WO2007102287A1 - 導電性ペースト及び太陽電池 - Google Patents

導電性ペースト及び太陽電池 Download PDF

Info

Publication number
WO2007102287A1
WO2007102287A1 PCT/JP2007/051769 JP2007051769W WO2007102287A1 WO 2007102287 A1 WO2007102287 A1 WO 2007102287A1 JP 2007051769 W JP2007051769 W JP 2007051769W WO 2007102287 A1 WO2007102287 A1 WO 2007102287A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass frit
conductive paste
receiving surface
light
surface electrode
Prior art date
Application number
PCT/JP2007/051769
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Kawaguchi
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to EP07713769A priority Critical patent/EP1993144A4/en
Priority to JP2007533808A priority patent/JP4182174B2/ja
Publication of WO2007102287A1 publication Critical patent/WO2007102287A1/ja
Priority to US12/206,215 priority patent/US20080314444A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/08Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/16Microcrystallites, e.g. of optically or electrically active material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a conductive paste as a conductive material used for a light-receiving surface electrode of a solar cell, and more specifically, a conductive paste containing Ag powder and a silicate glass-based glass frit and the conductive paste.
  • the present invention relates to a solar cell in which a light-receiving surface electrode using a conductive paste is formed.
  • a semiconductor substrate in which an n-type Si semiconductor layer is formed on an upper surface of a p-type Si semiconductor layer is used.
  • a light receiving surface electrode is formed on one surface of the semiconductor substrate, and a back electrode is formed on the other surface.
  • the light-receiving surface electrode has been formed by baking a conductive paste containing metal powder.
  • a conductive paste for example, Patent Document 1 below discloses a conductive paste containing Ag powder, glass frit, and an organic vehicle.
  • the glass frit acts to increase the adhesive strength between the light-receiving surface electrode obtained by firing the conductive paste and the semiconductor substrate.
  • glass powder having a low soft spot As such glass powder, B-Pb-O system, B-Si-Pb-O system, B-Si-Bi-Pb-O system, B-Si-Zn-O system glass frit are used.
  • examples using 1-8-31-0 glass frit and 8-31-211-0 glass frit are shown.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-118425
  • Pb-containing glass frit has a relatively low melting point. Therefore, even when the substrate is fired at a low temperature, the bonding strength between the semiconductor substrate and the light-receiving surface electrode can be effectively increased. However, since Pb is a hazardous substance, it is required to use an alternative material.
  • Patent Document 1 Pb—B—Si—O containing Pb is used as a glass frit.
  • a B-Si-Zn-O glass frit is described together with a glass frit.
  • the B—Si—Zn—O-based glass frit is described as described above, and no specific composition of this glass frit is shown. ! /,Absent.
  • the bonding strength between the semiconductor electrode and the light-receiving surface electrode is relatively low! There is a strong need for conductive pastes that can sufficiently increase the strength and contain no harmful substances such as Pb.
  • the object of the present invention is to effectively increase the adhesive strength between the light-receiving surface electrode and the semiconductor substrate even when fired at a relatively low temperature.
  • the force can also reduce the contact resistance between the two, and further, a conductive paste using a glass frit that does not contain Pb harmful to the environment, and a solar cell in which a light-receiving surface electrode is formed using the conductive paste Is to provide.
  • a conductive paste used as a material for a light-receiving surface electrode of a solar cell containing Ag powder, an organic vehicle, and glass frit,
  • the soft fist point is 570 ° C or higher and 760 ° C or lower
  • the glass frit contains BO and SiO so that the molar ratio of BO / SiO is 0.3 or lower, and BiO is added.
  • a conductive paste used as a material for a light-receiving surface electrode of a solar cell containing Ag powder, an organic vehicle, and glass frit,
  • the soft fist point is 570 ° C or more and 760 ° C or less
  • the glass frit contains BO and SiO so that the molar ratio of BO / SiO is 0.3 or less, and BiO 2
  • a conductive paste characterized by containing 2 3 2 2 3 2 2 3 less than 20. Omol%.
  • the present invention (collectively, the first and second inventions are appropriately referred to as the present invention) contains Ag powder, an organic vehicle, and glass frit.
  • the soft saddle point is in the range of 570 ° C to 760 ° C, and the glass frit contains SiO, and if necessary, Bi O
  • B 2 O 3 / SiO 2 has a molar ratio of 0.3 or less.
  • the glass frit further comprises 15% by mass or less of Al 2 O and 0 to TiO. 10 mol% or less, CuO in a proportion of O to 15 mol% or less, including Al 2 O, TiO and CuO
  • ZnO, TiO, ZrO force It further contains at least one additive selected.
  • the conductive paste of the present invention apart from the glass frit, as an additive, at least one metal selected from the group force of Zn, Bi and T or a metal compound of the metal Is further contained in the form of a resinate.
  • a solar cell according to the present invention includes a semiconductor substrate, a light-receiving surface electrode provided on one surface of the semiconductor substrate, and a back-surface electrode provided on the other surface. Therefore, it is characterized by comprising a conductive film formed of the conductive paste thus configured. (The invention's effect)
  • the conductive paste according to the first invention Ag powder is used as the conductive metal powder, and a glass frit having a soft freezing point of 570 ° C or higher and 760 ° C or lower is used. It is said. Glass frit has a molar ratio of B 2 O 3 / SiO of 0.3 or less.
  • the conductive paste according to the second invention contains Ag powder as the conductive metal powder, the softening point of the glass frit is in the range of 570 to 760 ° C, and the softening point is as the glass frit. However, glass frit with a temperature of 570 ° C or higher and 760 ° C or lower is used. The glass frit contains B 2 O and SiO so that the molar ratio of B 2 O 3 / SiO is 0.3 or less.
  • the glass frit does not contain Pb harmful to the environment. Therefore, it is possible to provide solar cells with excellent reliability and environmental resistance.
  • the solar cell according to the present invention has a light receiving surface electrode on one surface of a semiconductor substrate and a back electrode on the other surface, and the light receiving surface electrode is formed by baking the conductive paste according to the present invention. Therefore, the light-receiving surface electrode can be formed by firing at a relatively low temperature. In addition, the adhesive strength of the light-receiving surface electrode to the semiconductor substrate is sufficiently large. Also, the increase in contact resistance at the interface between the two is not so much. Therefore, the reliability of the solar cell can be improved and the cost can be reduced. Since the glass frit does not contain Pb, the environmental burden can be reduced.
  • FIG. 1 is a partially cutaway front sectional view showing a solar cell according to one embodiment of the present invention.
  • FIG. 2 is a partially enlarged plan view schematically showing the planar shape of the light-receiving surface electrode of the solar cell shown in FIG.
  • FIG. 3 is a schematic plan view showing a screen printing pattern and a plurality of printing parts included in the pattern used in forming the light receiving surface electrodes of Examples and Comparative Examples.
  • FIG. 1 is a partially cutaway front sectional view showing a solar cell according to one embodiment of the present invention
  • FIG. 2 is a partially enlarged plan view schematically showing an electrode structure formed on the upper surface thereof. is there
  • the solar cell 1 has a semiconductor substrate 2.
  • the semiconductor substrate 2 has a structure in which an n-type Si-based semiconductor layer 2b is formed on the upper surface of a p-type Si-based semiconductor layer 2a.
  • Such a semiconductor substrate 2 can be obtained by diffusing impurities on one surface of a p-type Si semiconductor substrate to form an n-type semiconductor layer 2b.
  • the structure and manufacturing method of the semiconductor substrate 2 are not particularly limited as long as the n-type Si-based semiconductor layer 2b is formed on the upper surface of the p-type Si-based semiconductor layer 2a.
  • a light-receiving surface electrode 3 is formed on the surface of the semiconductor substrate 2 on which the n-type Si-based semiconductor layer 2b is formed, that is, on the upper surface side. As shown in the plan view of FIG. 2, the light receiving surface electrode 3 has a structure in which a plurality of striped electrode portions are arranged in parallel. One end of the light receiving surface electrode 3 is electrically connected to the terminal electrode 6. The antireflection film 4 is formed in the remaining region except the portion where the light receiving surface electrode 3 and the terminal electrode 6 are provided.
  • a back electrode 5 is formed on the entire bottom surface of the semiconductor substrate 2.
  • the light-receiving surface electrode 3 is formed by applying and baking the conductive paste according to one embodiment of the present invention. Details of the conductive paste and the light-receiving surface electrode 3 will be described later.
  • the antireflection film 4 also has an appropriate insulating material force such as SiN, and is formed to suppress reflection of light from the outside on the light receiving surface side and to guide light to the semiconductor layer 2 quickly and efficiently. It has been.
  • the material constituting the antireflection film 4 is not limited to SiN, and other insulating materials such as SiO and TiO may be used.
  • the back electrode 5 is provided for taking out electric power between the light receiving surface electrode 3 and the back electrode 5.
  • the material for forming the back electrode 5 is not particularly limited, and can be obtained by applying and baking the same conductive paste as that for the light-receiving surface electrode 3 or by applying another electrode material by an appropriate method.
  • a feature of the solar cell 1 is that the light-receiving surface electrode 3 includes Ag powder, an organic vehicle, and a glass frit, and the soft frit point of the glass frit is not less than 570 ° C and not more than 760 ° C. In range
  • the lath frit has a composition in which the molar ratio of BO / SiO is 0.3 or less.
  • Ag powder Since Ag powder exhibits good conductivity even when fired in the air, Ag powder is used as the conductive metal powder of the conductive paste in the present invention.
  • the shape of the Ag powder may be spherical or flaky, and the shape thereof is not particularly limited, and plural types of Ag powder may be used in combination.
  • the average particle size of the Ag powder is not particularly limited, but is preferably 0.1 to 15 ⁇ m. When the average grain size force exceeds m, the contact between the light-receiving surface electrode and the semiconductor substrate tends to be insufficient.
  • the glass frit contained in the conductive paste is provided to increase the adhesive strength when the conductive paste is applied and baked.
  • the soft saddle point of the glass frit is too low, when the conductive paste is fired, the viscosity of the glass becomes too low, and excess glass remains at the interface between the light-receiving surface electrode and the semiconductor substrate. As a result, there is a possibility that the glass may significantly disturb the contact between the two. On the other hand, if the soft frit point of the glass frit is too high, the viscosity of the glass will not decrease much when firing the conductive paste. Therefore, the antireflection film is not sufficiently removed, bonding between the light-receiving surface electrode and the semiconductor substrate becomes insufficient, and the adhesive strength between the two may be significantly reduced. Therefore, the soft saddle point of the glass frit is in the range of 570 ° C or higher and 760 ° C or lower.
  • the lower limit of the softening point is 575 ° C, and if it is 575 ° C or more, the contact resistance can be lowered, and the more preferable temperature of the upper limit of the softening point is 650 ° C. Yes, it can be fired at a lower temperature than 650 ° C.
  • the molar ratio of B 2 O 3 / SiO is required to be a ratio of 0.3 or less.
  • the molar ratio of B 2 O 3 / SiO is 0.3 or less because the solar cell light-receiving surface
  • Bi O force is more than O and less than 20. Omol%.
  • the glass frit further contains 15 mol% or less of Al 2 O, 10 mol% or less of TiO, CuO
  • additives may be further blended in addition to the Ag powder, the organic vehicle, and the glass frit.
  • additives include various inorganic powders.
  • Such inorganic powders include ZnO, TiO, Ag 0, WO
  • inorganic oxides such as V 2 O, Bi 2 O, and ZrO.
  • the conductive paste When firing the conductive paste, it promotes the decomposition of the antireflection film previously formed on the surface of the semiconductor substrate and acts to reduce the contact resistance between the light receiving surface electrode and the semiconductor substrate.
  • Ag powder When firing the conductive paste to form the light-receiving surface electrode, Ag powder is considered to act as a catalyst for decomposing the antireflection film. From Ag powder, glass frit, and organic vehicle When the composition is used, the removal of the antireflection film may be insufficient.
  • the addition of the above inorganic oxides is desirable because the catalytic action by Ag is promoted.
  • the average particle diameter of the additive composed of these inorganic oxides is not particularly limited, but is preferably 1. O / zm or less.
  • a resin or a resinate containing a metal compound may be used.
  • the metal used in this resinate at least one metal or metal compound in which Zn, Bi and T are also selected can be used.
  • an organic resin binder commonly used in a conductive paste for forming a light-receiving surface electrode can be used.
  • Examples of the synthetic resin constituting such an organic resin binder include ethyl cellulose and nitrocellulose.
  • the above Ag powder and glass frit are mixed, dispersed in an organic vehicle solution obtained by dissolving an organic binder resin as an organic vehicle in a solvent, and kneaded. Is obtained.
  • Ag powder, organic vehicle, and glass frit may be put into a solvent that dissolves the organic vehicle and kneaded.
  • the mixing ratio of each component in the conductive paste according to the present invention is not particularly limited, but the glass frit is preferably 1 to 3 parts by weight with respect to 100 parts by weight of Ag powder. If the blending ratio of the glass frit is too large, the electrical conductivity will be insufficient, and if the blending ratio of the glass frit is too small, the adhesive strength between the light-receiving surface electrode and the semiconductor substrate will hardly increase.
  • the lower limit of the blending ratio of the glass frit is preferably 1.5 parts by weight, and the adhesive strength can be further increased by setting it to 1.5 parts by weight or more.
  • the preferable upper limit of the blending ratio of the glass frit is 2.5 parts by weight, and the contact resistance can be lowered by setting it to 2.5 parts by weight or less.
  • the organic vehicle is not particularly limited with respect to 100 parts by weight of the Ag powder, and the soot may be blended at a ratio of about 20 to 25 parts by weight. If the blending ratio of the organic vehicle is too high, pasty koji may become difficult, and if it is too low, it may be difficult to ensure fine lineability.
  • the mixing ratio of the additive having the inorganic acidity is not particularly limited, but it is preferably about 3 to 15 parts by weight with respect to 100 parts by weight of the Ag powder. If the amount is less than 3 parts by weight, the effect of adding the inorganic oxide may not be sufficiently obtained. If the amount exceeds 15 parts by weight, the Ag powder may be inhibited from sintering and the line resistance may be significantly increased. .
  • the blending ratio of the additive composed of the above resinate is not particularly limited, but is desirably about 8 to 16 parts by weight with respect to 100 parts by weight of the Ag powder. It is preferable to use 8 parts by weight for Zn resinate, 14 parts by weight for Ti resinate, and 15 parts by weight for Bi resinate.
  • the use of the conductive paste containing the specific yarn and glass frit makes it possible to effectively improve the adhesive strength of the light-receiving surface electrode 3 to the semiconductor substrate 2.
  • the increase in electrical resistance at the contact interface between them can be avoided. Therefore, even when firing at a low temperature, the light-receiving surface electrode 3 having excellent reliability can be formed, and the cost and the reliability of the solar cell can be reduced.
  • the glass frit does not contain Pb, the environmental burden can be reduced.
  • an electrically conductive paste 2.2 parts by weight of glass frit having a composition shown in Table 1 below and Zn05 parts by weight are mixed with 100 parts by weight of spherical Ag powder having an average particle size of Lm, Several types of conductive pastes containing 3.8 parts by weight of ethylcellulose as binder resin and terbinol as solvent were prepared. Next, the conductive paste was screen-printed using the pattern shown in FIG. 3 on the light receiving surface of a polycrystalline silicon solar cell on which an antireflection film having SiN force was formed on the entire surface. In the pattern 11 shown in FIG. 3, the printing portions l la to l If indicate regions where the conductive paste is printed.
  • the distance between the printing sections 11a and l ib is 200 m, and the distance between the printing sections l ib and 11c is 400. m, the distance between the lj part l ie, 1 Id is 600 / zm, the distance between the lj part l id, l ie is 800 m, and the distance between the printing part l ie, 1 If is 1000 / zm did.
  • the distance between the printing parts is the distance between the other printing part side edge of one printing part and the one printing part side edge of the other printing part.
  • the conductive paste After printing the conductive paste, after drying the conductive paste in an oven set at 150 ° C, in a near-infrared furnace that is transported in about 4 minutes from the inlet to the outlet, The conductive paste was fired with a firing profile such that the peak temperature was 750 ° C. to form a light-receiving surface electrode.
  • the contact resistance Rc was measured by the TLM (Transmission Line Model) method using the solar cell having the light-receiving surface electrode formed as described above.
  • This TLM method measures the distance and resistance value between the light receiving surface electrode parts formed according to the printed part shown in Fig. 3, and the distance between the electrode part distance L and the measured resistance value R Since the relationship of Eq. (1) holds, the relationship between the electrode part distance L and the resistance value R under various conditions is evaluated, and the contact resistance Rc is obtained by extrapolating L ⁇ 0. .
  • R is the measured resistance value
  • L is the distance between the electrodes
  • RSH is the sheet resistance of the n-type Si-based semiconductor layer
  • Z is the length of the light-receiving surface electrode, that is, the printing in FIG. The dimension corresponding to the length of the part, Rc is the contact resistance.
  • the conductive paste is used for a polycrystalline silicon solar cell in which an antireflection film having SiN force is formed.
  • Screen printing was performed on the light receiving surface. After that, after drying in an oven set at 150 ° C, it passed between the inlet and outlet in about 4 minutes, and fired with a firing profile using a near infrared furnace with a peak temperature set at 780 ° C. The light receiving surface electrode was formed. Next, a copper wire was soldered to the surface of the light receiving surface electrode to obtain a sample.
  • the solder used was Sn—Pb-1.5Ag and was immersed in molten solder at 260 ° C for 5 seconds.
  • This copper wire is subjected to a tensile tester in the direction of moving away from the solar cell substrate force, and an external force is applied by a tester.
  • the peel strength when the surface electrode peeled from the semiconductor substrate of the solar cell was determined, and the adhesion strength of the electrode to the semiconductor substrate was determined. The results are shown in Table 1 below.
  • the adhesive strength is evaluated! /, When the inner leads are wired to connect the semiconductor substrates of the solar cells, or when the inner surface of the light receiving surface electrode is modularized. This is because if the adhesive strength to the semiconductor substrate is low, the light-receiving surface electrode may be peeled off from the semiconductor substrate. Therefore, as the adhesive strength is higher, such peeling can be prevented and the reliability can be improved.
  • the contact resistance Rc between the light-receiving surface electrode obtained by firing and the semiconductor substrate is 1.3 to 2.6. It was less than ⁇ . Therefore, it can be seen that good ohmic contact is obtained.
  • the adhesive strength between the light-receiving surface electrode that also has an Ag force and the semiconductor substrate tends to decrease as the soft fusing point of the glass frit increases.
  • the soft fusing point is the highest.
  • the adhesive strength is 2.0 NZ6 mm 2 , which indicates that the adhesive strength is sufficiently large.
  • Comparative Example 2 the molar ratio is 0.53, and the glass frit having a soft saddle point of 606 ° C is used. However, they were always strong at 15.5 ⁇ and 34.90, respectively.
  • Comparative Example 1 the glass frit has a soft saddle point that is too low, so that the insulating glass remains excessively at the interface between the light-receiving surface electrode and the semiconductor substrate, which also has Ag force, and the contact resistance is high. It is thought that it is connected.
  • Comparative Example 2 the molar ratio is 0.53, Since the Ag powder dissolved in the glass during baking of the conductive paste is reduced on the surface of the semiconductor substrate made of S and is difficult to precipitate, sufficient conduction between the light-receiving surface electrode and the semiconductor substrate is not ensured, thereby causing contact resistance. It is thought that Rc is getting higher.
  • the contact resistance cannot often be lowered sufficiently stably only by applying and baking the conductive base. Therefore, in the past, the actual situation was that a method of reducing the contact resistance between the light receiving surface electrode and the semiconductor substrate by performing an acid treatment was employed.
  • H F hydrofluoric acid
  • glass or Si oxides existing between the light-receiving surface electrode and the semiconductor substrate dissolve, and good contact between the light-receiving surface electrode and the semiconductor substrate is achieved.
  • glass was dissolved and removed by HF. If glass or the like is excessively dissolved and removed, the adhesive strength between the light-receiving surface electrode and the semiconductor substrate may be reduced.
  • the use of the conductive paste of the present invention can sufficiently reduce the contact resistance Rc without performing such acid treatment. It is possible. Therefore, the above-mentioned problems due to the acid treatment hardly occur, and an extra step called an acid treatment step can be omitted, and the production process can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Sustainable Development (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 比較的低い温度で焼成して電極を形成することができ、しかも受光面電極と半導体基板との接着強度に優れ、かつ両者の間の接触抵抗を十分に低くすることが可能な導電性ペーストを提供する。  太陽電池の受光面電極用材料として用いられる導電性ペーストであって、Ag粉末と有機ビヒクルとガラスフリットとを含有しており、前記ガラスフリットの軟化点が570°C以上、760°C以下であり、該ガラスフリットが、モル比でB2O3/SiO2が0.3以下の割合となるようにB2O3及びSiO2を含有し、かつBi2O3を0~20.0mol%未満含有している導電性ペースト。

Description

明 細 書
導電性ペースト及び太陽電池
技術分野
[0001] 本発明は、太陽電池の受光面電極に用いられる導電性材料としての導電性ペース トに関し、より詳細には、 Ag粉末とケィ酸ガラス系ガラスフリットとを含む導電性ペース ト及び該導電性ペーストを用いた受光面電極が形成されて 、る太陽電池に関する。 背景技術
[0002] 従来、 Si半導体を用いた太陽電池では、 p型 Si系半導体層の上面に、 n型 Si系半 導体層が形成された半導体基板が用いられている。この半導体基板の一方面に受 光面電極が、他方面に裏面電極が形成されている。
[0003] 受光面電極は、従来、金属粉末を含有する導電性ペーストの焼付けにより形成さ れていた。このような導電性ペーストとして、例えば、下記の特許文献 1では、 Ag粉末 と、ガラスフリットと、有機ビヒクルとを含む導電性ペーストが開示されている。
[0004] ガラスフリットは、導電性ペーストを焼成して得られた受光面電極と、半導体基板と の接着強度を高めるように作用する。高い接着強度を得るには、ガラスフリットとして は、低軟ィ匕点のガラス粉末を用いることが好ましいとされている。特許文献 1では、こ のようなガラス粉末として、 B— Pb— O系、 B— Si— Pb— O系、 B— Si— Bi— Pb— O 系、 B— Si— Zn— O系ガラスフリットなどを適宜用い得る旨が示されており、その具体 的な実施例では、 1 8— 31—0系ガラスフリット及び8— 31—211—0系ガラスフリ ットを用いた例が示されて 、る。
特許文献 1:特開 2001— 118425号公報
発明の開示
[0005] Pb含有ガラスフリットは比較的融点が低 、。従って、低 、温度に加熱して焼成した 場合であっても、半導体基板と受光面電極との接着強度を効果的に高めることがで きる。し力しながら、 Pbは有害物質であるため、それに代わる材料を使用することが 求められている。
[0006] 特許文献 1では、ガラスフリットとして、上記のように、 Pbを含有する Pb— B— Si—O 系ガラスフリットとともに、 B— Si— Zn—O系ガラスフリットが記載されている。しかしな がら、特許文献 1では、 B— Si— Zn—O系ガラスフリットについて上記のように述べら れて 、るだけであり、このガラスフリットの具体的な組成にっ ヽては何ら示されて!/、な い。
[0007] 太陽電池の受光面電極を導電性ペーストを用いて形成する場合、前述したように、 比較的低!、温度で焼成した場合であっても、半導体電極と受光面電極との接合強度 を十分に高めることができ、し力も Pbのような有害な物質を含まな ヽ導電性ペースト が強く求められている。
[0008] 本発明の目的は、上述した従来技術の現状に鑑み、比較的低温で焼成した場合 であっても、受光面電極と半導体基板との接着強度を効果的に高めることができ、し 力も両者の間の接触抵抗を低めることができ、さらに環境に有害な Pbを含まないガラ スフリットを用いた導電性ペースト、並びに該導電性ペーストを用いて受光面電極が 形成されて ヽる太陽電池を提供することにある。
[0009] 本願の第 1の発明によれば、太陽電池の受光面電極用材料として用いられる導電 性ペーストであって、 Ag粉末と有機ビヒクルとガラスフリットとを含有しており、前記ガ ラスフリットの軟ィ匕点が 570°C以上、 760°C以下であり、かつ該ガラスフリットが、モル 比で B O /SiOが 0. 3以下の割合となるように B O及び SiOを含有し、 Bi Oを
2 3 2 2 3 2 2 3 含有して!/、な 、ことを特徴とする導電性ペーストが提供される。
[0010] 本願の第 2の発明によれば、太陽電池の受光面電極用材料として用いられる導電 性ペーストであって、 Ag粉末と有機ビヒクルとガラスフリットとを含有しており、前記ガ ラスフリットの軟ィ匕点が 570°C以上、 760°C以下であり、前記ガラスフリットは、モル比 で B O /SiOが 0. 3以下の割合となるように B O及び SiOを含有し、かつ、 Bi O
2 3 2 2 3 2 2 3 を 20. Omol%未満含有することを特徴とする導電性ペーストが提供される。
[0011] すなわち、本発明(第 1,第 2の発明を総称して、適宜、本発明とする。 )は、 Ag粉末 と、有機ビヒクルと、ガラスフリットとを含有しており、ガラスフリットの軟ィ匕点が 570°C〜 760°Cの範囲にあり、かつガラスフリットが、 SiOを含み、必要に応じて Bi Oを含み
2 2 3
、 B O /SiOがモル比で 0. 3以下の割合とされていることを特徴とする。
2 3 2
[0012] また、好ましくは、上記ガラスフリットが、さらに、 Al Oを 15mol%以下、 TiOを 0〜 10mol%以下、 CuOを O〜15mol%以下の割合で、 Al O、 TiO及び CuOを含む
2 3 2 本発明に係る導電性ペーストの他の特定の局面では、前記ガラスフリットとは別に、
ZnO、TiO、ZrO力 選ばれる少なくとも 1種の添加剤をさらに含有している。
2 2
[0013] 本発明の導電性ペーストのさらに他の特定の局面では、前記ガラスフリットとは別に 、添加剤として、 Zn、 Bi及び T なる群力 選ばれる少なくとも 1種の金属または該 金属の金属化合物がレジネートの形態でさらに含有されている。
[0014] 本発明に係る太陽電池は、半導体基板と、半導体基板の一方面に設けられた受光 面電極と、他方面に設けられた裏面電極とを備え、前記受光面電極が、本発明に従 つて構成された導電性ペーストにより形成された導電膜からなることを特徴とする。 (発明の効果)
[0015] 第 1の発明に係る導電性ペーストでは、導電性金属粉末として Ag粉末が用いられ ており、ガラスフリットとして、軟ィ匕点が 570°C以上、 760°C以下のガラスフリットが用 いられている。そして、ガラスフリットは、モル比で B O /SiOが 0. 3以下の割合とな
2 3 2
るように B O及び SiOを含有しており、 Bi Oを含まないので、後述の発明の実施
2 3 2 2 3
形態から明らかなように、比較的低温で焼成した場合であっても、接合強度に優れた 受光面電極を形成することができ、かつ受光面電極と半導体層との間の接触抵抗も さほど高くならない。カロえて、環境に有害な Pbをガラスフリットが含有していないため 、耐環境性に優れた導電性ペーストを提供することができる。
[0016] 第 2の発明に係る導電性ペーストでは、 Ag粉末を導電性金属粉末として含有して おり、ガラスフリットの軟化点が 570〜760°Cの範囲にあり、かつガラスフリットとして、 軟化点が 570°C以上、 760°C以下のガラスフリットが用いられている。そして、ガラス フリットがモル比で B O /SiOが 0. 3以下となるように B O及び SiOを含有してお
2 3 2 2 3 2
り、かつ Bi Oを 20. Omol%未満の割合で含有しているため、後述の実施例から明
2 3
らかなように、低温で焼成でき、しかも受光面電極を形成した場合の受光面電極の半 導体層に対する接着強度を効果的に高めることができるとともに、両者の間の接触抵 抗の増大をさほど招かない。カロえて、ガラスフリットが環境に有害な Pbを含まない。従 つて、信頼性に優れ、かつ耐環境特性に優れた太陽電池を提供することが可能とな る。
[0017] 本発明に係る太陽電池は、半導体基板の一方面に受光面電極を有し、他方面に 裏面電極を有し、受光面電極が、本発明に係る導電性ペーストの焼付けにより形成 された導電膜からなるため、比較的低い温度で焼成して受光面電極を形成すること ができる。しかも受光面電極の半導体基板に対する接着強度が十分な大きさとされる 。また、両者の界面における接触抵抗の増カロもさほど招かない。従って、太陽電池の 信頼性を高めることができるとともに、コストを低減することが可能となる。カロえて、ガラ スフリットが Pbを含有しないため、環境負担も和らげることが可能となる。
図面の簡単な説明
[0018] [図 1]図 1は、本発明の一実施形態に係る太陽電池を示す部分切欠正面断面図であ る。
[図 2]図 2は、図 1に示した太陽電池の受光面電極の平面形状を模式的に示す部分 拡大平面図である。
[図 3]図 3は、実施例及び比較例の受光面電極を形成するに際して用いたスクリーン 印刷用のパターン及び該パターンに含まれている複数の印刷部を示す模式的平面 図である。
符号の説明
[0019] 1…太陽電池
2…半導体基板
2a- P型 Si系半導体層
2b- n型 Si系半導体層
3…受光面電極
4…反射防止膜
5…裏面電極
6…端子電極
発明を実施するための最良の形態
[0020] 以下、図面を参照しつつ本発明の具体的な実施形態を説明することにより、本発明 を明らかにする。 [0021] 図 1は、本発明の一実施形態に係る太陽電池を示す部分切欠正面断面図であり、 図 2は、その上面に形成されている電極構造を模式的に示す部分拡大平面図である
[0022] 太陽電池 1は、半導体基板 2を有する。半導体基板 2は、 p型 Si系半導体層 2aの上 面に、 n型 Si系半導体層 2bを形成した構造を有する。このような半導体基板 2は、 p 型 Si系半導体基板の一方面に不純物を拡散させ、 n型半導体層 2bを形成すること により得られる。もっとも、半導体基板 2については、 p型 Si系半導体層 2aの上面に、 n型 Si系半導体層 2bが形成されている限り、その構造及び製法については特に限 定されるものではない。
[0023] 半導体基板 2の n型 Si系半導体層 2bが形成されている面、すなわち上面側には、 受光面電極 3が形成されている。受光面電極 3は、図 2に平面図で示されているよう に、複数本のストライプ状電極部分が平行に配設された構造を有する。なお、受光面 電極 3の一端は、端子電極 6に電気的に接続されている。受光面電極 3及び端子電 極 6が設けられている部分を除く残りの領域に反射防止膜 4が形成されている。
[0024] 他方、半導体基板 2の下面側には、裏面電極 5が全面に形成されている。
[0025] 太陽電池 1では、受光面電極 3が、本発明の一実施形態に係る導電性ペーストを 塗布し、焼成することにより形成されている。この導電性ペースト及び受光面電極 3の 詳細については後ほど説明することとする。
[0026] 反射防止膜 4は、 SiNなどの適宜の絶縁性材料力もなり、受光面側における外部か らの光の反射を抑制し、半導体層 2に光を速やかにかつ効率良く導くために形成さ れている。この反射防止膜 4を構成する材料としては、 SiNに限定されず、他の絶縁 性材料、例えば SiO、 TiOなどを用いてもよい。
2 2
[0027] また、裏面電極 5は、受光面電極 3と裏面電極 5との間で電力を取り出すために設 けられている。この裏面電極 5を形成する材料については特に限定されず、受光面 電極 3と同じ導電性ペーストを塗布し、焼き付けることにより、あるいは他の電極材料 を適宜の方法で付与することにより得られる。
[0028] 太陽電池 1の特徴は、受光面電極 3が、 Ag粉末と有機ビヒクルとガラスフリットとを含 有しており、ガラスフリットの軟ィ匕点が 570°C以上、 760°C以下の範囲にあり、かつガ ラスフリットが、モル比で B O /SiOが 0. 3以下の割合となる組成を有することを特
2 3 2
徴とする。
[0029] Ag粉末は、大気中で焼成した場合においても良好な導電性を示すため、本発明 では、導電性ペーストの導電性金属粉末として Ag粉末が用いられている。この Ag粉 末は、球状であってもよぐ鱗片状であってもよぐその形状については特に限定され ず、また複数種の形状の Ag粉末を併用してもよい。
[0030] Ag粉末の平均粒径は特に限定されないが、 0. 1〜15 μ mが好ましい。平均粒径 力 mを超えると、受光面電極と半導体基板との接触が不十分となりがちとなる。
[0031] 上記導電性ペーストに含有されているガラスフリットは、導電性ペーストを塗布し、 焼き付けた際に、その接着強度を高めるために設けられている。
[0032] また、ガラスフリットの軟ィ匕点が低すぎると、導電性ペーストを焼成するに際し、ガラ スの粘度が低くなりすぎ、受光面電極一半導体基板界面に過剰なガラスが留まり、そ の結果、ガラスが両者の接触を著しく阻害するおそれがあることによる。他方、ガラス フリットの軟ィ匕点が高すぎると、導電性ペーストを焼成するに際し、ガラスの粘度があ まり低下しなくなる。そのため、反射防止膜が十分に除去されず、受光面電極と半導 体基板との接合が不十分となり、かつ両者の接着強度が著しく低下するおそれがあ る。そのため、ガラスフリットの軟ィ匕点は、 570°C以上、 760°C以下の範囲とされる。
[0033] 好ましくは、軟化点の下限は 575°Cであり、 575°C以上であれば、接触抵抗を低く することができ、また軟ィ匕点の上限のより好ましい温度は 650°Cであり、 650°C以下と すること〖こより、より低温で焼成することができる。
[0034] また、 B O /SiOのモル比は、 0. 3以下の割合であることが必要である力 好まし
2 3 2
くは、 0. 2以下であり、その場合には、半導体基板上に Agを効率良く析出させること ができる。
[0035] なお、上記 B O /SiOのモル比が 0. 3以下とされているのは、太陽電池受光面
2 3 2
電極を形成するに際しての焼成工程において、ガラス中に溶解した Agが半導体基 板表面で還元されて析出することを容易とするためである。析出した Agを介して、受 光面電極と半導体基板との接触が確保されると考えられる。上記モル比が 0. 3を超 えると、ガラス中に溶解した Agがガラス中で安定して存在することとなり、半導体基板 上に析出し難くなるおそれがある。
[0036] 本発明の導電ペーストでは、導電ペーストでは、 Bi Oはガラスフリットに含まれず、
2 3
あるいは含まれたとしても、 20. Omol%未満の範囲で含有される。 Bi O含有量が、
2 3
0. 0以上、 20. Omol%未満とされているのは、 Bi O量が 20. Omol%以上となると
2 3
、導電性ペーストを焼成するに際し、ガラスの粘度が低くなりすぎ、受光面電極一半 導体基板界面に過剰なガラスが留まり、その結果、ガラスが両者の接触を著しく阻害 するおそれがあることによる。これに対して、 Bi O力 O以上、 20. Omol%未満で配
2 3
合されている場合には、受光面電極一半導体基板界面に過剰なガラスが留まり難い
[0037] また、ガラスフリットはさらに、 Al Oを 15mol%以下、 TiOを 10mol%以下、 CuO
2 3 2
を 15mol%以下の割合で含むことが好ましい。 Al O、 TiO、 CuOが上記範囲の量
2 3 2
で配合されることにより、ガラスフリットの失透が抑制され、さらに、ガラスフリット自体の 耐水性が高められ得る。ガラスフリットの耐水性が高められると、導電性ペーストを硬 化させたときの電極膜の耐湿性も高められる。
[0038] 本発明に係る導電性ペーストでは、上記 Ag粉末、有機ビヒクル及びガラスフリットに カロえて、適宜の添加剤をさらに配合してもよい。このような添加剤としては、様々な無 機粉末を挙げることかできる。このような無機粉末としては、 ZnO、 TiO、 Ag 0、 WO
2 2
、 V O、 Bi O、 ZrOなどの無機酸ィ匕物を挙げることができる。これらの無機酸ィ匕物
3 2 5 2 3 2
は、導電性ペーストの焼成に際し、半導体基板表面に予め形成されている反射防止 膜の分解を促進し、受光面電極と半導体基板との接触抵抗を低めるように作用する 。受光面電極を形成するために導電性ペーストを焼成するに際し、 Ag粉末が、反射 防止膜を分解する触媒としても作用していると考えられるが、 Ag粉末と、ガラスフリツ トと、有機ビヒクルとからなる組成を用いた場合、反射防止膜の除去が不十分となるこ とがあるが、上記無機酸ィ匕物を添加することにより、 Agによる触媒作用が促進され、 望ましい。上記無機酸化物の中でも、 ZnO、 TiO、 ZrOを添加することが、反射防
2 2
止膜除去効果がより高いため望ましい。これらの無機酸ィ匕物からなる添加剤の平均 粒径は特に限定されないが、 1. O /z m以下であることが望ましい。このような微粉末 の無機酸ィ匕物を添加することにより、 Agの触媒作用がより効果的に高められ、受光 面電極と半導体基板との間の接触抵抗をより確実にかつ安定に低下させることがで きる。
[0039] また、このような添加剤としては、金属または金属化合物を含むレジネートを用いて もよい。このレジネートに用いられる金属としては、 Zn、 Bi及び T も選ばれる少なく とも 1種の金属または金属化合物を用いることができる。金属または金属化合物をレ ジネートの形態で導電性ペーストに添加することにより、無機粉末で添加する場合と 比較して、金属成分をより均一に分散させることが可能であるため、反射防止膜をより 効果的に分解することができる。また、ペースト中に発生する分散不良の固まりを微 小化及び低減した導電性ペーストが得られ、この導電性ペーストを用いると高メッシ ュのスクリーンマスクでも目詰まりの発生しにくい良好な印刷膜を形成することができ る。さらに、受光面電極の焼結を阻害することがないため、受光面電極を緻密に焼成 することが可能になり、電極のライン抵抗を低めることができる。
[0040] 上記有機ビヒクルとしては、受光面電極を形成するための導電性ペーストに慣用さ れている有機榭脂バインダーを用いることができる。このような有機榭脂バインダーを 構成する合成樹脂としては、例えば、ェチルセルロース、ニトロセルロースなどを挙げ ることがでさる。
[0041] 導電性ペーストを調製するに際しては、上記 Ag粉末と、ガラスフリットとを、混合し、 有機ビヒクルとしての有機バインダー榭脂を溶媒に溶解してなる有機ビヒクル溶液に 分散させ、混練することにより得られる。もっとも、 Ag粉末と、有機ビヒクルとガラスフリ ットとを、有機ビヒクルを溶解する溶媒中に投入し混練してもょ 、。
[0042] 本発明に係る導電性ペーストにおける各成分の配合割合については特に限定され ないが、 Ag粉末 100重量部に対し、上記ガラスフリットは 1〜3重量部の割合とするこ とが好ましい。ガラスフリットの配合割合が、多すぎると、導電性が十分でなくなり、ガ ラスフリットの配合割合が少なすぎると、受光面電極と半導体基板との接着強度も高 くなり難い。上記ガラスフリットの配合割合の下限値は、好ましくは、 1. 5重量部であり 、 1. 5重量部以上とすることにより、より一層接着強度を高くすることができる。また、 上記ガラスフリットの配合割合の好ましい上限値は 2. 5重量部であり、 2. 5重量部以 下とすることにより、接触抵抗を低くすることができる。 [0043] また、上記有機ビヒクルは、 Ag粉末 100重量部に対し、特に限定されな!ヽが、 20重 量部〜 25重量部程度の割合で配合すればよ 、。有機ビヒクルの配合割合が高すぎ ると、ペーストイ匕が困難となることがあり、低すぎると、ファインライン性の確保が困難と なることがある。
[0044] 上記無機酸ィ匕物力 なる添加剤の配合割合につ 、ても特に限定されな 、が、 Ag 粉末 100重量部に対し、 3〜 15重量部程度とすることが望ましい。 3重量部未満では 、無機酸ィ匕物を添加した効果が十分に得られないことがあり、 15重量部を超えると、 Ag粉末の焼結を阻害し、線抵抗が著しく高くなることがある。
[0045] 上記レジネートからなる添加剤の配合割合につ 、ても特に限定されな 、が、 Ag粉 末 100重量部に対し、 8〜16重量部程度とすることが望ましい。なお、 Znレジネート では 8重量部、 Tiレジネートでは 14重量部、 Biレジネートでは 15重量部とするのがも つとも好ましい。
[0046] 後述の具体的な実施例から明らかなように、上記特定の糸且成のガラスフリットを含有 する導電性ペーストを用いることにより、受光面電極 3の半導体基板 2への接着強度 を効果的に高めることができるとともに、両者の間の接触界面における電気的抵抗の 増カロもさほど招かない。従って、低温で焼成した場合であっても、信頼性に優れた受 光面電極 3を形成することができ、太陽電池のコストの低減及び信頼性の向上を図る ことができる。また、 Pbをガラスフリットが含有しないので、環境負担も和らげることが できる。
[0047] 次に、具体的な実施例及び比較例を説明することにより、本発明を明らかにする。
[0048] 導電性ペーストとして、平均粒径が: L mの球形 Ag粉末 100重量部に対し、下記 の表 1に示す組成のガラスフリット 2. 2重量部と Zn05重量部とを混合し、さらにバイ ンダー榭脂としてのェチルセルロースを 3. 8重量部と、溶剤としてテルビネオールを 含む複数種の導電性ペーストを用意した。次に、上記導電性ペーストを、 SiN力もな る反射防止膜が全面に形成された多結晶シリコン太陽電池の受光面上に、図 3に示 すパターンを用い、スクリーン印刷した。図 3に示すパターン 11では、印刷部 l la〜l Ifが、導電性ペーストが印刷される領域を示す。
[0049] なお、印刷部 11a, l ib間の距離は 200 m、印刷部 l ib, 11c間の距離は 400 m、印居 lj部 l ie, 1 Id間の距離は 600 /z m、印居 lj部 l id, l ie間の距離は 800 m、 印刷部 l ie, 1 If間の距離は 1000 /z mとした。なお、この印刷部間の距離とは、一方 の印刷部の他方の印刷部側端縁と、他方の印刷部の一方の印刷部側の端縁との間 の距離とした。
[0050] 上記導電性ペーストを印刷した後、 150°Cに設定されたオーブン中で導電性べ一 ストを乾燥した後、入口から出口まで約 4分の時間で搬送される近赤外線炉において 、ピーク温度が 750°Cとなるような焼成プロファイルにより導電性ペーストを焼成し、受 光面電極を形成した。
[0051] 上記のようにして受光面電極が形成された太陽電池用セルを用い、 TLM (Trans mission Line Model)法により接触抵抗 Rcを測定した。この TLM法とは、図 3に 示す印刷部に応じて形成された受光面電極部分間の距離と抵抗値とを測定し、電極 部分間距離 Lと測定された抵抗値 Rとの間に下記の式(1)の関係が成り立つため、 種々の条件下で電極部分間距離 L及び抵抗値 Rとの関係を評価し、 L→0に外挿す ることにより、接触抵抗 Rcを求める方法である。
[0052] R= (L/Z) XRSH + 2Rc …式(1)
なお、式(1)において、 Rは測定された抵抗値、 Lは上記電極部分間距離、 RSHは n型 Si系半導体層のシート抵抗、 Zは受光面電極の長さ、すなわち図 3における印刷 部の長さに相当する寸法、 Rcは接触抵抗である。
[0053] 上記のようにして求めた接触抵抗 Rcを下記の表 1に示す。
[0054] また、 10 μ mの膜厚及び 2 X 3mmの矩形の寸法を有する Ag電極を形成するため に、上記導電性ペーストを SiN力もなる反射防止膜が形成された多結晶シリコン太陽 電池の受光面上にスクリーン印刷した。しかる後、 150°Cに設定されたオーブンで乾 燥した後、入口—出口間を約 4分で通過し、ピーク温度が 780°Cに設定されている近 赤外線炉を用いた焼成プロファイルにより焼成し、上記受光面電極を形成した。次に 、銅線を受光面電極表面にはんだ付けし、サンプルを得た。はんだとしては、 Sn— P b- 1. 5Agの組成のはんだを用い、 260°Cで 5秒間溶融はんだに浸漬することにより はんだ付けを行った。
[0055] この銅線を太陽電池基板力 遠ざ力る方向に引張り試験機により外力を加え、受光 面電極が太陽電池の半導体基板から剥離した際の剥離強度を求め、電極の半導体 基板に対する接着強度とした。結果を下記の表 1に示す。
[0056] なお、接着強度を評価して!/、るのは、太陽電池の半導体基板同士を接続するため にインナーリードを配線する際、ある 、はその後モジュールィ匕した場合の受光面電極 の半導体基板に対する接着強度が低いと、受光面電極が半導体基板から剥離する おそれがあることによる。従って、接着強度が高いほど、このような剥離を防止するこ とができ、信頼性を高めることができる。
[0057] [表 1]
Figure imgf000013_0001
表 1から明らかなように、実施例 1〜8では、 B O /SiOのモル比が 0. 29以下の
2 3 2
範囲にあり、ガラスフリットの軟化点が 570〜760°Cの範囲に含まれているため、焼成 により得られた受光面電極と半導体基板との間の接触抵抗 Rcが 1. 3〜2. 6 Ω以下 と低力つた。従って、良好なォーミック接触が得られていることがわかる。
[0058] また、 Ag力もなる受光面電極と半導体基板との接着強度は、ガラスフリットの軟ィ匕 点が高くなるほど低下する傾向にある力 実施例 1〜8のうち軟ィ匕点が最も高い実施 例 2においても、接着強度は 2. 0NZ6mm2であり、接着強度が十分な大きさとされ ていることがわ力る。
[0059] これに対して、比較例 1では、モル比 B O /SiOが 0. 23であり、軟化点が 566°C
2 3 2
のガラスフリットを用いているため、また比較例 2では、上記モル比が 0. 53であり、か つ軟ィ匕点が 606°Cのガラスフリットを用いているため、焼成後の接触抵抗 Rcが、それ ぞれ、 15. 5 Ω及び 34. 90と 常に高力つた。
[0060] すなわち、比較例 1では、ガラスフリットの軟ィ匕点が低すぎるため、 Ag力もなる受光 面電極と半導体基板との界面に絶縁物であるガラスが過剰に留まり、接触抵抗が高 くなつているものと考えられる。他方、比較例 2では、上記モル比が 0. 53であり、導電 性ペーストの焼成時にガラス中に溶解した Ag粉末が S なる半導体基板表面で 還元され、析出し難いため、受光面電極と半導体基板との間の導通が十分に確保さ れず、それによつて接触抵抗 Rcが高くなつていると考えられる。
[0061] なお、導電性ペーストにより太陽電池の受光面電極を形成する場合、導電性べ一 ストの塗布及び焼成だけでは、接触抵抗を十分に安定に低くすることができな 、こと が多い。そのため、従来、酸処理を行い、受光面電極と半導体基板との間の接触抵 抗を低下させる方法が採用されているのが実情であった。このような酸処理には、 H F (フッ酸)が一般的に用いられている。しかしながら、フッ酸を用いて酸処理を行うと 、受光面電極と半導体基板との間に存在するガラスや Siの酸ィ匕物などが溶解し、受 光面電極と半導体基板との良好な接触が得られると考えられていたが、 HFによりガ ラスが溶解'除去される可能性もあった。ガラスなどが過剰に溶解'除去されると、受 光面電極と半導体基板との接着強度が低下するおそれがあった。
[0062] これに対して、上記実施例で示されているように、本発明の導電性ペーストを用い れば、このような酸処理を行わずとも、接触抵抗 Rcを十分に低くすることが可能とされ る。従って、酸処理による上記のような問題が生じ難ぐしかも酸処理工程という余分 な工程を省略することができ、生産工程を削減することが可能となる。

Claims

請求の範囲
[1] 太陽電池の受光面電極用材料として用いられる導電性ペーストであって、
Ag粉末と有機ビヒクルとガラスフリットとを含有しており、前記ガラスフリットの軟ィ匕点 力 70°C以上、 760°C以下であり、かつ該ガラスフリットは、モル比で B O /SiOが
2 3 2
0. 3以下の割合となるように B O及び SiOを含有し、かつ Bi Oを含有していないこ
2 3 2 2 3
とを特徴とする導電性ペースト。
[2] 太陽電池の受光面電極用材料として用いられる導電性ペーストであって、
Ag粉末と有機ビヒクルとガラスフリットとを含有しており、前記ガラスフリットの軟ィ匕点 力 S570°C以上、 760°C以下であり、
前記ガラスフリットは、モル比で B O /SiOが 0. 3以下の割合となるように B O及
2 3 2 2 3 び SiOを含有し、かつ、 Bi Oを 20. 0mol%未満含有することを特徴とする導電性
2 2 3
ペースト。
[3] 前記ガラスフリットは、さらに、 Al Oを 15mol%以下、 TiOを 0〜: L0mol%以下、 C
2 3 2
uOを 0〜15mol%以下の割合で、 Al O、 TiO及び CuOを含む請求項 1に記載の
2 3 2
導電性ペースト。
[4] 前記ガラスフリットとは別に、 ZnO、 TiO、 ZrO力も選ばれる少なくとも 1種の添カロ
2 2
剤をさらに含有している、請求項 1〜3のいずれ力 1項に記載の導電性ペースト。
[5] 前記ガラスフリットとは別に添加剤として、 Zn、 Bi及び Ti力もなる群力も選ばれる少 なくとも 1種の金属または該金属の金属化合物をレジネートの形態でさらに含有して いる、請求項 1〜4のいずれか 1項に記載の導電性ペースト。
[6] 半導体基板と、半導体基板の一方面に設けられた受光面電極と、他方面に設けら れた裏面電極とを備え、前記受光面電極が、請求項 1〜5のいずれか 1項に記載の 導電性ペーストの焼付けにより形成された導電膜からなることを特徴とする、太陽電 池。
PCT/JP2007/051769 2006-03-07 2007-02-02 導電性ペースト及び太陽電池 WO2007102287A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07713769A EP1993144A4 (en) 2006-03-07 2007-02-02 CONDUCTIVE PASTE AND SOLAR CELL
JP2007533808A JP4182174B2 (ja) 2006-03-07 2007-02-02 導電性ペースト及び太陽電池
US12/206,215 US20080314444A1 (en) 2006-03-07 2008-09-08 Electrically conductive paste and solar cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006060531 2006-03-07
JP2006-060531 2006-03-07
JP2006-235524 2006-08-31
JP2006235524 2006-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/206,215 Continuation US20080314444A1 (en) 2006-03-07 2008-09-08 Electrically conductive paste and solar cell

Publications (1)

Publication Number Publication Date
WO2007102287A1 true WO2007102287A1 (ja) 2007-09-13

Family

ID=38474729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051769 WO2007102287A1 (ja) 2006-03-07 2007-02-02 導電性ペースト及び太陽電池

Country Status (4)

Country Link
US (1) US20080314444A1 (ja)
EP (1) EP1993144A4 (ja)
JP (1) JP4182174B2 (ja)
WO (1) WO2007102287A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041182A1 (ja) * 2007-09-27 2009-04-02 Murata Manufacturing Co., Ltd. Ag電極ペースト、太陽電池セルおよびその製造方法
JP2009099781A (ja) * 2007-10-17 2009-05-07 Central Glass Co Ltd 導電性ペースト材料
JP2009194141A (ja) * 2008-02-14 2009-08-27 Namics Corp 太陽電池電極形成用導電性ペースト
JP2009200276A (ja) * 2008-02-22 2009-09-03 Tokyo Ohka Kogyo Co Ltd 電極形成用導電性組成物及び太陽電池の形成方法
WO2010002206A2 (ko) * 2008-07-04 2010-01-07 (주) 아모엘이디 AlN기판의 전극 재료와 AlN기판에 전극을 형성하는 방법 및 AlN기판
WO2010000234A1 (de) * 2008-07-02 2010-01-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Zusammensetzung mit pastöser konsistenz für die ausbildung elektrischer kontakte auf einem silicium-solarwafer und damit hergestellter kontakt
JP2010087251A (ja) * 2008-09-30 2010-04-15 Dic Corp 太陽電池用導電性ペースト
JP2010524257A (ja) * 2007-04-12 2010-07-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 厚膜伝導性組成物、および半導体デバイスの製造における使用方法
JP2011501444A (ja) * 2007-10-18 2011-01-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 太陽電池用電極ペーストおよびそれを用いた太陽電池電極
JP2011035035A (ja) * 2009-07-30 2011-02-17 Noritake Co Ltd 太陽電池電極用導電性組成物
JP2011512426A (ja) * 2008-01-30 2011-04-21 ビーエーエスエフ ソシエタス・ヨーロピア 有機金属修飾剤を有する導電性インク
JP2011204760A (ja) * 2010-03-24 2011-10-13 Mitsubishi Materials Corp 導電性組成物及びそれを用いた太陽電池の製造方法並びに太陽電池
JP2011204759A (ja) * 2010-03-24 2011-10-13 Mitsubishi Materials Corp 導電性組成物及びそれを用いた太陽電池の製造方法並びに太陽電池
WO2012111478A1 (ja) * 2011-02-18 2012-08-23 株式会社 村田製作所 導電性ペースト及び太陽電池
WO2012111479A1 (ja) * 2011-02-16 2012-08-23 株式会社 村田製作所 導電性ペースト、太陽電池、及び太陽電池の製造方法
JP2013211281A (ja) * 2013-06-25 2013-10-10 Tokyo Ohka Kogyo Co Ltd 電極形成用導電性組成物及び太陽電池の形成方法
JP2016515302A (ja) * 2013-05-06 2016-05-26 ハンワ ケミカル コーポレイション 太陽電池の電極の製造方法およびこれを用いた太陽電池
WO2018025627A1 (ja) * 2016-08-03 2018-02-08 昭栄化学工業株式会社 導電性ペースト

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560401B2 (en) * 2007-04-20 2009-07-14 Johnson Matthey Public Limited Company Frits and obscuration enamels for automotive applications
EP2191514A4 (en) * 2007-08-31 2016-11-30 Heraeus Precious Metals North America Conshohocken Llc HISTORIZED CONTACT STRUCTURE FOR SOLAR CELLS
JP2011526238A (ja) * 2008-06-26 2011-10-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 光起電力電池用導体に用いるガラス組成物
TWI377690B (en) * 2008-11-21 2012-11-21 Univ Nat Chiao Tung Method for forming a gexsi1-x buffer layer of solar-energy battery on a silicon wafer
JP5362379B2 (ja) * 2009-02-06 2013-12-11 三洋電機株式会社 太陽電池のi−v特性の測定方法
WO2010117773A1 (en) * 2009-03-30 2010-10-14 E. I. Du Pont De Nemours And Company Metal pastes and use thereof in the production of silicon solar cells
WO2010117788A1 (en) * 2009-03-30 2010-10-14 E. I. Du Pont De Nemours And Company Metal pastes and use thereof in the production of silicon solar cells
WO2010123967A2 (en) * 2009-04-22 2010-10-28 E. I. Du Pont De Nemours And Company Glass compositions used in conductors for photovoltaic cells
JP5716664B2 (ja) 2009-06-17 2015-05-13 旭硝子株式会社 電極形成用ガラスフリット、およびこれを用いた電極形成用導電ペースト、太陽電池
US8936949B2 (en) * 2009-08-26 2015-01-20 Mitsubishi Electric Corporation Solar cell and manufacturing method thereof
EP2504844A1 (en) 2009-11-25 2012-10-03 E.I. Du Pont De Nemours And Company Aluminum pastes and use thereof in the production of passivated emitter and rear contact silicon solar cells
JP5569094B2 (ja) * 2010-03-28 2014-08-13 セントラル硝子株式会社 低融点ガラス組成物及びそれを用いた導電性ペースト材料
WO2012044281A1 (en) * 2010-09-28 2012-04-05 E. I. Du Pont De Nemours And Company Conductive paste for solar cell electrode
JP5011428B2 (ja) * 2010-10-07 2012-08-29 昭栄化学工業株式会社 太陽電池素子並びにその製造方法
KR101173418B1 (ko) * 2011-07-29 2012-08-10 엘지이노텍 주식회사 태양전지 및 이의 제조방법
US20140352778A1 (en) * 2011-12-22 2014-12-04 Heraeus Precious Metals North America Conshohocken Llc Solar cell pastes for low resistance contacts
EP2607327A1 (en) * 2011-12-23 2013-06-26 Heraeus Precious Metals GmbH & Co. KG Thick-film composition containing antimony oxides and their use in the manufacture of semi-conductor devices
JP5820278B2 (ja) * 2012-01-10 2015-11-24 シャープ株式会社 太陽電池及び太陽電池の製造方法
KR101350960B1 (ko) * 2012-01-13 2014-01-16 한화케미칼 주식회사 글래스 프릿, 이를 포함하는 도전성 페이스트 조성물 및 태양전지
EP2750142B1 (en) * 2012-12-28 2017-05-24 Heraeus Deutschland GmbH & Co. KG An electro-conductive paste comprising an inorganic reaction system with a high glass transition temperature in the preparation of electrodes in mwt solar cells
US10636540B2 (en) 2015-03-27 2020-04-28 Heraeus Deutschland GmbH & Co. KG Electro-conductive pastes comprising an oxide additive
JP2016195109A (ja) 2015-03-27 2016-11-17 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー 金属化合物を含む導電性ペースト
EP3282453B1 (en) * 2016-08-11 2023-07-12 Henkel AG & Co. KGaA Improved processing of polymer based inks and pastes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279682A (en) 1991-06-11 1994-01-18 Mobil Solar Energy Corporation Solar cell and method of making same
US5645765A (en) 1996-05-09 1997-07-08 Shoei Chemical Inc. Lead-free conductive paste
JP2001118425A (ja) * 1999-10-21 2001-04-27 Murata Mfg Co Ltd 導電性ペースト
US20020096663A1 (en) 2000-07-10 2002-07-25 Tdk Corporation Conductive paste, outer electrode and process for producing the same
US20040214016A1 (en) 2003-04-28 2004-10-28 Fumiya Adachi Conductive paste and glass circuit structure
EP1560227A1 (en) 2003-08-08 2005-08-03 Sumitomo Electric Industries, Ltd. Conductive paste
JP2005317432A (ja) * 2004-04-30 2005-11-10 Shoei Chem Ind Co 導電性ペースト及びガラスフリット
EP1713095A2 (en) 2005-04-14 2006-10-18 E.I. Dupont De Nemours And Company Method of manufacture of semiconductor device and conductive compositions used therein

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144317A (ja) * 1991-11-15 1993-06-11 Murata Mfg Co Ltd 導電性ペースト及び該導電性ペーストを用いて電極を形成したチツプ型セラミツク電子部品
JP4453355B2 (ja) * 2003-12-12 2010-04-21 旭硝子株式会社 導体付き車両用窓ガラスおよびその製造方法
US20050189013A1 (en) * 2003-12-23 2005-09-01 Oliver Hartley Process for manufacturing photovoltaic cells

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279682A (en) 1991-06-11 1994-01-18 Mobil Solar Energy Corporation Solar cell and method of making same
US5645765A (en) 1996-05-09 1997-07-08 Shoei Chemical Inc. Lead-free conductive paste
JP2001118425A (ja) * 1999-10-21 2001-04-27 Murata Mfg Co Ltd 導電性ペースト
US20020096663A1 (en) 2000-07-10 2002-07-25 Tdk Corporation Conductive paste, outer electrode and process for producing the same
US20040214016A1 (en) 2003-04-28 2004-10-28 Fumiya Adachi Conductive paste and glass circuit structure
EP1560227A1 (en) 2003-08-08 2005-08-03 Sumitomo Electric Industries, Ltd. Conductive paste
JP2005317432A (ja) * 2004-04-30 2005-11-10 Shoei Chem Ind Co 導電性ペースト及びガラスフリット
EP1713095A2 (en) 2005-04-14 2006-10-18 E.I. Dupont De Nemours And Company Method of manufacture of semiconductor device and conductive compositions used therein

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1993144A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010524257A (ja) * 2007-04-12 2010-07-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 厚膜伝導性組成物、および半導体デバイスの製造における使用方法
WO2009041182A1 (ja) * 2007-09-27 2009-04-02 Murata Manufacturing Co., Ltd. Ag電極ペースト、太陽電池セルおよびその製造方法
KR101092142B1 (ko) * 2007-09-27 2011-12-12 가부시키가이샤 무라타 세이사쿠쇼 Ag 전극 페이스트, 태양전지 셀 및 그 제조방법
EP2200091A1 (en) * 2007-09-27 2010-06-23 Murata Manufacturing Co. Ltd. Ag electrode paste, solar battery cell, and process for producing the solar battery cell
JP5278707B2 (ja) * 2007-09-27 2013-09-04 株式会社村田製作所 Ag電極ペースト、太陽電池セルおよびその製造方法
EP2200091A4 (en) * 2007-09-27 2012-01-18 Murata Manufacturing Co AG ELECTRODE PASTE, SOLAR BATTERY CELL AND PROCESS FOR THE MANUFACTURE OF THE SOLAR BATTERY CELL
JP2009099781A (ja) * 2007-10-17 2009-05-07 Central Glass Co Ltd 導電性ペースト材料
JP2011501444A (ja) * 2007-10-18 2011-01-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 太陽電池用電極ペーストおよびそれを用いた太陽電池電極
JP2011512426A (ja) * 2008-01-30 2011-04-21 ビーエーエスエフ ソシエタス・ヨーロピア 有機金属修飾剤を有する導電性インク
JP2009194141A (ja) * 2008-02-14 2009-08-27 Namics Corp 太陽電池電極形成用導電性ペースト
JP2009200276A (ja) * 2008-02-22 2009-09-03 Tokyo Ohka Kogyo Co Ltd 電極形成用導電性組成物及び太陽電池の形成方法
WO2010000234A1 (de) * 2008-07-02 2010-01-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Zusammensetzung mit pastöser konsistenz für die ausbildung elektrischer kontakte auf einem silicium-solarwafer und damit hergestellter kontakt
WO2010002206A2 (ko) * 2008-07-04 2010-01-07 (주) 아모엘이디 AlN기판의 전극 재료와 AlN기판에 전극을 형성하는 방법 및 AlN기판
WO2010002206A3 (ko) * 2008-07-04 2010-04-22 (주) 아모엘이디 AlN기판의 전극 재료와 AlN기판에 전극을 형성하는 방법 및 AlN기판
JP2010087251A (ja) * 2008-09-30 2010-04-15 Dic Corp 太陽電池用導電性ペースト
JP2011035035A (ja) * 2009-07-30 2011-02-17 Noritake Co Ltd 太陽電池電極用導電性組成物
JP2011204759A (ja) * 2010-03-24 2011-10-13 Mitsubishi Materials Corp 導電性組成物及びそれを用いた太陽電池の製造方法並びに太陽電池
JP2011204760A (ja) * 2010-03-24 2011-10-13 Mitsubishi Materials Corp 導電性組成物及びそれを用いた太陽電池の製造方法並びに太陽電池
WO2012111479A1 (ja) * 2011-02-16 2012-08-23 株式会社 村田製作所 導電性ペースト、太陽電池、及び太陽電池の製造方法
JP5403304B2 (ja) * 2011-02-16 2014-01-29 株式会社村田製作所 導電性ペースト、太陽電池、及び太陽電池の製造方法
WO2012111478A1 (ja) * 2011-02-18 2012-08-23 株式会社 村田製作所 導電性ペースト及び太陽電池
JP2016515302A (ja) * 2013-05-06 2016-05-26 ハンワ ケミカル コーポレイション 太陽電池の電極の製造方法およびこれを用いた太陽電池
JP2013211281A (ja) * 2013-06-25 2013-10-10 Tokyo Ohka Kogyo Co Ltd 電極形成用導電性組成物及び太陽電池の形成方法
WO2018025627A1 (ja) * 2016-08-03 2018-02-08 昭栄化学工業株式会社 導電性ペースト
JPWO2018025627A1 (ja) * 2016-08-03 2019-07-11 昭栄化学工業株式会社 導電性ペースト
US11183315B2 (en) 2016-08-03 2021-11-23 Shoei Chemical Inc. Conductive paste

Also Published As

Publication number Publication date
JP4182174B2 (ja) 2008-11-19
EP1993144A1 (en) 2008-11-19
US20080314444A1 (en) 2008-12-25
JPWO2007102287A1 (ja) 2009-07-23
EP1993144A4 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
WO2007102287A1 (ja) 導電性ペースト及び太陽電池
TWI379314B (ja)
JP3760361B2 (ja) 太陽電池用導電性組成物
EP2903034B1 (en) Conductive paste and solar cell
KR100868621B1 (ko) 태양 전지 전극용 페이스트, 태양 전지 전극의 제조 방법,및 태양 전지
JP4726354B2 (ja) ペースト組成物およびそれを用いた太陽電池
JP2011501866A (ja) 鉛フリーの伝導性組成物、および半導体デバイスの製造における使用方法:フラックス材料
CA2729870A1 (en) Metal-containing composition, method for producing electrical contact structures on electronic components and also electronic component
CN102770924A (zh) 含有纳米级锌添加剂的厚膜导电组合物
JP4291146B2 (ja) 銀導体組成物
TW201110159A (en) Chip resistor front electrode and back electrode
JP2001118425A (ja) 導電性ペースト
CN104813414B (zh) 导电性膏以及太阳能电池
CN101395723A (zh) 导电性糊及太阳电池
TWI469944B (zh) A low melting point glass composition and a conductive paste material using the same
US20130327394A1 (en) Electroconductive Paste and Solar Cell
WO2012111478A1 (ja) 導電性ペースト及び太陽電池
WO2014178419A1 (ja) 太陽電池ならびに太陽電池のアルミニウム電極形成用ペースト組成物
JP4439213B2 (ja) 太陽電池素子およびその製造方法
KR20150065768A (ko) 도전성 페이스트 및 태양전지
JP2011233548A (ja) 導電性ペースト及び太陽電池
WO2012111479A1 (ja) 導電性ペースト、太陽電池、及び太陽電池の製造方法
WO2012160921A1 (ja) 導電性ペースト及び太陽電池
JP3964342B2 (ja) 導電ペースト
JP2008053138A (ja) 厚膜導体形成用組成物、それを用いた厚膜導体の形成方法、および得られる厚膜導体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2007533808

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007713769

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780007968.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE