JP2004510674A - 炭化ホウ素をベースとしたセラミックマトリックス複合材料 - Google Patents

炭化ホウ素をベースとしたセラミックマトリックス複合材料 Download PDF

Info

Publication number
JP2004510674A
JP2004510674A JP2002532190A JP2002532190A JP2004510674A JP 2004510674 A JP2004510674 A JP 2004510674A JP 2002532190 A JP2002532190 A JP 2002532190A JP 2002532190 A JP2002532190 A JP 2002532190A JP 2004510674 A JP2004510674 A JP 2004510674A
Authority
JP
Japan
Prior art keywords
carbon
silicon
composite
elemental
primarily
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002532190A
Other languages
English (en)
Inventor
サイ−クィン・ラウ
サルバトーレ・ジェイ・カランドラ
トーマス・ディー・ニクソン
エドワード・アール・ストーバー
Original Assignee
グッドリッチ・コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グッドリッチ・コーポレイション filed Critical グッドリッチ・コーポレイション
Publication of JP2004510674A publication Critical patent/JP2004510674A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/023Composite materials containing carbon and carbon fibres or fibres made of carbonizable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0034Materials; Production methods therefor non-metallic
    • F16D2200/0039Ceramics
    • F16D2200/0047Ceramic composite, e.g. C/C composite infiltrated with Si or B, or ceramic matrix infiltrated with metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/249928Fiber embedded in a ceramic, glass, or carbon matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/249928Fiber embedded in a ceramic, glass, or carbon matrix
    • Y10T428/249929Fibers are aligned substantially parallel
    • Y10T428/24993Fiber is precoated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Catalysts (AREA)
  • Braking Arrangements (AREA)

Abstract

本発明は複合材料およびその製法である。前記材料は、初めに元素状炭素で主としてコーティングされ、次にケイ素と反応しない少なくとも1種のセラミック材料、例えば炭化ホウ素、で主としてコーティングされた繊維構造を含んでなる。さらに前記複合材料は、初めに元素状炭素で主としてコーティングされ、次に少なくとも1種のセラミック材料で主としてコーティングされた前記繊維構造を主として包含する連続したシリコンマトリックスを含んでなる。前記マトリックスは、大きさが主として20ミクロン以下の微粒子結晶構造を有する。前記少なくとも1種のセラミック材料は前記マトリックス内では不連続である。前記繊維構造は、前記複合材料が破断する際に、初めに前記繊維構造を主としてコーティングする前記元素状炭素を引き抜く。

Description

【0001】
発明の技術分野
本発明は、一般に、セラミックマトリックス複合材料に関するものであり、さらに詳しくは、航空機用ブレーキシステムに用いられる、炭化ホウ素をベースとしたセラミックマトリックス複合材料に関するものである。
【0002】
発明の背景
現在の航空機用ブレーキシステムは、摩擦材料およびヒートシンクとしての役割を果たすスチールディスクまたはカーボンディスクのいずれかを用いている。スチールベースのシステムは、最初のブレーキ材料であった。スチールベースのシステムは、1970年代に炭素−炭素(C−C)複合材料が出現するまで、すべての航空機で用いられていた。現在、C−C複合材料は、航空機のブレーキ用ヒートシンクのための高度な最先端技術を用いた材料であり、大多数の新しい軍事用航空機プログラムおよび大規模な民間航空機プログラムに用いられている。
【0003】
セラミックマトリックス複合材料(CMC)は、ある並外れた熱的性質および機械的性質を示すものであり、航空機のブレーキの摩擦に対処する優れた材料として期待されているだけでなく、そのような用途に用いられる次世代のヒートシンク材料の魅力的な候補でもある。次世代の航空機ブレーキ用材料として使用される可能性を実際に持ち、かつ、潜在的な画期的な性能を示すあるCMCシステムが最近発見された。特に、スラリーキャスト/溶融浸透型炭化ホウ素マトリックス複合材料システムをベースとしたブレーキ材料は、スチールブレーキ材料とカーボンブレーキ材料の両方と比べて、非常に魅力的な利点を示している。
【0004】
材料の種類としては、セラミックスが低い密度、高い強度および高い耐酸化性を有することが知られているが、一部のセラミックスは、魅力的な熱容量および熱伝導性を有することでも知られている。今日用いられている炭素−炭素複合材料と比較して、セラミックスには、磨耗率の低減、耐酸化性の向上、およびヒートシンクの重量および/または体積の低減の点で、いくつかの重要な性能面での利益をもたらす可能性がある。
【0005】
航空機制動システムにセラミックスを用いようとした初めての試みは、モノリシックセラミックスおよびサーメット(cermets)をベースとしたが、いずれもうまくいかなかった。これらの試みが失敗に終わった主な原因は、不十分な機械的特性、特に、セラミックスの特徴としてよく知られている脆性に関連した低い耐衝撃性および低い破壊靭性であった。従って、航空機制動システムに用いられる次世代のヒートシンク材料についての活動は、セラミックスの他の利点は維持したままでその破壊靭性および耐衝撃性を向上させる(その脆性を低減させる)繊維強化されたCMCの開発に注がれている。
【0006】
航空機制動システムのヒートシンク用であると判断される2種類の主なCMC材料システム候補は、熱加工に関する考慮点から、それぞれ炭化ケイ素(SiC)および炭化ホウ素(BC)をベースとしている。これらの2種類の材料システムのうち、BCベースのCMCには、BCがダイアモンド、立方窒化ホウ素に次いで3番目に硬いことで知られる材料であり、そして、その熱容量は炭化ケイ素および炭素よりも大きいという特に目を引く特徴がある。しかしながら、航空機用ブレーキ用として好適なBCベースの繊維強化されたCMCは、BCに関する加工の難しさから、これまで製造されたことはない。これまでに知られている試みのすべては、繊維強化を施されていない材料に限られている。例えば、以下に述べる1999年3月9日に発行された米国特許第5,878,849号には、(フィラメントでもファイバーでもなく)BCの粉末のプレスプリフォームにアルミニウムを浸透させることによって調製されたサーメット材料が記載されており、その最終製品の航空機用ブレーキへの使用が提案されている。
【0007】
米国および外国の文献には、ケイ素が充填されたCMCが特定の構成において摩擦係数および/または磨耗寿命の増加を示すことが報告されている。例えば、R.W.Froberg and B.A.Grider, ”High Friction Carbon/Carbon Aircraft Brakes”, 40th Int. SAMPE Symp.,May 8−11,1995,extended abstracts, pp 942−944;R.W.Froberg and T.E.Pratt, ”Brake System with Improved Brake Material”, 1987年7月24日発行の米国特許第4,815,572号(Parker Hannifin Corpに譲渡された);W.Krenkel, ”CMC Materials for High Performance Brakes”, ISTA Conference on Supercars, Aachen, 31 Oct−4 Nov,1994 (paper from the German Aerospace Research Establishment Institute of Structures and Design), Stuttgart;A.Lacombe, ”Friction System Using Refractory Composite Material”, 1991年4月15日発行の米国特許第5,007,508号(フランスのSEPに譲渡された)を参照されたい。
【0008】
例えば、C−Cよりも静止摩擦係数(μ)が高く、かつ、「拒絶離陸(RTO)」を含む全エネルギーにおける安定μが0.30であるヘリコプター用ブレーキがParker Hannifin Corp.によって報告された(R.W.Froberg and B.A.Griderの同箇所 and 米国特許第4,815,572号同箇所を参照)。細断された炭素繊維を成型し、炭化し、そして炭素蒸気浸透(CVI)によって1.60〜1.65g/cmまで高密度化し、最後に液状ケイ素と1,850℃で反応させて0.06〜0.07インチの深度まで炭化ケイ素を形成した。
【0009】
1994年には、ドイツ航空宇宙研究所によって、C−Cよりも安定性が増し、磨耗が減り、そして加工時間が短くなったC−CとSiCとの複合材料についてのサブスケールダイナモメーターの結果が報告された。(W.Krenkelの同箇所を参照。)1,500℃でケイ素を浸透させた、熱分解された、樹脂入り炭素繊維プリフォームから、約35重量%の炭化ケイ素を含有する複合材料が得られた。摩擦係数は0.2〜1.0の範囲内を変動したが、これは同等な条件下におけるC−Cの場合よりも高く、速度が低下するにつれて増加した。磨耗は900℃以下の温度によって影響されなかった。
【0010】
さらに低い有効磨耗率がSEPに対する特許によって開示されている。前記特許には、C−C複合材料ディスクを炭素繊維または炭化ケイ素繊維を含有するディスクと擦り合わせる航空機用ブレーキが記載されている。CVIマトリックスは主相としてSiCを含んでなり、繊維には少量の炭素または窒化ホウ素が付着している。(米国特許第5,007,508号同箇所を参照。)
【0011】
しかしながら、ケイ素をベースとしたCMCの潜在的な利点は上記例によって示されてはいるのだが、これらの主張のほとんどは個別に実証されてはいない。ほとんどの場合、負荷、圧力、試験時間の長さおよびサイクル数を含む摩擦磨耗(F&W)試験のデューティサイクルは報告されていないか若しくは実際の航空機制動状況下において要求されるものよりもはるかに厳密さに欠けている。さらに、これらの研究の多くは、より関連性の高いF&Wデータの組み合わせの代わりに、摩擦または磨耗の結果のみを挙げている。
【0012】
炭化ホウ素を加工する際のオプションがThevenotによって概説されている。F.Thevenot, ”Boron Carbide − A Comprehensive Review”, 1989, pp 2.1−2.23;F.Thevenot, ”Formation of Carbon−Boron Bonds”, in Inorganic Reactions and Methods, ed. J.Zuckerman, A.Hagen, VCH Publishers, New York, 1989, 10, pp 2−11;F.Thevenot, ”Sintering of Boron Carbide and Boron Carbide−Silicon Carbide Two−Phase Materials and their Properties”, J. Nucl. Mater., 1988, 152, pp 154−162を参照されたい。高い熱伝導性と強度には、最少多孔率と、固溶体におけるB/C比への注意が必要とされる。モノリシックBCは、2,375〜2,475℃のグラファイトダイ内で微粉末からホットプレスされることが多いが、この場合、繊維補強材を損傷を与えることなく含ませることはできない。ガラスに封入されたチタン金型を用いる熱間静水圧圧縮成型(HIP)を用いて、BCを1,700℃において過剰炭素で高密度化させた。(H.T.Larker, L.Hermansson and J.Adlerborn, ”Hot Isostatic Pressing and its Applicability to Silicon Carbide and Boron Carbide”, Mater. Sci. Monogr., 1987 38A pp 795−803; ASEAを参照。)2,000℃、200MPa(29ksi)のアルゴン圧において、封入せずに2時間焼結することによって99%を上回る最終密度が得られた。(K.A.Schwetz, W.Greliner, and A. Lipp, ”Mechanical Properties of HIP Treated Sintered Boron Carbide”, Inst. Phys. Conf., 1986, Series No. 75, Chap.5, pp 413−425を参照。)より融点の低いホウ化物を形成する添加剤を用いる無圧力焼結でも高い温度は必要とされたが、過度の粒子成長のために強度が低くなった。さらに、ホットプレスと同様に、無圧力焼結も、体積収縮のため、繊維補強材を含ませるのには適さない。
【0013】
トカマク核融合炉用の炭素繊維強化されたBCは、コーティングされた複数の低モジュラスグラファイトクロス(UCC WCA)層を2,100℃、32MPa(4.6ksi)の圧力でホットプレスすることによって1978〜1979年にLos Alamosで調製された。L.R.Newkirk,et.al., ”Preparation of Fiber Reinforced Titanium Diboride and Boron Carbide Composite Bodies”, Proc. 7th CVD Con., 1979, pp 515−521. [Proc. 7th Eur Con. CVD, 1989];R.E.Riley,et.al, ”Preparation and Uses of Amorphous Boron Carbide Coated Substrates”, 1981年9月1日発行の米国特許第4,287,259号を参照されたい。BCが43体積%以下、密度が1.87g/cmのホットプレスされたビレットが得られたが、繊維に損傷が見られた。2,050℃、4.6ksiの圧力で15分間ホットプレスされた、37体積%のBCを含有する20クロス積層体の曲げ強度は、わずか7.4〜9.9ksiであった。
【0014】
高温での表面コーティングに主に関する炭化ホウ素−炭素蒸着法(CVD)の研究についての一般総説がいくつかある。H.Hannache et.al., ”Kinetics of Boron Carbide Chemical Vapor Deposition and Infiltration”, Proc. 5th European Conf. on CVD, 1985, pp 219−233;A.W.Moore and H.F.Volk, ”Chemical Vapor Deposition of Boron Carbide”, AMMRC CR 69−10, August, 1969;L.C.Vandenbulcke, ”Theoretical and Experimental Studies on the Chemical Vapor Deposition of Boron Carbide”, Ind. Eng. Chem. Prod. Res. Dev., 1985 24, pp 568−575;U.Jansson, ”Chemical Vapor Deposition of Boron Carbides”, Materials & Manufacturing Processes, 6(3), 1991, pp 481−500を参照されたい。浸透されたプリフォームに関係があるのは、析出物のB/C比によって変動する構造、硬さおよび他の特性に対する析出条件および気体比の効果についての情報である。CVIは、減損を避けるために十分な過飽和を必要とし、析出速度が遅いと、表面反応の速度によって制限された方法となる。(H.Hannache et.al., ibid.を参照。)これまで、引用された方法のいずれもファイバープリフォームまたはフィラメントプリフォームの高密度化に有用ではなかった。
【0015】
まとめると、以下にさらに詳しく述べるように、本発明をもたらした研究よりも以前に、密度の高い、繊維強化されたBCベースのCMCを製造する公知の実用的な加工法は存在しなかった。その結果、BCベースのシステムに関連する摩擦および磨耗のデータは公表されていなかったように思われる。繊維強化されたBC CMCの好適な製造法の開発は、克服すべき重要な課題である。
【0016】
炭素繊維にBCおよびZrOのサブミクロン粉末、プリセラミックポリマーからのSiC、液状ケイ素、酸化ケイ素ガス、CVI炭化ケイ素、およびSi−O−Cゾルゲルを添加し、これらのすべてを国内資金による研究開発プログラムに基づいて評価した。当初は、全般的な結果が混ざり合っていた。CVI−SiCの添加によってある程度期待のもてる結果が得られたが、再現できる程度の著しいF&Wの改善効果は得られなかった。また、SiC CVIの予想される高コストが懸念された。
【0017】
SiC CVIよりもコストの低い選択肢として、シリコンベースの液状前駆体からの炭素繊維プリフォームへのセラミックスの添加が精査された。ゾルゲル法によるシリコン−オキシ−カーバイド(SiOC)の形成によって、他の液状前駆体法によって調製された材料よりも磨耗が低くなった。SiOCを用いてヒートシンクを作製し、CVI−Cで高密度化した。強度はまずまずであったが、ダイナモメーターによる試験により、市販のボーイング747用C−Cブレーキ材料よりも、磨耗発生後の平均磨耗率が20%低いことが明らかとなった。しかしながら、この方法には、熱導電性の低い材料ができてしまうという欠点がある。伝導性を向上させるための熱処理を行うと、材料の強度および磨耗率が低下した。
【0018】
サーメットとは、通常は粒径がサブミクロンに近い微粒子であるセラミック粉末と金属粉末との混合物であって、通常は液相において高温で共焼結されている。The Dow Chemical Company社に譲渡された、1999年3月9日にPrunier、Jr.らに発行された米国特許第5,878,849号には、炭化ホウ素−アルニウムサーメットおよびその製法が開示されている。開示の方法の展開では、Al+BC粒子混合物をスリップキャストし、1,400℃まで加熱することによって、多少のAl固溶体が残った状態でAl−B相、Al−C相およびAl−B−C相が形成される。他の関連したサーメット形成については、D.C.Halverson, A.J.Pyzik, and I.A.Aksay, ”Processing and Microstructural Characterization of BC−Al Cermets”, Ceram. Eng. Sci. Proc., 1985, , pp 736−744;D.C.Halverson, A.J.Pyzik, and I.A.Aksay, ”Boron−Carbide−Aluminium and Boron−Carbide−Reactive Metal Cermets”, 1986年8月12日発行の米国特許第4,605,440号;A.J.Pyzik, and I.A.Aksay, ”Multipurpose Boron Carbide−Aluminum Composite and its Manufacture via the Control of the Microstructure”, 1987年10月28日発行の米国特許第4,702,770号を参照されたい。サーメットの高速全方向性圧縮法も研究された。A.J.Pyzik and A.Pechenik, ”Rapid Omnidirectional Compaction of Ceramic−Metal Composites”, Ceram. Eng. Sci. Proc., , (7−8) pp 965−974 [1988];S.Ashley, ”Ceramic−Metal Composites: Bulletproof Strength”, Mechanical Engineering, July, 1990, pp 46−51を参照されたい。
【0019】
最近、上記米国特許第5,878,849号に公表されている材料を再現する試みがなされた。前記材料を前記特許に記載されている方法で調製し、工業基準試験にかけた。すなわち、前記材料をスリップキャストし、「予備」成形体を機械加工して形を整えてからAlの浸透および加熱処理を行った。その非常に硬い材料の最後の寸法調整は、放電加工およびダイアモンドグラインディングによって行った。
【0020】
米国特許第5,878,849号のサーメットの熱容量は、700°Fでは炭素の熱容量よりも47%高く、1,040°Fでは5%高かったが、熱伝導性は20%低かった。上記のHSFT装置によるこのサーメットについての試験により、その摩擦係数(μ)はかなり安定しており、その磨耗率は炭素の磨耗率の1/3〜1/2であることが分かった。それにもかかわらず、低周波の振動が生じ、ほとんどのサンプルが試験中に破損した。フルスケール摩擦選別装置(FSM)で自身に対して試験したところ、μは航空機用ブレーキに必要とされる範囲内であった。しかしながら、試験ディスクは応力集中点において互いに切り込みを入れてしまい、後に構造的な破損が生じたことが分かった。さらに、C−Cディスクに対して試験したところ、初期μは、タクシーストップの場合は0.37、サービスストップの場合は0.29であったが、約300ストップ以降は、相当低いレベルまでμが激減した。この激しい性能の低下が起こる理由は分からなかった。C−Cステーターに対して試験されたセラミックローターを用いたフルスケール(PC−12)ハイブリッドブレーキは、わずか1サイクル後にローターの摩擦面の外周部に亀裂が入ったため、不合格であった。
【0021】
米国特許第5,878,849号によって開示および教示されている材料の顕著な特徴は以下のようにまとめることができる。
・ 繊維強化が用いられていない。
・ 不連続な金属相によって特徴付けられる。アルミニウム合金が最も一般的な金属相であるが、ケイ素も挙げられる。
・ 連続したセラミック相を含んでなる。前述のようにDowシステムの炭化ホウ素が評価されるが、他のセラミックシステムも挙げられる。
・ CVD材料が存在しない。
・ 連続したセラミック相の形成には、セラミック相の固体焼結が必須である。
・ 約5MPa m1/2の破壊靭性を示す。
・ セラミック相は材料の85〜98体積%を占める。
・ 金属領域の直径は、わずか0.25〜30μmである。
【0022】
あるCMCシステムがThe General Electric Company社に譲渡された、Singhらに発行された一連の米国特許に開示されている。それらの特許のすべてが、特に炭素繊維プリフォームの使用を開示している。それらの特許に開示されているように、一部の実施態様では、炭化ホウ素を用いることができる。これらのGeneral Electric社の特許は、一般に、2つのグループの一方に属する。第1のグループに属する特許のすべてが固体焼結されたセラミック体を製造するが、その複合マトリックスはホットプレス焼結によって高密度化され、そしてその最終焼結体は焼結の前に小型化される。複雑で、ほぼ網状のセラミックマトリックス成分を調製するのには向いていない技術を開示しているそれらの特許とは、1989年12月12日に発行された米国特許第4,886,682号、”Process for Producing a Filament−Containing Composite in a Ceramic Matrix”;1990年4月10日に発行された米国特許第4,915,760号、”Method of Producing a Coated Fiber−Containing Composite”;1990年6月5日に発行された米国特許第4,931,311号、”Method of Obtaining a Filament−Containing Composite with a Boron Nitride Coated Matrix”;1991年9月24日に発行された米国特許第5,051,301号、”Coated Fiber−Containing Composite”;1991年11月11日に発行された米国特許第5,067,998号、”Fibrous Material−Containing Composite”;1992年11月3日に発行された米国特許第5,160,676号、”Fibrous Material−Containing Composite”;および1995年4月18日に発行された米国特許第5,407,734号、”Fiber−Containing Composite”である。
【0023】
前述のGeneral Electric社の第2のグループの特許は、溶融ケイ素浸透材への多孔体の浸透を開示している。開示されているように、すべての場合において、用いることのできる繊維材料には制限が課せられている。その制限とは、すべての繊維材料は、前記ケイ素浸透材と前記繊維材料との反応および結合を避けるために、まず全体を窒化ホウ素でコーティングしなければならないということである。開示内容によれば、前記反応および結合によって繊維引抜き性が壊れ、かくして破壊靱性が壊れる。それらの特許とは、1989年12月26日に発行された米国特許第4,889,686号、”Composite Containing Coated Fibrous Material”;1990年7月31日に発行された米国特許第4,944,904号、”Method of Obtaining a Fiber−Containing Composite”;1991年1月1日に発行された米国特許第4,981,822号、”Composite Containing Coated Fibrous Material”;1991年6月4日に発行された米国特許第5,021,367号、”Fiber−Containing Composite”;1991年8月27日に発行された米国特許第5,043,303号、”Filament−Containing Composite”;1994年7月19日に発行された米国特許第5,330,854号、”Filament−Containing Composite”;1994年12月27日に発行された米国特許第5,376,427号、”Ceramic Composite Containing Coated Fibrous Material”;1995年2月7日に発行された米国特許第5,387,299号、”Ceramic Composite Containing Coated Fibrous Material”;および1995年7月11日に発行された米国特許第5,432,253号、”Composite Containing Fibrous Material”である。
【0024】
SiCベースのCMC材料の調製および評価を行った。使用した調製法は、元々SiC/SiC複合材料の調製のためにThe Carborundum Company社によって開発されたスラリーキャスト/溶融浸透(SC/MI)法の一種である。1994年3月22日に発行されたMcMurtryらの米国特許第5,296,311号、”Silicon Carbide Reinforced Reaction Bonded Silicon Carbide Composite”;1995年7月25日に発行されたLauらの米国特許第5,436,042号、”Shaped Green Ceramic Fabric Preform Segments for Fiber Reinforced Composite Article”;1996年1月16日に発行されたLauらの米国特許第5,484,655号、”Aluminum Nitride−Coated Silicon Carbide Fiber”;1997年7月1日に発行されたChwastiakらの米国特許第5,643,514号、”Process for Manufacturing a Silicon Carbide Composition”;1998年10月6日に発行されたChwastiakらの米国特許第5,817,432号、”Silicon Carbide Reinforced Reaction Bonded Silicon Carbide Composite”;1998年11月24日に発行されたLauらの米国特許第5,840,221号、”Process for Making Silicon Carbide Reinforced Silicon Carbide Composite”;および1999年8月31日に発行されたChwastiakらの米国特許第5,945,062号、”Silicon Carbide Reinforced Reaction Bonded Silicon Carbide Composite”を参照されたい。
【0025】
Carborundum CMCシステムは、まず初めに、SiC繊維強化されたプリフォームを、CVD窒化ホウ素(BN)、窒化アルミニウム(AlN)またはホウ化チタン(TiB)インターフェースコーティングでコーティングする。次に、このプリフォームに、双峰粒径分布を有する炭化ケイ素粉末を含有する水性スラリーを含浸させる。次に、このスラリーを含浸させたプリフォームを約1,410℃まで加熱し、溶融ケイ素を浸透させた。浸透状態を最長30分間保持することによって、最終的に、一般に溶融浸透炭化ケイ素セラミックマトリックス複合材料(MI/SiC CMC)と呼ばれる、SiC−Si二相マトリックスを有するほぼ完全密度のCMCが得られた。
【0026】
前記公表されたCarborundum法に従って本発明によって試験片を作製したが、前記Carborundum法は、前記方法が教示する炭化ケイ素繊維プリフォームではなく炭素繊維プリフォームを伴うように変更された。さらに、前記炭素繊維プリフォームは、前記Carborundum法が教示するような窒化ホウ素、窒化アルミニウムまたはホウ化チタンでコーティングするのではなく、炭素でCVIコーティングした。
【0027】
MI−SiC CMC試験片同士を磨耗させ、MI−SiC CMC試験片と炭素−炭素試験片を互いに磨耗させ、およびMI−SiC CMC試験片とハイブリッドC−C/CVI SiC材料を互いに磨耗させることによって試験を行った。一般に、すべての試験が、MI−SiC CMC材料は高くて安定した摩擦係数を有するがC−Cよりもかなり高い磨耗率を付与することを示した。すべての試験は、次の段落で説明されるように、The BFGoodrich Company社がC−C摩擦材料を評価する際によく用いる条件を用いる高速摩擦試験装置(HSFT)で行った。
【0028】
本発明の繊維強化BC CMCの形成および前記Carborundum社のような方法を用いて調製された炭化ケイ素ベースのMI−CMC試験片の試験では、高速摩擦試験装置(HSFT)を用いて、摩擦インターフェースが1.55平方インチ、外径が2.25インチ、内径が1.75インチである厚みが0.375インチの試料のローター/ステーターのペアに対して摩擦および磨耗(F&W)の選別を行った。セラミック絶縁体の上にディスクを載せ、磨耗面から0.05インチ離れた、ローター内の熱電対は、通常500〜1,500°Fの温度を記録する。ステーターの垂直力およびトルクは、5,000rpm(43.6ft/sec)から、約50秒続く一連のストップにおいて測定される。データは、0.008秒毎に記録され、0.55秒毎に平均される。これらの平均値は記録され、平均摩擦係数μ、平均μからのrms偏差、温度および負荷は、摩擦面で一定の圧力、通常は38〜76psiにおいて一連のストップについて記録された。最大130psiの負荷を掛けて、標準エネルギーまたはRTOストップ条件を表す高温度を得た。磨耗面の周りの7ヶ所における厚みの変化を各シリーズ終了後にマイクロメーターで測定する。CMC材料を評価するのに用いられる代表的な標準「アップ」試験のシーケンスとは、13psiにおいて400ストップ、23psiにおいて200ストップ、35psiにおいて200ストップ、47psiにおいて200ストップ、58psiにおいて200ストップ、69psiにおいて200ストップおよび(もし許容量の磨耗面が残っており、かつ、材料の酸化が制限されている場合)130psi(〜RTO条件)において5ストップである。「アップ」という用語の使用は、ストップの各組毎に圧力が13psiから69psi(あるいは許容量の磨耗面が残っているのであれば130psi)まで高くなることを意味する。CMC材料を評価するのに用いられる代表的な「ダウン」試験は、69psiにおいて200ストップ、58psiにおいて200ストップ、47psiにおいて200ストップ、35psiにおいて200ストップ、23psiにおいて200ストップ、13psiにおいて400ストップである。代表的な「アップ」および「ダウン」試験が図1および図2に示されている。平均磨耗率(1,000ストップ毎の各表面のミル)を各シリーズ毎に比較し、通常は最後の200ストップについて、磨耗発生後の磨耗率を比較する。サブスケールの高速摩擦試験装置(HSFT)を用いて、炭素ブレーキの摩擦係数(μ)および磨耗に対するセラミックの添加の効果を評価した。
【0029】
前述のように、HSFTを用いたこの一連のF&W試験は、前記Carborundum社のような方法を用いて調製された炭化ケイ素ベースのMI−CMC試験片に対して行われた。さらに、前述のように、それらの試験の結果のすべてが、MI−SiC CMC材料が高くて安定した摩擦係数を有することを示した。しかしながら、低いブレーキ圧において低い磨耗率が得られたのに対し、高い圧力における磨耗率は、典型的なC−C材料の磨耗率よりも数桁高い値に跳ね上がることが多かった。
【0030】
試験後の特性指摘により、MI−SiC CMCマトリックス中に見られる大きな炭化ケイ素粒子が磨耗率を高くしていることが明らかとなった。スラリーに用いられた出発炭化ケイ素粉末は非常に細かい(ほとんどが1ミクロンよりも小さく、画分は5ミクロン以内と小さい)が、処理後のCMCマトリックス中には大きな炭化ケイ素の結晶(20ミクロンより顕著に大きい)が広く行き渡っていた(図3の顕微鏡写真を参照)。一方、出発材料である炭化ケイ素微粉末粒子のほとんどは実質的にほとんど消えていた。1ミクロンよりも小さい炭化ケイ素粒子の代わりに大きな(20ミクロン以上の)炭化ケイ素結晶が存在していることが磨耗率を高めている可能性がある。これらの大きな炭化ケイ素結晶は、それらよりも細かい粒子よりも研磨性があるため、細かいグリットサンドペーパーの代わりに粗いグリットサンドペーパーを使用する際にも同様の働きが見られる。
【0031】
溶融浸透後の材料を詳しく調べると、炭素と液状ケイ素との相互作用、および、ケイ素の大きな「溜まり」に大きな(>20ミクロン)α−炭化ケイ素粒子が埋め込まれた微細構造を生じる工程である再結晶化が生じたことが分かった。
【0032】
これらの粒子が出発材料である炭化ケイ素スラリーに用いられている元々のα−炭化ケイ素粒子(主に<1ミクロン)よりもかなり大きい(>20ミクロン)という事実は、溶融浸透工程およびそれに続く炭化ケイ素の再結晶化工程の間に液状ケイ素とCVD炭素コーティングとが相互作用することを示している。
【0033】
実験作業により、前述のように修正されたCarborundum法の使用において下記のメカニズムが生じている可能性があることが分かった。
【0034】
(1) カーボンプリフォーム上に付着したCVD炭素材料は、液状ケイ素と反応して、炭素とケイ素の界面に固体炭化ケイ素層を形成し得る。その後の反応は、このように形成された固体炭化ケイ素生成物の層内での炭素またはケイ素反応物の拡散に依存しなければならない。これは、MI法で用いられる低い温度(約1,410℃)では非常に遅い処理である。
【0035】
(2) 同時に、炭化ケイ素層の厚みが大きくなってゆくにつれて、形成された炭化ケイ素の一部が、液状ケイ素と固体ケイ素の界面(界面1)において液状ケイ素に溶けてゆく過程にある可能性がある。しかしながら、液状ケイ素の炭化ケイ素に対する溶解度は非常に低いため(1,410℃において数百ppm未満)、そのような溶解工程は、一旦飽和限界に達すれば、通常は急速に止まるはずである。
【0036】
(3)一方、スラリーが初めにたくさんのα炭化ケイ素粒子を含有しているため、それらの粒子は、さらに大きな炭化ケイ素結晶が成長するためのシンクすなわち「シード」として作用し得る。このように、溶けた炭化ケイ素(以下炭化ケイ素と呼ぶ)がこれらのシードの上に沈殿し、さらに大きな炭化ケイ素結晶へと成長する。
【0037】
(4)溶けた炭化ケイ素が液状ケイ素から沈殿し、炭化ケイ素シードの上で再結晶化することで、結晶液状ケイ素と固体炭化ケイ素結晶の界面(界面2)付近の炭化ケイ素濃度が低くなる可能性があり、その結果、界面1と界面2の間の溶融ケイ素内で炭化ケイ素濃度の勾配が確立される可能性がある。これにより、前記濃度勾配の下方への炭化ケイ素の移動を持続させることができるようになり得る。最終結果は、大きな炭化ケイ素結晶の成長を招き得る反応、溶解および再結晶のサイクルとなり得る。さらに、熱力学的考察からすると、そのような再結晶/成長工程がより大きな炭化ケイ素粒子の表面で起こることが好ましい場合があり、初期の炭化ケイ素スラリーからの小さな炭化ケイ素粒子の大多数も同様の工程によって溶かされることがあり得る。最終結果は、大きな、再結晶化した炭化ケイ素結晶が優勢で、かつ、炭化ケイ素微粒子をほとんどまたは全く含有していないマトリックスとなり得る。
【0038】
MI−セラミックCMCマトリックス中のセラミック粒子を小さくする必要、および、高いブレーキ圧における高い磨耗率を一般的な炭素−炭素材料の磨耗率よりも良いとは言わないまでも同等となる磨耗率にまで下げる必要がある。
【0039】
発明の開示
炭素ケイ素の代わりに他のセラミック材料のサブミクロン粒子を用いることができるのであれば、大きな炭化ケイ素結晶の形成を懸念することなく前記他のセラミックをベースとしたCMC材料を調製することができるということが想定された。なぜならば、沈殿物の「シード」として作用する炭化ケイ素粒子の存在無しでは、前記方法は工程(2)までしか進むことができない。一旦ケイ素溶融物が飽和すると、いかなるケイ素と炭素の相互作用も工程(3)および工程(4)に進むことができない。従って、溶解および再結晶無しでは、大きな炭化ケイ素結晶は形成されない。このため、他のセラミックをベースとする、スラリーキャストおよび溶融浸透されたCMC材料は、スラリーキャストおよび溶融浸透された炭化ケイ素CMC材料に対して磨耗性に関して非常に優位である。
【0040】
Cは、いくつかの他の適当な候補の中から選ばれた。前記メカニズムおよび前記問題に対する解決策の可能性をテストする目的で、BCをベースとするスラリーキャストおよび溶融浸透されたCMC試料をいくつか調製した。炭化ケイ素材料と異なり、これらのBCスラリーキャスト材料は、マトリックス全体にサブミクロンのBC粒子が均一に分散しており、大きな結晶は優勢でないことが実際に分かった(図4を参照)。このため、BCスラリーキャスト材料は、炭化ケイ素スラリーキャスト材料と比べて、磨耗性に関して優位であると予想された。
【0041】
次に、BCをベースとしたCMCを対象とする研究が行われた。今日までに得られた結果は極めて期待の持てるものであった。今日までに評価されたそのような材料のすべては、サブミクロンのBC粉末をスラリーキャスティングすることによって部分的にCVD炭素で高密度化された炭素繊維プリフォームを作製した後、ケイ素合金を溶融浸透させることによって高密度化を完了させて調製された。
【0042】
(炭化ケイ素以外の)セラミックをベースとするCMCヒートシンク材料の最も重要な利点とは、磨耗率を低減させることだと思われる。初めの試験の結果によれば、それらの磨耗率低減効果は少なくとも50%となり得る。耐用寿命が延びると、航空機制動操作の実際の費用が大幅に削減される可能性がある。そのようなセラミックベースのCMC材料が存在するのであれば、非常にわずかなブレーキ重量の増加で、炭素−炭素材料の2倍までブレーキ寿命を支持することができる。
【0043】
本発明は複合材料である。前記材料は、初めに元素状炭素で主としてコーティングすることによって繊維構造に含浸させる繊維を含んでなる前記繊維構造からなることが好ましい。その後、前記繊維構造の繊維はケイ素と反応しない少なくとも1種のセラミック材料で主として含浸され、前記繊維構造はさらに含浸されることが好ましい。さらに、前記複合材料は、すでに初めに元素状炭素で主として含浸され、次に少なくとも1種のセラミック材料で主として含浸された繊維構造を主として包含する連続したシリコンマトリックスをさらに含んでなることが好ましい。前記マトリックスのセラミック材料は、大きさが主として20ミクロン以下の微粒子結晶構造を有することが好ましい。前記少なくとも1種のセラミック材料は、そのマトリックス中で不連続であることが好ましい。前記繊維構造の繊維は、前記複合材料が破断する際に、前記元素状炭素コーティングを引き抜くことが好ましい。本願明細書で用いられる「主として」という用語は、前後関係に応じて、通常は「少なからず」または「たいてい」を意味するが、定量化可能な言葉で言えば、「半分よりも多い」または「50%よりも多い」という意味である。
【0044】
本発明の繊維構造は、複数の元素状炭素繊維でもよい。あるいは、本発明の繊維構造は、複数の非酸化物セラミック繊維または複数の酸化物セラミック繊維でもよい。
【0045】
本発明のシリコンマトリックスは、ケイ素と、ホウ素と、炭素とを含んでなる合金から形成されることが好ましい。あるいは、本発明のシリコンマトリックスは元素状ケイ素でもよい。任意に、前記シリコンマトリックスは、アルミニウム、ニッケル、カルシウム、鉄などの如き他の合金元素を含有することによって、生成されるセラミックマトリックス複合材料の他の関連のある化学的および/または物理的性質を変えてもよい。市場で容易に入手できる工業グレードのケイ素は、多くの場合、前述の好ましい合金を形成するのに十分なホウ素および炭素を含む不純物レベルを有することがある。あるいは、民間の納入業者から得られるような工業グレードのケイ素は、すでに前述の好ましい合金であったり、あるいは、すでに前述のような他の容認できる合金元素を含有していることがあり得る。
【0046】
前記少なくとも1種のセラミック材料は炭化ホウ素を含んでなることが好ましい。あるいは、生成される複合材料に望まれる磨耗特性および硬度特性に応じて、ケイ素と反応しない他のセラミック材料を単独でまたは組み合わせて用いることもできる。そのような反応しないセラミック材料の例としては、窒化ケイ素、窒化ホウ素、炭化アルミニウムおよび酸化アルミニウムが挙げられるが、このリストは網羅的でも包括的でもない。これ以外に、ケイ素とは反応しないが、所望される有用なF&W特性を著しく劣化させる程および/または状態ではない特定のセラミック材料が存在し得る。換言すれば、その反応性によって、主として20ミクロンよりも大きな粒子が形成されるような再結晶および炭化ケイ素粒子の成長が生じることはない。もしその反応性によってそのような再結晶および粒子成長が生じないのであれば、前記セラミック材料は、本願明細書で用いられる用語の意味において「反応しない」と考えられる。
【0047】
前記初めの元素状炭素コーティングは、基本的に、前記繊維構造の前記複数の元素状炭素繊維の各々を被包することが好ましい。しかしながら、前記繊維構造上の元素状炭素コーティングが著しく不完全であったにもかかわらず、引き抜かれた繊維に関して許容できる結果が得られた。重要なポイントは、シリコンマトリックスを、下に位置する繊維構造と直接激しく反応させないことである。そうすれば、衝撃が加えられて破断が起こるときに、前記繊維がマトリックスから、特に繊維構造上の元素状炭素コーティングから引き抜かれることが妨げられることはない。
【0048】
本発明の複合材料は、初めに元素状炭素で主として含浸され、次に炭化ホウ素で主として含浸された、元素状炭素の繊維構造を含んでなることが好ましい。その後にケイ素合金マトリックスを添加することが好ましい。前記連続しているケイ素合金マトリックスは、初めに元素状炭素で主として含浸され、次に炭化ホウ素で主として含浸された前記繊維構造の繊維を主として被包する。この複合材料のマトリックスセラミック材料が大きさが主として20ミクロン以下の微粒子結晶構造を有することによって下記の所望の磨耗性が得られることが好ましい。磨耗性を微調整するためには、好ましい炭化ホウ素がマトリックス内で不連続であることが好ましいことが明らかとなった。
【0049】
さらに本発明は、前記複合材料の好ましい製法を包含する。前記製法は、
a.)繊維からなる繊維構造をプリフォームにし、
b.)前記繊維構造プリフォームの繊維を、まず初めに、主として元素状炭素でコーティングすることによって前記プリフォームに元素状炭素を含浸させ、
c.)次に、前記繊維構造プリフォームの繊維に、ケイ素と反応しないことが好ましいとされる少なくとも1種のセラミック材料を主として含浸させて、含浸された予備成形体を形成し、ここで前記少なくとも1種のセラミック材料は結晶の大きさが主として20ミクロン以下であることが好ましく、
d.)そして、前記予備成形体に溶融したケイ素を浸透させて前記複合材料全体にわたって連続したマトリックスを形成する、ここで前記マトリックスは、基本的に前記繊維構造に直接結合はしていないが、初めに前記繊維構造に含浸させた前記元素状炭素には主として結合している、
ことを特徴とする製法である。
【0050】
前記方法において、前記繊維構造プリフォームは複数の元素状炭素繊維を含んでなることが好ましいが、代わりに複数の非酸化物セラミック繊維または複数の酸化物セラミック繊維を用いてもよい。また、前記方法において、前記溶融ケイ素は、ケイ素と、ホウ素と、炭素とを含んでなる合金から形成されることが好ましいが、代わりに元素状ケイ素を溶融することによって形成することもできる。最後に、前記方法において、前記少なくとも1種のセラミック材料は炭化ホウ素を含んでなることが好ましいが、前述のように、所望のF&W特性を劣化させない程度にケイ素と反応しないのであれば他のセラミック材料を用いてもよい。前述のように、前記初めの元素状炭素コーティングは、基本的に、前記繊維構造プリフォームの前記複数の元素状炭素繊維の各々を被包することが好ましい。前記製法は、下記の工程、すなわち、
【0051】
a.)前記ケイ素合金と、カーボンブラックと、液状フェノール樹脂とを含んでなるカバーミックスを調製し、
b.)前記予備成形体を前記カバーミックスで本質的に被覆し、
c.)(より複雑な形状を作る場合の任意の工程として)前記カバーミックスで被覆された前記予備成形体を予熱することによって前記液状フェノール樹脂を凝固および硬化させてカバーミックス硬化物を形成し(単純な形状を作る場合、この工程は必要ではない)、そして
d.)前記硬化されたまたは硬化されていないカバーミックスで被覆された前記予備成形体を前記ケイ素合金の融点範囲まで加熱する、
工程をさらに含んでなることが好ましい。
【0052】
前述のように、パック、円板、立方体などの如き単純な形状を作る場合、前記液状フェノール樹脂を凝固および硬化させる必要はない。むしろ、前記形状を単に未硬化のカバーミックス中に配置し、加熱すればよい。しかしながら、形状がより複雑になる場合、硬化したカバーミックスで被覆された予備成形体の加熱中に正確な形状が維持されるようにするために、前記樹脂を硬化させることが好ましい。
【0053】
前記ケイ素合金は、90〜96重量%の元素状ケイ素と、3〜6重量%の元素状ホウ素と、0.5〜2.0重量%の元素状炭素との溶融物からなることが好ましい。前記溶融物は、凝固された後、周囲温度まで冷まされ、そして得られた固体が−16U.S.シーブの大きさまで粉砕される。前記カバーミックスは、90〜92体積%の粉砕されたケイ素合金と、5.5〜7.5体積%の前記液状フェノール樹脂と、1〜3体積%のカーボンブラックとを含んでなることが好ましい。後述するように、好ましいケイ素合金中の元素の範囲は、ケイ素の融解温度を約20℃強低下させる共融効果として説明することができるものを生じさせる。この効果は、前述の合金元素の範囲が犯された場合に減少してゆき、実質的に消えてしまうように見える。すなわち、前記合金元素のいずれかが前記範囲を超えた場合、この元素の組み合わせによって生じた共融効果は減少および/または消失する傾向がある。さらに、予備実験証拠が、合金レベルでのアルミニウム、カルシウム、鉄および/またはニッケルの添加は、ケイ素の融点を大幅に下げるのに有用となり得ることを示している。プリフォームへケイ素を浸透させる際の毛管作用は、カバーミックスからカーボンブラックを排除した場合に、いくぶん低下し、結果として、シリコンマトリックス内に小さな空隙がいくつか形成される場合がある。フェノール樹脂の範囲は、凝固および硬化させるカバーミックス中に十分な樹脂が含有されるように設定されるが、しかし、ケイ素合金の融解温度に達したときに、本願明細書中の他の部分で避けるべき物質として説明されている炭化ケイ素の過剰な形成を増進させやすい過剰な炭素が存在するほど多くはないように設定される。
【0054】
本発明の他の態様は、初めに元素状炭素で主として含浸された繊維構造を含んでなる複合材料である。その後、前記繊維構造の内部に複数の孔が配置される。それらの孔の各々の直径は約1/16”〜約1/8”である。さらに、それらの孔の各々は、隣接する各孔と、その中心同士の距離にして約1/4”〜約1/2”の距離を置いて離れている。その後、前記繊維構造には少なくとも1種のセラミック材料で主として含浸される。
【0055】
本発明の本態様の複合材料は、初めに元素状炭素で主として含浸され、次に少なくとも1種のセラミック材料で主として含浸された前記繊維構造を主として包含する連続したマトリックスを含んでなる。前記マトリックスの前記少なくとも1種のセラミック材料は、大きさが主として20ミクロン以下の微粒子結晶構造を有する。前記少なくとも1種のセラミック材料は前記マトリックス中で不連続であり、そして前記繊維構造は、前記複合材料が破断する際に、(前記繊維構造に初めに主として含浸させた)元素状炭素を引き抜く。
【0056】
本発明の本態様において、前記複合材料の複数の孔は、前記繊維構造全体に展開していることが好ましい。さらに、本発明の本態様において、前記複数の孔が実質的に前記繊維構造の露出面を覆うように配置されていることが好ましい。
【0057】
本発明の本態様において、前記繊維構造に前記孔を配置する別の方法と区別して、前記孔が前記繊維構造にドリルで開けられることが好ましい。前記孔の直径は約5/64”であることが好ましく、そして各孔は、隣接する各孔と、その中心同士の距離にして約11/32”の距離を置いて離れていることが好ましい。
【0058】
本発明の本態様を特徴付ける特徴とは、初めに元素状炭素で主として含浸され、次に内部に複数の孔を配置した繊維構造であって、それらの孔の各々の直径は約1/16”〜約1/8”であり、それらの孔の各々は、隣接する各孔と、その中心同士の距離にして約1/4”〜約1/2”の距離を置いて離れている、ことを特徴とする前記繊維構造の存在である。
【0059】
本発明のこの特徴において、前述のように、前記孔は、前記繊維構造全体に展開していることが好ましい。さらに、本発明のこの特徴において、前記複数の孔が実質的に前記繊維構造の露出面を覆うように配置されていることが好ましい。
【0060】
本発明の上記特徴および他の特徴を、添付の図面および以下の発明の詳細な説明においてさらに詳しく説明し、添付の請求の範囲によって規定する。
【0061】
好ましい実施態様の詳細な説明
以下の一般的な工程を用いて、BCベースのスラリーキャストおよび溶融浸透されたCMC試料をいくつか調製した。
(1)炭素繊維プリフォームにCVD炭素を浸透させることによって、表面をコーティングし、さらに約20〜60%の多孔率を残したままで繊維束の間を部分的に詰めた。
(2)サブミクロンのBC粉末と、湿潤剤、分散液などの適当な添加剤とを混ぜ合わせることによってBCベースの水性スラリーを調製した。(この特定の試験ではサブミクロンの粉末を用いたが、粒径が約20ミクロン以下の粒子を用いてもかなり満足のゆく結果が得られるという事実がこれまでに確立されている。)
(3)コーティングされた炭素プリフォームを焼セッコウ鋳型内に設置し、BCスラリーで鋳造することによって、前記プリフォームの孔にBC粒子を充填し、予備成形体を形成した。
(4)乾燥させた後、BCを充填した予備成形体を真空炉内に設置し、溶融ケイ素(他の元素と混ぜ合わされて合金を形成することもある)を浸透させることによって、ほぼ完全に稠密な複合材料を形成した。
【0062】
用いられた炭素プリフォームは、ノースキャロライナ州のシャーロットにあるThe BFGoodrich Company社製の標準的なDuracarbTMおよびSupercarbTM炭素繊維プリフォームであったが、公表されている参考文献に従って製造される他のプリフォームも上記試験および本願明細書に記載される発明での使用に適当であると考えられる。それらの公表されている参考文献とは、例えば、1999年2月9日に発行されたBazshushtariらに対する米国特許第5,869,411号、1998年12月29日に発行されたRudolphらに対する米国特許第5,853,485号、1997年11月18日に発行されたSmithらに対する米国特許第5,688,577号、1997年3月11日に発行されたBazshushtariらに対する米国特許第5,609,707号、1996年3月14日に発行されたSheehanらに対する米国特許第5,515,585号、1996年1月2日に発行されたRudolphらに対する米国特許第5,480,678号、1994年5月17日に発行されたMorrisらに対する米国特許第5,312,660号、および1993年6月8日に発行されたMorris, Jr.らに対する米国特許第5,217,770号である。
【0063】
【表1】
Figure 2004510674
【0064】
【表2】
Figure 2004510674
【0065】
炭素繊維プリフォーム上のCVD炭素コーティングの望ましい形態は、産業界において、「粗い薄層状の」CVD炭素として知られている。前記CVD炭素は、本質的に「結晶質」ではあるが、本物のグラファイトやダイアモンドではない。前記CVD炭素をどんどん高い温度へと加熱してゆくと、性質がグラファイトに近くなってゆく。前記CVD炭素は、ほぼ100%の稠密度を誇る。「滑らかな薄層状の」CVD炭素、「気相核生成」CVD炭素、「暗薄層状の」CVD炭素などのCVD炭素の他の形態は存在してもしていなくてもよい。
【0066】
本試験のシーケンスにおいて用いられるBC粉末は、以前は酸で処理されていなかったが、今日では、酸で処理された粉末が同等の結果をもたらすことが分かっている。スラリーのpHは全く調整されなかった。現在好ましいとされるBC粉末は約1.0ミクロンの平均粒径を有するが、平均粒径が1.0ミクロン未満から約20ミクロンの範囲にある粉末を用いてもよい。前記粉末を粉砕することによって噴霧乾燥された凝集粒子を分解する。好ましいスラリー混合物は、一般に、1重量部の粉末に対して4重量部の媒体であり、代表的な混合物は、200グラムの脱イオン水(媒体)と、60グラムの炭化ホウ素(粉末)と、0.41グラムのByK−Chemie社製のByK−181アニオン分散液と、0.83グラムのByK−Chemie社製のByK−156湿潤剤とを含んでなり、固形分は20重量%である。
(Disperbyk−181としても知られる)ByK−181および(Disperbyk−156としても知られる)ByK−156は、524 South Cherry Street、Wallingford、Connecticut 06492にあるByk−Chemie USA社から得られたものである。ByK−181(Disperbyk−181)およびByK−156(Disperbyk−156)は登録商標だと思われる。用いられた炭化ホウ素(BC)は、TETRABOR(登録商標)3000Fと呼ばれており、ドイツのケンプテンにあるElektroschmelzwerk Kempten GmbH社によって製造され、米国のWacker Chemical社から得られたものである。その平均BET表面積は12m/grであった。
【0067】
スラリーの浸透には真空および高圧の両方が用いられる。スラリーを浸透させたプリフォームの乾燥は、80℃で1時間行われる。前記繊維プリフォームが硬いため、前記方法によって「網状」の予備成形体が得られることになり、ケイ素が導入および凝固されれば収縮は起こらない。スラリーを浸透させ乾燥させた「予備成形体」の密度は1.4〜1.5g/ccであり、その孔は開いてるものと閉じているものの両方があった。これらの予備成形体は引き続き「予備機械加工」することもできるが、これはめったに行われない。
【0068】
前記プリフォームへの前記スラリーの浸透は、浸透を行う前に前記プリフォームに孔径の小さな複数の孔の配列をドリルで開けることによって強化される。前記孔の直径は、約1/16”〜約1/8”となり得るが、最適な浸透のためには5/64”の直径が好ましい。直径が1/16”の場合には、浸透の速度が遅い。直径が1/8”の場合には、浸透するスラリーの量が所望の量を超え始めてしまい、乾燥時間が増加し始める。
【0069】
前記孔は、孔同士の中心の間隔が一般に約9mm(約11/32”)である、図7に示されるような格子縞模様の形状になるよう一般にドリルで開けられる。1/2”よりも広い間隔を空けて前記孔をドリルで開けると前記孔の配列のスラリー浸透強化効果が弱まるように見えるのに対し、1/4”よりも狭い間隔で前記孔をドリルで開けてしまうと前記プリフォームを受け入れられないほどひどい状態にまで弱めてしまう。前記孔はプリフォームの厚み方向を貫通されている。慣用のツイストドリルを用いる慣用のドリルプレスで、前記孔を1つづつ、開けることもできるが、当業者らによって容易に理解されるように、自動化されたツーリングを用いて前記開孔が成し遂げられるようになることが予想される。開けられた孔は、繊維を炭素でCVD処理した後の開放気孔率が約35%以下であるプリフォームおよび/または約1/2”以上の厚みを有する前記プリフォームの浸透に好ましく用いられる。前記開けられた孔を用いることによって、厚みおよび/または密度のより大きいプリフォーム全体にわたっての徹底したより均一な浸透が確実となる。
【0070】
前記孔は、前記プリフォームが形成された後、すなわち、前記プリフォーム中の炭素繊維にCVD炭素コーティングおよび浸透を施して繊維を硬化させた後に前記プリフォームにドリルで開けられることに注意されたい。CVD炭素を塗布する前にプリフォームの炭素繊維にドリルまたは他の手段で前記孔を形成してしまうと、それらの孔に隣接する孔の直径が小さくなったり、場合によっては、CVD工程の最中に前記隣接する孔に炭素が詰まってしまうので、スラリーの浸透に関しての前記孔の価値が著しく下がり、さらにそれらの孔を開ける目的自体が阻まれることになると思われる。従って、もし孔を用いるのであれば、繊維にCVD処理を施した後にプリフォームにドリルで穿孔する方がずっと好ましいと考えられる。
【0071】
最初の試験によって、孔の無い本発明のCMCディスクと比べて、孔のある本発明のCMCディスクに構造的性質の著しい低下は無いことが示された。
【0072】
溶融ケイ素合金は、真空下において約1,435℃±25℃で通常30分間予備成形体に浸透させることが好ましいが、高温保持時間は約10〜約200分間でもよい。実験室では、処理するために、予備成形体は、ケイ素合金からなる「カバーミックス」に通常埋め込まれる。あるいは、複数のブレーキディスクを製造する場合、それらのディスクは積み重ねられて、各ディスクの上面と底面のみにカバーミックスを有する。換言すれば、製造において、これらのブレーキディスクは現在のCVD製法と同じように積み重ねられるが、カバーミックスはディスク同士を分けるために用いられる。製造において、任意のブレーキディスクを高密度化するのに必要なケイ素合金の半分は、その上のカバーミックスから供給され、もう半分はその下のカバーミックスから供給される。現在、実験室が小さい場合には、カバーミックスと部品を収容するのにるつぼが用いられる。製造の場合には、るつぼの役割も果たす炉が準備される。
【0073】
合金やカバーミックスの形態をとらずに高純度の元素状ケイ素自体を浸透に用いることもできるが、これは好ましくない。その理由として、元素状ケイ素の溶融温度は前述の合金の溶融温度よりも約20℃高いこと、そして、低い温度に加えて、合金およびカバーミックスへの炭素の添加が、溶融ケイ素と炭素繊維上の元素状炭素CVDコーティングとの反応を縮小および/または減衰させやすいことが挙げられる。一方、市販の工業グレードのケイ素粉末は、溶融温度はわずかに高いが、溶融時に、許容範囲外の量の炭化ケイ素を形成することなく、浸透において満足な役割を果たすと思われる。
【0074】
好ましいケイ素合金を製造するには、まず初めに、30メッシュスクリーンは通過するが60メッシュスクリーンは通過しない(−30 +60、U.S.シーブの大きさ)大きさの元素状ケイ素粉末を用意する。これに、大きさが−200 +300のU.S.シーブの大きさである元素状ホウ素を添加する。次に、大きさが−200 +300のU.S.シーブの大きさであるカーボンブラック(非晶質炭素粉末)を添加する。得られたケイ素合金混合物は、94重量%の元素状ケイ素と、5重量%の元素状ホウ素と、1重量%のカーボンブラックとで構成される。これらの成分を、例えば手で、十分に混ぜ合わせた後、得られた混合物を、溶融するまで、真空において1,450℃まで加熱することが好ましい。得られた溶融物を室温まで戻し、−16メッシュのU.S.シーブの大きさまで粉砕することによって、本発明に適用可能な好ましいカバーミックスに用いられるケイ素合金が製造される。あるいは、市販グレードのケイ素粉末を用いる場合、前記ケイ素と、元素状ホウ素と、カーボンブラックとを前記割合で混ぜ合わせることによって、および加熱も粉砕もせずに、しかし前記カバーミックス用の如き粉末混合物を用いることによって、とりあえず満足のゆくカバーミックスを形成できることが分かった。
【0075】
前記ケイ素合金は複数の材料相を有するので、単なる単相材料である溶液とは区別される本物の合金であることに注意すべきである。炭素を溶解するための溶融ケイ素の飽和量は、炭素の量が最大約250ppm未満に達したときに生じるが、炭素の量が上記範囲よりも著しく高い(例えば300ppm以上である)と、炭素とケイ素の反応が生じるため、炭素とケイ素が混ぜ合わされて合金になることによって単相の固溶体が形成される可能性が無くなることが分かった。むしろ、炭素が約300ppm以上の量で溶融ケイ素に導入されると、ケイ素と炭素の間に化学反応が生じて炭化ケイ素が形成される。この反応によって形成される炭化ケイ素は、残留している未反応の炭素の大部分を伴って、サブミクロンの固体粒子として沈殿する。事例証拠によれば、このケイ素−炭素2相合金に元素状ホウ素を添加すると、炭素の懸濁性が向上して不必要な沈殿が起こらなくなり、真の多相ケイ素−ホウ素−炭素合金の形成ではホウ素の包含が促進されると信じられている。溶融ケイ素中のホウ素の飽和点は約1.6重量%であり、ホウ素がその量以下であると多相合金となる。一方、General Electric社の前記2番目のグループの特許が示すように、炭素が無いとホウ素は反応し、ホウ素が1.6重量%を上回る量で存在すると反応生成物が沈殿する。
【0076】
好ましいカバーミックスを調製するには、前述のように、まず初めに、ふるいにかけた−16メッシュの粉砕されたケイ素合金を用意する。この粉砕されたケイ素合金と、樹脂と、炭素とを、以下の割合で混ぜ合わせる。
91.2体積%の−16メッシュケイ素合金
6.8体積%のVarcum(登録商標)29353液状フェノール樹脂
2.0体積%のRaven(登録商標)1255カーボンブラック
実験室では、これらの材料を手で混ぜ合わせることによって前記樹脂を前記ケイ素合金および炭素全体にわたって均一に行き渡らせる。代わりに機械混合を用いることによって、ある程度均一な混合物を生成してもよい。この時点で、前記混合物は、「カバーミックス」または「シリコンソースミックス」と呼ばれ、その密度は湿った砂の密度ほどである。このカバーミックスを、予備成形体の上面と底面に、前記予備成形体の重量の約70〜約150重量%の割合で塗布する。
【0077】
実験室では、前記カバーミックスの前記予備成形体への塗布は、まず初めに、用いられる予備成形体の実際の形状および寸法に対応した仮の型を作成することによって行うこともできる。前記仮の型は、前記樹脂の硬化によって前記カバーミックスが硬化するまで前記予備成形体に関するしかるべき位置に前記カバーミックスを保持する。この方法は複雑な形状のプリフォームに対して特に好ましい。次に、前記仮の型を取り除く。あるいは、前記カバーミックスの前記予備成形体への塗布は、当業者らが容易に理解できる任意の手段によって成されてもよい。
【0078】
硬化工程を速めるために、アセンブリ全体(仮の型、予備成形体およびカバーミックス)を、約130℃に設定された慣用の乾燥オーブンの中に、約2時間または前記熱硬化性樹脂が硬化するまで、設置することが好ましい。そして、前記仮の型を取り除いて、硬化したカバーミックスに包まれた前記予備成形体が得られる。実験室では、次にこのアセンブリを(後述の)Centorr(登録商標)電気炉に入れ、下記の温度プロファイルに従って加熱する。
2時間かけて室温から500℃へ
500℃で0.5時間保持
3時間かけて500℃から1,340℃へ
2時間かけて1,340℃から1,430℃へ
1,430℃で0.25時間保持
【0079】
次に、前記炉を止め、ほぼ室温まで冷ました後、すでに浸透された予備成形体によって作られた複合部品を取り出す。カバーミックス中のケイ素は溶融し、BCを浸透させた予備成形体に毛管作用によって吸収され、そして前記プリフォームのすき間を充たすことによって、多くの場合、開放気孔率2%未満まで、著しく高密度化する。過剰に用いられたカバーミックスを前記部品から取り除くことによって、汚れの無い高密度化された複合試料が得られた。
【0080】
完全な浸透を可能にする最低温度が好ましく用いられる温度である。ケイ素とコーティングされていない炭素繊維との間で反応が起こることによって炭化ケイ素が形成される。これはできるだけ避けることが好ましいので、前記最低温度が用いられ、さらに前記炭素繊維が、CVD元素状炭素の独立した層によって完全に被覆または包含(本質的に被包)されることが好ましい。(炭素プリフォームをコーティングしている)CVD炭素と溶融ケイ素との間にある程度の反応が生じるが、この反応の厚みを光学顕微鏡、走査電子顕微鏡および/または透過型電子顕微鏡を用いて測定することは可能であるが、迅速にそして容易に測定することは難しい。その目的は、前記ケイ素と炭素の反応を繊維上のCVD炭素コーティングに限定することによって、その下の炭素繊維自体との同じ反応を避けることである。これにより、炭素繊維がCVD炭素コーティング内を「移動」できるようになるため、破壊靱性試験の際の炭素繊維の「引き抜き」が確実となる。これは、General Electric社の前記2番目のグループの特許で用いられているメカニズム、すなわち、窒化ホウ素コーティングはその下の繊維とCVD「融着」または反応はするが、ケイ素浸透材によって湿潤されたり、または、前記浸透材と反応することはないというメカニズムとは異なる。従って、前記グループの特許に関して、繊維上のコーティングはケイ素マトリックス材料に関して滑動する。
【0081】
本発明に関して、CVD元素状炭素コーティングと溶融ケイ素との間の反応層の厚さは、低い温度および短い反応時間の場合にはサブミクロンであり、高い温度および/または長い反応時間が用いられる場合には数ミクロンの厚さに近づくことがある。重要なポイントは、CVD層が炭化ケイ素に完全に転化してしまうのを避けること、および、その下にある炭素繊維の大部分が炭化ケイ素に転化してしまうのを避けることである。従って、CVD炭素層が反応によって完全に消費されることなく、かつ、炭素繊維が本質的に未反応のままであれば、反応層は満足のゆくものである。
【0082】
前述のように、修正されたCarborundum炭化ケイ素粒状システムには、実質的な再結晶が見られる。本発明のBC粒状システムには、著しく大きな結晶は見られなかった。後処理工程では機械切削のみが行われた。ダイアモンドツールを用いて前記部品を機械切削し、前記ディスクブレーキ部品を両面が平行となるように平らに研削した。最終的に得られた材料の嵩密度の測定値は2.10〜2.20g/cmであった。これは、BCの理論的全密度である2.51g/mに好ましく拮抗している。
【0083】
Centorr(登録商標)高温グラファイト加熱体真空炉を用いて、ケイ素合金の調製と、スラリーキャスト部品へのケイ素合金カバーミックスの溶融浸透とを行う。この炉は、2,200℃の温度機能と、直径が16”であり、高さが12”である使用可能な均一ホットゾーンとを有する。Honeywell(登録商標)DCP700プログラム可能制御装置を用いて昇温プロファイルの制御および「段階的」制御を行う。この種の制御システムは、るつぼの内温を正確に制御し、かつ、最終温度における温度の行き過ぎを防ぐ。さらにこの炉は、重い負荷の装填を容易にするボトムローディングテーブルと、0.3Torr未満の真空度に達することのできるStokes(登録商標)Microvac(登録商標)ポンプとを備えている。
【0084】
得られた複合材料は、CVD炭素で部分的に浸透された炭素繊維の束と、約50%のBCおよび約50%のケイ素を主な相として含有するケイ素/炭化ホウ素2相マトリックスとで構成されていた。ミクロ組織のキャラクタリゼーションによって、ケイ素(合金)の「プール」の中に断続した炭化ホウ素微粒子の各々が均一に分散しているマトリックスであることが明らかとなった。このミクロ組織は、大きな炭化ケイ素結晶(または他の大きなセラミック結晶)が優勢でないという点で、図3に示される炭化ケイ素ベースのMI−CMCとは大きく異なることが図4から分かる。
【0085】
炭化ホウ素ベースのMI−CMCからのHSFT試料を炭化ケイ素ベースの複合材料と同じようにして試験した。比較のために、現行のボーイング777航空機に用いられている市販の炭素−炭素ブレーキ材料についても同様の試験を行った。これらの材料についての摩擦および磨耗試験の結果を図1および図2に示す。
【0086】
図1は、「アップ」試験および「ダウン」試験を含む、広範囲の圧力を対象とした炭素−炭素、炭化ケイ素ベースのCMCおよび炭化ホウ素ベースのCMCの磨耗率を比較している。図を見れば分かるように、炭化ホウ素ベースのCMCサンプルの磨耗率は、圧力範囲全体を通じて、他のサンプルの磨耗率よりも著しく低い。CMC磨耗率は、1/2〜1/4のC−C率を高い圧力で測定し、1/10〜1/15のC−C率を低い圧力で測定した。これらの磨耗率の向上は、(図2に示されるように)約0.40というC−Cとほぼ同等の摩擦係数と、ほぼ同等の制動温度プロファイルを維持したままで成された。これに対し、大きな炭化ケイ素沈殿物を含有する炭化ケイ素ベースの材料は、他の材料よりも高い摩擦係数と、かなり高い磨耗率とを示した。図2は、炭化ホウ素ベースの材料の只ならぬ温度圧力安定性を示している。その摩擦係数は、130psiの擬似RTO圧力を含む圧力範囲全体を通じて約0.40のままである。磨耗率の低下に加えて、この「一定な摩擦係数」は、摩擦係数が変動したり「減衰」したりすることが知られている炭素−炭素に対するもう1つの潜在的な重要な利点である。例えば、生成炭素−炭素の完全なRTOダイナモメーター試験では、一般的な0.20未満の摩擦係数が生じる。図2は、「アップ」試験と「ダウン」試験の両方を示している。
【0087】
ここで再び図1および図2を参照すると、炭化ホウ素ベースのCMC材料の場合、低い圧力から高い圧力にかけての完全なHSFT試験のシーケンスを通じて、10〜20ミル/サイド/1,000ストップの低くて均一な磨耗率が測定された。圧力シーケンス全体についての平均摩擦係数は、磨耗発生時の最も低い圧力(13psi)での初期値が0.28であったことを除いて、0.4〜0.5であった。民間製造のボーイング777用炭素−炭素ブレーキ材料についても、ほぼ同等のレベルの摩擦係数が測定された。しかしながら、得られた最低磨耗率は約40ミル/サイド/1,000ストップ、すなわち、現行の炭化ホウ素ベースのCMC材料について測定されたものの2倍であった。さらに、低いブレーキ圧における前記炭素−炭素の磨耗率は、高々140ミル/サイド/1,000ストップ、すなわち、同じ圧力での炭化ホウ素ベースのCMC材料の磨耗率の約7〜14倍であった。
【0088】
MI−SiC CMC材料の性能に関連する多くの問題は、炭化ホウ素ベースの材料の場合には問題ではないことが分っている。MI−SiC CMC材料よりも炭化ホウ素ベースのCMC材料の性能が優れている理由は、先述の予想を裏付ける下記事実、すなわち、炭化ホウ素ベースのCMC材料には、炭化ケイ素複合材料のマトリックスに見られる大きな結晶が成長するという問題が無いという事実によって最もそれらしく説明することができる。
【0089】
さらに、一対のMI−BC CMC HSFT試料に対して擬似RTO試験を行った。得られた摩擦係数は0.4〜0.5であり、より低い温度で得られた値とほぼ同じであることが分かった。得られた磨耗率は、70〜80ミル/サイド/1,000ストップであった。これらは、擬似RTO条件にしてはまあまあの数値だと思われる。
【0090】
現行の民間のボーイング777用のブレーキ材料の磨耗率よりも最大50%低い磨耗率は、ブレーキの耐用寿命を延ばしたり、点検間の着陸回数を増やしたり、そして/または従来よりも軽量で小型の新規なヒートシンクのデザインのベースを提供したりすることができる。広範囲の制動圧力条件にわたる一定な摩擦係数は、より安定で予測できる制動性能をもたらすことが可能である。
【0091】
制動圧力の関数としての一定な摩擦係数は、本発明を、大型のトラックおよび列車のブレーキといった航空機以外の制動用途にとって重要な発明にする手がかりとなり得る。慣用の炭素−炭素は厳しい列車ブレーキ試験条件に合格したが、その試験の結果によって、炭素−炭素の摩擦係数はエネルギー入力に依存することが示された。列車(並びに大型トラック)の制御システムは単純な構造であることが多く、また、摩擦係数の変化を補償することができないので、上記エネルギー入力への依存性のため、慣用の炭素−炭素は列車のブレーキ用としてはかなり質の低い選択肢となる。しかしながら、本発明のCMC材料は、測定された摩擦係数が比較的「一様」であるため、慣用の炭素−炭素よりも優れた非航空機制動用候補材料となり得る。
【0092】
本発明のブレーキを用いた場合に起こるとは考えられない炭素ブレーキに関連する他の問題とは、制動条件が炭素の表面を十分に加熱しないと、前記炭素の表面にしっかりと吸着した水分が排除されないため(すなわち、炭素表面は水分に対し強い親和性を有する)、摩擦係数の低下が起こりやすいということである。湿度の高い環境または水分に直接曝すことによって、吸着がひどくなり、ブレーキが「減衰」してゆくのを防ぐのがより難しくなる。さらに、空気に曝されたブレーキディスクの表面にホスフェート酸化抑制剤を塗布したときに吸着されたリンを磨耗面上の炭素−酸素複合体が取り入れた場合、十分な脱着に必要な温度は高くてもよい。
【0093】
本発明のMI−BC CMC材料を試験する際に、存在する水または水分の量は、前記CMC材料から作製されたブレーキの、航空機を任意の距離で止める能力に対して、基本的に何の影響も及ぼさないことが確認された。換言すれば、磨耗砕片の表面には摩擦係数を低下させるのに十分な水分が吸着されてはおらず、その理由は、標準の炭素−炭素航空機ブレーキと比べて、前記砕片の任意の一部分は炭素で構成されているからである。さらに、上記例において、高温および炭素−炭素材料の著しい縁端部の逓減を生じたストップではCMCの酸化逓減は生じなかった。使用中の寸法の減少または構造的完全性の低下を防ぐためにブレーキディスクの露出面にホスフェート抑制剤を添加する必要がないのであれば、磨耗砕片中のホスフェートが偶然取り込まれることによる摩擦係数の低下も避けることができる。
【0094】
さらに、本願明細書に開示されるMI−BC CMC材料は、比較的単純な製造設備と、安価な工具と、短い加工時間とを必要とするスラリーキャスト/溶融浸透法を用いて製造することができる。これは、一般的な商用用途にはCMCは高価すぎるという一般的な認識とはかなり異なる。
【0095】
本発明の材料の特徴
・ 本発明の好ましい実施態様は、編み込まれて擬似立体(3D)プリフォームにされたPANベースの炭素繊維(ポリアクリロニトリル)を用いるが、他の繊維も用いることができると考えられている。それらの他の繊維としては、ピッチベースの炭素繊維、レイヨン(登録商標)布地をベースとした炭素繊維、および酸化物および非酸化物セラミック繊維が挙げられる。
【0096】
・ 本発明の好ましい実施態様は、金属状ケイ素合金相を含有する。前記相には最大約250ppmの炭素が溶けており、マトリックス中の前記合金は前記構造物内全体にわたってある程度連続してる。前記ケイ素合金と炭化ホウ素とを含んでなる混合マトリックスは、前記構造物内全体にわたって完全に連続しているので、前記マトリックスから製造される物品の構造的完全性が確実なものとなる。
【0097】
・ 本発明の好ましい実施態様は、マトリックス中に、セラミック粒子と、炭化ホウ素と、ディスクブレーキへの炭化ケイ素の使用に関する上記問題を生じない他の酸化物または非酸化物セラミックとを含有する。前記セラミック粒子は連続してはいないが、繊維束同士の間および/またはケイ素マトリックス材料内部で単離されている。
【0098】
・ 本発明は、繊維の上に元素状炭素が化学蒸着(CVD)されていることが好ましいが、あるいは、例えば樹脂、ピッチなどの非CVDを源とする炭素層で繊維の束を囲むことによって良好な性能を確保してもよい。すなわち、各繊維束に樹脂、ピッチなどをコーティング並びに浸透させた後、直接的または間接的に加熱することによって揮発物の排除および樹脂、ピッチなどの減量を行ってある程度純粋な炭素とすることによって、炭素束(プリフォーム)をCVD炭素処理する必要を無くすことができる。
【0099】
・ 本発明において、セラミック粒子の焼結も有意な再結晶も行われない。これは、炭化ケイ素の再結晶が、本質的に、少なくともいくらか有意な程度の反応結合を生じさせる上記炭化ケイ素法とは異なる。最も性能を発揮する材料は、セラミック粒子と、他の粒子、ケイ素マトリックス、CVD炭素層および/または炭素繊維との反応が回避される材料である。セラミック粒子が他のミクロ構造の成分と反応した材料は、高い磨耗率を示した。
【0100】
・ 本発明の好ましい実施態様における破壊靭性は20 MPa m1/2超の範囲であることが示されている。
【0101】
本発明の画期的な利点
繊維で強化されたセラミックマトリックス複合材料(CMC)の開発の成功は、航空機用ブレーキの炭素−炭素に対して、いくつかの重要な事項に関し飛躍的な改善を提供していることが分る。
【0102】
1. 従来よりも低いブレーキ寿命コスト − セラミックスは非常に硬い材料であり、炭素−炭素航空機用ブレーキよりも本質的に低い磨耗率を有することが可能である。これらの低減された磨耗率は、炭素−炭素材料のコストと比較した着陸当たりのコストの低下に直接つながる。さらに、セラミックスの耐火性という性質のため、CMC材料を使用すると耐酸化性が大幅に改善されるように思われる。酸化は炭素ブレーキの使用に関して重大な問題である。その理由は、酸化によって、使用の炭素ディスクが早期に廃棄されたり、ブレーキの整備時のディスクの再利用性が低下することがあるためである。結果として、現行のすべての炭素ブレーキには、酸化抑制剤の塗布というさらなる処理工程が必要とされる。これは、ブレーキ製造工程の複雑さやコストを高めるだけでなく、実際に問題を全く解決していない。一部の現行の炭素ブレーキに関わる問題のある酸化についての不満は、現在でも現場で報告されている。本発明を適用することによって、民間の航空機用ブレーキへの酸化抑制剤の使用を排除できる可能性がある。磨耗の低下と酸化の低下との組み合わせにより、ディスク寿命を現行の炭素ディスクの少なくとも2倍にすることができると推測される。それよりも長い耐用寿命の延長も可能であり、例えば、炭素と比較してセラミックの耐用寿命を4倍まで長くすることができる。
【0103】
2. 調整可能な、従来よりも一定である摩擦係数 − 前述のように、初めに、炭化ホウ素ベースのCMCのサブスケール試験を行った。前記炭化ホウ素ベースの材料のF&W性能は、セラミック成分と炭素成分の相対的な割合と、炭化ホウ素の粒径分布とを調節することによって調整できるように思われる。また、摩擦係数は、温度と圧力の両方に関して望ましい安定性を有しているように思われる。これに対し、典型的な炭素−炭素材料は幅広い摩擦係数値を示すが、それらの値は制動条件に依存する。摩擦係数の低下は、タクシー条件におけるブレーキの「感度」(例えば「引っ掛かり具合」)を低下させることによって利益をもたらす。
【0104】
3. 低減されたブレーキの重量および体積 − 炭化ホウ素は炭素よりも高い熱容量を有する。しかしながら、マトリックスを接合するのに用いられるケイ素はそれよりも低い熱容量を有し、そしてこの低い熱容量が、炭化ホウ素を用いることによって得られる体積および重量の低減を相殺してしまう。CMC材料が17.5体積%の炭化ホウ素と、17.5体積%のケイ素と、65体積%の炭素とを含有するという仮定を用いて行われた単純な熱容量の計算は、炭素−炭素ヒートシンクと比べたときに、前記CMCが任意のエネルギー入力について同じピーク動作温度を維持するためには5%多い重量と1%大きな体積を必要とすると予測している。しかしながら、磨耗率を低くすれば、ブレーキのデザインから重量と体積をさらに減らすことができるはずである。航空機のブレーキは、ヒートシンクが完全に摩滅した状態(ヒートシンクの耐用寿命の最後)でも拒絶離陸(RTO)ができるように設計されている。前述の5%の重量増加および1%の体積増加は、完全に摩滅したヒートシンクの磨耗質量(WM)および磨耗体積(WV)に適用される。前記WMおよびWVに基づいて、新しく提供されるヒートシンクの設計質量(DM)および設計体積(DV)は、ヒートシンク材料の予想される磨耗率(単位はミル/表面/1,000ストップ)に1オーバーホール当たりの着陸(LPO)の望ましい回数を掛けることによって算出される。観測された磨耗率によれば、任意のCMCヒートシンクについての新しく提供されるDMおよびDVは、同等の炭素−炭素ヒートシンクに必要とされるものよりも著しく小さいことが分かる。これが、もしCMC材料が典型的な炭素−炭素材料のわずか半分の磨耗率で磨耗するのであれば新しく提供されるヒートシンクの重量および体積をさらに低減することができるはずである理由である(現時点で示されているCMCヒートシンクの磨耗率は、同等の炭素−炭素ヒートシンクの磨耗率の約1/4である。すなわち、現行のCMCヒートシンクは、同等の炭素−炭素ヒートシンクの4倍長持ちする)。
【0105】
4. 感水性に関しては、従来の炭化ホウ素ベースの材料のいずれも、一般的な実験室内湿度試験に長時間附されたときに安定性に関する問題を示すことはなかった。
【0106】
5. 改善された環境安定性 − (1,500°Fで酸化が始まる)炭化ホウ素は(900°Fで酸化が始まる)炭素よりも優れた耐酸化性を有することが知られているが、これは、炭素ブレーキの全推定耐用寿命を延ばすために現在必要とされる高価な追加の酸化抑制システムへの依存を減らすかまたは実質的に排除すると考えられている。約17体積%の炭化ホウ素と約17体積%のケイ素とを含有するDuracarbTM CMC材料と、酸化抑制剤を全く用いていない慣用のDuracarbTMプリフォーム炭素−炭素ブレーキ材料とに対してほぼ同じHFST比較試験を行うことによって、実現可能な酸化性能の改善を実証した。前記CMC材料は、標準のテストシーケンスについて前述のように試験された。比較用の慣用の炭素−炭素材料に対しては、35psiにおいて200ストップ、47psiにおいて200ストップ、58psiにおいて200ストップおよび69psiにおいて100ストップというシーケンスを用いて「アップ」試験を行った。炭素−炭素の試験は、サンプルの外径(OD)付近に過度の酸化が生じたため、中断しなければならなかった。その損傷状態を図5に示す。マトリックスの酸化を示す露出した繊維束は、図5の顕微鏡写真の下部に示されるサンプルの外径にはっきりと見られる。一方、図6は、同じ「アップ」試験を行ったところ、約17体積%の炭化ホウ素と約17体積%のケイ素とを含有する本発明のDuracarbTM CMC材料の場合と似たような顕微鏡写真を示している。このCMC材料について酸化は全く見られなかった。さらに、露出した繊維束も全く見られず、機械加工された縁端部は長いテストシーケンスの後でも維持されていた。
【0107】
本発明の現時点での好ましい実施態様および最良の形態を開示、説明、詳述、実証および記載してきた。しかしながら、本発明の適用範囲は、それらによって限定されるという解釈はされず、むしろ下記の請求の範囲およびそれらの同等物と同じくらい広いと解釈される。
【図面の簡単な説明】
【図1】
各種炭化ホウ素CMC同士の磨耗率および各種炭化ホウ素CMCの磨耗率と炭化ケイ素CMCおよび市販の炭素−炭素材料の磨耗率とを比較したグラフである。
【図2】
各種炭化ホウ素CMC同士の摩擦係数および各種炭化ホウ素CMCの摩擦係数と炭化ケイ素CMCおよび市販の炭素−炭素材料の摩擦係数とを比較したグラフである。
【図3】
炭素とケイ素の相互作用および再結晶によって形成された大きな炭化ケイ素結晶を示すMI−SiC CMCを提示する顕微鏡写真である。
【図4】
炭化ホウ素微粒子の均一な分散を示すMI−BC CMCを提示する顕鏡写真である。
【図5】
略式HSFT試験後の慣用の炭素−炭素材料の顕微鏡写真である。
【図6】
大規模なHSFT試験後の本発明のCMC材料の顕微鏡写真である。
【図7】
浸透を補助としてプリフォームに適用されることのあるドリルで開けられた孔のパターンの模式図である。

Claims (56)

  1. a.)初めに元素状炭素で主として含浸され次にケイ素と反応しない少なくとも1種のセラミック材料で主として含浸された繊維構造と、
    b.)初めに元素状炭素で主として含浸され次に少なくとも1種のセラミック材料で主として含浸された、前記繊維構造を主として包含する連続したシリコンマトリックスとからなり、
    前記マトリックスの前記少なくとも1種のセラミック材料は、大きさが主として20ミクロン以下の微粒子結晶構造を有し、前記少なくとも1種のセラミック材料は前記マトリックス内では不連続であり、そして前記繊維構造は、前記複合材料が破断する際に、前記繊維構造に初めに主として含浸させた前記元素状炭素を引き抜く、
    ことを特徴とする複合材料。
  2. 前記繊維構造は、複数の元素状炭素繊維を含んでなる、請求項1に記載の複合材料。
  3. 前記シリコンマトリックスは、ケイ素と、ホウ素と、炭素とを含んでなる合金から形成されている、請求項1に記載の複合材料。
  4. 前記少なくとも1種のセラミック構造は炭化ホウ素を含んでなる、請求項1に記載の複合材料。
  5. 前記繊維構造は、複数の非酸化物セラミック繊維を含んでなる、請求項1に記載の複合材料。
  6. 前記繊維構造は、複数の酸化物セラミック繊維を含んでなる、請求項1に記載の複合材料。
  7. 前記シリコンマトリックスは、元素状ケイ素から形成される、請求項1に記載の複合材料。
  8. 前記初めの元素状炭素コーティングは、前記繊維構造の前記複数の元素状炭素繊維の各々を基本的に被包している、請求項2に記載の複合材料。
  9. 前記シリコンマトリックスは、前記繊維構造とは主として反応していない、請求項1に記載の複合材料。
  10. ディスクブレーキヒートシンクに形成された請求項1に記載の複合材料。
  11. 前記ディスクブレーキヒートシンクの磨耗率は、同等の慣用の炭素−炭素ディスクブレーキヒートシンクの磨耗率の1/2以下である、請求項10に記載の複合材料。
  12. a.)初めに元素状炭素で主として含浸され、次にケイ素と反応しない少なくとも1種のセラミック材料で主として含浸された、元素状炭素の繊維構造と、
    b.)初めに元素状炭素で主として含浸され、次に少なくとも1種のセラミック材料で主として含浸された前記繊維構造を主として包含する連続したシリコンマトリックスとからなり、
    前記マトリックスの前記少なくとも1種のセラミック材料は、大きさが主として20ミクロン以下の微粒子結晶構造を有し、前記少なくとも1種のセラミック材料は前記マトリックス内では不連続であり、そして前記繊維構造は、前記複合材料が破断する際に、前記繊維構造に初めに主として含浸させた前記炭素元素を引き抜く、
    ことを特徴とする複合材料。
  13. 前記元素状炭素の繊維構造は、複数の元素状炭素繊維を含んでなる、請求項12に記載の複合材料。
  14. 前記シリコンマトリックスは、ケイ素と、ホウ素と、炭素とを含んでなる合金から形成されている、請求項12に記載の複合材料。
  15. 前記少なくとも1種のセラミック構造は炭化ホウ素を含んでなる、請求項12に記載の複合材料。
  16. 前記シリコンマトリックスは、元素状ケイ素から形成されている、請求項12に記載の複合材料。
  17. 前記初めの元素状炭素コーティングは、前記繊維構造の前記複数の元素状炭素繊維の各々を基本的に被包している、請求項13に記載の複合材料。
  18. 前記シリコンマトリックスは、前記繊維構造とは主として反応していない、請求項12に記載の複合材料。
  19. ディスクブレーキヒートシンクに形成されている請求項12に記載の複合材料。
  20. 前記ディスクブレーキヒートシンクの磨耗率は、同等の慣用の炭素−炭素ディスクブレーキヒートシンクの磨耗率の1/2以下である、請求項19に記載の複合材料。
  21. a.)初めに元素状炭素で主として含浸され、次に炭化ホウ素で主として含浸された、元素状炭素の繊維構造と、
    b.)初めに元素状炭素で主として含浸され、次に炭化ホウ素で主として含浸された前記繊維構造を主として包含する連続したシリコン合金マトリックスと、
    からなる複合材料。
  22. 前記炭化ホウ素は、大きさが主として20ミクロン以下の微粒子結晶構造を有する、請求項21に記載の複合材料。
  23. 前記炭化ホウ素は前記マトリックス内では不連続である、請求項21に記載の複合材料。
  24. 前記元素状炭素の繊維構造は、複数の元素状炭素繊維を含んでなる、請求項21に記載の複合材料。
  25. 前記元素状炭素繊維は、前記複合材料が破断する際に、前記繊維構造に初めに主として含浸させた前記元素状炭素を引き抜く、請求項24に記載の複合材料。
  26. ディスクブレーキヒートシンクに形成されている請求項21に記載の複合材料。
  27. 前記ディスクブレーキヒートシンクの磨耗率は、同等の慣用の炭素−炭素ディスクブレーキヒートシンクの磨耗率の1/2以下である、請求項26に記載の複合材料。
  28. 複合材料の製法であって、
    a.)繊維構造をプリフォームの形に作製し、
    b.)前記プリフォームに、まず初めに、主として元素状炭素を含浸させ、
    c.)次に、前記プリフォームに、ケイ素と反応しない少なくとも1種のセラミック材料を主として含浸させて予備成形体を形成し、ここで前記少なくとも1種のセラミック材料は結晶の大きさが主として20ミクロン以下であり、
    d.)そして、前記予備成形体に溶融したケイ素を浸透させて前記複合材料全体にわたって連続したマトリックスを形成する、ここで前記マトリックスは、基本的に前記繊維構造に直接結合はしていないが、初めに前記繊維構造をコーティングした前記元素状炭素には結合している、
    ことを特徴とする前記製法。
  29. 前記繊維構造は、複数の元素状炭素繊維を含んでなる、請求項28に記載の製法。
  30. 前記溶融ケイ素は、ケイ素と、ホウ素と、炭素とを含んでなる合金から形成されている、請求項28に記載の製法。
  31. 前記少なくとも1種のセラミック材料は炭化ホウ素を含んでなる、請求項28に記載の製法。
  32. 前記繊維構造は、複数の非酸化物セラミック繊維を含んでなる、請求項28に記載の製法。
  33. 前記繊維構造は、複数の酸化物セラミック繊維を含んでなる、請求項28に記載の製法。
  34. 前記溶融ケイ素は、元素状ケイ素を含んでなる、請求項28に記載の製法。
  35. 前記初めの元素状炭素コーティングは、前記繊維構造の前記複数の元素状炭素繊維の各々を基本的に被包している、請求項29に記載の製法。
  36. 前記ケイ素合金は90〜96重量%の元素状ケイ素と、3〜6重量%の元素状ホウ素と、0.5〜2.0重量%の元素状炭素との溶融物からなり、そして前記溶融物は凝固され、−16U.S.シーブの大きさまで粉砕されている、請求項30に記載の製法。
  37. a.)前記ケイ素合金と、カーボンブラックと、液状フェノール樹脂とを含んでなるカバーミックスを調製し、
    b.)前記予備成形体を前記カバーミックスで本質的に被覆し、そして
    d.)前記カバーミックスで被覆された前記プリフォームを前記ケイ素合金の融点範囲まで加熱する、
    ことをさらに含んでなる、請求項30に記載の製法。
  38. 前記カバーミックスは、90〜92体積%の前記ケイ素合金と、5.5〜7.5体積%の前記液状フェノール樹脂と、1〜3体積%のカーボンブラックとを含んでなる、請求項37に記載の製法。
  39. 前記ケイ素合金は90〜96重量%の元素状ケイ素と、3〜6重量%の元素状ホウ素と、0.5〜2.0重量%の元素状炭素との溶融物からなり、そして前記溶融物は凝固され、−16U.S.シーブの大きさまで粉砕されている、請求項37に記載の製法。
  40. 前記カバーミックスは、90〜92体積%の前記ケイ素合金と、5.5〜7.5体積%の前記液状フェノール樹脂と、1〜3体積%のカーボンブラックとを含んでなる、請求項39に記載の製法。
  41. a.)前記ケイ素合金と、カーボンブラックと、液状フェノール樹脂とを含んでなるカバーミックスを調製し、
    b.)前記予備成形体を前記カバーミックスで本質的に被覆し、
    c.)前記カバーミックスで被覆された前記予備成形体を予熱して前記液状フェノール樹脂を凝固および硬化させることによってカバーミックス硬化物を形成し、そして
    d.)前記カバーミックス硬化物で被覆された前記プリフォームを前記ケイ素合金の融点範囲まで加熱する、
    ことをさらに含んでなる、請求項30に記載の製法。
  42. 前記カバーミックスは、90〜92体積%の前記ケイ素合金と、5.5〜7.5体積%の前記液状フェノール樹脂と、1〜3体積%のカーボンブラックとを含んでなる、請求項41に記載の製法。
  43. 前記ケイ素合金は90〜96重量%の元素状ケイ素と、3〜6重量%の元素状ホウ素と、0.5〜2.0重量%の元素状炭素との溶融物からなり、そして前記溶融物は凝固され、−16U.S.シーブの大きさまで粉砕されている、請求項41に記載の製法。
  44. 前記カバーミックスは、90〜92体積%の前記ケイ素合金と、5.5〜7.5体積%の前記液状フェノール樹脂と、1〜3体積%のカーボンブラックとを含んでなる、請求項43に記載の製法。
  45. a.)初めに元素状炭素で主として含浸され、次に内部に複数の孔を配置し、そして少なくとも1種のセラミック材料で主として含浸された繊維構造、ここで前記各孔の直径は約1/16”〜約1/8”であり、前記各孔は、隣接する各孔と、その中心同士の距離にして約1/4”〜約1/2”の距離を置いて離れている、および
    b.)初めに元素状炭素で主として含浸され、次に少なくとも1種のセラミック材料で主として含浸された前記繊維構造を主として包含する連続したシリコンマトリックスとからなり、
    前記マトリックスの前記少なくとも1種のセラミック材料は、大きさが主として20ミクロン以下の微粒子結晶構造を有し、前記少なくとも1種のセラミック材料は前記マトリックス内では不連続であり、そして前記繊維構造は、前記複合材料が破断する際に、前記繊維構造に初めに主として含浸させた前記元素状炭素を引き抜く、
    ことを特徴とする複合材料。
  46. 前記孔が前記繊維構造全体に展開している、請求項45に記載の複合材料。
  47. 前記孔が前記繊維構造の露出面に実質的に亘って配置されている、請求項45に記載の複合材料。
  48. 前記孔が前記繊維構造にドリルで開けられている、請求項45に記載の複合材料。
  49. 前記孔の直径が約5/64”である、請求項45に記載の複合材料。
  50. 前記各孔が、隣接する各孔と、その中心同士の距離にして約11/32”の距離を置いて離れている、請求項45に記載の複合材料。
  51. 初めに元素状炭素で主として含浸され、次に内部に複数の孔が配置された繊維構造であって、前記各孔の直径は約1/16”〜約1/8”であり、前記各孔は、隣接する各孔と、その中心同士の距離にして約1/4”〜約1/2”の距離を置いて離れている、ことを特徴とする前記繊維構造。
  52. 前記孔が内部全体に展開している、請求項51に記載の繊維構造。
  53. 前記孔がその露出面に実質的に亘って配置されている、請求項51に記載の繊維構造。
  54. 前記孔がドリルで開けられている、請求項51に記載の繊維構造。
  55. 前記孔の直径が約5/64”である、請求項51に記載の繊維構造。
  56. 前記各孔が、隣接する各孔と、その中心同士の距離にして約11/32”の距離を置いて離れている、請求項51に記載の繊維構造。
JP2002532190A 2000-09-29 2001-09-19 炭化ホウ素をベースとしたセラミックマトリックス複合材料 Withdrawn JP2004510674A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US67625000A 2000-09-29 2000-09-29
PCT/US2001/029439 WO2002028801A2 (en) 2000-09-29 2001-09-19 Boron carbide based ceramic matrix composites

Publications (1)

Publication Number Publication Date
JP2004510674A true JP2004510674A (ja) 2004-04-08

Family

ID=24713771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002532190A Withdrawn JP2004510674A (ja) 2000-09-29 2001-09-19 炭化ホウ素をベースとしたセラミックマトリックス複合材料

Country Status (7)

Country Link
US (1) US6855428B2 (ja)
EP (1) EP1326813B1 (ja)
JP (1) JP2004510674A (ja)
AT (1) ATE350358T1 (ja)
CA (1) CA2421032A1 (ja)
DE (1) DE60125798T2 (ja)
WO (1) WO2002028801A2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006503702A (ja) * 2002-10-28 2006-02-02 ジーイーオー2 テクノロジーズ,インク. セラミックディーゼル排気フィルタ
JP2007113642A (ja) * 2005-10-19 2007-05-10 Advics:Kk 摩擦対および摩擦材
JP2008525295A (ja) * 2004-12-23 2008-07-17 メシエ−ブガッティ セラミック粒子を組み込まれている炭素/炭素型の複合材料からなる部品製造用の繊維プリフォームの製造法およびそれによって得られる製品
JP2008545894A (ja) * 2005-06-02 2008-12-18 スネクマ・プロピュルシオン・ソリド 化学蒸気浸透法での緻密化により複合材部品を製造するための方法及び基材並びに得られる部品。
JP2012502191A (ja) * 2008-06-18 2012-01-26 アドバンスド セラメトリックス,インク. 炭化ホウ素セラミック繊維
JP2017024978A (ja) * 2015-07-13 2017-02-02 ロールス−ロイス ハイ テンプレチャー コンポジッツ,インコーポレイティド セラミックマトリックス複合材物品の製造方法
JP2018503004A (ja) * 2014-11-04 2018-02-01 ダイネティクス,インコーポレイテッド 高強度耐熱繊維材料
JP2021511278A (ja) * 2018-01-19 2021-05-06 アルバニー エンジニアード コンポジッツ インコーポレイテッド セラミックマトリックス複合体を製造する方法
CN115956064A (zh) * 2020-09-07 2023-04-11 日本碍子株式会社 耐火材料

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR876M (ja) 1960-10-12 1961-10-16
US20140109756A1 (en) * 2000-07-21 2014-04-24 Michael K. Aghjanian Composite materials and methods for making same
US7378362B2 (en) * 2000-09-29 2008-05-27 Goodrich Corporation Boron carbide based ceramic matrix composites
DE10056161A1 (de) * 2000-11-13 2002-05-29 Knorr Bremse Systeme Bremsscheibe und Verfahren zu deren Herstellung
DE10158925A1 (de) * 2001-11-23 2003-06-26 Fraunhofer Ges Forschung Oxidkeramische Faserverbundwerkstoffe und ihre Verwendung
US7364794B2 (en) 2002-02-14 2008-04-29 Toyo Tanso Co., Ltd. Oxidation resistant carbon fiber reinforced carbon composite material and process for producing the same
DE10224243B4 (de) * 2002-05-29 2004-05-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Herstellung eines tribologisch über eine Funktionsoberfläche beanspruchbaren Bauteils
US7592279B1 (en) 2003-06-12 2009-09-22 Georgia Tech Research Corporation Boron carbide and boron carbide components
GB2403989B (en) * 2003-07-15 2006-06-14 Dunlop Aerospace Ltd Composite article
EP1632465A1 (de) * 2004-09-07 2006-03-08 Sgl Carbon Ag Durch Nanopartikel modifizierte Carbon-Keramik-Bremsscheiben
US7666475B2 (en) 2004-12-14 2010-02-23 Siemens Energy, Inc. Method for forming interphase layers in ceramic matrix composites
US8377369B2 (en) * 2004-12-20 2013-02-19 Georgia Tech Research Corporation Density and hardness pressureless sintered and post-HIPed B4C
US20060141237A1 (en) * 2004-12-23 2006-06-29 Katherine Leighton Metal-ceramic materials
US7455433B2 (en) * 2005-01-05 2008-11-25 The L.D. Kichler Co. Light fixture with quick support assembly
WO2006110720A2 (en) * 2005-04-11 2006-10-19 Georgia Tech Research Corporation Boron carbide component and methods for the manufacture thereof
WO2007061398A1 (en) * 2005-07-25 2007-05-31 Siemens Power Generation, Inc. Method of forming cmc component
US8548652B2 (en) * 2006-01-31 2013-10-01 Hydro-Aire, Inc., Subsidiary Of Crane Co. System for reducing carbon brake wear
US20070270302A1 (en) * 2006-05-22 2007-11-22 Zhang Shi C Pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same
US8097548B2 (en) * 2006-05-22 2012-01-17 Zhang Shi C High-density pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same
US7686904B2 (en) * 2006-10-20 2010-03-30 Honeywell International Inc. Carbon filament ignition of combustion synthesis materials
FR2924426B1 (fr) * 2007-11-30 2011-06-03 Messier Bugatti Procede de fabrication de pieces en materiau composite a renfort en fibres de carbone.
US20100018815A1 (en) * 2008-07-28 2010-01-28 Neil Murdie C-c composite brakes with improved wear rates
US8465825B1 (en) 2009-05-29 2013-06-18 Hrl Laboratories, Llc Micro-truss based composite friction-and-wear apparatus and methods of manufacturing the same
US20110175263A1 (en) * 2009-07-24 2011-07-21 Pujari Vimal K Glass encapsulated hot isostatic pressed silicon carbide
US10208238B2 (en) 2010-10-08 2019-02-19 Advanced Ceramic Fibers, Llc Boron carbide fiber reinforced articles
US9803296B2 (en) 2014-02-18 2017-10-31 Advanced Ceramic Fibers, Llc Metal carbide fibers and methods for their manufacture
US10954167B1 (en) 2010-10-08 2021-03-23 Advanced Ceramic Fibers, Llc Methods for producing metal carbide materials
GB2485673B (en) * 2010-11-17 2017-11-15 Meggitt Aerospace Ltd Brake disc
EP2714312B1 (en) * 2011-05-27 2019-11-27 Nanomech Inc. Coating layer with microstructure serrated edge
US9416831B2 (en) 2013-03-08 2016-08-16 Goodrich Corporation Systems and methods for alternating material brake disk stack
CN106460547B (zh) * 2014-06-20 2020-05-19 博格华纳公司 具有可调节叶片的涡轮增压器
US11499230B2 (en) 2014-08-18 2022-11-15 Dynetics, Inc. Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors
US10011535B2 (en) 2014-09-02 2018-07-03 Honeywell International Inc. Sacrificial fibers to create channels in a composite material
US10370302B2 (en) * 2014-09-02 2019-08-06 Honeywell International Inc. Facilitating pitch stabilization in densified carbon fiber preforms
CN105156528A (zh) * 2015-09-28 2015-12-16 东营博瑞制动系统有限公司 一种无锑陶瓷刹车片
US10253832B2 (en) 2015-10-07 2019-04-09 Goodrich Corporation Composite brake disks with an integrated heat sink, methods for manufacturing the same, and methods for producing encapsulated heat sink material
RU2621241C1 (ru) * 2016-03-02 2017-06-01 Общество с ограниченной ответственностью "Вириал" Наноструктурированный композиционный материал на основе карбида бора и способ его получения
EP3241817B1 (en) 2016-05-02 2021-01-27 Rolls-Royce High Temperature Composites Inc Forming a surface layer on a ceramic matrix composite article
EP3241815B1 (en) 2016-05-02 2019-11-13 Rolls-Royce High Temperature Composites Inc Reducing surface nodules in melt-infiltrated ceramic matrix composites
US10208412B2 (en) 2016-06-16 2019-02-19 Goodrich Corporation Systems and methods for forming a composite structure
US10151362B1 (en) * 2017-05-16 2018-12-11 Goodrich Corporation Rapid ceramic matrix composite fabrication of aircraft brakes via field assisted sintering
US10793478B2 (en) 2017-09-11 2020-10-06 Advanced Ceramic Fibers, Llc. Single phase fiber reinforced ceramic matrix composites
DE102017121544A1 (de) * 2017-09-18 2019-03-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Beschichtung eines kohlenstoffhaltigen Fasergebildes und Verfahren zur Herstellung eines faserverstärkten Werkstoffes
US10724591B2 (en) 2017-11-27 2020-07-28 Goodrich Corporation Brake assembly with disks of variable thickness and methods for disk reuse
US10745325B2 (en) 2017-12-18 2020-08-18 Rolls-Royce High Temperature Composites, Inc. Protective layer for a ceramic matrix composite article
CN108726489A (zh) * 2018-07-03 2018-11-02 贵州大学 一种磷石膏和粉煤灰制列车闸片材料联产酸的工艺
US20200200227A1 (en) * 2018-12-19 2020-06-25 Goodrich Corporation Aircraft brake heatsink wear liner
US11198651B2 (en) 2018-12-20 2021-12-14 Rolls-Royce High Temperature Composites, Inc. Surface layer on a ceramic matrix composite
CN114278691B (zh) * 2019-07-03 2023-11-24 福建省晋江凯燕新材料研究院有限公司 利用螺旋微碳纤维制备有机摩擦材料的方法
US11578774B2 (en) 2019-11-04 2023-02-14 Goodrich Coroporation Method of manufacturing CMC components using boron carbide
CN111039686B (zh) * 2019-12-13 2022-04-19 中国航空制造技术研究院 一种含原位孔的连续纤维增强陶瓷基复合材料制备方法
CN113880599B (zh) * 2021-10-25 2023-03-31 湖南世鑫新材料有限公司 一种一体成型碳陶涂层盘及其制备方法
CN115504800B (zh) * 2022-11-21 2023-03-17 湖南大学 一种层状结构纤维增强碳化硼复合材料的制备方法、应用

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396663A (en) 1979-06-11 1983-08-02 The B. F. Goodrich Company Carbon composite article and method of making same
US4287259A (en) 1979-12-05 1981-09-01 The United States Of America As Represented By The United States Department Of Energy Preparation and uses of amorphous boron carbide coated substrates
US4668579A (en) 1984-02-01 1987-05-26 The United States Of America As Represented By The Secretary Of The Air Force Interstitially protected oxidation resistant carbon-carbon composite
US4605440A (en) 1985-05-06 1986-08-12 The United States Of America As Represented By The United States Department Of Energy Boron-carbide-aluminum and boron-carbide-reactive metal cermets
US4702770A (en) 1985-07-26 1987-10-27 Washington Research Foundation Multipurpose boron carbide-aluminum composite and its manufacture via the control of the microstructure
DE3762544D1 (de) 1986-02-05 1990-06-07 Europ Propulsion Reibungssystem aus zusammengesetzten feuerfesten materialien.
US4789021A (en) 1986-09-29 1988-12-06 Steel Casting Engineering, Ltd. Short mold for continuous casting
US5015540A (en) 1987-06-01 1991-05-14 General Electric Company Fiber-containing composite
US5585165A (en) 1987-06-12 1996-12-17 Lanxide Technology Company, Lp Composite materials and methods for making the same
US5202059A (en) 1987-06-12 1993-04-13 Lanxide Technology Company, Lp Coated ceramic filler materials
US4944904A (en) 1987-06-25 1990-07-31 General Electric Company Method of obtaining a fiber-containing composite
US5021367A (en) 1987-06-25 1991-06-04 General Electric Company Fiber-containing composite
US5330854A (en) 1987-09-24 1994-07-19 General Electric Company Filament-containing composite
US5043303A (en) 1987-09-28 1991-08-27 General Electric Company Filament-containing composite
DE3738949A1 (de) 1987-11-17 1989-05-24 Textar Gmbh Bremse fuer strassen-, schienen- und luftfahrzeuge
US4886682A (en) 1987-12-14 1989-12-12 General Electric Company Process for producing a filament-containing composite in a ceramic matrix
US5160676A (en) 1987-12-14 1992-11-03 General Electric Company Fibrous material-containing composite
US4931311A (en) 1987-12-21 1990-06-05 General Electric Company Method of obtaining a filament-containing composite with a boron nitride coated matrix
US5067998A (en) 1987-12-21 1991-11-26 General Electric Company Fibrous material-containing composite
US4863798A (en) 1988-07-21 1989-09-05 Refractory Composites, Inc. Refractory composite material and method of making such material
US5407734A (en) 1988-10-20 1995-04-18 General Electric Company Fiber-containing composite
US5051301A (en) 1988-10-26 1991-09-24 General Electric Company Coated fiber-containing composite
US4915760A (en) 1988-10-26 1990-04-10 General Electric Company Method of producing a coated fiber-containing composite
US5387299A (en) 1988-12-27 1995-02-07 General Electric Company Ceramic composite containing coated fibrous material
US4981822A (en) * 1989-02-17 1991-01-01 General Electric Company Composite containing coated fibrous material
US4889686A (en) 1989-02-17 1989-12-26 General Electric Company Composite containing coated fibrous material
US5432253A (en) 1989-12-18 1995-07-11 General Electric Company Composite containing fibrous material
US5217770A (en) 1991-08-15 1993-06-08 The B. F. Goodrich Company Braided shaped filamentary structures and methods of making
CA2077130C (en) 1991-09-04 2003-04-29 Edward Lee Morris Carbon fiber reinforced carbon/carbon composite and method of its manufacture
US5296311A (en) 1992-03-17 1994-03-22 The Carborundum Company Silicon carbide reinforced reaction bonded silicon carbide composite
US5294489A (en) 1992-04-02 1994-03-15 General Electric Company Protective coating with reactive interlayer on reinforcement in silicon carbide composite
US5620791A (en) 1992-04-03 1997-04-15 Lanxide Technology Company, Lp Brake rotors and methods for making the same
GB9318764D0 (en) 1993-09-10 1993-10-27 Wabco Holdings Sab Improvements relating to friction pads for use in disc brakes
US5436042A (en) 1994-03-11 1995-07-25 The Carborundum Company Ceramic fiber-reinforced composite articles and their production
FR2717874B1 (fr) 1994-03-25 1996-04-26 Gec Alsthom Transport Sa Disque multimatériaux pour freinage à haute énergie.
US5526914A (en) 1994-04-12 1996-06-18 Lanxide Technology Company, Lp Brake rotors, clutch plates and like parts and methods for making the same
US5515585A (en) 1994-07-25 1996-05-14 The Bf Goodrich Company Process for forming needled fibrous structures using determined transport depth
DE4438455C1 (de) 1994-10-28 1996-05-02 Deutsche Forsch Luft Raumfahrt Verfahren zur Herstellung einer Reibeinheit mittels Infiltration eines porösen Kohlenstoffkörpers mit flüssigem Silizium
JP3754450B2 (ja) 1994-11-16 2006-03-15 グッドリッチ・コーポレイション 圧力勾配cvi/cvd法
US5480678A (en) 1994-11-16 1996-01-02 The B. F. Goodrich Company Apparatus for use with CVI/CVD processes
US5688577A (en) 1995-07-27 1997-11-18 R. K. Carbon Fibers, Inc. Multi-directional friction materials
US5806636A (en) 1995-08-16 1998-09-15 Northrop Grumman Corporation Brake rotors/drums and brake pads particulary adapted for motorized vehicles
US5878849A (en) 1996-05-02 1999-03-09 The Dow Chemical Company Ceramic metal composite brake components and manufacture thereof
US5840221A (en) 1996-12-02 1998-11-24 Saint-Gobain/Norton Industrial Ceramics Corporation Process for making silicon carbide reinforced silicon carbide composite
US6022505A (en) 1997-02-20 2000-02-08 Daimler-Benz Aktiengesellschaft Process for manufacturing ceramic metal composite bodies, the ceramic metal composite body and its use
US6110268A (en) 1997-03-21 2000-08-29 Daimler-Benz Aktiengesellschaft Sintered brake lining and method for its manufacture
DE19711829C1 (de) 1997-03-21 1998-09-03 Daimler Benz Ag Verfahren zur Herstellung einer faserverstärkten Verbundkeramik
US5952100A (en) 1997-05-21 1999-09-14 General Electric Company Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites
DE19727586C2 (de) 1997-06-28 2002-10-24 Daimler Chrysler Ag Bremseinheit aus Bremsscheibe und Bremsbelag

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4746321B2 (ja) * 2002-10-28 2011-08-10 ジーイーオー2 テクノロジーズ,インク. セラミックディーゼル排気フィルタ
JP2006503702A (ja) * 2002-10-28 2006-02-02 ジーイーオー2 テクノロジーズ,インク. セラミックディーゼル排気フィルタ
JP2008525295A (ja) * 2004-12-23 2008-07-17 メシエ−ブガッティ セラミック粒子を組み込まれている炭素/炭素型の複合材料からなる部品製造用の繊維プリフォームの製造法およびそれによって得られる製品
KR101371821B1 (ko) * 2005-06-02 2014-03-07 에스엔에쎄엠아 프로폴지옹 솔리드 화학 기상침착 치밀화에 의해 복합재료 부품을 제조하기위한 기질과 그 제조방법 및 제조된 부품
JP2008545894A (ja) * 2005-06-02 2008-12-18 スネクマ・プロピュルシオン・ソリド 化学蒸気浸透法での緻密化により複合材部品を製造するための方法及び基材並びに得られる部品。
JP2007113642A (ja) * 2005-10-19 2007-05-10 Advics:Kk 摩擦対および摩擦材
JP2012502191A (ja) * 2008-06-18 2012-01-26 アドバンスド セラメトリックス,インク. 炭化ホウ素セラミック繊維
JP2018503004A (ja) * 2014-11-04 2018-02-01 ダイネティクス,インコーポレイテッド 高強度耐熱繊維材料
JP2021059833A (ja) * 2014-11-04 2021-04-15 ダイネティクス,インコーポレイテッド 高強度耐熱繊維材料
JP7090688B2 (ja) 2014-11-04 2022-06-24 ダイネティクス,インコーポレイテッド 高強度耐熱繊維材料
JP2017024978A (ja) * 2015-07-13 2017-02-02 ロールス−ロイス ハイ テンプレチャー コンポジッツ,インコーポレイティド セラミックマトリックス複合材物品の製造方法
JP2021511278A (ja) * 2018-01-19 2021-05-06 アルバニー エンジニアード コンポジッツ インコーポレイテッド セラミックマトリックス複合体を製造する方法
JP7481256B2 (ja) 2018-01-19 2024-05-10 アルバニー エンジニアード コンポジッツ インコーポレイテッド セラミックマトリックス複合体を製造する方法
CN115956064A (zh) * 2020-09-07 2023-04-11 日本碍子株式会社 耐火材料

Also Published As

Publication number Publication date
US20040058154A1 (en) 2004-03-25
CA2421032A1 (en) 2002-04-11
DE60125798T2 (de) 2007-10-18
EP1326813A2 (en) 2003-07-16
WO2002028801A3 (en) 2002-08-15
EP1326813B1 (en) 2007-01-03
ATE350358T1 (de) 2007-01-15
US6855428B2 (en) 2005-02-15
DE60125798D1 (de) 2007-02-15
WO2002028801A2 (en) 2002-04-11

Similar Documents

Publication Publication Date Title
US6855428B2 (en) Boron carbide based ceramic matrix composites
US7378362B2 (en) Boron carbide based ceramic matrix composites
US8697259B2 (en) Boron carbide composite materials
US6347446B1 (en) Method of making silicon carbide-silicon composite having improved oxidation resistance
CA2273100C (en) Silicon carbide reinforced silicon carbide composite
JP5096195B2 (ja) ダイヤモンド複合体
JP4225684B2 (ja) ダイヤモンド−炭化ケイ素−ケイ素複合材料の製造法
JP3343150B2 (ja) 炭化ケイ素複合材中の強化材上に反応性中間層を有する保護コーティング
JPH0662338B2 (ja) 炭化珪素/グラフアイト/炭素の複合セラミツク体
EP1019338B1 (en) A method for producing abrasive grains and the abrasive grains produced by this method
US7153543B2 (en) Refractory-carbon composite brake friction elements
RU2621241C1 (ru) Наноструктурированный композиционный материал на основе карбида бора и способ его получения
Lenz et al. Fabrication of fiber composites with a MAX phase matrix by reactive melt infiltration
JP4291419B2 (ja) 炭化ケイ素化した炭素繊維強化炭素複合材料の製造方法
KR100431927B1 (ko) 용침법을 통한 고밀도 탄화붕소-알루미늄 복합재료 제조방법
WO2005037726A2 (en) Method for making cavities in metal-ceramic compoiste bodies, and articles made thereby
Behler et al. The Effect of SiO2 and B2O3 Additives on the Microstructure and Hardness of Hot‐Pressed Boron Carbide
Sato et al. Preparation and properties of SiC/SiC composites with various matrices
CZ9902046A3 (cs) Kompozice karbidu křemíku zesílená karbidem křemíku

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100806