WO2007107388A2 - Wärmedämmschicht-system - Google Patents

Wärmedämmschicht-system Download PDF

Info

Publication number
WO2007107388A2
WO2007107388A2 PCT/EP2007/050425 EP2007050425W WO2007107388A2 WO 2007107388 A2 WO2007107388 A2 WO 2007107388A2 EP 2007050425 W EP2007050425 W EP 2007050425W WO 2007107388 A2 WO2007107388 A2 WO 2007107388A2
Authority
WO
WIPO (PCT)
Prior art keywords
insulation layer
thermal insulation
thermal
layer system
coefficient
Prior art date
Application number
PCT/EP2007/050425
Other languages
English (en)
French (fr)
Other versions
WO2007107388A3 (de
Inventor
Stefan Lampenscherf
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP07703928A priority Critical patent/EP1996741A2/de
Priority to JP2009500789A priority patent/JP2009530535A/ja
Priority to US12/225,326 priority patent/US20100227198A1/en
Publication of WO2007107388A2 publication Critical patent/WO2007107388A2/de
Publication of WO2007107388A3 publication Critical patent/WO2007107388A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/312Layer deposition by plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/502Thermal properties
    • F05D2300/5021Expansivity
    • F05D2300/50212Expansivity dissimilar
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]

Definitions

  • the invention relates to a thermal barrier coating system having a first major side provided for placement adjacent a component to be thermally protected, and a second major side disposed adjacent to a hot environment for placement.
  • a prerequisite for the efficient use of ceramic thermal insulation layers in gas turbines is, in addition to a cost-effective process technology, above all the structural stability and thus the reliability of the thermal insulation layer under the typical operating conditions of the gas turbines.
  • a fault-free function over 25,000 operating hours must be guaranteed, which corresponds to the desired revision interval.
  • Premature failure of the thermal insulation layer would result in overheating of the base material and possibly lead to turbine damage.
  • the resulting downtime and repair costs can be significant and may negate the technological benefits of the thermal insulation layer.
  • the key parameter for increasing the efficiency of gas turbines is the turbine inlet temperature.
  • This goal can be achieved by using ceramic thermal insulation layers in addition to the use of improved base materials and effective cooling methods. It can by the thermal insulating effect of the ceramic thermal insulation layer while maintaining the same Kuhlungs complaint depending on the thickness of the thermal insulation layer permissible surface temperature increased by a few 100K.
  • the temperature resistance of the thermal insulation layer can be improved. As a result, the increasing compaction of the thermal insulation layer material and associated shrinkage processes of the thermal insulation layer at high temperature can be restricted.
  • phase transitions in a given temperature range eg. B. by stabilizing the tetragonal phase of Zr ⁇ 2 by an yttrium doping and the associated effects, eg. For example, a volume expansion during conversion leads to a significant reduction in the thermal barrier layer load.
  • a reduction in the damage of the thermal insulation layer is also caused by the adaptation of the coefficient of thermal expansion of the thermal insulation layer to the used metallic base material of the component to be thermally protected.
  • the size of the thermal expansion coefficient can be increased the strains resulting from thermal mismatch in the thermal barrier layer, particularly near the interface between the thermal barrier layer and the tie layer to the base material, are reduced.
  • a thermal barrier layer system has a first main side, which is intended to be arranged adjacent to a component to be thermally protected, and a second main side, which is intended to be arranged adjacent to a hot environment.
  • the thermal insulation layer system has sections with different temperature expansion coefficients.
  • the invention is based on the finding that by approximating the coefficient of thermal expansion of the thermal barrier layer and the base material of the component to be thermally protected, reducing the elongation of the thermal barrier layer near a boundary surface between the thermal barrier layer and a thermal barrier layer and the base material Adhesive layer can be achieved. Due to this, however, due to the large temperature difference between the second main side of the thermal barrier layer and the first main side of the thermal barrier layer forming the interface, significant strains may occur on the second major side. This may be the case in particular during the so-called heating or cooling shock. The strains increase with the magnitude of the thermal expansion coefficient of the thermal barrier layer and the temperature difference between the first and second major sides.
  • the invention proposes a thermal barrier layer system having sections with different thermal expansion coefficients.
  • a thermal barrier layer system having sections with different thermal expansion coefficients.
  • a first section of the thermal insulation layer system which borders on the component to be thermally protected, has a first coefficient of thermal expansion, which is adapted to the thermal expansion coefficient of the component. Furthermore, at least a second portion of the thermal insulation layer system has a second, smaller temperature expansion coefficient. The invention is thus based on the principle of reducing the temperature expansion coefficients in sections as the temperature rises above the thermal insulation layer system.
  • the second section adjoining the second main side has the smallest thermal expansion coefficient of the thermal barrier layer system, whereby the strains on the second main side of the thermal barrier layer system are minimized.
  • the second coefficient of thermal expansion of the second section adjacent to the second main side is selected such that the expansions on the second main side occurring in typical operating conditions lie within a specified range. This specified range can be determined by measuring the strain tolerance as a function of the temperature of the thermal barrier coating system. The optimal Great for the coefficient of thermal expansion can be obtained from the comparison of the results of stress simulations with the measured strain tolerance range.
  • the thermal insulation layer system is formed as a composite of a first thermal insulation layer, which faces the component to be thermally protected, and a second thermal insulation layer, which faces the hot environment.
  • the provision of only two thermal insulation layers represents the simplest possible construction, so that the thermal insulation layer system can be provided in a simple and relatively inexpensive manner. It is of course not excluded that the thermal insulation layer system is formed as a composite of more than two layers.
  • the first thermal insulation layer has a coefficient of thermal expansion in the range of 1.0-1O -5 K -1 .
  • the second layer of thermal insulation then in one embodiment comprises a coefficient of thermal expansion in the range of 8.0-10 "6 K " 1 .
  • the thermal insulation layer system may be formed from one of the following material combinations, wherein the first value denotes the material of the first thermal insulation layer and the second value denotes the material of the second thermal insulation layer:
  • the first and the second heat-insulating layer are joined together by a plasma spraying process.
  • FIG. 1 shows a cross section through an inventive thermal insulation layer system, which is applied to a thermally protected component
  • FIG. 2 shows an x-y diagram showing the strains on the surface of the thermal insulation layer occurring under typical operating conditions of a gas turbine engine.
  • FIG. 1 shows a cross-sectional illustration of a thermal barrier layer system 1 according to the invention.
  • the thermal barrier layer system 1 is applied to a first main side 2 via an adhesion promoter layer 31 on a component 30 to be thermally protected.
  • the thermally-protecting member 30 is made of e.g. from a metal, z. B. a nickel-based superalloy.
  • the thermally protected component 30 may, for example, represent the blade of a gas turbine.
  • With a second main side 3, the thermal insulation layer system 1 is exposed to a hot environment 4.
  • the thermal insulation layer system 1 has, for example, a first section 5 and a second section 6, each having different coefficients of thermal expansion CTE1, CTE2. While the first section 5 is adapted in its temperature expansion coefficient CTE1 to the temperature expansion coefficient of the material of the component 30, the material of the second section 6 is formed of a temperature-stable material having a lower coefficient of thermal expansion CTE2 than the first section 5 has.
  • the thermal insulation layer system 1 is formed as a composite of a thermal insulation layer 8 and a thermal insulation layer 9, which are connected to one another, for example, in the region of a boundary plane in a plasma spraying process. In this case, the thermal insulation layer 8 forms the first section 5 and the thermal insulation layer 9 forms the second section 6.
  • the risk of damaging the thermal insulation layer, in particular in the case of cooling can be significantly reduced.
  • the permissible surface temperature that is to say the temperature on the second main side 3 of the thermal insulation layer system, which results in increased efficiency in use in gas turbines, as described above.
  • the invention thus represents an extension of the previously proposed adaptation of the thermal expansion coefficient of the thermal insulation layer to the base material used of the component 30 by an additional adaptation to the expected spatial and temporal course of the temperature over the thickness of the thermal insulation layer system 1 In the thermal insulation layer or the thermal insulation layer system occurring mechanical loads are reduced and in particular the application limits are increased in relation to the maximum surface temperature.
  • the first and the second heat-insulating layer 8, 9 can be approximately the same thickness.
  • the total thickness of the inventive thermal insulation layer system 1 corresponds approximately to the thickness of a conventional thermal insulation layer.
  • the first heat-insulating layer adjoining the component 30 to be thermally protected consists, for example, of 7YSZ (zirconium oxide stabilized with 7% by weight of yttrium oxide), this material having a coefficient of thermal expansion of about 10 -5 K -1 at 1000 ° C. having.
  • the material of the second warning zone adjacent to the hot environment 4 Medical layer 9 is formed, for example, from one of the following materials, wherein the temperature expansion coefficient at 1000 ° C. is given in brackets in each case:
  • Fig. 2 shows the course of the elongation of the thermal insulation layer system 1 over its thickness x.
  • the normalized position x in the thermal barrier layer system 1 is plotted on the x-axis.
  • the interface that is, the first main page 2 of the thermal barrier layer system 1 to the primer layer 31 is marked.
  • X 1 is the surface, that is, the second main page 3, the thermal insulation layer system 1 characterized.
  • the strain is represented in the respective thermal barrier layers 8 (having a coefficient of thermal expansion CTE1) and 9 (having a thermal expansion coefficient CTE2) ("WDS expansion").
  • a negative value indicates a compressive strain, a positive value a tensile strain.
  • the figure shows the course of the elongation in an operating state after cooling. It is based on the assumption that the overall arrangement of the thermal insulation layer system 1, which is applied to the thermally protected component 30, during operation at high temperatures is free of stress.
  • DV1 denotes the strain course in the first heat-insulating layer 8, which is provided adjacent to the component 30 to be thermally protected.
  • DVl is provided with a solid line.
  • DV2 denotes the expansion curve in the second heat-insulating layer 9, which borders on the hot environment 4.
  • DV2 is shown with a broken line.
  • the stretching precursors DV1 and DV2 are shown here over the entire thickness x for the purpose of illustration.
  • DV3 designates the strain profile in the inventive thermal barrier coating system 1, which has a crack in the region of the boundary plane 7 formed between the first and the second thermal insulation layer 8, 9.
  • the reduced temperature expansion coefficient CTE2 causes the material of the second thermal insulation layer 9, that the expansions occurring under typical operating conditions at the surface of the thermal barrier coating system (x x of x-axis) the strain tolerance is located in a specified area DT.
  • the range DT can be determined by measuring the strain tolerance depending on the temperature of the thermal insulation layer system 1.
  • the expansion curve in the thermal insulation layer system 1 is caused not to be located in the tensile stretching region (compare strain curve DV3, which lies within the specified range DT in the region X 1 ). As a result, the entire arrangement damaging vertical stresses on the surface (second main page 3) can be avoided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Thermal Insulation (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Laminated Bodies (AREA)

Abstract

Um die Beständigkeit von Wärmedämmschichten, insbesondere unter den für Gasturbinen typischen Belastungen durch hohe Oberflächentemperaturen und Temperaturtransienten zu verbessern, wird ein Wärmedämmschicht-System (1) vorgeschlagen, das eine erste Hauptseite (4), die zur Anordnung angrenzend an ein thermisch zu schützendes Bauteil (30) vorgesehen ist, und das eine zweite Hauptseite (5), die zur Anordnung angrenzend an eine heiße Umgebung (2) vorgesehen ist. Das Wärmedämmschicht-System (1) weist Abschnitte (5,6) mit unterschiedlichen Temperaturausdehnungs-Koeffizienten auf.

Description

Beschreibung
Warmedammschicht-System
Die Erfindung betrifft ein Warmedammschicht-System mit einer ersten Hauptseite, die zur Anordnung angrenzend an ein thermisch zu schützendes Bauteil vorgesehen ist, und mit einer zweiten Hauptseite, die zur Anordnung angrenzend an eine heiße Umgebung vorgesehen ist.
Eine Voraussetzung für den effizienten Einsatz von keramischen Warmedammschichten in Gasturbinen ist neben einer kostengünstigen Prozess-Technologie vor allem die strukturelle Stabilität und damit die Zuverlässigkeit der Warmedammschicht unter den typischen Einsatzbedingungen der Gasturbinen. So muss beispielsweise im Bereich von Kraftwerksanwendungen eine störungsfreie Funktion über 25.000 Betriebsstunden garantiert werden, welche Zeit dem angestrebten Revisionsintervall entspricht. Ein vorzeitiges Versagen der Warmedammschicht wurde zur Uberhitzung des Grundwerkstoffs und möglicherweise zu einem Turbinenschaden fuhren. Die dadurch verursachten Betriebsausfall- und Instandsetzungskosten können erheblich sein und den technologischen Nutzen der Warmedammschicht unter Umstanden aufheben.
Auf dem Weg zu einer ressourcen- und umweltschonenden Energieerzeugung spielt die Effizienzsteigerung eine zentrale Rolle. Der entscheidende Parameter für die Effizienzsteigerung von Gasturbinen ist die Turbinen-Eintrittstemperatur. Um den Wirkungsgrad von Gasturbinen von ca. 38 % bei einer Turbinen-Eintrittstemperatur von 1230°C (ISO) auf 45 % zu steigern, ist eine Erhöhung der Turbinen-Eintrittstemperatur auf ca. 1350°C notwendig. Erreicht werden kann dieses Ziel unter Einsatz von keramischen Warmedammschichten neben der Verwen- düng verbesserter Grundwerkstoffe und effektiver Kuhlungsme- thoden . Dabei kann durch die thermisch isolierende Wirkung der keramischen Warmedammschicht unter Beibehaltung gleicher Kuhlungsbedingungen je nach Dicke der Warmedammschicht die zulassige Oberflachentemperatur um einige 100K gesteigert werden .
Um die Beständigkeit von Warmedammschichten unter den für Gasturbinen typischen Belastungen durch hohe Oberflachentemperaturen und Temperaturtransienten gewahrleisten und verbessern zu können, sind aus dem Stand der Technik verschiedene Möglichkeiten bekannt:
1. Durch die Verwendung sinter resistenter Keramikmaterialien kann die Temperaturresistenz der Warmedammschicht verbessert werden. Hierdurch kann die zunehmende Verdichtung des Warmedammschicht-Materials und damit verbundene Schwin- dungsvorgange der Warmedammschicht bei hoher Temperatur eingeschränkt werden.
2. Durch das gezielte Einbringen von Mikrorissen oder Grabenstrukturen, so genannter Engravings, in die Warmedammschicht kann die Dehnungstoleranz der Warmedammschicht er- höht werden. Hierbei wird ein enges Netz von Entlastungsrissen und Entlastungsgraben gezielt erzeugt, wodurch die Belastungsgrenze für das Entstehen einschneidender Defekte erhöht werden kann.
3. Die Unterdrückung von Phasenubergangen in einem vorgegebenen Temperaturbereich, z. B. durch Stabilisierung der tetragonalen Phase von Zrθ2 durch eine Yttrium-Dotierung und der damit verbundenen Effekte, z. B. eine Volumendehnung bei Umwandlung, fuhrt zu einer deutlichen Verringe- rung der Warmedammschicht-Belastung .
4. Eine Reduktion der Schädigung der Warmedammschicht wird auch durch die Anpassung des Temperaturausdehnungs- Koeffizienten der Warmedammschicht an das verwendete me- tallische Grundmaterial des thermisch zu schutzenden Bauteils bewirkt. Durch das Angleichen des Warmeausdehnungs- Koeffizienten der Warmedammschicht an den Temperaturaus- dehnungs-Koeffizienten des Grundmaterials kann die Große der durch thermische Fehlanpassung in der Warmedammschicht entstehenden Dehnungen besonders in der Nahe der Grenzflache zwischen der Warmedammschicht und der Haftvermittlerschicht zum Grundmaterial verringert werden.
Es ist Aufgabe der Erfindung, die Beständigkeit von Warme- dammschichten, insbesondere unter den für Gasturbinen typischen Belastungen durch hohe Oberflachentemperaturen und Tem- peraturtransienten weiter zu verbessern.
Diese Aufgabe wird durch ein Warmedammschicht-System mit den Merkmalen des Anspruches 1 gelost. Vorteilhafte Ausgestaltungen ergeben sich aus den abhangigen Ansprüchen.
Ein erfindungsgemaßes Warmedammschicht-System weist eine erste Hauptseite, die zur Anordnung angrenzend an ein thermisch zu schützendes Bauteil vorgesehen ist und eine zweite Hauptseite, die zur Anordnung angrenzend an eine heiße Umgebung vorgesehen ist, auf. Erfindungsgemaß weist das Warmedamm- schicht-System Abschnitte mit unterschiedlichen Temperatu- rausdehnungs-Koeffizienten auf.
Der Erfindung liegt die Erkenntnis zugrunde, dass durch eine Angleichung des Temperaturausdehnungs-Koeffizienten der War- medammschicht und des Grundmaterials des thermisch zu schutzenden Bauteils zwar eine Verringerung der Dehnung der Warmedammschicht in der Nahe einer Grenzflache zwischen der Warmedammschicht und einer die Warmedammschicht und das Grundmaterial verbindenden Haftvermittlerschicht erreicht werden kann. Hierdurch bedingt können jedoch aufgrund des großen Temperaturunterschieds zwischen der zweiten Hauptseite der Warmedammschicht und der ersten Hauptseite der Warmedammschicht, welche die Grenzflache ausbildet, erhebliche Dehnungen an der zweiten Hauptseite auftreten. Dies kann insbesondere beim so genannten Aufheiz- oder Abkuhlschock der Fall sein. Die Dehnungen nehmen dabei mit der Große des Temperaturausdehnungs- Koeffizienten der Warmedammschicht und dem Temperaturunterschied zwischen der ersten und der zweiten Hauptseite zu. Ei- ne einseitige Anpassung des Temperaturausdehnungs-Koeffizien- ten der Warmedammschicht an den relativ großen Temperaturausdehnungs-Koeffizienten des Grundmaterials, das in der Regel aus einem Metall (z. B. Nickel-Basis-Superlegierung) besteht, wirkt sich deshalb an der zweiten Hauptseite nachteilig aus. Insbesondere mit dem eingangs erwähnten Trend zu höheren O- berflachentemperaturen ist ein zunehmendes Schadigungsrisiko gegeben .
Zur Umgehung dieser Problematik schlagt die Erfindung deshalb ein Warmedammschicht-System vor, das Abschnitte mit unterschiedlichen Temperaturausdehnungs-Koeffizienten aufweist. Damit können zu große Dehnungen im Bereich der zweiten Hauptseite des Warmedammschicht-Systems vermieden werden. Das Schadigungsrisiko ist damit verringert.
Insbesondere ist vorgesehen, dass ein erster Abschnitt des Warmedammschicht-Systems, der an das thermisch zu schutzende Bauteil grenzt, einen ersten Warmeausdehnungs-Koeffizienten aufweist, der an den Warmeausdehnungs-Koeffizienten des Bauteils angepasst ist. Weiter weist zumindest ein zweiter Abschnitt des Warmedammschicht-Systems einen zweiten, kleineren Temperaturausdehnungs-Koeffizienten auf. Der Erfindung liegt damit das Prinzip zugrunde, den Temperaturausdehnungs- Koeffizienten abschnittsweise mit zunehmender Temperatur über das Warmedammschicht-System zu verringern.
Der an die zweite Hauptseite grenzende zweite Abschnitt weist den kleinsten Temperaturausdehnungs-Koeffizienten des Warme- dammschicht-Systems auf, womit die Dehnungen an der zweiten Hauptseite des Warmedammschicht-Systems minimiert sind. Der zweite Temperaturausdehnungs-Koeffizient des an die zweite Hauptseite grenzenden zweiten Abschnitts ist derart gewählt, dass die in typischen Betriebsbedingungen auftretenden Deh- nungen an der zweiten Hauptseite in einem spezifizierten Bereich liegen. Dieser spezifizierte Bereich kann durch die Messung der Dehnungstoleranz in Abhängigkeit der Temperatur des Warmedammschicht-Systems bestimmt werden. Die optimale Große für den Temperaturausdehnungs-Koeffizienten kann aus dem Vergleich der Ergebnisse von Belastungssimulationen mit dem gemessenen Dehnungstoleranzbereich ermittelt werden.
Es ist ausreichend, wenn das Warmedammschicht-System als Verbund aus einer ersten Warmedammschicht, die dem thermisch zu schutzenden Bauteil zugewandt ist, und einer zweiten Warmedammschicht, die der heißen Umgebung zugewandt ist, ausgebildet ist. Das Vorsehen lediglich zweier Warmedammschichten stellt den einfachst möglichen Aufbau dar, so dass das Warmedammschicht-System auf einfache und verhältnismäßig kostengünstige Weise bereitstellbar ist. Es ist naturlich nicht ausgeschlossen, dass das Warmedammschicht-System als Verbund aus mehr als zwei Schichten gebildet ist.
Es hat sich als zweckmäßig herausgestellt, wenn die erste Warmedammschicht einen Warmeausdehnungs-Koeffizienten im Bereich von 1,0-1O-5K-1 aufweist. Die zweite Warmedammschicht umfasst dann in einer Ausfuhrungsform einen Warmeausdehnungs- Koeffizienten im Bereich von 8,0-10"6K"1.
Das Warmedammschicht-System kann aus einer der folgenden Materialkombinationen gebildet sein, wobei der erste Wert das Material der ersten Warmedammschicht und der zweite Wert das Material der zweiten Warmedammschicht bezeichnet:
- 7YSZ/La2Hf2O7;
- 7YSZ/BaZrO3;
- 7YSZ/LaYbO3, wobei 7YSZ = Zirkonoxid, stabilisiert mit 7 Gew.-% Yttrium- oxid ist. Bei einer Temperatur von 1000°C sind die Temperaturausdehnungs-Koeffizienten CTE wie folgt:
- CTE7YSz ~ 10 "5K" 1 ;
- CTELaHf0 ~ 8 , 0 - 1 0 " 6K" 1 ;
- CTEßazro ~ 8 , 3 - 1 0 K ; - CTELaYb0 ~ 8 , 6 - 1 0 " 6K" 1 . Zur Erreichung einer hohen mechanischen Stabilität sind die erste und die zweite Warmedammschicht durch ein Plasma- Spritzverfahren miteinander verbunden.
Die Erfindung und deren Vorteile werden nachfolgend anhand der Figuren naher erläutert. Es zeigen:
Fig. 1 einen Querschnitt durch ein erfindungsgemaßes War- medammschicht-System, das auf einem thermisch zu schutzenden Bauteil aufgebracht ist, und
Fig. 2 ein x-y-Diagramm, aus dem die bei typischen Betriebsbedingungen einer Gasturbinen auftretenden Dehnungen an der Oberflache der Warmedammschicht dargestellt sind.
Fig. 1 zeigt in einer Querschnittsdarstellung ein erfindungs- gemaßes Warmedammschicht-System 1. Das Warmedammschicht- System 1 ist mit einer ersten Hauptseite 2 über eine Haftver- mittlerschicht 31 auf einem thermisch zu schutzenden Bauteil 30 aufgebracht. Das thermisch zu schutzende Bauteil 30 besteht z.B. aus einem Metall, z. B. einer Nickel-Basis- Superlegierung . Das thermisch zu schutzende Bauteil 30 kann beispielsweise die Schaufel einer Gasturbine darstellen. Mit einer zweiten Hauptseite 3 ist das Warmedammschicht-System 1 einer heißen Umgebung 4 ausgesetzt.
Das Warmedammschicht-System 1 weist beispielhaft einen ersten Abschnitt 5 und einen zweiten Abschnitt 6 mit jeweils unter- schiedlichen Temperaturausdehnungs-Koeffizienten CTEl, CTE2 auf. Wahrend der erste Abschnitt 5 in seinem Temperaturausdehnungs-Koeffizienten CTEl an den Temperaturausdehnungs- Koeffizienten des Materials des Bauteils 30 angepasst ist, ist das Material des zweiten Abschnitts 6 aus einem tempera- turstabilen Material gebildet, das einen geringeren Temperaturausdehnungs-Koeffizienten CTE2 als der erste Abschnitt 5 aufweist . Das Warmedammschicht-System 1 ist als Verbund aus einer War- medammschicht 8 und einer Warmedammschicht 9 gebildet, die beispielsweise in einem Plasma-Spritzverfahren im Bereich einer Grenzebene miteinander verbunden sind. Dabei bildet die Warmedammschicht 8 den ersten Abschnitt 5 und die Warmedammschicht 9 den zweiten Abschnitt 6.
Durch die abschnittsweise unterschiedlichen Temperaturausdeh- nungs-Koeffizienten des Warmedammschicht-Systems 1 kann das Schadigungsrisiko der Warmedammschicht, insbesondere im Fall einer Abkühlung, signifikant verringert werden. Andererseits ergibt sich auch die Möglichkeit einer Erhöhung der zulassigen Oberflachentemperatur, das heißt der Temperatur an der zweiten Hauptseite 3, des Warmedammschicht-Systems, wodurch sich, wie eingangs beschrieben, eine erhöhte Effizienz bei der Verwendung in Gasturbinen ergibt.
Die Erfindung stellt damit eine Erweiterung der bisher vorgesehenen Anpassung des Temperaturausdehnungs-Koeffizienten der Warmedammschicht an das verwendete Grundmaterial des Bauteils 30 durch eine zusatzliche Anpassung an den zu erwartenden raumlichen und zeitlichen Verlauf der Temperatur über die Dicke des Warmedammschicht-Systems 1 dar. Dadurch können die in der Warmedammschicht bzw. dem Warmedammschicht-System auftre- tenden mechanischen Belastungen reduziert werden und insbesondere die Einsatzgrenzen in Bezug auf die maximale Oberflachentemperatur erhöht werden.
Wie in der Fig. 1 beispielhaft dargestellt, können die erste und die zweite Warmedammschicht 8, 9 in etwa gleich dick sein. Die Gesamtdicke des erfindungsgemaßen Warmedammschicht- Systems 1 entspricht dabei in etwa der Dicke einer herkömmlichen Warmedammschicht. Die an das thermisch zu schutzende Bauteil 30 angrenzende erste Warmedammschicht besteht bei- spielsweise aus 7YSZ (Zirkonoxid, stabilisiert mit 7 Gew.-% Yttriumoxid) , wobei dieses Material einen Temperaturausdehnungs-Koeffizienten von ca. 1O-5K-1 bei 1000 °C aufweist. Das Material der an die heiße Umgebung 4 grenzenden zweiten War- medammschicht 9 ist beispielsweise aus einem der folgenden Materialien gebildet, wobei in Klammern jeweils der Tempera- turausdehnungs-Koeffizient bei 1000°C angegeben ist:
- 7YSZ/La2Hf2O7, wobei CTELaHfo (1000°C) ~ 8, 0 10"6K"1; - 7YSZ/BaZrO3, wobei CTEBazro 1000 ° C ) ~ 8 , 3 10 " 6K- i
- 7YSZ/LaYbO3, wobei CTELaYb0 1000 ° C ) ~ 8 , 6 6K- i
10 "
Fig. 2 zeigt den Verlauf der Dehnung des Warmedammschicht- Systems 1 über dessen Dicke x. Auf der x-Achse ist die nor- mierte Position x in dem Warmedammschicht-System 1 aufgetragen. Mit Xo ist die Grenzflache (das heißt die erste Hauptseite 2) des Warmedammschicht-Systems 1 zur Haftvermittlerschicht 31 gekennzeichnet. Mit X1 ist die Oberflache, das heißt die zweite Hauptseite 3, des Warmedammschicht-Systems 1 gekennzeichnet. Auf der y-Achse ist die Dehnung in den jeweiligen Warmedammschichten 8 (mit einem Temperaturausdehnungskoeffizienten CTEl) und 9 (mit einem Temperaturausdehnungskoeffizienten CTE2) dargestellt ("WDS Dehnung") . Ein negativer Wert bezeichnet dabei eine Druckdehnung, ein positiver Wert eine Zugdehnung.
Die Figur zeigt den Verlauf der Dehnung in einem Betriebszustand nach einer Abkühlung. Es wird dabei die Annahme zugrunde gelegt, dass die Gesamtanordnung aus dem Warmedammschicht- System 1, das auf dem thermisch zu schutzenden Bauteil 30 aufgebracht ist, wahrend des Betriebs bei hohen Temperaturen spannungsfrei ist.
Zur besseren Veranschaulichung der Erfindung sind in dem Dia- gramm insgesamt drei Dehnungsverlaufe DVl, DV2 und DV3 eingezeichnet. DVl bezeichnet den Dehnungsverlauf in der ersten Warmedammschicht 8, welche angrenzend an das thermisch zu schutzende Bauteil 30 vorgesehen ist. DVl ist mit einer durchgehenden Linie versehen. DV2 bezeichnet den Dehnungsver- lauf in der zweiten Warmedammschicht 9, welche an die heiße Umgebung 4 grenzt. DV2 ist mit einer durchbrochenen Linie dargestellt. Die Dehnungsvorlaufe DVl und DV2 sind dabei zwecks Illustration jeweils über die gesamte Dicke x einge- zeichnet, und nicht nur in der betreffenden Warmedammschicht 8 bzw. 9. DV3 bezeichnet schließlich den Dehnungsverlauf in dem erfindungsgemaßen Warmedammschicht-System 1, der im Bereich der zwischen der ersten und der zweiten Warmedamm- schicht 8, 9 gebildeten Grenzebene 7 einen Sprung aufweist.
Der reduzierte Temperaturausdehnungs-Koeffizient CTE2 des Materials der zweiten Warmedammschicht 9 bewirkt, dass die bei typischen Betriebsbedingungen auftretenden Dehnungen an der Oberflache des Warmedammschicht-Systems (xx der x-Achse) in einem spezifizierten Bereich DT der Dehnungstoleranz liegt. Der Bereich DT kann durch eine Messung der Dehnungstoleranz in Abhängigkeit der Temperatur des Warmedammschicht-Systems 1 bestimmt werden. Der optimale Wert des Temperaturausdehnungs- Koeffizienten, der sich in der Steigung des im Bereich zwischen x=0, 5 und x=l, 0 verlaufenden Abschnitts der Kurve gelegen ist, muss dann aus dem Vergleich der Ergebnisse einer Belastungssimulation mit gemessenen Dehnungstoleranzbereichen ermittelt werden.
Durch das erfindungsgemaße Vorgehen ist bewirkt, dass der Dehnungsverlauf in dem Warmedammschicht-System 1 nicht im Zugdehnungsbereich gelegen ist (vgl. Dehnungsverlauf DV3, der im Bereich X1 innerhalb des spezifizierten Bereichs DT liegt) . Hierdurch können die die Gesamtanordnung schädigenden Vertikalspannungen an der Oberflache (zweite Hauptseite 3) vermieden werden.

Claims

Patentansprüche
1. Warmedammschicht-System (1) mit einer ersten Hauptseite (4), die zur Anordnung angrenzend an ein thermisch zu schut- zendes Bauteil (30) vorgesehen ist, und mit einer zweiten Hauptseite (5), die zur Anordnung angrenzend an eine heiße Umgebung (2) vorgesehen ist, wobei das Warmedammschicht- System (1) Abschnitte (5, 6) mit unterschiedlichen Temperatu- rausdehnungs-Koeffizienten aufweist .
2. Warmedammschicht-System nach Anspruch 1, dadurch gekennzeichnet, dass ein erster Abschnitt (5) des Warmedammschicht-Systems (1), der an das thermisch zu schutzende Bauteil (30) grenzt, einen ersten Warmeausdehnungs-Koeffizienten aufweist, der an den Warmeausdehnungs-Koeffizienten des Bauteils (30) angepasst ist, und zumindest ein zweiter Abschnitt (6) des Warmedammschicht- Systems (1) einen zweiten, kleineren Temperaturausdeh- nungs-Koeffizienten aufweist.
3. Warmedammschicht-System nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der an die zweite Hauptseite (5) grenzende zweite Abschnitt (6) den kleinsten Temperaturausdehnungs-Koeffizienten des Warmedammschicht-Systems (1) aufweist.
4. Warmedammschicht-System nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der zweite Temperaturausdehnungs-Koeffizient des an die zweite Hauptseite (5) grenzenden zweiten Abschnitts (6) derart gewählt ist, dass die in typischen Betriebsbedingungen auftretenden Dehnungen an der zweiten Hauptseite (5) in einem spezifizierten Bereich liegen.
5. Warmedammschicht-System nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass dieses als Verbund aus einer ersten Warmedammschicht (8), die dem thermisch zu schutzenden Bauteil zugewandt ist, und einer zweiten Warmedammschicht (9), die der heißen Umgebung (4) zu- gewandt ist, ausgebildet ist.
6. Warmedammschicht-System nach Anspruch 5, dadurch gekennzeichnet, dass die erste Warmedammschicht (8) einen Temperaturausdehnungs- Koeffizienten im Bereich von 1,0- 10"5K"1 aufweist.
7. Warmedammschicht-System nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die zweite Warmedammschicht (9) einen Temperaturausdehnungs- Koeffizienten im Bereich von 8,0- 10"6K"1 aufweist.
8. Warmedammschicht-System nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass dieses aus einer der folgenden Materialkombinationen gebildet ist, wobei der erste Wert das Material der ersten Warmedammschicht (8) und der zweite Wert das Material der zweiten Warmedammschicht (9) bezeichnet:
- 7YSZ/La2Hf2O7;
- 7YSZ/BaZrO3; - 7YSZ/LaYbO3, wobei 7YSZ = Zirkonoxid, stabilisiert mit 7 Gew.-% Yttriumoxid ist.
9. Warmedammschicht-System nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass die erste und die zweite Warmedammschicht (8, 9) durch ein Plasma-Spritzverfahren miteinander verbunden sind.
PCT/EP2007/050425 2006-03-22 2007-01-17 Wärmedämmschicht-system WO2007107388A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07703928A EP1996741A2 (de) 2006-03-22 2007-01-17 Wärmedämmschicht-system
JP2009500789A JP2009530535A (ja) 2006-03-22 2007-01-17 遮熱層システム
US12/225,326 US20100227198A1 (en) 2006-03-22 2007-01-17 Thermal Insulation Layer System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006013215.7 2006-03-22
DE200610013215 DE102006013215A1 (de) 2006-03-22 2006-03-22 Wärmedämmschicht-System

Publications (2)

Publication Number Publication Date
WO2007107388A2 true WO2007107388A2 (de) 2007-09-27
WO2007107388A3 WO2007107388A3 (de) 2008-05-08

Family

ID=37963632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/050425 WO2007107388A2 (de) 2006-03-22 2007-01-17 Wärmedämmschicht-system

Country Status (8)

Country Link
US (1) US20100227198A1 (de)
EP (1) EP1996741A2 (de)
JP (1) JP2009530535A (de)
KR (1) KR20090008253A (de)
CN (1) CN101405422A (de)
DE (1) DE102006013215A1 (de)
RU (1) RU2433207C2 (de)
WO (1) WO2007107388A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1900708A1 (de) * 2006-08-29 2008-03-19 FNE Forschungsinstitut für Nichteisen-Metalle Freiberg GmbH Wärmedämmstoff mit hoher zyklischer Temperaturbelastbarkeit

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011081112A1 (de) 2011-08-17 2013-02-21 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Herstellung eines Bauteils für hohe thermische Belastungen, ein Bauteil herstellbar mit dem Verfahren und ein Flugzeugtriebwerk mit dem Bauteil
EP2780775A4 (de) 2011-11-15 2015-08-26 Henkel IP & Holding GmbH Elektronische vorrichtungen mit thermisch isolierenden schichten
WO2013074409A1 (en) 2011-11-15 2013-05-23 Henkel Corporation Electronic devices assembled with thermally insulating layers
US9223363B2 (en) 2013-03-16 2015-12-29 Henkel IP & Holding GmbH Electronic devices assembled with heat absorbing and/or thermally insulating composition
TWI657132B (zh) 2013-12-19 2019-04-21 德商漢高智慧財產控股公司 具有基質及經密封相變材料分散於其中之組合物及以其組裝之電子裝置
US10337408B2 (en) 2016-06-08 2019-07-02 Mra Systems, Llc Thermal insulation blanket and thermal insulation blanket assembly
US10151216B2 (en) * 2016-08-31 2018-12-11 General Electric Technology Gmbh Insulation quality indicator module for a valve and actuator monitoring system
JP7372866B2 (ja) * 2020-03-30 2023-11-01 三菱重工業株式会社 セラミックスコーティング、タービン部材及びガスタービン

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236787A (en) * 1991-07-29 1993-08-17 Caterpillar Inc. Thermal barrier coating for metallic components
US6258467B1 (en) * 2000-08-17 2001-07-10 Siemens Westinghouse Power Corporation Thermal barrier coating having high phase stability
US20020028344A1 (en) * 1996-12-10 2002-03-07 Wolfram Beele Thermal barrier layer and process for producing the same
US6365281B1 (en) * 1999-09-24 2002-04-02 Siemens Westinghouse Power Corporation Thermal barrier coatings for turbine components
US20020172837A1 (en) * 1996-12-10 2002-11-21 Allen David B. Thermal barrier layer and process for producing the same
US20040043261A1 (en) * 2000-11-15 2004-03-04 Markus Dietrich Material for thermally loaded substrates
US20040101699A1 (en) * 2001-04-03 2004-05-27 Robert Vassen Heat insulating layer based on la2zr2o7 for high temperatures

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8202802U1 (de) * 1982-02-03 1983-03-03 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8900 Augsburg Auslassventil fuer brennkraftmaschinen
DE19820944A1 (de) * 1998-04-30 1999-11-11 Manuel Hertter Katalysator
US6007880A (en) * 1998-07-17 1999-12-28 United Technologies Corporation Method for generating a ceramic coating
JP3290976B2 (ja) * 2000-03-30 2002-06-10 川崎重工業株式会社 セラミックス遮熱コーティング
US6444335B1 (en) * 2000-04-06 2002-09-03 General Electric Company Thermal/environmental barrier coating for silicon-containing materials
DE10117128A1 (de) * 2001-04-06 2002-10-10 Alstom Switzerland Ltd Verfahren zur Herstellung von Verbundaufbauten zwischen metallischen und nichtmetallischen Materialien
DE10122545A1 (de) * 2001-05-09 2002-11-28 Deutsch Zentr Luft & Raumfahrt Wärmedämmmaterial mit im wesentlichen magnetoplumbitischer Kristallstruktur
JP3876176B2 (ja) * 2002-03-25 2007-01-31 三菱重工業株式会社 熱遮蔽コーティング膜用セラミック組成物
JP2004091269A (ja) * 2002-08-30 2004-03-25 Rikogaku Shinkokai 多相セラミックス用溶融体ならびにその鋳造および被覆方法
US7094450B2 (en) * 2003-04-30 2006-08-22 General Electric Company Method for applying or repairing thermal barrier coatings
US20060177665A1 (en) * 2003-08-13 2006-08-10 Siemens Aktiengesellschaft Arrangement of at least one heat-insulation layer on a carrier body
EP1541810A1 (de) * 2003-12-11 2005-06-15 Siemens Aktiengesellschaft Verwendung einer Wärmedämmschicht für ein Bauteil einer Dampfturbine und eine Dampfturbine
US20050153160A1 (en) * 2004-01-12 2005-07-14 Yourong Liu Durable thermal barrier coating having low thermal conductivity
US7326470B2 (en) * 2004-04-28 2008-02-05 United Technologies Corporation Thin 7YSZ, interfacial layer as cyclic durability (spallation) life enhancement for low conductivity TBCs

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236787A (en) * 1991-07-29 1993-08-17 Caterpillar Inc. Thermal barrier coating for metallic components
US20020028344A1 (en) * 1996-12-10 2002-03-07 Wolfram Beele Thermal barrier layer and process for producing the same
US20020172837A1 (en) * 1996-12-10 2002-11-21 Allen David B. Thermal barrier layer and process for producing the same
US6365281B1 (en) * 1999-09-24 2002-04-02 Siemens Westinghouse Power Corporation Thermal barrier coatings for turbine components
US6258467B1 (en) * 2000-08-17 2001-07-10 Siemens Westinghouse Power Corporation Thermal barrier coating having high phase stability
US20040043261A1 (en) * 2000-11-15 2004-03-04 Markus Dietrich Material for thermally loaded substrates
US20040101699A1 (en) * 2001-04-03 2004-05-27 Robert Vassen Heat insulating layer based on la2zr2o7 for high temperatures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAYASHI ET AL: "Thermal Expansion Coefficient of Yttria Stabilized Zirconia For Various Yttria Contents" SOLID STATE IONICS, Nr. 176, 2005, Seiten 613-619, XP002431801 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1900708A1 (de) * 2006-08-29 2008-03-19 FNE Forschungsinstitut für Nichteisen-Metalle Freiberg GmbH Wärmedämmstoff mit hoher zyklischer Temperaturbelastbarkeit

Also Published As

Publication number Publication date
RU2008141774A (ru) 2010-04-27
WO2007107388A3 (de) 2008-05-08
KR20090008253A (ko) 2009-01-21
CN101405422A (zh) 2009-04-08
RU2433207C2 (ru) 2011-11-10
JP2009530535A (ja) 2009-08-27
EP1996741A2 (de) 2008-12-03
DE102006013215A1 (de) 2007-10-04
US20100227198A1 (en) 2010-09-09

Similar Documents

Publication Publication Date Title
WO2007107388A2 (de) Wärmedämmschicht-system
EP1064510B1 (de) Wandsegment für einen brennraum sowie brennraum
DE102005050873B4 (de) Verfahren zur Herstellung einer segmentierten Beschichtung und nach dem Verfahren hergestelltes Bauteil
DE60201079T2 (de) Wärmedämmschicht mit unter der oberfläche vorliegenden einschlüssen für verbesserte temperaturwechselbeständigkeit
DE2808290C2 (de)
EP1708846B1 (de) Verfahren zur reparatur eines bauteils einer strömungsmaschine
EP2904130B1 (de) Wärmedämmschicht, gasturbinenbauteil und verfahren zur beschichtung eines gasturbinenbauteils
EP2242866A1 (de) Wärmedämmschichtsystem sowie verfahren zu seiner herstellung
EP2589872A2 (de) Bauelement und Turbomaschine mit einem solchen Bauelement
DE112019002005T5 (de) Keramik-aluminium-anordnung mit verbindenden gräben
EP1817528B1 (de) Verfahren zur herstellung eines hitzeschildelementes
DE102012112867B4 (de) Befestigungsanordnung für Bauteile mit unterschiedlichen thermischen Ausdehnungskoeffizienten
DE102013213834A1 (de) Verfahren zum Herstellen eines Isolationselements und Isolationselement für ein Gehäuse eines Flugtriebwerks
EP1382707A1 (de) Schichtsystem
EP2831303B1 (de) Beschichtungsverfahren, oberflächenschichtstruktur sowie verwendungen
WO2019141438A1 (de) Faserverbundwerkstoff mit keramischen fasern, bauteil, gasturbine und verfahren
DE102015207463A1 (de) Gedrucktes Reparaturpflaster für Turbinenbauteile
DE10124398A1 (de) Verfahren zur Aufbringung einer keramischen Schicht auf einen metallischen Grundkörper sowie Wärmedämmungsschichtsystem mit einer keramischen Schicht auf einem metallischen Grundkörper
EP2174370B1 (de) Einzel-brennstoffzelle für einen brennstoffzellen-stapel
EP3347200B1 (de) Turbinenschaufel mit einer lokalen, zweilagigen wärmedämmschicht
WO2021083857A1 (de) Formschlüssiger und/oder kraftschlüssiger materialverbund
DE19640805C1 (de) Verfahren zum Herstellen eines Hochtemperatur-Brennstoffzellenstapels
DE3319468C2 (de) Keramik-Keramik-Verbindung und Verfahren zu ihrer Herstellung
WO2022038070A1 (de) Beschichtung eines bauteils aus hochtemperaturbeständigen keramischen faserverbundwerkstoffen
EP1446366A2 (de) Oxidkeramische faserverbundwerkstoffe und ihre verwendung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07703928

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007703928

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12225326

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780009847.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009500789

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087025683

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2008141774

Country of ref document: RU

Kind code of ref document: A