WO2007101376A1 - Échangeur de chaleur du type à plaques à nervures - Google Patents

Échangeur de chaleur du type à plaques à nervures Download PDF

Info

Publication number
WO2007101376A1
WO2007101376A1 PCT/CN2006/002969 CN2006002969W WO2007101376A1 WO 2007101376 A1 WO2007101376 A1 WO 2007101376A1 CN 2006002969 W CN2006002969 W CN 2006002969W WO 2007101376 A1 WO2007101376 A1 WO 2007101376A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
region
ribbed
plate
plane
Prior art date
Application number
PCT/CN2006/002969
Other languages
English (en)
French (fr)
Inventor
Zhixian Miao
Xiang Ling
Faqing Niu
Original Assignee
Zhixian Miao
Xiang Ling
Faqing Niu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhixian Miao, Xiang Ling, Faqing Niu filed Critical Zhixian Miao
Priority to JP2008557576A priority Critical patent/JP4906129B2/ja
Priority to EP06805170A priority patent/EP1998132B1/en
Priority to US12/281,344 priority patent/US8087455B2/en
Priority to CN2006800111883A priority patent/CN101156041B/zh
Priority to AT06805170T priority patent/ATE529716T1/de
Priority to ES06805170T priority patent/ES2374646T3/es
Publication of WO2007101376A1 publication Critical patent/WO2007101376A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element

Definitions

  • the present invention relates to a ribbed heat exchanger which can be used for heat exchange between a condenser and an evaporator such as a condenser and various media in a refrigeration and heat pump cycle.
  • connection seal forms of these heat exchanger plates constituting the plate heat exchanger are usually welded or brazed and glued or sealed.
  • the gasket acts as a connection seal between the heat exchange plates.
  • SE-B-415928 discloses a plate heat exchanger having a plurality of heat exchange plates, each heat exchange plate comprising a first end region having a first angular aperture and a second angular aperture, a second end region and a slave a central heat transfer region extending from the first end region toward the second end region, the central heat transfer region having a corrugation; and a corner hole for the same fluid inlet and outlet being disposed on the same side of the heat exchange plate
  • W085/02670 discloses a plate heat exchanger having a plurality of heat exchange plates, each heat exchange plate comprising a first end region having a first angular aperture and a second angular aperture, a second end region and from the first end a central heat transfer region extending toward the second end region, the central heat transfer region having a corrugation; the central heat transfer region extending from the first end region to the second end region; the same for the same fluid inlet and The corner holes of the outlet are disposed on the same side of the heat exchanger plate; the first distribution region extends at the first end region, and the second distribution region extends at the second end region; some of the distribution regions are convex in a regular and arranged manner
  • the raised packs provide a flow resistance of the heat exchange medium in the plate gap between the distribution zones that is less than the flow resistance in the plate gap between the central heat transfer zones.
  • the disadvantage of the above plate heat exchanger is that when the heat exchange plates are stacked on each other and connected and sealed together, the support between the central heat transfer regions of each layer and the mechanical properties of the products against the working pressure are by the corrugated ridges.
  • the limited mutual contact points between the lines and the nature of the material connected between the contact points, the shape, number and distribution of these contact points are not only dependent on the needs of the heat exchange medium, but also on the heat exchanger plates.
  • Mechanical properties of materials such as materials, when it is necessary to use some materials with special properties, soft materials, materials with low mechanical properties, heat exchanger plates, and some special sealing materials must be used. Because the plate heat exchangers have fewer contact points between the central heat transfer regions composed of corrugations, such plate heat exchangers cannot meet the requirements of various aspects such as anti-destructive pressure and fatigue life.
  • each central heat transfer plate is composed of corrugated heat transfer at each center.
  • the area is hydroformed by a fixed mold.
  • the distribution of the ripples in the central heat transfer area of the heat exchanger plate after the mold is completed cannot be changed.
  • Such heat exchanger plates only face various heat exchange media. It is possible to use a central heat transfer region composed of the same corrugation distribution for heat exchange, and as a result, the heat transfer requirements of various heat exchange media are not well satisfied, and the existing plate heat exchangers are manufactured by various types.
  • Heat exchanger plates in the central heat transfer zone of different corrugated distributions face the requirements of different heat exchange media, but this will increase the manufacturing cost of the product.
  • the object of the present invention is to overcome the above-mentioned deficiencies, and to provide a ribbed heat exchanger capable of resisting large anti-destructive pressure and having strong fatigue resistance, and reducing heat exchange under the premise of satisfying different heat exchange requirements. Manufacturing costs.
  • the ribbed heat exchanger is realized by the following scheme:
  • a ribbed heat exchanger comprising a heat exchange core composed of a ribbed heat exchanger plate and an outer baffle and a nozzle, and the ribbed heat exchanger plates constituting the heat exchange core are welded or brazed by a joint sealing form
  • a gluing or gasket as a form of joint seal between the ribbed heat exchanger plates, including on the ribbed heat exchanger plate; a first end region, a second end region and a central heat transfer region,
  • the first edge zone and the second edge zone around the ribbed heat exchanger plate are annular closed sealing slopes, and the ribbed heat exchanger plate is parallel to the upper plate plane between the first edge zone and the second edge zone and
  • the lower plate extends in a plane, in the ribbed heat exchanger plate, there is a first distribution area in the first end region, a second distribution area in the second end region, and a guide in the first distribution area and the second distribution area a flow fin, the central heat transfer region extending from the first end region to
  • the adjacent edge regions of the corner holes are respectively in the form of a pair in the first end region and in the second end region, the adjacent edge regions of the corner holes being in the first end region and in the second end region respectively Extending in the plane height of the upper plate and extending in the plane height of the lower plate, between adjacent edge regions of the corner holes and adjacent edges of the corner holes having the height of the upper plate plane between the region and the central heat transfer region, there is an extension of a beveled transition region between the adjacent edge region of the corner hole having the height of the upper plate plane and the first distribution region and the second distribution region, and an adjacent edge region of the corner hole extending at the height of the upper plate plane
  • the adjacent edge region of the corner hole extending in the lower plane height of the lower plate is in height contact with the upper plate plane through the bevel transition region and the lower plate plane height contact.
  • the above technical solution has the beneficial effects that the heat exchange medium is ribbed because there are distribution regions in the first end region and the second end region of the ribbed heat exchanger plate and there are flow guiding ribs in each distribution region.
  • the ribbed heat exchanger composed of the plate heat exchanger has a relatively uniform distribution pattern in the central heat transfer region of each layer.
  • the ribbed heat exchanger has high anti-destructive pressure due to the large contact and fixed area between the heat exchange fins and the flow guiding fins and the ribbed heat exchanger plate. Better resistance to fatigue.
  • the heat exchange fins and the flow guiding fins can be sawtooth type, straight type, porous type, corrugated type and blinds.
  • the rib form can be selected according to the nature of the heat exchange medium and the heat exchange requirements, so the same ribbed heat exchanger plate and ribbed heat exchanger can be applied to more heat exchange medium after selecting different rib forms. And heat exchange conditions.
  • the beneficial effects of the above technical solution are as follows: since uniform and complete concave and convex blister bubbles are respectively added in the planes of adjacent edge regions of the corner holes, the uniform and complete embossed edge blister can not make the adjacent edge regions of the corner holes serve as sealing planes in the manufacturing process. The sealing is tightly ensured. During the heat exchange operation of the ribbed heat exchanger, the edge foam can also enhance the seismic and fatigue resistance of the adjacent edge region of the corner hole as a sealing plane.
  • the pits between the adjacent edge regions of the corner holes at the plane height of the upper plate on the ribbed heat exchanger plate and the sealing slopes closed at the periphery of the ribbed heat exchanger plate are respectively provided with pits, pits The bottom reaches the lower plane flatness; a projection is respectively arranged at the boundary between the adjacent edge region of the corner hole at the height of the lower plate plane and the annular sealing sealing surface at the periphery of the ribbed heat exchanger plate, and the top of the boss reaches the upper plate plane height.
  • a flanged structure for preventing the sealing bevel from being deformed during the manufacturing process is provided on the straight section of the sealing bevel which is closed around the first edge region and the second edge region of the ribbed heat exchanger plate, but in each The first edge region of the ribbed heat exchanger plate and the sealing bevel at the periphery of the second edge region are closed at four rounded corners without the flange structure.
  • the above technical solution can make the ribbed heat exchanger plates keep the shape of the peripheral bevel without being damaged and damaged during the manufacturing process, and at the same time, tightening with each other and with the gravity and clamping force and the sealing substance during the joint sealing process such as welding or brazing.
  • the flow can make the sealing slope of the annular sealing plate around the ribbed heat exchanger plate uniformly change and produce uniform parallel movement, so that the various sealing faces are always closely connected with each other, thereby improving the yield of the finished product of the product.
  • a medium equalizer is disposed in an adjacent edge region of each corner hole of each of the corner holes on the ribbed heat exchanger plate, and the medium is equally divided on the same ribbed heat exchanger plate.
  • the angle of the corner hole in the adjacent edge region of the corner hole of the device is smaller than the angle hole diameter in the adjacent edge region of the other corner hole without the media homogenizer.
  • the medium homogenizer may be arranged such that: the corner hole of the ribbed heat exchanger plate and the adjacent edge region thereof are on the plane height plane of the upper plate, and the annular groove is provided on the adjacent edge region, and the opening of the groove On the plane height plane of the upper plate, the bottom of the groove is on the plane of the lower plate, the edge of the groove is curved, and the inner and outer edges of the groove are respectively provided with small holes, and the inner and outer edges are small. Hole misalignment setting;
  • the medium sizing device may be further configured to: an angular hole of the ribbed heat exchanger plate and an adjacent edge region thereof on a plane height plane of the lower plate, wherein the adjacent edge region is provided with an annular groove, the opening of the groove On the plane of the lower plate, the bottom of the groove is on the plane height of the upper plate, the edge of the groove is curved, and the inner and outer edges of the groove are respectively provided with small holes, and the inner and outer edges are small. Hole misalignment setting.
  • the above two media homogenizers can be separately disposed on different ribbed heat exchanger plates, or can be simultaneously disposed on the same ⁇ ribbed plate heat exchanger plate.
  • a plurality of ribbed heat exchanger plates with a media homogenizer are respectively rotated 180° in a plane plane and connected to form a heat exchange core body
  • the respective media homogenizers of each rib plate type change plate
  • the corner holes will be stacked together to form a corner hole clearing flow passage having a relatively small diameter.
  • the small holes on the inner edges correspond to each other and the small holes on the outer edges correspond to each other.
  • the other corner holes without the media homogenizer will form a relatively large diameter corner hole flow passage.
  • the beneficial effects of the above technical solution are as follows: Since the ribbed heat exchanger is provided in each ribbed heat exchanger plate and constitutes a ribbed heat exchanger, when the ribbed heat exchanger is used for a heat exchanger of a refrigeration and heat pump cycle The cold medium can be uniformly passed into the laminar flow passages between the ribbed heat exchanger plates through the medium homogenizer on each ribbed heat exchanger plate and the equal flow passage.
  • a plurality of ribbed heat exchanger plates without a media homogenizer are respectively rotated 180° in a plane plane and connected to form a heat exchange core body; or a plurality of ribbed heat exchanger plates with a media homogenizer are respectively Rotating 180° to each other and stacking together to form a heat exchange core; since the top surface of the adjacent edge region of the corner hole in the first end region of each ribbed heat exchanger plate will be adjacent to On the other ribbed heat exchanger plate, the back faces of the adjacent edge regions of the corner holes in the second end portion are in close contact with each other, and are located in the lower end plane of the first end region on each ribbed heat exchanger plate.
  • the back surface of the adjacent corner region of the height corner hole will be in close contact with the top surface of the adjacent edge region of the corner hole at the height of the upper plate in the second end portion region of the immediately adjacent ribbed heat exchanger plate, and the adjacent edges of the corner holes are adjacent to each other.
  • the plane height of the region having different layers is directly connected to the sealing edge of the first edge region and the second edge region of the ribbed heat exchanger plate, when the ribs are closed When the heat exchanger plates are stacked and sealed together, a corner hole flow path space twice the rib height will be formed between the corner hole flow path and the central heat transfer region, and the angular hole flow path space will be enhanced.
  • the disturbance and scouring action of the heat exchange medium in the space can avoid or slow the retention of the heat exchange medium around the corner hole and deposit impurities, and the angular hole flow space will also facilitate the uniform distribution of the heat exchange medium to each layer.
  • the central heat transfer zone can reduce the resistance of the fluid.
  • the corner holes in the heat exchange core body thereby form a corner hole flow passage and form a single flow or a plurality of flows of the heat exchange medium.
  • the corner holes for the same fluid inlet and outlet and the adjacent edge regions of the corner holes having the same plane height around the periphery of the corner holes are respectively disposed in the first end region and The unilateral ipsilateral flow distribution of the heat exchange medium in the ribbed heat exchanger is formed at the same side of the second end region.
  • the corner holes for the same fluid inlet and outlet and the adjacent edge regions of the corner holes having the same plane height around the periphery of the corner holes are respectively disposed in the first end region and At a diagonal position within the second end region, a diagonal flow distribution of the heat exchange medium within the ribbed heat exchanger is formed.
  • the ribbed heat exchanger described above can be made of metal materials, non-metal materials and composite materials to meet the requirements of heat exchange between different working pressures, working temperatures and heat exchangers with different corrosive properties.
  • FIG. 1 Schematic diagram of the structure of the ribbed heat exchanger plate in the first embodiment
  • FIG 7 a partial enlarged view of the media equalizer according to Figure 6 and Figure 16
  • Figure 11 is a schematic view showing the structure of another ribbed heat exchanger plate in Embodiment 2.
  • Figure 12 is a partial enlarged view of the media equalizer according to Figure 11 and Figure 17
  • Figure 13 a cross-sectional view of a partially enlarged schematic view at H-H according to Figure 12
  • FIG. 14 Schematic diagram of the structure of the ribbed heat exchanger plate in the third embodiment
  • FIG. 15 Schematic diagram of another ribbed heat exchanger plate in Embodiment 3.
  • FIG. 16 Schematic diagram of the structure of the ribbed heat exchanger plate in the fourth embodiment
  • FIG. 17 Schematic diagram of another ribbed heat exchanger plate in Embodiment 4.
  • FIG. 18 Assembly of a ribbed heat exchanger using the ribbed heat exchanger plates of Example 2 or Example 4 and according to Figure 1
  • the ribbed heat exchanger plate 1 extends between the first edge region 2 and the second edge region 3 parallel to the upper plate plane height 4 and the lower plate plane height 5,
  • the center line 6 divides the ribbed heat exchanger plate 1 into a first portion 11 and a second portion 12, and the first edge region 2 and the second edge region 3 around the ribbed heat exchange plate 1 are annular sealing sealing faces 21, ribbed type change
  • the hot plate 1 further comprises: a first end region 7; a second end region 8; a central heat transfer region 9 between the first edge region 2 and the second edge region 3 from the first end region 7 to the first
  • the two end regions 8 extend; the central heat transfer region 9 of the ribbed heat exchanger plate 1 extends over the lower plate plane twist 5, with heat exchange fins 13 on the central heat transfer region 9;
  • the ribbed heat exchanger plate 1 is provided with corner holes 14, 15, and the corner holes 14, 15 pass through the ribbed type in the first end region 7 and the second end region 8.
  • the heat exchange plates 1 form through holes and are surrounded by respective corner hole adjacent edge regions 16, 17, wherein the corner hole adjacent edge regions 16 surrounding the corner holes 14 extend over the upper plate height 4, and the corner holes surrounding the corner holes 15 are adjacent edge regions 17 It extends over the lower plate height 5.
  • the second ribbed heat exchanger plate 1 is rotated 180° in plane and stacked on the first ribbed heat exchange plate 1 and continuously connected and sealed to form the heat exchange core 22, which is changed.
  • the corner holes 14, 15 in the hot core 22 will form a corner hole flow passage 41; and the heat exchange core 22 composed of the ribbed heat exchange plate 1 is provided with an outer block
  • the plate 24 is divided into a front outer baffle 24 and a rear outer baffle 24, and a through hole and a nozzle 23 are provided on the front outer baffle 24.
  • Embodiment 2 includes Embodiment 1 and is different from Embodiment 1 in the following points:
  • a media homogenizer 27 is provided at the position of the corner hole 14 in the second end portion 8 of the ribbed heat exchanger plate 1a and has a corner hole 14a, a corner hole 14a and a phase.
  • the adjacent edge region 16 is at the lower plate plane height 4, and the adjacent edge region 16 is provided with an annular groove 32, the groove opening 34 is on the lower plate plane height surface 4, and the bottom of the groove is on the upper plate plane height surface 5
  • the edges 33, 31 of the groove 32 are curved, and one or more small holes 30 are respectively disposed on the inner and outer edges 33, 31 of the groove, and the small holes 30 on the inner and outer edges are not in the same orientation.
  • the positions of the equally divided apertures 30 correspond to the inner edges 38 on the adjacent ribbed heat exchange plates lb and the equally spaced apertures 30 on the outer edges 36 after assembly.
  • a media homogenizer 27 is provided at the position of the corner hole 15 in the first end region 7 of the ribbed heat exchanger plate lb and has an angular hole 15a, the corner hole 15a and adjacent
  • the edge region 17 is at an upper plate plane height 5
  • an annular groove 37 is provided on the adjacent edge region 17, the opening 39 of the groove 37 is on the upper plate plane height surface 5, and the bottom of the groove is at the lower plate plane height surface 4
  • the edges 38, 36 of the groove 37 are curved, and one or more equally spaced holes 30, small holes on the inner and outer edges 38, 36 are respectively disposed on the inner and outer edges 38, 36 of the groove.
  • 30 is not in the same orientation, and the positions of the equally divided apertures 30 correspond to the equally spaced apertures 30 of the inner and outer edges 33, 31 of the adjacent ribbed heat exchanger plates la after assembly.
  • a concave edge bubble 25 is provided in the adjacent edge region 16 of the corner hole around the corner holes 14 and 14a of the upper plate plane height 4, and the concave edge is provided.
  • the bottom of the bubble 25 reaches the lower plate plane height 5;
  • a rim bubble 28 is disposed in the adjacent edge region 17 of the corner hole around the corner holes 15 and 15a of the lower plate plane height 5, and the top of the concave edge bubble 28 reaches the upper plate plane a height 4;
  • a dimple 26 is provided at a boundary between the adjacent edge region 16 of the corner hole at the plane height 4 of the upper plate and the sealing edge 21 of the first edge region 2 around the ribbed heat exchanger plates la, lb, respectively.
  • the bottom reaches the lower plate plane height 5; at the boundary between the adjacent edge region 17 of the corner hole at the lower plate plane height 5 and the second edge region 3 sealing slope 21 at the periphery of the ribbed heat exchanger plates la, lb, respectively, a convex portion is provided At the table 29, the top of the boss 29 reaches the upper plate plane height 4.
  • the first edge region 2 and the second edge region 3 of each of the ribbed heat exchanger plates la, lb are circumferentially closed.
  • the straight section of the sealing bevel 21 has a flange structure 35 for preventing the sealing bevel 21 from being deformed during the manufacturing process, but is looped around the first edge region 2 and the second edge region 3 of each of the ribbed heat exchanger plates la, lb.
  • the four rounded corners of the closed sealing bevel 21 do not have the flange Structure 35.
  • the rib plate heat exchanger plate lb plane is rotated by 180° and the ribbed heat exchanger plate la is stacked and continuously connected and sealed to form the heat exchange core 22, which is changed.
  • the corner holes 14, 15 in the hot core 22 will form a corner hole flow passage 41, and each of the corner holes 14a, 15a will form a corner hole flow passage 41a, in the heat exchange core composed of the ribbed heat exchange plates la, lb
  • the body 22 is provided with an outer baffle 24 and is divided into a front outer baffle 24 and a rear outer baffle 24, and a through hole and a nozzle 23 are provided on the front outer baffle 24.
  • the corner holes 14, 14a and 15, 15a for the same fluid inlet and outlet are used in the ribbed heat exchanger plate 1 and the ribbed heat exchanger plates 1a, 1b, and at these corners.
  • the corner hole adjacent edge regions 16 and 17 having the same plane height around the holes 14, 14a and 15, 15a are respectively disposed in the first end region and the one-side ipsilateral position in the second end region, and the heat exchange medium is
  • the ribbed heat exchanger composed of the ribbed heat exchanger plate 1 and the ribbed heat exchanger plates la, lb will flow and exchange heat with each other in a single side flow.
  • Embodiment 3 is similar to Embodiment 1, and is different in that;
  • the ribbed heat exchange plates lc, Id are used for the corner holes 14 and 15 of the same fluid inlet and outlet and adjacent to the corner holes having the same plane curvature around the corner holes 14 and 15.
  • the edge regions 16 and 17 are disposed at diagonal positions of the ribbed heat exchange plates lc, Id, and the heat exchange medium will be in a diagonal flow manner in the ribbed heat exchanger composed of the ribbed heat exchange plates lc, Id. Flow and heat exchange with each other.
  • the corner holes 14 of the ribbed heat exchange plates lc, Id and the adjacent edge regions 16 of the corner holes at the plane height 4 of the upper plate are diagonally distributed in the first end region 7 and the second end region.
  • the corner hole adjacent edge region 16 around the corner hole 14 is connected to the lower plate plane height 5 through the slope transition region 10 on the center line 6; the corner hole 15 of the ribbed heat exchange plates lc, Id and the lower plane height 5
  • the corner hole adjacent edge regions 17 are diagonally distributed in the first end region 7 and the second end region 8, and the corner holes surrounding the corner holes 15 are adjacent to the edge region 17 through the slope transition region 10 on the center line 6 and the upper plate plane height. 4 connections.
  • the rib-plate heat exchanger plate Id plane is rotated by 180° and the ribbed heat exchange plate lc is stacked and continuously connected and sealed to form the heat exchange core 22, and each of the heat exchange cores 22 is disposed.
  • the corner holes 14, 15 will form a corner hole flow passage 41; on the heat exchange core 22 composed of the ribbed heat exchange plates lc, Id, an outer baffle 2 is provided and is divided into a front outer baffle 24 and a rear outer baffle
  • the plate 24 is provided with a through hole and a nozzle 23 on the front outer baffle 24.
  • Embodiment 4 is similar to Embodiment 2, and is different in that; As shown in Figures 16 and 17, the ribbed heat exchanger plates le, If are used for the same fluid inlet and outlet angle holes 14, 14a and 15, 15a and around the corner holes 14, 14a and 15, 15a.
  • the adjacent edge regions 16 and 17 having the same plane height are disposed at the diagonal positions of the ribbed heat exchanger plates le and If, and the heat exchange medium is in the ribbed heat exchanger composed of the ribbed heat exchanger plates le and If. Will flow in a diagonal flow and exchange heat with each other.
  • the ribbed heat exchanger plates le, If the corner holes 14, 14a and the corner hole adjacent edge regions 16 at the upper plate plane twist 4 are diagonally distributed in the first end region 7 and the second In the end region 8, the corner hole adjacent edge region 16 surrounding the corner hole 14, 14a is connected to the lower plate plane height 5 by the slope transition region 10 on the center line 6; the ribbed heat exchanger plate le, If the corner hole 15, 15a And the adjacent edge regions 17 of the corner holes located at the height 5 of the lower plate are diagonally distributed in the first end region 7 and the second end region 8, and the adjacent edge regions 17 surrounding the corner holes 15, 15a pass through the center line 6.
  • the bevel transition region 10 is connected to the upper plate plane height 4.
  • the plane of the ribbed heat exchange plate If is rotated by 180° and stacked on the ribbed heat exchange plate, and the connection heat sealing core 22 is continuously connected to form the heat exchange core 22, and each of the heat exchange cores 22 is disposed.
  • the corner holes 14, 15 will form a corner hole flow path 41, and each of the corner holes 14a, 15a will form a corner hole flow path 41a, which is provided on the heat exchange core 22 composed of the ribbed heat exchange plates le and If.
  • the baffle 24 is divided into a front outer baffle 24 and a rear outer baffle 24, and a through hole and a nozzle 23 are provided on the front outer baffle 24.
  • the corner holes 14, 14a and 15, 15a for the same fluid inlet and outlet are used in the ribbed heat exchanger plates la, lb and the ribbed heat exchanger plates le, If The corner hole adjacent edge regions 16 and 17 having the same plane twist around the corner holes 14, 14a and 15, 15a are respectively disposed in the first end region and the diagonal position in the second end region, the heat exchange medium In the ribbed heat exchanger composed of the ribbed heat exchanger plates la, lb and the ribbed heat exchanger plates le, If, it flows in a diagonal flow and exchanges heat with each other.
  • a ribbed heat exchanger includes a heat exchange core 22 and a tube composed of a ribbed heat exchanger plate 1; la, lb; lc, Id; le, If The nozzle 23 and the outer baffle 24, the outer baffle 24 can be divided into a front outer baffle 24 and a rear outer baffle 24; the position of the nozzle 23 is distributed on the front outer baffle 24 and the rear outer baffle 24;
  • the ribbed heat exchanger plates 1 of the core 22; la, lb ; lc, Id; le, lf are each connected and sealed, usually by welding or brazing process and using a gluing or sealing gasket as the ribbed heat exchanger plate 1 ; la, lb; lc, Id; le, If the connection between them is sealed.
  • each ribbed heat exchanger plate 1 As shown in Figures 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, in ribbed
  • the portion 8 extends, with heat exchange fins 13
  • each ribbed heat exchanger plate has corner holes 14, 14a and 15, 15a formed through the ribbed heat exchanger plates, and the corner holes 14, 14a and 15, 15a are respectively surrounded by angular aperture adjacent edge regions 16, 17 having an upper plate plane height 4 and a lower plate plane height 5, the corner aperture adjacent edge regions 16, 17 being in the first end region 7 and at the second end
  • the regions 8 are each in the form of a pair of pairs of adjacent edge regions 16, 17 extending in the first end region 7 and in the second end region 8 respectively at the upper plate plane height 4 and at the lower
  • the sealing edge is located at the periphery of the first edge region 2 and the second edge region 3 of each ribbed heat exchanger plate.
  • the straight section of 21 has a flange structure 35 for preventing the sealing slope 21 from being deformed during the manufacturing process, but four rounded corners of the slope 21 are sealed around the first edge region 2 and the second edge region 3 of each ribbed heat exchanger plate. There is no such flanged structure 35.
  • the heat exchange fins 13 and the flow guiding fins 20 are serrated, straight, and porous.
  • One of the five types of ribs, corrugated and louvered, and the five different types of ribs are combined with one another in terms of the nature of the heat exchange medium and the heat transfer requirements.
  • the corner hole 14a and the adjacent edge region 16 are at the lower plate plane height 4
  • the opening 34 of the groove is on the lower plane height surface 4
  • the bottom of the groove is on the upper plate plane height surface 5
  • the edge 33, 31 of the groove 32 is an arc.
  • One or more small holes 30 are respectively formed on the inner and outer edges 33, 31 of the groove, and the small holes 30 on the inner and outer edges are not in the same orientation, and the positions and phases of the small holes 30 are equally divided.
  • the adjacent ribbed heat exchanger plates lb, If, the inner edge 38, and the equally spaced apertures 30 on the outer edge 36 correspond to each other after assembly.
  • the corner holes 15a and the adjacent edge regions 17 are at the upper plate plane height 5 in the adjacent edge regions 17 of the corner holes having the medium homogenizer 27.
  • An annular groove 37 is provided in the adjacent edge region 17, the opening 39 of the groove 37 is on the upper plate plane height surface 5, and the bottom of the groove is on the lower plate plane height surface 4, and the edge 37, 36 of the groove 37
  • one or more equally spaced apertures 30 are provided in the inner and outer edges 38, 36 of the recess, and the apertures 30 in the inner and outer edges 38, 36 are not in the same orientation, and these are equally divided
  • the position of the small hole 30 corresponds to the equally divided small holes 30 of the inner and outer edges 33, 31 of the adjacent ribbed heat exchange plates la, le after assembly.
  • angle holes 14, 14a or 15, 15a for the same fluid inlet and outlet in the ribbed heat exchanger plates 1 and 1a, 1b, and surrounding the corner holes 14, 14a The corner hole adjacent edge regions 16 or 17 having the same plane height around the circumferences 15, 15a are respectively disposed in the first end region 7 and the one-side ipsilateral position in the second end region 8.
  • corner holes 14, 14a or 15, 15a for the same fluid inlet and outlet in the ribbed heat exchanger plates lc, Id and le, If and around these corners
  • the corner holes adjacent edge regions 16 or 17 having the same height at the periphery of the holes 14, 14a or 15, 15a are respectively disposed in the first end portion 7 and in the diagonal position in the second end portion 8.
  • a flow guiding rib 20 is added to the plane on the second distribution region 19.
  • heat exchange fins 13 are provided in the plane on the heat transfer region 9 of the ribbed heat exchanger plates la, lb and le, If, while the front outer baffle 24 on the heat exchange core 22 is provided. Both the rear outer baffle 24 and the outer baffle 24 are flat and sealed at the peripheral bevel.
  • the back sides of the 17 are tightly sealed to each other, while the back side of the adjacent edge region 17 of the corner hole in the first end portion 7 of the ribbed heat exchange plate in the first end region 7 will be adjacent to the other ribbed heat exchanger plate adjacent thereto.
  • the top faces of the adjacent edge regions 16 of the corner holes located in the plane height 4 of the upper plate in the second end region 8 are tightly sealed to each other, and the adjacent edge regions 16, 17 of the respective corner holes have different plane flatnesses 4, 5 and First around the ribbed heat exchanger plates
  • the sealing region 21 of the edge region 2 and the second edge region 3 are directly connected to each other.
  • the ribbed heat exchanger plates la, lb and the ribbed heat exchanger plates le If the respective inner edges 33, 38 of the groove are equally divided into small holes 30 and flow into the annular even flow passage 40, and finally from the ribbed heat exchanger plate La, lb, and ribbed heat exchanger plates le, If the outer edges 31, 36 of the respective grooves are equally spaced, the annular holes 30 are out of the ring
  • the flow passage 40 concurrently flows the flow fins 20 and the heat exchange fins 13, thereby achieving that the heat exchange medium is uniformly branched and distributed to the ribbed heat exchanger plates la, lb and the ribbed heat exchanger plates le and If.
  • the purpose of the laminar flow channel The purpose of the laminar flow channel.
  • Fig. 18 Also shown in Fig. 18 is that the concave edge bubble 25 in the adjacent edge region 16 of the corner hole of the ribbed heat exchanger plate la and the ribbed heat exchanger plate le will be combined with the ribbed heat exchanger plate lb and the ribbed heat exchanger plate If The rim foams 28 in the adjacent edge regions 17 of the corner holes are closely fixed to each other; at the same time, the rib foams 28 in the adjacent edge regions 17 of the corner holes in the ribbed heat exchanger plate la and the ribbed heat exchanger plate le will exchange heat with the ribs.
  • the concave blister 25 in the adjacent edge region 16 of the corner hole of the plate lb and the ribbed heat exchange plate If is connected and fixed together;
  • Fig. 18 Also shown in Fig. 18 is that the top of the boss 29 on the ribbed heat exchanger plate la and the ribbed heat exchanger plate le will be at the bottom of the pit 26 on the ribbed heat exchanger plate lb and the ribbed heat exchanger plate If.
  • the connection is fixed, and the bottom of the ribbed heat exchange plate la and the rib 26 on the ribbed heat exchange plate le will be fixed to the top of the boss 29 of the ribbed heat exchange plate lb and the ribbed heat exchange plate If.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

肋板式换热器 技术领域
本发明涉及一种肋板式换热器,这种肋板式换热器可以被用于制冷和热泵循环中 的冷凝器和蒸发器等换热器以及各种介质的相互换热。
背景技术
目前在介质的冷凝、 蒸发和相互换热的过程中, 经常会采用板式换热器, 构成 板式换热器的这些换热板的连接密封形式通常采用焊接或钎焊工艺以及使用胶粘或 密封垫片作为各换热板之间的连接密封形式。
SE-B-415928 公开了一种具有许多换热板的板式换热器, 每个换热板包括具有 第一角孔和第二角孔的第一端部区域、 第二端部区域和从第一端部区域向第二端部 区域延伸的中心传热区域, 中心传热区域具有波紋; 用于同一种流体入口和出口的 角孔设于换热板的同一侧,
W085/02670公幵了具有许多换热板的板式换热器, 每个换热板包括具有第一角 孔和第二角孔的第一端部区域、 第二端部区域和从第一端部区域向第二端部区域延 伸的中心传热区域, 中心传热区域具有波纹; 该中心传热区域从第一端部区域向第 二端部区域延伸; 所述用于同一种流体入口和出口的角孔设于换热板的同一侧; 第 一分配区域在第一端部区域延伸, 第二分配区域在第二端部区域延伸; 所述分配区 域中有一些按规律和排列方式凸起的包, 这些凸起的包使得换热介质在分配区域之 间的板间隙中其流阻小于在中心传热区域之间板间隙内的流阻。
上述板式换热器的不足之处在于;当各换热板被相互叠放并连接密封在一起时, 各层中心传热区域之间的支撑以及抵御工作压力等产品的机械性能是靠波纹脊线之 间有限的相互接触点和接触点之间连接物质的性质所体现的, 这些接触点的形状、 数量和分布状态不光取决于满足换热介质的需要, 还将取决于换热板所用的材料等 材料机械性能, 面对必须使用具有特殊性质的某些材质较软, 各项机械性能较低的 材料制作换热板时, 以及必须使用某些具有特殊性质的连接密封物质时, 这类板式 换热器在由波紋构成的各中心传热区域之间由于接触点较少, 将使这类板式换热器 不能满足抗破坏压力和抗疲劳寿命等各方面的使用要求。
上述这种板式换热器的不足之处还在于; 各换热板上由波纹构成的各中心传热 区域是用固定的模具液压成形的, 模具制造完成后换热板上由波紋构成的中心传热 区域的波紋分布是不能改变的, 这样的换热板在面对各种不同换热介质时只能采用 由同样的波紋分布构成的中心传热区域进行换热, 其结果当然是不能很好的满足各 种换热介质的不同换热要求, 为此现有板式换热器采用制造各种具有不同波紋分布 形式中心传热区域的换热板来面对不同换热介质的要求, 但是这将加大产品的制造 成本。
发明内容
本发明的目的是克服上述不足之处, 提供一种肋板式换热器, 它能够抵御较大 的抗破坏压力并具有较强的抗疲劳能力, 在满足不同换热需求的前提下降低换热器 的制造成本。
肋板式换热器是采用以下方案实现的:
一种肋板式换热器, 包括由肋板式换热板构成的换热芯体以及外挡板和管嘴, 构成换热芯体的这些肋板式换热板其连接密封形式采用焊接或钎焊工艺以及使用胶 粘或密封垫片作为各肋板式换热板之间的连接密封形式,在肋板式换热板上包括有; 第一端部区域, 第二端部区域和中心传热区域, 其特征在于, 肋板式换热板周边的 第一边缘区和第二边缘区为环形封闭的密封斜面, 肋板式换热板在第一边缘区和第 二边缘区之间平行于上板平面和下板平面延伸, 在肋板式换热板中第一端部区域内 有第一分配区域, 在第二端部区域内有第二分配区域, 在第一分配区域和第二分配 区域内有导流肋片, 中心传热区域在第一边缘区和第二边缘区之间从第一端部区域 向第二端部区域延伸, 在中心传热区域上有换热肋片, 在中心传热区域和第一及第 二分配区域中的换热肋片和导流肋片高度相等并与换热芯体内肋板式换热板之间的 板层流道高度相等, 中心传热区域和第一及第二分配区域为同一平面并在下板平面 高度延伸, 换热肋片与中心传热区域的平面连接并固定在一起, 导流肋片与第一分 配区域和第二分配区域的平面连接并固定在一起, 在肋板式换热板第一端部区域和 第二端部区域内有穿过肋板式换热板形成通孔的角孔, 这些角孔分别被具有上板平 面高度和下板平面高度的角孔相邻边缘区域所围绕, 这些角孔相邻边缘区域在第一 端部区域内以及在第二端部区域内分别以成组对的形式存在, 这些角孔相邻边缘区 域在第一端部区域内以及在第二端部区域内分别在上板平面高度延伸和在下板平面 高度延伸, 在这些角孔相邻边缘区域之间以及在具有上板平面高度的角孔相邻边缘 区域与中心传热区域之间包括在具有上板平面高度的角孔相邻边缘区域与第一分配 区域和第二分配区域之间有斜面过渡区域的延伸, 在上板平面高度延伸的角孔相邻 边缘区域通过斜面过渡区域与下板平面高度接触, 在下板平面高度延伸的角孔相邻 边缘区域通过斜面过渡区域与上板平面高度接触。
上述技术方案的有益效果在于:由于在肋板式换热板的第一端部区域和第二端部 区域内有分配区域并在各分配区域中有导流肋片,所以换热介质在由肋板式换热板组 成的肋板式换热器各层中心传热区域中具有较均匀的分布形态。
上述技术方案的有益效果还在于:由于换热肋片和导流肋片与肋板式换热板之间 有较大的接触和固定面积,使肋板式换热器具有较高的抗破坏压力和较好的抗疲劳能 力。
上述技术方案的有益效果还在于: 在上述的肋板式换热板以及肋板式换热器中, 换热肋片和导流肋片可以采用锯齿型、平直型、多孔型、波纹型和百叶窗型这五种肋 片类型中的一种,以及将这五种不同类型的肋片按换热介质的性质和换热要求相互组 合;由于在肋板式换热板以及肋板式换热器中的肋片形式可以按换热介质的性质和换 热要求选择不同的规格,所以同一种肋板式换热板及肋板式换热器在选用不同的肋片 形式之后可以适用于更多的换热介质和换热工况。
作为本发明的进一步改进, 在肋板式换热板上位于上板平面高度的角孔相邻边 缘区域中有一圈凹边泡, 凹边泡的底部到达下板平面高度; 在位于下板平面高度的 角孔相邻边缘区域中有一圈凸边泡, 凸边泡的顶部到达上板平面高度。
上述技术方案的有益效果在于: 由于在各角孔相邻边缘区域平面中分别添加有 均匀完整的凹凸边泡, 该均匀完整的凹凸边泡不光在产品制造过程中可以使角孔相 邻边缘区域作为密封平面相互贴紧保证密封, 在该肋板式换热器处于换热的工作过 程中, 该边泡还可以增强角孔相邻边缘区域作为密封平面的抗震和抗疲劳性能。
作为上述发明的进一步改进, 在肋板式换热板上位于上板平面高度的角孔相邻 边缘区域与肋板式换热板周边环行封闭的密封斜面之间的交界处分别设有凹坑, 凹 坑的底部到达下板平面髙度; 在位于下板平面高度的角孔相邻边缘区域与肋板式换 热板周边环行封闭的密封斜面之间的交界处分别设有凸台, 凸台的顶部到达上板平 面高度。
上述技术方案的有益效果在于:由于在各角孔相邻边缘区域平面与肋板式换热板 密封斜面之间分别添加有凹坑和凸台,该凹坑和凸台的作用可以使各肋板式换热片在 相互加紧过程中其加紧力可以连续的在凹坑和凸台之间传递,由此可以使角孔相邻边 缘区域的周边相互贴紧保证平面密封, 同时在该肋板式换热器处于换热的工作过程 中, 该凹坑和凸台还可以增强角孔相邻边缘区域作为密封平面的抗震和抗疲劳性能。
作为本发明的进一步改进,在肋板式换热板第一边缘区和第二边缘区周边环行封 闭的密封斜面直线段上设有防止该密封斜面在制造过程中变形的翻边结构,但在每个 肋板式换热板第一边缘区和第二边缘区周边环行封闭的密封斜面四个圆角处没有该 翻边结构。
上述技术方案可以使各肋板式换热板在制造过程中保持周边斜面形状不被破坏 和损伤, 同时在相互加紧以及在焊接或钎焊等连接密封过程中随着重力和夹紧力以 及密封物质的流动可以使肋板式换热板周边环行封闭的密封斜面随之产生均匀变化 并产生均匀的平行移动, 使各种密封面之间始终相互贴紧连接, 从而可以提高产品 的成品合格率。
作为上述发明的进一步改进, 在肋板式换热板上的各角孔相邻边缘区域中至少 在一个角孔相邻边缘区域内设有介质均分器, 在同一片肋板式换热板上, 具有介质 均分器的角孔相邻边缘区域内其角孔的口径小于没有介质均分器的其它角孔相邻边 缘区域内的角孔口径, 当具有介质均分器的各肋板式换热板组成肋板式换热器后, 可以使冷媒介质通过各肋板式换热板上的介质均分器被均匀的流入肋板式换热器的 各板层流道中。
上述介质均分器的设置可以是:肋板式换热板的角孔及其相邻边缘区在上板平面 高度面上,在所述相邻边缘区上设有环形凹槽, 凹槽的开口在上板平面高度面上, 凹 槽的底在下板平面髙度面上, 凹槽的边缘为弧形,在凹槽的内、外边缘上分别设有小 孔, 内、 外边缘上的小孔错位设置;
上述介质均分器的设置还可以是:肋板式换热板的角孔及其相邻边缘区在下板平 面高度面上, 在所述相邻边缘区上设有环形凹槽, 凹槽的开口在下板平面髙度面上, 凹槽的底在上板平面高度面上, 凹槽的边缘为弧形,在凹槽的内、外边缘上分别设有 小孔, 内、 外边缘上的小孔错位设置。
上述两种介质均分器可以分别单独设置在不同的肋板式换热板上, 也可以同时 设置在同一 ±夬肋板式换热板上。 当若干片带有介质均分器的肋板式换热板各自相互平面旋转 180° 叠放在一起 并连接密封构成换热芯体时,在各肋板式换^板上各自介质均分器中的角孔将叠放在 一起形成口径相对较小的角孔汇通流道,在相邻的肋板式换热板上,各内边缘上的小 孔相互对应以及各外边缘上的小孔相互对应,同时在这些肋板式换热板中没有介质均 分器的其它各角孔将形成口径相对较大的角孔汇通流道。
当两片带有介质均分器的肋板式换热板组装在一起时,第一片肋板式换热板上板 平面的顶面与第二片肋板式换热板的下板平面的背面密封连接,两个肋板式换热板上 的凹槽相对形成环形流道,被均分的换热介质将通过位于环形流道内侧的小孔流入该 环状均分流道,最后从位于环形流道外侧的小孔中流出环状流道并流向导流肋片和换 热肋片, 由此达到该换热介质被均勾分配到肋板式换热板之间各板层流道中的目的。
上述技术方案的有益效果在于: 由于在各肋板式换热板中带有介质均分器并组 成肋板式换热器, 当该肋板式换热器被用于制冷及热泵循环的换热器时, 可以使冷 媒介质通过每片肋板式换热板上的介质均分器以及均分流道被均匀的流入各肋板式 换热板之间的各板层流道中。
将若干片没有介质均分器的肋板式换热板各自相互平面旋转 180° 叠放在一起 并连接密封构成换热芯体; 或将若干片带有介质均分器的肋板式换热板各自相互平 面旋转 180° 叠放在一起并连接密封构成换热芯体; 由于在各肋板式换热板上位于 第一端部区域中上板平面高度的角孔相邻边缘区域的顶面将与紧邻的另一片肋板式 换热板上位于第二端部区域中下板平面高度的角孔相邻边缘区域的背面相互贴紧密 封, 同时在各肋板式换热板上位于第一端部区域中下板平面高度的角孔相邻边缘区 域的背面将与紧邻的另一片肋板式换热板上位于第二端部区域中上板平面高度的角 孔相邻边缘区域的顶面相互贴紧密封, 并由于各角孔相邻边缘区域具有髙低不同层 位的平面高度与肋板式换热板周边第一边缘区和第二边缘区环行封闭的密封斜面直 接相连, 当各肋板式换热板被叠放并连接密封在一起时, 将在角孔流道与中心传热 区域之间形成两倍于肋片高度的角孔流道空间, 这样的角孔流道空间将增强换热介 质在该空间的扰动和冲刷作用, 可以避免或减缓换热介质在角孔周边的滞留和沉积 杂质, 同时这样的角孔流道空间亦将有利于使换热介质均匀分配到各层中心传热区 域之中并可以降低流体的阻力。
在上述由肋板式换热板组成的换热芯体中,由于角孔通道边缘区域具有两倍于肋 片高度的角孔流道空间,使同一角孔流道中的所有空间各处压力相等,这样的压力分 布形式将有利于产品的抗疲劳性能并可以增强产品抗破坏压力的要求。
在以上所述的肋板式换热板中,在肋板式换热板上的第一端部区域和第二端部区 域内共有零至四个角孔,当各肋板式换热板按要求顺序依次叠装在一起并连接密封构 成换热芯体时,在换热芯体内各角孔由此形成角孔汇通流道并形成换热介质的单流程 或多流程。
在以上所述的肋板式换热板中, 用于同一种流体入口和出口的角孔以及围绕在 这些角孔周边具有相同平面高度的角孔相邻边缘区域将分别设在第一端部区域内和 第二端部区域内的单边同侧位置上, 形成换热介质在肋板式换热器内的单边同侧流 分布。
在以上所述的肋板式换热板中, 用于同一种流体入口和出口的角孔以及围绕在 这些角孔周边具有相同平面高度的角孔相邻边缘区域将分别设在第一端部区域内和 第二端部区域内的对角位置上, 形成换热介质在肋板式换热器内的对角流分布。
以上所述的肋板式换热器可以选用金属材料、非金属材料以及复合材料制造, 以 满足具有不同工作压力、工作温度以及具有不同腐蚀性的换热介质进行相互换热的要 求。
附图说明
图 1、 本发明的外形结构示意图
图 2、 在实施例 1中肋板式换热板的结构示意图
图 3、 按附图 2肋板式换热板在 C- C处的剖视图
图 4、 按附图 2肋板式换热板在 D-D处的剖视图
图 5、 按附图 2肋板式换热板在 E-E处的剖视图
图 6、 在实施例 2中肋板式换热板的结构示意图
图 7、 按附图 6以及按附图 16对介质均分器的局部放大示意图
图 8、 按附图 7对局部放大示意图在 G-G处的剖视图
图 9、 按附图 6在肋板式换热板 F-F处的剖视图
图 10、 用实施例 2或实施例 4中的肋板式换热板组装成肋板式换热器并按附图 1在
A-A处的整体剖视图
图 11、 在实施例 2中另一种肋板式换热板的结构示意图 图 12、 按附图 11以及按附图 17对介质均分器的局部放大示意图
图 13、 按附图 12对局部放大示意图在 H-H处的剖视图
图 14、 在实施例 3中肋板式换热板结构示意图
图 15、 在实施例 3中另一种肋板式换热板结构示意图
图 16、 在实施例 4中肋板式换热板结构示意图
图 17、 在实施例 4中另一种肋板式换热板结构示意图
图 18、 用实施例 2或实施例 4中的肋板式换热板组装成肋板式换热器并按附图 1在
B-B处的整体剖视图
图 19、 用实施例 1或实施例 3中的肋板式换热板组装成肋板式换热器并按附图 1在
K-K处的整体剖视图
下面结合上述附图作进一步说明:
实施例 1
如附图 2、 3、 4和附图 5所示, 肋板式换热板 1在第一边缘区 2和第二边缘区 3之间平行于上板平面高度 4和下板平面高度 5延伸, 中心线 6将肋板式换热板 1 分成第一部分 11和第二部分 12, 肋板式换热板 1周边的第一边缘区 2和第二边缘 区 3为环行封闭的密封斜面 21, 肋板式换热板 1还包括: 第一端部区域 7; 第二端 部区域 8; 中心传热区域 9,它在第一边缘区 2和第二边缘区 3之间从第一端部区域 7向第二端部区域 8延伸; 肋板式换热板 1的中心传热区域 9在下板平面髙度 5上 延伸, 在中心传热区域 9上有换热肋片 13; 在第一端部区域和第二端部区域内有分 配区域 18、 19, 第一分配区域 18在第一端部区域 7内的下板平面高度 5延伸, 第 二分配区域 19在第二端部区域 8内的下板平面高度 5延伸;在第一分配区域和第二 分配区域内设有导流肋片 20; 换热肋片 13和导流肋片 20的高度大致相等。
如附图 2、 3、 5所示, 肋板式换热板 1上设有角孔 14、 15, 角孔 14、 15在第 一端部区域 7和第二端部区域 8内穿过肋板式换热板 1形成通孔, 并且被各自的角 孔相邻边缘区域 16、 17围绕,其中围绕角孔 14的角孔相邻边缘区域 16在上平板高 度 4上延伸, 围绕角孔 15的角孔相邻边缘区域 17在下平板高度 5上延伸。
如附图 19所示, 将第二片肋板式换热板 1平面旋转 180° 与第一片肋板式换热 板 1叠放在一起并不断依次重复连接密封构成换热芯体 22,在换热芯体 22内各角孔 14、 15将形成角孔汇通流道 41;在由肋板式换热板 1构成的换热芯体 22上设有外挡 板 24并分有前外挡板 24和后外挡板 24, 在前外挡板 24上设有通孔和管嘴 23。 实施例 2
实施例 2包括了实施例 1并与实施例 1有如下不同之处:
如附图 6、 7、 8所示,在肋板式换热板 la上第二端部区域 8中的角孔 14位置上 设置有介质均分器 27并有角孔 14a,角孔 14a和相邻边缘区 16在下板平面高度 4上, 在相邻边缘区上 16设有环形凹槽 32, 凹槽的开口 34在下板平面高度面 4上, 凹槽 的底在上板平面高度面 5上, 凹槽 32的边缘 33、 31为弧形, 在凹槽的内、 外边缘 33、 31上分别设有一个或多个小孔 30, 内、外边缘上的小孔 30不在同一方位上, 同 时这些均分小孔 30的位置与相邻近的肋板式换热板 lb上的内边缘 38、外边缘 36上 的均分小孔 30在组装后相对应。
如附图 11、 12、 13所示, 在肋板式换热板 lb上第一端部区域 7中角孔 15位置 上设置有介质均分器 27并有角孔 15a,角孔 15a和相邻边缘区 17在上板平面高度 5 上, 在相邻边缘区 17上设有环形凹槽 37, 凹槽 37的开口 39在上板平面高度面 5 上, 凹槽的底在下板平面高度面 4上, 凹槽 37的边缘 38、 36为弧形, 在凹槽的内、 外边缘 38、 36上分别设有一个或多个均分小孔 30, 内、外边缘 38、 36上的小孔 30 不在同一方位上, 同时这些均分小孔 30的位置与相邻近的肋板式换热板 la上内、 外边缘 33、 31的均分小孔 30在组装后相对应。
如附图 6、 7、 8、 9、 11、 12、 13所示, 在位于上板平面高度 4的角孔 14及 14a 周边的角孔相邻边缘区域 16中设置有一圈凹边泡 25, 凹边泡 25的底部到达下板平 面高度 5; 在位于下板平面高度 5的角孔 15及 15a周边的角孔相邻边缘区域 17中 设置有一圈凸边泡 28, 凹边泡 28的顶部到达上板平面高度 4;在位于上板平面高度 4的角孔相邻边缘区域 16与肋板式换热板 la、 lb周边的第一边缘区 2密封斜面 21 之间的交界处分别设有凹坑 26, 凹坑 26的底部到达下板平面高度 5;在处于下板平 面高度 5的角孔相邻边缘区域 17与肋板式换热板 la、 lb周边的第二边缘区 3密封 斜面 21之间的交界处分别设有凸台 29, 凸台 29的顶部到达上板平面高度 4。
如附图 6、 7、 8、 9、 10、 11、 12、 13和附图 18所示, 位于每个肋板式换热板 la、 lb第一边缘区 2和第二边缘区 3周边环行封闭的密封斜面 21的直线段上有防 止该密封斜面 21在制造过程中变形的翻边结构 35, 但在每个肋板式换热板 la、 lb 第一边缘区 2和第二边缘区 3周边环行封闭的密封斜面 21的四个圆角处没有该翻边 结构 35。
如附图 6、 11和附图 18所示, 将肋板式换热板 lb平面旋转 180° 与肋板式换 热板 la叠放在一起并不断依次重复连接密封构成换热芯体 22, 在换热芯体 22内各 角孔 14、 15将形成角孔汇通流道 41, 各角孔 14a、 15a将形成角孔汇通流道 41a, 在由肋板式换热板 la、 lb构成的换热芯体 22上设有外挡板 24并分有前外挡板 24 和后外挡板 24, 在前外挡板 24上设有通孔和管嘴 23。
在上述实施例 1和实施例 2中,在肋板式换热板 1以及肋板式换热板 la、 lb中 用于同一种流体入口和出口的角孔 14、 14a及 15、 15a以及在这些角孔 14、 14a及 15、 15a周边的具有相同平面高度的角孔相邻边缘区域 16及 17分别设在第一端部 区域内和第二端部区域内的单边同侧位置上, 换热介质在由肋板式换热板 1以及肋 板式换热板 la、 lb组成的肋板式换热器中将按单侧同边流的方式流动和相互换热。 实施例 3
实施例 3与实施例 1类似, 其不同之处在于;
如附图 14、 15所示, 使肋板式换热板 lc、 Id用于同一种流体入口和出口的角 孔 14及 15以及围绕在这些角孔 14及 15周边具有相同平面髙度的角孔相邻边缘区 域 16及 17均设于肋板式换热板 lc、 Id的对角位置上,换热介质在由肋板式换热板 lc、 Id组成的肋板式换热器中将按对角流的方式流动和相互换热。
如附图 14、 15所示, 肋板式换热板 lc、 Id的角孔 14以及位于上板平面高度 4 的角孔相邻边缘区域 16对角分布在第一端部区域 7和第二端部区域 8中,围绕角孔 14的角孔相邻边缘区 16通过中心线 6上的斜面过渡区域 10与下板平面高度 5连接; 肋板式换热板 lc、 Id的角孔 15以及位于下板平面高度 5的角孔相邻边缘区域 17对 角分布在第一端部区域 7和第二端部区域 8中, 围绕角孔 15的角孔相邻边缘区 17 通过中心线 6上的斜面过渡区域 10与上板平面高度 4连接。
如附图 19所示, 将肋板式换热板 Id平面旋转 180° 与肋板式换热板 lc叠放在 一起并不断依次重复连接密封构成换热芯体 22, 在换热芯体 22内各角孔 14、 15将 形成角孔汇通流道 41; 在由肋板式换热板 lc、 Id构成的换热芯体 22上设有外挡板 2 并分有前外挡板 24和后外挡板 24, 在前外挡板 24上设有通孔和管嘴 23。
实施例 4
实施例 4与实施例 2类似, 其不同之处在于; 如附图 16、 17所示, 使肋板式换热板 le、 If用于同一种流体入口和出口的角 孔 14、 14a及 15、 15a以及在这些角孔 14、 14a及 15、 15a周边的具有相同平面高 度的角孔相邻边缘区域 16及 17均设于肋板式换热板 le、 If的对角位置上, 换热介 质在由肋板式换热板 le、 If组成的肋板式换热器中将按对角流的方式流动和相互换 热。
如附图 16、 17所示, 肋板式换热板 le、 If 的角孔 14、 14a以及位于上板平面 髙度 4的角孔相邻边缘区域 16对角分布在第一端部区域 7和第二端部区域 8中,围 绕角孔 14、 14a的角孔相邻边缘区 16通过中心线 6上的斜面过渡区域 10与下板平 面高度 5连接; 肋板式换热板 le、 If的角孔 15、 15a以及位于下板平面高度 5的角 孔相邻边缘区域 17对角分布在第一端部区域 7和第二端部区域 8中, 围绕角孔 15、 15a的角孔相邻边缘区 17通过中心线 6上的斜面过渡区域 10与上板平面高度 4连 接。
如附图 18所示, 将肋板式换热板 If平面旋转 180° 与肋板式换热板 le叠放在 一起并不断依次重复连接密封构成换热芯体 22, 在换热芯体 22内各角孔 14、 15将 形成角孔汇通流道 41, 各角孔 14a、 15a将形成角孔汇通流道 41a, 在由肋板式换热 板 le、 If构成的换热芯体 22上设有外挡板 24并分有前外挡板 24和后外挡板 24, 在前外挡板 24上设有通孔和管嘴 23。
在上述实施例 3和实施例 4中, 在肋板式换热板 la、 lb以及肋板式换热板 le、 If中用于同一种流体入口和出口的角孔 14、 14a及 15、 15a以及在这些角孔 14、 14a 及 15、 15a周边的具有相同平面髙度的角孔相邻边缘区域 16及 17分别设在第一端 部区域内和第二端部区域内的对角位置上, 换热介质在由肋板式换热板 la、 lb 以 及肋板式换热板 le、 If组成的肋板式换热器中将按对角流的方式流动和相互换热。
如附图 1、 10、 18、 19所示, 一种肋板式换热器, 包括由肋板式换热板 1; la、 lb; lc、 Id; le、 If构成的换热芯体 22、 管嘴 23和外挡板 24, 外挡板 24可以分 为前外挡板 24和后外挡板 24;管嘴 23的位置在前外挡板 24和后外挡板 24上分布; 构成换热芯体 22的这些肋板式换热板 1; la, lb; lc、 Id; le、 lf各自的连接 密封形式通常采用焊接或钎焊工艺以及使用胶粘或密封垫片作为肋板式换热板 1; la、 lb; lc、 Id; le、 If各自之间的连接密封形式。
如附图 2、 3、 5、 6、 7、 8、 9、 11、 12、 13、 14、 15、 16、 17所示, 在肋板式 换热板 1 ; la、 lb; lc、 Id; le、 If上包括有: 第一端部区域 7, 第二端部区域 8和中心传热区域 9, 各肋板式换热板 1 ; la、 lb; lc、 Id; le、 If周边的第一 边缘区 2和第二边缘区 3为环形封闭的密封斜面 21, 各肋板式换热板在第一边缘区 2和第二边缘区 3之间平行于上板平面 4和下板平面 5延伸, 在各肋板式换热板中 第一端部区域 7内有第一分配区域 18,在第二端部区域 8内有第二分配区域 19,在 第一分配区域 18和第二分配区域 19内有导流肋片 20, 中心传热区域 9在第一边缘 区 2和第二边缘区 3之间从第一端部区域 7向第二端部区域 8延伸, 在中心传热区 域 9上有换热肋片 13, 在中心传热区域 9和第一及第二分配区域 18、 19中的换热 肋片 13和导流肋片 20高度相等并与换热芯体内各肋板式换热板之间的板层流道高 度相等, 中心传热区域 9和第一及第二分配区域 18、 19为同一平面并在下板平面高 度 5延伸, 换热肋片 13与中心传热区域 9的平面连接并固定在一起, 导流肋片 20 与第一分配区域 18和第二分配区域 19的平面连接并固定在一起, 在各肋板式换热 板第一端部区域 18和第二端部区域 19内有穿过各肋板式换热板形成通孔的角孔 14、 14a及 15、 15a, 这些角孔 14、 14a及 15、 15a分别被具有上板平面高度 4和下板平 面高度 5的角孔相邻边缘区域 16、 17所围绕, 这些角孔相邻边缘区域 16、 17在第 一端部区域 7内以及在第二端部区域 8内分别以成组对的形式存在, 这些角孔相邻 边缘区域 16、 17在第一端部区域 7内以及在第二端部区域 8内分别在上板平面高度 4延伸和在下板平面高度 5延伸, 在这些角孔相邻边缘区域 16与 17之间以及在具 有上板平面高度 的角孔相邻边缘区域 16与中心传热区域 9之间包括在具有上板平 面高度 4的角孔相邻边缘区域 16与第一分配区域 18和第二分配区域 19之间有斜面 过渡区域 10的延伸, 在上板平面高度 4延伸的角孔相邻边缘区域 16通过斜面过渡 区域 10与下板平面高度 5接触, 在下板平面高度 5延伸的角孔相邻边缘区域 17通 过斜面过渡区域 10与上板平面髙度 4接触。
如附图 6、 7、 8、 9、 11、 12、 13、 16、 17和附图 18所示, 在各肋板式换热板 上位于上板平面高度 4的角孔相邻边缘区域 16中有一圈凹边泡 25, 凹边泡 25的底 部到达下板平面高度 5; 在位于下板平面高度 5的角孔相邻边缘区域 17中有一圈凸 边泡 28, 凸边泡 28的顶部到达上板平面髙度 4。
如附图 6、 7、 8、 9、 11、 12、 13、 16、 17和附图 18所示, 在各肋板式换热板 上位于上板平面高度 4的角孔相邻边缘区 16与各肋板式换热板周边环行封闭的密封 斜面 21之间的交界处分别设有凹坑 26, 凹坑 26的底部到达下板平面高度 5; 在位 于下板平面高度 5的角孔相邻边缘区 17与各肋板式换热板周边环行封闭的密封斜面 21之间的交界处分别设有凸台 29, 凸台 29的顶部到达上板平面髙度 4。
如附图 6、 7、 8、 9、 10、 11、 12、 13、 16、 17和附图 18所示, 位于各肋板式 换热板第一边缘区 2和第二边缘区 3周边密封斜面 21的直线段上有防止该密封斜面 21在制造过程中变形的翻边结构 35,但在各肋板式换热板第一边缘区 2和第二边缘 区 3周边密封斜面 21的四个圆角处没有该翻边结构 35。
如附图 2、 4、 5、 6、 7、 10、 11、 12、 14、 15、 16、 17所示, 换热肋片 13和导 流肋片 20采用锯齿型、平直型、多孔型、波紋型和百叶窗型这五种肋片类型中的一 种, 以及将这五种不同类型的肋片按换热介质的性质和换热要求相互组合。
如附图 6、 11、 16、 17所示, 在同一片肋板式换热板 la、 lb及 le、 If上的各 角孔相邻边缘区域 16、 17中至少在一个角孔相邻边缘区域 16或 17内设有介质均分 器 27, 在同一片肋板式换热板 la、 lb及 le、 If上, 在具有介质均分器 27的角孔 相邻边缘区域 16或 17内其角孔 14a、 15a的口径小于没有介质均分器 27的其它角 孔相邻边缘区域 16或 17内的角孔口径 14、 15。
如附图 7、 8所示, 在肋板式换热板 la、 le上, 在具有介质均分器 27的角孔相 邻边缘区域 16内其角孔 14a和相邻边缘区 16在下板平面高度 4上,在相邻边缘区上 16设有环形凹槽 32,凹槽的开口 34在下板平面高度面 4上,凹槽的底在上板平面高 度面 5上, 凹槽 32的边缘 33、 31为弧形, 在凹槽的内、 外边缘 33、 31上分别设有 一个或多个小孔 30, 内、外边缘上的小孔 30不在同一方位上, 同时这些均分小孔 30 的位置与相邻近的肋板式换热板 lb、 If上的内边缘 38、 外边缘 36上的均分小孔 30 在组装后相对应。
如附图 12、 13所示, 在肋板式换热板 lb、 If上, 在具有介质均分器 27的角孔 相邻边缘区域 17内其角孔 15a和相邻边缘区 17在上板平面高度 5上, 在相邻边缘 区 17上设有环形凹槽 37, 凹槽 37的开口 39在上板平面高度面 5上, 凹槽的底在 下板平面高度面 4上, 凹槽 37的边缘 38、 36为弧形, 在凹槽的内、 外边缘 38、 36 上分别设有一个或多个均分小孔 30, 内、 外边缘 38、 36上的小孔 30不在同一方位 上, 同时这些均分小孔 30的位置与相邻近的肋板式换热板 la、 le的内、外边缘 33、 31的均分小孔 30在组装后相对应。 如附图 2、 6、 11所示, 在肋板式换热板 1和 la、 lb中用于同一种流体入口和 出口的角孔 14、 14a或 15、 15a以及围绕在这些角孔 14、 14a或 15、 15a周边具有 相同平面高度的角孔相邻边缘区域 16或 17分别设在第一端部区域 7内和第二端部 区域 8内的单边同侧位置上。
如附图 14、 15、 16、 17所示, 在肋板式换热板 lc、 Id和 le、 If 中用于同一种 流体入口和出口的角孔 14、 14a或 15、 15a以及围绕在这些角孔 14、 14a或 15、 15a 周边具有相同高度的角孔相邻边缘区 16或 17分别设在第一端部区域 7内和第二端 部区域 8内的对角位置上。
如附图 5所示, 在第二分配区域 19上的平面中加有导流肋片 20。
如附图 10所示,在肋板式换热板 la、 lb和 le、 If中心传热区域 9上的平面中 有换热肋片 13,同时在换热芯体 22上的前外挡板 24和后外挡板 24均是平底并采用 在周边斜面密封。
如附图 18及附图 19所示,将若干片带有介质均分器 27的各肋板式换热板 la、 lb及 le、 If按要求叠放在一起并连接密封构成换热芯体 22;或将若干片没有介质均 分器 27的各肋板式换热板 1及 14、 15按要求叠放在一起并连接密封构成换热芯体 22;由于在各肋板式换热板上位于第一端部区域 7中上板平面高度 4的角孔相邻边缘 区域 16的顶面将与紧邻的另一片肋板式换热板上位于第二端部区域 8中下板平面高 度 5的角孔相邻边缘区域 17的背面相互贴紧密封, 同时在各肋板式换热板上位于第 一端部区域 7中下板平面高度 5的角孔相邻边缘区域 17的背面将与紧邻的另一片肋 板式换热板上位于第二端部区域 8中上板平面高度 4的角孔相邻边缘区域 16的顶面 相互贴紧密封, 并由于各角孔相邻边缘区域 16、 17具有高低不同层位的平面髙度 4、 5与各肋板式换热板周边第一边缘区 2和第二边缘区 3环行封闭的密封斜面 21直接 相连, 当各肋板式换热板被叠放并连接密封在一起时, 将在角孔流道 41及 41a与中 心传热区域 9之间形成两倍于肋片高度的角孔流道空间,这样的角孔流道空间将增强 换热介质在该空间的扰动和冲刷作用,可以避免或减缓换热介质在角孔周边的滞留和 沉积杂质,同时这样的角孔流道空间亦将有利于使换热介质均匀分配到各层中心传热 区域之中并可以降低流体的阻力。
如附图 18所示, 将若干片肋板式换热板 la、 lb以及若干片肋板式换热板 le、 If按要求叠放在一起并连接密封构成换热芯体 22;肋板式换热板 la、 lb以及肋板式 换热板 le、 If上各自的介质均分器 27中的角孔 14a、 15a将叠放在一起形成角孔汇 通流道 41a,在换热芯体 22内其它的各角孔 14、 15将形成角孔汇通流道 41, 当肋板 式换热板 la、 lb以及肋板式换热板 le、 If各自相互叠装在一起时, 肋板式换热板 la以及肋板式换热板 le的角孔相邻边缘区 16的顶面将与肋板式换热板 lb以及肋板 式换热板 If上的角孔相邻边缘区 17的背面相互贴紧密封, 此时肋板式换热板 la以 及肋板式换热板 le上的凹槽 32将与肋板式换热板 lb以及肋板式换热板 If的凹槽 37形成一个环状均分流道 40, 被均分的换热介质将通过角孔汇通流道 14a流入位于 肋板式换热板 la、 lb以及肋板式换热板 le、 If各自凹槽内边缘 33、 38上的均分小 孔 30并流入该环状均分流道 40中, 最后从肋板式换热板 la、 lb以及肋板式换热板 le、 If各自的凹槽外边缘 31、 36上的均分小孔 30中流出环状均分流道 40并流向导 流肋片 20和换热肋片 13, 由此达到该换热介质被均勾分配到肋板式换热板 la、 lb 以及肋板式换热板 le、 If之间各板层流道中的目的。
在附图 18中还表示了在肋板式换热板 la以及肋板式换热板 le的角孔相邻边缘 区 16中的凹边泡 25将与肋板式换热板 lb以及肋板式换热板 If 的角孔相邻边缘区 17中的凸边泡 28相互贴紧固定; 同时在肋板式换热板 la以及肋板式换热板 le上 角孔相邻边缘区 17内的凸边泡 28将与在肋板式换热板 lb以及肋板式换热板 If 的 角孔相邻边缘区 16内的凹边泡 25连接固定在一起;
在附图 18中还表示了在肋板式换热板 la以及肋板式换热板 le上的凸台 29顶 部将与在肋板式换热板 lb以及肋板式换热板 If上的凹坑 26底部连接固定,同时肋 板式换热板 la以及肋板式换热板 le上的凹坑 26底部将与在肋板式换热板 lb以及 肋板式换热板 If的凸台 29顶部连接固定。

Claims

权 利 要 求
1、 一种肋板式换热器,包括由肋板式换热板构成的换热芯体以及外挡板和管嘴, 构 成换热芯体的这些肋板式换热板其连接密封形式采用焊接或钎焊工艺以及使用胶粘 或密封垫片作为各肋板式换热板之间的连接密封形式, 在肋板式换热板上包括有; 第一端部区域, 第二端部区域和中心传热区域, 其特征在于, 肋板式换热板周边的 第一边缘区和第二边缘区为环形封闭的密封斜面, 肋板式换热板在第一边缘区和第 二边缘区之间平行于上板平面和下板平面延伸, 在肋板式换热板中第一端部区域内 有第一分配区域, 在第二端部区域内有第二分配区域, 在第一分配区域和第二分配 区域内有导流肋片, 中心传热区域在第一边缘区和第二边缘区之间从第一端部区域 向第二端部区域延伸, 在中心传热区域上有换热肋片, 在中心传热区域和第一及第 二分配区域中的换热肋片和导流肋片高度相等并与换热芯体内肋板式换热板之间的 板层流道髙度相等, 中心传热区域和第一及第二分配区域为同一平面并在下板平面 高度延伸, 换热肋片与中心传热区域的平面连接并固定在一起, 导流肋片与第一分 配区域和第二分配区域的平面连接并固定在一起, 在肋板式换热板第一端部区域和 第二端部区域内有穿过肋板式换热板形成通孔的角孔, 这些角孔分别被具有上板平 面高度和下板平面高度的角孔相邻边缘区域所围绕, 这些角孔相邻边缘区域在第一 端部区域内以及在第二端部区域内分别以成组对的形式存在, 这些角孔相邻边缘区 域在第一端部区域内以及在第二端部区域内分别在上板平面高度延伸和在下板平面 高度延伸, 在这些角孔相邻边缘区域之间以及在具有上板平面高度的角孔相邻边缘 区域与中心传热区域之间包括在具有上板平面高度的角孔相邻边缘区域与第一分配 区域和第二分配区域之间有斜面过渡区域的延伸, 在上板平面高度延伸的角孔相邻 边缘区域通过斜面过渡区域与下板平面高度接触, 在下板平面高度延伸的角孔相邻 边缘区域通过斜面过渡区域与上板平面高度接触。
2、 根据权利要求 1所述的肋板式换热器,其特征在于, 在肋板式换热板上位于上板 平面高度的角孔相邻边缘区域中有一圈凹边泡, 凹边泡的底部到达下板平面高度; 在位于下板平面高度的角孔相邻边缘区域中有一圈凸边泡, 凸边泡的顶部到达上板 平面高度。
3、 根据权利要求 1所述的肋板式换热器,其特征在于, 在肋板式换热板上位于上板 平面高度的角孔相邻边缘区域与肋板式换热板周边环行封闭的密封斜面之间的交界 处分别设有凹坑, 凹坑的底部到达下板平面髙度; 在位于下板平面高度的角孔相邻 边缘区域与肋板式换热板周边环行封闭的密封斜面之间的交界处分别设有凸台, 凸 台的顶部到达上板平面高度。
4、 根据权利要求 1所述的肋板式换热器,其特征在于, 位于各肋板式换热板第一边 缘区和第二边缘区周边环形封闭的密封斜面的直线段上有翻边结构。
5、 根据权利要求 1所述的肋板式换热器,其特征在于, 所述换热肋片和导流肋片采 用锯齿型、 平直型、 多孔型、 波紋型和百叶窗型这五种肋片类型中的一种以及将上 述五种不同类型的肋片按换热介质的性质和换热要求相互组合。
6、 根据权利要求 1 所述的肋板式换热板以及肋板式换热器, 其特征在于, 在同一 片肋板式换热板上的各角孔相邻边缘区域中, 至少在一个角孔相邻边缘区域内设有 介质均分器。
7、 根据权利要求 6所述的肋板式换热器,其特征在于, 肋板式换热板的角孔及其相 邻边缘区域在相同平面髙度面上, 在所述相邻边缘区域上设有环形凹槽, 凹槽的开 口与所述相邻边缘区域在相同的平面高度面上, 凹槽的底在另外一个板平面高度面 上, 凹槽的边缘为弧形, 在凹槽的内、 外边缘上分别设有小孔, 内、 外边缘上的小 孔错位设置; 在相邻肋板式换热板上, 各内边缘上的小孔相互对应以及各外边缘上 的小孔相互对应。
8、 根据权利要求 1所述的肋板式换热器,其特征在于, 在肋板式换热板中用于同一 种流体入口和出口的角孔以及围绕在这些角孔周边具有相同平面高度的角孔相邻边 缘区域分别设在第一端部区域内和第二端部区域内的单边同侧位置上。
9、 根据权利要求 1所述的肋板式换热器,其特征在于, 在肋板式换热板中用于同一 种流体入口和出口的角孔以及围绕这些角孔周边的具有相同平面高度的角孔相邻边 缘区域分别设在第一端部区域内和第二端部区域内的对角位置上。
PCT/CN2006/002969 2006-03-09 2006-11-06 Échangeur de chaleur du type à plaques à nervures WO2007101376A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008557576A JP4906129B2 (ja) 2006-03-09 2006-11-06 リブプレート式熱交換器
EP06805170A EP1998132B1 (en) 2006-03-09 2006-11-06 Rib plate type heat exchanger
US12/281,344 US8087455B2 (en) 2006-03-09 2006-11-06 Rib plate type heat exchanger
CN2006800111883A CN101156041B (zh) 2006-03-09 2006-11-06 肋板式换热器
AT06805170T ATE529716T1 (de) 2006-03-09 2006-11-06 Rippenplattenwärmetauscher
ES06805170T ES2374646T3 (es) 2006-03-09 2006-11-06 Intercambiador de calor del tipo de placas con nervios.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA200610038740XA CN1837718A (zh) 2006-03-09 2006-03-09 肋板式换热器
CN200610038740.X 2006-03-09

Publications (1)

Publication Number Publication Date
WO2007101376A1 true WO2007101376A1 (fr) 2007-09-13

Family

ID=37015187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/002969 WO2007101376A1 (fr) 2006-03-09 2006-11-06 Échangeur de chaleur du type à plaques à nervures

Country Status (7)

Country Link
US (1) US8087455B2 (zh)
EP (1) EP1998132B1 (zh)
JP (1) JP4906129B2 (zh)
CN (2) CN1837718A (zh)
AT (1) ATE529716T1 (zh)
ES (1) ES2374646T3 (zh)
WO (1) WO2007101376A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123519A1 (en) * 2008-04-04 2009-10-08 Alfa Laval Corporate Ab A plate heat exchanger
US7672135B2 (en) * 2008-04-22 2010-03-02 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Heat sink
CN114341582A (zh) * 2019-09-13 2022-04-12 阿法拉伐股份有限公司 用于处理液体进料的板式热交换器

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449251C (zh) * 2006-12-04 2009-01-07 江苏唯益换热器有限公司 换热板和板式换热器
CN100516758C (zh) * 2007-06-12 2009-07-22 缪志先 一种无封条板翅式换热器
US8887796B2 (en) * 2008-04-04 2014-11-18 Alfa Laval Corporate Ab Plate heat exchanger
FR2954480B1 (fr) * 2009-12-17 2012-12-07 Valeo Systemes Thermiques Plaque d'echangeur de chaleur, en particulier pour un condenseur de climatisation
JP5665005B2 (ja) * 2011-05-17 2015-02-04 日産自動車株式会社 磁気冷暖房装置
JP6091601B2 (ja) * 2013-03-22 2017-03-08 三菱電機株式会社 プレート式熱交換器及びそれを備えた冷凍サイクル装置
CN103499227B (zh) * 2013-09-25 2018-03-06 缪志先 相互换热的介质之一具有多流道的盒形层叠换热器
CN103512400B (zh) * 2013-10-17 2015-04-15 浙江鸿远制冷设备有限公司 一种板管式换热器
US10379582B2 (en) 2014-02-18 2019-08-13 Forced Physics Llc Assembly and method for cooling
WO2017070785A1 (en) * 2015-10-29 2017-05-04 Dana Canada Corporation A structural support element in heat exchangers
CN107782179A (zh) * 2016-08-25 2018-03-09 杭州三花研究院有限公司 板式换热器
CN106482556B (zh) * 2016-12-19 2023-07-21 缪志先 一种在角孔与换热装置之间有翅片的盒形层叠换热器
CN106839831B (zh) * 2017-01-18 2018-09-21 中国石油大学(华东) 一种紧凑高效换热器芯体及其焊接工装
CN110651164B (zh) * 2017-05-23 2021-04-20 三菱电机株式会社 板式热交换器及热泵式供热水系统
CN107202506B (zh) * 2017-08-03 2023-09-29 缪志先 具有新型垫板结构的盒形层叠换热器
CN107388876B (zh) * 2017-08-21 2023-12-05 江苏远卓设备制造有限公司 一种板式换热片
DE102018200808A1 (de) * 2018-01-18 2019-07-18 Mahle International Gmbh Stapelscheibenwärmetauscher
US11486657B2 (en) 2018-07-17 2022-11-01 Tranter, Inc. Heat exchanger heat transfer plate
US11300367B2 (en) * 2019-07-31 2022-04-12 Denso International America, Inc. Heat exchanger with manifolds for heat exchange
CN112930091B (zh) * 2021-02-09 2022-05-31 联想(北京)有限公司 散热结构及电子设备
CN113295024A (zh) * 2021-05-26 2021-08-24 江苏宝得换热设备股份有限公司 一种角孔及四周高密封防泄漏板式换热器
CN114234703A (zh) * 2021-11-22 2022-03-25 北京动力机械研究所 一种多功能板翅式换热器进排气导流结构及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2552335A1 (de) 1975-11-21 1977-06-08 Impulsa Veb K Waermeuebertragungsplatten
US5226474A (en) * 1990-05-08 1993-07-13 Alfa-Laval Thermal Ab Plate evaporator
WO1993025860A1 (en) 1992-06-12 1993-12-23 Alfa-Laval Thermal Ab Plate heat exchanger for liquids with different flows
CN1127548A (zh) * 1993-06-17 1996-07-24 艾尔费-拉瓦尔热能公司 板式换热器
US20040168793A1 (en) 1993-02-19 2004-09-02 Ralf Blomgren Plate heat exchanger
CN1667340A (zh) * 2004-03-12 2005-09-14 阿尔法拉瓦尔股份有限公司 换热器板和板组

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB580368A (en) * 1944-01-01 1946-09-05 Separator Ab Improvements in or relating to plate heat exchangers
US2865613A (en) * 1954-02-25 1958-12-23 Rosenblads Patenter Ab Plate type heat-exchanger
SE415928B (sv) * 1979-01-17 1980-11-10 Alfa Laval Ab Plattvermevexlare
SE8306795D0 (sv) 1983-12-08 1983-12-08 Alfa Laval Thermal Ab Vermevexlarplatta
DE3622316C1 (de) * 1986-07-03 1988-01-28 Schmidt W Gmbh Co Kg Plattenwaermeaustauscher
SE458884B (sv) * 1987-05-29 1989-05-16 Alfa Laval Thermal Ab Permanent sammanfogad plattvaermevaexlare med sammanhaallande organ vid portarna
JPH0517369U (ja) * 1991-07-24 1993-03-05 石川島播磨重工業株式会社 プレートフイン熱交換器
JP3328329B2 (ja) * 1992-09-24 2002-09-24 株式会社日阪製作所 プレート式熱交換器用プレート
JPH0942884A (ja) * 1995-07-26 1997-02-14 Sanyo Electric Co Ltd プレート式熱交換器
IT1276990B1 (it) * 1995-10-24 1997-11-03 Tetra Laval Holdings & Finance Scambiatore di calore a piastre
SE9504586D0 (sv) * 1995-12-21 1995-12-21 Tetra Laval Holdings & Finance Plattvärmeväxlare
SE508474C2 (sv) * 1997-02-14 1998-10-12 Alfa Laval Ab Sätt att framställa värmeväxlingsplattor; sortiment av värmeväxlingsplattor; och en plattvärmeväxlare innefattande värmeväxlingsplattor ingående i sortimentet
JPH11101590A (ja) * 1997-09-29 1999-04-13 Hisaka Works Ltd プレート式熱交換器
JP2000292079A (ja) * 1999-04-01 2000-10-20 Daikin Ind Ltd プレート型熱交換器
US20010030043A1 (en) * 1999-05-11 2001-10-18 William T. Gleisle Brazed plate heat exchanger utilizing metal gaskets and method for making same
JP2002107089A (ja) * 2000-09-29 2002-04-10 Hisaka Works Ltd プレート式熱交換器
US20020050347A1 (en) * 2000-10-27 2002-05-02 Hainley Donald C. Multi-plate heat exchanger with flow rings
SE526831C2 (sv) * 2004-03-12 2005-11-08 Alfa Laval Corp Ab Värmeväxlarplatta och plattpaket

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2552335A1 (de) 1975-11-21 1977-06-08 Impulsa Veb K Waermeuebertragungsplatten
US5226474A (en) * 1990-05-08 1993-07-13 Alfa-Laval Thermal Ab Plate evaporator
WO1993025860A1 (en) 1992-06-12 1993-12-23 Alfa-Laval Thermal Ab Plate heat exchanger for liquids with different flows
US20040168793A1 (en) 1993-02-19 2004-09-02 Ralf Blomgren Plate heat exchanger
US6926076B2 (en) * 1993-02-19 2005-08-09 Alfa Laval Corporation Ab Plate heat exchanger
CN1127548A (zh) * 1993-06-17 1996-07-24 艾尔费-拉瓦尔热能公司 板式换热器
CN1667340A (zh) * 2004-03-12 2005-09-14 阿尔法拉瓦尔股份有限公司 换热器板和板组

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123519A1 (en) * 2008-04-04 2009-10-08 Alfa Laval Corporate Ab A plate heat exchanger
KR101210673B1 (ko) 2008-04-04 2012-12-10 알파 라발 코포레이트 에이비 플레이트형 열교환기
US8857504B2 (en) 2008-04-04 2014-10-14 Alfa Laval Corporate Ab Plate heat exchanger
US7672135B2 (en) * 2008-04-22 2010-03-02 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Heat sink
CN114341582A (zh) * 2019-09-13 2022-04-12 阿法拉伐股份有限公司 用于处理液体进料的板式热交换器
CN114341582B (zh) * 2019-09-13 2024-01-09 阿法拉伐股份有限公司 用于处理液体进料的板式热交换器

Also Published As

Publication number Publication date
EP1998132A4 (en) 2009-04-29
EP1998132B1 (en) 2011-10-19
CN1837718A (zh) 2006-09-27
ES2374646T3 (es) 2012-02-20
CN101156041B (zh) 2011-09-21
US20090008071A1 (en) 2009-01-08
JP2009529643A (ja) 2009-08-20
CN101156041A (zh) 2008-04-02
EP1998132A1 (en) 2008-12-03
US8087455B2 (en) 2012-01-03
JP4906129B2 (ja) 2012-03-28
ATE529716T1 (de) 2011-11-15

Similar Documents

Publication Publication Date Title
WO2007101376A1 (fr) Échangeur de chaleur du type à plaques à nervures
JP4127859B2 (ja) 3つの熱交換流体のためのプレート式熱交換器
KR101445474B1 (ko) 열교환판과 판형 열교환기
JP5932777B2 (ja) プレート式熱交換器及びヒートポンプ装置
JP5106453B2 (ja) プレート式熱交換器及び冷凍空調装置
JP5261572B2 (ja) プレート熱交換器
JP5075276B2 (ja) プレート熱交換器
WO2013183629A1 (ja) プレート式熱交換器及びそれを備えた冷凍サイクル装置
TWI464359B (zh) 板式熱交換器
JP2011517763A (ja) プレート熱交換器
WO2017133618A1 (zh) 换热板以及使用其的板式换热器
JP2009540256A (ja) 伝熱板およびプレート熱交換器
WO2000022364A1 (fr) Echangeur thermique a plaques
WO2017101472A1 (zh) 入口整流结构和板式换热器
JP2020012630A (ja) 熱交換器用伝熱プレート
WO2017133377A1 (zh) 换热板以及使用其的板式换热器
JP5075275B2 (ja) プレート熱交換器
CA2861234A1 (en) Plate heat exchanger with improved strength in port area
CN110545646B (zh) 一种冷凝器
TW202043691A (zh) 熱交換器板及板式熱交換器
CN100387927C (zh) 具有介质均分器的肋板式换热器
JP5940152B2 (ja) プレート式熱交換器及びそれを備えた冷凍サイクル装置
CN210802184U (zh) 一种换热板
JP7379539B2 (ja) プレート式熱交換器、およびプレート式熱交換器の製造方法
JP2013213666A (ja) プレート熱交換器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680011188.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12281344

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008557576

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006805170

Country of ref document: EP