EP1446366A2 - Oxidkeramische faserverbundwerkstoffe und ihre verwendung - Google Patents

Oxidkeramische faserverbundwerkstoffe und ihre verwendung

Info

Publication number
EP1446366A2
EP1446366A2 EP02803746A EP02803746A EP1446366A2 EP 1446366 A2 EP1446366 A2 EP 1446366A2 EP 02803746 A EP02803746 A EP 02803746A EP 02803746 A EP02803746 A EP 02803746A EP 1446366 A2 EP1446366 A2 EP 1446366A2
Authority
EP
European Patent Office
Prior art keywords
fiber
fibre
matrix
fibers
oxide ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP02803746A
Other languages
English (en)
French (fr)
Inventor
Andreas Krell
Dieter Sporn
Paul Blank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1446366A2 publication Critical patent/EP1446366A2/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62847Coating fibres with oxide ceramics
    • C04B35/62852Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/249928Fiber embedded in a ceramic, glass, or carbon matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/249928Fiber embedded in a ceramic, glass, or carbon matrix
    • Y10T428/249929Fibers are aligned substantially parallel
    • Y10T428/24993Fiber is precoated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the invention relates to oxide-ceramic fiber composite materials, as are used, for example, according to the invention in plants for energy conversion.
  • thermodynamic high-temperature stability in oxidizing atmospheres can only be mastered permanently with per se oxidation-stable oxide ceramics.
  • Pejryd et al. (EP 639 165 A1, US 5,567,58) describe “a ceramic composite, particularly for use at temperatures above 1400 ° C.” with a structure made of oxide Fiber / oxide matrix and a choice of material that is determined by claim and possibly greater coating thickness of the fibers> 2 ⁇ m, so that weak interfaces ("weak bond Nable to debonding") are expressly achieved.
  • Saruhan-Brings et al. (EP 890 559 A1) describe a “process for coating oxidic fiber materials for the production of failure-tolerant, high-temperature-resistant, oxidation-resistant composite materials”.
  • a la aluminate coating on polycrystalline Al 2 O 3 fiber with a mullite matrix is used No high-temperature tests or their results are disclosed either. The same defect is inherent in the patent of Lange et al. (US Pat. No.
  • the invention therefore relies exclusively on composites made of oxide-ceramic materials with at least partially single-crystalline fibers, whose mean coherence lengths of the single-crystalline areas are at least 150 ⁇ m, preferably> 400 ⁇ m, particularly preferably> 1 mm.
  • the above-mentioned publications contain only an embodiment in EP 639 165 A1 which meets this requirement in that thick single-crystal sapphire fibers (sapphire, USA; fiber thickness> 100 ⁇ m) are coated with Zr0 2 and in an Al 2 ⁇ 3 Matrix are embedded.
  • EP 639 165 also lacks any information regarding the behavior under temperature stress that is actually of interest as the target variable.
  • the present invention therefore provides a solution to the two previously incompatible requirements for (1) improved brittle fracture behavior to ensure thermal shock stability and damage tolerance in the temperature range ⁇ 1000 ° C. and (2) mechanical high-temperature stability Ensuring the long-term dimensional stability (creep resistance) of components made of such oxide-ceramic composite materials is a fundamentally new concept.
  • the oxide ceramic fiber composite materials according to the invention which contain fibers with an at least partially monocrystalline structure (average length of the monocrystalline "coherent" areas of the fiber at least 150 ⁇ m, preferably> 400 ⁇ m, particularly preferably> 1 mm), are characterized in that the fiber / matrix -Interfaces at high temperature stress along the fiber axis one in mesoscopic length ranges over the middle fiber- Show coherence length tight bond, whereby this bond with stress types above room temperature, which are associated with the propagation of macro cracks (fracture, thermal shock), only microscopic, locally limited to areas smaller than the mentioned coherence length and at most 200 ⁇ m delaminations (debonding) and thus prevents a quasi-macroscopic detachment of the fibers upon break (pull-out) as well as extensive creeping of the interface in the high temperature range.
  • the fiber / matrix -Interfaces at high temperature stress along the fiber axis one in mesoscopic length ranges over the middle fiber- Show coherence length tight bond,
  • the term a fiber / matrix interface that is mesoscopically fixed along the fiber axis over the fiber coherence length means that under thermomechanical loading there is no continuous tearing of the matrix from the fiber (“pull-out” in the axial direction) there is a crack dimension exceeding the mean coherence length of the fiber and thereby at most 200 ⁇ m.
  • "delaminations ... with extensive ... cracking” US 5,856,252 are avoided here, microscopic areas that are smaller than the mean coherence length of the Fibers and at most 200 ⁇ m, localized detachments.
  • the energy dissipation associated with microscopic local fiber detachment of composites according to the invention is sufficient to significantly influence the brittle fracture processes, as they determine strength and thermal shock resistance in the temperature range ⁇ 1000 ° C.
  • the hitherto insurmountable contrast between the requirements for mastering the mechanical behavior in this low temperature range and for shape stability (creep resistance) and structure cohesion (for example with a view to erosion stability) at very high temperatures is achieved with the design according to the invention for purely oxidic composite materials solved for the first time.
  • the choice of materials and the production technology are of secondary importance compared to the basic design of the composite concept according to the invention.
  • the respective selection of the base material for matrix and fibers and / or additives will, however, always be determined by the respective intended use and is not subject to any restrictions in the context of the composite design according to the invention described here.
  • the material selection of a possible fiber coating can also be carried out within a wide framework within the scope of the design concept disclosed here, because the material of the fiber / matrix interface only defines the first prerequisites for fulfilling the feature of the new composite design: the actual development of an inventive one Mesoscopically solid fiber / matrix interface, which allows types of stress above room temperature, which are associated with the propagation of macro cracks (fracture, thermal shock), microscopically-localized delaminations (debonding), only takes place after coordination of this material selection with others for known process steps (such as the generation of an optimized degree of sintering of the matrix by varying the sintering temperature). If coated fibers are used, the thickness of the coating must be kept ⁇ 2 ⁇ m in order to implement the mesoscopically firm bond according to the invention.
  • the composite is manufactured using a prefabricated single-crystalline oxide ceramic fiber with the specified coherence lengths or from polycrystalline fibers, fabrics or other fiber-like precursors that are only in situ in the course of the sintering of the composite (e.g. produced by impregnation) the single-crystalline state described according to the invention have been converted.
  • the present invention can be used in a special way for components or systems that are subject to high thermal loads and / or long-term high loads. They can also advantageously be used for components which are used in particular under changing thermal and / or long-term loads. These composites can advantageously be used in particular for components and / or systems for energy conversion or for high-performance brake discs.
  • Sapphire fibers with a diameter of approx. 160 ⁇ m were coated with 0.15 - 1.2 ⁇ m thick SrO * 6AI 2 0 3 layers using the sol / gel process and then together with a high-purity corundum powder (> 99.99% Al 2 0 3 ) and 0.2 ⁇ m average grain size (TM-DAR, Boehringer Ingelheim Chemicals, Japan) in a hot press to flat plates of about 5 mm thick.
  • TM-DAR Boehringer Ingelheim Chemicals, Japan
  • the figures show fracture surfaces of composites whose sapphire fibers were provided with Sr and aluminate layers with a thickness of 0.6 and 1.2 ⁇ m:
  • Fig. 1 No longer fiber detachment from the matrix when broken at room temperature, the fibers (coating thickness 1.2 ⁇ m) break in almost the same plane as the surrounding matrix (minimum pull-out lengths ⁇ 100 ⁇ m).
  • Fracture surface shows: the strength-increasing effect of the coated fibers (coating thickness 1.2 ⁇ m) in the temperature range of brittle material behavior (see table below) goes hand in hand with (i) a local, microscopic juxtaposition of (i) areas of the fiber that are still firmly sintered after breaking / Matrix interface (which prevents longer fiber detachment from the matrix) and (ü) microscopically localized crack formation (energy dissipative effects) flow of the brittle fracture with effect, for example in the sense of increased strength or improved thermal shock resistance).
  • Fig. 4a / b fracture surface 1200 ° C (similar at 1400 ° C): Even at very high temperatures, fiber coatings that lead to oxide-ceramic composite materials according to the invention (in the example with a 0.6 thick Sr-aluminate coating) are mesoscopic solid fiber / matrix bond is realized, which survives the macroscopic break without longer fiber detachment from the matrix (similar result also with a 1.2 ⁇ m thick fiber coating).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Fibers (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Die Erfindung betrifft oxidkeramische Faserverbundwerkstoffe, die beispielsweise erfindungsgemäß in Anlagen zur Energieumwandlung Verwendung finden. Die Aufgabe der vorliegenden Erfindung besteht darin, für die bisher nicht zu vereinbarenden Forderungen nach verbessertem Sprödbruchverhalten zur Sicherung der Thermoschockstabilität und Schadenstoleranz im Temperaturbereich < 1000 °C und nach mechanischer Hochtemperatur-Stabilität zur Gewährleistung der Langzeit-Formstabilität (Kriechresistenz) von Bauteilen ein fundamental neues Konzept anzugeben. Die Aufgabe wird gelöst durch oxidkeramische Faserverbundwerkstoffe, enthaltend Fasern einer bereichsweise einkristallinen Struktur mit einer mittleren Kohärenzlänge von ≥ 150 µm, mit einer bei Hochtemperatur entlang der Faserachse mesoskopisch festen Faser/Matrix-Grenzfläche, die bei Beanspruchungen oberhalb von Raumtemperatur, welche mit der Ausbreitung von Makrorissen einhergehen, Delaminationen aufweist, welche in ihrer Ausdehnung entlang der Faserachse mikroskopisch-lokal auf Werte kleiner als die mittlere Faser-Kohärenzlänge und dabei höchstens 200 µm begrenzt sind. Die Aufgabe wird weiterhin gelöst durch die Verwendung der erfindungsgemäßen Faserverbundwerkstoffe für thermisch- und/oder Langzeit-hochbelastete Bauteile und/oder Anlagen.

Description

Oxidkeramische Faserverbundwerkstoffe und ihre Verwendung
Anwendungsgebiet der Erfindung Die Erfindung betrifft oxidkeramische Faserverbundwerkstoffe, wie sie beispielsweise erfindungsgemäß in Anlagen zur Energieumwandlung Verwendung finden.
Stand der Technik Im Interesse künftig erheblich zu erhöhender Energieausbeuten sind verstärkte Anstrengungen zur Bereitstellung von keramischen Werkstoffen für Anlagen zur Energiegewinnung bei Temperaturen > 1400 °C zu beobachten. Übereinstimmende Einschätzungen gehen dabei davon aus, dass für lasttragende Komponenten unter solchen Extrembedingungen
- sowohl eine ausreichende Schadenstoleranz (d.h. Thermoschockstabilität und hohe Raumtemperatur-Bruchzähigkeiten der eigentlich spröden Keramiken) wie auch die zu fordernde Kriechstabilität der Bauteile nur mittels eines Faserkompo- sit-Designes zu verwirklichen sein wird,
- das Problem thermodynamischer Hocfttemperafur-Stabilität in oxidierenden Atmosphären dauerhaft nur mit per se oxidationsstabilen Oxid-Keramiken beherrschbar ist.
Ähnlich differenzierte Ansprüche bzgl. Schadenstoleranz, Temperatur- und Korrosionsstabilität müssen Hochleistungsbremsscheiben erfüllen. Gegenwärtig werden die mechanischen und thermophysikalischen Anforderungen am besten von Kompositen aus Kohlenstoff-Langfasern mit reaktionsgebundener SiC-Matrix erfüllt, deren Korrosionsbeständigkeit allerdings gerade deshalb begrenzt ist, weil die Korrosion entlang der Nichtoxid-Fasern in das Innere der Scheiben fortschreitet. Es wurde beobachtet, dass die Verwendung von Kohlenstoff-Kurzfasern zwar die Korrosionsstabilität verbessert, andererseits aber das mechanische Eigenschaftsniveau begrenzt (R. Ga- dow, S. 15-29 in: Ceram. Eng. Sei. Proc. Vol. 21/3, The Am. Ceram. Soc, Wester- ville/OH, 2000). Rein oxidische Komposite könnten deshalb auch hier eine vorteilhafte werkstoffliche Alternative bieten. Angesichts der komplexen mechanischen Anforderungen ist mit obigen Einschätzungen für alle derartigen Anwendungen offensichtlich, dass den mechanischen Eigenschaften der Faser/Matrix-Bindung eine entscheidende Rolle bei der Verwirklichung solcher oxidischer Verbundwerkstoffe zukommt. Offensichtlich ist allerdings auch, weshalb es bisher unmöglich war, ein Konzept zu entwickeln, welches den Forderungen nach Thermoschockstabilität und nach Kriechfestigkeit gleichermaßen gerecht wird:
- Die Forderung nach Übertragung der Kriech resistenz einer (vorzugsweise mehrdimensionalen) Faserstruktur auf das Bauteil als Ganzes führt, zumindest mit Blick auf einen Langzeiteinsatz von > 10.000 Stunden, zur naheliegenden Forderung einer festen Faser/Matrix-Bindung (I.W. Donald u.a., J. Mater. Sei. 11 (1976)5, 949-972); A.G. Evans u.a., S. 929-955 in Creep and Fracture of Engineering Materials, London, 1987). Zwar könnte man hoffen, durch ein mehrdimensionales Faser-Design eine gewisse makroskopische Formstabilität der Teile auch ohne feste Faser/Matrix-Bindung allein durch eine hohe Kriechfestigkeit der Faser-Anordnung zu erreichen, jedoch sind unter den Bedingungen strömender Atmosphären und hoher Druckgradienten in Turbinen sehr komplexe Beanspruchungen gegeben (u.a. auch hinsichtlich einer Erosionsbelastung), denen Verbundwerkstoffe mit generell schwachen Grenzflächen bei Temperaturen um 1400 °C kaum auf längere Zeit standhalten können.
- Dagegen erscheint die Forderung nach einer auch für wiederholte Belastung thermoschockrestistenten Keramik gegenwärtig ausschließlich durch ein Verbund-Design zu verwirklichen, das einen Verbrauch von (Spröd-)Bruchenergie (Energiedissipation) nach Dehnung und teilweisem Bruch von Fasern vermittels einer erheblichen Scherdeformation entlang der Faser/Matrix-Grenzflächen realisiert (Rissumlenkung, „pull-out"- bzw. „debonding'-Effekte, ermöglicht durch schwache Faser/Matrix-Bindung).
In Umsetzung dieses Verständnisses sind eine Vielzahl von Vorschlägen gemacht worden, die alle ohne Ausnahme die Bildung schwacher Faser/Matrix-Grenzflächen (interfaces) beinhalten. Dies erfolgt teils durch Faserbeschichtung, teils durch eine entsprechende Gestaltung der Matrix.
So beschreiben Pejryd u.a. (EP 639 165 A1, US 5,567,518) „a ceramic composite, particularly for use at temperatures above 1400 °C" mit einem Aufbau aus Oxid- Faser-/Oxid-Matrix und einer per Anspruch derart bestimmten Stoffauswahl und ggf. größeren Beschichtungsdicke der Fasern > 2 μm, dass ausdrücklich schwache Grenzflächen („weak bond Nable to debonding") erreicht werden. Wie in den meisten der aus der Literatur bekannten Vorschläge wird allerdings auch hier die wirkliche Nutzbarkeit für die deklarierte Anwendung nicht offenbart: der „Nachweis" eines Energieverbrauchs beim Bruch (in Form nichtlinearer Spannungs-Dehnungs-Effekte) erfolgt in den Beispielen nur durch Versuche bei Raumtemperatur, was zum wirklichen Thermoschockverhalten und erst recht zur Kriechstabilität bei den als Ziel genannten Einsätzen jenseits von 1400 °C keinerlei Rückschlüsse zuläßt.
Saruhan-Brings u.a. (EP 890 559 A1) beschreiben ein „Verfahren zur Beschichtung oxidischer Fasermaterialien zur Herstellung versagenstoleranter hochtemperaturfe- ster oxidationsbeständiger Verbundwerkstoffe"; als Beispiel wird eine La-Aluminat- Beschichtung auf polykristalliner AI2θ3-Faser mit einer Mullit-Matrix verbunden. Auch hierzu werden keinerlei Hochtemperatur-Versuche oder deren Ergebnisse offenbart. Derselbe Mangel haftet dem Patent von Lange u.a. (US 5,856,252) an, wo im Rahmen von „Damage tolerant ceramic matrix composities by a precursor infiltration" ein Anspruch einen „all oxide ceramic composite" aus unbeschichteten AI2θ3-Fasern und poröser Mullit-Matrix beschreibt, ohne dass Angaben zum Hochtemperaturverhalten offenbart werden; Hauptinhalt von US 5,856,252 ist die Beschreibung oxidischer Komposite mit schadenstolerantem Verhalten, erzielt durch „delaminations ... with extensive regions of cracking normal to the rupture plane".
Ein ähnliches Herangehen finde sich bei Dariol u.a. in einer „Procede d'elaboration d'un materiau d'inerphase, materiau obtenu, procede de traitment d'un fibre cerami- que de renfort avec ce materiau et materiau thermostructural incluant de telles fibres" (FR 27 78 655 A1), wo die Bildung eines mikro-porösen Faser/Matrix-Grenzflächen- bereichs durch Hinzufügen eines Porositätsbildners (z.B. Kohlenstoff, der mindestens partiell oxidiert wird) erfolgt. Zu einem mikrostrukturell ähnlichen Ergebnis kommen Lundberg u.a. (EP 946 458 A1), die für Oxid-Faser/Oxid-Matrix-Verbunde, gedacht speziell für den Einsatz in oxidierenden Atmosphären > 1400 °C, mikroporöse Faser/Matrix-Grenzflächen durch Tauchen der Fasern in Schlicker mit Kohlenstoff und Zr02 erzeugen. Dabei übersehen die Lösungsvorschläge, dass die Kriechraten gerade in Frage kommender Oxide zwischen 1300 °C und 1700 °C um ca. 4 Größenordnungen zunehmen (viele nichtoxidische Keramiken sind kriechresistenter, dabei aber oxidati- onsanfällig), so dass eine ausreichende mechanische Langzeit-Stabilität (>10.000 h) mit polykristallinen Fasern in polykristallinen Matrices ganz unmöglich zu verwirklichen sein wird.
Die eigene Erfindung setzt deshalb ausschließlich auf Komposite aus oxidkeramischen Werkstoffen mit zumindest bereichsweise einkristallinen Fasern, deren mittlere Kohärenzlängen der einkristallinen Bereiche bei mindestens 150 μm, vorzugsweise > 400 μm, besonders vorzugsweise > 1 mm liegen. Erstaunlicherweise findet sich in den o.a. Veröffentlichungen nur in EP 639 165 A1 ein Ausführungsbeispiel, welches dieser Forderung insofern entspricht, als dicke einkristalline Saphir-Fasern (Saphi- kon, USA; Faserdicke > 100 μm) mit Zr02 beschichtet und in eine AI2θ3-Matrix eingebettet werden. Allerdings fehlen auch in EP 639 165 jegliche Angaben zum eigentlich als Zielgröße interessierenden Verhalten unter Temperaturbelastung. Auch bei Verwendung oder In-Situ-Erzeugung einkristalliner Fasern wird am Konzept schwacher Grenzflächen festgehalten, u.a. mit der Konsequenz, dass die Fasern im Bereich niedriger Temperaturen die Festigkeiten eher vermindern als verbessern (A.A. Kolchin u.a., Composite Sei. Technol. 61 (2001)8, 1079-1082).
Den bisher bekannten Lösungsvorschlägen ist somit gemeinsam, dass selbst im Fall einer Zieldefinition für den Einsatz bei Temperaturen > 1400 °C die Eigenschaftsentwicklung ausschließlich auf die nur bei niederen Temperaturen relevante Thermo- schockbeanspruchung orientiert ist, und dass selbst hierzu keine Offenlegung der Werkstoffeigenschaften erfolgt. Alle bekannten Entwicklungen streben als Ziel mikrostruktureller Gestaltung nach „versagenstolerantem" Verhalten („damage tolerant"), welches durch schwache Faser/Matrix-Grenzflächen realisiert wird. Unverständlicherweise wird die Verwirklichung dieses Zieles in keinem Fall durch entsprechende Thermoschock-Untersuchungen in technisch relevanten Temperaturbereichen nachgewiesen, vielmehr beschränken sich alle angeführten Ausführungsbeispiele auf reine Raumtemperatur-Bruchversuche. Wenn diese „schwache" Faser/Matrix-Bindung durch bindungsschwächende Faserbeschichtungen mit dafür geeigneten Materialien oder durch künstlich erzeugte Mi- kro-Poren erzeugt wird, so wird weiterhin übersehen, dass solche Mikro-Poren im angestrebten Einsatzbereich der Temperatur zumindest beim Langzeit-Einsatz instabil werden und dass sich auch die bindungsschwächende Wirkung einer Faser- Beschichtung bei höheren Temperaturen, wie z.B. bei 1400 °C ganz anders darstellt als im ausschließlich untersuchten Raumtemperaturbereich. Und natürlich können „schwache" Faser/Matrix-Grenzflächen auch nicht die gerade bei > 1400 °C dominierende Forderung nach Kriechstabilität erfüllen.
Somit bieten die bekannten Vorschläge für oxidkeramische Faserverbundwerkstoffe zum Einsatz bei Temperaturen > 1400 °C weder für
(1) die mit dem Aufheizen/Abkühlen verbundenen Thermoschock-Beanspruchungen noch für
(2) das bei so hohen Temperaturen gravierende Problem der Kriechverformung einen praktikablen Lösungsansatz oder auch nur eine Anregung.
Darstellung der Erfindung Die vorliegende Erfindung legt deshalb für ihre Aufgabe einer Lösung der beiden bisher nicht zu vereinbarenden Forderungen nach (1 ) verbessertem Sprödbruchverhal- ten zur Sicherung der Thermoschockstabilität und Schadenstoleranz im Temperaturbereich < 1000 °C und (2) nach mechanischer Hochtemperatur-Stabilität zur Gewährleistung der Langzeit-Formstabilität (Kriech resistenz) von Bauteilen aus solchen oxidkeramischen Verbundwerkstoffen ein fundamental neues Konzept vor.
Die Aufgabe wird durch die in den Ansprüchen angegebene Erfindung gelöst. Weiterbildungen sind Gegenstand der Unteransprüche.
Die erfindungsgemäßen oxidkeramischen Faserverbundwerkstoffe, die Fasern mit einer zumindest bereichsweise einkristallinen Struktur enthalten (mittlere Länge der einkristallinen „kohärenten" Bereiche der Faser mindestens 150 μm, vorzugsweise > 400 μm, besonders vorzugsweise > 1 mm), sind dadurch gekennzeichnet, dass die Faser/Matrix-Grenzflächen bei Hochtemperaturbeanspruchung entlang der Faserachse eine in mesoskopischen Längenbereichen über die mittlere Faser- Kohärenzlänge feste Bindung zeigen, wobei diese Bindung bei Beanspruchungsarten oberhalb von Raumtemperatur, welche mit der Ausbreitung von Makrorissen einhergehen (Bruch, Thermoschock), nur mikroskopische, lokal auf Bereiche kleiner als die genannte Kohärenzlänge und dabei höchstens 200 μm begrenzte Delaminatio- nen (debonding) aufweist und so eine quasi-makroskopische Ablösung der Fasern beim Bruch (pull-out) ebenso verhindert, wie extensives Kriechen der Grenzfläche im Hochtemperaturbereich.
Der Begriff einer entlang der Faserachse über die Faser-Kohärenzlänge mesosko- pisch festen Faser/Matrix-Grenzfläche meint erfindungsgemäß, dass es unter ther- momechanischer Belastung zu keinem durchgehenden Abreißen der Matrix von der Faser („pull-out" in achsialer Richtung) mit einer die mittlere Kohärenzlänge der Faser und dabei höchstens 200 μm übersteigenden Rissdimension kommt. Während also „delaminations ... with extensive ... Cracking" (US 5,856,252) hier vermieden werden, treten in mikroskopischen Bereichen, die kleiner sind als die mittlere Kohärenzlänge der Fasern und dabei höchstens 200 μm, lokal-begrenzte Ablösungen durchaus auf. Diese mikroskopisch-lokal begrenzte Delamination kann dabei allerdings wegen der in Achsrichtung der Fasern mesoskopisch festen Grenzflächenbindung nicht zu längeren Pull-out-Effekten der Fasern in der Bruchfläche führen; die auf Bruchflächen eventuelle beobachtbaren Pull-out-Längen bleiben klein gegenüber der genannten Mindest-Kohärenzlänge von 150 μm und übersteigen in keinem Fall einen mittleren Wert von 200 μm.
Diese Darstellung zeigt auch, dass eine pauschale Qualifizierung der Faser/Matrix- Grenzflächen als „fest" oder „schwach" wegen der unterschiedlichen Temperaturbereiche und ohne Spezifikation der betrachteten Längen-Dimensionen wenig Sinn macht. So könnte die oben als mesoskopisch fest bezeichnete Faser/Matrix-Bindung angesichts ihrer im Temperaturbereich spröden Werkstoffverhaltens (< 1000 °C) mikroskopischen Delamination einerseits als in diesem Temperaturbereich relativ schwach angesprochen werden verglichen mit dem ggf. festeren, Kriechbeständigkeit ermöglichendem Charakter derselben Grenzfläche im Hochtemperaturbereich oberhalb von 1000 °C; andererseits ist diese Faser/Matrix-Grenzfläche jedoch im Bereich < 1000 °C zweifellos relativ „fest" verglichen mit anderen Interfaces, die, wie nach dem Stand der Technik beschrieben, beim Bruch zu Ablöselängen vom Vielfa- chen des Faserdurchmessers führen. Überraschenderweise ist die mit mikroskopisch-lokaler Faserablösung verbundene Energiedissipation erfindungsgemäßer Komposite ausreichend, die Sprödbruchvorgänge, wie sie Festigkeit und Thermo- schockresistenz im Temperaturbereich < 1000 °C bestimmen, erheblich zu beeinflussen. Der bisher unüberwindliche Gegensatz zwischen den Forderungen zur Beherrschung des mechanischen Verhaltens in diesem niederen Temperaturbereich und nach Form-Stabilität (Kriechresistenz) und Gefüge-Zusammenhalt (z.B. mit Blick auf Erosionsstabilität) bei sehr hohen Temperaturen wird mit dem erfindungsgemäßen Design für rein-oxidische Faververbund Werkstoffe erstmals gelöst.
Die Werkstoffauswahl und die Herstellungstechnologie sind gegenüber dem erfindungsgemäßen grundlegenden Design des Verbundkonzeptes von untergeordneter Bedeutung. Der Einsatz von als kriechfest bekannten Materialien, wie Mullit oder Y- Al-Granat für Matrix und Fasern bietet generell Vorteile. Auch können zusätzliche Maßnahmen zur Gefügekontrolle unter Langzeit-Hochtemperaturbeanspruchungen sinnvoll sein (so u.a. die Verwendung von speziellen Dotierungen, von Duplex- oder generell mehrphasigen Matrixwerkstoffen zwecks Verhinderung oder Begrenzung von Kornwachstum). Die jeweilige Auswahl des Basiswerkstoffes für Matrix und Fasern und/oder Zusätzen wird aber immer vom jeweiligen Einsatzzweck bestimmt werden und unterliegt im Rahmen des hier beschriebenen erfindungsgemäßen Verbund-Designs keinen Einschränkungen. Auch kann die Materialauswahl einer eventuellen Faserbeschichtung im Rahmen des hier offengelegten Design-Konzeptes in einem breiten Rahmen erfolgen, weil das Material der Faser/Matrix-Grenzfläche nur erste Voraussetzungen für die Erfüllung des Merkmals des neuen Komposit-Designs festlegt: die wirkliche Herausbildung einer erfindungsgemäßen mesoskopisch festen Faser/Matrix-Grenzfläche, die bei Beanspruchungarten oberhalb von Raumtemperatur, welche mit der Ausbreitung von Makrorissen einhergehen (Bruch, Thermo- schock), mikroskopisch-lokal begrenzte Delaminationen (debonding) zulässt, erfolgt erst durch Abstimmung dieser Materialauswahl mit anderen, für sich bekannten Prozessschritten (wie z.B. der Erzeugung eines optimierten Sintergrades der Matrix durch Variation der Sintertemperatur). Falls beschichte Fasern verwendet werden, muss die Dicke der Beschichtung < 2 μm gehalten werden, um die erfindungsgemäße mesoskopisch feste Bindung zu realisieren.
Natürlich ist es auch unerheblich, ob der Komposit unter Verwendung einer vorgefertigten einkristallinen oxidkeramischen Faser mit den genannten Kohärenzlängen hergestellt ist oder aus polykristallinen Fasern, Geweben oder sonstigen faserartigen Vorprodukten, die erst im Zuge des Sinterns des (z.B. durch Imprägnierung erzeugten) Komposites in situ in den erfindungsgemäß beschriebenen einkristallinen Zustand überführt worden sind.
Die vorliegende Erfindung ist in besonderer Weise einsetzbar für thermisch- hochbelastete und/oder auch langzeit-hochbelastete Bauteile oder Anlagen. Sie sind weiterhin vorteilhafterweise einsetzbar für Bauteile, die insbesondere unter wechselnden thermischen und/oder Langzeit-Belastungen eingesetzt werden. Vorteilhaft sind diese Komposite insbesondere für Bauteile und/oder Anlagen zur Energieumwandlung oder für Hochleistungsbremsscheiben einsetzbar.
Bester Weg zur Ausführung der Erfindung Im weiteren wird die Erfindung an einem Ausführungsbeispiel näher erläutert.
Saphirfasern mit ca. 160 μm Durchmesser (Advanced Crystal Products, USA) wurden per Sol/Gel-Verfahren mit 0,15 - 1,2 μm dicken SrO*6AI203-Schichten versehen und danach zusammen mit einem Korundpulver hoher Reinheit (> 99,99 % Al203) und 0,2 μm mittlerer Korngröße (TM-DAR, Boehringer Ingelheim Chemicals, Japan) in einer Heißpresse zu ebenen Platten von ca. 5 mm Stärke verdichtet. Vergleichsweise wurden auch die Eigenschaften faser-freier Proben untersucht. Der Einfluss der Faserdicke wird hier nicht dargestellt, generell sind aber dünne Fasern vorteilhaft zu verwenden.
Für die beispielhaften Versuche wurde ein relativ großer gegenseitiger Faserabstand von ca. 1 - 1,5 mm festgelegt, die Dimension der Proben war 3,6 x 6,8 x 60 mm3. Die Fasern waren parallel zur Längsachse der Biegebruchstäbe ausgerichtet und somit senkrecht zu den entstehenden (makroskopischen) Bruchflächen orientiert. Durch unterschiedliche Heißpresstemperaturen wurde die Korngröße der Matrix der hergestellten dichten oxidkeramischen Faserverbunde verändert; eine solche Einstellung der Korngröße der Matrix ist u.a. bedeutsam für die mechanische Stabilität bei sehr hoher Temperatur: 1330 °C/2 h - 0,6 μm,
1550 °C/2 h - 6,0 μm,
1800 °C/2 h - 15,5 μm.
Alle mechanischen Tests im Bereich von Raumtemperatur bis 1400 °C wurden in 3- Punkt-Biegung mit einer Belastungsrate von 0,5 mm/min durchgeführt; in Vorversuchen war zuvor zwischen 0,1 und 1 mm/min kein Einfluss der Belastungsrate, der Packungsdichte der Faser oder auch einer zusätzlichen heißisostatischen Nachverdichtung der Komposite festgestellt worden.
Die Untersuchungsergebnisse der Bruchflächen und die mechanischen Daten belegen den erfindungsgemäßen Charakter der hier beispielhaft hergestellten oxidkeramischen Verbundwerkstoffe.
Die Abbildungen zeigen als Beispiel Bruchflächen von Verbunden, deren Saphir- Fasern mit 0,6 und 1,2 μm dicken Sr-Aluminat-Schichten versehen worden waren:
Abb. 1 Keine längere Faserablösung aus der Matrix beim Bruch bei Raumtemperatur, die Fasern (Beschichtungsdicke 1,2 μm) brechen in nahezu derselben Ebene wie die umgebende Matrix (minimale Pull-out- Längen < 100 μm).
Abb.2a/b Die stärkere Vergrößerung der bei Raumtemperatur erzeugten
Bruchfläche zeigt: die festigkeitserhöhende Wirkung der beschichteten Fasern (Beschichtungsdicke 1,2 μm) im Temperaturbereich spröden Werkstoffverhaltens (s. Tabelle unten) geht einher mit (i) einem lokalen, mikroskopischen Nebeneinander von (i) nach dem Bruch noch festversinterten Bereichen der Faser/Matrix-Grenzfläche (was längere Faserablösung aus der Matrix verhindert) und (ü) mikroskopisch-lokal begrenzter Rissbildung (energiedissipative Beein- flussung des Sprödbruches mit Wirkung z.B. im Sinne erhöhter Festigkeit oder verbesserter Thermoschockresistenz).
Abb. 3 Auch im oberen Temperatur-Bereich spröden Werkstoffverhaltens tritt kein nennenswerter Pull-out-Effekt auf (hier Beispiel 900 °C; Beschichtungsdicke 1 ,2 μm).
Abb. 4a/b Bruchfläche 1200 °C (ähnlich bei 1400 °C): Selbst bei sehr hoher Temperatur ist für Faserbeschichtungen, die zu erfindungsgemäßen oxidkeramischen Verbundwerkstoffen führen (im Beispiel mit 0,6 dik- ker Sr-Aluminat-Beschichtung) eine mesoskopisch feste Faser/Matrix-Bindung realisiert, die den makroskopischen Bruch ohne längere Faserablösung aus der Matrix übersteht (ähnliches Ergebnis auch mit 1 ,2 μm dicker Faser-Beschichtung).
Mechanische Tests dienten der Erkundung des Verhaltens der oxidkeramischen Faserverbundwerkstoffe unter Temperatureinwirkung.
Die angestrebte positive Wirkung der Fasern mit Beschichtung und bei darauf abgestimmter Sinterung zeigt folgende Tabelle bezüglich des Sprödbruchverhaltens (welches z.B. bei Thermoschockbelastung im Temperaturbereich zwischen 20 und 1000 °C angesprochen ist); die Daten beziehen sich auf Gefüge mit 0,6 μm mittlerer Matrix-Korngröße:
Bei sehr hoher Temperatur spielen dagegen Sprödbruchverhalten und Thermo- schockresistenz eine untergeordnete Rolle, wichtig ist hier vor allem eine feste Faser/Matrix-Bindung als Voraussetzung für eine ausreichende Langzeit-Formstabilität des Bauteils. Während für 1200 - 1400 °C die mikroskopische Festigkeit der Grenzflächen und die Abwesenheit von Pull-out-Mechanismen mit Abb. 4a/b belegt ist, zeigt nachfolgende Tabelle für das Beispiel der Verbundwerkstoffe mit einer Matrix- Korngröße von 6 μm die Konstanz der makroskopischen Festigkeit zwischen 1200 bis mindestens 1400 °C unabhängig von der Dicke der Faserbeschichtung im untersuchten Bereich (ähnliche Daten auch für Matrix mit 14,5 μm Korngröße):

Claims

Patentansprüche
1. Oxidkeramische Faserverbundwerkstoffe, enthaltend Fasern einer bereichsweise einkristallinen Struktur mit einer mittleren Kohärenzlänge von > 150 μm, mit einer bei Hochtemperatur entlang der Faserachse mesoskopisch festen Faser/Matrix- Grenzfläche, die bei Beanspruchungen oberhalb von Raumtemperatur, welche mit der Ausbreitung von Makrorissen einhergehen, Delaminationen aufweist, welche in ihrer Ausdehnung entlang der Faserachse mikroskopisch-lokal auf Werte kleiner als die mittlere Faser-Kohärenzlänge und dabei höchstens 200 μm begrenzt sind.
2. Oxidkeramische Faserverbundwerkstoffe nach Anspruch 1 , enthaltend beschichte Fasern mit einer Dicke des Grenzflächenmaterials von weniger als 2 μm.
3. Verwendung von oxidkeramischen Faserverbundwerkstoffen nach Anspruch 1 für thermisch- und/oder Langzeit-hochbelastete Bauteile und/oder Anlagen.
4. Verwendung nach Anspruch 3, für Bauteile und/oder Anlagen unter wechselnden thermischen und/oder Langzeit-Belastungen.
5. Verwendung nach Anspruch 3, für Bauteile und/oder Anlagen zur Energieumwandlung oder für Hochleistungsbremsscheiben.
EP02803746A 2001-11-23 2002-11-14 Oxidkeramische faserverbundwerkstoffe und ihre verwendung Ceased EP1446366A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10158925A DE10158925A1 (de) 2001-11-23 2001-11-23 Oxidkeramische Faserverbundwerkstoffe und ihre Verwendung
DE10158925 2001-11-23
PCT/DE2002/004259 WO2003045874A2 (de) 2001-11-23 2002-11-14 Oxidkeramische faserverbundwerkstoffe und ihre verwendung

Publications (1)

Publication Number Publication Date
EP1446366A2 true EP1446366A2 (de) 2004-08-18

Family

ID=7707624

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02803746A Ceased EP1446366A2 (de) 2001-11-23 2002-11-14 Oxidkeramische faserverbundwerkstoffe und ihre verwendung

Country Status (4)

Country Link
US (1) US7105224B2 (de)
EP (1) EP1446366A2 (de)
DE (1) DE10158925A1 (de)
WO (1) WO2003045874A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10158925A1 (de) 2001-11-23 2003-06-26 Fraunhofer Ges Forschung Oxidkeramische Faserverbundwerkstoffe und ihre Verwendung
DE102006026549A1 (de) * 2006-06-08 2007-12-13 Audi Ag Verfahren zur Herstellung von Reibscheiben aus keramischen Werkstoffen mit verbesserter Reibschicht
DE102013016735A1 (de) 2013-10-08 2015-04-09 Anja Glisovic Temperaturbeständige Faserverbundwerkstoffe mit anpassbaren thermischen Eigenschaften und ihre Anwendung

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4490505A (en) 1980-04-17 1984-12-25 Minnesota Mining And Manufacturing Company Polyfunctional aziridine crosslinking agents for aqueous magnetic recording media binder
DE3171194D1 (en) * 1980-04-17 1985-08-08 Minnesota Mining & Mfg Polyfunctional aziridine crosslinking agents for aqueous magnetic recording media binder
GB8630918D0 (en) * 1986-12-24 1987-02-04 Pilkington Brothers Plc Coatings on glass
US5024859A (en) * 1989-11-20 1991-06-18 General Electric Company Method for applying an oxide barrier coating to a reinforcing fiber
JPH04130049A (ja) * 1990-09-18 1992-05-01 Mitsubishi Materials Corp セラミックス複合材料及びその製造方法
DE69218260T2 (de) 1992-05-07 1997-06-19 Volvo Aero Ab KERAMISCHES VERBUNDMATERIAL, INSBESONDERE ZUR VERWENDUNG BEI TEMPERATUREN ÜBER 1400 o C
US5436042A (en) 1994-03-11 1995-07-25 The Carborundum Company Ceramic fiber-reinforced composite articles and their production
US6605556B1 (en) 1994-06-17 2003-08-12 United Technologies Corporation High temperature composite material formed from nanostructured powders
US5856252A (en) * 1995-06-07 1999-01-05 The Regents Of The University Of California Damage tolerant ceramic matrix composites by a precursor infiltration
DE69715178T2 (de) 1996-12-27 2003-01-30 Tonengeneral Sekiyu K K Polyorganosiloxane und verfahren zu deren herstellung
KR19980066691A (ko) * 1997-01-28 1998-10-15 김광호 반도체 기판의 세정방법
DE19729830A1 (de) 1997-07-11 1999-01-14 Deutsch Zentr Luft & Raumfahrt Verfahren zur Beschichtung oxidischer Fasermaterialien mit Metallaluminaten zur Herstellung versagenstoleranter hochtemperaturfester oxidationsbeständiger Verbundwerkstoffe
WO1999007653A1 (en) 1997-08-11 1999-02-18 Volvo Aero Corporation A method for manufacturing a ceramic composite material
FR2778655B1 (fr) 1998-05-15 2000-08-11 Aerospatiale Procede d'elaboration d'un materiau d'interphase, materiau obtenu, procede de traitement d'une fibre ceramique de renfort avec ce materiau et materiau thermostructural incluant de telles fibres
JP2004510674A (ja) * 2000-09-29 2004-04-08 グッドリッチ・コーポレイション 炭化ホウ素をベースとしたセラミックマトリックス複合材料
JP3407112B2 (ja) 2000-10-30 2003-05-19 株式会社東京機械製作所 刷版装着位置判定装置
DE10158925A1 (de) 2001-11-23 2003-06-26 Fraunhofer Ges Forschung Oxidkeramische Faserverbundwerkstoffe und ihre Verwendung
US6719104B1 (en) * 2001-12-28 2004-04-13 Kelsey-Hayes Company Composite caliper for a disc brake assembly and method for producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03045874A2 *

Also Published As

Publication number Publication date
US7105224B2 (en) 2006-09-12
DE10158925A1 (de) 2003-06-26
WO2003045874A2 (de) 2003-06-05
WO2003045874A3 (de) 2003-10-09
US20050003183A1 (en) 2005-01-06

Similar Documents

Publication Publication Date Title
EP1734024B1 (de) Oxidkeramischer Faser-Verbundwerkstoff und ein Verfahren zur Herstellung desselben
DE19746598C2 (de) Keramikverbundwerkstoff und seine Verwendung
DE60012605T2 (de) Silizium enthaltendes Substrat mit Calciumaluminiumsilikat-Wärmedämmschicht
EP0202504B1 (de) Keramischer Verbundwerkstoff
DE60127107T2 (de) Verfahren zur herstellung von einer abrasions- und hochtemperaturbeständigen beschichtung und material, das verdichtete geometrische hohlkörper enthält
DE3638658C1 (de) Waermedaemmende Auskleidung fuer eine Gasturbine
DE102006022598B4 (de) Verfahren zur Herstellung einer Keramik aus präkeramischen Papier- oder Pappstrukturen
EP1338583B1 (de) Faserverbundkeramik mit hoher Wärmeleitfähigkeit
EP1734023B1 (de) Einstellung des Faservolumengehaltes in oxidkeramischen Faser-Verbundwerkstoffen
EP1645410A2 (de) Formteil aus langfaser- und kurzfaserhaltigen Keramiken
DE112020000384T5 (de) Wärmeableitungselement
EP2799412B1 (de) Monolithische keramiken mit gewebegitter-verstärkung
DE19826792C2 (de) Hochtemperaturbeständige Faserverbundmaterialien und Verfahren zu deren Herstellung
DE3329250A1 (de) Feuerfestes siliziumnitrid-verbundmaterial
EP1787967B1 (de) Verfahren zum Herstellen eines gebrannten Formteils einer feuerfesten Auskleidung
EP1824797B1 (de) Kalibrierkörper, lehre oder messeinrichtung, vorzugsweise gewindemesseinrichtung und verfahren zur herstellung derselben
DE102015212290B4 (de) Wärmedämmstoff
DE3620178C2 (de)
DE3602132A1 (de) Gleit- oder reibelement mit funktionsteil aus keramischem werkstoff mit eingelagertem stabilisator sowie verfahren zu seiner herstellung
WO2003045874A2 (de) Oxidkeramische faserverbundwerkstoffe und ihre verwendung
WO2008000247A1 (de) Verfahren zum korrosionsschutz von keramischen oberflächen, körper mit entsprechenden keramischen oberflächen und deren verwendung
WO2007003587A2 (de) Formmasse zum herstellen einer feuerfesten auskleidung
DE102007004243B4 (de) Verfahren zum Herstellen eines Verbundkörpers und Verbundkörper
DE102022202762A1 (de) Keramische Verstärkungsfaser, Verfahren zu deren Herstellung und Verbundwerkstoff
DE3724623A1 (de) Keramischer verbundstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040410

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20050125

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20061108