WO2007105487A1 - 電力変換制御回路、電力変換制御用lsi、差分検出回路およびパルス幅制御信号発生回路 - Google Patents

電力変換制御回路、電力変換制御用lsi、差分検出回路およびパルス幅制御信号発生回路 Download PDF

Info

Publication number
WO2007105487A1
WO2007105487A1 PCT/JP2007/053711 JP2007053711W WO2007105487A1 WO 2007105487 A1 WO2007105487 A1 WO 2007105487A1 JP 2007053711 W JP2007053711 W JP 2007053711W WO 2007105487 A1 WO2007105487 A1 WO 2007105487A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
power conversion
input
time
Prior art date
Application number
PCT/JP2007/053711
Other languages
English (en)
French (fr)
Inventor
Fujio Kurokawa
Original Assignee
Nagasaki University, National University Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki University, National University Corporation filed Critical Nagasaki University, National University Corporation
Priority to EP07737470A priority Critical patent/EP2015435A1/en
Priority to JP2008505043A priority patent/JP5023339B2/ja
Priority to KR1020087022996A priority patent/KR101388125B1/ko
Priority to US12/224,204 priority patent/US8085023B2/en
Publication of WO2007105487A1 publication Critical patent/WO2007105487A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention (1) fine control accuracy equivalent to the case of controlling with a reference signal having a high clock frequency when performing power conversion can be obtained with a reference signal having a low clock frequency.
  • Power conversion control circuit and power conversion control LSI that can be used,
  • Difference detection circuit that can detect the difference between two voltage signals as a high resolution digital value,
  • Time setting given by integer The present invention relates to a pulse width control signal generation circuit capable of generating a pulse width signal with high resolution according to the set time value from the value.
  • the power conversion control circuit of a power conversion circuit such as a DC / DC converter (referred to as “power conversion control circuit” in this specification) has (1) little influence from temperature changes, and (2) various parameters. For reasons such as the ability to make settings programmable, digital LSIs including microprocessors are being used. Problems to be solved by the invention
  • the output voltage E to be controlled as the power conversion control circuit.
  • the reference voltage (target voltage) E REF is detected by replacing it with a time amount, and the duty of the control signal (rectangular wave) is determined based on this amount of time.
  • Something to do is also provided.
  • high-precision control can be achieved by detecting the amount of time using a quack generator with a frequency of at least about 5 MHZ.
  • the frequency of the clock generator is to spread is by Ri Tomah about 2 5 MH z, 5 when the control OMH z more click lock the row Uou, high price click-locking I have to use a generator.
  • An object of the present invention is to provide a power conversion control circuit that can obtain control accuracy equivalent to control by a reference signal having a high clock frequency when performing power conversion from a reference clock signal having a low frequency.
  • the purpose is to provide control LSI.
  • Another object of the present invention is to provide a difference detection circuit that can obtain detection accuracy equivalent to control by a reference signal having a high clock frequency from a reference clock signal having a low frequency.
  • Another object of the present invention is to provide a pulse width control signal generation circuit capable of obtaining control accuracy equivalent to control by a reference signal having a high clock frequency from a reference clock signal having a low frequency.
  • the power conversion control circuit of the present invention generates a control signal corresponding to the on-time of the switch element of the power conversion circuit
  • a timing generation circuit that generates a reference timing signal, and a reference voltage and an output voltage of a power conversion circuit are input, and a time amount signal corresponding to a difference between the output voltage and the reference voltage is input to the reference timing signal.
  • a time amount signal generating circuit that is generated in synchronization; The reference clock signal is input, and the phase is calculated from this reference clock signal.
  • the ⁇ count values are input and added, a digital addition circuit that digitally outputs the addition value as a value corresponding to the time signal, and the addition value is input to the switch element.
  • a switch element on-time determination circuit that determines the on-time and digitally outputs the on-time as an integer value;
  • a control signal generation circuit that inputs the ⁇ phase shift signals in synchronization with the reference timing signal, and generates a control signal that is ⁇ times as high as the reference clock signal and corresponds to the ON time. It is characterized by having and.
  • the phase shift signal generation circuit is composed of (11-1) delay circuits, and each delay circuit sequentially shifts the phase by [reference clock signal period] ⁇ ⁇ . It can be configured to generate the phase shift signal with a delay.
  • the counter circuit is
  • An n series-parallel conversion counter that counts the output pulses of the n NAND gates and digitally outputs the count values can be configured.
  • control signal generation circuit receives the input on-time value N 2 .
  • the power conversion circuit can be constituted by a D C ZD C converter or a D C ZD C converter.
  • the power conversion control L S I according to the present invention is characterized in that the power conversion control circuit described above is packaged.
  • the difference detection circuit of the present invention includes a timing generation circuit that generates a reference timing signal
  • a time amount signal generating circuit that inputs two voltage signals and generates a time amount signal corresponding to the difference between them in synchronization with the reference timing signal; and A predetermined reference clock signal is input, and from this reference clock signal, a set of n phase shift signals whose phases are sequentially delayed by [reference clock signal period] / n.
  • phase shift signals are input, and the number of these pulses is counted in synchronization with the reference timing signal, and 'n number of force shift signals are obtained.
  • a power counter circuit that digitally outputs the current value
  • a digital adder circuit that inputs and adds the n count values and digitally outputs the added value as a value corresponding to the time amount signal
  • the pulse width control signal generation circuit of the present invention includes a timing generation circuit that generates a reference timing signal
  • a predetermined reference clock signal is input, and from this reference clock signal, a set of n phase shift signals whose phases are sequentially delayed by [the period of the reference clock signal] Z n
  • the time set value is input as an integer value
  • n phase shift signals based on the reference clock signal are input in synchronization with the reference timing signal and correspond to the time set value.
  • a control signal generation circuit for generating a control signal having an accuracy n times that of the reference clock signal.
  • FIG. 3 is a block diagram showing a power conversion control circuit in an embodiment of the present invention. 2007/053711
  • FIG. 3 is an explanatory diagram showing an embodiment of a pulse width control signal generation circuit of the present invention.
  • FIG. 3 is a diagram showing a timing generation circuit, a time amount signal generation circuit, a phase shift signal generation circuit, and a counter circuit among power conversion control circuits.
  • Fig 6 is a diagram showing a timing generation circuit, a time amount signal generation circuit, a phase shift signal generation circuit, and a counter circuit among power conversion control circuits.
  • FIG. 4 is a diagram showing a digital addition circuit, a switch element on-time determination circuit, and a control signal generation circuit in the power conversion control circuit.
  • FIG. 5 is a timing diagram for explaining the operation of the power conversion control circuit shown in FIGS. 3 and 4.
  • FIG. 5 is a timing diagram for explaining the operation of the power conversion control circuit shown in FIGS. 3 and 4.
  • FIG. 5 is a timing diagram for explaining the operation of the power conversion control circuit shown in FIGS. 3 and 4.
  • FIG. 5 is another timing diagram for explaining the operation of the power conversion control circuit shown in FIGS. 3 and 4.
  • FIG. 1 1 (A), (B), (C) are diagrams showing another embodiment in which high accuracy and high speed are achieved.
  • Fig. 1 1 (A), (B), (C) are diagrams showing another embodiment in which high accuracy and high speed are achieved.
  • FIG. 6 is a timing diagram showing the operation of the first voltage detection integrating circuit and the second voltage detection integrating circuit. The invention's effect
  • control accuracy equivalent to control by a reference signal having a high clock frequency can be obtained from a reference clock signal having a low frequency. it can.
  • detection accuracy equivalent to control by a reference signal having a high clock frequency can be obtained from a reference clock signal having a low frequency.
  • the control accuracy equivalent to the control by the reference signal having the high clock frequency can be obtained from the reference clock signal having the low frequency.
  • FIG. 1 is an explanatory view showing an embodiment of the present invention.
  • the power conversion control circuit 1 is knocked by the power conversion control LSI and has an on-time T '.
  • a control signal S 5 corresponding to N is generated, and the control signal S 5 generated by the power conversion control circuit 1 is sent to the drive circuit 1 2 0, and the drive circuit 1 2 0 is transferred to the power conversion circuit 1 0 0.
  • the power conversion circuit 100 can be applied as long as it outputs a direct current, and is typically a DCZDC converter (see FIG. 2), but it should be applied to an AC / DC converter. You can also. 537H
  • the power conversion control circuit 1 includes a timing generation circuit 1 1, a time signal generation circuit 1 2, a phase shift signal generation circuit 1 3, a counter circuit 1 4, a digital addition circuit 1 5, a switch A switch element on-time determination circuit 1 6 and a control signal generation circuit 1 7.
  • the timing generation circuit 1 1 generates a reference timing signal.
  • the on / off cycle of the power conversion circuit 100 is determined by the reference timing signal S i.
  • the time signal generation circuit 1 2 has the reference voltage E REF and the output voltage E of the power conversion circuit 1 0 0.
  • the output voltage E with respect to the reference voltage E REF .
  • the amount of time signal S 3 corresponding to the difference generated in synchronism with the reference Thailand Mi ring signal S ⁇ .
  • the amount of time the signal onset raw circuit 1 2 may comprise a discriminating circuit for determining an output voltage E 0 is greater or smaller lowermost with respect to the reference voltage E REF.
  • Phase shift signal generation circuit 1 3 is the reference clock signal S. Enter this reference clock signal S. From the phase [reference clock signal S. The period ⁇ . ] R phase shift signals S 4 , S sequentially delayed by ⁇
  • Counter circuit 14 inputs n phase shift signals S 4 i, S 4 2 , ⁇ • ⁇ , S 4 n and inputs the number of pulses as a reference timing when time quantity signal S 3 is active.
  • each of the n count values N i, N 1 2 , ⁇ ⁇ ⁇ , N n is digitally output.
  • Digital adding circuit 1 n pieces of count values ⁇ , ⁇ , ⁇ ⁇ ⁇ , and a value corresponding to the added value ADD adds to input N ln time amount signal S 3 to the digital output.
  • the switch element on-time determination circuit 16 inputs the addition value ADD, determines the on-time T ON of the switch element (not shown) of the power conversion circuit 100 and determines the on-time T. Digitally outputs N as an integer value N 2 .
  • the control signal generation circuit 17 inputs n phase shift signals S 4 i, S 4 2 , '..., S 4 n in synchronization with the reference timing signal, and corresponds to the ON time T ON , Reference clock signal S.
  • the control signal S 5 of n double to generate.
  • Fig. 2 is a diagram showing a power conversion system using the power conversion control circuit 1.
  • the power conversion system 200 includes a power conversion circuit (in Fig. 2, a step-down DCZDC converter 1 0 1) and power It consists of a conversion control circuit 1 and a drive circuit 1 2 0.
  • DC converter DC converter 1 0 1 has input terminal a 1 and output terminal b 1
  • Switching transistor T r and inductor connected in series between input terminal a 2 and output terminal b 2 are connected to ground GND, inductor L side terminal of transistor Tr and ground GND It consists of a diode D connected between and a capacitor C connected between output terminals b 1 and b 2.
  • DC power supply E i is connected to the input side (between input terminals a 1 and a 2) of DC / DC converter 10 1, and to the output side (between output terminals b 1 and b 2).
  • Load R is connected.
  • the power conversion control circuit 1 is the output voltage E of the DC / DC converter 1 0 1. Type and outputs a control signal S 5 mentioned above to the drive circuit 1 2 0 1
  • the drive circuit 1 2 0 sends a drive signal to the transistor T r of the D C Z D C converter 1 0 1.
  • FIG. 3 is a block diagram showing the difference detection circuit of the present invention.
  • the difference detection circuit 2 includes a timing generation circuit 2 1, a time signal generation circuit 2 2, a phase shift signal generation circuit 2 3, a counter circuit 2 4, and a digital addition circuit 2 5. It consists of.
  • the timing generation circuit 21 generates a reference timing signal S i.
  • the time signal generation circuit 2 2 receives two voltage signals E A and E B and generates a time signal S 3 corresponding to the difference (E B — E A ) in synchronization with the reference timing signal S i. To do.
  • the phase shift signal generator circuit 2 3 is the reference clock signal S. Enter this reference clock signal S. From the phase [reference clock signal S. Period T. ] Set S 4 1 of n sequential lagging by Z n number of phase shift signal, S 4 2, ⁇ ⁇ ⁇ , to generate a S 4 n.
  • the counter circuit 24 receives the time signal S 3 and the phase shift signals S 4 , S 4 2 , ⁇ , S 4 n, and when S 3 is active, S 4 1 , S 4 2 , ⁇ , S 4 n are input and the number of these pulses is counted in synchronization with the reference timing signal, and n count values N
  • N! 2 , ⁇ ⁇ ⁇ , N 4 n are digitally output.
  • the digital adder circuit 25 inputs and adds n count values N ii, N ⁇ 2 , ... , N i n , and digitally outputs the added value as a value corresponding to a time signal. To do.
  • FIG. 4 is a block diagram showing a pulse width control signal generating circuit of the present invention.
  • the pulse width control signal generation circuit 3 The circuit includes a generation circuit 3 1, a phase shift signal generation circuit 3 2, and a control signal generation circuit 3 3.
  • the timing generation circuit 3 1 generates a reference timing signal S i.
  • Phase shift signal generator circuit 32 is the reference clock signal S. Enter this reference clock signal S.
  • a set of n phase shift signals S 4 , S 4 2 ,..., S 4 n whose phases are sequentially delayed by [period of reference clock signal S 0] / ⁇ is generated.
  • the phase shift signal generation circuit 32 is composed of (n ⁇ 1) delay circuits, and each delay circuit is set to a phase [reference clock signal S. Delaying the periodic] successively by Z n, position phase shift signal S 4 1, S 4 2, '.', It generates 3 4 11.
  • the control signal generator circuit 3 3 inputs the time set value as an integer value N 2 and the reference clock signal S.
  • N phase shift signals S 4 1 , S 4 2 ,.., S 4 n are input in synchronization with the reference timing signal S and correspond to the time setting value (integer value N 2 ).
  • S p pulse width control signal
  • Counter 1 1 1 is the reference type corresponding to the preset value (digital value PS, which is the setting value of the switching frequency). Ming signal S i is generated. The on / off frequency of the control signal S 5 generated by the control signal generation circuit 17 is determined by the frequency of the reference timing signal (in the order of 100 kHz). The reference timing signal S i is a reference clock signal S described later. Is generated from the output voltage E. Is input to the transistor switch T r 2 of the reference voltage input circuit 1 2 2 for inputting the transistor switch T r of the voltage input circuit 1 2 1 for inputting and the reference voltage E REF . Counter .1 1 1 constitutes the timing generation circuit 1 1 of FIG.
  • the voltage input circuit 1 2 1 includes an input resistor r to which the output voltage E 0 is applied to one terminal, a capacitor connected between the other terminal of the input resistor ri and ground, and a transistor switch T r. ⁇ And a comparator Cmp with the threshold voltage VTH input to the positive terminal.
  • the reference voltage input circuit 1 2 2 includes an input resistor r 2 to which a reference voltage E REF is applied to one terminal, and a capacitor C 2 connected between the other terminal of the input resistor r 2 and the ground. It consists of transistor switch T r 2 and comparator C mp 2 with threshold voltage V TH input to the positive terminal. Togister switch T r! , T r 2 is input with the reference timing signal S.
  • the output terminals of the comparator C m P l and the comparator C mp 2 are connected to the EXOR gate 1 2 3.
  • the voltage input circuit 1 2 1 and the reference voltage input circuit 1 2 2 can also be configured by a voltage controlled oscillator (VCO) operating at the timing of Si. Since the first pulse appears earlier as the input voltage is higher, the voltage controlled oscillator (VCO) can be used as a VCO with an oscillation period larger than the period T s of S. It can be operated in the same way as the CR integration circuit. .
  • VCO voltage controlled oscillator
  • the output of EXOR gate 1 2 3 (time signal S 3 ) outputs the time difference between the falling edges of S 2 1 and S 2 2 .
  • S 2 1 and S 2 2 are input to the digital filter 16 1, which will be described later.
  • the digital filter 16 1 detects the temporal relationship between the fall of s 2 1 and the fall of s 2 2 To do.
  • the voltage input circuit 1 2 1, the reference voltage input circuit 1 2 2, and the EXOR gate 1 2 3 constitute the time amount signal generation circuit 12 in FIG.
  • the three delay circuits 1 3 (2), 1 3 (3), 1 3 (4) are the reference clock signal S as shown in detail in FIG. (In Fig. 7, it is referred to as phase shift signal S 4 1 ).
  • the period of Z is sequentially delayed by 4 to generate phase shift signals S 4 2 , s, 4 a and s 44.
  • EXOR gate 1 2 3 (time signal S 3 ) is input to one input terminal of AND gates And, And 2 , And 3 and And 4 , and is input to the other input terminal.
  • Phase shift signal S 4 , S 4 2 , S 4 3 , S 4 4 is entered.
  • a nd 4 outputs the logical product of these input signals in pulses.
  • N i ⁇ N ⁇ NA are “4”, “4 J”, “3”, and “3” are shown.
  • the serial-parallel conversion counters 14 (1), 14 (2), 14 (3), 14 (4), and the AND gates And And 2 , Anda, And 4 1 constitutes the counter circuit 14 of FIG.
  • this added value AD D is a value corresponding to the time amount signal S 3 (that is, a value corresponding to the difference between the output voltage E. and the reference voltage E REF ).
  • the adder circuit AD DER constitutes the digital adder circuit 15 shown in FIG.
  • the digital filter 16 1 inputs the addition value AD D, determines the ON time T ON of a switch element (not shown) of the D CZD C converter 1 0 1 (see Fig. 2) as an integer value, and this ON time T. Digitally outputs N as an integer value N 2 .
  • the digital filter 16 1 is configured to be able to preset values such as an offset value, a gain, and a cutoff frequency.
  • Et al is, the digital filter 1 6 1 urchin I described above, S 2 ⁇ -, S 2 2 enter the temporal context between the falling and falling of S 2 2 of S 2 1 (That is, whether the output voltage E of the power conversion circuit 100 is larger or smaller than the reference voltage E REF ).
  • the output of the digital filter 1 6 1 (integer value N 2 ) is, for example, CA / (1 + s ⁇ )] X (E RE ⁇ - ⁇ 0 )
  • the digital filter 16 1 constitutes the switch element on-time determination circuit 16 in FIG.
  • Distribution circuit 1 7 1 is input ON time T.
  • N 2 1 + N 2 2 + N 2 3 + N 2 4 N 2
  • N 2 2 2
  • Parallel-serial conversion counters 1 7 2 (1), 1 7 2 (2), 1 7 2 (3), 1 7 2 (4) are down counters and are 4 integers N 2 1 , N 2 2 , N 2 3, ⁇ 2 4 are preset, and when the set number of pulses are input, the phase is set to [reference clock signal S. Cycle of pulses] ⁇ ⁇ ⁇ Outputs pulses that are sequentially delayed by four.
  • the pulse synthesizing circuit 1 7 3 (flip flop FF) is set by the reference timing signal si, raises the control pulse S 5 , and the parallel-serial conversion counters 1 7 2 (1), 1 7 2 (2), 1 7 2 (3), 1 7 2 (4) lowers the control signal S 5 on the last pulse of the pulses outputted.
  • Distribution circuit 1 7 1, parallel-serial conversion counter 1 7 2 (1), 1 7 2 (2), 1 7 2 (3), 1 7 2 (4) and the pulse synthesis circuit 1 7 3 constitute the control signal generation circuit 17 of FIG.
  • T p / N By shifting only T p / N by ray X, it is possible to increase the accuracy of voltage detection and speed up the operation.
  • N (here N 2) voltage detection second integration circuits 2 2 1 and 2 2 2 are used.
  • T P ZN By shifting only T P ZN, the accuracy of voltage detection can be increased and the operation speed can be increased.
  • the digital count value N RM may be earthenware pots by detecting a plurality of times.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

電力変換をする際にクロック周波数が高い基準信号により制御する場合と同等の制御精度を、クロック周波数が低い基準信号により得る。時間量信号発生回路12により基準電圧EREFに対する出力電圧EOの差分に相当する時間量信号S3を基準タイミング信号S1に同期して発生させ、位相シフト信号発生回路13とカウンタ回路14とデジタル加算回路15とにより、位相が〔S0の周期〕/nずつ順次遅れているn個の位相シフト信号の組を発生しこれらの個数をそれぞれカウントし、n個のカウント値を加算する。スイッチ素子オン時間決定回路16と制御信号生成回路17とにより加算値ADDを入力してオン時間TONに相当する制御信号S5を生成する。

Description

電力変換制御回路、 電力変換制御用 L S I 、 差分検出回路および パルス幅制御信号発生回路 技術分野
本発明は、 ( 1 ) 電力変換明をする際にク ロ ック周波数が高い基準 信号によ り制御する場合と同等の細制御精度を、クロ ック周波数が低 い基準信号によ り得るこ とができる電力変換制御回路および電力 変換制御用 L S I 、 ( 2 ) 2つの電圧信号の差分を高分解精度のデ ジタル値と して検出できる差分検出回路、 ( 3 ) 整数で与えられる 時間設定値から当該時間設定値に応じた高分解精度のパルス幅信 号を発生できるパルス幅制御信号発生回路に関する。 背景技術
D C /D Cコ ンバータ等の電力変換回路の電力変換制御回路(本 明細書では、 「電力変換制御回路」 と言う) には、 ( 1 ) 温度変化 による影響が少ないこと、 ( 2 ) 各種パラメータの設定をプロダラ マブルに行う ことができること等の理由力ゝら、マイクロプロセッサ を含むデジタル L S I が使用されつつある。 発明が解決しよ う とする課題
と ころで、 電力変換制御回路と して、制御対象の出力電圧 E。と、 基準電圧 (目標値電圧) E R E Fとの差分を時間量に置き換えて検出 し、 この時間量に基づき、 制御信号 (矩形波) のデューティ を決定 するものも提供されている。 この電力変換制御回路では、 最低で 5 O M H z程度以上の周波数のク口ックジェネレータを使用して前 記時間量を検出すれば高精度の制御ができる。
しかし、一般に普及しているクロ ックジェネレータの周波数は 2 5 M H z程度止ま り であり、 5 O M H z以上のク ロ ックで制御を行 うおう とする と、価格の高いク口ックジェネレータを使用せざるを 得ない。
本発明の目的は、電力変換をするに際してクロ ック周波数が高い 基準信号による制御と同等の制御精度を周波数が低い基準ク 口 ッ ク信号から得ることができる電力変換制御回路おょぴ電力変換制 御用 L S I を提供することにある。
• 本発明の他の目的は、クロック周波数が高い基準信号による制御 と同等の検出精度を周波数が低い基準クロ ック信号から得ること ができる差分検出回路を提供するこ ^にある。
本発明の他の目的は、クロ ック周波数が高い基準信号による制御 と同等の制御精度を周波数が低い基準クロ ック信号から得ること ができるパルス幅制御信号発生回路を提供することにある。 ' 課題を解決するための手段
本発明の電力変換制御回路は、電力変換回路のスィ ツチ素子のォ ン時間に相当する制御信号を生成するものであり、
基準タイ ミング信号を発生するタイ ミング生成回路と、 基準電圧および電力変換回路の出力電圧を入力し、前記基準電圧 に対する前記出力電圧の差分に相当する時間量信号を前記基準タ イ ミ ング信号に同期して発生する時間量信号発生回路と、 基準ク ロック信号を入力し、 この基準ク ロ ック信号から、 位相が
〔基準ク ロ ッ ク信号の周期〕 Z nずつ順次遅れている n個の位相シ フ ト信号の組を発生する位相シフ ト信号発生回路と、
前記時間量信号がアクティ ブのときに、前記 η個の位相シフ ト信 号を入力しこれらのパルス個数を前記基準タイ ミ ング信号に同期 してそれぞれカウント し、 η個のカウン ト値をデジタル出力する力 ゥンタ回路と、
前記 η個のカウン ト値を入力して加算し、 この加算値を前記時間 量信号に相当する値と してデジタル出力するデジタル加算回路と、 前記加算値を入力して前記スィ ッチ素子の前記オン時間を決定 し、 このオン時間を整数値と してデジタル出力するスィ ツチ素子ォ ン時間決定回路と、
前記 η個の位相シフ ト信号を前記基準タイ ミ ング信号に同期し て入力し、 前記オン時間に相当する、 前記基準ク ロ ッ ク信号の η倍 精度の制御信号を生成する制御信号生成回路と、 を備えたことを特 徴とする。
本発明の電力変換制御回路では、前記位相シフ ト信号発生回路は、 ( 11— 1 ) 個のディ レイ回路からなり、 各ディ レイ回路は、 位相を 〔基準クロック信号の周期〕 Ζ ηずつ順次遅らせて、 前記位相シフ ト信号を発生するよ う に構成することができる。
本発明の電力変換制御回路では、 前記カウンタ回路は、
一方の入力端子に入力された前記時間量信号と他方の入力端子 に入力された前記位相シフ ト信号を入力して論理積をパルスで出 力する η個の A N Dゲー ト と、 1
4 前記 n個の A N Dゲー トの出力パルスをそれぞれカウン ト し各 カウン ト値をデジタル出力する n個の直並列変換型カウンタと、 を 備えて構成することができる。
本発明の電力変換制御回路では、 前記制御信号生成回路は、 入力した前記オン時間の値 N 2を、
Ν 2 1 + Ν 2 2 + · · · + Ν 2 η = Ν 2
Ν 2!≥ Ν 2 2≥ - ■ · ≥ Ν 2 ηが満たされるよう に、 η個の整数. Ν 2 , , Ν 2 2 , Ν 2 1, · · · , Ν 2 ηに分配する分配回路と、
プリセッ ト された値に相当する個数のパルスを、 位相を 〔基準ク ロ ック信号の周期〕 / ηずつ順次遅らせて出力する η個の並直列変 換型カゥンタ と、
前記並直列変換型カウンタの出力パルスを合成しこれを制御信 号と して出力するパルス合成回路と、を備えて構成することができ る。
本発明の電力変換制御回路では、前記電力変換回路を D C ZD C コ ンバータ、 あるいは D C ZD C コ ンバータゃィンバータで構成す ることができる。
本発明の電力変換制御用 L S I は、上記の電力変換制御回路がパ ッケージされてなることを特徴とする。
本発明の差分検出回路は、基準タイ ミ ング信号を発生するタイ ミ ング生成回路と、
2つの電圧信号を入力しその差分に相当する時間量信号を前記 基準タイ ミ ング信号に同期して発生する時間量信号発生回路と、 所定の基準ク 口 ック信号を入力し、 この基準ク 口 ック信号から、 位相が 〔基準ク ロ ック信号の周期〕 / nずつ順次遅れている n個の 位相シフ ト信号の組を発生する位相シフ ト信号発生回路と、
前記時間量信号がアクティブのときに、前記 n個の位相シフ ト信 号を入力しこれらのパルス個数を前記基準タイ ミ ング信号に同期 してそれぞれ力ゥン ト し、 'n個の力ゥン ト値をデジタル出力する力 ゥンタ回路と、
前記 n個のカウン ト値を入力して加算し、 この加算値を前記時間 量信号に相当する値と してデジタル出力するデジタル加算回路と、 を備えたことを特徴とする。
本発明のパルス幅制御信号発生回路は、基準タイ ミ ング信号を発 生するタイ ミ ング生成回路と、
所定の基準ク ロ ック信号を入力し、 この基準ク ロ ック信号から、 位相が 〔基準ク ロ ック信号の周期〕 Z nずつ順次遅れている n個の 位相シフ ト信号の組を発生する位相シフ ト信号発生回路と、
時間設定値を整数値と して入力すると と もに、前記基準クロ ック 信号に基づく n個の位相シフ ト信号を前記基準タイ ミ ング信号に 同期して入力し、 前記時間設定値に相当する、 前記基準クロ ック信 号の n倍精度の制御信号を生成する制御信号生成回路と、 を備えた ことを特徴とする。 図面の簡単な説明
図 1
本発明の実施例における電力変換制御回路を示すブロ ック図で ある。 2007/053711
6 図 2 '
電力変換制御回路を用いた電力変換システムを示す図である。 図 3
本発明の差分検出回路の一実施形態を示す説明図である。
図 4
本発明のパルス幅制御信号発生回路の一実施形態を示す説明図 である。
図 5
電力変換制御回路のうち、 タイ ミ ング生成回路、 時間量信号発生 回路、位相シフ ト信号発生回路おょぴカウンタ回路を示す図である。 図 6
電力変換制御回路のう ち、 デジタル加算回路、 スィ ッチ素子オン 時間決定回路および制御信号生成回路を示す図である。
図 7
図 3および図 4に示した電力変換制御回路の動作を説明するタ イ ミング図である。
図 8
,図 3および図 4に示した電力変換制御回路の動作を説明するタ イ ミング図である。
図 9
図 3および図 4に示した電力変換制御回路の動作を説明する他の タイ ミング図である。
図 1 0
( A ) , ( B ) , ( C ) は、 高精度化、 高速化を図った他の実施例を示 す図である。 図 1 1
電圧検出用第 1積分回路, 電圧検出用第 2積分回路の動作を示す タイ ミ ング図である。 発明の効果
本発明の電力変換制御回路および電力変換制御用 L S I では、電 力変換をするに際してクロ ック周波数が高い基準信号による制御 と同等の制御精度を周波数が低い基準ク ロ ック信号から得ること ができる。
本発明の差分検出回路では、 ク口 ック周波数が高い基準信号によ る制御と同等の検出精度を周波数が低い基準クロ ック信号から得 ることができる。
本発明のパルス幅制御信号発生回路では、ク口 ック周波数が高い 基準信号による制御と同等の制御精度を周波数が低い基準ク ロッ ク信号から得ることができる。 実施例
図 1 は本発明の実施例を示す説明図である。図 1 において電力変 換制御回路 1 は電力変換制御用 L S I にノ ッケージされ、オン時間 T'。Nに相当する制御信号 S 5を生成しており、電力変換制御回路 1 が生成した制御信号 S 5はドライブ回路 1 2 0に送出され、 ドライ ブ回路 1 2 0が電力変換回路 1 0 0 に駆動信号 D R Vを送出する。 本実施形態では、 電力変換回路 1 0 0は、 直流出力されるもので あれば適用可能であり 、 典型的には D C Z D Cコンバータ (図 2参 照) であるが、 A C / D Cコンバータに適用することもできる。 537H
8 電力変換制御回路 1 は、 タイ ミ ング生成回路 1 1 と、 時間量信号 発生回路 1 2 と、 位相シフ ト信号発生回路 1 3 と、 カウンタ回路 1 4 と、 デジタル加算回路 1 5 と、 スィ ッチ素子オン時間決定回路 1 6 と、 制御信号生成回路 1 7 とを備えている。
タイ ミ ング生成回路 1 1 は、 基準タイ ミ ング信号 を発生する。 基準タイ ミング信号 S iによ り、 電力変換回路 1 0 0のオン ' オフ の周期が決定される。
時間量信号発生回路 1 2は、基準電圧 E R E Fおよび電力変換回路 1 0 0 の出力電圧 E。を入力し、 基準電圧 E R E Fに対する出力電圧 E。の差分に相当する時間量信号 S 3を基準タイ ミ ング信号 S 丄に 同期して発生する。 基準電圧 E R E Fに対する出力電圧 E。の差分を ^間量信号 S 3に変換するために、 典型的には、 後述する 2組の C R回路 (図 3参照) を使用することができる。 また、 時間量信号発 生回路 1 2は、 基準電圧 E R E Fに対して出力電圧 Ε 0が大きいか小 さいかを判定する判別回路を備えることができる。
位相シフ ト信号発生回路 1 3は、 基準ク ロ ック信号 S。を入力し、 この基準クロ ック信号 S。から、 位相が 〔基準クロ ック信号 S。の 周期 Τ。〕 ηずつ順次遅れている r 個の位相シフ ト信号 S 4 , S
4 2 , ■ · · , S 4 nの組を発生する。
カウンタ回路 1 4は、 時間量信号 S 3がアクティブのときに、 n 個の位相シフ ト信号 S 4 i, S 4 2 , ■ • · , S 4 nを入力しこれらの パルス個数を基準タイ ミ ング信号 sェに同期してそれぞれ力ゥン ト し、 n個のカウン ト値 N i , N 1 2, ■ ■ · , N nをデジタル出 力する。 デジタル加算回路 1 5は、 n個のカウン ト値 Ν , Ν , ■ · ·, N l nを入力して加算し加算値 A D Dを時間量信号 S 3に相当する 値と してデジタル出力する。
スィ ツチ素子オン時間決定回路 1 6は、加算値 A D Dを入力して 電力変換回路 1 0 0の図示しないスィ ツチ素子のオン時間 T O Nを 決定しオン時間 T。Nを整数値 N 2と してデジタル出力する。
制御信号生成回路 1 7は、 n個の位相シフ ト信号 S 4 i, S 4 2 , '.· · , S 4 nを基準タイ ミング信号 に同期して入力し、 オン時間 T O N に相当する、 基準クロ ック信号 S。の n倍精度の制御信号 S 5を生 成する。
図 2は、電力変換制御回路 1 を用いた電力変換システムを示す図 であり、 電力変換システム 2 0 0は、 電力変換回路 (図 2では、 降 圧形の D C Z D Cコンバータ 1 0 1 ) と、 電力変換制御回路 1 と、 ドライブ回路 1 2 0 とからなる。
D Cノ D Cコンバータ 1 0 1 は、 入力端子 a 1 と出力端子 b 1
(入力端子 a 2および出力端子 b · 2はグランド G N D ) との間に直 列接続されたスィ ツチング用の トランジスタ T r およびインダク タし と、 トランジスタ T rのインダクタ L側の端子とグラン ド G N Dとの間に接続されたダイオー ド Dと、 出力端子 b 1, b 2間に接 続されたキャパシタ C と力 らなる。 図 2では、 D C / D Cコンバー タ 1 0 1の入力側 (入力端子 a 1, a 2間) には直流電源 E i が接 続され、 出力側 (出力端子 b 1 , b 2間) には負荷 Rが接続されて いる。
電力変換制御回路 1 は、 D C / D Cコンバータ 1 0 1の出力電圧 E。を入力し、 上述した制御信号 S 5を ドライブ回路 1 2 0に出力 1
10 し、 ドライブ回路 1 2 0は D C Z D Cコンバータ 1 0 1の トランジ スタ T r に駆動信号を送出する。
図 3は本発明の差分検出回路を示すブロ ック図である。図 3にお いて、 差分検出回路 2は、 タイ ミング生成回路 2 1 と、 時間量信号 発生回路 2 2 と、 位相シフ ト信号発生回路 2 3 と、 カウンタ回路 2 4 と、 デジタル加算回路 2 5 とからなる。
タイ ミング生成回路 2 1は、 基準タイ ミ ング信号 S iを発生す.る。 時間量信号発生回路 2 2は、 2つの電圧信号 E A, E Bを入力し その差分 (E B — E A) に相当する時間量信号 S 3を基準タイ ミング 信号 S iに同期して発生する。
位相シフ ト信号発生回路 2 3は、 基準ク ロ ック信号 S。を入力し、 この基準クロ ック信号 S。から、 位相が 〔基準ク ロ ック信号 S 。の 周期 T。〕 Z nずつ順次遅れている n個の位相シフ ト信号の組 S 4 1 , S 4 2 , · · · , S 4 nを発生する。
カウンタ回路 2 4は、 時間量信号 S 3と位相シフ ト信号 S 4 , S 4 2 , ■ · · , S 4 nとを入力しており、 S 3がアクティブのときに S 4 1 , S 4 2, · · · , S 4 nを入力しこれらのパルス個数を基準タ イ ミ ング信号に同期してそれぞれカウン ト し、 n個のカウン ト値 N
!! , N! 2 , · ■ · , N 4 nをデジタル出力する。
デジタル加算回路 2 5は、 n個のカウン ト値 N i i, N χ 2 , · · · , N i nを入力して加算し、 この加算値を時間量信号に相当する値と してデジタル出力する。
図 4は本発明のパルス幅制御信号発生回路を示すブロック図で ある。 図 4において、 パルス幅制御信号発生回路 3は、 タイ ミ ング 生成回路 3 1 と、 位相シフ ト信号発生回路 3 2 と、 制御信号生成回 路 3 3 とからなる。
タイ ミング生成回路 3 1 は、 基準タイ ミ ング信号 S iを発生する。 位相シフ ト信号発生回路 3 2は、 基準クロ ック信号 S。を入力し、 この基準クロ ック信号 S。から、 位相が 〔基準ク ロ ック信号 S 0の 周期〕 / ηずつ順次遅れている n個の位相シフ ト信号の組 S 4 , S 4 2, · · ■ , S 4 nを発生する。 また、 位相シフ ト信号発生回路 3 2は、 ( n— 1 )個のディ レイ回路からなり、各ディ レイ回路は、 位相を 〔基準クロ ック信号 S。の周期〕 Z nずつ順次遅らせて、 位 相シフ ト信号 S 4 1 , S 4 2 , ' . ' , 34 11を発生する。
制御信号生成回路 3 3 は、 時間設定値を整数値 N 2 と して入力す ると ともに、 基準ク ロ ック信号 S。に基づく n個の位相シフ ト信号 S 4 1, S 4 2, · ■ · , S 4 nを基準タイ ミング信号 S に同期して 入力し、 時間設定値 (整数値 N 2) に相当する、 基準クロ ック信号 の n倍精度のパルス幅制御信号 S p ( T。N時間に相当する) を生成 する。
究明を実施するための最良の形態
図 5 , 図 6の回路図、 および図 7, 図 8, 図 9のタイ ミングチヤ ー トによ り上述した電力変換制御回路 1 の構成および動作を詳細 に説明する。電力変換制御回路 1のうち、タイ ミ ング生成回路 1.1、 時間量信号発生回路 1 2、位相シフ ト信号発生回路 1 3およびカウ ンタ回路 1 4を図.5 に示し、 デジタル加算回路 1 5、 スィ ッチ素子 オン時間決定回路 1 6および制御信号生成回路 1 7 を図 6に示す。
カウンタ 1 1 1 は、 セッ トされたプリセッ ト値 (スイ ッチング周 波数のセッティ ング値であるデジタル値 P S ) に対応した基準タイ ミング信号 S iを生成している。 基準タイ ミング信号 の周波数 ( 1 0 0 k H zオーダ) により、 制御信号生成回路 1 7が生成する 制御信号 S 5のオン · オフの周波数が決定される。 基準タイ ミ ング 信号 S iは、 後述する基準ク ロ ック信号 S。から生成されるもので、 出力電圧 E。を入力する電圧入力回路 1 2 1 の ト ランジスタスィ ツチ T r ェおよび基準電圧 E R E Fを入力する基準電圧入力回路 1 2 2の トランジスタスィ ッチ T r 2に送出される。 なお、 カウンタ.1 1 1 は、 図 1のタイ ミ ング生成回路 1 1 を構成する。
電圧入力回路 1 2 1 は、 一方端子に出力電圧 E 0が加えられる入 力抵抗 r ェ と、 入力抵抗 r iの他方端子とグランドとの間に接続さ れたキャパシタ と ト ランジスタスィ ッチ T r^ と、 しきい値電 圧 VT Hが正極端子に入力された比較器 C m p ェ とからなる。 また、 基準電圧入力回路 1 2 2は、一方端子に基準電圧 E R E Fが加えられ る入力抵抗 r 2と、 入力抵抗 r 2の他方端子とグラン ドとの間に接 続されたキャパシタ C 2と トランジスタスィ ッチ T r 2と、 しきい 値電圧 VT Hが正極端子に入力された比較器 C m p 2 とからなる。 ト テンジスタスイ ッチ T r ! , T r 2には、 基準タイ ミ ング信号 S が 入力される。 また、 比較器 C m P lと比較器 C m p 2の出力端子は E X O Rゲー ト 1 2 3 に接続されている。
基準タイ ミ ング信号 S i力 S トランジスタスィ ッチ T r ^ T r sを オフすると、 図 7に示すよ う に、 キャパシタ C iの端子電圧 (比較 器 C m p iの入力信号) V ェおよびキャパシタ C 2の端子電圧 (比 較器 C m p 2の入力信号) V 1 2が上昇する。 図 7に示すよ うに端子 電圧 V 1 がしきい値電圧 VT Hに達すると S 2 1は立下り、端子電圧 V 2がしきい値電圧 V T Hに達する と S 2。が立ち下る。 なお、 電圧入力回路 1 2 1、 基準電圧入力回路 1 2 2 を S iのタ ィ ミングで動作する電圧制御発振器 (V C O) により構成するこ と もできる。 電圧制御発振器 (V C O) は、 入力電圧が高ければ高い ほど最初のパルスが早く現れるので、 V C Oと して発振周期が S の周期 T s よ り も大きく なるよ うなものを使用することで、上記の C R積分回路と同様に動作させるこ とができる。 .
また、 図 7に示すように E X O Rゲー ト 1 2 3の出力 (時間量信 号 S 3 ) は、 S 2 1 と S 2 2の立下り の時間差を出力する。 S 2 1, S 2 2は、 後述するデジタルフィルタ 1 6 1 に入力され、 デジタルフ ィルタ 1 6 1 は、 s 2 1の立下り と s 2 2の立下り との時間的前後関 係を検出する。 なお、 電圧入力回路 1 2 1 と基準電圧入力回路 1 2 2 と E X O Rゲート 1 2 3 とが、図 1 の時間量信号発生回路 1 2を 構成する。
3個のディ レイ回路 1 3 ( 2 ) , 1 3 ( 3 ) , 1 3 ( 4 ) は、 図 8に詳細に示すよ う に示すよ う に基準クロ ック信号 S。 (図 7では 位相シフ ト信号 S 4 1と してある)'に対して、 位相を 〔基準ク ロ ッ ク信号 S。の周期〕 Z 4ずつ順次遅らせて、 位相シフ ト信号 S 4 2 , s,4 a , s 4 4を発生する。 なお、 基準クロ ック信号 S。の信号ライ ン (位相シフ ト信号 S 4 iの信号ライ ン) と、 3個のディ レイ回路 1 3 ( 2 ) , 1 3 ( 3 ) , 1 3 ( 4 ) が、 図 1 の位相シフ ト信号発 生回路 1 3を構成する。
E X O Rゲー ト 1 2 3 の出力信号 (時間量信号 S 3) は、 AN D ゲー ト A n d , A n d 2 , A n d 3 , A n d 4の一方の入力端子に 入力され、 他方の入力端子に位相シフ ト信号 S 4 , S 4 2, S 4 3, S 4 4が入力される。 A N Dゲー ト A n A n d 2 , A n d 3 ,
A n d 4は、 これらの入力信号の論理積をパルスで出力する。
直並列変換型カウンタ 1 4 ( 1 ) ' 1 4 ( 2 ) , 1 4 ( 3 ) , 1 4 ( 4 ) は、 A N Dゲー ト A n d A n d 2 , A n d 3 , A n d 4 の出力パルスをそれぞれカウン ト して 4個のカウン ト値 N 1 1 ; N! 2, N 1 3, N 1 4) をデジタル出力する。 図 8では、 カウン ト値
N i ^ N ^ N Aが、 「 4」 , 「 4 J , 「 3」 , 「 3」 の場 合が示されている。 なお、 直並列変換型カウンタ 1 4 ( 1 ) , 1 4 ( 2 ) , 1 4 ( 3 ) , 1 4 ( 4 ) と、 AN Dゲー ト A n d A n d 2 , A n d a , A n d 4とが、図 1のカウンタ回路 1 4を構成する。 カウン ト値 N 1 2 , N 1 3, N 1 4は、 図 .6 に示すよ う に、 加算回路 AD D E Rに出力され、加算回路 AD D E Rは加算値 AD Dと して、 N 1 ;l + N 1 2 + N 1 3 + N 1 4 ( 4 + 4 + 3 + 3 = 1 4 ) を出力する。 この加算値 AD Dは、 前述したように、 時間量信号 S 3に相当する値 (すなわち、 基準電圧 E R E Fに対する出力電圧 E。 の差分に相当する値) である。 なお、 加算回路 AD D E Rは、 図 1 に示したデジタル加算回路 1 5を構成する。
デジタルフィルタ 1 6 1は、 加算値 AD Dを入力して、 D CZD Cコンバータ 1 0 1 の図示しないスィ ッチ素子 (図 2参照) のオン 時間 T O Nを整数値で決定し、 このオン時間 T。Nを整数値 N 2と し てデジタル出力する。 また、 デジタルフィルタ 1 6 1 は、 オフセッ ト値、 ゲイン、 遮断周波数等の値をプリセッ トすることができるよ うに構成されている。
さ らに、 デジタルフィルタ 1 6 1 は、 前述したよ うに、 S 2丄 -, S 2 2を入力し、 S 2 1の立下り と S 2 2の立下り との時間的前後関係 (すなわち、 電力変換回路 1 0 0の出力電圧 E。が基準電圧 E R E F より も大きいか小さいか) を判断している。
デジタルフィ ルタ 1 6 1の出力 (整数値 N 2 ) は、 たとえば、 C A/ ( 1 + s τ ) ] X ( E R E ρ - Ε 0)
(Α : 定数、 s : ラプラス演算子、 τ : 時定数) のよ うな制御量 に対応する値であり、 基準タイ ミ ング信号 S iの次の周期のオン時 間 T o Nに相当する。 なお、 デジタルフィ ルタ 1 6 1 が、 図 1 のス イッチ素子オン時間決定回路 1 6を構成する。
分配回路 1 7 1は、 入力したオン時間 T。Nの値を、
N 2 1 + N 2 2 + N 2 3 + N 2 4 = N 2
' N 2 ≥ N 2 2≥ N 2 3 N 24が満たされるよ うに、 4個の整数 N 2 ! , N 2 2, N 2 3, N 2 4に分配する。 本実施形態では、 図 9 に示す よう に、 N 2 = 2 2であり、 したがって N 2 1 = 6, N 2 2 = 6 , N 2 3 = 5 , N 2 4 = 5 となる。
並直列変換型カウンタ 1 7 2 ( 1 ) , 1 7 2 ( 2 ) , 1 7 2 ( 3 ) , 1 7 2 ( 4 ) は、 ダウンカウンタであり、 4個の整数 N 2 1, N 2 2, N 2 3 , Ν 2 4をプリセッ ト し、 セッ トされた個数のパルスが入力さ れたときに、 位相が 〔基準クロ ック信号 S 。の周期〕 Ζ 4ずつ順次 遅れたパルスを出力する。
パルス合成回路 1 7 3 (フ リ ップフロ ップ F F ) は、 基準タイ ミ ング信号 s iでセッ ト され、 制御パルス S 5を立ち上げ、 並直列変 換型カウンタ 1 7 2 ( 1 ) , 1 7 2 ( 2 ) , 1 7 2 ( 3 ) , 1 7 2 ( 4 ) が出力するパルスのうち最後のパルスで制御信号 S 5を立ち 下げる。
なお、 分配回路 1 7 1、 並直列変換型カウンタ 1 7 2 ( 1 ),· 1 7 2 ( 2 ), 1 7 2 ( 3 ), 1 7 2 ( 4 ) およびパルス合成回路 1 7 3.が、 図 1の制御信号生成回路 1 7を構成する。
以下、 本発明の実施形態をさ らに詳細に説明する。
また、 図 1 0 (A) に示すよ うに、 N (こ こでは N = 2 ) の電圧 検出用第 1積分回路 2 1 1, 2 1 2を用い、 これらの動作タイ ミ ン グを、 ディ レイ Xによ り T p/Nだけシフ ト させることで、 電圧検 出の精度を高く し動作を高速化するこ と もできる。 また、 図 1.0 (B ) に示すよ う に、 N (ここでは N= 2 ) の電圧検出用第 2積分 回路 2 2 1, 2 2 2を用い、 これらの動作タイ ミ ングを、 ディ レイ Xにより T PZNだけシフ トさせることで、 電圧検出の精度を高く し動作を高速化すること もできる。 さ らに、 図 1 0 ( C ) に示すよ うに、 N (ここでは N = 2 ) 組の電圧検出用第 1積分回路 2 1 1 , 2 1 2 と電圧検出用第 2積分回路 2 2 1 , 2 2 2を用い、 これらの 動作タイ ミ ングを、 ディ レイ Xにより T P / Nだけシフ トさせるこ とで、 電圧検出の精度を高く し動作を高速化することもできる。 なお、 上記の例では、 トランジスタスィ ッチのオンオフの 1周期 あたり 1回、 電圧偏差検出を 1回と している (電流制御回路 3を制 御するためのデジタル数値 NRMを 1 回検出) が、 図 1 1 に示すよ うに、 第 1 ク ロ ック S eの 1周期 T eあたり 、 デジタル数値 NRMを 複数回検出するよ う にしてもよい。 図 1 1 では、 第 1 クロ ック S e の 1周期 T eあたり 、 上記した係数値の差 Δ NRを複数回 (ここで は' 4回であり、 計測値を Δ N R丄, Λ N R 2 , Δ N R a , Δ N R 4で示 す) 検出した様子が示されている。

Claims

請求の範囲
1 . 電力変換回路のスィ ツチ素子のオン時間に相当する制御信号 を生成する電力変換制御回路において、
第 1基準タイ ミング信号を発生する第 1 タイ ミ ング生成回路と、 基準電圧および電力変換回路の出力電圧を入力し、前記基準電圧 に対する前記出力電圧の差分に相当する時間量信号を前記第 1基 準タイ ミ ング信号に同期して発生する時間量信号発生回路と、 . 基準クロック信号を入力し、 この基準ク ロ ック信号から、 位相が 〔基準クロック信号の周期〕 Z nずつ順次遅れている n個の位相シ フ ト信号の組を発生する位相シフ ト信号発生回路と、
前記時間量信号がァクティブのときに、前記 A個の位相シフ ト信 号を入力しこれらのパルス個数を前記第 1基準タイ ミ ング信号に 同期してそれぞれカウン ト し、 n個のカウン ト値をデジタル出力す るカウンタ回路と、
前記 n個のカウン ト値を入力して加算し、 この加算値を前記時間 量信号に相当する値と してデジタル出力するデジタル加算回路と、 前記加算値を人力して前記スィ ツチ素子の前記オン時間を決定 し、 このオン時間を整数値と してデジタル出力するスィ ツチ素子ォ ン時間決定回路と、
第 2基準タイ ミング信号を発生する第 2タイ ミ ング生成回路と、 前記 n個の位相シフ ト信号を前記第 2基準タイ ミ ング信号に同 期して入力し、 前記オン時間に相当する、 前記基準ク ロック信号の n倍精度の制御信号を生成する制御信号生成回路と、 を備えたこと を特徴とする電力変換制御回路。
2 . 前記位相シフ ト信号発生回路は、 ( n — 1 ) 個のディ レイ回路 からなり、 各ディ レイ回路は、 位相を 〔基準クロ ック信号の周期〕 ずつ順次遅らせて、 前記位相シフ ト信号を発生する、 ことを特 徴とする請求項 1に記載の電力変換制御回路。
3. 前記カウンタ回路は、
一方の入力端子に入力された前記時間量信号と他方の入力端子 に入力された前記位相シフ ト信号を入力して論理積をパルスで出 力する n個の ANDゲー ト と、
前記 n個の AN Dゲー トの出力パルスをそれぞれカウン ト し各 カウン ト値をデジタル出力する n個の直並列変換型カウンタ と、 を 備えたこ とを特徴とする請求項 1 または 2 に記載の電力変換制御 回路。
4. 前記制御信号生成回路は、
入力した前記オン時間の値 N 2を、
N 2 1 + N 2 2 + - · - + N 2 n = N 2
Ν 2 1 ≥ Ν 2 2 ≥ · · · ≥ Ν 2 ηが満たされるよ う に、 η個の整 数 Ν 2 1, Ν 2 2 , Ν 2 1 , · · ··, Ν 2 ηに分配する分配回路と、 プリセッ トされた値に相当する個数のパルスを、 位相を 〔基準ク ロ ック信号の周期〕 Ζ ηずつ順次遅らせて出力する η個の並直列変 換型カゥンタ と、
前記並直列変換型カウンタの出力パルスを合成しこれを制御信 号と して出力するパルス合成回路と、を備えたことを特徴とする請 求項 1から 3の何れかに記載の電力変換制御回路。
5. 前記電力変換回路が D C ZD Cコンバータであることを特徴と する請求項 1から 4の何れかに記載の電力変換制御回路。
6. 請求項 1から 5の何れかに記載の電力変換制御回路がパッケー ジされてなることを特徴とする電力変換制御用 L S I 。
7 . 基準タイ ミ ング信号を発生するタイ ミ ング生成回路と、
2つの電圧信号を入力しその差分に相当する時間量信号を前記 基準タイ ミング信号に同期して発生する時間量信号発生回路と、 所定の基準ク ロ ック信号を入力し、 この基準ク ロ ック信号から、 位相が 〔基準ク ロ ック信号の周期〕 Z nずつ順次遅れている n個の 位相シフ ト信号の組を発生する位相シフ ト信号発生回路と、
前記時間量信号がアクティブのときに、前記 n個の位相シフ ト信 号を入力しこれらのパルス個数を前記基準タイ ミ ング信号に同期 してそれぞれカウン ト し、 n個のカウント値をデジタル出力する力 ゥンタ回路と、
前記 n個のカウン ト値を入力して加算し、 この加算値を前記時間 量信号に相当する値と してデジタル出力するデジタル加算回路と、 を備えたことを特徴とする差分検出回路。
8 . 基準タイ ミ ング信号を発生するタイ ミング生成回路と、
所定の基準ク ロ ック信号を入力し、 ;の基準クロ ック信号から、 位相が 〔基準ク ロ ック信号の周期〕 / nずつ順次遅れている n倆の 位相シフ ト信号の組を発生する位相シフ ト信号発生回路と、
時間設定値を整数値と して入力すると ともに、前記基準クロ ック 信号に基づく n個の位相シフ ト信号を前記基準タイ ミ ング信号に 同期して入力し、 前記時間設定値に相当する、 前記基準クロ ック信 号の n倍精度の制御信号を生成する制御信号生成回路と、を備えた ことを特徴とするパルス幅制御信号発生回路。
PCT/JP2007/053711 2006-02-21 2007-02-21 電力変換制御回路、電力変換制御用lsi、差分検出回路およびパルス幅制御信号発生回路 WO2007105487A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07737470A EP2015435A1 (en) 2006-02-21 2007-02-21 Power conversion control circuit, power conversion control lsi, differential detection circuit, and pulse width control signal generation circuit
JP2008505043A JP5023339B2 (ja) 2006-02-21 2007-02-21 パルス幅制御信号発生回路、電力変換制御回路および電力変換制御用lsi
KR1020087022996A KR101388125B1 (ko) 2006-02-21 2007-02-21 펄스폭 제어 신호 발생 회로, 전력 변환 제어 회로 및 전력 변환 제어용 lsi
US12/224,204 US8085023B2 (en) 2006-02-21 2007-02-21 Signal generation circuit, electric power conversion control circuit and LSI for electric power conversion control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-044498 2006-02-21
JP2006044498 2006-02-21

Publications (1)

Publication Number Publication Date
WO2007105487A1 true WO2007105487A1 (ja) 2007-09-20

Family

ID=38509323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053711 WO2007105487A1 (ja) 2006-02-21 2007-02-21 電力変換制御回路、電力変換制御用lsi、差分検出回路およびパルス幅制御信号発生回路

Country Status (5)

Country Link
US (1) US8085023B2 (ja)
EP (1) EP2015435A1 (ja)
JP (1) JP5023339B2 (ja)
KR (1) KR101388125B1 (ja)
WO (1) WO2007105487A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2267467A1 (en) * 2008-01-15 2010-12-29 Nagasaki University, National University Corporation Frequency detection device, frequency detection method, circuit control device, circuit control method, delay circuit control method, and delay circuit system
JP2021027670A (ja) * 2019-08-02 2021-02-22 株式会社デンソー 電力変換装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101944877B1 (ko) * 2012-05-08 2019-02-07 페어차일드코리아반도체 주식회사 제어 장치, 제어 방법, 및 이를 이용하는 디지털 dc-dc 컨버터
JP2022104345A (ja) * 2020-12-28 2022-07-08 セイコーエプソン株式会社 振動整流誤差補正装置、センサーモジュール及び振動整流誤差補正方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279387A (ja) * 1985-10-02 1987-04-11 Iwatsu Electric Co Ltd 時間間隔測定装置
JPH05249260A (ja) * 1992-03-06 1993-09-28 Seiko Epson Corp 時間計測方法
JP2004336852A (ja) * 2003-05-01 2004-11-25 Fujio Kurokawa デジタル制御装置および集積回路
WO2004105222A1 (ja) * 2003-05-22 2004-12-02 Densei-Lambda Kabushiki Kaisha パルス発生器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408064A (en) * 1990-07-13 1995-04-18 Sodick Co., Ltd. Pulse generating method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279387A (ja) * 1985-10-02 1987-04-11 Iwatsu Electric Co Ltd 時間間隔測定装置
JPH05249260A (ja) * 1992-03-06 1993-09-28 Seiko Epson Corp 時間計測方法
JP2004336852A (ja) * 2003-05-01 2004-11-25 Fujio Kurokawa デジタル制御装置および集積回路
WO2004105222A1 (ja) * 2003-05-22 2004-12-02 Densei-Lambda Kabushiki Kaisha パルス発生器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2267467A1 (en) * 2008-01-15 2010-12-29 Nagasaki University, National University Corporation Frequency detection device, frequency detection method, circuit control device, circuit control method, delay circuit control method, and delay circuit system
EP2267467A4 (en) * 2008-01-15 2014-10-29 Univ Nagasaki Nat Univ Corp FREQUENCY DETECTION DEVICE AND FREQUENCY DETECTION METHOD
JP2021027670A (ja) * 2019-08-02 2021-02-22 株式会社デンソー 電力変換装置
JP7136039B2 (ja) 2019-08-02 2022-09-13 株式会社デンソー 電力変換装置

Also Published As

Publication number Publication date
JP5023339B2 (ja) 2012-09-12
US8085023B2 (en) 2011-12-27
US20090167393A1 (en) 2009-07-02
JPWO2007105487A1 (ja) 2009-07-30
KR20090009786A (ko) 2009-01-23
EP2015435A1 (en) 2009-01-14
KR101388125B1 (ko) 2014-04-23

Similar Documents

Publication Publication Date Title
KR101972661B1 (ko) 클럭 주파수 체배기를 위한 방법 및 장치
US6380774B2 (en) Clock control circuit and clock control method
US8067967B2 (en) Phase delay line
US9647642B2 (en) Clock phase adjustment mechanism of a ring oscillator using a phase control signal
US8396111B2 (en) Digital pulse width modulator
JP5717680B2 (ja) Dc−dc変換器およびその制御回路
US9285778B1 (en) Time to digital converter with successive approximation architecture
US9287777B2 (en) Average current controller, average current control method and buck converter using the average current controller
CN107370476B (zh) 用于数字llc转换器的相移时钟
CN109845106A (zh) 用于产生时钟信号的振荡器电路和方法
WO2007105487A1 (ja) 電力変換制御回路、電力変換制御用lsi、差分検出回路およびパルス幅制御信号発生回路
US7113011B2 (en) Low power PLL for PWM switching digital control power supply
CN109618443B (zh) 包括具有真实滞后或人工滞后的多个功率转换器的设备
JP3761858B2 (ja) クロック信号発生回路
JPH06326574A (ja) 制御信号発生回路,パルス幅変調回路,遅延制御回路およびクロック発生回路
CN106230408A (zh) 基于数字延时的数字脉冲宽度调制器
US7834794B2 (en) A/D converter
WO2007097465A1 (ja) 信号比較回路および電力変換装置
US7786780B2 (en) Clock doubler circuit and method
JP2007228145A (ja) 半導体集積回路
JP2018186505A (ja) パルス幅変調信号周波数の生成
JP3821825B2 (ja) タイミング発生回路
JP4828560B2 (ja) 三角波生成回路および台形波生成回路
JP2003069425A (ja) クロック同期装置
Pasha et al. Power-efficient time-to-digital converter for all-digital frequency locked loops

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008505043

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087022996

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007737470

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12224204

Country of ref document: US

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)