WO2007107388A2 - Wärmedämmschicht-system - Google Patents
Wärmedämmschicht-system Download PDFInfo
- Publication number
- WO2007107388A2 WO2007107388A2 PCT/EP2007/050425 EP2007050425W WO2007107388A2 WO 2007107388 A2 WO2007107388 A2 WO 2007107388A2 EP 2007050425 W EP2007050425 W EP 2007050425W WO 2007107388 A2 WO2007107388 A2 WO 2007107388A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- insulation layer
- thermal insulation
- thermal
- layer system
- coefficient
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/042—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/30—Manufacture with deposition of material
- F05D2230/31—Layer deposition
- F05D2230/312—Layer deposition by plasma spraying
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/50—Intrinsic material properties or characteristics
- F05D2300/502—Thermal properties
- F05D2300/5021—Expansivity
- F05D2300/50212—Expansivity dissimilar
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
Definitions
- the invention relates to a thermal barrier coating system having a first major side provided for placement adjacent a component to be thermally protected, and a second major side disposed adjacent to a hot environment for placement.
- a prerequisite for the efficient use of ceramic thermal insulation layers in gas turbines is, in addition to a cost-effective process technology, above all the structural stability and thus the reliability of the thermal insulation layer under the typical operating conditions of the gas turbines.
- a fault-free function over 25,000 operating hours must be guaranteed, which corresponds to the desired revision interval.
- Premature failure of the thermal insulation layer would result in overheating of the base material and possibly lead to turbine damage.
- the resulting downtime and repair costs can be significant and may negate the technological benefits of the thermal insulation layer.
- the key parameter for increasing the efficiency of gas turbines is the turbine inlet temperature.
- This goal can be achieved by using ceramic thermal insulation layers in addition to the use of improved base materials and effective cooling methods. It can by the thermal insulating effect of the ceramic thermal insulation layer while maintaining the same Kuhlungs complaint depending on the thickness of the thermal insulation layer permissible surface temperature increased by a few 100K.
- the temperature resistance of the thermal insulation layer can be improved. As a result, the increasing compaction of the thermal insulation layer material and associated shrinkage processes of the thermal insulation layer at high temperature can be restricted.
- phase transitions in a given temperature range eg. B. by stabilizing the tetragonal phase of Zr ⁇ 2 by an yttrium doping and the associated effects, eg. For example, a volume expansion during conversion leads to a significant reduction in the thermal barrier layer load.
- a reduction in the damage of the thermal insulation layer is also caused by the adaptation of the coefficient of thermal expansion of the thermal insulation layer to the used metallic base material of the component to be thermally protected.
- the size of the thermal expansion coefficient can be increased the strains resulting from thermal mismatch in the thermal barrier layer, particularly near the interface between the thermal barrier layer and the tie layer to the base material, are reduced.
- a thermal barrier layer system has a first main side, which is intended to be arranged adjacent to a component to be thermally protected, and a second main side, which is intended to be arranged adjacent to a hot environment.
- the thermal insulation layer system has sections with different temperature expansion coefficients.
- the invention is based on the finding that by approximating the coefficient of thermal expansion of the thermal barrier layer and the base material of the component to be thermally protected, reducing the elongation of the thermal barrier layer near a boundary surface between the thermal barrier layer and a thermal barrier layer and the base material Adhesive layer can be achieved. Due to this, however, due to the large temperature difference between the second main side of the thermal barrier layer and the first main side of the thermal barrier layer forming the interface, significant strains may occur on the second major side. This may be the case in particular during the so-called heating or cooling shock. The strains increase with the magnitude of the thermal expansion coefficient of the thermal barrier layer and the temperature difference between the first and second major sides.
- the invention proposes a thermal barrier layer system having sections with different thermal expansion coefficients.
- a thermal barrier layer system having sections with different thermal expansion coefficients.
- a first section of the thermal insulation layer system which borders on the component to be thermally protected, has a first coefficient of thermal expansion, which is adapted to the thermal expansion coefficient of the component. Furthermore, at least a second portion of the thermal insulation layer system has a second, smaller temperature expansion coefficient. The invention is thus based on the principle of reducing the temperature expansion coefficients in sections as the temperature rises above the thermal insulation layer system.
- the second section adjoining the second main side has the smallest thermal expansion coefficient of the thermal barrier layer system, whereby the strains on the second main side of the thermal barrier layer system are minimized.
- the second coefficient of thermal expansion of the second section adjacent to the second main side is selected such that the expansions on the second main side occurring in typical operating conditions lie within a specified range. This specified range can be determined by measuring the strain tolerance as a function of the temperature of the thermal barrier coating system. The optimal Great for the coefficient of thermal expansion can be obtained from the comparison of the results of stress simulations with the measured strain tolerance range.
- the thermal insulation layer system is formed as a composite of a first thermal insulation layer, which faces the component to be thermally protected, and a second thermal insulation layer, which faces the hot environment.
- the provision of only two thermal insulation layers represents the simplest possible construction, so that the thermal insulation layer system can be provided in a simple and relatively inexpensive manner. It is of course not excluded that the thermal insulation layer system is formed as a composite of more than two layers.
- the first thermal insulation layer has a coefficient of thermal expansion in the range of 1.0-1O -5 K -1 .
- the second layer of thermal insulation then in one embodiment comprises a coefficient of thermal expansion in the range of 8.0-10 "6 K " 1 .
- the thermal insulation layer system may be formed from one of the following material combinations, wherein the first value denotes the material of the first thermal insulation layer and the second value denotes the material of the second thermal insulation layer:
- the first and the second heat-insulating layer are joined together by a plasma spraying process.
- FIG. 1 shows a cross section through an inventive thermal insulation layer system, which is applied to a thermally protected component
- FIG. 2 shows an x-y diagram showing the strains on the surface of the thermal insulation layer occurring under typical operating conditions of a gas turbine engine.
- FIG. 1 shows a cross-sectional illustration of a thermal barrier layer system 1 according to the invention.
- the thermal barrier layer system 1 is applied to a first main side 2 via an adhesion promoter layer 31 on a component 30 to be thermally protected.
- the thermally-protecting member 30 is made of e.g. from a metal, z. B. a nickel-based superalloy.
- the thermally protected component 30 may, for example, represent the blade of a gas turbine.
- With a second main side 3, the thermal insulation layer system 1 is exposed to a hot environment 4.
- the thermal insulation layer system 1 has, for example, a first section 5 and a second section 6, each having different coefficients of thermal expansion CTE1, CTE2. While the first section 5 is adapted in its temperature expansion coefficient CTE1 to the temperature expansion coefficient of the material of the component 30, the material of the second section 6 is formed of a temperature-stable material having a lower coefficient of thermal expansion CTE2 than the first section 5 has.
- the thermal insulation layer system 1 is formed as a composite of a thermal insulation layer 8 and a thermal insulation layer 9, which are connected to one another, for example, in the region of a boundary plane in a plasma spraying process. In this case, the thermal insulation layer 8 forms the first section 5 and the thermal insulation layer 9 forms the second section 6.
- the risk of damaging the thermal insulation layer, in particular in the case of cooling can be significantly reduced.
- the permissible surface temperature that is to say the temperature on the second main side 3 of the thermal insulation layer system, which results in increased efficiency in use in gas turbines, as described above.
- the invention thus represents an extension of the previously proposed adaptation of the thermal expansion coefficient of the thermal insulation layer to the base material used of the component 30 by an additional adaptation to the expected spatial and temporal course of the temperature over the thickness of the thermal insulation layer system 1 In the thermal insulation layer or the thermal insulation layer system occurring mechanical loads are reduced and in particular the application limits are increased in relation to the maximum surface temperature.
- the first and the second heat-insulating layer 8, 9 can be approximately the same thickness.
- the total thickness of the inventive thermal insulation layer system 1 corresponds approximately to the thickness of a conventional thermal insulation layer.
- the first heat-insulating layer adjoining the component 30 to be thermally protected consists, for example, of 7YSZ (zirconium oxide stabilized with 7% by weight of yttrium oxide), this material having a coefficient of thermal expansion of about 10 -5 K -1 at 1000 ° C. having.
- the material of the second warning zone adjacent to the hot environment 4 Medical layer 9 is formed, for example, from one of the following materials, wherein the temperature expansion coefficient at 1000 ° C. is given in brackets in each case:
- Fig. 2 shows the course of the elongation of the thermal insulation layer system 1 over its thickness x.
- the normalized position x in the thermal barrier layer system 1 is plotted on the x-axis.
- the interface that is, the first main page 2 of the thermal barrier layer system 1 to the primer layer 31 is marked.
- X 1 is the surface, that is, the second main page 3, the thermal insulation layer system 1 characterized.
- the strain is represented in the respective thermal barrier layers 8 (having a coefficient of thermal expansion CTE1) and 9 (having a thermal expansion coefficient CTE2) ("WDS expansion").
- a negative value indicates a compressive strain, a positive value a tensile strain.
- the figure shows the course of the elongation in an operating state after cooling. It is based on the assumption that the overall arrangement of the thermal insulation layer system 1, which is applied to the thermally protected component 30, during operation at high temperatures is free of stress.
- DV1 denotes the strain course in the first heat-insulating layer 8, which is provided adjacent to the component 30 to be thermally protected.
- DVl is provided with a solid line.
- DV2 denotes the expansion curve in the second heat-insulating layer 9, which borders on the hot environment 4.
- DV2 is shown with a broken line.
- the stretching precursors DV1 and DV2 are shown here over the entire thickness x for the purpose of illustration.
- DV3 designates the strain profile in the inventive thermal barrier coating system 1, which has a crack in the region of the boundary plane 7 formed between the first and the second thermal insulation layer 8, 9.
- the reduced temperature expansion coefficient CTE2 causes the material of the second thermal insulation layer 9, that the expansions occurring under typical operating conditions at the surface of the thermal barrier coating system (x x of x-axis) the strain tolerance is located in a specified area DT.
- the range DT can be determined by measuring the strain tolerance depending on the temperature of the thermal insulation layer system 1.
- the expansion curve in the thermal insulation layer system 1 is caused not to be located in the tensile stretching region (compare strain curve DV3, which lies within the specified range DT in the region X 1 ). As a result, the entire arrangement damaging vertical stresses on the surface (second main page 3) can be avoided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Thermal Insulation (AREA)
- Coating By Spraying Or Casting (AREA)
- Laminated Bodies (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07703928A EP1996741A2 (de) | 2006-03-22 | 2007-01-17 | Wärmedämmschicht-system |
JP2009500789A JP2009530535A (ja) | 2006-03-22 | 2007-01-17 | 遮熱層システム |
US12/225,326 US20100227198A1 (en) | 2006-03-22 | 2007-01-17 | Thermal Insulation Layer System |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006013215.7 | 2006-03-22 | ||
DE200610013215 DE102006013215A1 (de) | 2006-03-22 | 2006-03-22 | Wärmedämmschicht-System |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007107388A2 true WO2007107388A2 (de) | 2007-09-27 |
WO2007107388A3 WO2007107388A3 (de) | 2008-05-08 |
Family
ID=37963632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2007/050425 WO2007107388A2 (de) | 2006-03-22 | 2007-01-17 | Wärmedämmschicht-system |
Country Status (8)
Country | Link |
---|---|
US (1) | US20100227198A1 (de) |
EP (1) | EP1996741A2 (de) |
JP (1) | JP2009530535A (de) |
KR (1) | KR20090008253A (de) |
CN (1) | CN101405422A (de) |
DE (1) | DE102006013215A1 (de) |
RU (1) | RU2433207C2 (de) |
WO (1) | WO2007107388A2 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1900708A1 (de) * | 2006-08-29 | 2008-03-19 | FNE Forschungsinstitut für Nichteisen-Metalle Freiberg GmbH | Wärmedämmstoff mit hoher zyklischer Temperaturbelastbarkeit |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011081112A1 (de) | 2011-08-17 | 2013-02-21 | Rolls-Royce Deutschland Ltd & Co Kg | Verfahren zur Herstellung eines Bauteils für hohe thermische Belastungen, ein Bauteil herstellbar mit dem Verfahren und ein Flugzeugtriebwerk mit dem Bauteil |
EP2780775A4 (de) | 2011-11-15 | 2015-08-26 | Henkel IP & Holding GmbH | Elektronische vorrichtungen mit thermisch isolierenden schichten |
WO2013074409A1 (en) | 2011-11-15 | 2013-05-23 | Henkel Corporation | Electronic devices assembled with thermally insulating layers |
US9223363B2 (en) | 2013-03-16 | 2015-12-29 | Henkel IP & Holding GmbH | Electronic devices assembled with heat absorbing and/or thermally insulating composition |
TWI657132B (zh) | 2013-12-19 | 2019-04-21 | 德商漢高智慧財產控股公司 | 具有基質及經密封相變材料分散於其中之組合物及以其組裝之電子裝置 |
US10337408B2 (en) | 2016-06-08 | 2019-07-02 | Mra Systems, Llc | Thermal insulation blanket and thermal insulation blanket assembly |
US10151216B2 (en) * | 2016-08-31 | 2018-12-11 | General Electric Technology Gmbh | Insulation quality indicator module for a valve and actuator monitoring system |
JP7372866B2 (ja) * | 2020-03-30 | 2023-11-01 | 三菱重工業株式会社 | セラミックスコーティング、タービン部材及びガスタービン |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5236787A (en) * | 1991-07-29 | 1993-08-17 | Caterpillar Inc. | Thermal barrier coating for metallic components |
US6258467B1 (en) * | 2000-08-17 | 2001-07-10 | Siemens Westinghouse Power Corporation | Thermal barrier coating having high phase stability |
US20020028344A1 (en) * | 1996-12-10 | 2002-03-07 | Wolfram Beele | Thermal barrier layer and process for producing the same |
US6365281B1 (en) * | 1999-09-24 | 2002-04-02 | Siemens Westinghouse Power Corporation | Thermal barrier coatings for turbine components |
US20020172837A1 (en) * | 1996-12-10 | 2002-11-21 | Allen David B. | Thermal barrier layer and process for producing the same |
US20040043261A1 (en) * | 2000-11-15 | 2004-03-04 | Markus Dietrich | Material for thermally loaded substrates |
US20040101699A1 (en) * | 2001-04-03 | 2004-05-27 | Robert Vassen | Heat insulating layer based on la2zr2o7 for high temperatures |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE8202802U1 (de) * | 1982-02-03 | 1983-03-03 | M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8900 Augsburg | Auslassventil fuer brennkraftmaschinen |
DE19820944A1 (de) * | 1998-04-30 | 1999-11-11 | Manuel Hertter | Katalysator |
US6007880A (en) * | 1998-07-17 | 1999-12-28 | United Technologies Corporation | Method for generating a ceramic coating |
JP3290976B2 (ja) * | 2000-03-30 | 2002-06-10 | 川崎重工業株式会社 | セラミックス遮熱コーティング |
US6444335B1 (en) * | 2000-04-06 | 2002-09-03 | General Electric Company | Thermal/environmental barrier coating for silicon-containing materials |
DE10117128A1 (de) * | 2001-04-06 | 2002-10-10 | Alstom Switzerland Ltd | Verfahren zur Herstellung von Verbundaufbauten zwischen metallischen und nichtmetallischen Materialien |
DE10122545A1 (de) * | 2001-05-09 | 2002-11-28 | Deutsch Zentr Luft & Raumfahrt | Wärmedämmmaterial mit im wesentlichen magnetoplumbitischer Kristallstruktur |
JP3876176B2 (ja) * | 2002-03-25 | 2007-01-31 | 三菱重工業株式会社 | 熱遮蔽コーティング膜用セラミック組成物 |
JP2004091269A (ja) * | 2002-08-30 | 2004-03-25 | Rikogaku Shinkokai | 多相セラミックス用溶融体ならびにその鋳造および被覆方法 |
US7094450B2 (en) * | 2003-04-30 | 2006-08-22 | General Electric Company | Method for applying or repairing thermal barrier coatings |
US20060177665A1 (en) * | 2003-08-13 | 2006-08-10 | Siemens Aktiengesellschaft | Arrangement of at least one heat-insulation layer on a carrier body |
EP1541810A1 (de) * | 2003-12-11 | 2005-06-15 | Siemens Aktiengesellschaft | Verwendung einer Wärmedämmschicht für ein Bauteil einer Dampfturbine und eine Dampfturbine |
US20050153160A1 (en) * | 2004-01-12 | 2005-07-14 | Yourong Liu | Durable thermal barrier coating having low thermal conductivity |
US7326470B2 (en) * | 2004-04-28 | 2008-02-05 | United Technologies Corporation | Thin 7YSZ, interfacial layer as cyclic durability (spallation) life enhancement for low conductivity TBCs |
-
2006
- 2006-03-22 DE DE200610013215 patent/DE102006013215A1/de not_active Withdrawn
-
2007
- 2007-01-17 JP JP2009500789A patent/JP2009530535A/ja active Pending
- 2007-01-17 EP EP07703928A patent/EP1996741A2/de not_active Ceased
- 2007-01-17 KR KR1020087025683A patent/KR20090008253A/ko not_active Application Discontinuation
- 2007-01-17 RU RU2008141774A patent/RU2433207C2/ru not_active IP Right Cessation
- 2007-01-17 US US12/225,326 patent/US20100227198A1/en not_active Abandoned
- 2007-01-17 WO PCT/EP2007/050425 patent/WO2007107388A2/de active Application Filing
- 2007-01-17 CN CNA2007800098474A patent/CN101405422A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5236787A (en) * | 1991-07-29 | 1993-08-17 | Caterpillar Inc. | Thermal barrier coating for metallic components |
US20020028344A1 (en) * | 1996-12-10 | 2002-03-07 | Wolfram Beele | Thermal barrier layer and process for producing the same |
US20020172837A1 (en) * | 1996-12-10 | 2002-11-21 | Allen David B. | Thermal barrier layer and process for producing the same |
US6365281B1 (en) * | 1999-09-24 | 2002-04-02 | Siemens Westinghouse Power Corporation | Thermal barrier coatings for turbine components |
US6258467B1 (en) * | 2000-08-17 | 2001-07-10 | Siemens Westinghouse Power Corporation | Thermal barrier coating having high phase stability |
US20040043261A1 (en) * | 2000-11-15 | 2004-03-04 | Markus Dietrich | Material for thermally loaded substrates |
US20040101699A1 (en) * | 2001-04-03 | 2004-05-27 | Robert Vassen | Heat insulating layer based on la2zr2o7 for high temperatures |
Non-Patent Citations (1)
Title |
---|
HAYASHI ET AL: "Thermal Expansion Coefficient of Yttria Stabilized Zirconia For Various Yttria Contents" SOLID STATE IONICS, Nr. 176, 2005, Seiten 613-619, XP002431801 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1900708A1 (de) * | 2006-08-29 | 2008-03-19 | FNE Forschungsinstitut für Nichteisen-Metalle Freiberg GmbH | Wärmedämmstoff mit hoher zyklischer Temperaturbelastbarkeit |
Also Published As
Publication number | Publication date |
---|---|
RU2008141774A (ru) | 2010-04-27 |
WO2007107388A3 (de) | 2008-05-08 |
KR20090008253A (ko) | 2009-01-21 |
CN101405422A (zh) | 2009-04-08 |
RU2433207C2 (ru) | 2011-11-10 |
JP2009530535A (ja) | 2009-08-27 |
EP1996741A2 (de) | 2008-12-03 |
DE102006013215A1 (de) | 2007-10-04 |
US20100227198A1 (en) | 2010-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007107388A2 (de) | Wärmedämmschicht-system | |
EP1064510B1 (de) | Wandsegment für einen brennraum sowie brennraum | |
DE102005050873B4 (de) | Verfahren zur Herstellung einer segmentierten Beschichtung und nach dem Verfahren hergestelltes Bauteil | |
DE60201079T2 (de) | Wärmedämmschicht mit unter der oberfläche vorliegenden einschlüssen für verbesserte temperaturwechselbeständigkeit | |
DE2808290C2 (de) | ||
EP1708846B1 (de) | Verfahren zur reparatur eines bauteils einer strömungsmaschine | |
EP2904130B1 (de) | Wärmedämmschicht, gasturbinenbauteil und verfahren zur beschichtung eines gasturbinenbauteils | |
EP2242866A1 (de) | Wärmedämmschichtsystem sowie verfahren zu seiner herstellung | |
EP2589872A2 (de) | Bauelement und Turbomaschine mit einem solchen Bauelement | |
DE112019002005T5 (de) | Keramik-aluminium-anordnung mit verbindenden gräben | |
EP1817528B1 (de) | Verfahren zur herstellung eines hitzeschildelementes | |
DE102012112867B4 (de) | Befestigungsanordnung für Bauteile mit unterschiedlichen thermischen Ausdehnungskoeffizienten | |
DE102013213834A1 (de) | Verfahren zum Herstellen eines Isolationselements und Isolationselement für ein Gehäuse eines Flugtriebwerks | |
EP1382707A1 (de) | Schichtsystem | |
EP2831303B1 (de) | Beschichtungsverfahren, oberflächenschichtstruktur sowie verwendungen | |
WO2019141438A1 (de) | Faserverbundwerkstoff mit keramischen fasern, bauteil, gasturbine und verfahren | |
DE102015207463A1 (de) | Gedrucktes Reparaturpflaster für Turbinenbauteile | |
DE10124398A1 (de) | Verfahren zur Aufbringung einer keramischen Schicht auf einen metallischen Grundkörper sowie Wärmedämmungsschichtsystem mit einer keramischen Schicht auf einem metallischen Grundkörper | |
EP2174370B1 (de) | Einzel-brennstoffzelle für einen brennstoffzellen-stapel | |
EP3347200B1 (de) | Turbinenschaufel mit einer lokalen, zweilagigen wärmedämmschicht | |
WO2021083857A1 (de) | Formschlüssiger und/oder kraftschlüssiger materialverbund | |
DE19640805C1 (de) | Verfahren zum Herstellen eines Hochtemperatur-Brennstoffzellenstapels | |
DE3319468C2 (de) | Keramik-Keramik-Verbindung und Verfahren zu ihrer Herstellung | |
WO2022038070A1 (de) | Beschichtung eines bauteils aus hochtemperaturbeständigen keramischen faserverbundwerkstoffen | |
EP1446366A2 (de) | Oxidkeramische faserverbundwerkstoffe und ihre verwendung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07703928 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007703928 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12225326 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200780009847.4 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009500789 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020087025683 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 2008141774 Country of ref document: RU Kind code of ref document: A |