04-07 三菱電機株式会社 除湿機
JP6247189B2 (ja) * 2014-10-02 2017-12-13 ファナック株式会社 直流リンク残留エネルギーの放電機能を有するモータ制御装置
JP6848778B2 (ja) * 2017-09-15 2021-03-24 オムロン株式会社 電力供給装置
JP6711859B2 (ja) * 2018-04-04 2020-06-17 ファナック株式会社 モータ駆動装置およびモータ駆動装置の異常発熱検出方法
CN109980995B (zh) * 2018-06-01 2020-07-28 清华大学 转矩分配的方法、装置、计算机设备和存储介质
DE102021128779A1 (de) 2021-11-05 2023-05-11 Vaillant Gmbh Verfahren zum Betreiben eines Elektromotors eines Verdichters einer Wärmepumpe, Computerprogramm, Speichermedium, Steuergerät und Wärmepumpe

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2257310A (en) 1991-05-31 1993-01-06 Toshiba Kk Inverter controlled air conditioner capable of effectively reducing in-rush current at starting
JPH06153534A (ja) 1992-10-30 1994-05-31 Alex Denshi Kogyo Kk コンデンサレス・インバータ装置とその制御方法
JPH06273029A (ja) 1993-03-16 1994-09-30 Sharp Corp 冷蔵庫
JPH10150795A (ja) 1996-11-15 1998-06-02 Toshiba Corp インバータ装置
JP2000125410A (ja) * 1998-10-15 2000-04-28 Mitsubishi Electric Corp 電気自動車の制御装置
JP2000188897A (ja) * 1998-12-22 2000-07-04 Sanyo Denki Co Ltd モータ制御装置
JP2001145358A (ja) * 1999-11-16 2001-05-25 Sanyo Electric Co Ltd 電源装置
JP2002051589A (ja) 2000-07-31 2002-02-15 Isao Takahashi モータ駆動用インバータの制御装置
JP2003164179A (ja) * 2001-11-20 2003-06-06 Matsushita Electric Ind Co Ltd モータ駆動装置及びモータ駆動方法
JP2004248395A (ja) * 2003-02-13 2004-09-02 Matsushita Electric Ind Co Ltd モータ駆動装置
JP2005073345A (ja) * 2003-08-22 2005-03-17 Toshiba Corp 電気車制御装置
JP2005253282A (ja) 2004-02-06 2005-09-15 Matsushita Electric Ind Co Ltd 電力変換装置及びモータ駆動用インバータ制御装置及び空気調和機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11514836A (ja) * 1995-10-24 1999-12-14 アクアガス ニュー ジーランド リミテッド 交流−直流電源
JPH10174477A (ja) * 1996-12-06 1998-06-26 Hitachi Ltd 電動機駆動装置及びこれを用いた空気調和機
JP3424539B2 (ja) * 1997-06-23 2003-07-07 三菱電機株式会社 電源高調波抑制装置
DE69917630T2 (de) * 1999-09-01 2005-06-23 Ramarathnam, Ramachandran Motorregler für unterschiedliche Geschwindigkeiten
KR100639447B1 (ko) * 2003-04-14 2006-10-26 마츠시타 덴끼 산교 가부시키가이샤 모터 구동 장치, 압축기, 공기 조화기, 냉장고, 전기 세탁기, 송풍기, 전기 청소기, 전기 건조기 및 열 펌프 급탕기
WO2005006531A1 (ja) * 2003-07-15 2005-01-20 Mitsubishi Denki Kabushiki Kaisha 三相電力変換装置および電力変換装置
EP1796255B1 (en) * 2004-06-21 2016-02-17 Toshiba Carrier Corporation Air conditioner

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2257310A (en) 1991-05-31 1993-01-06 Toshiba Kk Inverter controlled air conditioner capable of effectively reducing in-rush current at starting
JPH06153534A (ja) 1992-10-30 1994-05-31 Alex Denshi Kogyo Kk コンデンサレス・インバータ装置とその制御方法
JPH06273029A (ja) 1993-03-16 1994-09-30 Sharp Corp 冷蔵庫
JPH10150795A (ja) 1996-11-15 1998-06-02 Toshiba Corp インバータ装置
JP2000125410A (ja) * 1998-10-15 2000-04-28 Mitsubishi Electric Corp 電気自動車の制御装置
JP2000188897A (ja) * 1998-12-22 2000-07-04 Sanyo Denki Co Ltd モータ制御装置
JP2001145358A (ja) * 1999-11-16 2001-05-25 Sanyo Electric Co Ltd 電源装置
JP2002051589A (ja) 2000-07-31 2002-02-15 Isao Takahashi モータ駆動用インバータの制御装置
JP2003164179A (ja) * 2001-11-20 2003-06-06 Matsushita Electric Ind Co Ltd モータ駆動装置及びモータ駆動方法
JP2004248395A (ja) * 2003-02-13 2004-09-02 Matsushita Electric Ind Co Ltd モータ駆動装置
JP2005073345A (ja) * 2003-08-22 2005-03-17 Toshiba Corp 電気車制御装置
JP2005253282A (ja) 2004-02-06 2005-09-15 Matsushita Electric Ind Co Ltd 電力変換装置及びモータ駆動用インバータ制御装置及び空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1871003A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112585A (ja) * 2008-11-04 2010-05-20 Daikin Ind Ltd ヒートポンプ装置
JP2014103738A (ja) * 2012-11-19 2014-06-05 Toyota Motor Corp 交流電動機の制御システム
JP2016007113A (ja) * 2014-06-20 2016-01-14 株式会社神戸製鋼所 圧縮機の駆動装置
WO2018020657A1 (ja) * 2016-07-29 2018-02-01 三菱電機株式会社 電力変換装置および空気調和装置
CN111149287A (zh) * 2017-09-29 2020-05-12 大金工业株式会社 功率转换装置
CN111149287B (zh) * 2017-09-29 2020-11-13 大金工业株式会社 功率转换装置
WO2023067723A1 (ja) * 2021-10-20 2023-04-27 三菱電機株式会社 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
WO2023095264A1 (ja) * 2021-11-25 2023-06-01 三菱電機株式会社 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
WO2023105676A1 (ja) * 2021-12-08 2023-06-15 三菱電機株式会社 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器

Also Published As

Publication number Publication date
EP1871003A1 (en) 2007-12-26
AU2006335684B2 (en) 2009-03-26
EP1871003A4 (en) 2009-08-05
CN101142738B (zh) 2010-12-22
JPWO2007108185A1 (ja) 2009-08-06
AU2006335684C1 (en) 2009-12-10
AU2006335684A1 (en) 2007-10-04
CN101142738A (zh) 2008-03-12
JP4657301B2 (ja) 2011-03-23

Similar Documents

Publication Publication Date Title
WO2007108185A1 (ja) 電動機駆動装置及び圧縮機駆動装置
US10381968B2 (en) Converter pulse width modulation strategies for three phase regenerative drives
EP2309635A1 (en) Ac-dc converter, ac-dc converter control method, motor driving device, compressor driving device, air conditioner, and heat pump-type hot-water supply device
WO2010064284A1 (ja) 交流直流変換装置、電動機駆動装置
WO2008026643A1 (fr) Dispositif de commande de moteur
KR20040088356A (ko) 모터 구동용 인버터 제어장치 및 그 인버터 제어장치를이용한 공기조화기
JP2009232537A (ja) モータ制御装置
CN109428533B (zh) 控制pwm转换器的升压率的电动机驱动装置
EP2333943B1 (en) Power supply circuit, motor drive device and refrigeration and air conditioner
JP2015116092A (ja) 電動車両
JP4885603B2 (ja) 直流電源装置
JP5527638B2 (ja) 電源回生コンバータ、モータ駆動システム
JP2001314085A (ja) 電源装置と、インバータ装置および空気調和機
JP5760446B2 (ja) 電力変換装置
JP2003244960A (ja) Pwmサイクロコンバータ
US6646896B2 (en) Controller of AC machine
JP2005304248A (ja) モータ駆動用インバータ制御装置および電気機器
Benisha et al. Interleaved Boost Integrated Flyback Converter for Power Factor Correction in Brushless DC Motor Drive.
WO2023095265A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
JP5050485B2 (ja) 電動機制御装置およびそれを備えた空気調和機
JP4984495B2 (ja) モータ駆動用インバータ制御装置
JP5168925B2 (ja) 電動機制御装置
JP5040160B2 (ja) モータ駆動用インバータ制御装置
JP2023097790A (ja) 電力変換装置
KR20070116501A (ko) 모터 구동장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680008388.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006335684

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2007538208

Country of ref document: JP

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006335684

Country of ref document: AU

REEP Request for entry into the european phase

Ref document number: 2006834464

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006834464

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06834464

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 2006834464

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE