WO2007105359A1 - 倍率色収差を画像解析する画像処理装置、画像処理プログラム、電子カメラ、および画像処理方法 - Google Patents

倍率色収差を画像解析する画像処理装置、画像処理プログラム、電子カメラ、および画像処理方法 Download PDF

Info

Publication number
WO2007105359A1
WO2007105359A1 PCT/JP2007/000155 JP2007000155W WO2007105359A1 WO 2007105359 A1 WO2007105359 A1 WO 2007105359A1 JP 2007000155 W JP2007000155 W JP 2007000155W WO 2007105359 A1 WO2007105359 A1 WO 2007105359A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromatic aberration
image
image processing
correction amount
fitting
Prior art date
Application number
PCT/JP2007/000155
Other languages
English (en)
French (fr)
Inventor
Akihiko Utsugi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2008504985A priority Critical patent/JP4816725B2/ja
Priority to EP07713537.4A priority patent/EP1993070B1/en
Publication of WO2007105359A1 publication Critical patent/WO2007105359A1/ja
Priority to US12/216,697 priority patent/US7995108B2/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/001Texturing; Colouring; Generation of texture or colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/61Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
    • H04N25/611Correction of chromatic aberration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/646Circuits for processing colour signals for image enhancement, e.g. vertical detail restoration, cross-colour elimination, contour correction, chrominance trapping filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements

Definitions

  • Image processing apparatus image processing program, electronic camera, and image processing method for image analysis of lateral chromatic aberration
  • the present invention relates to a technique for image analysis of lateral chromatic aberration.
  • the chromatic aberration of magnification between RGs is obtained by searching for the minimum point of the difference from the G component while scaling the R component of the image data with various scaling factors.
  • Patent Document 2 multiple chromatic aberrations of image data are detected, and chromatic aberration of magnification is detected by fitting these color shifts with a mathematical model.
  • Patent Document 3 discloses that the color shift of image data is fitted to a linear expression by the least square method.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-344978 (Fig. 4)
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-320237 (paragraph 0024)
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-286684 (paragraph 0055)
  • the color shift detected from the image data includes the color shift caused by lateral chromatic aberration. This also includes detection errors due to the effects of the subject's original color structure, color noise, and false colors. On the other hand, the cubic fitting has a high degree of freedom, and is sensitive to these detection errors. For this reason, there is a high possibility that the parameters of the mathematical model of lateral chromatic aberration will be found as incorrect values.
  • an object of the present invention is to appropriately estimate lateral chromatic aberration from the result of color shift detection of image data.
  • the image processing apparatus includes a magnification color acquisition in a color shift detection result of image data.
  • a device that estimates the chromatic aberration of magnification of image data by fitting a difference model includes an image acquisition unit, a color shift detection unit, a control unit, and a correction amount calculation unit.
  • the image acquisition unit acquires image data.
  • the color misregistration detection unit detects a color misregistration for the image data.
  • the control unit determines the reliability of the fitting based on a color shift detection result, and selects a magnification chromatic aberration model suitable for color shift fitting.
  • the correction amount calculation unit performs fitting of the color shift detection result using the magnification chromatic aberration model selected by the control unit, and obtains the correction amount of the magnification chromatic aberration with respect to the image data based on the fitting result.
  • control unit performs fitting of the color misregistration detection result based on at least one of the evaluation items including the number of color misregistration detections, the color misregistration detection variation, and the color misregistration detection image height. Evaluate and judge reliability. The control unit selects the magnification chromatic aberration model based on this reliability.
  • control unit limits the degree of freedom in fitting the magnification color difference model based on the color misalignment detection result.
  • control unit has, as an option for the magnification chromatic aberration model, (1) a magnification chromatic aberration model that takes a non-linear magnification chromatic aberration with respect to the image height. At least a chromatic aberration model.
  • control unit selects different chromatic aberration models of magnification in the image central region and the image peripheral region.
  • control unit selects a chromatic aberration model of magnification that takes a chromatic aberration of magnification linear with respect to the image height in the center area of the image.
  • control unit selects a lateral chromatic aberration model that takes a lateral chromatic aberration that is nonlinear with respect to the image height in the image peripheral region.
  • the control unit performs reliability determination for each image height range with respect to the color misregistration detection result, obtains an image height range satisfying a predetermined reliability condition, and generates a nonlinear model. The area around the image to be used.
  • ⁇ 8 the correction amount calculation unit reduces the evaluation function e ( ⁇ ) of the fitting error ⁇ between the color misregistration detection result and the magnification chromatic aberration model, thereby converting the double chromatic aberration model into the color misregistration detection result. Fit. Note that this evaluation function e ( ⁇ ⁇ ) is characterized by satisfying the following equation for ⁇ 1 ⁇ 2 in the range of fitting errors.
  • the correction amount calculation unit obtains an isotropic correction amount of chromatic aberration (hereinafter, global correction amount) by fitting a magnification chromatic aberration model to the color shift detection result. Further, the correction amount calculation unit obtains an area adjustment value for adjusting an error between the global correction amount and the color shift detection result for each area of the image. The correction amount calculation unit obtains an anisotropic magnification chromatic aberration correction amount based on the global correction amount and the region adjustment value thus obtained.
  • global correction amount isotropic correction amount of chromatic aberration
  • the correction amount calculation unit classifies the color misregistration detection results into a frequency distribution for each image height to obtain a two-dimensional frequency map.
  • the correction amount calculation unit obtains the correction amount of the chromatic aberration of magnification by fitting the chromatic aberration model of magnification to the two-dimensional frequency map.
  • the image processing program of the present invention is a program for causing a computer to function as any one of the above-described image processing apparatuses.
  • An electronic camera includes any one of the image processing apparatuses described above and an imaging unit that captures an image of a subject and generates image data. This image processing apparatus obtains the correction amount of lateral chromatic aberration for the image data generated by the imaging unit.
  • the image processing method of the present invention is a method for performing the process of ⁇ 1 >>.
  • the invention's effect is a method for performing the process of ⁇ 1 >>.
  • a magnification chromatic aberration model suitable for fitting is selected according to the detection result of color misregistration. As a result, it is possible to reduce errors in estimating the chromatic aberration of magnification from the color shift.
  • FIG. 1 is a block diagram showing an image processing apparatus 11 according to the present embodiment.
  • FIG. 2 is a flowchart illustrating the operation of the image processing apparatus 11.
  • FIG. 3 is a diagram showing a screen division pattern.
  • FIG. 4 is a block diagram showing an electronic camera 21.
  • FIG. 1 is a block diagram showing an image processing apparatus 11 according to this embodiment.
  • an image processing apparatus 11 is configured with the following configuration requirements.
  • Image acquisition unit 1 2 Captures image data that is the object of detection of lateral chromatic aberration.
  • Color shift detection unit 1 3 ⁇ ⁇ Detects color shift from image data.
  • Control unit 1 4 ⁇ ⁇ Determine the reliability from variations in color misalignment detection results, and select the magnification chromatic aberration model according to the reliability.
  • the correction amount calculation unit 15 obtains a correction amount of the magnification chromatic aberration for the image data by fitting the magnification chromatic aberration model selected by the control unit 14 to the color shift detection result.
  • the above-described configuration requirements may be realized in software by executing an image processing program on a computer. Further, the above-described configuration requirements may be realized by hardware using an arithmetic circuit or the like.
  • FIG. 2 is a flowchart for explaining the operation of the image processing apparatus 11. Less than
  • Step S 1 The image acquisition unit 12 reads, for each pixel (X, y), a Bayer image in which R GB color components are arranged in a Bayer array.
  • the coordinate space of the pixel is the screen right side as the X coordinate is large, and the screen bottom side as the y coordinate is large.
  • Step S2 The color misregistration detection unit 13 performs interpolation processing for each RGB color component of the bay image, compensates for the missing color component in pixel units, and interpolates with the RGB color component in pixel units. Generate an image.
  • Step S 3 The color misregistration detection unit 13 sets the optical axis center (cx, cy) of the photographing optical system in the screen coordinates of the interpolated image. In the default setting, the center of the optical axis is the center of the interpolated image.
  • the color misregistration detection unit 13 may obtain the coordinate value of the optical axis center (cx, cy) from the incidental information (Exif information, etc.) of the input image.
  • the color misregistration detection unit 1 3 divides the interpolated image in the circumferential direction as shown in Fig. 3 with the optical axis center (cx, cy) as the center, and a plurality of divided regions (N, NE, E, SE, S, SW, W, NW) and the radial direction (arrow direction shown in Fig. 3) for each divided area.
  • the level change in the radial direction can be simply calculated based on the following equation.
  • the color misregistration detection unit 13 determines the pixel position (x, y) where the absolute value of the obtained level change gradY (x, y) is greater than or equal to a predetermined value T h (for example, about 10 in 256 gradation data). Search for a level change point in the radial direction. This search may be performed at an appropriate interval, for example, every 6 pixels.
  • Step S 5 The color misregistration detection unit 13 sets a range of a local window around the level change portion detected in Step S 4. The color misregistration detection unit 13 obtains an array of G color components from within this window.
  • the color misregistration detection unit 13 acquires an array of R color components from a range in which this window is shifted by a predetermined width in the radial direction.
  • the color misregistration detection unit 13 performs level correction of the R color array so that the average value of the R color array matches the average value of the G color array.
  • the color misregistration detection unit 13 obtains the sum of absolute values of (G color array) one (R color array after level correction), and determines it as an overlay error.
  • the color misregistration detection unit 13 obtains the misalignment width that minimizes the overlay error while increasing / decreasing the misalignment width of the R color array along the radial direction, and determines the color misregistration at the level change portion.
  • the color misregistration detection unit 13 temporarily stores the obtained color misregistration together with the image height value of the level change portion.
  • Step S6 The correction amount calculation unit 15 counts the frequency of (image height, color shift) obtained for each level change portion in Step S5 for each divided region, and generates a two-dimensional frequency map. create.
  • the two-dimensional frequency map classifies the image height from 0 to the maximum image height h max into 40 different ways, and classifies the color shift from _4 pixels to +4 pixels into 80 different ways. Count the frequency for each of the 0 categories.
  • the buffer capacity required for temporary storage of (image height, color misalignment) can be saved by updating the two-dimensional frequency map of the corresponding divided area each time color misregistration is detected in step S5. preferable.
  • Step S7 The correction amount calculation unit 15 creates a two-dimensional frequency map for the entire screen by integrating the two-dimensional frequency maps for each divided region into one.
  • a two-dimensional frequency map on the upper side of the screen is created by synthesizing the two-dimensional frequency maps of the divided areas N, NE, and NW.
  • the 2D frequency map at the bottom of the screen is created by combining the 2D frequency maps of the divided areas S, SE, and SW. To do.
  • the 2D frequency map on the right side of the screen is created by combining the 2D frequency maps of the divided areas E, NE, and SE.
  • the 2D frequency map on the left side of the screen is created by combining the 2D frequency maps of the divided areas W, NW, and SW.
  • Step S8 The control unit 14 sets the step size ⁇ h to about 1/10 of the maximum image height hmax,
  • n (h) Number of detections of color misregistration from image height h to h + ⁇ h
  • control unit 14 obtains the reliability Ec of the color misregistration detection result for each image height range using, for example, the following evaluation function.
  • This evaluation function [2] shows a larger value as the number of detected color shifts increases in the image height range of image height h 0 or more. Also, the evaluation function [2] shows a larger value as the detection variation of color misregistration is smaller in the image height range above the image height h O. Furthermore, the evaluation function [2] shows a larger value as the detected image height h of color misregistration is larger in the image height range of image height h 0 or more.
  • Step S 9 The control unit 14 performs the following case classification based on the reliability obtained in Step S 8, and selects the magnification chromatic aberration model.
  • the control unit 14 determines whether or not there is an image height h 0 that satisfies the three conditions of reliability E c (h O + 1) ⁇ th 1 and Ec (h 0)> th 1 and h 0> th linear . Judge.
  • the threshold th linear is a threshold indicating the upper limit of the image height h at which the lateral chromatic aberration changes linearly, and is set experimentally or statistically in advance.
  • the threshold th linear is set to a value of about 4 X ⁇ h.
  • the threshold th 1 is a threshold for determining whether or not the reliability of the peripheral area of the screen is suitable for estimating the nonlinearity of the lateral chromatic aberration, and is set experimentally or statistically in advance.
  • the threshold th 1 is set to a value of about 1 000.
  • the image height h 0 is set as the maximum value of the folded image height h twist and the following nonlinear magnification chromatic aberration model f NL (h) is selected.
  • the threshold value t h 2 is a threshold value for determining whether or not the reliability of the peripheral area of the screen is suitable for estimating the linearity of the lateral chromatic aberration, and is set experimentally or statistically in advance.
  • the threshold value t h 2 is set to a value of about 400.
  • the control unit 14 determines that the color shift detection result is unreliable and is not suitable for estimating the lateral chromatic aberration. In this case, the control unit 14 stops estimating and correcting the lateral chromatic aberration.
  • Step S 1 0 The correction amount calculation unit 15 fits the magnification chromatic aberration model selected by the control unit 14 into the color shift detection result (two-dimensional frequency map of the entire screen circumference). By doing so, the undetermined parameters of the lateral chromatic aberration model are determined. (Case 1 magnification chromatic aberration model)
  • the correction amount calculation unit 15 initially sets a default value close to the correct answer statistically obtained in advance to the undetermined parameter in [3].
  • the correction amount calculator 15 calculates the color shift detection value at the detected image height h and the value f NL (h ) And the fitting error ⁇ .
  • the correction amount calculation unit 15 evaluates the fitting error ⁇ with the following evaluation function e ( ⁇ ).
  • the correction amount calculation unit 15 adds up all the values of the obtained evaluation function e ( ⁇ ) to obtain the fitting evaluation value E f.
  • the amount of computation of the fitting evaluation value E f is reduced by multiplying the evaluation function e ( ⁇ ) obtained for each category on the map by the frequency number of that category. can do.
  • correction amount calculation unit 15 obtains a nonlinear penalty term E NL that limits the degree of freedom of fitting by the following equation.
  • P NL is a coefficient that determines the weighting of the nonlinear penalty term, and is set experimentally or statistically in advance in consideration of the degree of occurrence of nonlinear estimation errors. For example, P NL is set to a value of about 300.
  • H O is h 0 that satisfies the above three conditions.
  • the nonlinear penalty term E NL is set to a small value when the undetermined parameter a takes a value within a predetermined range near zero, and may be set to a large value that deviates from the predetermined range. good.
  • the correction amount calculation unit 15 determines the undetermined parameters k, a, and h twist that minimize or minimize (E f + E NL ) while changing the undetermined parameters k, a, and h twist by an appropriate step size.
  • the undetermined parameter h twist is an image that satisfies the three conditions of reliability. Restrict to high h O or less. Due to this restriction, a magnification chromatic aberration model is selected that exhibits a chromatic aberration of magnification that is nonlinear with respect to the image height for an image peripheral area that satisfies the reliability condition and has an image height h twist or more.
  • the correction amount calculation unit 15 initially sets a default value close to the correct answer statistically obtained in advance to the undetermined parameter of the linear chromatic aberration model f L (h).
  • the correction amount calculation unit 15 calculates the color shift detection value at the detection image height h and the value of f L (h) at the detection image height h from the color shift detection result (two-dimensional frequency map) of the entire screen. Find the difference and use the fitting error ⁇ .
  • the correction amount calculation unit 15 evaluates the fitting error ⁇ using the following evaluation function e ( ⁇ ).
  • the correction amount calculation unit 15 adds all the values of the obtained evaluation function e ( ⁇ ) to obtain the fitting evaluation value E f.
  • the amount of computation of the fitting evaluation value E f is reduced by multiplying the evaluation function e ( ⁇ ) obtained for each category on the map by the frequency number of that category. can do.
  • the correction amount calculation unit 15 determines the undetermined parameter k that minimizes or minimizes the fitting evaluation value E f while changing the undetermined parameter k by an appropriate step size.
  • Step S 11 The correction amount calculation unit 15 determines the variation of the fitting error ⁇ for each divided region, and determines whether or not to perform anisotropic adjustment of the lateral chromatic aberration.
  • the correction amount calculation unit 15 does not perform anisotropic adjustment and substitutes zero for the region adjustment values ke, ks, kw, and kn for each region. Move to step S 1 3.
  • Step S 12 The correction amount calculation unit 15 calculates the following expression based on the two-dimensional frequency map on the right side of the screen to obtain the region adjustment value ke for the right region.
  • the correction amount calculation unit 15 obtains region adjustment values k s, kw, and kn for the lower region, the left region, and the upper region, respectively, by the same calculation.
  • Step S 13 The correction amount calculation unit 15 secures the horizontal correction amount map ⁇ (x, y) and the vertical correction amount map Ay (x, y) in the internal memory area. To do. The correction amount calculation unit 15 completes the correction amount map ⁇ , Ay by the following calculation process.
  • the correction amount calculation unit 15 calculates the image height h of the coordinates (X, y) for obtaining the correction amount using the coordinates (c X, cy) of the optical axis center.
  • the correction amount calculation unit 15 divides the case into the left and right sides of the screen according to the following formula, and ⁇ x (X, y 3 ⁇ 4: Find ⁇
  • the correction amount calculation unit 15 obtains Ay (X, y; 3 ⁇ 4: according to the following formula, by dividing the case at the top and bottom of the screen.
  • the correction amount map ⁇ is limited only to the pixel position (x, y) where the R pixel of the Bayer array exists. Create ⁇ and A y. Further, a correction amount map may be obtained for discrete sample points every predetermined pixel (such as 32 pixels), and the value between the sample points may be obtained by interpolation. Furthermore, interpolation processing between sample points may be omitted by using the same correction amount for each block centered on discrete sample points. It is preferable to speed up the correction amount calculation process appropriately by such processing.
  • Step S14 The correction amount calculation unit 15 calculates the displacement position ( ⁇ ', y') of the chromatic aberration of magnification for each coordinate (x, y) of the R color component of the bay image by the following equation: Calculated by
  • the correction amount calculation unit 15 obtains the R color component of the shift position ( ⁇ ′, y ′) by interpolating the R color component of the bay image. For this interpolation, a known interpolation technique such as cubic interpolation can be used. The correction amount calculation unit 15 replaces the R color component at the coordinates (x, y) sequentially with the R color component interpolation value at the shift position ( ⁇ ', y'), so that the R color of the Bayer image is obtained. Complete magnification chromatic aberration correction for the component.
  • Step S 15 The image processing apparatus 11 performs the same processing as steps S 5 to S 14 for the B color component of the bay image.
  • the correction amount of the chromatic aberration of magnification and the bayer image after the correction of the chromatic aberration of magnification can be obtained.
  • the reliability of the color misregistration detection result is determined using the expression [2] of the evaluation function.
  • This [2] formula includes the following evaluation items.
  • a linear magnification chromatic aberration model is intentionally selected in the center area of the image.
  • the lateral chromatic aberration changes almost linearly with respect to the image height in the center area of the image. Therefore, by selecting a linear chromatic aberration model that is linear with respect to the center area of the image, it is possible to obtain a chromatic aberration correction value that is close to reality.
  • an image height range that satisfies the three conditions of image height h 0 or more is obtained as an image height range that satisfies reliability.
  • H twist is set to include this image height range, and a non-linear magnification chromatic aberration model is selected for the image peripheral area where the image height is greater than h twist . This process guarantees the fitting reliability of nonlinear lateral chromatic aberration and corrects the correction amount in the image peripheral area. Can be reduced.
  • e (() I ⁇
  • is used as an evaluation function of the fitting error ⁇ between the color shift detection result and the chromatic aberration model of magnification instead of the square error ⁇ 2 of the least square method.
  • the least squares method gives good fitting results when the measurement error follows a normal distribution.
  • the error in the color misregistration detection result includes image structure and false colors, so it does not follow the normal distribution, and large measurement errors tend to occur frequently and suddenly. For this reason, the least squares method may cause excessive response to this large measurement error and may cause incorrect fitting.
  • the evaluation function e ( ⁇ )
  • of this embodiment does not excessively react to a large measurement error compared to the square error, more appropriate magnification chromatic aberration model fitting becomes possible.
  • the degree of freedom of the undetermined parameter a related to nonlinearity is limited by introducing a nonlinear penalty term. As a result, fluctuation of the undetermined parameter a due to detection error is suppressed, and fitting of the chromatic aberration model of magnification that is more realistic is possible.
  • a global correction amount is obtained by fitting an isotropic magnification chromatic aberration model to the color shift detection result of the entire circumference of the screen.
  • a region adjustment value that reflects the anisotropy of the lateral chromatic aberration is obtained.
  • the color shift detection results are classified into frequency distributions for each image height.
  • the reliability of the fitting is evaluated by combining three evaluation items (detection number, detection variation, and detection image height).
  • the reliability of the fitting may be evaluated based on at least one of the three evaluation items.
  • the single image processing apparatus 11 has been described.
  • the embodiment is not limited to this.
  • the image processing apparatus 11 may be mounted on the electronic camera 21.
  • the image processing device 11 can obtain a correction amount of the chromatic aberration of magnification with respect to the captured image and the stored image of the imaging unit 22, and can further perform the chromatic aberration correction of magnification.
  • a mathematical model in which a linear expression and a cubic expression are connected is used as a nonlinear lateral chromatic aberration model.
  • the present embodiment is not limited to this mathematical model. In general, any nonlinear mathematical model is acceptable.
  • the chromatic aberration of magnification is estimated using a bayer image as a processing target.
  • the embodiment is not limited to this. one In general, the present invention is applicable to any image that can detect color misregistration.
  • the present invention is a technique that can be used for correcting chromatic aberration of magnification of image data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

 本発明の画像処理装置は、画像取得部、色ズレ検出部、制御部、および補正量算出部を備える。画像取得部は、画像データを取得する。色ズレ検出部は、この画像データについて色ズレを検出する。制御部は、色ズレ検出結果についてフィッティングの信頼性を判定し、その信頼性に基づいて色ズレのフィッティングに適する倍率色収差モデルを選択する。補正量算出部は、制御部で選択された倍率色収差モデルを、色ズレ検出結果にフィッティングして、画像データに対する倍率色収差の補正量を求める。

Description

明 細 書
倍率色収差を画像解析する画像処理装置、 画像処理プログラム、 電 子カメラ、 および画像処理方法
技術分野
[0001] 本発明は、 倍率色収差を画像解析する技術に関する。
背景技術
[0002] 一般に、 電子カメラでは、 撮影光学系の倍率色収差によって、 撮像された 画像データに色ズレを生じることが知られている。 この画像データの色ズレ から倍率色収差を検出する技術が従来提案されている。
例えば、 特許文献 1では、 画像データの R成分を様々な変倍率で変倍しな がら、 G成分との差分の最小点を探すことで、 RG間の倍率色収差を求めて いる。
また、 特許文献 2では、 画像データの色ズレを複数検出し、 これら色ずれ を、 数式モデルでフィッティングすることにより、 倍率色収差を検出してい る。
さらに、 特許文献 3には、 画像データの色ズレを、 最小二乗法によって 1 次式にフィッティングすることが開示されている。
特許文献 1 :特開 2002— 344978号公報 (図 4)
特許文献 2:特開 2002— 320237号公報 (段落 0024)
特許文献 3:特開 2004 _ 286684号公報 (段落 0055)
発明の開示
発明が解決しょうとする課題
[0003] 通常、 複雑変化する色ズレを正確にフィッティングするには、 像高の 3次 式からなる倍率色収差モデルが使用される。 しかし、 3次の倍率色収差モデ ルを使用した場合、 次のような弊害が生じる。
[0004] (1 ) 色ズレの検出誤差の影響を受けやすい。
画像データから検出された色ズレには、 倍率色収差に起因する色ズレの他 に、 被写体本来の色構造、 色ノイズ、 および偽色などの影響による検出誤差 も含まれる。 一方、 3次式のフィッティングは自由度が高いため、 これらの 検出誤差に敏感に反応しやすい。 そのため、 倍率色収差の数式モデルのパラ メータを間違った値として求めてしまう可能性が高い。
[0005] ( 2 ) 像高に対して充分なサンプリング間隔で色ズレが検出できるとは限ら ない。
3次式の変曲点などを正しくフイツティングするためには、 像高に対して 適当なサンプリング間隔で色ズレを検出する必要がある。 しかしながら、 画 像データによっては、 平坦な画像構造が一定面積を占めるため、 充分なサン プリング間隔で色ズレが検出できるとは限らない。 この状態で 3次式の近似 を行うと、 倍率色収差の数式モデルのパラメータを間違った値として求めて しまう可能性が高い。
[0006] ( 3 ) 倍率色収差が、 像高の 3次式では近似できない場合がある。
倍率色収差による色ズレの一般的な傾向として、 画像中央付近では像高に 比例し、 画像周辺部では像高に対して非線形に変化する場合がある。 このよ うな振る舞いは、 必ずしも 3次式では近似できるとは限らない。 この状態で 3次式の近似を行うと、 倍率色収差の数式モデルのパラメータを間違った値 として求めてしまう可能性が高い。
[0007] ( 4 ) 非等方な倍率色収差が発生する場合がある。
レンズによっては、 光軸中心に対して非対称な倍率色収差が発生する場合 がある。 一方、 色ズレの検出誤差も非等方な成分となることが多い。 そのた め、 非等方な倍率色収差と、 非等方な検出誤差を弁別することは難しく、 倍 率色収差の数式モデルのパラメータを間違った値として求めてしまう可能性 が高い。
[0008] 本発明の目的は、 このような問題点に鑑みて、 画像データの色ズレ検出結 果から倍率色収差を適正に推定することである。
課題を解決するための手段
[0009] 《1》 本発明の画像処理装置は、 画像データの色ズレ検出結果に倍率色収 差モデルをフィッティングさせることにより、 画像データの倍率色収差を推 定する装置であって、 画像取得部、 色ズレ検出部、 制御部、 および補正量算 出部を備える。
画像取得部は、 画像データを取得する。
色ズレ検出部は、 この画像データについて色ズレを検出する。
制御部は、 色ズレ検出結果に基づいて前記フイツティングの信頼性を判定 し、 色ズレのフィッティングに適する倍率色収差モデルを選択する。
補正量算出部は、 制御部で選択された倍率色収差モデルを用いて、 色ズレ 検出結果のフイツティングを行い、 フイツティング結果に基づいて画像デー タに対する倍率色収差の補正量を求める。
《2》 なお好ましくは、 制御部は、 色ズレの検出個数、 色ズレの検出バラ ツキ、 および色ズレの検出像高からなる評価項目の少なくとも一つに基づい て、 色ズレ検出結果のフィッティングの信頼性を評価判定する。 制御部は、 この信頼性に基づいて倍率色収差モデルを選択する。
《3》 また好ましくは、 制御部は、 色ズレ検出結果に基づいて、 倍率色収 差モデルのフィッティングの自由度を制限する。
《4》 なお好ましくは、 制御部は、 倍率色収差モデルの選択肢として、 ( 1 ) 像高に対して非線形な倍率色収差をとる倍率色収差モデル (2 ) 像高に 対して線形な倍率色収差をとる倍率色収差モデルを少なくとも有する。
《5》 また好ましくは、 制御部は、 画像中央領域と画像周辺領域とにおい て、 異なる倍率色収差モデルを選択する。
《6》 なお好ましくは、 制御部は、 画像中央領域には、 像高に対して線形 な倍率色収差をとる倍率色収差モデルを選択する。 制御部は、 画像周辺領域 には、 像高に対して非線形な倍率色収差をとる倍率色収差モデルを選択する
《7》 また好ましくは、 制御部は、 色ズレ検出結果について像高範囲ごと の信頼性判定を行い、 予め定められた信頼性の条件を満足する像高範囲を求 めて、 非線形なモデルを使用する画像周辺領域とする。 《8》 なお好ましくは、 補正量算出部は、 色ズレ検出結果と倍率色収差モ デルとのフィッティング誤差 Δの評価関数 e ( Δ ) を小さくすることで、 倍 率色収差モデルを色ズレ検出結果にフィッティングする。 なお、 この評価関 数 e (厶) は、 フィッティング誤差が取りうる範囲の厶 1 <厶 2に対して、 下式を満足することを特徴とする。
e ( Δ 2 ) Z e ( Δ 1 ) < ( Δ 2 ΖΔ 1 ) 2 ■ ■ ■ [ 1 ]
《9》 また好ましくは、 補正量算出部は、 色ズレ検出結果に倍率色収差モ デルをフィッティングすることにより、 等方的な倍率色収差の補正量 (以下 、 大局的補正量) を求める。 さらに、 補正量算出部は、 画像の領域ごとに、 大局的補正量と色ズレ検出結果との誤差を調整する領域調整値を求める。 補 正量算出部は、 このように求めた大局的補正量と領域調整値とに基づいて、 非等方な倍率色収差の補正量を求める。
《1 0》 なお好ましくは、 上記の画像処理装置において、 補正量算出部は 、 色ズレ検出結果を像高ごとの頻度分布に分類して 2次元頻度マップを求め る。 補正量算出部は、 倍率色収差モデルを 2次元頻度マップにフイツティン グすることにより、 倍率色収差の補正量を求める。
《1 1》 本発明の画像処理プログラムは、 コンピュータを上記いずれかの 画像処理装置として機能させるためのプログラムである。
《1 2》 本発明の電子カメラは、 上記いずれかの画像処理装置と、 被写体 を撮像して画像データを生成する撮像部とを備える。 この画像処理装置は、 撮像部で生成された画像データについて、 倍率色収差の補正量を求める。
《1 3》 本発明の画像処理方法は、 上記《1》 の処理を行う方法である。 発明の効果
[0010] 本発明では、 色ずれの検出結果に従って、 フィッティングに適した倍率色 収差モデルを選択する。 その結果、 色ズレから倍率色収差を推定する際の誤 リを低減することが可能になる。
図面の簡単な説明
[0011] [図 1]本実施形態の画像処理装置 1 1を示すブロック図である。 [図 2]画像処理装置 1 1の動作を説明するフローチヤ一卜である。
[図 3]画面の分割パターンを示す図である。
[図 4]電子カメラ 2 1を示すブロック図である。
発明を実施するための最良の形態
[0012] 《構成説明》
図 1は、 本実施形態の画像処理装置 1 1を示すブロック図である。 図 1において、 画像処理装置 1 1は、 次のような構成要件を備えて構成さ れる。
( 1 ) 画像取得部 1 2 ■ ,倍率色収差の検出対象である画像データを取り込 む。
( 2 ) 色ズレ検出部 1 3 ■ ■画像データから色ズレを検出する。
( 3 ) 制御部 1 4■ ■色ズレ検出結果のバラツキなどから信頼性を求め、 そ の信頼性に応じて倍率色収差モデルを選択する。
( 4 ) 補正量算出部 1 5は、 制御部 1 4が選択した倍率色収差モデルを、 色 ズレ検出結果にフイツティングすることで、 画像データに対する倍率色収差 の補正量を求める。
[0013] なお、 上述した構成要件を、 コンピュータで画像処理プログラムを実行す ることによってソフトウェア的に実現してもよい。 また、 上述した構成要件 を、 演算回路などでハードウェア的に実現してもよい。
[0014] 《動作説明》
図 2は、 画像処理装置 1 1の動作を説明するフローチャートである。 以下
、 このフローチャートに基づいて動作を説明する。
[0015] ステップ S 1 : 画像取得部 1 2は、 R G B色成分がべィャ配列されたべィ ャ画像を、 画素 (X , y ) ごとに読み込む。 ここでは、 画素の座標空間を、 X 座標が大きいほど画面右側とし、 y座標が大きいほど画面下側とする。
[0016] ステップ S 2 : 色ズレ検出部 1 3は、 べィャ画像の R G B色成分ごとに補 間処理を施し、 画素単位の欠落色成分を補い、 画素単位に R G B色成分を有 する補間画像を生成する。 [0017] ステップ S 3 : 色ズレ検出部 1 3は、 補間画像の画面座標に、 撮影光学系 の光軸中心 (c x, c y) を設定する。 デフォルト設定では、 補間画像の画 面中心を、 この光軸中心とする。 なお、 色ズレ検出部 1 3が、 入力画像の付 随情報 (Exif情報など) から、 光軸中心 (c x, c y) の座標値を取得して もよい。
色ズレ検出部 1 3は、 この光軸中心 (c x, c y) を中心にして、 図 3に 示すように補間画像を周方向に分割し、 複数の分割領域 (図 3に示す N, N E, E, SE, S, SW, W, NW) と、 分割領域ごとの動径方向 (図 3に 示す矢印方向) を設定する。
[0018] ステップ S 4 : 続いて、 色ズレ検出部 1 3は、 補間画像の各画素の RGB 色成分から、 例えば、 Y= (R + G + B) Z3などの簡易計算を行い、 各画 素の輝度 Yを求める。 次に、 色ズレ検出部 1 3は、 倍率色収差が視認可能な 画面域 (例えば、 光軸中心から最大像高 h maxの 4割以上離れた周辺域) にお いて、 輝度 Yの動径方向のレベル変化 grad Y(x,y)を算出する。
ここでは、 動径方向を分割領域ごとに固定設定することにより、 動径方向 のレベル変化を下式に基づいて簡易計算することができる。
分割領域 N : gradY(x,y)=Y(x,y-1)-Y(x,y)
分割領域 NE: gradY(x,y)=Y(x+1,y-1)-Y(x,y)
分割領域 E: gradY (X, y) =Y (χ+1, y) -Y (x, y)
分割領域 SE: gradY(x,y)=Y(x+1,y+1)-Y(x,y)
分割領域 S : gradY (x,y)=Y(x,y+1)-Y(x,y)
分割領域 SW: gradY(x,y)=Y(x-1,y+1)-Y(x,y)
分割領域 W: gradY (x, y) =Y (χ-1, y) -Υ (χ, y)
分割領域 NW: gradY(x,y)=Y(x-1,y-1)-Y(x,y)
色ズレ検出部 1 3は、 求めたレベル変化 gradY (x,y)の絶対値が、 所定値 T h (たとえば 256階調データにおいて 1 0程度) 以上を示す画素位置 (x,y) を、 動径方向のレベル変化箇所として探索する。 なお、 この探索は、 例えば 6画素おきなどの、 適当な間隔を開けて行つても良い。 [0019] ステップ S 5 : 色ズレ検出部 1 3は、 ステップ S 4で検出されたレベル変 化箇所を中心に局所的なウィンドウを範囲設定する。 色ズレ検出部 1 3は、 このウィンドウ内から G色成分の配列を取得する。
次に、 色ズレ検出部 1 3は、 このウィンドウを動径方向に所定幅だけずら した範囲から R色成分の配列を取得する。 色ズレ検出部 1 3は、 この R色配 列の平均値が、 G色配列の平均値に一致するように、 R色配列のレベル補正 を実施する。 色ズレ検出部 1 3は、 (G色配列) 一 (レベル補正後の R色配 列) の絶対値和を求め、 重ね合わせ誤差とする。
色ズレ検出部 1 3は、 R色配列のずらし幅を動径方向に沿って増減させな がら、 重ね合わせ誤差が最小となるずらし幅を求めて、 レベル変化箇所の色 ズレとする。 色ズレ検出部 1 3は、 求めた色ズレを、 レベル変化箇所の像高 の値と共に一時記憶する。
なお、 重ね合わせ誤差の値を内挿することにより、 色ズレを画素間隔以下 の精度で求めることが好ましい。
[0020] ステップ S 6 : 補正量算出部 1 5は、 ステップ S 5においてレベル変化箇 所ごとに求めた (像高, 色ズレ) の頻度を分割領域ごとにカウントして、 2 次元頻度マップを作成する。
例えば、 2次元頻度マップは、 像高 0から最大像高 h maxまでを 4 0通りに 分類し、 _ 4画素から + 4画素までの色ズレを 8 0通りに分類して、 合計 3 2 0 0通りの区分ごとに頻度をカウントする。
なお、 ステップ S 5の色ズレ検出のたびに、 対応する分割領域の 2次元頻 度マップを更新することにより、 (像高, 色ズレ) の一時記憶に必要なバッ ファ容量を節約することが好ましい。
[0021 ] ステップ S 7 : 補正量算出部 1 5は、 分割領域ごとの 2次元頻度マップを 一つに統合することにより、 画面全周の 2次元頻度マップを作成する。 また 、 分割領域 N, N E、 N Wの 2次元頻度マップを合成することにより、 画面 上側の 2次元頻度マップを作成する。 同様に、 分割領域 S, S E、 S Wの 2 次元頻度マップを合成することにより、 画面下側の 2次元頻度マップを作成 する。 さらに、 分割領域 E, NE、 SEの 2次元頻度マップを合成すること により、 画面右側の 2次元頻度マップを作成する。 同様に、 分割領域 W, N W、 SWの 2次元頻度マップを合成することにより、 画面左側の 2次元頻度 マップを作成する。
[0022] ステップ S 8 : 制御部 14は、 刻み幅 Δ hを最大像高 h maxの 10分の 1程 度に設定し、
n (h) :像高 h〜h +Δ hの色ズレの検出回数
2 (h) :像高 h〜h +Δ hの色ズレの分散
を所定間隔の像高 h (例えば整数値の h) ごとに求める。
次に、 制御部 1 4は、 色ズレ検出結果の信頼性 Ecを、 例えば下記の評価 関数により像高範囲ごとに求める。
圆 /max - ΔΛ
£c(/?0) = . - h ) ...[2]
h=hO (Λ) この評価関数 [2] は、 像高 h 0以上の像高範囲において色ズレの検出個 数が多いほど、 大きな値を示す。 また、 評価関数 [2] は、 像高 h O以上の 像高範囲において色ズレの検出バラツキが小さいほど、 大きな値を示す。 さ らに、 評価関数 [2] は、 像高 h 0以上の像高範囲において色ズレの検出像 高 hが大きいほど、 大きな値を示す。
[0023] ステップ S 9 : 制御部 14は、 ステップ S 8で求めた信頼性に基づいて下 記の場合分けを行い、 倍率色収差モデルを選択する。
[0024] (ケース 1 ) 非線形な倍率色収差モデル
制御部 1 4は、 信頼性 E c (h O+ 1 ) < t h 1、 かつ Ec (h 0) > t h 1、 かつ h 0> t hlinearの三条件を満たす像高 h 0が存在するか否かを判断 する。
このとき、 閾値 t hlinearは、 倍率色収差が線形変化する像高 hの上限を示す 閾値であり、 予め実験的または統計的に設定される。 例えば、 閾値 t hlinearは 、 4 X Δ h程度の値に設定される。 一方、 閾値 t h 1は、 画面周辺域の信頼性が倍率色収差の非線形性の推定 に適するか否かを見極める閾値であり、 予め実験的または統計的に設定され る。 例えば、 閾値 t h 1は 1 000程度の値に設定される。
これら三条件を満たす像高 h 0が存在する場合、 その像高 h 0を折れ像高 htwistの最大値とし、 下記の非線形な倍率色収差モデル fNL (h) を選択する
[数 2] fN h) a
kh + ahtwist ) - レ , (Λhtwist ) ひ'尸 hhtwist)
3(Amax- U
...[3] なお、 f (h) 中の未定パラメータ k, a, htwistについては、 後段のステ ップ S 1 0において決定される。
[0025] (ケース 2) 線形な倍率色収差モデル
制御部 1 4は、 ケース 1の三条件を満足せず、 かつ Ec (t h,inear) > t h 2を満足する場合、 像高に対して線形な倍率色収差モデル (h) =k x h を選択する。
なお、 閾値 t h 2は、 画面周辺域の信頼性が倍率色収差の線形性の推定に 適するか否かを見極める閾値であり、 予め実験的または統計的に設定される 。 例えば、 閾値 t h 2は 400程度の値に設定される。
[0026] (ケース 3) 倍率色収差の推定中止
制御部 1 4は、 ケース 1およびケース 2をいずれも満足しない場合、 色ズ レ検出結果は信頼性が低くて、 倍率色収差の推定に不適であると判断する。 この場合、 制御部 1 4は、 倍率色収差の推定および補正を中止する。
[0027] ステップ S 1 0 : 補正量算出部 1 5は、 画面全周の色ズレ検出結果 (画面 全周の 2次元頻度マップ) に、 制御部 1 4の選択した倍率色収差モデルをフ イツティングすることにより、 倍率色収差モデルの未定パラメータを決定す る。 (ケース 1の倍率色収差モデルの場合)
補正量算出部 15は、 [3] 式の未定パラメータに、 予め統計的に求めた 正解に近いデフオルト値を初期設定する。
補正量算出部 15は、 画面全周の色ずれ検出結果 (2次元頻度マップ) か ら、 検出像高 hにおける色ズレ検出値と、 検出像高 hにおける [3] 式の値 f NL (h) との差異を求め、 フィッティング誤差 Δとする。
補正量算出部 15は、 フィッティング誤差 Δを、 下式の評価関数 e (厶) でそれぞれ評価する。
e (Δ) = | Δ |
補正量算出部 15は、 求めた評価関数 e (Δ) の値を全て足し合わせて、 フィッティング評価値 E f を求める。 なお、 2次元頻度マップを使用する場 合は、 マップ上の区分ごとに求めた評価関数 e (Δ) に、 その区分の頻度数 を乗することで、 フィッティング評価値 E f の演算量を低減することができ る。
さらに、 補正量算出部 15は、 フィッティングの自由度を制限する非線形 ペナルティ項 ENLを、 下式によって求める。
ENL=PNLx | a | X ( hmax— h 0)
なお、 PNLは、 非線形ペナルティ項の重み付けを決定する係数であり、 非線 形な推定誤リの発生度合いなどを考慮して、 予め実験的または統計的に設定 される。 例えば、 PNLは 300程度の値に設定される。 また、 h Oは、 上述し た三条件を満足する h 0である。
なお、 一般的には、 非線形ペナルティ項 ENLを、 未定パラメータ aがゼロ近 傍の所定範囲内の値をとるときは小さな値にし、 その所定範囲から外れるほ ど大きな値をとるようにしても良い。
補正量算出部 15は、 未定パラメータ k, a, htwistを適当な刻み幅で変化 させながら、 (E f +ENL) を極小または最小にする未定パラメータ k, a, h twistを決定する。
このとき、 未定パラメータ htwistについては、 信頼性の三条件を満足する像 高 h O以下に制限する。 この制限により、 信頼性の条件を満足する像高 h twist 以上の画像周辺領域に対して、 像高に対して非線形な倍率色収差を示す倍率 色収差モデルが選択される。
[0029] (ケース 2の倍率色収差モデルの場合)
補正量算出部 1 5は、 線形な倍率色収差モデル f L ( h ) の未定パラメータ に、 予め統計的に求めた正解に近いデフォルト値を初期設定する。 補正量算出部 1 5は、 画面全周の色ずれ検出結果 (2次元頻度マップ) か ら、 検出像高 hにおける色ズレ検出値と、 検出像高 hにおける f L ( h ) の値 との差異を求めて、 フィッティング誤差 Δとする。
補正量算出部 1 5は、 フィッティング誤差 Δを、 下式の評価関数 e (厶) でそれぞれ評価する。
e ( Δ ) = | Δ |
補正量算出部 1 5は、 求めた評価関数 e ( Δ ) の値を全て足し合わせて、 フィッティング評価値 E f を求める。 なお、 2次元頻度マップを使用する場 合は、 マップ上の区分ごとに求めた評価関数 e ( Δ ) に、 その区分の頻度数 を乗することで、 フィッティング評価値 E f の演算量を低減することができ る。
補正量算出部 1 5は、 未定パラメータ kを適当な刻み幅で変化させながら 、 フイツティング評価値 E f を極小または最小にする未定パラメータ kを決 定する。
[0030] ステップ S 1 1 : 補正量算出部 1 5は、 フィッティング誤差 Δの分割領域 ごとのバラツキを判定し、 倍率色収差の非等方的な調整を実施するか否かを 判定する。
バラツキが誤差などの許容範囲内と見なせる場合、 補正量算出部 1 5は、 非等方的な調整を実施せず、 領域ごとの領域調整値 k e, k s , k w, k n にゼロを代入して、 ステップ S 1 3に動作を移行する。
一方、 バラツキが許容範囲を超える場合、 補正量算出部 1 5は、 非等方的 な調整を実施するため、 ステップ S 1 2に動作を移行する。 [0031] ステップ S 1 2 : 補正量算出部 15は、 画面右側の 2次元頻度マップに基 づいて、 下式を算出し、 右領域の領域調整値 k eを求める。
k e= [ (検出像高 hの色ズレ検出値一検出像高 hの倍率色収差モデルの値 ) の和] Z (検出像高 hの和)
補正量算出部 15は、 同様の計算で、 下領域、 左領域、 上領域についても 領域調整値 k s, kw, k nをそれぞれ求める。
[0032] ステップ S 13 : 補正量算出部 15は、 内部のメモリ領域上に、 横方向の 補正量マップ Δχ (x, y) と、 縦方向の補正量マップ Ay (x, y) を領域 確保する。 補正量算出部 15は、 この補正量マップ Δχ, Ayを次の計算処 理によって完成させる。
まず、 補正量算出部 15は、 補正量を求める座標 (X , y) の像高 hを、 光 軸中心の座標 (c X , c y) を用いて算出する。
h = [ ( x _ c X) 2+ ( y - c y) 2] 1
次に、 補正量算出部 15は、 下式に従って、 画面の左右に場合分けして、 △ x ( X , y ¾:求め^。
[数 3] f(h)
+ kw < (x - cx) {if x < cx)
h
Δχ(χ, y) ■ [4]
f(h)
+ ke (X - CX) (/ x > CA-)
h なお、 式中の f (h) には、 ケース 1では fNL (h) を使用し、 ケース 2で は (h) を使用する。
同様に、 補正量算出部 15は、 下式に従って、 画面の上下に場合分けして 、 Ay ( X , y; ¾:求める。
[数 4]
Figure imgf000014_0001
このような計算を、 光軸中心を除いて画素単位に順次実施することにより
、 補正量マップ Δ χ, A yが完成する。
なお、 後述するように、 べィャ画像の R画素について倍率色収差補正を実 施する場合は、 べィャ配列の R画素が存在する画素位置 (x, y ) に限って 、 補正量マップ Δ χ, A yを作成すればよい。 また、 所定画素 (3 2画素な ど) おきの離散的なサンプル点について補正量マップを求め、 サンプル点の 間の値は補間して求めてもよい。 さらに、 離散的なサンプル点を中心とする ブロックごとに同じ補正量を使用することで、 サンプル点の間の補間処理を 省いてもよい。 このような処理により、 補正量の演算処理を適宜に高速化す ることが好ましい。
[0033] ステップ S 1 4 : 補正量算出部 1 5は、 べィャ画像の R色成分の座標 (x , y ) ごとに、 倍率色収差のズレ位置 (χ ' , y ' ) を、 下式により算出する。
X = X + Δ X ( X , y )
y = y + Δ x ( χ , y )
次に、 補正量算出部 1 5は、 ズレ位置 (χ ' , y ' ) の R色成分を、 べィャ 画像の R色成分を補間して求める。 この補間には、 キュービック補間などの 公知の補間技術が使用できる。 補正量算出部 1 5は、 座標 (x, y ) の R色 成分を、 ズレ位置 (χ ' , y ' ) の R色成分補間値で順次に置き換えることに より、 べィャ画像の R色成分について倍率色収差補正を完了する。
[0034] ステップ S 1 5 : 画像処理装置 1 1は、 ステップ S 5〜 S 1 4と同様の処 理を、 べィャ画像の B色成分についても実施する。
以上の処理によリ、 倍率色収差の補正量および倍率色収差補正後のべィャ 画像を得ることできる。
[0035] 《実施形態の効果など》
本実施形態では、 色ズレ検出結果の信頼性が低いケース 2では、 フイツテ イングに誤りの生じにくい倍率色収差モデルを選択する。 その結果、 倍率色 収差の補正量の誤リを低減することが可能になる。
[0036] また、 色ズレ検出結果の信頼性が高いケース 1では、 倍率色収差をよリ正 確にフィッティングできるように、 自由度の高い倍率色収差モデルを選択す る。 その結果、 倍率色収差の補正量が一段と正確になる。
[0037] さらに、 本実施形態では、 評価関数の [ 2 ] 式を用いて、 色ズレ検出結果 の信頼性を判定する。 この [ 2 ] 式には、 下記の評価項目が含まれる。
■色ズレの検出個数■ ■検出個数が少ないほど、 倍率色収差モデルのフイツ ティングに不足し、 信頼性が低くなる。
■色ズレの検出バラツキ■ ■検出バラツキが大きいほど、 倍率色収差モデル のフイツティングが不正確になり、 信頼性が低くなる。
,色ズレの検出像高, ,検出像高が小さいほど、 色ズレ幅が微小になるため
、 色ズレの検出精度が低くなる。 そのため、 検出像高が小さいほど、 フイツ ティングの信頼性は低くなる。
[0038] これら 3つの評価項目を組み合わせることによって、 色ズレ検出結果につ いてフィッティングの信頼性を正確に評価することが可能になる。
[0039] また、 本実施形態では、 ケース 1においても、 画像中央領域に線形な倍率 色収差モデルをあえて選択する。 通常、 画像中央領域では、 倍率色収差は像 高に対してほぼ線形に変化する。 そのため、 画像中央領域に対して線形な倍 率色収差モデルを選択することにより、 実態に近い倍率色収差の補正値を得 ることができる。
[0040] さらに、 本実施形態の [ 3 ] 式では、 像高 h twistにおいて、 2つの倍率色収 差モデルを滑らかに連結する。 また、 色ズレ検出結果が不足する最大像高 h m axの近傍で、 二階導関数がゼロに近くなる特性を与えている。 これらの特性 は、 倍率色収差の実態に近いため、 より実態に近い倍率色収差の補正値を得 ることができる。
[0041 ] また、 本実施形態では、 ケース 1において、 三条件を満足する像高 h 0以 上の像高範囲を、 信頼性を満足する像高範囲として求める。 この像高範囲を 含むように h twistを設定し、 像高が h twist以上を示す画像周辺領域に対して、 非 線形な倍率色収差モデルを選択する。 この処理により、 非線形な倍率色収差 のフイツティングの信頼性が保証され、 画像周辺領域における補正量の誤り を低減することが可能になる。
[0042] さらに、 本実施形態では、 色ズレ検出結果と倍率色収差モデルとのフイツ ティング誤差 Δの評価関数として、 最小二乗法の二乗誤差 Δ2に代えて、 e ( 厶) = I Δ |を使用する。 最小二乗法は、 測定誤差が正規分布に従う場合に 、 良好なフィッティング結果が得られる。 しかし、 色ズレ検出結果の誤差に は、 画像構造や偽色などが含まれるため、 正規分布には従わず、 大きな測定 誤差が高頻度かつ突発的に生じやすい。 そのため、 最小二乗法では、 この大 きな測定誤差に過剰反応してフイツティングが正しく行われないおそれが生 じる。 しかしながら、 本実施形態の評価関数 e ( Δ ) = | Δ |は、 二乗誤差 に比べて大きな測定誤差に過剰反応しないため、 より適切な倍率色収差モデ ルのフイツティングが可能になる。
[0043] また、 本実施形態では、 非線形ペナルティ項を導入することにより、 非線 形性に係わる未定パラメータ aの自由度を制限している。 その結果、 検出誤 差による未定パラメータ aの変動を抑制し、 よリ実態に即した倍率色収差モ デルのフィッティングを可能にしている。
[0044] さらに、 本実施形態では、 画面全周の色ズレ検出結果に、 等方的な倍率色 収差モデルをフィッティングさせることで、 大局的な補正量を求める。 さら に、 この大局的補正量と、 領域ごとの色ズレ検出結果とを比較することによ リ、 倍率色収差の非等方性を反映する領域調整値を求める。 この大局的補正 量と領域調整値を領域別に合成することで、 非等方な倍率色収差の補正量を 適切に得ることができる。
[0045] また、 本実施形態では、 色ズレ検出結果を像高ごとの頻度分布に分類して
2次元頻度マップを作成する。 一般に、 倍率色収差の補正量を正確に算出す るためには、 1 0 0回〜数千回以上の色ズレ検出結果が必要となる。 この色 ズレ検出結果を逐一記憶すると、 大きな記憶容量が必要となる。 また、 フィ ッティング処理を行う際の評価値算出の演算量も膨大になる。 しかし、 2次 元頻度マップの使用により、 類似した色ズレ検出結果を頻度数として記憶で きるため、 色ズレ検出結果の記憶容量を節約することができる。 また、 2次 元頻度マップを用いたフイツティング処理では、 マップ上の区分ごとに求め た評価関数 e ( Δ ) にその区分の頻度数を乗することにより、 フイツティン グの評価値の演算量を大幅に軽減することができる。
[0046] 《実施形態の補足事項》
なお、 上述した実施形態では、 3つの評価項目 (検出個数, 検出バラツキ 、 検出像高) を組み合わせて、 フィッティングの信頼性を評価している。 し かしながら、 実施形態はこれに限定されるものではない。 3つの評価項目の 少なくとも一つに基づいて、 フィッティングの信頼性を評価してもよい。
[0047] また、 上述した実施形態では、 フィッティング誤差の評価関数 e ( Δ ) =
I 厶 Iを使用する。 しかしながら、 実施形態はこれに限定されるものではな い。 フィッティング誤差が取りうる範囲の Δ 1 < Δ 2に対して、 下式を満足 する評価関数 e ( Δ ) を使用すればよい。
e ( Δ 2 ) Z e ( Δ 1 ) < ( Δ 2 ΖΔ 1 ) 2 ■ ■ ■ [ 1 ]
このような評価関数 e ( Δ ) であれば、 最小二乗法の二乗誤差 Δ2よりも大き な測定誤差の影響を受けにくいため、 倍率色収差モデルの良好なフイツティ ングが可能になる。
[0048] さらに、 上述した実施形態では、 単体の画像処理装置 1 1について説明し た。 しかしながら、 実施形態はこれに限定されるものではない。 例えば、 図 4に示すように、 画像処理装置 1 1を電子カメラ 2 1に搭載してもよい。 こ の電子カメラ 2 1では、 撮像部 2 2の撮像画像や保存画像に対して、 画像処 理装置 1 1が倍率色収差の補正量を求め、 さらに倍率色収差補正を実施する ことができる。
[0049] なお、 上述した実施形態では、 非線形な倍率色収差モデルとして、 1次式 と 3次式を連結した数式モデルを使用している。 しかしながら、 本実施形態 は、 この数式モデルに限定されるものではない。 一般的には、 非線形な数式 モデルであればかまわない。
[0050] また、 上述した実施形態では、 べィャ画像を処理対象として倍率色収差の 推定を行う。 しかしながら、 実施形態はこれに限定されるものではない。 一 般的には、 色ズレを検出できる画像であれば、 本発明が適用可能である。
[0051 ] なお、 本発明は、 その精神または主要な特徴から逸脱することなく、 他の いろいろな形で実施することができる。 そのため、 前述の実施例はあらゆる 点で単なる例示に過ぎず、 限定的に解釈してはならない。 本発明の範囲は、 特許請求の範囲によって示すものであって、 明細書本文には、 なんら拘束さ れない。 さらに、 特許請求の範囲の均等範囲に属する変形や変更は、 すべて 本発明の範囲内のものである。
産業上の利用可能性
[0052] 以上説明したように、 本発明は、 画像データの倍率色収差補正などに利用 可能な技術である。

Claims

請求の範囲
[1 ] 画像データの色ズレ検出結果に倍率色収差モデルをフイツティングさせる ことにより、 画像データの倍率色収差を推定する画像処理装置であって、 画像データを取得する画像取得部と、
前記画像データについて色ズレを検出する色ズレ検出部と、
前記色ズレ検出結果に基づいて前記フイツティングの信頼性を判定し、 前 記色ズレのフイツティングに適する倍率色収差モデルを選択する制御部と、 前記制御部で選択された前記倍率色収差モデルを用いて、 前記色ズレ検出 結果のフイツティングを行い、 フイツティング結果に基づいて前記画像デー タに対する倍率色収差の補正量を求める補正量算出部と
を備えたことを特徴とする画像処理装置。
[2] 請求項 1に記載の画像処理装置において、
前記制御部は、
前記色ズレの検出個数、 前記色ズレの検出バラツキ、 および前記色ズレの 検出像高からなる評価項目の少なくとも一つに基づいて、 前記色ズレ検出結 果のフイツティングの信頼性を評価判定し、 前記信頼性に基づいて前記倍率 色収差モデルを選択する
ことを特徴とする画像処理装置。
[3] 請求項 1に記載の画像処理装置において、
前記制御部は、
前記色ズレ検出結果に基づいて、 前記倍率色収差モデルのフイツティング の自由度を制限する
ことを特徴とする画像処理装置。
[4] 請求項 1に記載の画像処理装置において、
前記制御部は、
前記倍率色収差モデルの選択肢として、
( 1 ) 像高に対して非線形な倍率色収差をとる倍率色収差モデル
( 2 ) 像高に対して線形な倍率色収差をとる倍率色収差モデル を少なくとも有する
ことを特徴とする画像処理装置。
[5] 請求項 1に記載の画像処理装置において、
前記制御部は、
画像中央領域と画像周辺領域とにおいて、 異なる倍率色収差モデルを選択 する
ことを特徴とする画像処理装置。
[6] 請求項 5に記載の画像処理装置において、
前記制御部は、
画像中央領域には、 像高に対して線形な倍率色収差をとる倍率色収差モデ ルを選択し、
前記画像周辺領域には、 像高に対して非線形な倍率色収差をとる倍率色収 差モデルを選択する
ことを特徴とする画像処理装置。
[7] 請求項 6に記載の画像処理装置において、
前記制御部は、
前記色ズレ検出結果について像高範囲ごとの信頼性判定を行い、 予め定め られた信頼性の条件を満足する像高範囲を求めて前記画像周辺領域とする ことを特徴とする画像処理装置。
[8] 請求項 1ないし請求項 7のいずれか 1項に記載の画像処理装置において、 前記補正量算出部は、
前記色ズレ検出結果と前記倍率色収差モデルとのフイツティング誤差厶の 評価関数 e (Δ) を小さくすることで、 前記倍率色収差モデルを前記色ズレ 検出結果にフィッティングする
ただし、 前記評価関数 e (Δ) は、 フィッティング誤差が取りうる範囲の 任意の Δ 1 <Δ 2に対して下式を満足する
e (Δ2) Ze (Δ 1 ) < (Δ 2ΖΔ 1 ) 2 ■ ■ ■ [1]
ことを特徴とする画像処理装置。
[9] 請求項 1ないし請求項 8のいずれか 1項に記載の画像処理装置において、 前記補正量算出部は、
前記色ズレ検出結果に前記倍率色収差モデルをフイツティングすることに より、 等方的な倍率色収差の補正量 (以下、 大局的補正量) を求め、 前記画像の領域ごとに、 前記大局的補正量と前記色ズレ検出結果との誤差 を調整する領域調整値を求め、
前記大局的補正量と前記領域調整値とに基づいて、 非等方な倍率色収差の 補正至を求める
ことを特徴とする画像処理装置。
[10] 請求項 1ないし請求項 9に記載の画像処理装置において、
前記補正量算出部は、
前記色ズレ検出結果を像高ごとの頻度分布に分類して 2次元頻度マップを 求め、 前記倍率色収差モデルを前記 2次元頻度マップにフイツティングする ことにより、 倍率色収差の補正量を求める
ことを特徴とする画像処理装置。
[11 ] コンピュータを、 請求項 1ないし請求項 1 0のいずれか 1項に記載の画像 処理装置として機能させるための画像処理プログラム。
[12] 請求項 1ないし請求項 1 0のいずれか 1項に記載の画像処理装置と、 被写体を撮像して画像データを生成する撮像部とを備え、
前記画像処理装置は、 前記撮像部で生成された前記画像データについて、 倍率色収差の補正量を求める
ことを特徴とする電子カメラ。
[13] 画像データの色ズレ検出結果に倍率色収差モデルをフイツティングさせる ことにより、 画像データの倍率色収差を推定する画像処理方法であって、 画像データを取得する画像取得ステップと、
前記画像データについて色ズレを検出する色ズレ検出ステップと、 前記色ズレ検出結果に基づいて前記フイツティングの信頼性を判定し、 前 記色ズレのフィッティングに適する倍率色収差モデルを選択する制御ステツ プと、
前記制御ステップで選択された前記倍率色収差モデルを用いて、 前記色ズ レ検出結果のフイツティングを行い、 フイツティング結果に基づいて前記画 像データに対する倍率色収差の補正量を求める補正量算出ステップと を備えたことを特徴とする画像処理方法。
PCT/JP2007/000155 2006-03-01 2007-03-01 倍率色収差を画像解析する画像処理装置、画像処理プログラム、電子カメラ、および画像処理方法 WO2007105359A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008504985A JP4816725B2 (ja) 2006-03-01 2007-03-01 倍率色収差を画像解析する画像処理装置、画像処理プログラム、電子カメラ、および画像処理方法
EP07713537.4A EP1993070B1 (en) 2006-03-01 2007-03-01 Image processing device for image-analyzing magnification color aberration, image processing program, electronic camera, and image processing method for image analysis of chromatic aberration of magnification
US12/216,697 US7995108B2 (en) 2006-03-01 2008-07-09 Image processing apparatus, image processing program, electronic camera, and image processing method for image analysis of magnification chromatic aberration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-054450 2006-03-01
JP2006054450 2006-03-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/216,697 Continuation US7995108B2 (en) 2006-03-01 2008-07-09 Image processing apparatus, image processing program, electronic camera, and image processing method for image analysis of magnification chromatic aberration

Publications (1)

Publication Number Publication Date
WO2007105359A1 true WO2007105359A1 (ja) 2007-09-20

Family

ID=38509200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000155 WO2007105359A1 (ja) 2006-03-01 2007-03-01 倍率色収差を画像解析する画像処理装置、画像処理プログラム、電子カメラ、および画像処理方法

Country Status (4)

Country Link
US (1) US7995108B2 (ja)
EP (1) EP1993070B1 (ja)
JP (1) JP4816725B2 (ja)
WO (1) WO2007105359A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177832A (ja) * 2009-01-28 2010-08-12 Nikon Corp 画像処理装置及び画像処理方法
JP2012028848A (ja) * 2010-07-20 2012-02-09 Hitachi Kokusai Electric Inc 色ずれ補正装置
JP2012070053A (ja) * 2010-09-21 2012-04-05 Canon Inc 画像処理装置、撮像装置、その倍率色収差補正方法、及び倍率色収差補正プログラム、並びに記録媒体
US9438874B2 (en) 2013-08-22 2016-09-06 Canon Kabushiki Kaisha Image processing apparatus that is capable of correcting color shift, method of controlling the same, and storage medium
JP2016195367A (ja) * 2015-04-01 2016-11-17 キヤノン株式会社 画像処理装置及び方法、撮像装置、並びにプログラム

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5180687B2 (ja) * 2008-06-03 2013-04-10 キヤノン株式会社 撮像装置及び補正方法
JP2010199650A (ja) * 2009-02-23 2010-09-09 Fujitsu Semiconductor Ltd 画像処理装置および画像処理方法
JP5627215B2 (ja) * 2009-11-04 2014-11-19 キヤノン株式会社 画像処理装置及びその制御方法
JP5438579B2 (ja) * 2010-03-29 2014-03-12 キヤノン株式会社 画像処理装置及びその制御方法
JP5505135B2 (ja) * 2010-06-30 2014-05-28 ソニー株式会社 画像処理装置、画像処理方法、および、プログラム
DE112010005744B4 (de) 2010-07-16 2021-09-09 Robert Bosch Gmbh Verfahren für die Detektion und Korrektur einer lateralen chromatischen Aberration
WO2012007059A1 (en) 2010-07-16 2012-01-19 Robert Bosch Gmbh Method for lateral chromatic aberration detection and correction
US8666162B1 (en) * 2010-12-20 2014-03-04 Csr Technology Inc. Advanced sensor binning correction
JP5840008B2 (ja) * 2011-02-21 2016-01-06 キヤノン株式会社 画像処理装置、画像処理方法およびプログラム
JP5537488B2 (ja) * 2011-04-15 2014-07-02 株式会社日立ハイテクノロジーズ 荷電粒子顕微鏡装置および画像撮像方法
US9361855B2 (en) * 2012-05-14 2016-06-07 Adobe Systems Incorporated Computer-implemented methods and systems for a color generator
US20130321675A1 (en) 2012-05-31 2013-12-05 Apple Inc. Raw scaler with chromatic aberration correction
JP2014110507A (ja) * 2012-11-30 2014-06-12 Canon Inc 画像処理装置および画像処理方法
WO2016145633A1 (zh) * 2015-03-18 2016-09-22 国立清华大学 高速三维成像之光学系统
JP6667393B2 (ja) * 2016-07-22 2020-03-18 株式会社キーエンス 拡大観察装置
US10282822B2 (en) 2016-12-01 2019-05-07 Almalence Inc. Digital correction of optical system aberrations
KR101916577B1 (ko) * 2017-04-07 2018-11-07 고려대학교 산학협력단 산란과 수차를 동시에 야기하는 매질 내의 타겟 오브젝트를 이미징하는 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187485A (ja) * 1985-02-15 1986-08-21 Hitachi Ltd テレビジョンカメラの補正方法
JPH05328367A (ja) * 1992-05-19 1993-12-10 Hitachi Denshi Ltd カラーテレビジョンカメラ装置
JPH11161773A (ja) * 1997-11-28 1999-06-18 Konica Corp 画像処理方法及び画像入力装置
JP2004241991A (ja) * 2003-02-05 2004-08-26 Minolta Co Ltd 撮像装置、画像処理装置及び画像処理プログラム
JP2005151122A (ja) * 2003-11-14 2005-06-09 Canon Inc 画像処理装置及び画像処理方法
JP2005167896A (ja) * 2003-12-05 2005-06-23 Matsushita Electric Ind Co Ltd 画像信号処理装置及び画像信号処理方法
JP2005202276A (ja) * 2004-01-19 2005-07-28 Konica Minolta Opto Inc 撮像装置
JP2006020275A (ja) * 2004-05-31 2006-01-19 Nikon Corp Rawデータから倍率色収差を検出する画像処理装置、画像処理プログラム、および電子カメラ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5353056A (en) * 1992-10-27 1994-10-04 Panasonic Technologies, Inc. System and method for modifying aberration and registration of images
US6806903B1 (en) * 1997-01-27 2004-10-19 Minolta Co., Ltd. Image capturing apparatus having a γ-characteristic corrector and/or image geometric distortion correction
US6853400B1 (en) * 1998-06-16 2005-02-08 Fuji Photo Film Co., Ltd. System and method for correcting aberration of lenses through which images are projected
US6483941B1 (en) * 1999-09-10 2002-11-19 Xerox Corporation Crominance channel overshoot control in image enhancement
JP3667644B2 (ja) 2001-02-02 2005-07-06 日本電気株式会社 行政情報配信方法、行政情報配信システム、情報管理サーバ及び行政情報配信プログラム
JP2002320237A (ja) 2001-04-20 2002-10-31 Toshiba Corp 倍率色収差の検出方法
JP2002344978A (ja) 2001-05-17 2002-11-29 Ichikawa Soft Laboratory:Kk 画像処理装置
JP4059119B2 (ja) 2003-03-24 2008-03-12 コニカミノルタホールディングス株式会社 色ずれ量測定装置、色ずれ量測定方法及び画像形成装置
US7454081B2 (en) * 2004-01-30 2008-11-18 Broadcom Corporation Method and system for video edge enhancement
EP1746846B1 (en) * 2004-04-12 2019-03-20 Nikon Corporation Image processing device having color shift-correcting function, image processing program, and electronic camera
JP4487903B2 (ja) * 2005-11-09 2010-06-23 ソニー株式会社 画像処理装置および方法、並びにプログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187485A (ja) * 1985-02-15 1986-08-21 Hitachi Ltd テレビジョンカメラの補正方法
JPH05328367A (ja) * 1992-05-19 1993-12-10 Hitachi Denshi Ltd カラーテレビジョンカメラ装置
JPH11161773A (ja) * 1997-11-28 1999-06-18 Konica Corp 画像処理方法及び画像入力装置
JP2004241991A (ja) * 2003-02-05 2004-08-26 Minolta Co Ltd 撮像装置、画像処理装置及び画像処理プログラム
JP2005151122A (ja) * 2003-11-14 2005-06-09 Canon Inc 画像処理装置及び画像処理方法
JP2005167896A (ja) * 2003-12-05 2005-06-23 Matsushita Electric Ind Co Ltd 画像信号処理装置及び画像信号処理方法
JP2005202276A (ja) * 2004-01-19 2005-07-28 Konica Minolta Opto Inc 撮像装置
JP2006020275A (ja) * 2004-05-31 2006-01-19 Nikon Corp Rawデータから倍率色収差を検出する画像処理装置、画像処理プログラム、および電子カメラ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1993070A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177832A (ja) * 2009-01-28 2010-08-12 Nikon Corp 画像処理装置及び画像処理方法
JP2012028848A (ja) * 2010-07-20 2012-02-09 Hitachi Kokusai Electric Inc 色ずれ補正装置
JP2012070053A (ja) * 2010-09-21 2012-04-05 Canon Inc 画像処理装置、撮像装置、その倍率色収差補正方法、及び倍率色収差補正プログラム、並びに記録媒体
US9438874B2 (en) 2013-08-22 2016-09-06 Canon Kabushiki Kaisha Image processing apparatus that is capable of correcting color shift, method of controlling the same, and storage medium
JP2016195367A (ja) * 2015-04-01 2016-11-17 キヤノン株式会社 画像処理装置及び方法、撮像装置、並びにプログラム

Also Published As

Publication number Publication date
US7995108B2 (en) 2011-08-09
EP1993070A1 (en) 2008-11-19
JPWO2007105359A1 (ja) 2009-07-30
EP1993070B1 (en) 2013-09-18
JP4816725B2 (ja) 2011-11-16
EP1993070A4 (en) 2010-06-30
US20080284869A1 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
WO2007105359A1 (ja) 倍率色収差を画像解析する画像処理装置、画像処理プログラム、電子カメラ、および画像処理方法
US7916937B2 (en) Image processing device having color shift correcting function, image processing program and electronic camera
US8682068B2 (en) Image processing apparatus, image processing method, and program
EP1855486B1 (en) Image processor correcting color misregistration, image processing program, image processing method, and electronic camera
CN102055988B (zh) 图像处理设备及其控制方法
JP4707450B2 (ja) 画像処理装置及びホワイトバランス調整装置
WO2005117455A1 (ja) Rawデ-タから倍率色収差を検出する画像処理装置、画像処理プログラム、および電子カメラ
US20140347528A1 (en) Image processing apparatus and image processing method, and program
JP2003116060A (ja) 欠陥画素補正装置
JP5324508B2 (ja) 画像処理装置および方法,ならびに画像処理プログラム
JP4329542B2 (ja) 画素の類似度判定を行う画像処理装置、および画像処理プログラム
WO2014013792A1 (ja) ノイズ評価方法、画像処理装置、撮像装置およびプログラム
US8452115B2 (en) Method and apparatus for designing restoration filter, and method and apparatus for restoring image using the restoration filter
JP5928465B2 (ja) 劣化復元システム、劣化復元方法およびプログラム
JP4861922B2 (ja) 車色判定装置
US8736720B2 (en) Image processing device for correcting image colors and image processing program
JP4613139B2 (ja) エッジ検出システム
JP6074198B2 (ja) 画像処理装置及び画像処理方法
JP2008028475A (ja) 画像処理装置、画像処理プログラム、画像処理プログラムを記録する記録媒体、画像処理方法
JP4483604B2 (ja) 色空間変換装置および色空間変換プログラム
US20100272352A1 (en) Pixel processing method and apparatus thereof
WO2007026655A1 (ja) 画像の色ズレ処理を行う画像処理装置、プログラム、撮像装置、および方法
JP2015041871A (ja) 画像処理装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07713537

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008504985

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007713537

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE