WO2022038070A1 - Beschichtung eines bauteils aus hochtemperaturbeständigen keramischen faserverbundwerkstoffen - Google Patents

Beschichtung eines bauteils aus hochtemperaturbeständigen keramischen faserverbundwerkstoffen Download PDF

Info

Publication number
WO2022038070A1
WO2022038070A1 PCT/EP2021/072668 EP2021072668W WO2022038070A1 WO 2022038070 A1 WO2022038070 A1 WO 2022038070A1 EP 2021072668 W EP2021072668 W EP 2021072668W WO 2022038070 A1 WO2022038070 A1 WO 2022038070A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
component
water vapor
vapor barrier
coating
Prior art date
Application number
PCT/EP2021/072668
Other languages
English (en)
French (fr)
Inventor
Jan Oke PETER
Thomas Gartner
Vito LEISNER
Uwe Schulz
Original Assignee
Lufthansa Technik Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lufthansa Technik Ag filed Critical Lufthansa Technik Ag
Publication of WO2022038070A1 publication Critical patent/WO2022038070A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/226Carbides
    • F05D2300/2261Carbides of silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/501Elasticity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/502Thermal properties
    • F05D2300/5021Expansivity
    • F05D2300/50211Expansivity similar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/608Microstructure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a method for producing a coating on at least part of the surface of a component made of high-temperature-resistant ceramic fiber composite materials to protect against environmental influences, and a component with a corresponding coating.
  • Components made of ceramic fiber composite materials are increasingly being used, particularly in areas with high thermal loads.
  • SiC-SiC material silicon carbide fibers and matrix at least based on silicon carbide
  • SiO2 silicon oxide
  • an environmentally stable protective layer is generally provided on the surface of the corresponding materials.
  • the protective layer that is stable in the environment and protects the material from unwanted reactions with the surrounding gas - in the case of turbine blades in an aircraft engine, for example. the combustion gas - are intended to protect are regularly attached to the substrate with a Sili zium adhesive layer. It has been shown that in the case of known ceramic fiber composite materials with an environmentally stable protective layer attached thereto by a silicon adhesive layer, the protective layer can flake off prematurely in a hot, steam-containing environment.
  • Silicon oxide can therefore also form at the interface between the silicon adhesion layer and the protective layer that is stable in the environment. If water vapor continues to reach the silicon oxide at high gas temperatures, the silicon oxide evaporates and pores form along the interface. If there is an additional high mechanical load, the individual pores will fuse together, induced by cracks, and the protective layer that is stable in the environment will flake off accordingly.
  • the silicone bonding layer is then removed in a manner comparable to the process already explained for non-oxidic ceramic fiber composites, before the component thickness is reduced, as described, and the strength of the component made of non-oxidic ceramic fiber composites ultimately results .
  • the object of the present invention is to create a method for producing a coating on at least part of the surface of a component made of high-temperature-resistant ceramic fiber composite materials to protect against environmental influences and a component with a corresponding coating in which the disadvantages of the prior art do not exist occur more or only to a reduced extent.
  • the invention relates to a method for producing a coating on at least part of the surface of a component made of high-temperature-resistant, non-oxidic ceramic fiber composite materials for protection against environmental influences, comprising the steps: a) applying an adhesive layer to the part to be provided with a coating the surface of the component; b) application of a water vapor barrier to that part of the surface of the component which is to be provided with a coating; and c) applying a cover layer to protect against environmental influences on the water vapor barrier, the cover layer having a defined microstructure of micropores and/or microcracks, so that the ratio of the shear modulus G to the compression modulus K of the cover layer is less than or equal to 1.1, the cover layer and the water vapor barrier has a sufficiently high elastic resilience to prevent the formation of segmentation cracks, the spread of segmentation cracks to adjacent layers and/or the premature flaking off of the top layer given proper use of
  • the invention also relates to a component made of high-temperature-resistant, non-oxidic ceramic fiber composite materials, comprising a coating on at least part of the surface to protect against environmental influences, the coating having: a) an adhesive layer on the part of the surface of the component ; b ) a water vapor barrier on the part of the surface of the component to be provided with a coating ; and c) a cover layer to protect the water vapor barrier from environmental influences, the cover layer having a defined microstructure of micropores and/or microcracks, so that the ratio of the shear modulus G to the compression modulus K of the cover layer is less than or equal to 1.1, the cover layer and the Water vapor barrier have a sufficiently high elastic resilience to avoid the formation of segmentation cracks, the propagation of segmentation cracks to adjacent layers and / or the flaking off of the water vapor barrier given proper use of the coated component.
  • the invention is based on the finding that conventional cover layers for the protection of high-temperature-resistant ceramic fiber composite materials can often withstand a large number of environmental influences, but are not completely impermeable to water vapor, especially after the formation of segmentation cracks or in the case of crosslinked open porosity.
  • oxidation and reduction processes can occur on the fiber composite material or on an adhesive layer arranged on it.
  • the associated formation of pores then often leads to premature spalling of the cover layer, with the result that the adhesive layer underneath and the fiber composite material underneath the adhesive layer are exposed to environmental influences without protection.
  • premature means that the covering layer flakes off much earlier than would be expected if the component were used properly, for example due to normal wear and tear, in particular with little or no contact with water vapor.
  • a protective layer that is stable in the environment should have a certain mechanical resilience in order not to sag due to mechanical stress on the protective layer, e.g. to promote flaking of the protective layer due to flow around it, or due to a temperature-related increase in internal stresses within the protective layer or on the contact surface with the substrate.
  • especially thicker protective or Cover layers are known to create this mechanical resilience by providing a microstructure.
  • micropores and/or microcracks are provided in the cover layer, where stresses due to mechanical stress and/or internal stresses can dissipate before segmentation cracks occur or they can spread to such an extent that the cover layer detaches and the underlying component is exposed.
  • the invention is based on the finding that precisely this microstructure promotes the transport of water vapor through the cover layer, so that undesired chemical reactions can occur on the adhesive layer and/or the component itself.
  • the micropores and/or microcracks randomly distributed in the top layer can form a network through which water vapor can pass comparatively quickly and trigger the undesirable reactions.
  • a water vapor barrier is provided in the coating according to the invention between the adhesive layer and the top layer. Water vapor passing through the top layer can be stopped before it reaches the adhesive layer or the actual component.
  • the water vapor barrier has a sufficiently high elastic resilience, which is selected according to the same criteria as for the top layer, i.e. the formation and/or propagation of segmentation cracks and the flaking off of individual layers or parts thereof is avoided as far as possible.
  • the elastic resilience can be defined by the ratio of the shear modulus G to the compression modulus K. It is preferred if this ratio in the case of the top layer and/or the water vapor barrier is less than or equal to 1.1, preferably less than 0.6, but more preferably not less than 0.3. Due to the pseudo-plastic behavior of the layers then present, segmentation cracks and spalling can be avoided.
  • the water vapor barrier can be a layer of mono- or di-silicate compounds applied by physical gas deposition with a layer thickness of 2 to 150 ⁇ m, preferably 5 to 50 ⁇ m, more preferably 10 to 30 ⁇ m. Due to the small layer thicknesses of the water vapor barrier that can be achieved by physical gas separation, a sufficiently low susceptibility to cracking of the corresponding layer can be achieved. Physical gas separation also avoids larger temperature differences between the material to be applied and the carrier material, so that otherwise stress cracks occurring when applying the water vapor barrier can be effectively avoided.
  • the water vapor barrier is a layer of thermally sprayed mono- or di-silicate compounds, preferably comprising ytterbium oxide, yttrium oxide and/or ytterbium-yttrium mixed oxide, with a layer thickness of 10 to 300 ⁇ m, preferably from 10 to 200pm, further preferably 30 to 100 ⁇ m, the layer preferably having a microstructure of non-crosslinked micropores and/or microcracks.
  • the material In order to achieve an effective barrier despite corresponding micropores and/or microcracks in the water vapor barrier, the material must be sprayed densely enough that the micropores and/or microcracks within the water vapor barrier do not network to form network paths.
  • a thin layer should be provided in order to reduce the risk of flaking as far as possible. Measures to reduce stress cracks when the water vapor barrier is applied and cooled are also known in the case of thermal spraying, for example sufficient preheating of the carrier layer.
  • an intermediate layer is applied between the adhesive layer and the water vapor barrier, which intermediate layer is preferably of the same material as the top layer and/or has a layer thickness of 10 to 500 ⁇ m, preferably 25 to 300 ⁇ m , more preferably 50 to 250 ⁇ m .
  • an appropriate intermediate layer especially if it is made of the same material as the top layer, a certain protection of the component can still be maintained by the intermediate layer, even if the actual top layer and/or the water vapor barrier should flake off unexpectedly or the top layer is damaged in some other way. can ensure the continued safe operation of the component until the next maintenance.
  • the difference in the coefficient of thermal expansion between the water vapor barrier and the cover layer, preferably between two adjacent layers of the coating and/or the component is less than 10 ⁇ 10 6 K 1 , preferably less than 2*10 6 K 1 , more preferably less than 1*10 ⁇ 6 K 1 .
  • Temperature-induced expansion and thus cracking due to rapid temperature changes can be prevented by appropriately matching the coefficients of thermal expansion - if the component is a turbine blade of an aircraft engine, e.g. when starting the aircraft engine - are avoided.
  • the cover layer and/or the intermediate layer can comprise mono- or di-silicate compounds which preferably have ytterbium oxide, yttrium oxide and/or ytterbium-yttrium mixed oxide.
  • the top layer can have a layer thickness of 100 to 2500 ⁇ m, preferably 100 to 1500 ⁇ m, more preferably 150 to 1000 ⁇ m.
  • the adhesive layer can be a silicon adhesive layer and/or have a layer thickness of 5 to 200 ⁇ m, preferably 10 to 150 ⁇ m, more preferably 15 to 100 ⁇ m.
  • Adhesive layer, intermediate layer and/or top layer can be thermally sprayed.
  • a thermal peak - also for the water vapor barrier - come e.g. Atmospheric Plasma Spraying (APS), Vacuum Plasma Spraying (VPS), High Velocity Oxygen Spraying (HVOF), Arc Spraying and Laser Spraying.
  • the high-temperature-resistant, non-oxidic ceramic fiber composite material of the component comprises silicon carbide fibers in a silicon carbide matrix or at least one matrix based on silicon carbide.
  • the component to be coated using the method according to the invention can be a turbine blade, a turbine shell segment or the inner lining of a combustion chamber, each preferably of an aircraft engine.
  • FIG. 1-4 schematic sections of coatings of a component produced by the method according to the invention.
  • FIGS. 1 Various coatings 1 as can be produced by the method according to the invention are shown in FIGS.
  • the individual process steps only include methods and techniques known from the prior art for applying individual layers, which do not require any further description.
  • a step-by-step description of the method is dispensed with and reference is made only to the coating 1 produced as a result of the method.
  • a component 10 made of SiC-SiC material (silicon carbide matrix and silicon carbide fibers) is applied as a high-temperature-resistant ceramic fiber composite material.
  • the component 10 is a turbine blade , a turbine shroud segment or the inner liner of a combustion chamber of an aircraft engine which, in use, is exposed to the hot combustion gases of the aircraft engine.
  • an adhesive layer 2 is applied to the component 10 . This is a silicon bond coat applied either by physical vapor deposition or thermal spraying. The thickness of the adhesive layer 2 is 10-150 ⁇ m.
  • a water vapor barrier 3 made of mono- or di-silicate compounds is applied directly to the adhesive layer 2 by physical gas deposition.
  • the thickness of the water vapor barrier 3 is 2-150 ⁇ m, the thickness being selected in particular such that the ratio of the shear modulus G to the compression modulus K of the water vapor barrier 3 is less than or equal to 1.1.
  • the actual top layer 4 is thermally sprayed onto the water vapor barrier 3 to protect against environmental influences, for example. by atmospheric plasma spray (APS).
  • the thickness of the cover layer 4 is 100-1500 ⁇ m and consists of mono- or di-silicate compounds, including ytterbium oxide, yttrium oxide or ytterbium-yttrium mixed oxide. With thermal spraying, micropores and/or microcracks are created to increase the mechanical flexibility or to reduce the ratio of the shear modulus G to the compression modulus K of the cover layer 4 to less than or equal to 1.1, as is also known from the prior art for environmentally stable protective layers.
  • the water vapor barrier 3 protects the adhesive layer 2 and the component 10 made from a SiC—SiC material from water vapor from the environment. Other environmental influences are held off by the cover layer 4, as is also the case with known protective coatings that are stable in the environment. Due to the aforementioned brittleness of the water vapor barrier 3 and the top layer 4, premature flaking of the coating 1 or Parts of it effectively avoided.
  • FIG. 2 shows a second exemplary embodiment of a coating 1 produced according to the invention, which largely resembles that of FIG. Reference is therefore made to the above statements and only the differences between the two exemplary embodiments are discussed below.
  • the water vapor barrier 3 is not applied by physical gas deposition, but is thermally sprayed.
  • the water vapor barrier 3 is a layer of thermally sprayed mono- or di-silicate compounds comprising ytterbium oxide, yttrium oxide or ytterbium-yttrium mixed oxide.
  • the layer thickness is 10 to 300 ⁇ m, with a microstructure of micropores and/or microcracks being provided to achieve the desired ratio of shear modulus G to compression modulus K of less than or equal to 1.1.
  • the proportion of micropores and/or microcracks is such that they are not crosslinked.
  • the coatings 1 according to FIGS. 3 and 4 are similar in the structure of the individual layers 2, 3 and 4 to those from FIGS. 2 (each corresponding to the design of the water vapor barrier 3), which is why reference is made to the above statements.
  • an intermediate layer 5 made of the same material as the respective cover layer 4 is provided in each case, the intermediate layer 5 having a thickness of 10-500 ⁇ m.
  • the intermediate layer 5 offers protection against environmental influences on the component 10 if the cover layer 4 or the water vapor barrier 3 unexpectedly flakes off or is damaged in some other way.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung einer Beschichtung (1) auf wenigstens einem Teil der Oberfläche eines Bauteils (10) aus hochtemperaturbeständigen keramischen Faserverbundwerkstoffen zum Schutz vor Umwelteinflüssen, sowie ein Bauteil (10) mit entsprechender Beschichtung (1). Das Verfahren umfasst die Schritte: a) Aufbringen einer Haftschicht (2) auf den mit einer Beschichtung (1) zu versehenden Teil der Oberfläche des Bauteils (10);10 b) Aufbringen einer Wasserdampfbarriere (3) auf den mit einer Beschichtung (1) zu versehenden Teil der Oberfläche des Bauteils (10); und c) Aufbringen einer Deckschicht (4) zum Schutz vor Umwelteinflüssen auf die Wasserdampfbarriere (3), wobei die Deckschicht (4) eine definierte Mikrostruktur aus Mikroporen und/oder Mikrorissen aufweist, sodass das Verhältnisses von Schubmodul G zu Kompressionsmodul K der Deckschicht (4) kleiner gleich 1,1 ist, wobei die Deckschicht (4) und die Wasserdampfbarriere (3) eine ausreichend hohe elastische Nachgiebigkeit zur Vermeidung des Entstehens von Segmentierungsrissen, der Ausbreitung von Segmentierungsrissen auf benachbarte Schichten und/oder des verfrühten Abplatzens der Deckschicht (4) bei vorgegebener ordnungsgemäßer Verwendung des beschichteten Bauteils (10) aufweisen. Das erfindungsgemäße Bauteil (10) ist gemäß dem erfindungsgemäßen Verfahren beschichtet.

Description

Beschichtung eines Bauteils aus hochtemperaturbeständigen keramischen Faserverbundwerkstoffen
Die Erfindung betri f ft ein Verfahren zur Herstellung einer Beschichtung auf wenigstens einem Teil der Oberfläche eines Bauteils aus hochtemperaturbeständigen keramischen Faserverbundwerkstof fen zum Schutz vor Umwelteinflüssen, sowie ein Bauteil mit entsprechender Beschichtung .
Bauteile aus keramischen Faserverbundwerkstof fen werden vermehrt insbesondere in Bereichen mit hoher thermischer Belastung eingesetzt . So können Brennkammerwände und Turbinenschaufeln von Gasturbinen bzw . Flugzeugtriebwerken aus keramischen Faserverbundwerkstof fen hergestellt sein .
Aufgrund der hohen thermischen Belastung tendieren nicht-oxidische keramische Faserverbundwerkstof fe zur Oxidation . Bei einem SiC-SiC-Werkstof f ( Sili ziumkarbid- Fasern und Matrix zumindest basierend auf Sili ziumkarbid) entsteht so bspw . SiO2 ( Sili ziumoxid) . Gelangt weiterhin Wasserdampf bei hohen Gastemperaturen an das Sili ziumoxid bildet sich ein Sili ziumhydroxid, welches verdampft . Nach dem Verdampfen kann es erneut zur Bildung von Sili ziumoxid kommen . Dieser quasi-kontinuierlich ablaufende Prozess führt zur Reduzierung der Bauteildicke und resultiert letztendlich die Festigkeit des Bauteils aus nicht-oxidischem keramischen Faserverbundwerkstof fes .
Aufgrund dieses Verhaltens bekannter nicht-oxidischer keramischer Faserverbundwerkstof fe ist in der Regel eine umgebungsstabile Schutzschicht auf der Oberfläche entsprechender Werkstof fe vorgesehen . Die umgebungsstabile Schutzschicht , welche den Werkstof f vor unerwünschten Reaktionen mit dem Umgebungsgas - bei Turbinenschaufeln eines Flugzeugtriebwerks bspw . das Verbrennungsgas - schützen sollen, sind dabei regelmäßig mit einer Sili zium-Haftschicht an dem Substrat befestigt . Es hat sich gezeigt , dass es bei bekannten keramischen Faserverbundwerkstof fen mit durch Sili zium-Haftschicht daran angebrachter umgebungsstabiler Schutzschicht in heißer, wasserdampfhaltiger Umgebung zu einem verfrühten Abplatzen der Schutzschicht kommen kann .
Aufgrund der hohen thermischen Belastung tendieren nicht nur die nicht-oxidischen keramischen Faserverbundwerkstof fe , sondern auch die Sili zium-Haftschicht zur Oxidation . An der Grenz fläche der Sili zium-Haftschicht zur umgebungsstabilen Schutzschicht kann daher ebenfalls Sili ziumoxid entstehen . Gelangt weiterhin Wasserdampf bei hohen Gastemperaturen an das Sili ziumoxid verdampft das Sili ziumoxid und es entstehen Poren entlang der Grenz fläche . Bei einer zusätzlich hohen mechanischen Belastung kommt es zu einem Riss-induziertem Zusammenschluss der einzelnen Poren und so entsprechend zu einem Abplatzen der umgebungsstabilen Schutzschicht .
Im Anschluss wird die Sili zum-Haf tschicht vergleichbar zu dem für nicht-oxidische keramische Faserverbundwerkstof fe bereits erläuterten Prozess entfernt , bevor es dann, wie beschrieben, zur Reduzierung der Bauteildicke und resultiert letztendlich die Festigkeit des Bauteils aus nicht-oxidischem keramischen Faserverbundwerkstof fes kommt . Aufgabe der vorliegenden Erfindung ist es , ein Verfahren zur Herstellung einer Beschichtung auf wenigstens einem Teil der Oberfläche eines Bauteils aus hochtemperaturbeständigen keramischen Faserverbundwerkstof fen zum Schutz vor Umwelteinflüssen sowie ein Bauteil mit entsprechender Beschichtung zu schaf fen, bei dem die Nachteile aus dem Stand der Technik nicht mehr oder nur noch in vermindertem Umfang auftreten .
Gelöst wird diese Aufgabe durch ein Verfahren gemäß dem Hauptanspruch sowie ein Bauteil gemäß dem nebengeordneten Anspruch . Demnach betri f ft die Erfindung ein Verfahren zur Herstellung einer Beschichtung auf wenigstens einem Teil der Oberfläche eines Bauteils aus hochtemperaturbeständigen nicht-oxidischen keramischen Faserverbundwerkstof fen zum Schutz vor Umwelteinflüssen, umfassend die Schritte : a ) Aufbringen einer Haftschicht auf den mit einer Beschichtung zu versehenden Teil der Oberfläche des Bauteils ; b ) Aufbringen einer Wasserdampfbarriere auf den mit einer Beschichtung zu versehenden Teil der Oberfläche des Bauteils ; und c ) Aufbringen einer Deckschicht zum Schutz vor Umwelteinflüssen auf die Wasserdampfbarriere , wobei die Deckschicht eine definierte Mikrostruktur aus Mikroporen und/oder Mikrorissen aufweist , sodass das Verhältnisses von Schubmodul G zu Kompressionsmodul K der Deckschicht kleiner gleich 1 , 1 ist , wobei die Deckschicht und die Wasserdampfbarriere eine ausreichend hohe elastische Nachgiebigkeit zur Vermeidung des Entstehens von Segmentierungsrissen, der Ausbreitung von Segmentierungsrissen auf benachbarte Schichten und/oder des verfrühten Abplatzens der Deckschicht bei vorgegebener ordnungsgemäßer Verwendung des beschichteten Bauteils aufweisen .
Weiterhin betri f ft die Erfindung ein Bauteil aus hochtemperaturbeständigen nicht-oxidischen keramischen Faserverbundwerkstof fen umfassend eine Beschichtung auf wenigstens einem Teil der Oberfläche zum Schutz vor Umwelteinflüssen, wobei die Beschichtung aufweist : a ) eine Haftschicht auf den mit einer Beschichtung zu versehenden Teil der Oberfläche des Bauteils ; b ) eine Wasserdampfbarriere auf den mit einer Beschichtung zu versehenden Teil der Oberfläche des Bauteils ; und c ) eine Deckschicht zum Schutz vor Umwelteinflüssen auf die Wasserdampfbarriere , wobei die Deckschicht eine definierte Mikrostruktur aus Mikroporen und/oder Mikrorissen aufweist , sodass das Verhältnisses von Schubmodul G zu Kompressionsmodul K der Deckschicht kleiner gleich 1 , 1 ist , wobei die Deckschicht und die Wasserdampfbarriere eine ausreichend hohe elastische Nachgiebigkeit zur Vermeidung des Entstehens von Segmentierungsrissen, der Ausbreitung von Segmentierungsrissen auf benachbarte Schichten und/oder des Abplatzens der Wasserdampfbarriere bei vorgegebener ordnungsgemäßer Verwendung des beschichteten Bauteils aufweisen .
Der Erfindung liegt die Erkenntnis zugrunde , dass übliche Deckschichten zum Schutz von hochtemperaturbeständigen keramischen Faserverbundwerkstof fen häufig zwar eine Viel zahl von Umwelteinflüssen abhalten können, aber nicht vollständig undurchlässig für Wasserdampf sind, insbesondere nach Bildung von Segmentierungsrissen oder bei einer vernetzten of fenen Porosität . In der Folge kann es zu Oxidations- und Reduktionsvorgänge an dem Faserverbundwerkstof f oder einer darauf angeordneten Haftschicht kommen . Die damit verbundene Porenbildung führt dann häufig zu verfrühten Abplatzungen der Deckschicht , womit zunächst die darunter liegende Haftschicht als auch der unter der Haftschicht liegende Faserverbundwerkstof f ungeschützt Umwelteinflüssen ausgesetzt sind . „Verfrüht" bedeutet in Zusammenhang mit dieser Erfindung, dass das Abplatzen der Deckschicht deutlich früher auftritt als bei ordnungsgemäßer Nutzung des Bauteils bspw . aufgrund von üblicher Abnutzung, insbesondere ohne oder nur bei geringem Wasserdampfkontakt zu erwarten wäre . Aus dem Stand der Technik ist bekannt , dass eine umgebungsstabile Schutzschicht eine gewisse mechanische Nachgiebigkeit aufweisen sollte , um nicht aufgrund mechanischer Beanspruchung der Schutzschicht , bspw . aufgrund von Umströmung, oder durch temperaturbedingte Erhöhung von Eigenspannungen innerhalb der Schutzschicht oder an der Kontakt fläche mit dem Substrat ein Abplatzen der Schutzschicht zu begünstigen . Für verschiedene , insbesondere dickere Schutz- bzw . Deckschichten ist bekannt , diese mechanische Nachgiebigkeit durch das Vorsehen einer Mikrostruktur zu schaf fen . Dabei werden Mikroporen und/oder Mikrorisse in der Deckschicht vorgesehen, an denen sich Spannungen aufgrund mechanischer Belastung und/oder Eigenspannungen abbauen können, bevor es zu Segmentierungsrissen kommt oder diese sich soweit ausbreiten können, dass sich die Deckschicht ablöst und das darunterliegende Bauteil freigelegt wird .
Der Erfindung liegt die Erkenntnis zugrunde , dass eben diese Mikrostruktur den Transport von Wasserdampf durch die Deckschicht begünstigt , sodass unerwünschte chemische Reaktionen an der Haftschicht und/oder dem Bauteil selbst auf treten können . Die in der Deckschicht zufällig verteilten Mikroporen und/oder Mikrorisse können ein Netzwerk ausbilden, durch welches Wasserdampf vergleichsweise schnell hindurchtreten und die unerwünschten Reaktionen auslösen kann .
Um diesem Problem zu entgegnen, wird bei der erfindungsgemäßen Beschichtung zwischen der Haftschicht und der Deckschicht eine Wasserdampfbarriere vorgesehen, an der ggf . durch die Deckschicht hindurchtretender Wasserdampf gestoppt werden kann, bevor er zur Haftschicht oder dem eigentlichen Bauteil gelangt .
Um sicherzustellen, dass sich aufgrund der erfindungsgemäß zusätzlich vorgesehen Wasserdampfbarriere die Neigung der Be- Schichtung abzuplatzen, nicht erhöht , weist die Wasserdampfbarriere dabei eine ausreichend hohe elastische Nachgiebigkeit auf , die nach denselben Kriterien wie für die Deckschicht gewählt ist , also dass die Entstehung und/oder Ausbreitung von Segmentierungsrissen sowie das Abplatzen einzelner Schichten oder Teilen davon möglichst vermieden wird .
Die elastische Nachgiebigkeit kann dabei durch das Verhältnis von Schubmodul G zu Kompressionsmodul K definiert werden . Es ist dabei bevorzugt , wenn dieses Verhältnis bei der Deckschicht und/oder der Wasserdampfbarriere kleiner gleich 1 , 1 , vorzugsweise kleiner als 0 , 6 , weiter vorzugsweise aber nicht kleiner als 0 , 3 ist . Durch das dann vorliegende pseudo-plasti- sche Verhalten der Schichten können Segmentierungsrisse und Abplatzungen vermieden werden .
Bei der Wasserdampfbarriere kann es sich um eine Schicht aus durch physikalische Gasabscheidung aufgebrachte Mono- oder Di- Silikat-Verbindungen mit einer Schichtdicke von 2 bis 150 pm, vorzugsweise von 5 bis 50 pm, weiter vorzugsweise 10 bis 30 pm handeln . Aufgrund der durch die physikalische Gasabscheidung erreichbaren geringen Schichtdicken der Wasserdampfbarriere kann eine ausreichend geringe Rissanf älligkeit der entsprechenden Schicht erreicht werden . Durch physikalische Gasabscheidung werden außerdem größere Temperaturunterschiede zwischen dem auf zubringenden Material und dem Trägermaterial vermieden, sodass ansonsten ggf . auf tretende Spannungsrissen beim Aufträgen der Wasserdampfbarriere wirksam vermieden werden können .
Alternativ dazu ist es möglich, dass die Wasserdampfbarriere eine Schicht aus thermisch gespritzten Mono- oder Di-Silikat- Verbindungen, vorzugsweise umfassend Ytterbium-Oxid, Yttrium- Oxid und/oder Ytterbium-Yttrium-Mischoxid, mit einer Schichtdicke von 10 bis 300 pm, vorzugsweise von 10 bis 200pm, weiter vorzugsweise 30 bis 100 pm ist , wobei die Schicht vorzugsweise eine Mikrostruktur aus nicht-vernet zten Mikroporen und/oder Mikrorissen aufweist . Um trotz entsprechender Mikroporen und/oder Mikrorisse in der Wasserdampfbarriere eine wirksame Barriere zu erreichen, muss das Material dabei derart dicht gespritzt werden, dass sich die Mikroporen und/oder Mikrorisse innerhalb der Wasserdampfbarriere nicht zu Netzwerkpfaden vernetzen . Um gleichzeitig eine ausreichend geringe Rissanf ällig- keit sicherzustellen, ist eine geringe Schichtdicke vorzusehen, um die Gefahr des Abplatzens weitestgehend zu verringern . Auch beim thermischen Spritzen sind Maßnahmen zur Verminderung von Spannungsrissen bei Aufbringen und Abkühlen der Wasserdampfbarriere bekannt , bspw . ausreichendes Vorwärmen der Trägerschicht .
Unabhängig davon, wie die Wasserdampfbarriere auf gebaut und/oder aufgetragen wurde , ist bevorzugt , wenn zwischen Haftschicht und Wasserdampfbarriere eine Zwischenschicht aufgebracht wird, die vorzugsweise materialidentisch zur Deckschicht ist und/oder eine Schichtdicke von 10 bis 500 pm, vorzugsweise von 25 bis 300 pm, weiter vorzugsweise 50 bis 250 pm aufweist . Durch eine entsprechende Zwischenschicht , insbesondere wenn diese materialidentisch zur Deckschicht ist , kann selbst bei einem unvorhergesehenen Abplatzen der eigentlichen Deckschicht und/oder der Wasserdampfbarriere oder einer sonstigen Beschädigung der Deckschicht noch ein gewisser Schutz des Bauteils durch die Zwischenschicht aufrechterhalten werden, der bspw . den sicheren Weiterbetrieb des Bauteils bis zur nächsten Wartung gewährleisten kann .
Es ist bevorzugt , wenn die Di f ferenz der Wärmeausdehnungskoeffi zienten zwischen der Wasserdampfbarriere und der Deckschicht , vorzugsweise zwischen j eweils zwei benachbarten Schichten der Beschichtung und/oder dem Bauteil , weniger als 10 x 10 6 K 1, vorzugsweise weniger als 2 * 10 6 K 1, weiter vorzugsweise weniger als 1 * 10~6 Kl1 beträgt . Durch entsprechend aneinander angeglichene Wärmeausdehnungskoef fi zienten können temperaturinduzierte Dehnungen und damit Rissbildung aufgrund schneller Temperaturwechsel - sofern das Bauteil eine Turbinenschaufel eines Flugzeugtriebwerks ist , bspw . beim Start des Flugzeugtriebwerks - vermieden werden .
Die Deckschicht und/oder die Zwischenschicht können Mono- oder Di-Silikat-Verbindungen umfassen, die vorzugsweise Ytterbium- Oxid, Yttrium-Oxid und/oder Ytterbium-Yttrium-Mischoxid aufweisen . Die Deckschicht kann eine Schichtdicke von 100 bis 2500 pm, vorzugsweise von 100 bis 1500 pm, weiter vorzugsweise 150 bis 1000 pm aufweisen .
Die Haftschicht kann eine Sili zium-Haftschicht sein und/oder eine Schichtdicke von 5 bis 200 pm, vorzugsweise von 10 bis 150 pm, weiter vorzugsweise 15 bis 100 pm aufweisen .
Entsprechende Materialien und Schichtdicken, die grundsätzlich denj enigen von bekannten Beschichtungen aus dem Stand der Technik ähneln mögen, haben sich auch bei der erfindungsgemäßen Beschichtung bewährt .
Haftschicht , Zwischenschicht und/oder Deckschicht können thermisch gespritzt sein . Als thermisches Spitzen - auch für die Wasserdampfbarriere - kommen bspw . atmosphärisches Plasmaspritzen (APS ) , Vakuum-Plasmaspritzen (VPS ) , Hochgeschwindigkeits flammspritzen (HVOF) , Lichtbogenspritzen und Laserspritzen in Frage .
Es ist bevorzugt , wenn der hochtemperaturbeständige nicht-oxidische keramische Faserverbundwerkstof f des Bauteils Sili ziumkarbid-Fasern in einer Sili ziumkarbid-Matrix oder zumindest eines auf Sili ziumkarbid basierende Matrix umfasst . Bei dem mit dem erfindungsgemäßen Verfahren zu beschichtendem Bauteil kann es sich um eine Turbinenschaufel , ein Turbinenmantel-Segment oder die Innenauskleidung einer Brennkammer, j eweils vorzugsweise eines Flugzeugtriebwerks , handeln .
Zur Erläuterung des erfindungsgemäßen Bauteils , sowie für vorteilhafte Weiterbildungen des Bauteils wird auf die vorstehenden Aus führungen verwiesen .
Die Erfindung wird nun anhand vorteilhafter Aus führungs formen unter Bezugnahme auf die beigefügten Zeichnungen beispielhaft beschrieben . Es zeigen :
Figur 1-4 : schematische Schnitte von durch das erfindungsgemäße Verfahren hergestellte Beschichtungen eines Bauteils .
In Figuren 1 bis 4 sind verschiedene Beschichtungen 1 , wie sie durch das erfindungsgemäße Verfahren herstellbar sind gezeigt . Dabei umfassen die einzelnen Verfahrensschritte ausschließlich aus dem Stand der Technik bekannte Methoden und Techniken zum Aufbringen von einzelnen Schichten, die keiner näheren Beschreibung bedürfen . In der Folge wird auf eine schrittweise Darstellung des Verfahrens verzichtet und lediglich auf die durch das Verfahren im Ergebnis hergestellte Beschichtung 1 Bezug genommen .
Bei der Beschichtung 1 gemäß Figur 1 wird auf ein Bauteil 10 aus SiC-SiC-Werkstof f ( Sili ziumkarbid-Matrix und Sili ziumkarbid-Fasern) als hochtemperaturbeständiger keramischer Faserverbundwerkstof f aufgebracht . Bei dem Bauteil 10 handelt es sich um eine Turbinenschaufel , ein Turbinenmantel-Segment oder um die Innenauskleidung einer Brennkammer eines Flugzeugtriebwerks , die bei Verwendung dem heißen Verbrennungsgas des Flugzeugtriebwerks ausgesetzt sind . Zunächst wird eine Haftschicht 2 auf das Bauteil 10 aufgebracht . Dabei handelt es sich um eine Sili zium-Haftschicht , die entweder durch physikalische Gasabscheidung oder durch thermisches Spritzen aufgebracht wurde . Die Dicke der Haftschicht 2 beträgt 10- 150 pm .
Unmittelbar auf die Haftschicht 2 eine Wasserdampfbarriere 3 aus Mono- oder Di-Silikat-Verbindungen per physikalischer Gasabscheidung aufgebracht . Die Dicke der Wasserdampfbarriere 3 beträgt 2- 150 pm, wobei die Dicke insbesondere so gewählt wird, dass das Verhältnis von Schubmodul G zu Kompressionsmodul K der Wasserdampfbarriere 3 kleiner gleich 1 , 1 ist .
Auf die Wasserdampfbarriere 3 wird die eigentliche Deckschicht 4 zum Schutz vor Umwelteinflüssen thermisch auf gespritzt , bspw . durch atmosphärisches Plasmaspritzen (APS ) . Die Dicke der Deckschicht 4 beträgt dabei 100- 1500 pm und besteht aus Mono- oder Di-Silikat-Verbindungen, umfassend Ytterbium-Oxid, Yttrium-Oxid oder Ytterbium-Yttrium-Mischoxid . Beim thermischen Spritzen werden Mikroporen und/oder Mikrorisse zur Erhöhung der mechanischen Nachgiebigkeit bzw . zur Reduzierung des Verhältnisses von Schubmodul G zu Kompressionsmodul K der Deckschicht 4 auf kleiner gleich 1 , 1 eingebracht , wie dies auch von umgebungsstabilen Schutzschichten aus dem Stand der Technik bekannt ist .
Durch die Wasserdampfbarriere 3 ist die Haftschicht 2 und das Bauteil 10 aus einem SiC-SiC-Werktstof f vor Wasserdampf aus der Umgebung geschützt . Übrige Umwelteinflüsse werden - wie auch bei bekannten umgebungsstabilen Schutzbeschichtungen - durch die Deckschicht 4 abgehalten . Aufgrund der genannten Sprödigkeit von Wasserdampfbarriere 3 und Deckschicht 4 wird ein verfrühtes Abplatzen der Beschichtung 1 bzw . Teilen davon ef fektiv vermieden . In Figur 2 ist ein zweites Aus führungsbeispiel einer erfindungsgemäß hergestellten Beschichtung 1 gezeigt , welche in weiten Teilen derj enigen aus Figur 1 gleicht . Es wird daher auf die vorstehenden Aus führungen verwiesen und im Folgenden lediglich auf die Unterschiede zwischen den beiden Aus führungsbeispielen eingegangen .
In dem Aus führungsbeispiel gemäß Figur 2 ist die Wasserdampfbarriere 3 nicht per physikalischer Gasabscheidung aufgebracht , sondern thermisch gespritzt . Bei der Wasserdampfbarriere 3 handelt es sich um eine Schicht aus thermisch gespritzten Mono- oder Di-Silikat-Verbindungen, umfassend Ytterbium- Oxid, Yttrium-Oxid oder Ytterbium-Yttrium-Mischoxid . Die Schichtdicke beträgt 10 bis 300 pm, wobei zur Erreichung des gewünschten Verhältnisses von Schubmodul G zu Kompressionsmodul K von kleiner gleich 1 , 1 eine Mikrostruktur aus Mikroporen und/oder Mikrorissen vorgesehen ist . Um eine wirksame Barriere für Wasserdampf zu bilden, ist der Anteil an Mikroporen und/oder Mikrorissen derart , dass diese nicht vernetzt sind .
Die Beschichtungen 1 gemäßen Figuren 3 und 4 ähneln im Aufbau der einzelnen Schichten 2 , 3 und 4 denj enigen aus Figuren 1 bzw . 2 ( j eweils entsprechend der Ausgestaltung der Wasserdampfbarriere 3 ) , weshalb auf die vorstehenden Aus führungen verwiesen wird . Im Aufbau der Beschichtung 1 ist aber j eweils eine Zwischenschicht 5 aus demselben Material wie die j eweilige Deckschicht 4 vorgesehen, wobei die Zwischenschicht 5 eine Dicke von 10-500 pm aufweist . Die Zwischenschicht 5 bietet Schutz vor Umwelteinflüssen auf das Bauteil 10 , falls die Deckschicht 4 oder die Wasserdampfbarriere 3 unvorhergesehen abplatzen oder anders beschädigt werden sollte .

Claims

Patentansprüche Verfahren zur Herstellung einer Beschichtung (1) auf wenigstens einem Teil der Oberfläche eines Bauteils (10) aus hochtemperaturbeständigen nicht-oxidischen keramischen Faserverbundwerkstoffen zum Schutz vor Umwelteinflüssen, umfassend die Schritte: a) Aufbringen einer Haftschicht (2) auf den mit einer Beschichtung (1) zu versehenden Teil der Oberfläche des Bauteils (10) ; b) Aufbringen einer Wasserdampfbarriere (3) auf den mit einer Beschichtung (1) zu versehenden Teil der Oberfläche des Bauteils (10) ; und c) Aufbringen einer Deckschicht (4) zum Schutz vor Umwelteinflüssen auf die Wasserdampfbarriere (3) , wobei die Deckschicht (4) eine definierte Mikrostruktur aus Mikroporen und/oder Mikrorissen aufweist, sodass das Verhältnisses von Schubmodul G zu Kompressionsmodul K der Deckschicht (4) kleiner gleich 1,1 ist, wobei die Deckschicht (4) und die Wasserdampfbarriere (3) eine ausreichend hohe elastische Nachgiebigkeit zur Vermeidung des Entstehens von Segmentierungsrissen, der Ausbreitung von Segmentierungsrissen auf benachbarte Schichten und/oder des verfrühten Abplatzens der Deckschicht (4) bei vorgegebener ordnungsgemäßer Verwendung des beschichteten Bauteils (10) aufweisen. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Verhältnis von Schubmodul G zu Kompressionsmodul K der Deckschicht (4) und/oder der Wasserdampfbarriere (3) kleiner gleich 1,1, vorzugsweise kleiner als 0, 6 weiter vorzugsweise aber nicht kleiner als 0,3 ist. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Wasserdampfbarriere (3) eine Schicht aus durch physikalische Gasabscheidung aufgebrachte Mono- oder Di-Silikat- Verbindungen mit einer Schichtdicke von 2 bis 150 pm, vorzugsweise von 5 bis 50 pm, weiter vorzugsweise 10 bis 30 pm ist . Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Wasserdampfbarriere (3) eine Schicht aus thermisch gespritzten Mono- oder Di-Silikat-Verbindungen, vorzugsweise umfassend Ytterbium-Oxid, Yttrium-Oxid und/oder Ytterbium- Yttrium-Mischoxid, mit einer Schichtdicke von 10 bis 300 pm, vorzugsweise von 10 bis 200 pm, weiter vorzugsweise 30 bis 100 pm ist, wobei die Schicht vorzugsweise eine Mikrostruktur aus nicht-vernet zten Mikroporen und/oder Mikrorissen aufweist. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen Haftschicht (2) und Wasserdampfbarriere (3) eine Zwischenschicht (5) aufgebracht wird, die vorzugsweise materialidentisch zur Deckschicht (4) ist und/oder eine Schichtdicke von 10 bis 500 pm, vorzugsweise von 25 bis 300 pm, weiter vorzugsweise 50 bis 250 pm aufweist. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Differenz der Wärmeausdehnungskoeffizienten zwischen der Wasserdampfbarriere (3) und der Deckschicht (4) , vorzugsweise zwischen jeweils zwei benachbarten Schichten (2, 3, 4, 5) der Beschichtung (1) , weniger als 10 x 10~6 Kl1, vorzugsweise weniger als 2 * 10~6 Kl1, weiter vorzugsweise weniger als 1 * 10~6 Kl1 beträgt. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Deckschicht (4) und/oder die Zwischenschicht (5) Monooder Di-Silikat-Verbindungen umfassen, die vorzugsweise Yt- terbium-Oxid, Yttrium-Oxid und/oder Ytterbium-Yttrium- Mischoxid aufweisen. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Deckschicht (4) eine Schichtdicke von 100 bis 2500 pm, vorzugsweise von 100 bis 1500 pm, weiter vorzugsweise 150 bis 1000 pm aufweist. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Haftschicht (2) eine Silizium-Haftschicht ist und/oder eine Schichtdicke von 5 bis 200 pm, vorzugsweise von 10 bis 150 pm, weiter vorzugsweise 15 bis 100 pm aufweist. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
Haftschicht (2) , Zwischenschicht (5) und/oder Deckschicht (4) thermisch gespritzt sind. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der hochtemperaturbeständige keramische Faserverbundwerkstoffen des Bauteils (10) Siliziumkarbid- Fasern in einer Siliziumkarbid-Matrix umfasst. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das zu beschichtende Bauteil (10) eine Turbinenschaufel, ein Turbinenmantel-Segment oder die Innenauskleidung einer Brennkammer, vorzugsweise eines Flugzeugtriebwerks ist. Bauteil (10) , welches durch ein Verfahren gemäß einem der vorhergehenden Ansprüche beschichtet ist. Bauteil (10) aus hochtemperaturbeständigen nicht-oxidischen keramischen Faserverbundwerkstoffen umfassend eine Beschichtung (1) auf wenigstens einem Teil der Oberfläche zum Schutz vor Umwelteinflüssen, wobei die Beschichtung (1) aufweist : d) eine Haftschicht (2) auf den mit einer Beschichtung (1) zu versehenden Teil der Oberfläche des Bauteils (10) ; e) eine Wasserdampfbarriere (3) auf den mit einer Beschichtung (1) zu versehenden Teil der Oberfläche des Bauteils (10) ; und f) eine Deckschicht (4) zum Schutz vor Umwelteinflüssen auf die Wasserdampfbarriere (3) , wobei die Deckschicht (4) eine definierte Mikrostruktur aus Mikroporen und/oder Mikrorissen aufweist, sodass das Verhältnisses von Schubmodul G zu Kompressionsmodul K der Deckschicht (4) kleiner gleich 1,1 ist, wobei die Deckschicht (4) und die Wasserdampfbarriere (3) eine ausreichend hohe elastische Nachgiebigkeit zur Vermeidung des Entstehens von Segmentierungsrissen, der Ausbreitung von Segmentierungsrissen auf benachbarte Schichten und/oder des Abplatzens der Wasserdampfbarriere bei vorgegebener ordnungsgemäßer Verwendung des beschichteten Bauteils (10) aufweisen. Bauteil nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass das Bauteil (10) eine Turbinenschaufel, ein Turbinenmantel-
Segment oder die Innenauskleidung einer Brennkammer, vor- zugsweise eines Flugzeugtriebwerks, ist.
PCT/EP2021/072668 2020-08-17 2021-08-16 Beschichtung eines bauteils aus hochtemperaturbeständigen keramischen faserverbundwerkstoffen WO2022038070A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020121516.9 2020-08-17
DE102020121516.9A DE102020121516A1 (de) 2020-08-17 2020-08-17 Beschichtung eines Bauteils aus hochtemperaturbeständigen keramischen Faserverbundwerkstoffen

Publications (1)

Publication Number Publication Date
WO2022038070A1 true WO2022038070A1 (de) 2022-02-24

Family

ID=77627106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/072668 WO2022038070A1 (de) 2020-08-17 2021-08-16 Beschichtung eines bauteils aus hochtemperaturbeständigen keramischen faserverbundwerkstoffen

Country Status (2)

Country Link
DE (1) DE102020121516A1 (de)
WO (1) WO2022038070A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011137244A1 (en) * 2010-04-30 2011-11-03 Rolls-Royce Corporation Durable environmental barrier coatings for ceramic substrates
EP3199505A1 (de) * 2016-01-29 2017-08-02 Rolls-Royce Corporation Mittels ps-pvd aufgedampfte umweltsperrschicht beinhaltend eine schicht, die ein seltenerdsilikat beinhaltet. und geschlossene porosität
EP3546615A1 (de) * 2018-03-16 2019-10-02 Rolls-Royce Corporation Beschichtungssystem mit nukleierungsmittel
EP3842563A1 (de) * 2019-12-24 2021-06-30 Rolls-Royce Corporation Barrierebeschichtungen mit hohem siliciumdioxidgehalt

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090186237A1 (en) 2008-01-18 2009-07-23 Rolls-Royce Corp. CMAS-Resistant Thermal Barrier Coatings
DE102019206940A1 (de) 2019-05-14 2020-11-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Keramik mit Korrosionsschutzschicht, Verfahren zu deren Herstellung und deren Verwendung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011137244A1 (en) * 2010-04-30 2011-11-03 Rolls-Royce Corporation Durable environmental barrier coatings for ceramic substrates
EP3199505A1 (de) * 2016-01-29 2017-08-02 Rolls-Royce Corporation Mittels ps-pvd aufgedampfte umweltsperrschicht beinhaltend eine schicht, die ein seltenerdsilikat beinhaltet. und geschlossene porosität
EP3546615A1 (de) * 2018-03-16 2019-10-02 Rolls-Royce Corporation Beschichtungssystem mit nukleierungsmittel
EP3842563A1 (de) * 2019-12-24 2021-06-30 Rolls-Royce Corporation Barrierebeschichtungen mit hohem siliciumdioxidgehalt

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIANG HUIMIN ET AL: "Crystal structure, mechanical and thermal properties of Yb4Al2O9: A combination of experimental and theoretical investigations", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, ELSEVIER SCIENCE PUBLISHERS, BARKING, ESSEX, GB, vol. 37, no. 6, 12 February 2017 (2017-02-12), pages 2491 - 2499, XP029955035, ISSN: 0955-2219, DOI: 10.1016/J.JEURCERAMSOC.2017.02.016 *
ZHOU YAN-CHUN ET AL: "Theoretical Prediction and Experimental Investigation on the Thermal and Mechanical Properties of Bulk [beta]-Yb 2 Si 2 O 7", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 96, no. 12, 13 November 2013 (2013-11-13), US, pages 3891 - 3900, XP055853183, ISSN: 0002-7820, Retrieved from the Internet <URL:https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fjace.12618> DOI: 10.1111/jace.12618 *

Also Published As

Publication number Publication date
DE102020121516A1 (de) 2022-02-17

Similar Documents

Publication Publication Date Title
DE60002101T2 (de) Bildung von luft-plasma-gespritzten wärmedämmschichten für turbinenkomponenten
DE602005005102T2 (de) Hohe Temperatur glatte verschleissfeste vor Ort reparierbare Beschichtung
DE102005050873B4 (de) Verfahren zur Herstellung einer segmentierten Beschichtung und nach dem Verfahren hergestelltes Bauteil
EP0386486B1 (de) Bauteil aus einer Titanlegierung mit einer Schutzschicht
EP2904130B1 (de) Wärmedämmschicht, gasturbinenbauteil und verfahren zur beschichtung eines gasturbinenbauteils
DE102008007870A1 (de) Wärmedämmschichtsystem sowie Verfahren zu seiner Herstellung
CH704833A1 (de) Komponente für eine Turbomaschine und ein Verfahren zum Herstellen einer derartigen Komponente.
DE112008003502T5 (de) Verfahren zum Verbessern der Beständigkeit gegen CMAS-Infiltration
DE102005033176A1 (de) Abschleifbare Beschichtungen für eine 7FA+E-Stufe 1 und Verfahren zum Herstellen der Beschichtungen
DE102005060243A1 (de) Verfahren zum Beschichten einer Schaufel und Schaufel einer Gasturbine
EP2197813B1 (de) Keramischer schichtverbund
EP3320127A1 (de) Konturtreue schutzschicht für verdichterbauteile von gasturbinen
DE112017002453T5 (de) Beschichtungsstruktur, Turbinenteil mit derselben und Verfahren zur Herstellung der Beschichtungsstruktur
EP1260602A1 (de) Verfahren zum Erzeugen eines wärmedämmenden Schichtsystems auf einem metallischen Substrat
WO2007016906A1 (de) Wärmedämmschichtsystem
DE112018002221T5 (de) Verfahren zur Bildung von Wärmedämmschicht, Wärmedämmschicht, und Hochtemperaturelement
WO2012163991A1 (de) Verfahren zum aufbringen einer schutzschicht, mit einer schutzschicht beschichtetes bauteil und gasturbine mit einem solchen bauteil
WO2022038070A1 (de) Beschichtung eines bauteils aus hochtemperaturbeständigen keramischen faserverbundwerkstoffen
EP3078649B1 (de) Verbundkeramik mit korrosionsschutzschicht und verfahren zur herstellung
EP1142852A2 (de) Verbundkeramikmaterial mit gradierter thermochemischer Schutzschicht
EP1492900A1 (de) Bauteil mit einer maskierungsschicht
WO2017186547A1 (de) Hitzeschild mit äusserster yttriumoxidbeschichtung, verfahren zur herstellung und produkt
EP0432699B1 (de) Bauteil aus Metall mit einem Schutz gegen Titanfeuer und Verfahren zur Herstellung des Bauteils
EP1511883A1 (de) Wärmedämmschicht
EP0960308B1 (de) Gasturbinenanlage mit einem mit keramiksteinen ausgekleideten brennkammergehäuse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21765609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21765609

Country of ref document: EP

Kind code of ref document: A1