WO2007105322A1 - 鉄の定量方法 - Google Patents

鉄の定量方法 Download PDF

Info

Publication number
WO2007105322A1
WO2007105322A1 PCT/JP2006/316133 JP2006316133W WO2007105322A1 WO 2007105322 A1 WO2007105322 A1 WO 2007105322A1 JP 2006316133 W JP2006316133 W JP 2006316133W WO 2007105322 A1 WO2007105322 A1 WO 2007105322A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample water
iron
added
water
nitrite
Prior art date
Application number
PCT/JP2006/316133
Other languages
English (en)
French (fr)
Inventor
Junichi Nakajima
Hiroyuki Mitsumoto
Kikumi Kamematsu
Original Assignee
Miura Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co., Ltd. filed Critical Miura Co., Ltd.
Priority to JP2008504970A priority Critical patent/JP4831371B2/ja
Publication of WO2007105322A1 publication Critical patent/WO2007105322A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Definitions

  • the present invention relates to a method for quantifying iron, and particularly to a method for quantifying iron contained in sample water.
  • Light background technology
  • Raw water, such as tap water, used to supply boilers is usually
  • water softening treatment to remove calcium and magnesium.
  • the deoxygenation treatment is usually performed by treating raw water using a separation membrane.
  • water softening treatment is usually carried out by treating raw water with ion exchange resin.
  • raw water such as tap water often contains iron.
  • This iron may clog the separation membrane used in the deoxidation treatment, impairing the deoxygenation efficiency of the raw water, and adsorb on the ion exchange resin used in the water softening treatment, hindering the softening of the raw water.
  • it is usually important to control the iron concentration of raw water used as boiler feed water before deoxidation and water softening.
  • the amount of iron contained in boiler water is significant as an indicator of the progress of corrosion and scale development in boiler cans, so accurate quantification of iron in boiler water is important. Therefore, in the boiler system, iron contained in raw water and boiler water is quantified. .
  • iron In raw water such as boiler water, iron is present in various states such as ionic, colloidal, and precipitates such as iron oxide and iron hydroxide. Therefore, in order to accurately quantify the total amount of iron contained in water, colloidal precipitate iron is dissolved in water as ions in the water to be analyzed, that is, sample water, It is necessary to quantify iron ions in water. Quantification of iron ions is usually done by phenanthroline phosphorus absorptiometry, flame atomic absorption, electric heating atomic absorption or
  • Japanese Industrial Standards J I S K O 1 0 1: 1 9 98, pp. 6-8 specify the pretreatment method of sample water that can be applied in such a method for the determination of iron.
  • this pretreatment method one or two kinds of mineral acids such as hydrochloric acid, nitric acid and sulfuric acid are added to the sample water, the mixture is boiled, allowed to cool, and diluted with pure water to adjust the amount of sample water. .
  • this pretreatment method requires several steps of adding a mineral acid to the sample water and adjusting the amount of the sample water in boiling water, which is cumbersome and takes a long time.
  • An object of the present invention is to enable easy determination of the total amount of iron contained in sample water. Disclosure of the invention
  • the method for quantifying iron according to the present invention is a method for quantifying iron contained in sample water, and includes a step of adding nitrite to the sample water, and coloring with respect to the sample water to which nitrite is added. A step of adding an agent and quantifying iron in the sample water by absorptiometry.
  • the nitrite used here is usually from the group consisting of alkali metal thionite, alkaline earth metal thionite, ammonium thiothionite, zinc thionite and zinc thionite. It has been chosen.
  • the nitrite nitrous acid metal salt is preferably an anhydrous salt of sodium thionite.
  • Nitnite is usually added at least 3 O mg per 10 milliliters of sample water.
  • nitrite When adding nitrite after adjusting the pH of the sample water to 4.2 or lower, filter the sample water with nitrite added before adding the color former to the sample water. Is preferred. Alternatively, it is preferable to add sodium metabisulfite to the sample water before adding the nitrite. If nitrite is added after adjusting the pH of the sample water to 4.2 or less, the sample water may become turbid ', which may make it difficult to perform the absorptiometry described above. However, the turbidity of the sample water is eliminated by filtration, and the spectrophotometric method can be performed stably.
  • the amount of sodium metabisulfite added to the sample water is usually set to a molar ratio of at least two equivalents of the nitrite added to the sample water.
  • the color former used in the method for determining iron according to the present invention is, for example, 2, 4, 6-tris (2-pyridyl) 1, 1, 3, 5-triazine.
  • water containing sodium polyacrylate as a dispersant to prevent scale formation such as boiler water
  • suspended matter is formed, which may interfere with the spectrophotometric method.
  • Preferred examples of the color former used in the method for determining iron according to the present invention include 2, 4, 6-tris (2-pyridyl)-1, 3, 5-triazine, for example, 1, 10- Phenant mouth phosphorus and its hydrates.
  • a pretreatment step is performed on the sample water.
  • nitrite is added to the sample water.
  • the sample water here is water to be analyzed and is not particularly limited. Tap water, industrial water, ground water, river water, lake water, boiler water, condensate from thermal equipment such as boilers, etc. Of various water.
  • the nitrite used in this pretreatment step is usually a salt of nitrous acid with alkali metal, alkaline earth metal, ammonium, zinc, cadmium, etc., and is water-soluble.
  • the nitrite may be an anhydride or a hydrate.
  • an anhydrous salt of sodium nitrite which is a kind of alkali metal salt of nitrous acid.
  • the amount of nitrite added to the sample water is usually set to an amount that is sufficient for the iron content contained in the sample water, as predicted by empirical rules according to the type of sample water.
  • sample water to which nitrite is added is usually left for about 10 to 20 minutes after shaking.
  • colloidal and precipitated iron contained in the sample water reacts with nitrite, and the iron is ionized and dissolved in the sample water.
  • trivalent iron ions present in the sample water are converted. Reduced to divalent iron ions. That is, the total amount of iron contained in the sample water is dissolved in the sample water in the form of divalent iron ions.
  • the sample water to which the nitrite is added may be adjusted in advance so that the pH is 4.2 or less, preferably 3.5 or less. In this case, the sample water can be heated as described above.
  • the pH of the sample water is usually adjusted by adding a mineral acid such as hydrochloric acid to the sample water ( ⁇ is preferred.
  • the pH of the sample water is added with a buffer solution such as ammonium acetate aqueous solution.
  • a buffer solution such as ammonium acetate aqueous solution.
  • the sample water ⁇ ⁇ ⁇ has been adjusted to 4.2 or less in advance, the sample water may become turbid due to the addition of nitrite, especially white turbidity. Since this turbidity may interfere with the accurate measurement of absorbance in the execution of the absorptiometry described later, it is preferably removed from the sample water. In general, such turbidity
  • the sample water to which nitrite is added can be removed by leaving it for a predetermined time and filtering.
  • the turbidity as described above in the sample water is usually solved by adding sodium metabisulfite to the sample water before adding nitrite to the sample water. It can be prevented in advance.
  • the amount of sodium metabisulfite added to the sample water is set to a molar ratio of at least 2 times equivalent to the amount of nitrite added to the sample water. It is more preferable to set it equal to or more than the equivalent.
  • a quantitative analysis step of iron that is, divalent iron is performed on the sample water treated as described above.
  • the quantitative analysis process is performed by absorptiometry.
  • a predetermined color former is added to the sample water.
  • the color former used here is not particularly limited as long as it develops color by reacting with divalent iron ions.
  • the 1, 10-phenant mouth which has a wide range of color pH conditions and is inexpensive.
  • Phosphorus and its hydrates good color sensitivity and relatively inexpensive 2, 4, 6_tris (2_pyridyl) — 1, 3, 5— triazine (abbreviation: TPTZ), color development in a wide range of pH conditions 4, 7-Diphenyl 1, 1, 0—Phenanthroline disulfonic acid (abbreviation: vasophenant phosphine sulfonic acid), which has good sensitivity, and its allyl metal salt, and 3- (2-pyridyl), which has better color sensitivity than TPTZ ) — 5, 6-bis (4-sulfophenyl) 1, 1, 4— triazine (abbreviation PDT S) and its alkali metal salts.
  • 1,10-phenanthroline or its hydrate or TPTZ is preferably used.
  • the color former is preferably added to the sample water in the form of an aqueous solution or a water-soluble organic solvent solution such as an alcohol solution.
  • TPTZ When TPTZ is used as the color former, it is preferable to add ethanol to the sample water before adding TPTZ.
  • the sample water is water containing sodium polyacrylate as a dispersant to prevent scale formation, such as boiler water, suspended matter is generated when TPTZ is added, and this suspended matter is subjected to spectrophotometry. May interfere with Specifically, this suspended substance has a color development wavelength of TPT Z. Since there is a tendency to increase the absorbance, the amount of iron in the sample water determined based on this absorbance may become larger than the actual amount of iron. This is particularly noticeable when TPTZ is added to sample water with a pH of 4.2 or lower.
  • the amount of ethanol added is preferably 2 to 5 milliliters with respect to 10 milliliters of sample water.
  • the absorbance of the color developed by the color former is measured, and the amount of divalent iron ions contained in the sample water is determined from the measurement result.
  • a calibration curve is created by examining in advance the relationship between the absorbance at the coloring wavelength according to the type of color former to be used and the amount of divalent iron ions in the sample water, and the calibration curve is applied to the calibration curve from the measured absorbance. Based on this, the amount of divalent iron ions contained in the sample water is determined.
  • it is preferable to correct the absorbance at the coloring wavelength by measuring a blank of the sample water in advance and using this measurement value.
  • the color development wavelengths of the color formers listed above are as follows.
  • Basofanthroline sulfonic acid and its alkali metal salt 53 5 nm PDT S and its alkali metal salt: 562 nm
  • the pH of the sample water can usually be adjusted by adding an acidic solution such as hydrochloric acid or nitric acid or a buffer solution such as ammonium acetate. ).
  • n-Nanthroline sulfonic acid Al metal salt pH 2-9 PDTS and its alkali metal salt: pH 3.5-4.5
  • the sample water is water containing ethylenediamine amine acetic acid or its salt, which is a masking agent for calcium and magnesium, such as boiler water, TPTZ or PDTS may be used as a color former.
  • ethylenediamine amine acetic acid or its salt which is a masking agent for calcium and magnesium, such as boiler water, TPTZ or PDTS may be used as a color former.
  • the alkali metal salt divalent iron ions in the sample water react with ethylenediaminetetraacetic acid or its salt, and the color intensity may fluctuate.
  • the pH of the sample water is lowered, the reaction between the divalent iron ions in the sample water and ethylenediaminetetraacetic acid or its salt becomes difficult to proceed, and the divalent iron ion in the sample water becomes a colorant. It becomes easy to react.
  • the pH of the sample water when using these color formers, it is preferable to set the pH of the sample water to be close to the lower limit of the above-mentioned range where color development is possible (that is, on the low pH side) before adding the color former. .
  • TPTZ it is preferable to set the pH of the sample water to 3.0 to 3.4, and when using PDTS or its alkali metal salt, the pH of the sample water is set to 3.5 to 3. It is preferable to set to 7.
  • S and their alkali metal salts can provide stable color intensity even in sample water containing ethylenediamin tetraacetic acid or its salts, facilitating the spectrophotometric method. Can be implemented.
  • the iron quantification method is carried out by simply adding ffi nithionate to sample water and allowing it to stand for a required time, and then adding a color former to sample water and carrying out absorptiometry. Therefore, the total amount of iron contained in the sample water can be easily quantified in a short time compared to the conventional quantification method requiring complicated pretreatment. Therefore, if this quantification method is adopted in an analytical instrument capable of performing absorptiometry, iron in the sample water can be automatically quantitatively analyzed using the analytical instrument, which is becoming the mainstream in water analysis. A continuous flow analysis can be realized.
  • the absorbance can be corrected by a simple method. Specifically, the absorbance at the peak of the color development wavelength and the portion other than its tail corresponding to the type of color former is used as a correction value, and the divalent iron ion is based on the value obtained by subtracting this correction value from the absorbance at the color development wavelength. Determine the amount.
  • preferred wavelengths for obtaining the absorbance for correction are as follows.
  • Bathophenanthrolinesulfonic acid and its metal salt 700 nm PDTS and its alkali metal salt: 750 nm Examples
  • Atomic absorption standard solution with iron ion concentration of 1.00 Omg (made by Wako Pure Chemical Industries, Ltd.) Add pure water to 0.5 milliliter to total 100 milliliter The sample water A containing ionic iron was prepared.
  • sample water B was prepared by adding pure water to 1.5 ml of this sample water and diluting it to a total volume of 1,000 milliliters.
  • Atomic absorption standard solution with iron ion concentration of 1.00 Omg (Wako Pure Chemical Industries, Ltd.) Add pure water to 0.1 milliliter to make 100 milliliter in total. Diluted to give sample water D.
  • Atomic absorption standard solution with iron ion concentration of 1.00 Omg / liter (manufactured by Wako Pure Chemical Industries, Ltd.) 0.1 milliliter, 0.0 1M ethylenediamin tetraacetate ninatrium salt aqueous solution 6
  • Sample water E was prepared by adding milliliters and further adding pure water to dilute the total volume to 100 milliliters.
  • Atomic absorption standard solution with iron ion concentration of 1.00 OmgZ liter manufactured by Wako Pure Chemical Industries, Ltd.
  • 1.6% by weight of sodium polyacrylate aqueous solution to 0.1 milliliter 0.5% Milliliter was added, and pure water was further added to dilute the total volume to 100 milliliters, and sample water F was added.
  • Sample water A were added to B, and each 1 0 millimeter liters 8 wt% aqueous hydrochloric acid solution 1 millimeter rate Torr and 25 weight 0/0 acetic Anmoniumu solution 0.72 ml against and C, each sample water The pH was adjusted to approximately 3. Subsequently, 100 mg of sodium dithionite anhydrous (for chemical use, manufactured by Wako Pure Chemical Industries, Ltd.) was added to each sample water and shaken and allowed to stand for 10 minutes. As a result, each sample water became cloudy. Next, each cloudy sample water was filtered using a 0.2 ⁇ m filter to remove cloudy components from each sample water.
  • Sample water A, B, and C are each 10 milliliters, 8% by weight hydrochloric acid solution, 1 milliliter and 25 weight 0 /.
  • Ammonium acetate aqueous solution 0.72 ml was added to adjust the pH of each sample water to about 3.
  • sodium metabisulfite powder special grade manufactured by Wako Pure Chemical Industries, Ltd.
  • sodium thiosulfate powder first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.
  • Sodium nithionate anhydrate for chemicals manufactured by Wako Pure Chemical Industries, Ltd.
  • Sodium thiosulfate powder is added to prevent the copper ions from interfering with the absorbance measurement described later when the sample water contains copper ions. No turbidity such as white turbidity was observed in each sample water after standing.
  • Table 1 shows the quantitative results of Examples 1 to 6 and Comparative Examples 1 to 6. Table 1 also shows the relative values when the quantitative results of Comparative Examples 1 to 3 using the corresponding sample water are used as the reference value (100%). According to Table 1, in Examples 1-6, the result almost equivalent to Comparative Examples 1-3 was obtained, and it turns out that the reliability of a result is high.
  • the sample water D was adjusted to a pH of approximately 4.2 by adding 1 milliliter of an 8% by weight aqueous hydrochloric acid solution and 1 milliliter of an aqueous 25% by weight ammonium acetate aqueous solution to 10 milliliters of the sample water D. . Subsequently, with respect to sample water D, 0.4% by weight of 10% by weight of hydroxyammonium hydrochloride solution used in the phenanthroline spectrophotometric method specified in JIS KO 100: 1 99 98 0.5 weight 0/0 1, 1 0 Fuenanto port was added phosphoric aqueous solution 0.4 ml and allowed to stand for about 1 0 minutes.
  • the sample water D turned red due to the iron (II) complex.
  • the absorbance at a wavelength corresponding to red (5 10 nm) was measured using a spectrophotometer ("U-2010" manufactured by Hitachi, Ltd.). Then, based on a calibration curve prepared in advance, iron contained in the sample water D was quantified from the measurement result of the absorbance.
  • Sample water E 10 weight per 10 milliliters. / 0 Hydrochloric acid aqueous solution 1 milliliter and 25% by weight ammonium acetate aqueous solution 1 milliliter were added, and the pH of sample water E was adjusted to approximately 4.2. The iron in sample water E was quantified.
  • sample water E had a magenta color due to the iron (II) complex.
  • spectrophotometer (“Hitachi Ltd. made” U ⁇ 2 0 1 0 ”) is used to measure the absorbance at the wavelength corresponding to reddish purple (56 2 2 nm), and based on the calibration curve prepared in advance, The iron contained in E was quantified.
  • Water sample E 1 0 millimeter rate 8% by weight aqueous solution of hydrochloric acid 1 ml and 2 5 wt 0/0 acetic Anmoniumu aqueous respect Torr 0.9 were added to milliliters, p water sample E The procedure was the same as in Example 8 except that H was adjusted to approximately 4.0, and the soot contained in the sample water E was quantified.
  • Table 2 shows the quantification results of Comparative Example 7, Examples 7 and 8, and Reference Examples 1 and 2. Table 2 also shows the relative value when the quantitative result of Comparative Example 7 is used as the reference value (1 0 0%). According to Table 2, Reference Examples 1 and 2 are less reliable than Comparative Example 7 in that the amount of iron measured is less reliable. However, in order to eliminate the effect of ethylenediammine tetraacetate ninatrium salt contained in sample water E, p In Examples 7 and 8 in which H was decreased, results almost the same as those of Comparative Example 7 were obtained, indicating that the results are highly reliable. Table 2
  • Example 9 The procedure was the same as in Example 9 except that ethanol was not added to the sample water F after standing, and iron contained in the sample water F was quantified.
  • ethanol was not added to the sample water F after standing, and iron contained in the sample water F was quantified.
  • iron contained in the sample water F was quantified.
  • the T P TZ solution was added to the sample water F, suspended matter was remarkably generated.
  • Example 9 The same operation as in Example 9 was performed except that the amount of the 25 wt% ammonium acetate aqueous solution added to the sample water F was changed to 0.72 milliliter and the pH of the sample water F was adjusted to 3.2. Iron contained in the sample water F was quantified. In this example, no suspended matter was observed in sample water F at the time of absorbance measurement.
  • the iron contained in the sample water F was quantified in the same manner as in Example 10 except that ethanol was not added to the sample water F after standing.
  • ethanol was not added to the sample water F after standing.
  • T P TZ solution was added to the sample water F, suspended matter was remarkably generated.
  • Table 3 shows the quantitative results when the quantitative result of Comparative Example 7 is used as the reference value (100%). According to Table 3, the results of Examples 9 and 10 were almost the same as those of Comparative Example 7. The results are highly reliable. On the other hand, Reference Examples 3 and 4 have more iron determination than Comparative Example 7. This is influenced by the suspended matter generated when the TP TZ solution is added to the sample water F, does not reflect the amount of iron contained in the sample water F, and is also an error. Since it is not a thing, its reliability is doubtful. Table 3
  • the pH of the sample water was adjusted to 3.2, 3.7 or 4.2 in advance by adding hydrochloric acid aqueous solution and 25% ammonium acetate aqueous solution before adding sodium nitrite anhydrous sodium salt aqueous solution or the like.
  • the sample water prepared as described above was set to 50 ° C, and iron was quantified every time a predetermined time passed.
  • 0.5 weight in sample water. / ol, 10—Phenant mouth phosphorus aqueous solution 0.4 milliliter was added, and iron was quantified based on absorbance at a wavelength of 5 10 nm.
  • Table 5 shows that when the pH of the sample water is low (in the case of 3.2), it takes about 3 minutes to obtain a measurement result of about 100%, whereas when the pH is high (3. (7 or 4.2) indicates that it takes more than 5 minutes to obtain 100% measurement results. According to this result, the sample water can be obtained more accurately and accurately when the pH is set lower.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

試料水中に含まれる鉄の定量方法では、先ず、試料水に対し、亜ニチオン酸ナトリウムの無水塩等の亜ニチオン酸塩を添加する。これにより、試料水中に含まれているコロイド状および沈殿状の鉄分がイオン化して水中に溶解し、また、試料水中に含まれる三価の鉄イオンは二価の鉄イオンヘ還元される。次に、亜ニチオン酸塩が添加された試料水に対して二価の鉄イオンと反応して発色する発色剤を添加し、吸光光度法により試料水中の鉄を定量する。利用可能な発色剤は、例えば、1,10-フェナントロリンおよびその水和物や2,4,6-トリス(2-ピリジル)-1,3,5-トリアジンなどである。

Description

鉄の定量方法 技術分野
本発明は、 鉄の定量方法、 特に、 試料水中に含まれる鉄の定量方法に関する。 明背景技術
ボイラへの給水として用いられる水道水などの原水は、 通常、 ボイラ内での 田
腐食やスケールの発生を防止するために、 溶存酸素を除去する脱酸素処理およ 書
び硬度分、 すなわちカルシウムやマグネシゥムを除去する軟水化処理が施され ている。 ここで、 脱酸素処理は、 通常、 分離膜を用いて原水を処理することで 実施されている。 また、 軟水化処理は、 通常、 イオン交換樹脂を用いて原水を 処理することで実施されている。
ところで、 水道水などの原水は、 鉄分を含む場合が多い。 この鉄分は、 脱酸 素処理で用いる分離膜を目詰まりさせ、 原水の脱酸素処理効率を損なう可能性 があり、 また、 軟水化処理で用いるイオン交換樹脂に吸着し、 原水の軟水化を 妨げる可能性がある。 このため、 ボイラ給水として用いられる原水は、 通常、 脱酸素処理および軟水化処理される前段階での鉄分濃度の管理が重要である。 また、 ボイラにおいては、 ボイラ水に含まれる鉄分量がボイラ缶体での腐食進 行やスケールの発生傾向を示す指標として有意なことから、 ボイラ水における 鉄分の正確な定量が重要である。 そこで、 ボイラシステムにおいては、 原水や ボイラ水に含まれる鉄の定量が実施されている。 .
原水ゃボイラ水などの水中において、 鉄分は、 イオン状、 コロイ ド状および 酸化鉄や水酸化鉄等の沈殿物状などの種々の状態で存在している。 このため、 水中に含まれる鉄分の全量を正確に定量するためには、 分析対象となる水、 す なわち試料水において、 コロイ ド状ゃ沈殿物状の鉄分を水中へイオンとして溶 解し、 水中の鉄イオンを定量する必要がある。 鉄イオンの定量は、 通常、 フエ ナント口リン吸光光度法、 フレーム原子吸光法、 電気加熱原子吸光法若しくは
I C P発光分光分析法により実施される。 因みに、 フエナント口リン吸光光度 法を実施する場合は、 水中に含まれる三価の鉄イオンを予め二価の鉄イオンに 還元しておく必要もある。
日本工業規格 J I S K O 1 0 1 : 1 9 9 8、 6— 8頁は、 このような鉄 の定量方法において適用可能な試料水の前処理方法を規定している。 この前処 理方法は、 試料水に対して塩酸、 硝酸および硫酸等の鉱酸の一種若しくは二種 を添加して靠沸した後に放冷し、 純水で薄めて試料水量を調整している。 しか し、 この前処理方法は、 試料水に対する鉱酸の添加、 試料水の煮沸おょぴ試料 水量の調整という数段階の工程を経る必要があるため、 作業が煩雑で長時間を 要する。
一方、 水分析においては、 場合によっては数百から数千に達する多数の試料 水を迅速に分析する必要があることから、 試料水の分取、 前処理および分析と いう一連の分析作業を分析機器において自動的に実行する連続流れ分析が主流 になりつつある。 ところが、 試料水中の鉄の定量は、 上述のような煩雑で長時 間を要する前処理が必要になるため、 連続流れ分析での実施が実質的に困難で ある。
本発明の目的は、 試料水中に含まれる鉄の全量を容易に定量できるようにす ることにある。 発明の開示
本発明に係る鉄の定量方法は、 試料水中に含まれる鉄の定量方法であり、 試 料水へ亜ニチオン酸塩を添加する工程と、 亜ニチオン酸塩が添加された試料水 に対して発色剤を添加し、 吸光光度法により試料水中の鉄を定量する工程とを 含んでいる。
ここで用いられる亜ニチオン酸塩は、 通常、 亜ニチオン酸アルカリ金属塩、 亜ニチオン酸アルカリ土類金属塩、 亜ニチオン酸アンモニゥム塩、 亜ニチオン 酸亜鉛塩および亜ニチオン酸力ドミゥム塩からなる群から選ばれたものである。 亜ニチオン酸アル力リ金属塩は、 亜ニチオン酸ナトリゥムの無水塩が好ましい。 また、 亜ニチオン酸塩は、 通常、 試料水 1 0ミリ リツトル当りに対して少なく とも 3 O m g添加する。
この定量方法において、 試料水に亜ニチオン酸塩を添加すると、 試料水中に 含まれているコロイ ド状および沈殿状の鉄分がイオン化して水中に溶解し、 ま た、 試料水中に含まれる三価の鉄イオンは二価の鉄イオンへ還元される。 この ため、 この試料水に対して発色剤を添加して吸光光度法を適用すると、 試料水 に含まれる鉄の全量を正確に定量することができる。
この定量方法では、 亜ニチオン酸塩が添加された試料水を加熱するのが好ま しい。 或いは、 試料水の p Hを 4 . 2以下に調整してから亜ニチオン酸塩を添 加するのが好ましい。 これらの場合、 試料水に含まれるコロイ ド状および沈殿 物状の鉄分と亜ニチオン酸塩との反応速度が速まり、 より迅速な鉄の定量が可 能になる。
試料水の p Hを 4 . 2以下に調整してから亜ニチオン酸塩を添加する場合、 試料水に対して発色剤を添加する前に、 亜ニチオン酸塩が添加された試料水を ろ過するのが好ましい。 或いは、 亜ニチオン酸塩を添加する前に、 試料水に対 してメタ重亜硫酸ナトリウムを添加するのが好ましい。 試料水の p Hを 4 . 2 以下に調整してから亜ニチオン酸塩を添加すると、 試料水に濁りが生じる場合 があり'、 上述の吸光光度法を実施するのが困難になる可能性があるが、 試料水 は、 ろ過により濁りが解消され、 吸光光度法を安定に実施することができるよ うになる。 また、 試料水は、 亜ニチオン酸塩を添加する前にメタ重亜硫酸ナト リウムを添加しておくと、 p Hを 4 . 2以下に調整しても濁りが生じにく くな り、 吸光光度法を安定に実施することができるようになる。 メタ重亜硫酸ナト リゥムを添加した試料水において、 亜ニチオン酸塩の添加により濁りが生じた 場合、 当該試料水は、 ろ過により濁りを除去することもできる。
試料水に対するメタ重亜硫酸ナトリウムの添加量は、 通常、 モル比において、 試料水へ添加する亜ニチオン酸塩の少なく とも 2倍当量に設定するのが好まし レ、。
本発明に係る鉄の定量方法において用いられる発色剤は、 例えば、 2, 4, 6—トリス (2—ピリジル) 一 1, 3, 5—トリアジンである。 この場合、 試 料水に対して 2, 4, 6—トリス (2 —ピリジル) 一 1, 3, 5—トリアジン を添加する前に、 試料水に対してエタノールを添加するのが好ましい。 ボイラ 水のような、 スケール発生防止のための分散剤としてポリアクリル酸ナトリゥ ムを含む水が試料水の場合は、 2, 4, 6—トリス (2 —ピリジル) — 1, 3, 5—トリアジンを添加したときに浮遊物が生成し、 この浮遊物が吸光光度法の 実施の妨げになる可能性がある。 試料水にエタノールを添加しておくと、 この ような浮遊物の生成が抑制され、 吸光光度法を安定に実施することができる。 また、 発色剤として 2, 4, 6— トリス (2—ピリジル) 一 1, 3, 5—ト リアジンを用いる場合、 試料水に対して 2, 4 , 6—トリス (2—ピリジル) — 1, 3, 5—トリアジンを添加する前に、 試料水の p Hを 3 . 0〜3 . 4に 設定するのが好ましい。 このようにすれば、 ボイラ水のような、 スケール生成 原因となる硬度分、 すなわち、 カルシウムおよびマグネシウムに対するマスキ ング剤であるエチレンジァミン四酢酸またはその塩を含む水が試料水であって も、 2, 4, 6—トリス (2—ピリジル) 一 1, 3, 5—トリアジンの安定な 発色強度が得られるため、 吸光光度法を円滑に実施することができる。
本発明に係る鉄の定量方法において用いられる発色剤として好ましいものは、 上述の 2, 4, 6—トリス (2—ピリジル) ー 1, 3, 5— トリアジンの他、 例えば、 1, 1 0—フエナント口リンおよびその水和物である。
本発明の他の目的および効果は、 以下の詳細な説明において触れる。 発明を実施するための最良の形態
本発明に係る鉄の定量方法では、 先ず、 試料水に対して前処理工程を実施す る。 この前処理工程では、 試料水に対して亜ニチオン酸塩を添加する。
ここで試料水は、 分析対象となる水であって特に制限されるものではなく、 水道水、 工業用水、 地下水、 河川水、 湖沼水、 ボイラ水、 ボイラ等の熱機器か らの復水などの各種の水である。
この前処理工程において用いられる亜ニチオン酸塩は、'通常、 亜ニチオン酸 とアルカリ金属、 アルカリ土類金属、 アンモニゥム、 亜鉛およびカドミウム等 との塩であり、 水溶性のものである。 また、 亜ニチオン酸塩は、 無水物であつ てもよいし、 水和物であってもよい。 このうち、 本発明では、 一般に市販され ており、 入手が容易なことから、 亜ニチオン酸のアルカリ金属塩の一種である 亜ニチオン酸ナトリゥムの無水塩を用いるのが好ましい。
試料水に対する亜ニチオン酸塩の添加量は、 通常、 試料水の種類に応じた経 験則等から予測される、 試料水中に含まれる鉄分量に対して十分な量に設定す る。 特に、 試料水中に含まれるコロイ ド状の鉄分および水酸化鉄や酸化鉄等の 沈殿状の鉄分の全量を試料水中に溶解することができ、 しかも、 これらの鉄分 の溶解後に試料水中に存在する三価の鉄イオンを二価の鉄イオンへ還元するの に必要な十分な量に設定するのが好ましい。 具体的には、 試料水中に含まれる ものと予測される鉄分量に対し、 モル比で 5〜 5 0 0倍当量に設定するのが好 ましい。
因みに、 試料水に含まれる微量鉄分の定量分析を実施する場合は、 通常、 試 料水 1 0ミリ リツトルに対して少なくとも 3 0 m g、 好ましくは l O O m g以 上の亜ニチオン酸塩を添加する。
'亜ニチオン酸塩を添加した試料水は、 通常、.振り混ぜた後に 1 0〜 2 0分程 度放置する。 これにより、 試料水中に含まれるコロイ ド状および沈殿状の鉄分 と亜ニチオン酸塩とが反応し、 当該鉄分がイオン化して試料水中に溶解すると ともに、 試料水中に存在する三価の鉄イオンが二価の鉄イオンへ還元される。 すなわち、 試料水中に含まれる鉄分の全量は、 二価の鉄イオンの状態で試料水 中に溶解した状態になる。
この際、 亜ニチオン酸塩を添加した試料水を加熱すると、 上記反応が促進さ れ易くなり、 試料水をより迅速に次の定量分析工程へ移行させることができる。 また、 亜ニチオン酸塩を添加する試料水は、 予め p Hが 4 . 2以下、 好ましく は 3 . 5以下になるよう調整されていてもよい。 この場合、 試料水は、 上述の 通り加熱することもできる。 試料水の p Hをこのように調整すると、 上記反応 がより促進され易くなり、 試料水をより迅速に次の定量分析工程へ移行させる ことができる。 試料水の p Hは、 通常、 試料水に対して塩酸などの鉱酸を添加 して調整する (^が好ましい。 この際、 試料水の p Hは、 酢酸アンモニゥム水溶 液等の緩衝液を添加し、 微調整することもできる。 試料水を加熱したり、 試料 水の p Hを上述のように調整したりした場合は、 通常、 亜ニチオン酸塩を添加 した試料水の放置時間を 3〜 1 0分程度まで短縮することができる。
試料水の ρ Ηが予め 4 . 2以下になるよう調整されている場合、 試料水は、 亜ニチオン酸塩の添加により濁り、 特に、 白濁が生じる場合がある。 この濁り は、 後述する吸光光度法の実施において、 吸光度の正確な測定を妨害する可能 性があるため、 試料水から除去するのが好ましい。 一般に、 このような濁りは、 亜ニチオン酸塩を添加した試料水を所定時間放置した後にろ過すると除去する ことができる。
また、 試料水における上述のような濁りは、 通常、 試料水に対して亜ニチォ ン酸塩を添加する前に、 試料水に対してメタ重亜硫酸ナトリゥムを添加して溶 解しておくことで未然に防止することができる。 この場合、 試料水に対するメ タ重亜硫酸ナトリ ゥムの添加量は、 試料水へ添加する亜ニチオン酸塩の量に対 し、 モル比で少なく とも 2倍当量に設定するのが好ましく、 3倍当量以上に設 定するのがより好ましい。 因みに、 試料水に対して予めメタ重亜硫酸ナドリウ ムを添加したにもかかわらず濁りが発生した場合は、 試料水をろ過して濁りを 除去するのが好ましい。
次に、 上述のようにして処理された試料水に对し、 鉄分、 すなわち、 二価の 鉄の定量分析工程を実施する。 定量分析工程は、 吸光光度法により実施する。 ここでは、 先ず、 試料水に対し、 所定の発色剤を添加する。 ここで用いられる 発色剤は、 二価の鉄イオンと反応して発色するものであれば特に限定されるも のではなく、 例えば、 発色 p H条件が広範囲で安価な 1, 1 0—フエナント口 リンおよびその水和物、 発色感度が良好で比較的安価な 2, 4, 6 _トリス ( 2 _ピリジル) — 1, 3, 5— トリアジン (略称: T P T Z ) 、 発色 p H条件 が広範囲で発色感度が良好な 4, 7—ジフエニル一 1, 1 0—フエナントロリ ンジスルホン酸 (略称:バソフェナント口 リンスルホン酸) およびそのアル力 リ金属塩並びに TPTZよりも発色感度がさらに良好な 3— (2—ピリジル) — 5, 6—ビス (4—スルフオフヱニル) 一 1, 2, 4— トリアジン (略称 PDT S) およびそのアルカリ金属塩などである。 このうち、 1, 1 0—フヱ ナントロリン荐しくはその水和物または T PT Zを用いるのが好ましい。
発色剤は、 通常、 水溶液の状態やアルコール溶液等の水溶性有機溶媒溶液の 状態で試料水に対して添加するのが好ましい。
発色剤として TPTZを用いる場合、 試料水は、 TPTZを添加する前にェ タノールを添加しておくのが好ましい。 ボイラ水のような、 スケール発生防止 のための分散剤としてポリアクリル酸ナトリゥムを含む水が試料水の場合は、 TPTZを添加したときに浮遊物が生成し、 この浮遊物が吸光光度法の実施の 妨げになる可能性がある。 具体的には、 この浮遊物は、 TPT Zの発色波長の 吸光度を高める傾向にあるため、 この吸光度に基づいて判定される試料水中の 鉄量は、 実際の鉄量よりも多くなつてしまう可能性がある。 これは、 p Hが 4. 2以下の試料水に対して T P T Zを添加した場合において特に顕著である。 試 料水にエタノールを添加しておく と、 このような浮遊物の生成が抑制され、 吸 光光度法を安定に実施することができる。 エタノールの添加量は、 通常、 試料 水 1 0ミリ リツ トルに対し、 2〜 5ミリ リツ トルに設定するのが好ましい。
.次に、 発色剤が添加された試料水について、 発色剤による発色の吸光度を測 定し、 その測定結果から試料水中に含まれる二価の鉄イオン量を定量する。 こ こでは、 使用する発色剤の種類に応じた発色波長の吸光度と試料水中の二価の 鉄イオン量との関係を予め調べて検量線を作成しておき、 測定した吸光度から 当該検量線に基づいて試料水中に含まれる二価の鉄イオン量を判定する。 この 際、 試料水の濁りによる測定誤差を軽減するために、. 発色波長の吸光度は、 予 め試料水についてのブランクを測定し、 この測定値を利用して補正するのが好 ましい。 因みに、 先に挙げた各発色剤の発色波長は次の通りである。
1, 1 0—フエナント口リンおよびその水和物: 5 1 0 nm
TPTZ : 59 5 n m
バソフヱナントロリンスルホン酸およびそのアル力リ金属塩: 53 5 nm P DT Sおよびそのアルカリ金属塩: 562 nm
ところで、 発色剤は、 その種類毎に発色可能な p Hの範囲が異なる。 このた め、 発色剤を添加する前の試料水は、 必要に応じ、 発色剤の種類に応じて下記 の範囲に p Hを調整しておくのが好ましい。 試料水の pHは、 通常、 塩酸また は硝酸のような酸性液や酢酸アンモニゥムのような緩衝液の添加により調整す ることができ?)。
1, 1 0—フエナント口リンおよびその水和物: p H 2〜 9
TPTZ : pH3. 0〜5. 8
バソフ; nナントロリンスルホン酸おょぴそのアル力リ金属塩: p H 2〜 9 PDTSおよびそのアルカリ金属塩: pH3. 5〜4. 5
ボイラ水のような、 スケール生成原因となる硬度分、 すなわち、 カルシウム およびマグネシウムに対するマスキング剤であるエチレンジァミン四酢酸また はその塩を含む水が試料水の場合、 発色剤として TPTZまたは PDTS若し くはそのアルカリ金属塩を用いると、 試料水中の二価の鉄イオンとエチレンジ アミン四酢酸またはその塩とが反応し、 発色強度が変動する場合がある。 これ に対し、 試料水の pHを下げると、 試料水中の二価の鉄イオンとエチレンジァ ミン四酢酸またはその塩との反応が進行しにくくなり、 試料水中の二価の鉄ィ オンは発色剤と反応し易くなる。 そこで、 これらの発色剤を用いるときは、 発 色剤を添加する前に、 試料水の pHを上述の発色可能な範囲の下限付近 (すな わち、 低 pH側) に設定するのが好ましい。 具体的には、 TPTZを用いると きは試料水の pHを 3. 0〜3. 4に設定するのが好ましく、 PDTSまたは そのアルカリ金属塩を用いるときは試料水の pHを 3. 5〜3. 7に設定する のが好ましい。 試料水の p Hをこのように設定すると、 TPTZ並びに PDT. Sおよびそのアルカリ金属塩は、 エチレンジァミン四酢酸またはその塩を含む 試料水においても安定な発色強度が得られ、 吸光光度法を円滑に実施すること ができる。
また、 発色剤として TPTZまたは PDT S若しくはそのアル力リ金属塩を 用いる場合は、 試料水に亜ニチオン酸塩を添加する工程において、 試料水の p Hを 4. 2以下に調整しておくか否かにかかわらず、 亜ニチオン酸塩を添加す る前の試料水にメタ重亜硫酸ナトリゥムを添加しておくのが好ましい。 この場 合、 TPTZまたは PDTS若しくはそのアル力リ金属塩による二価の鉄ィォ ンの発色が亜ニチオン酸塩の影響により退色するのを防止することができる。 したがって、 TPTZまたは PDTS若しくはそのアル力リ金属塩の添加によ り発色した試料水の吸光度を正確に測定することができ、 より信頼性の高い定 量結果を得ることができる。
本発明に係 鉄の定量方法は、 試料水に対して ffiニチオン酸塩を添加して所 要時間放置するだけで、 試料水に対して発色剤を添加して吸光光度法を実施す ることができるため、 従来の煩雑な前処理が必要な定量方法に比べて短時間で 試料水中に含まれる鉄分の全量を容易に定量することができる。 したがって、 吸光光度法を実施可能な分析機器においてこの定量方法を採用すれば、 試料水 中の鉄を当該分析機器を用いて自動的に定量分析することができ、 水分析にお いて主流となりつつある連続流れ分析を実現することができる。
本発明の定量方法を上述のような連続流れ分析において適用する場合、 全て の試料水についてブランクを測定して吸光度の補正をすると非常に手間と時間 が掛かり、 実質的に連続流れ分析を実現するのが困難になる可能性がある。 そ こで、 本発明の定量方法は、 連続流れ分析において適用するような場合、 簡略 法により吸光度を補正することができる。 具体的には、 発色剤の種類に応じた 発色波長のピークおよびその裾部分以外における吸光度を補正値として利用し、 発色波長の吸光度からこの補正値を差し引いた値に基づいて二価の鉄イオン量 を判定する。 因みに、 先に挙げた各発色剤について、 補正用の吸光度を得るた めの好ましい波長は次の通りである。
1, 10—フエナント口リンおよびその水和物: 650 n m
TPTZ : 800 nm
バソフェナントロリンスルホン酸およびそのアル力リ金属塩: 700 n m PDTSおよびそのアルカリ金属塩: 750 nm 実施例
<試料水 Aの調整〉
鉄イオン濃度が 1, 00 Omg リ ッ トルの原子吸光用標準液 (和光純薬ェ 業株式会社製) 0. 5ミリ リツ トルに純水を加えて全量が 1 00ミ リ リ ッ トル になるよう希釈し、 イオン状鉄を含む試料水 Aを調製した。
ぐ試料水 Bの調製〉
ビーカーに純水 1 00ミリ リツトルを加え、 これを沸騰させた。 この純水に 対し、 ガラス棒で撹拌しながら 20重量%塩化鉄 ( I I I ) 水溶液 5ミリ リ.ッ トルを加え、 約 1分間加熱した。 その後、 この水溶液の粗熱を取り、 水酸化鉄 ( I I I ) のコロイ ドを含む試料水を調製した。 この試料水 1. 5ミ リ リ ッ ト ルに純水を加えて全量が 1, 000ミリ リ ツトルになるよう希釈し、 試料水 B とした。
<試料水 Cの調製〉
特殊循環ボイラのボイラ水管理基準に関する J I S B 8223 : l 999 の第 4頁において規定された、 pH (25°C) が 1 1. 0〜1 1. 8、 酸消費 量 (pH4. 8) 力 S 1 00〜80 Omg C a C03 /リ ッ トル、 電気伝導度 ( 25°C) が 40 OmS/メートル以下および塩化物イオン濃度が 400 m g C 1ー リツ トル以下の条件で運転されているボイラのボイラ水を採取し、 試料 水 Cとした。 この試料水 Cは、 イオン状、 コロイ ド状および沈殿物状等の様々 な状態の鉄分を含むものと予想される。
く試料水 Dの調製〉
鉄イオン濃度が 1, 00 Omg リ ッ トルの原子吸光用標準液 (和光純薬ェ 業株式会社製) 0. 1 ミリ リツ トルに純水を加えて全量が 1 00ミ リ リ ッ トル になるよう希釈し、 試料水 Dとした。
<試料水 Eの調製 >
鉄イオン濃度が 1, 00 Omg/リ ッ トルの原子吸光用標準液 (和光純薬ェ 業株式会社製) 0. 1 ミリ リ ッ トルに対し、 0. 0 1Mエチレンジァミン四酢 酸ニナトリゥム塩水溶液 6ミリ リットルを加え、 さらに純水を加えて全量が 1 00ミリ リツトルになるよう希釈し、 試料水 Eとした。
<試料水 Fの調製 >
鉄イオン濃度が 1, 00 OmgZリ ッ トルの原子吸光用標準液 (和光純薬ェ 業株式会社製) 0. 1 ミリ リ ットルに対し、 1. 6重量%ポリアクリル酸ナト リウム水溶液 0. 5ミ リ リ ッ トルを加え、 さらに純水を加えて全量が 1 00ミ リ リツトルになるよう希釈し、 試料水 Fどした。
実施例:!〜 3
試料水 A、 Bおよび Cのそれぞれ 1 0ミリ リツトルに対して 8重量%塩酸水 溶液 1 ミリ リツ トルと 25重量0 /0酢酸アンモニゥム水溶液 0. 72ミリ リッ ト ルとを添加し、 各試料水の p Hを略 3に調整した。 続いて、 各試料水に対し.、 亜ニチオン酸ナトリゥム無水塩 (和光純薬工業株式会社製の化学用) 1 00m gを添加して振り混ぜ、 1 0分間放置した。 この結果、 各試料水は白濁した。 次に、 白濁した各試料水を 0. 2 μ mのフィルタを用いてろ過し、 各試料水 から白濁成分を除去した。 そして、 ろ過後の各試料水に対して 0. 5重量% 1 1 0_フエナント口リ ン水溶液を 0. 4ミ リ リ ッ トル添加し、 1 0分程度放置 した。 この結果、 各試料水は、 鉄 ( I I ) 錯体によるだいだい赤色を呈した。 これらの各試料水について、 分光光度計 (株式会社日立製作所製の "U— 20 1 0" ) を用い、 だいだい赤色に対応する波長 (5 1 0 nm) の吸光度を測定 した。 そして、 予め作成しておいた検量線に基づいて、 当該吸光度の測定結果 から各試料水中に含まれる鉄を定量した。
実施例 4〜 6
試料水 A、 Bおよび Cのそれぞれ 1 0ミリ リツ 卜ルに対して 8重量%塩酸水 溶液 1 ミ リ リ ッ トルと 2 5重量0 /。酢酸アンモニゥム水溶液 0. 72ミリ リット ルとを添加し、 各試料水の p Hを略 3に調整した。 続いて、 各試料水に对し、 メタ重亜硫酸ナトリウム粉末 (和光純薬工業株式会社製の特級) 200mg、 チォ硫酸ナトリウム粉末 (和光純薬工業株式会社製の試薬一級) l O Omgお よび亜ニチオン酸ナトリゥム無水塩 (和光純薬工業株式会社製の化学用) .1 0 Omgをこの順で添加して振り混ぜ、 1 0分間放置した。 チォ硫酸ナトリウム 粉末は、 試料水が銅イオンを含む場合、 当該銅イオンが後述する吸光度測定の 妨害になるのを防止するために添加したものである。 放置後の各試料水におい て、 白濁等の濁りは観察されなかった。
次に、 各試料水に対して 0. 5重量。 /01, 1 0—フヱナント口リン水溶液を 0. 4ミリ リ ツトル添加し、 1 0分程度放置した。 この結果、 各試料水は、 鉄 ( I I ) 錯体によるだいだい赤色を呈した。 これらの各試料水について、 分光 光度計 (株式会社日立製作所製の "U— 20 1 0" ) を用い、 だいだい赤色に 対応する波長 (5 1 0 nm) の吸光度を測定した。 そして、 予め作成しておい た検量線に基づいて、 当該吸光度の測定結果から各試料水中に含まれる鉄を定 量した。
比較例:!〜 3
試料水 A、 Bおよび Cのそれぞれ 1 0ミ リ リ ッ トルに対して J I S K 8.1 80 : 1 994に規定の塩酸 0. 5ミリ リツ トルを添加して振り混ぜ、 突沸し ないように緩やかに約 1 0分間煮沸した。 その後、.放冷した各試料水に純水を 加えて煮沸前の容量に戻し、 これらの各試料水について、 I CP発光分光分析 法により鉄の定量を実施した。 ここでは、 セイコーインスツルメンッ株式会社 の I CP発光分光分析装置 「S P S 7800」 を用い、 測定感度において有利 な 259. 940 nmの発光強度を測定し、 その測定結果から予め作成した検 量線に基づいて各試料水中に含まれる鉄を定量した。
これらの比較例は、 J I S K 0 1 0 1 : 1 998において規定された、 I C Ρ発光分光分析法による鉄の定量方法に該当する。 比較例 4〜 6
試料水 A、 Bおよび Cのそれぞれ 1 0ミリ リツ トルに対して 8重量%塩酸水 溶液 1 ミリ リ ットルと 2 5重量0 /0酢酸アンモニゥム水溶液 0. 72ミ リ リッ ト ルとを添加し、 各試料水の pHを略 3に調整した。 続いて、 各試料水に対し、 J I S K0 10 1 : 1 998に規定されたフエナントロリン吸光光度法にお いて用いられる 1 0重量0 /0塩酸ヒ ドロキシルアンモニゥム溶液 0. 3 7ミ リ リ ットノレと 0. 5重量0 /01, 1 0—フエナント口リン水溶液 0. 4ミリ リッ トル とを添加し、 10分程度放置した。 この結果、 各試料水は、 鉄 ( I I ) 錯体に よるだいだい赤色を呈した。 これらの各試料水について、 分光光度計 (株式会 社日立製作所製の "U— 20 1 0" ) を用い、. だいだい赤色に対応する波長 ( 5 1 0 nm) の吸光度を測定した 9 そして、 予め作成しておいた検量線に基づ いて、 当該吸光度の測定結果から各試料水中に含まれる鉄を定量した。
評価 A
実施例 1〜 6および比較例 1〜6の定量結果を表 1に示す。 表 1には、 対応 する試料水を用いた比較例 1〜3の定量結果を基準値 (1 00%) とした場合 の相対値を併せて表示している。 表 1によると、 実施例 1〜6は、 比較例 1〜 3と略同等の結果が得られており、 結果の信頼性が高いことがわかる。
表 1
Figure imgf000014_0001
比較例 7
試料水 D 1 0ミリ リツ トルに対して 8重量%塩酸水溶液 1 ミリ.リツトルと 2 5重量%酢酸アンモニゥム水溶液 1 ミリ リツ トルとを添加し、 試料水 Dの pH を略 4. 2に調整した。 続いて、 試料水 Dに対し、 J I S KO 1 0 1 : 1 9 98に規定されたフエナントロリン吸光光度法において用いられる 1 0重量% 塩酸ヒ ドロキシルアンモニゥム溶液 0. 4ミリ リッ トルと 0. 5重量0 /01, 1 0—フエナント口リン水溶液 0. 4ミリ リットルとを添加し、 1 0分程度放置 した。 この結果、 試料水 Dは、 鉄 ( I I ) 錯体によるだいだい赤色を呈した。 この試料水 Dについて、 分光光度計 (株式会社日立製作所製の "U— 201 0 " ) を用い、 だいだい赤色に対応する波長 (5 1 0 nm) の吸光度を測定した。 そして、 予め作成しておいた検量線に基づいて、 当該吸光度の測定結果から試 料水 D中に含まれる鉄を定量した。 実施例 7
試料水 E 1 0ミリ リツトルに対して 8重量%塩酸水溶液 1 ミリ リットルと 2 5重量%酢酸アンモニゥム水溶液 0. 72ミ リ リ ツ トルとを添加し、 試料水 E の pHを略 3. 2に調整した。 続いて、 試料水 Eに対し、 メタ重亜硫酸ナトリ ゥム粉末 (和光純薬工業株式会社製の特級) 20 Omgおよび亜ニチオン酸ナ トリウム無水塩 (和光純薬工業株式会社製の化学用) l O Omgをこの順で添 加して振り混ぜ、 1 0分間放置した。 放置後の試料水 Eにおいて、 白濁等の濁 りは観察されなかった。
次に、 試料水 Eに対して 0. 5重量%丁 P T Z溶液 (T P T Zを 1. 0重量 %塩酸に溶解したもの) を 0. 4ミ リ リ ッ トル添加し、 5分間放置した。 この 結果、 試料水 Eは、 鉄 ( I I ) 錯体による青紫色を呈した。 この試料水 Eにつ いて、 分光光度計 (株式会社日立製作所製の " U— 20 1 0" ) を用いて青紫 色に対応する波長 (595 nm) の吸光度を測定し、 予め作成しておいた検量 線に基づいて、 当該吸光度の測定結果から試料水 E中に含まれる鉄を定量した。 参考例 1
試料水 E 1 0ミリ リツ トルに対して 8重量。 /0塩酸水溶液 1 ミリ リッ トルと 2 5重量%酢酸アンモニゥム水溶液 1ミ リ リ ッ トルとを添加し、 試料水 Eの pH を略 4. 2に調整した点を除いて実施例 7と同様に操作し、 試料水 E中に含ま れる鉄を定量した。
実施例 8
試料水 E 1 0ミリ リツ トルに対して 8重量%塩酸水溶液 1 ミリ リットルと- 2 5重量%酢酸アンモニゥム水溶液 0. 8ミリ リツトルとを添加し、 試料水 Eの pHを略 3. 5に調整した。 続いて、 試料水 Eに対し、 メタ重亜硫酸ナトリウ ム粉末 (和光純薬工業株式会社製の特級) 1, 00 Omgおよび亜ニチオン酸 ナトリウム無水塩 (和光純薬工業株式会社製の化学用) 1 00m gをこの順で 添加して振り混ぜ、 1 0分間放置した。 放置後の試料水 Eにおいて、 白濁等の 濁りは観察されなかった。
次に、 試料水 Eに対して 0. 5重量%?0丁3水溶液を 0. 3ミ リ リ ッ トル 添加し、 5分間放置した。 この結果、 試料水 Eは、 鉄 ( I I ) 錯体による赤紫 色を呈した。 この試料水 Eについて、 分光光度計 (株式会社日立製作所製の " U— 2 0 1 0 " ) を用いて赤紫色に対応する波長 (5 6 2 n m) の吸光度を測 定し、 予め作成しておいた検量線に基づいて、 当該吸光度の測定結果から試料 水 E中に含まれる鉄を定量した。
参考例 2
試料水 E 1 0ミ リ リツ トルに対して 8重量%塩酸水溶液 1 ミ リ リッ トルと 2 5重量0 /0酢酸アンモニゥム水溶液 0 . 9 ミ リ リ ッ トルとを添加し、 試料水 Eの p Hを略 4 . 0に調整した点を除いて実施例 8と同様に操作し、 試料水 E中に 含まれる銖を定量した。
評価 B
比較例 7、 実施例 7、 8および参考例 1、 2の定量結果を表 2に示す。 表 2 には、 比較例 7の定量結果を基準値 (1 0 0 %) とした場合の相対値を併せて 表示している。 表 2によると、 参考例 1、 2は、 比較例 7に比べて鉄の測定量 が少なく信頼性を欠くが、 試料水 Eに含まれるエチレンジァミン四酢酸ニナト リウム塩の影響を排除するために p Hを低下させた実施例 7、 8は、 比較例 7 と略同等の結果が得られており、 結果の信頼性が高いことがわかる。 表 2
Figure imgf000016_0001
実施例 9
試料水 F 1 0ミ リ リツ トルに対して 8重量%塩酸水溶液 1 ミリ リッ トルと 2 5重量0 /0酢酸アンモニゥム水溶液 1 ミリ リ ツトノレとを添カ卩し、 試料水 Fの p H 6 を 4. 2に調整した。 続いて、 この試料水 Fに対し、 メタ重亜硫酸ナトリウム 粉末 (和光純薬工業株式会社製の特級) 20 Omgおよび亜ニチオン酸ナトリ ゥム無水塩粉末 (和光純薬工業株式会社製の化学用) 1 0 Omgをこの順で添 加して振り混ぜ、 1 0分間放置した。
次に、 放置後の試料水 Fに対してエタノール 5ミリ リッ トルと 0. 5重量% TPTZ溶液 (TPTZを 1. 0重量%塩酸に溶解したもの) 0. 4ミ リ リツ トルとを添加し、 5分間放置した。 この結果、 試料水 Fは、 鉄 ( I I ) 錯体に よる青紫色を呈した。 この試料水 Fについて、 分光光度計 (株式会社日立製作 所製の "U— 20 1 0" ) を用いて青紫色に対応する波長 (595 nm) の吸 光度を測定し、 この吸光度から 800 nmの吸光度を差し引いた補正値を求め た。 予め作成しておいた検量線に基づいて、 この補正値から試料水 Fに含まれ る鉄を定量した。 この実施例においては、 吸光度測定時の試料水 Fにおいて、 浮遊物は確認されなかった。
参考例 3
放置後の試料水 Fに対してエタノールを添加しなかった点を除いて実施例 9 と同様に操作し、 試料水 Fに含まれる鉄を定量した。 この参考例においては、 試料水 Fに対して T P T Z溶液を添加したときに浮遊物が顕著に生成した。
実施例 1 0
試料水 Fに対する 25重量%酢酸アンモニゥム水溶液の添加量を 0. 72ミ リ リッ トルに変更して試料水 Fの pHを 3. 2に調整した点を除き、 実施例 9 と同様に操作して試料水 Fに含まれる鉄を定量した。 この実施例においては、 吸光度測定時の試料水 Fにおいて、 浮遊物は確認されなかった。
参考例 4 ,
放置後の試料水 Fに対してエタノールを添加しなかった点を除いて実施例 1 0と同様に操作し、 試料水 Fに含まれる鉄を定量した。 この参考例においては、 試料水 Fに対して T P T Z溶液を添加したときに浮遊物が顕著に生成した。
評価 C
実施例 9、 1 0および参考例 3、 4の定量結果を表 3に示す。 表 3には、 比 較例 7の定量結果を基準値 (1 00%) とした場合の相対値を併せて表示して いる。 表 3によると、 実施例 9、 1 0は、 比較例 7と略同等の結果が得られて 7 おり、 結果の信頼性が高い。 一方、 参考例 3、 4は、 比較例 7に比べて鉄の測 定量が多い結果となっている。 これは、 試料水 Fに対して TP TZ溶液を添加 したときに生成した浮遊物の影響を受けたものであり、 試料水 Fに含まれる鉄 量を反映したものではなく、 また、 誤差と言えるものでもないため、 信頼性が 疑わしい。 表 3
Figure imgf000018_0001
実施例 1 1
J I S K0 1 0 1 : 1 998に規定された I C P発光分光分析法に従った 前処理 (塩酸煮沸) および鉄の定量分析を実施して鉄濃度が判明している試料 水 (鉄濃度 = 6. 9 73 mgZリッ トル:本実施例において、 この濃度を基準 値という) 1 0ミリ リツトルに対し、 亜ニチオン酸ナトリゥム無水塩 (和光純 薬工業株式会社製の化学用) の水溶液 1 ミリ リ ツ トル (亜ニチオン酸ナトリゥ ム無水塩粉末換算で 1 0 Omg) 、 メタ重亜硫酸ナトリウム (和光純薬工業株 式会社製の特 ) の水溶液 2ミリ リットル (メタ重亜硫酸ナトリウム粉末換算 で 20 Omg) およぴチォ硫酸ナトリウム (和光純薬工業株式会社製の試薬一 級) の水溶液 1ミリ リツトル (チォ硫酸ナトリゥム粉末換算で 1 0 Omg) を 添加して振り混ぜた。 試料水の pHは、 塩酸水溶液と 25 %酢酸アンモニゥム 水溶液との添加により、 亜ニチオン酸ナトリゥム無水塩水溶液等を添加する前 に、 予め 3. 2に調整した。
上述のようにして調製した試料水を 2 5°C、 50°C若しくは 70°Cに設定し、 8 所定時間経過毎に鉄を定量した。 ここでは、 試料水に対して 0. 5重量%1, 10—フエナントロリン水溶液 0. 4ミ リ リ ツ トルを添加し、 波長 510 nm の吸光度に基づき鉄を定量した。 結果を表 4に示す。 表 4において、 25での 場合は 10〜15分経過しないと測定結果が 100%付近へ到達しないのに対 し、 50°Cおよび 70°Cでは 3分程度の経過で測定結果が 100%付近に到達 している。 この結果によると、 亜ニチオン酸ナトリウム無水塩水溶液が添加さ れた試料水は、 加熱して温度を高めた方が、 より迅速に鉄の定量分析結果を正 確に得られることになる。 表 4
Figure imgf000019_0001
実施例 1 2
J I S K0101 : 1 998に規定された I C P発光分光分析法に従った 前処理 (塩酸煮沸) および鉄の定量分析を実施して鉄濃度が判明している試料 水 (鉄濃度 = 6.. 973mg/ リッ トル:本実施例において、 この濃度を基準 9 値という) 10ミリ リ ツトルに対し、 亜ニチオン酸ナトリゥム無水塩 (和光純 薬工業株式会社製の化学用) の水溶液 1 ミリ リツ トル (亜ニチオン酸ナトリウ ム無水塩粉末換算で 1 0ひ mg) 、 メタ重亜硫酸ナトリウム (和光純薬工業株 式会社製の特級) の水溶液 2ミリ リットル (メタ重亜硫酸ナトリゥム粉末換算 で 200mg) およびチォ硫酸ナトリウム (和光純薬工業株式会社製の試薬一 級) の水溶液 1 ミリ リ ツトル (チォ硫酸ナトリ ゥム粉末換算で 1 0 Omg) を 添加して振り混ぜた。 試料水の pHは、 塩酸水溶液と 25%酢酸アンモニゥム 水溶液との添加により、 亜ニチオン酸ナトリゥム無水塩水溶液等を添加する前 に、 予め 3. 2、 3. 7若しくは 4. 2に調整した。
'上述のようにして調製した試料水を 50°Cに設定し、 所定時間経過毎に鉄を. 定量した。 ここでは、 試料水に 0. 5重量。/ o l, 1 0—フエナント口リン水溶 液 0. 4ミリ リッ トルを添加し、 波長 5 10 nmの吸光度に基づき鉄を定量し た。 結果を表 5に示す。 表 5は、 試料水の pHが低い場合 (3. 2の場合) は 約 1 00%の測定結果が得られるまでに要する時間が 3分程度であるのに対し、 pHが高い場合 (3. 7または 4. 2の場合) は 1 00%の測定結果が得られ るまでに 5分以上を要していることを示している。 この結果によると、 試料水 は、 pHを低く設定した方が、 より迅速に鉄の定量分析結果を正確に得られる ことになる。
表 5
Figure imgf000021_0001
本発明は、 その精神または主要な特徴から逸脱することなく、 他のいろいろ な形で実施することができる。 そのため、 上述の実施の形態若しくは実施例は あらゆる点で単なる例示に過ぎず、 限定的に解釈してはならない。 本発明の範 囲は、 請求の範囲によって示すものであって、 明細書本文にはなんら拘束され ない。 さらに、 請求の範囲の均等範囲に属する変形や変更は、 すべて本発明の 範囲内のものである。

Claims

2 請 求 の 範 囲
1 . 試料水中に含まれる鉄の定量方法であって、
前記試料水へ亜ニチオン酸塩を添加する工程と、
前記亜ニチオン酸塩が添加された前記試料水に対して発色剤を添加し、 吸光 光度法により前記試料水中の鉄を定量する工程と、
を贪む鉄の定量方法。
2 . 前記亜ニチオン酸塩が亜ニチオン酸アルカリ金属塩、 亜ニチオン酸アル力 リ土類金属塩、 亜ニチオン酸アンモニゥム塩、 亜ニチオン酸亜鉛塩および亜二 チオン酸力ドミゥム塩からなる群から選ばれたものである、 請求の範囲 1に記 載の鉄の定量方法。
3 . 前記亜ニチオン酸アル力リ金属塩が亜ニチオン酸ナトリゥムの無水塩であ る、 請求の範囲 2に記載の鉄の定量方法。
4 . 前記試料水 1 0 ミ リ リ ッ トル当りに対し、 前記亜ニチオン酸塩を少なく と も 3 0 m g添加する、 請求の範囲 2に記載の鉄の定量方法。
5 . 前記亜ニチオン酸塩が添加された前記試料水を加熱する、 請求の範囲 1に 記載の鉄の定量方法。
6 . 前記試料水の p Hを 4 . 2以下に調整してから前記亜ニチオン酸塩を添加 する、 請求の範囲 1に記載の鉄の定量方法。
7 . 前記発色剤を添加する前に、 前記亜ニチオン酸塩が添加された前記試料水 をろ過する、 請求の範囲 6に記載の鉄の定量方法。
8 . 前記亜ニチオン酸塩を添加する前に、 前記試料水に対してメタ重亜硫酸ナ トリウムを添力 Pする、 請求の範囲 6に記載の鉄の定量方法。
9 . 前記試料水に対する前記メタ重亜硫酸ナトリウムの添加量は、 モル比にお いて、 前記試料水へ添加する前記亜ニチオン酸塩の少なく とも 2倍当量に設定 する、 請求の範囲 8に記載の鉄の定量方法。
1 0 . 前記発色剤が 2, 4, 6—トリス (2 —ピリジル) — 1, 3, 5—トリ ァジンである、 請求の範囲 7に記載の鉄の定量方法。
1 1 . 前記 2, 4 , 6—トリス (2 —ピリジル) _ 1, 3, 5— トリアジンを 添加する前に、 前記試料水に対してエタノールを添加する、 請求の範囲 1 0に 記載の鉄の定量方法。
1 2. 前記 2, 4, 6— トリス (2—ピリジル) — 1, 3, 5— トリアジンを 添加する前に、 前記試料水の pHを 3. 0〜3. 4に設定する、 請求の範囲 1 0に記載の鉄の定量方法。
1 3. 前記発色剤が 2, 4, 6— トリス (2—ピリジル) 一 1, 3,, 5—トリ ァジンである、 請求の範囲 8に記載の鉄の定量方法。
14. 前記 2, 4, 6—トリス (2—ピリジル) 一 1, 3, 5—トリアジンを 添加する前に、 前記試料水に対してエタノールを添加する、 請求の範囲 1 3に 記載の鉄の定量方法。
1 5. 前記 2, 4, 6— トリス (2—ピリジル) — 1, 3, 5— ト リアジンを 添加する前に、 前記試料水の pHを 3. 0〜3. 4に設定する、 請求の範囲 1 3に記載の鉄の定量方法。
1 6. 前記発色剤が 1, 1 0—フエナント口リンおょぴその水和物のうちの一 つである、 請求の範囲 1に記載の鉄の定量方法。
PCT/JP2006/316133 2006-03-10 2006-08-10 鉄の定量方法 WO2007105322A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008504970A JP4831371B2 (ja) 2006-03-10 2006-08-10 鉄の定量方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006066437 2006-03-10
JP2006-066437 2006-03-10

Publications (1)

Publication Number Publication Date
WO2007105322A1 true WO2007105322A1 (ja) 2007-09-20

Family

ID=38509169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316133 WO2007105322A1 (ja) 2006-03-10 2006-08-10 鉄の定量方法

Country Status (3)

Country Link
JP (1) JP4831371B2 (ja)
TW (1) TW200734624A (ja)
WO (1) WO2007105322A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519952A (zh) * 2011-11-25 2012-06-27 佛山市中南农业科技有限公司 一种试剂及用该试剂对食品中硼砂的快速测定方法
CN103983637A (zh) * 2014-05-21 2014-08-13 成都理工大学 一种光催化可视化现场检测水样中Hg2+方法
CN113267489A (zh) * 2021-05-10 2021-08-17 焦作金叶醋酸纤维有限公司 一种检测浆液中铁离子的方法
CN113670844A (zh) * 2021-09-08 2021-11-19 中航金属材料理化检测科技有限公司 一种高温合金腐蚀液中氯化铁含量检测的方法
WO2022075063A1 (ja) * 2020-10-09 2022-04-14 三菱重工エンジニアリング株式会社 分析システム及び管理システム、並びに分析方法、並びに分析プログラム
CN114354521A (zh) * 2021-12-29 2022-04-15 沈阳汇晶纳米科技有限公司 一种锂电池用单壁碳纳米管Fe含量测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415655A (en) * 1987-07-09 1989-01-19 Mitsubishi Heavy Ind Ltd Method for dissolving iron component in aqueous solution containing colloidal iron component
JPH02134563A (ja) * 1988-11-16 1990-05-23 Hitachi Ltd 水中の不溶解性微粒子の分析方法及び分析装置
JPH07140128A (ja) * 1993-11-17 1995-06-02 Yokogawa Electric Corp 鉄分測定装置
JPH07218511A (ja) * 1994-01-21 1995-08-18 Boehringer Mannheim Gmbh 鉄を測定する方法及びその試薬
JPH1164343A (ja) * 1997-08-26 1999-03-05 Dkk Corp フローインジェクション分析装置
JP2001249139A (ja) * 2000-03-03 2001-09-14 Dkk Toa Corp 流れ分析装置及び流れ分析方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415655A (en) * 1987-07-09 1989-01-19 Mitsubishi Heavy Ind Ltd Method for dissolving iron component in aqueous solution containing colloidal iron component
JPH02134563A (ja) * 1988-11-16 1990-05-23 Hitachi Ltd 水中の不溶解性微粒子の分析方法及び分析装置
JPH07140128A (ja) * 1993-11-17 1995-06-02 Yokogawa Electric Corp 鉄分測定装置
JPH07218511A (ja) * 1994-01-21 1995-08-18 Boehringer Mannheim Gmbh 鉄を測定する方法及びその試薬
JPH1164343A (ja) * 1997-08-26 1999-03-05 Dkk Corp フローインジェクション分析装置
JP2001249139A (ja) * 2000-03-03 2001-09-14 Dkk Toa Corp 流れ分析装置及び流れ分析方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519952A (zh) * 2011-11-25 2012-06-27 佛山市中南农业科技有限公司 一种试剂及用该试剂对食品中硼砂的快速测定方法
CN103983637A (zh) * 2014-05-21 2014-08-13 成都理工大学 一种光催化可视化现场检测水样中Hg2+方法
WO2022075063A1 (ja) * 2020-10-09 2022-04-14 三菱重工エンジニアリング株式会社 分析システム及び管理システム、並びに分析方法、並びに分析プログラム
CN113267489A (zh) * 2021-05-10 2021-08-17 焦作金叶醋酸纤维有限公司 一种检测浆液中铁离子的方法
CN113670844A (zh) * 2021-09-08 2021-11-19 中航金属材料理化检测科技有限公司 一种高温合金腐蚀液中氯化铁含量检测的方法
CN114354521A (zh) * 2021-12-29 2022-04-15 沈阳汇晶纳米科技有限公司 一种锂电池用单壁碳纳米管Fe含量测试方法
CN114354521B (zh) * 2021-12-29 2024-03-22 沈阳汇晶纳米科技有限公司 一种锂电池用单壁碳纳米管Fe含量测试方法

Also Published As

Publication number Publication date
JPWO2007105322A1 (ja) 2009-07-30
JP4831371B2 (ja) 2011-12-07
TW200734624A (en) 2007-09-16

Similar Documents

Publication Publication Date Title
WO2007105322A1 (ja) 鉄の定量方法
CN107356539A (zh) 一种快速检测海水中氮营养盐浓度的方法
JP5319658B2 (ja) 臭素酸イオンの測定方法および装置
WO2012016350A1 (en) Simultaneous determination of multiple analytes in industrial water system
JP4797900B2 (ja) 鉄の定量方法
CN113884450A (zh) 一种用于水质自动监测仪的浊度色度校正方法
JP4655969B2 (ja) 鉄の定量方法
CN112292599A (zh) 测定高氯化物样品的化学需氧量(cod)的方法
JP5169809B2 (ja) シリカ濃度測定方法
CN108037088B (zh) 碳化渣中碳化钛的精确测定方法
US5556787A (en) Manganese III method for chemical oxygen demand analysis
JP4797902B2 (ja) 鉄の定量方法
JP5120189B2 (ja) 塩化物イオンの定量方法
CN106546696A (zh) 一种含硫气田产出水中氯化物含量的分析方法
Pomeroy The determination of sulphides in sewage
CN106248667A (zh) 一种用于铝青铜中铝的测定方法
JP2006284206A (ja) 鉄分判定用試薬、鉄分の存否判定方法および鉄分濃度の測定方法
Meeravali et al. Comparison of open microwave digestion and digestion by conventional heating for the determination of Cd, Cr, Cu and Pb in algae using transverse heated electrothermal atomic absorption spectrometry
JP3700742B2 (ja) 6価クロムの測定方法
CN114136953A (zh) 一种icp-aes检测硫酸钠中氯化物含量的分析方法
CN110567775B (zh) 基于离子液体的固体食品样品前处理方法
Flamerz et al. Photometric determination of nitrite
Busev et al. Photometric determination of scandium with α-(2, 4-dihydroxyphenylazo)-pyridine
Ivanov et al. Optical and chromaticity characteristics of Arsenazo III complexes of rare-earth elements
JP5668936B2 (ja) 全窒素の定量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06796490

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008504970

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796490

Country of ref document: EP

Kind code of ref document: A1