WO2007099791A1 - 計測装置及び計測方法 - Google Patents

計測装置及び計測方法 Download PDF

Info

Publication number
WO2007099791A1
WO2007099791A1 PCT/JP2007/052844 JP2007052844W WO2007099791A1 WO 2007099791 A1 WO2007099791 A1 WO 2007099791A1 JP 2007052844 W JP2007052844 W JP 2007052844W WO 2007099791 A1 WO2007099791 A1 WO 2007099791A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
intensity information
light intensity
retarder
analyzed
Prior art date
Application number
PCT/JP2007/052844
Other languages
English (en)
French (fr)
Inventor
Yukitoshi Otani
Naoki Asato
Toshitaka Wakayama
Original Assignee
National University Corporation Tokyo University Of Agriculture And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Tokyo University Of Agriculture And Technology filed Critical National University Corporation Tokyo University Of Agriculture And Technology
Priority to US12/224,491 priority Critical patent/US20090040522A1/en
Priority to JP2008502703A priority patent/JP4677570B2/ja
Publication of WO2007099791A1 publication Critical patent/WO2007099791A1/ja
Priority to KR1020087022194A priority patent/KR101267119B1/ko

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • G01J4/04Polarimeters using electric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence

Definitions

  • the present invention relates to a measurement apparatus for measuring the polarization state of analysis target light to be analyzed, and a measurement method for measuring the polarization state of analysis target light.
  • the ellipticity is given by the inverse sine function, so the accuracy is degraded when the birefringence phase difference of the measurement sample is around 90 degrees.
  • it is difficult to efficiently evaluate each wavelength because it is necessary to replace the retarder in accordance with the wavelength to be measured in the rotational phaser method.
  • An object of the present invention is to provide a measuring device and a measuring method capable of analyzing the polarization state of the analysis target light to be analyzed with high accuracy without replacing the retarder for each wavelength. is there.
  • a measuring unit for measuring the polarization state of analysis target light to be analyzed comprising: a retarder configured to be rotatable and a modulator that modulates the analysis target light including an analyzer;
  • Light intensity of modulated light obtained by modulating the light to be analyzed by the modulation unit A light intensity information acquisition unit that acquires information;
  • An arithmetic processing unit that performs arithmetic processing to calculate a polarization characteristic element of the light to be analyzed based on light intensity information of the modulated light;
  • the modulation unit is a modulation unit
  • the light to be analyzed is configured to pass through the retarder and then pass through the analyzer;
  • the first to Nth (N is an integer of 2 or more) in which the main axis direction of the retarder and the main axis direction of the analyzer satisfy a given relationship, and at least one of the main axis directions of the retarder and the analyzer is different.
  • Light intensity information of the first to N-th modulated light obtained by modulating the light to be analyzed by the modulation unit set to the main axis orientation condition of
  • the theoretical expression of the light intensity of the modulated light acquired by the light intensity information acquisition unit reflects the polarization characteristic element of the analysis target light and the principal axis orientation condition of the modulation unit. . Therefore, it is possible to calculate the polarization characteristic element of the light to be analyzed by correlating the theoretical formula of the light intensity of the modulated light with the actual measurement value.
  • a measuring device capable of analyzing the polarization state of the analysis target light to be analyzed with high accuracy without replacing the retarder for each wavelength of the analysis target light. It becomes possible to offer. Further, according to the present invention, since the measurement apparatus can be configured only by a simple drive system that only rotates the retarder and the analyzer, it is possible to provide a measurement apparatus with high measurement efficiency and measurement accuracy. It will be possible.
  • the light intensity information of the modulated light can be obtained by analyzing the modulated light. Then, the first to Nth principal axis azimuth conditions to be satisfied by the modulator can be selected according to the analysis method of the light intensity information.
  • Fourier analysis method is used as an analysis method of light intensity information.
  • the data suitable for analysis may differ. Therefore, in the present invention, the first to Nth spindle orientation conditions may be set so as to obtain data suitable for the analysis method to be selected.
  • the measuring apparatus may be configured to include an optical system including a light source and a light receiving unit, and a modulation unit disposed on an optical path connecting the light source and the light receiving unit.
  • the optical system may include a sample disposed on the light path and between the light source and the modulator.
  • the measuring apparatus is configured as a measuring apparatus that measures an optical characteristic element (birefringence phase difference, principal axis orientation, optical rotation, or strike parameter, Mueller matrix element, joyens matrix element, etc.) of the sample. Also, These optical property elements can be calculated by adjusting the polarization state of the incident light incident on the sample.
  • a light intensity information acquisition unit that acquires light intensity information; and an arithmetic processing unit that performs arithmetic processing to calculate a polarization characteristic element of the light to be analyzed based on light intensity information of the modulated light;
  • the modulated light is a
  • the light to be analyzed is light transmitted through the retarder and then transmitted through the analyzer;
  • the light intensity information of the first to N-th modulated light is obtained by modulating the light to be analyzed by the modulation section set to the main axis orientation condition of an integer of 2 or more, and the arithmetic processing The department is
  • the theoretical expression of the light intensity of the modulated light acquired by the light intensity information acquisition unit reflects the polarization characteristic element of the analysis target light and the principal axis orientation condition of the modulation unit. . Therefore, it is possible to calculate the polarization characteristic element of the light to be analyzed by correlating the theoretical formula of the light intensity of the modulated light with the actual measurement value.
  • a measuring device capable of analyzing the polarization state of the analysis target light to be analyzed with high accuracy without replacing the phase shifter for each wavelength of the analysis target light. It becomes possible to offer.
  • the light intensity information of the modulated light can be obtained by analyzing the modulated light. Then, the first to Nth principal axis azimuth conditions to be satisfied by the modulator can be selected according to the analysis method of the light intensity information.
  • data suitable for analysis may differ depending on force analysis methods known as various methods such as Fourier analysis as methods for analyzing light intensity information. Therefore, in the present invention, the first to Nth spindle orientation conditions may be set so as to obtain data suitable for the analysis method to be selected.
  • the principal axis orientations of the retarder and the analyzer are respectively
  • L and M are integers of 1 or more, L ⁇ M, L ⁇ 2 M, 2 L ⁇ M) It may be
  • principal axis orientations of the retarder and the analyzer are set at equal intervals, and the retarder and the analyzer are each changed in a band of 180 degrees or more (360 degrees or more).
  • the analysis accuracy of data analysis processing can be enhanced.
  • the main axis direction of the retarder and the analyzer may be set to include the initial phase under the above conditions.
  • a measuring unit for measuring the polarization state of analysis target light to be analyzed comprising: a retarder configured to be rotatable and a modulator that modulates the analysis target light including an analyzer;
  • a light intensity information acquisition unit for acquiring light intensity information of modulated light obtained by modulating the light to be analyzed by the modulation unit in which the retarder and the analyzer rotate at a given rotation ratio;
  • An arithmetic processing unit that performs arithmetic processing for calculating the polarization characteristic element based on light intensity information of the modulated light
  • the modulation unit is a modulation unit
  • the light to be analyzed is configured to pass through the retarder and then pass through the analyzer;
  • the polarization characteristic element is calculated based on the theoretical expression of the light intensity of the modulated light reflecting the polarization characteristic element of the light to be analyzed and the principal axis orientation condition of the modulator and the light intensity information of the modulated light. Do the process.
  • the theoretical expression of the light intensity of the modulated light acquired by the light intensity information acquisition unit reflects the polarization characteristic element of the analysis target light and the principal axis orientation condition of the modulation unit. . Therefore, by making the theoretical formula of the light intensity of the modulated light correspond to the measured value, It becomes possible to calculate the polarization characteristic element of the elephant light.
  • a measuring device capable of analyzing the polarization state of the analysis target light to be analyzed with high accuracy without replacing the retarder for each wavelength of the analysis target light. It becomes possible to offer. Further, according to the present invention, since it is possible to configure a measuring device including only a simple drive system that only rotates the retarder and the analyzer, it is possible to provide a measuring device with high measurement efficiency and measurement accuracy. Becomes possible.
  • the rotation ratio of the retarder and the analyzer can be selected in accordance with the analysis method of the light intensity information. That is, although light intensity information of modulated light can be obtained by analysis processing of the modulated light, various methods such as Fourier analysis are currently known as analysis methods of light intensity information. Data suitable for analysis may differ depending on the method. Therefore, in the present invention, the rotation ratio of the retarder and the analyzer may be set so as to be able to acquire data suitable for the analysis method to be selected.
  • the measurement apparatus may be configured to include an optical system including a light source and a light receiving unit, and a modulation unit disposed on an optical path connecting the light source and the light receiving unit.
  • the optical system may include a sample disposed on the light path and between the light source and the modulator.
  • the measuring apparatus is configured as a measuring apparatus that measures an optical characteristic element (birefringence retardation, principal axis orientation, optical rotation, or strike parameter, Mueller matrix element, joyens matrix element, etc.) of the sample. It is done! It is possible to calculate these optical characteristic elements by adjusting the polarization state of the incident light incident on the sample.
  • an optical characteristic element birefringence retardation, principal axis orientation, optical rotation, or strike parameter, Mueller matrix element, joyens matrix element, etc.
  • the measuring device according to the present invention is
  • An arithmetic processing unit that performs arithmetic processing to calculate a polarization characteristic element of the light to be analyzed based on light intensity information of the modulated light;
  • the modulated light is The light to be analyzed is light transmitted through the retarder and then transmitted through the analyzer;
  • the polarization characteristic element is calculated based on the theoretical expression of the light intensity of the modulated light reflecting the polarization characteristic element of the light to be analyzed and the principal axis orientation condition of the modulator and the light intensity information of the modulated light. Do the process.
  • the theoretical expression of the light intensity of the modulated light acquired by the light intensity information acquisition unit reflects the polarization characteristic element of the analysis target light and the principal axis orientation condition of the modulation unit. . Therefore, it is possible to calculate the polarization characteristic element of the light to be analyzed by correlating the theoretical formula of the light intensity of the modulated light with the actual measurement value.
  • a measuring device capable of analyzing the polarization state of the analysis target light to be analyzed with high accuracy without replacing the retarder for each wavelength of the analysis target light. It becomes possible to offer.
  • the rotation ratio of the retarder and the analyzer can be selected in accordance with the analysis method of the light intensity information. That is, although light intensity information of modulated light can be obtained by analysis processing of the modulated light, various methods such as Fourier analysis are currently known as analysis methods of light intensity information. Data suitable for analysis may differ depending on the method. Therefore, in the present invention, the rotation ratio of the retarder and the analyzer may be set so as to be able to acquire data suitable for the analysis method to be selected.
  • the light intensity information of the modulated light obtained by modulating the light to be analyzed may be acquired by the modulation unit in which the retarder and the analyzer rotate so that the rotation ratio is 1 to 3.
  • a process of calculating the polarization characteristic element may be performed based on a plurality of peak spectra obtained by analyzing the light intensity information acquired by the light intensity information acquiring unit and the theoretical formula.
  • DFT or FFT can be used as a method of analyzing the light intensity information.
  • a process of calculating the polarization characteristic element may be performed based on the birefringence phase difference of the retarder calculated by the birefringence phase difference calculation process.
  • the arithmetic processing speed can be increased by performing a process of calculating the polarization characteristic element using this value while calculating the birefringence phase difference of the retarder in advance.
  • the arithmetic processing unit may calculate a stability parameter of the light to be analyzed.
  • the arithmetic processing unit may calculate at least one of an ellipticity and a principal axis direction of the light to be analyzed.
  • the first and second actuators for rotationally driving the retarder and the analyzer, first and second detection units for detecting principal axis orientations of the retarder and the analyzer, and the first and second armatures A control signal generation unit that generates a control signal that controls the operation;
  • the control signal generation unit may generate the control signal based on detection signals of the first and second detection units.
  • a measurement method for measuring the polarization state of analysis target light to be analyzed which is a modulated light beam obtained by modulating the analysis target light with a modulator including a rotatable retarder and an analyzer.
  • Light intensity information acquisition procedure for acquiring light intensity information is a modulated light beam obtained by modulating the analysis target light with a modulator including a rotatable retarder and an analyzer.
  • the modulated light is a
  • the light to be analyzed is light transmitted through the retarder and then transmitted through the analyzer;
  • the first to Nth (N is an integer of 2 or more) in which the main axis direction of the retarder and the main axis direction of the analyzer satisfy a given relationship, and at least one of the main axis directions of the retarder and the analyzer is different.
  • the light intensity information of the first to N-th modulated light obtained by modulating the light to be analyzed by the modulation unit set to the main axis orientation condition of
  • the theoretical formula of the light intensity of the modulated light acquired by the light intensity information acquisition unit reflects the polarization characteristic element of the analysis target light and the principal axis orientation condition of the modulation unit. . Therefore, it is possible to calculate the polarization characteristic element of the light to be analyzed by correlating the theoretical formula of the light intensity of the modulated light with the actual measurement value.
  • the present invention it is possible to measure the polarization state of the analysis target light to be analyzed with high accuracy without replacing the phase shifter for each wavelength of the analysis target light. It becomes possible to provide the law.
  • the light intensity information of the modulated light can be obtained by analyzing the modulated light. Then, the first to Nth principal axis azimuth conditions to be satisfied by the modulator can be selected according to the analysis method of the light intensity information.
  • data suitable for analysis may differ depending on force analysis methods known as various methods such as Fourier analysis as methods for analyzing light intensity information. Therefore, in the present invention, the first to Nth spindle orientation conditions may be set so as to obtain data suitable for the analysis method to be selected.
  • the principal axis orientations of the retarder and the analyzer are respectively
  • L and M are integers of 1 or more, L ⁇ M, L ⁇ 2 M, 2 L ⁇ M)
  • the principal axis orientations of the retarder and the analyzer are set at equal intervals, and the retarder and the analyzer are each changed in a band of 180 degrees or more (360 degrees or more).
  • the analysis accuracy of data analysis processing can be enhanced.
  • the main axis direction of the retarder and the analyzer may be set to include the initial phase under the above conditions.
  • a measurement method for measuring the polarization state of an analysis target light to be analyzed which is a modulated light obtained by modulating the analysis target light with a modulation unit in which a retarder and an analyzer rotate at a given rotation ratio.
  • the polarization characteristic element of the light to be analyzed is calculated based on the light intensity information acquiring procedure for acquiring light intensity information and the light intensity information of the modulated light. Operation processing procedure for performing
  • the modulated light is a
  • the light to be analyzed is light transmitted through the retarder and then transmitted through the analyzer;
  • the polarization characteristic element is calculated based on the theoretical expression of the light intensity of the modulated light reflecting the polarization characteristic element of the light to be analyzed and the principal axis orientation condition of the modulator and the light intensity information of the modulated light. Do the process.
  • the theoretical formula of the light intensity of the modulated light acquired by the light intensity information acquisition unit reflects the polarization characteristic element of the light to be analyzed and the principal axis orientation condition of the modulation unit. . Therefore, it is possible to calculate the polarization characteristic element of the light to be analyzed by correlating the theoretical formula of the light intensity of the modulated light with the actual measurement value.
  • a measurement method capable of analyzing the polarization state of the analysis target light to be analyzed with high accuracy without replacing the retarder for each wavelength of the analysis target light. It becomes possible to offer.
  • the rotation ratio of the retarder and the analyzer can be selected in accordance with the analysis method of the light intensity information. That is, although light intensity information of modulated light can be obtained by analysis processing of the modulated light, various methods such as Fourier analysis are currently known as analysis methods of light intensity information. Data suitable for analysis may differ depending on the method. Therefore, in the present invention, the rotation ratio of the retarder and the analyzer may be set so as to be able to acquire data suitable for the analysis method to be selected.
  • the modulation unit rotates so that the rotation ratio of the retarder and the analyzer is 1 to 3.
  • the light intensity information of the modulated light obtained by modulating the light to be analyzed is acquired.
  • the process of calculating the polarization characteristic element may be performed based on the plurality of peak spectra obtained by analyzing the light intensity information acquired in the light intensity information acquiring procedure and the theoretical formula.
  • the method Prior to the process of calculating the polarization characteristic element, light intensity information of modulated light obtained by modulating the sample light indicating a predetermined polarization state by the modulation unit instead of the analysis target light is acquired, and the light is acquired.
  • the method further includes a birefringence phase difference calculation process procedure of calculating the birefringence phase difference of the retarder based on intensity information and a theoretical formula of the modulated light, wherein the arithmetic process procedure includes
  • a process of calculating the polarization characteristic element may be performed based on the birefringence retardation of the retarder calculated in the birefringence retardation calculation process procedure.
  • the birefringence phase difference of the retarder can be calculated. Therefore, the arithmetic processing speed can be increased by performing a process of calculating the polarization characteristic element using this value in advance by calculating the birefringence phase difference of the retarder in advance.
  • FIG. 1 is a view for explaining a measuring device according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining a measuring device according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of functional blocks of the arithmetic processing system.
  • FIG. 4 is a flowchart for explaining the light intensity information acquisition procedure.
  • FIG. 5 is a flowchart for explaining the polarization characteristic element calculation procedure.
  • FIG. 6 is a diagram showing an example of light intensity information.
  • FIG. 7A is a diagram showing an example of light intensity information.
  • FIG. 7B is a diagram showing an example of light intensity information.
  • FIG. 8 is a diagram for explaining a verification experiment.
  • FIG. 9 is a diagram for explaining a verification experiment.
  • FIG. 10A is a diagram for explaining a verification experiment.
  • FIG. 10B is a diagram for explaining a verification experiment.
  • FIG. 10C is a diagram for explaining a verification experiment.
  • FIG. 11A is a view for explaining a verification experiment.
  • FIG. 11B is a view for explaining a verification experiment.
  • FIG. 11C is a view for explaining a verification experiment.
  • FIG. 12 is a diagram for explaining a verification experiment.
  • FIG. 13 is a diagram for explaining a verification experiment.
  • FIG. 14 is a diagram for explaining a verification experiment.
  • FIG. 15A is a view showing the results of evaluation of viewing angle characteristics of a circularly polarizing film.
  • FIG. 15B is a view showing the results of evaluation of viewing angle characteristics of a circularly polarizing film.
  • FIG. 15C is a view showing the results of evaluation of viewing angle characteristics of a circularly polarizing film.
  • FIG. 15D is a view showing the results of viewing angle characteristic evaluation of the circularly polarizing film.
  • a measurement apparatus 1 for measuring the polarization state of light (analysis target light) emitted from a sample 100 will be described.
  • the properties of the sample 100 applicable to the present invention are not particularly limited.
  • FIG. 1 and FIG. 2 are diagrams for explaining the device configuration of the measuring device 1.
  • FIG. 1 is a view schematically showing an optical system 10 applicable to the present invention (measuring device 1)
  • FIG. 2 is a block diagram for explaining a configuration of the measuring device 1.
  • the measuring device 1 includes an optical system 10, a light intensity information acquiring unit 30, and an arithmetic processing unit 50.
  • the light intensity information acquisition unit 30 acquires light intensity information of modulated light obtained by modulating the light to be analyzed (light modulated by the sample 100) by the modulation unit 20. That is, In Table 1, the light intensity information acquisition unit 30 acquires light intensity information of light (modulated light) emitted from the light source 12 and modulated by the optical element included in the optical system 10 and the sample 100.
  • the arithmetic processing unit 50 calculates the optical characteristics of the light (analysis target light) modulated by the sample 100 based on the theoretical formula of the light intensity of the modulated light and the light intensity information of the modulated light. Perform processing to calculate elements.
  • the sample 100 may be a substance that transmits light or a substance that reflects light.
  • the apparatus configuration of the measuring apparatus 1 will be described below.
  • the optical system 10 includes a light source 12 and a light receiving unit 14.
  • the optical system 10 also includes a retarder 22 and an analyzer 24 provided on an optical path L connecting the light source 12 and the light receiving unit 14.
  • the retarder 22 and the analyzer 24 are optical elements that modulate the light (analysis target light) emitted from the sample 100. That is, the retarder 22 and the analyzer 24 are disposed downstream of the sample 100 in the light path L.
  • the retarder 22 and the analyzer 24 can be collectively referred to as a modulator 20. Each element of the optical system 10 will be described below.
  • the optical system 10 includes a light source 12.
  • the light source 12 is a device that generates and emits light.
  • a device that emits light including a given wavelength (wave number) band component may be used as the light source 12.
  • a white light source such as a halogen lamp may be used as the light source 12.
  • the light source 12 may alternatively be a light source that emits light of a given wavelength (wave number). At this time, it can be said that the light source 12 is a light emitting device that emits monochromatic light.
  • a laser or SLD may be used.
  • the light source 12 may be configured to be capable of changing the wavelength (wave number) of the light to be emitted.
  • Optical system 10 includes a retarder 22.
  • the retarder 22 is an optical element in which the magnitude of the birefringence retardation is different depending on the wavelength of light to be transmitted. Therefore, the light transmitted through the retarder 22 changes its polarization state depending on its wavelength.
  • the light incident on the retarder 2 2 (the modulation unit 20) may be referred to as analysis target light.
  • the analysis target light When no optical element is disposed between the sample 100 and the retarder 22, the light emitted from the sample 100 may be referred to as the analysis target light.
  • a zero-order retarder is used as the retarder 22.
  • Optical system 10 includes an analyzer 24.
  • the analyzer 24 is a polarizer on the exit side that converts the light transmitted through the retarder 22 (light emitted from the retarder 22) into linearly polarized light. Then, in the optical system 10, light transmitted through the analyzer 24 (light emitted from the analyzer 24) is incident on the light receiving unit 14.
  • the retarder 22 and the analyzer 24 are collectively referred to as a modulator 20. And, the retarder 22 and the analyzer 24 are configured to be able to change the main axis direction. The retarder 22 and the analyzer 24 may be configured to be able to change the principal axis orientation by rotating. Then, in the measuring device 1, light obtained by modulating the light to be analyzed by the modulation unit 20 is referred to as modulated light.
  • the optical system 10 includes a light receiving unit 14.
  • the light receiving unit 14 may be configured to receive light (modulated light) obtained by modulating the light to be analyzed by the modulation unit 20.
  • a CCD may be used as the light receiving unit 14.
  • the light receiving unit 14 may include a spectroscope and a plurality of light receiving elements.
  • the modulated light incident on the light receiving unit 14 is also light including a band component.
  • the spectroscope separates the modulated light for each wavelength and each light receiving element measures the intensity of the light of each wavelength, the light intensity of the modulated light in a plurality of wavelength bands can be simultaneously measured. .
  • a spectrometer is an optical device (optical element) that splits light (for example, white light) including a given band component for each wavelength.
  • a spectroscope for example, a prism or a diffraction grating can be used.
  • the light receiving element is an optical device (optical element) that measures the intensity of incident light by, for example, photoelectrically converting the incident light.
  • the optical system 10 may also include a polarizer 28 provided on the light path L (see FIG. 2).
  • the polarizer 28 is disposed upstream of the sample 100 in the light path L. That is, according to the optical system 10, the light emitted from the light source 12 is made incident on the sample 100 through the polarizer 28, and the light modulated by the sample 100 is reflected by the retarder 22 and the analyzer 24 (the modulation unit 20). ) Is configured to be incident on the light receiving unit 14. That is, light obtained by modulating the light emitted from the light source 12 by the polarizer 28 and the sample 100 becomes the light to be analyzed in the measuring device 1.
  • the measuring apparatus 1 is an apparatus for measuring the polarization state of light (analysis target light) incident on the modulation unit 20 (retarder 22). Therefore, the configuration on the upstream side of the modulation unit 20 in the optical path L is not particularly limited.
  • an optical system may be used without the polarizer 28 (see FIG. 1).
  • the light intensity information acquisition unit 30 acquires light intensity information of modulated light. That is, the light intensity information acquisition unit 30 acquires light intensity information of light (modulated light) obtained by modulating the light (analysis target light) incident on the modulation unit 20 by the modulation unit 20.
  • the process of acquiring the light intensity information of the modulated light performed by the light intensity information acquiring unit 30 may be referred to as light intensity information acquiring process.
  • the light intensity information acquiring unit 30 may be configured to acquire light intensity information of light incident on the light receiving unit 14. Further, the light receiving unit 14 (spectrometer and light receiving element) may form a part of the light intensity information acquiring unit 30.
  • the light intensity information acquisition unit 30 satisfies the given relationship between the main axis direction of the retarder 22 and the main axis direction of the analyzer 24, and at least the main axis directions of the retarder 22 and the analyzer 24.
  • the first to Nth modulated lights (a plurality of modulated lights) obtained by modulating the light to be analyzed by the modulation unit 20 set to the first to the Nth (N is an integer of 2 or more) different principal axis orientation conditions.
  • the light intensity information of the modulated light is acquired.
  • the light intensity information acquiring unit 30 acquires the first to Nth (N is an integer of 2 or more) light intensity information, that is, N pieces of light intensity information.
  • the first to N-th light intensity information are light intensities of modulated light modulated by the modulator 20 set to the first to N-th main axis azimuth conditions, respectively.
  • the first to Nth main axis orientation conditions are different from each other in at least one main axis orientation setting of the optical element (retarder 22 and analyzer 24). Further, in the first to Nth main axis azimuth conditions, the main axis azimuth of the retarder 22 and the main axis azimuth of the analyzer 24 satisfy a predetermined relationship.
  • main axis direction of the retarder 22 is set to 0, and the main axis direction with the analyzer 24 is set to 0.
  • L and M are integers of 1 or more and satisfy L ⁇ M.
  • L and M may be even numbers.
  • the modulation unit 20 does not necessarily have to satisfy the above-described main axis orientation condition! /. That is, in the present invention, since any of the analysis methods already known can be applied, it is possible to obtain data suitable for the selected analysis method under any one of the principal axis orientation conditions. Information may be acquired. Alternatively, the main axis direction of the retarder 22 and the main axis direction of the analyzer 24 may be determined in consideration of the initial phase in the main axis direction condition described above.
  • the plurality of pieces of light intensity information acquired by the light intensity information acquiring unit 30 may be stored in the storage device 40.
  • the storage device 40 stores the spindle orientation information (first to second spindle orientation conditions) of the modulation unit 20 (retarder 22 and analyzer 24) in association with the first to second light intensity information. You may Then, based on the light intensity information stored in the storage device 40, the arithmetic processing unit 50 performs a process of measuring the polarization state of the light to be analyzed.
  • the main axis direction of the retarder 22 and the main axis direction of the analyzer 24 satisfy a given relationship, and at least one of the retarder 22 and the analyzer 24. Also, it may be said that light intensity information of a plurality of modulated lights obtained by modulating the light to be analyzed by the modulation unit 20 having different principal axis orientations may be obtained.
  • the light intensity information acquisition unit 30 acquires light intensity information of a plurality of modulated lights.
  • the plurality of modulated lights are obtained by modulating the light to be analyzed with the modulation unit 20 which differs in the setting of the principal axis direction of at least one of the optical elements (retarder 22 and analyzer 24). It is.
  • the plurality of modulated lights are lights obtained by modulating the light to be analyzed by the modulation unit 20 in which the main axis direction of the retarder 22 and the main axis direction of the analyzer 24 satisfy the given relationship. It can be said.
  • the arithmetic processing unit 50 performs arithmetic processing to measure the polarization state of the analysis target light.
  • the arithmetic processing unit 50 performs an analysis pair based on the theoretical expression of the light intensity of the modulated light and the light intensity information of the modulated light. Processing to calculate the polarization characteristic element of elephant light (polarization characteristic element calculation processing) is performed, and the polarization state of the light to be analyzed is measured.
  • the theoretical formula of the light intensity of the modulated light includes parameters indicating the polarization state of the analysis light.
  • the measuring device 1 may further include first and second drive detection units 62 and 64.
  • the drive unit is a finish actuator that variably sets the principal axis orientation of the optical element that constitutes the optical system.
  • the detection unit is a sensor that detects the main axis direction of the optical element.
  • the first drive / detection unit 62 rotationally drives the retarder 22 and detects the principal axis orientation of the retarder 22.
  • the second drive / detection unit 64 rotationally drives the analyzer 24 and detects the principal axis orientation of the analyzer 24.
  • the measuring apparatus 1 may further include a control signal generation unit 65 that controls the operation of the first and second drive detection units 62 and 64.
  • the control signal generation unit 65 generates a control signal based on detection signals from the first and second drive detection units 62 and 64, and the operation of the first and second drive detection units 62 and 64. Configured to control,,,.
  • the measuring device 1 may include a control device 70.
  • the control device 70 may have a function of generally controlling the operation of the measuring device 1. That is, the control device 70 controls the first and second drive detection units 62 and 64 to set the principal axis orientation of the optical element, controls the light emission operation of the light source 12, and obtains the light intensity information acquisition unit. 30 and the operation of the arithmetic processing unit 50 may be controlled.
  • the control device 70 may include the storage device 40 and the arithmetic processing unit 50.
  • the storage device 40 has a function of temporarily storing various data.
  • the storage device 40 may store, for example, light intensity information of modulated light in association with principal axis direction information of the retarder 22 and the analyzer 24.
  • the arithmetic processing unit 50 may perform a process of calculating the polarization characteristic element of the light to be analyzed based on the light intensity information stored in the storage device 40.
  • Control device 70 May also include a control signal generator 65.
  • the measurement device 1 can perform processing using a computer, particularly in the control device 70 (the arithmetic processing unit 50).
  • a computer refers to a physical device (system) having a processor (processing unit: CPU or the like), a memory (storage unit), an input device, and an output device as basic components.
  • FIG. 3 shows an example of functional blocks of the arithmetic processing system that constitute the control device 70.
  • the processing unit 110 performs various processes of the present embodiment based on a program (data) stored in the information storage medium 130. That is, the information storage medium 130 stores a program for causing the computer to function as each part of the present embodiment (a program for causing the computer to execute the processing of each part).
  • the function of the processing unit 110 can be realized by hardware such as various processors (CPU, DSP etc.), ASIC (gate array etc.), and programs.
  • the storage unit 120 is a work area such as a processing unit, and its function can be realized by a RAM or the like.
  • An information storage medium 130 (computer readable medium) stores program data, etc., and its function is to use an optical disc (CD, DVD), a magneto-optical disc (MO), a magnetic disc, or the like. It can be realized by a hard disk, a magnetic tape, or a memory (ROM).
  • the principal axis orientation of the modulation unit 20 may be set based on the program stored in the information storage medium 130, and the light emission operation of the light source 12 may be controlled.
  • ⁇ ( ⁇ ), ⁇ , ⁇ are the birefringence retardations of the retarder 22, and the rotation angle of the retarder 22.
  • Equation (1) is the birefringence retardation of the retarder 22 when the wavelength ⁇ light is incident on the retarder 22.
  • the polarization state S (strikeness parameter) of the light (analysis target light) after exiting the sample 100 is
  • s ( ⁇ ) is the light intensity
  • s ( ⁇ ) is the linearly polarized light component
  • s ( ⁇ ) is the linearly polarized light component
  • the 45 degree polarization component, s ( ⁇ ) represents the vector quantity of the circular polarization component. And s in S
  • is a light intensity component of light (modulated light) incident on the light receiving unit 14.
  • the light intensity ⁇ ( ⁇ , ⁇ ,)) of the modulated light is given by
  • Equation (5) S 2 ( ⁇ ) sin 2 ⁇ -sm (0 1 -. 2 ⁇ can be expressed as 2 (5)
  • I (lambda) appearing in Equation (5) is a proportionality constant light intensity.
  • the birefringence phase difference ⁇ (e) of the retarder 22 is ⁇ ⁇ ⁇ -2 ⁇ ⁇ () + — — ()
  • each left side of the equations (6a) to (6f) can be calculated from the light intensity information, and therefore, by substituting these values into the equation (7), birefringence can be obtained.
  • the phase difference ⁇ ( ⁇ ) can be calculated.
  • Equation (6a) to (6f) it is a parameter of light intensity of analysis target s
  • the ellipticity ⁇ ( ⁇ ) of the light to be analyzed and the principal axis orientation ⁇ ( ⁇ ) are calculated using the strike parameter.
  • the polarization characteristic element of the analysis target light of wavelength ⁇ can be calculated, and the polarization characteristic (polarization state) of the wavelength analysis target light is measured. I think I can do it. That is, it can be understood that, even in the case of using a retarder in which wavelength dependency appears in birefringence retardation, it is possible to measure polarization characteristics at all wavelengths of light to be analyzed.
  • Equation (6a) to (6f) The left side of Equations (6a) to (6f) indicates a (E), a ( ⁇ ), a ( ⁇ ), and b ( ⁇ )
  • b ( ⁇ ), b ( ⁇ ) are the bias component of the light intensity, the cos component, and the sin component
  • ⁇ ⁇ ( ⁇ ) -I (A, 0 l , 0 2 ) cos (n 0) d 0 (11)
  • the intensity information (measured value of light intensity) can be used to calculate the value as a numerical value.
  • Equation (5) the theoretical formula of the light intensity of the modulated light can be expressed by Equation (5), but depending on the setting of the principal axis orientation ⁇ of the retarder 22 and the principal axis orientation ⁇ of the analyzer 24 All
  • the main axis direction of the retarder 22 and the main axis direction of the analyzer 24 are 20 ⁇ 2 ⁇ 0, force, ⁇ , 40 ⁇ 2 ⁇ ⁇ 0, force,
  • the light intensity information of the modulated light obtained thereby may be obtained. According to this, since the retarder 22 and the analyzer 24 can satisfy the above conditions, it is possible to calculate all the measured parameters.
  • the light intensity information may be acquired at regular intervals by rotating the retarder 22 and the analyzer 24 so that the rotation ratio is 1: 3. In this way, it is possible to efficiently obtain light intensity information that can calculate all the strike parameters.
  • FIG. 4 and FIG. 5 show an operation flowchart of the measuring device according to the present embodiment.
  • FIG. 4 is a flowchart of the light intensity information acquisition procedure.
  • step S10 principal axis directions of the retarder 22 and the analyzer 24 (the modulation unit 20) are set.
  • the light intensity information acquiring unit 30 acquires light intensity information of the light (modulated light) received by the light receiving unit 14 (step S12).
  • the first to N-th modulated lights are measurement lights obtained by modulating the light to be analyzed by the modulator 20 set to the first to N-th main axis direction conditions. That is, in the light intensity information acquisition procedure, the above-mentioned step S10 and step S12 are performed a plurality of times by changing the main axis direction setting of the optical element.
  • the principal axis direction of the optical element is set to the first condition, and the first light intensity information is acquired.
  • the first condition (spindle direction information) and the first light intensity information are stored in the above-described storage device 40 in association with each other.
  • the main axis direction of the optical element is set (changed) to the second condition to acquire the second light intensity information, and the storage device 40 corresponds the second condition to the second light intensity information.
  • this operation may be repeated to acquire N pieces of spindle orientation information and N pieces of light intensity information, and store them in the storage device 40 in association with each other.
  • the principal axis direction of the optical element of the optical system may be set (changed) by operating the actuators of the drive detection units 62 and 64 by the control signal generation unit 65. Further, the main axis direction information of the optical element of the optical system is detected according to the pre-programmed information detected by the detection unit.
  • FIG. 5 is a flowchart of the calculation processing procedure.
  • analysis is performed based on the light intensity information of the modulated light acquired in the light intensity information acquisition procedure and the theoretical formula of the modulated light.
  • the polarization characteristic element of the target light is calculated.
  • the ellipticity and the principal axis direction which are polarization characteristic elements of the light to be analyzed, can be calculated, and the polarization state of the light to be analyzed can be measured.
  • the measuring device 1 even when a retarder with an unknown birefringence phase difference is used, it is possible to calculate the birefringence phase difference ⁇ ( ⁇ ) of the retarder 22 from the equation (7). Since it can be used, it can be used to calculate the stability parameter of the light to be analyzed.
  • the birefringence phase difference ⁇ ( ⁇ ) of the retarder 22 may be calculated in advance, calibration data may be acquired, and measurement may be performed using this value.
  • sample light that is not a parameter parameter 1, 0, 0, 1 ⁇ is made incident on the modulation unit 20 to perform light intensity information acquisition processing, and acquisition Even if processing is performed to calculate birefringence retardation ⁇ ( ⁇ ) as calibration data based on the calculated light intensity information and the theoretical expression of light intensity (refer to equation (7)). Good. Then, the birefringence phase difference ⁇ ( ⁇ ) calculated according to this procedure is stored in the storage device 40, and the polarization characteristics described above are utilized using the birefringence phase difference ⁇ ( ⁇ ) stored in the storage device 40. Processing to calculate elements may be performed.
  • the birefringence phase difference ⁇ ( ⁇ ) is a value unique to the retarder 22
  • the birefringence phase difference ⁇ ( ⁇ ) is calculated by storing it once in the storage device 40. There is no need to work to calculate the data, and the calculation efficiency can be improved.
  • light intensity information acquisition unit 30 modulates the light to be analyzed by modulator 20 where retarder 22 and analyzer 24 rotate at a given rotation ratio.
  • the light intensity information of the modulated light obtained is obtained.
  • the light intensity information acquisition section 30 can acquire light intensity information of modulated light whose intensity changes continuously as analog information.
  • the light intensity can be regarded as a function having a period. Therefore, if analysis processing (for example, Fourier analysis processing) is performed, as shown in FIG. 7, a peak spectrum can be extracted. If these peak spectra are made to correspond to the theoretical formula of light intensity (the left side of the above-mentioned formulas (6a) to (6f)), the light to be analyzed is based on formulas (8a) to (8d) It is possible to calculate the Stokes parameter of
  • a polarizer 86, a retarder 22 and an analyzer 24 are provided between the light source 82 of the helium neon laser and the power meter 84 (the light receiving unit 14 and the light intensity information acquiring unit 30).
  • the principal axis direction of the polarizer 86 was set to 0 degrees.
  • the retarder 22 was rotated every 12 degrees, and the retarder 22 and the analyzer 24 were rotated at a rotation ratio of 1 to 3.
  • a 1N4 wavelength plate of a 633 nm helium neon laser was used as the retarder 22, a 1N4 wavelength plate of a 633 nm helium neon laser was used.
  • the birefringence of the retarder 22 was 90 degrees, the principal axis direction was 0.15 degrees, and the ellipticity was 0.1%.
  • the sample was actually inserted and the ellipticity was measured.
  • a Babinet Soleil compensator 88 was used as a sample.
  • the Habinesole compensator 88 is an optical element (apparatus) capable of arbitrarily adjusting the amount of birefringence retardation.
  • 10A to 10C show the results of the strike parameter, the ellipticity, and the main axis orientation measured in this experiment.
  • the principal axis direction of the Babinet-Soleic compensator 88 was changed by changing the 0 degree power up to 90 degrees every 5 degrees.
  • the solid line and broken line of FIG. 10A-FIG. 10C are theoretical values, and a plot point is a measurement result.
  • Figure 12 shows the experimental equipment used in this experiment.
  • a halogen lamp is used as a light source 92, and light from the light source 92 is led to an optical fiber 94, and collimated light is produced by a collimating lens.
  • a Babinet Soleil compensator 88 was used as in the single wavelength experiment, and a mica plate was used as the retarder 22.
  • the halogen lamp is a white light source extending to a wavelength range of 400 nm to 800 nm.
  • Halogen lamps generally have an edge wavelength range of 400 nm to 440 nm and 700 nm to 800 nm. Light intensity is weak. Therefore, the measurement wavelength range is 450 ⁇ ! It was ⁇ 660 nm.
  • the birefringence phase difference of the retarder 22 is obtained, and calibration data is acquired.
  • the calibration data is the same as the measurement with the helium neon laser, in the experimental apparatus from which the Babinet Soleil compensator 88 is removed, the light intensity transmitted by the polarizer 86 is phase-modulated by the retarder 22 (mic plate). Analyze the waveform.
  • the birefringence dispersion of the mica plate obtained from the cavity is shown in FIG.
  • a measurement sample (Babinet-Soleic compensator 88) was actually inserted, and the measurement of ellipticity in multiple wavelength regions was performed.
  • a Babinet-Soleic compensator 88 is placed at 45 ° azimuth to create circular polarization at an arbitrary wavelength.
  • the birefringence phase difference of the Babinetsole compensator 88 was shifted by sending a microphone meter to shift the wavelength of the circular polarization state.
  • Fig. 14 shows the results of changing the birefringence phase difference of the Babinet-Sole compensator by changing the micrometer.
  • the retarder 22 was rotated every 12 degrees.
  • the plot points in the figure are at every 5 nm wavelength.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • the invention includes configurations substantially the same as the configurations described in the embodiments (for example, configurations having the same function, method and result, or configurations having the same purpose and effect). Further, the present invention includes a configuration in which a nonessential part of the configuration described in the embodiment is replaced. Furthermore, the present invention includes configurations that can achieve the same effects as the configurations described in the embodiments, or configurations that can achieve the same purpose. Furthermore, the present invention includes configurations obtained by adding known techniques to the configurations described in the embodiments.
  • the modulation unit 20 may be configured to be able to change its main axis direction manually.
  • the spindle orientation information may be acquired by the detection unit, and various arithmetic processing may be performed.
  • the arithmetic processing using the Mueller matrix has been described.
  • arithmetic processing may be performed using the Joynes matrix.
  • the polarization state of the light to be analyzed can be measured and clarified. Therefore, it can be applied to light whose polarization state is unknown, and the polarization state can be measured. That is, it is possible to measure the polarization state without being tied to the nature of the measurement sample. That is, it is possible to measure the polarization state which is not restricted by the configuration on the upstream side of the retarder 22 in the optical system 10 (optical path L).
  • the measuring apparatus (measuring method) is an optical characteristic element of sample 100 (birefringence phase difference, principal axis orientation, optical activity, or strike parameter, Mueller matrix element, Jones matrix element It is configured as a measuring device (measuring method) that measures, etc.! By selecting the nature of the light source and the optical element disposed between the light source and the sample 100, it is possible to calculate the optical characteristic element of the sample 100.
  • the present invention can be used for evaluation of organic polymer materials including liquid crystals and research and development of new materials. Furthermore, the orientation state of the polymer can be applied to quality control and the like. The findings obtained from these will be very effective for new materials.
  • FIG. 15A to 15D show the results of evaluation of the viewing angle characteristics of the circularly polarizing film using the present invention.
  • FIG. 15A shows a display model of viewing angle distribution.
  • FIG.15B-FIG.15D is a figure which respectively shows the measurement result of the ellipticity of the light (analysis object light) of wavelength 450nm, 550 nm, 650 nm which radiate
  • the gray level in each figure represents the magnitude of the ellipticity.
  • the viewing angle distribution of the ellipticity of light (analysis target light) emitted from the measurement target can be detected as shown in FIG. 15B to FIG. 15D.
  • the measurement object used in this experiment has different ellipticity viewing angle distributions depending on the wavelength. For example, looking at FIG. 15B, it can be seen that the ellipticities at the top, bottom, left, and right of the wavelength 450 nm are almost uniform. On the other hand, looking at FIG. 15D, it can be seen that at the wavelength of 650 nm, the ellipticity in the vertical direction is high and the ellipticity in the horizontal direction is low.
  • an object to be measured for each wavelength band is provided.
  • the ellipticity distribution (polarization state of light to be analyzed) can be measured efficiently and accurately.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

  計測装置は、分析の対象である分析対象光の偏光状態を計測する装置であって、リターダ22及び検光子24を含む変調部20と、変調部で分析対象光を変調させることによって得られる変調光の光強度情報を取得する光強度情報取得部30と、光強度情報に基づいて分析対象光の偏光特性要素を算出する演算処理部50と、を含む。光強度情報取得部は、リターダ及び検光子の主軸方位の少なくとも一方が異なる第1~第Nの主軸方位条件に設定された変調部で分析対象光を変調させることによって得られる第1~第Nの変調光の光強度情報を取得する。演算処理部は、第1~第Nの変調光の光強度の理論式と、第1~第Nの光強度情報とに基づいて、偏光特性要素算出処理を行う。

Description

明 細 書
計測装置及び計測方法
技術分野
[0001] 本発明は、分析の対象である分析対象光の偏光状態を計測する計測装置、及び、 分析対象光の偏光状態を計測する計測方法に関する。
背景技術
[0002] 近年では、新 、液晶表示材料の開発が盛んに行われて 、る。これに伴!、、製品 検査の計測法にも高精度化が求められている。液晶表示材料用の高分子フィルムと して円偏光フィルムがある。これは、液晶がもつ複屈折や旋光性による狭視野角化や 着色による製品劣化を補償することができる。また、複屈折や旋光は、波長依存性を 持っため、波長ごとの評価が必要である。その評価方法として、従来、楕円率測定に は回転検光子法や回転位相子法が用いられてきた。なお、これらの技術を示す文献 として、特開 2005— 292028号公報や、 R. M. A. Azaam, Ellipsometry and polarize d light, (1976)が知られている。
発明の開示
[0003] しかし、回転検光子法では、楕円率が逆正弦関数で与えられるため、測定試料の 複屈折位相差が 90度付近の場合に精度が悪くなる。また、回転位相子法では、測 定する波長にあわせて位相子を取り替える必要があるため、波長ごとの評価を効率 よく行うことが難し力つた。
[0004] 本発明の目的は、分析の対象である分析対象光の偏光状態を、波長毎に位相子 を取り替えることなぐ高精度に分析することが可能な計測装置及び計測方法を提供 することにある。
[0005] ( 1)本発明に係る計測装置は、
分析の対象である分析対象光の偏光状態を計測する計測装置であって、 回転可能に構成されたリターダ及び検光子を含む、前記分析対象光を変調させる 変調部と、
前記変調部で前記分析対象光を変調させることによって得られる変調光の光強度 情報を取得する光強度情報取得部と、
前記変調光の光強度情報に基づいて前記分析対象光の偏光特性要素を算出す る演算処理を行う演算処理部と、
を含み、
前記変調部は、
前記分析対象光が、前記リターダを透過し、その後、前記検光子を透過するよう〖こ 構成されてなり、
前記光強度情報取得部は、
前記リターダの主軸方位と前記検光子の主軸方位とが所与の関係を満たし、かつ 、前記リターダ及び前記検光子の主軸方位の少なくとも一方が異なる第 1〜第 N (N は 2以上の整数)の主軸方位条件に設定された前記変調部で前記分析対象光を変 調させることによって得られる、第 1〜第 Nの変調光の光強度情報を取得し、 前記演算処理部は、
前記分析対象光の偏光特性要素及び前記変調部の主軸方位条件を反映した前 記第 1〜第 Nの変調光の光強度の理論式と、前記第 1〜第 Nの変調光の光強度情 報とに基づいて、前記偏光特性要素を算出する処理を行う。
[0006] 本発明に係る計測装置では、光強度情報取得部で取得される変調光の光強度の 理論式は、分析対象光の偏光特性要素及び変調部の主軸方位条件を反映して ヽる 。そのため、変調光の光強度の理論式と実測値とを対応させることによって、分析対 象光の偏光特性要素を算出することが可能になる。
[0007] すなわち、本発明によると、分析の対象である分析対象光の偏光状態を、分析対 象光の波長毎に位相子を取り替えることなぐ高精度に分析することが可能な計測装 置を提供することが可能になる。また、本発明によると、リターダ及び検光子を回転さ せるだけの、単純な駆動系のみで計測装置を構成することができるため、計測効率、 及び、計測精度の高い計測装置を提供することが可能になる。
[0008] なお、変調光の光強度情報は、変調光を解析処理して得ることができる。そして、 変調部が満たすべき第 1〜第 Nの主軸方位条件は、光強度情報の解析手法にあわ せて選択することができる。現在、光強度情報の解析手法として、フーリエ解析法な どの種々の手法が知られている力 解析手法によって、解析に適するデータが異な ることがある。そのため、本発明では、第 1〜第 Nの主軸方位条件を、選択する解析 手法に適したデータを取得することが可能な設定としてもよい。
[0009] ただし、リターダ及び検光子の主軸方位を 0 , Θ とおくと、 θ , Θ は、 2 0 - 2 Θ
1 2 1 2 1
≠0、力、つ、 4 Θ - 2 Θ ≠0、力、つ、 2 Θ - 2 Θ ≠4 Θ - 2 Θ ≠2 Θ という条件を
2 1 2 1 2 1 2 2
満たしていてもよい。これによると、フーリエ解析処理により、スト一タスパラメータのす ベての要素を算出することが可能になる。
[0010] 本発明に係る計測装置は、光源と受光部とを含み、光源と受光部とを結ぶ光路上 に変調部が配置された光学系を含んだ構成をなしていてもよい。このとき、光学系は 、光路上であって光源と変調部との間に配置された試料を含んでいてもよい。そして 、計測装置は、試料の光学特性要素 (複屈折位相差、主軸方位、旋光性、あるいは 、スト一タスパラメータ、ミュラー行列要素、ジヨーンズ行列要素など)を計測する計測 装置として構成されて ヽてもよ ヽ。試料に入射される入射光の偏光状態を調整するこ とで、これらの光学特性要素を算出することが可能になる。
[0011] (2)本発明に係る計測装置は、
分析の対象である分析対象光の偏光状態を計測する計測装置であって、 回転可能に構成されたリターダ及び検光子を含む変調部で前記分析対象光を変 調させることによって得られる変調光の光強度情報を取得する光強度情報取得部と 前記変調光の光強度情報に基づいて前記分析対象光の偏光特性要素を算出す る演算処理を行う演算処理部と、
を含み、
前記変調光は、
前記分析対象光が、前記リターダを透過し、その後、前記検光子を透過した光であ り、
前記光強度情報取得部は、
前記リターダの主軸方位と前記検光子の主軸方位とが所与の関係を満たし、かつ 、前記リターダ及び前記検光子の主軸方位の少なくとも一方が異なる第 1〜第 Ν (Ν は 2以上の整数)の主軸方位条件に設定された前記変調部で前記分析対象光を変 調させることによって得られる、第 1〜第 Nの変調光の光強度情報を取得し、 前記演算処理部は、
前記分析対象光の偏光特性要素及び前記変調部の主軸方位条件を反映した前 記第 1〜第 Nの変調光の光強度の理論式と、前記第 1〜第 Nの変調光の光強度情 報とに基づいて、前記偏光特性要素を算出する処理を行う。
[0012] 本発明に係る計測装置では、光強度情報取得部で取得される変調光の光強度の 理論式は、分析対象光の偏光特性要素及び変調部の主軸方位条件を反映して ヽる 。そのため、変調光の光強度の理論式と実測値とを対応させることによって、分析対 象光の偏光特性要素を算出することが可能になる。
[0013] すなわち、本発明によると、分析の対象である分析対象光の偏光状態を、分析対 象光の波長毎に位相子を取り替えることなぐ高精度に分析することが可能な計測装 置を提供することが可能になる。
[0014] なお、変調光の光強度情報は、変調光を解析処理して得ることができる。そして、 変調部が満たすべき第 1〜第 Nの主軸方位条件は、光強度情報の解析手法にあわ せて選択することができる。現在、光強度情報の解析手法として、フーリエ解析法な どの種々の手法が知られている力 解析手法によって、解析に適するデータが異な ることがある。そのため、本発明では、第 1〜第 Nの主軸方位条件を、選択する解析 手法に適したデータを取得することが可能な設定としてもよい。
[0015] ただし、リターダ及び検光子の主軸方位を 0 , Θ とおくと、 0 , 0 は、 20 —20
1 2 1 2 1
≠0、力、つ、 4Θ -2Θ ≠0、力、つ、 2Θ -2Θ ≠4Θ -2Θ ≠2Θ という条件を
2 1 2 1 2 1 2 2
満たしていてもよい。これによると、フーリエ解析処理により、スト一タスパラメータのす ベての要素を算出することが可能になる。
[0016] (3)この計測装置において、
前記リターダ及び前記検光子の主軸方位を、それぞれ、 θ , Θ
1 2とおくと、 前記変調部の第 Κの主軸方位条件 (Κは 1〜Νの各整数)は、
(θ , Θ ) =(180XLXK/N, 180XMXK/N)
1 2 K
(ただし、 L, Mは 1以上の整数で、 L≠M, L≠2M, 2L≠M) であってもよい。
[0017] 上記のように、リターダ及び検光子の主軸方位を、それぞれ等間隔に設定し、リタ ーダ及び検光子をそれぞれ 180度以上(360度以上)の帯域で変化させることによつ て、データの解析処理 (フーリエ解析処理)による解析精度を高めることができる。
[0018] なお、この計測装置では、例えば、 L = 2、 M = 6、 N = 30としてもよい。また、リタ一 ダ及び検光子の主軸方位は、上記の条件に初期位相を含んだ設定としてもょ ヽ。
[0019] (4)本発明に係る計測装置は、
分析の対象である分析対象光の偏光状態を計測する計測装置であって、 回転可能に構成されたリターダ及び検光子を含む、前記分析対象光を変調させる 変調部と、
前記リターダ及び前記検光子が所与の回転比で回転する前記変調部で前記分析 対象光を変調させることによって得られる変調光の光強度情報を取得する光強度情 報取得部と、
前記変調光の光強度情報に基づいて前記偏光特性要素を算出する演算処理を行 う演算処理部と、
を含み、
前記変調部は、
前記分析対象光が、前記リターダを透過し、その後、前記検光子を透過するよう〖こ 構成されてなり、
前記光強度情報取得部は、
連続的に強度が変化する前記変調光の光強度情報をアナログ情報として取得し、 前記演算処理部は、
前記分析対象光の前記偏光特性要素及び前記変調部の主軸方位条件を反映し た前記変調光の光強度の理論式と、前記変調光の光強度情報とに基づいて、前記 偏光特性要素を算出する処理を行う。
[0020] 本発明に係る計測装置では、光強度情報取得部で取得される変調光の光強度の 理論式は、分析対象光の偏光特性要素及び変調部の主軸方位条件を反映して ヽる 。そのため、変調光の光強度の理論式と実測値とを対応させることによって、分析対 象光の偏光特性要素を算出することが可能になる。
[0021] すなわち、本発明によると、分析の対象である分析対象光の偏光状態を、分析対 象光の波長毎に位相子を取り替えることなぐ高精度に分析することが可能な計測装 置を提供することが可能になる。また、本発明によると、リターダ及び検光子を回転さ せるだけの、単純な駆動系のみを含む計測装置を構成することができるため、計測 効率、及び、計測精度の高い計測装置を提供することが可能になる。
[0022] なお、本発明に係る計測装置では、リターダ及び検光子の回転比は、光強度情報 の解析手法にあわせて選択することができる。すなわち、変調光の光強度情報は、 変調光を解析処理して得ることができるが、現在、光強度情報の解析手法として、フ 一リエ解析法などの種々の手法が知られており、解析手法によって解析に適するデ ータが異なることがある。そのため、本発明では、リターダ及び検光子の回転比を、選 択する解析手法に適したデータを取得することが可能になるように設定してもよい。
[0023] なお、本発明に係る計測装置は、光源と受光部とを含み、光源と受光部とを結ぶ光 路上に変調部が配置された光学系を含んだ構成をなしていてもよい。このとき、光学 系は、光路上であって光源と変調部との間に配置された試料を含んでいてもよい。そ して、計測装置は、試料の光学特性要素 (複屈折位相差、主軸方位、旋光性、ある いは、スト一タスパラメータ、ミュラー行列要素、ジヨーンズ行列要素など)を計測する 計測装置として構成されて!ヽてもよ!ヽ。試料に入射される入射光の偏光状態を調整 することで、これらの光学特性要素を算出することが可能になる。
[0024] (5)本発明に係る計測装置は、
分析の対象である分析対象光の偏光状態を計測する計測装置であって、 リターダ及び検光子を含み、前記リターダ及び前記検光子が所与の回転比で回転 する変調部で前記分析対象光を変調させることによって得られる変調光の光強度情 報を取得する光強度情報取得部と、
前記変調光の光強度情報に基づいて前記分析対象光の偏光特性要素を算出す る演算処理を行う演算処理部と、
を含み、
前記変調光は、 前記分析対象光が、前記リターダを透過し、その後、前記検光子を透過した光であ り、
前記光強度情報取得部は、
連続的に強度が変化する前記変調光の前記光強度情報をアナログ情報として取 得し、
前記演算処理部は、
前記分析対象光の前記偏光特性要素及び前記変調部の主軸方位条件を反映し た前記変調光の光強度の理論式と、前記変調光の光強度情報とに基づいて、前記 偏光特性要素を算出する処理を行う。
[0025] 本発明に係る計測装置では、光強度情報取得部で取得される変調光の光強度の 理論式は、分析対象光の偏光特性要素及び変調部の主軸方位条件を反映して ヽる 。そのため、変調光の光強度の理論式と実測値とを対応させることによって、分析対 象光の偏光特性要素を算出することが可能になる。
[0026] すなわち、本発明によると、分析の対象である分析対象光の偏光状態を、分析対 象光の波長毎に位相子を取り替えることなぐ高精度に分析することが可能な計測装 置を提供することが可能になる。
[0027] なお、本発明に係る計測装置では、リターダ及び検光子の回転比は、光強度情報 の解析手法にあわせて選択することができる。すなわち、変調光の光強度情報は、 変調光を解析処理して得ることができるが、現在、光強度情報の解析手法として、フ 一リエ解析法などの種々の手法が知られており、解析手法によって解析に適するデ ータが異なることがある。そのため、本発明では、リターダ及び検光子の回転比を、選 択する解析手法に適したデータを取得することが可能になるように設定してもよい。
[0028] (6)この計測装置において、
前記光強度情報取得部は、
前記リターダ及び前記検光子が、回転比が 1対 3になるように回転する前記変調部 で前記分析対象光を変調させることによって得られる変調光の光強度情報を取得し てもよい。
[0029] (7)この計測装置において、 前記演算処理部は、
前記光強度情報取得部で取得された光強度情報を解析処理して得られる複数の ピークスぺ外ルと、前記理論式とに基づいて、前記偏光特性要素を算出する処理を 行ってもよい。
[0030] このとき、光強度情報を解析する手法として、例えば DFTや FFTを利用することが できる。
[0031] (8)この計測装置において、
前記演算処理部は、
前記偏光特性要素を算出する処理に先立って、前記分析対象光に変えて所定の 偏光状態を示すサンプル光を前記変調部で変調させることによって得られる変調光 の光強度情報と前記変調光の理論式とに基づいて前記リタ一ダの複屈折位相差を 算出する、複屈折位相差算出処理を行い、
前記複屈折位相差算出処理によって算出された前記リタ一ダの複屈折位相差に 基づ ヽて前記偏光特性要素を算出する処理を行ってもょ ヽ。
[0032] この計測装置を利用すれば、リタ一ダの複屈折位相差を算出することができる。そ のため、リタ一ダの複屈折位相差を予め算出しておいて、この値を利用して偏光特 性要素を算出する処理を行えば、演算処理速度を高めることができる。
[0033] (9)この計測装置において、
前記演算処理部は、前記分析対象光のスト一タスパラメータを算出してもよい。
[0034] (10)この計測装置において、
前記演算処理部は、前記分析対象光の楕円率及び主軸方位の少なくとも一方を 算出してもよい。
[0035] (11)この計測装置において、
前記リターダ及び前記検光子を回転駆動させる第 1及び第 2のァクチユエータと、 前記リターダ及び前記検光子の主軸方位を検出する第 1及び第 2の検出部と、 前記第 1及び第 2のァクチユエータの動作を制御する制御信号を生成する制御信 号生成部と、
をさらに含み、 前記制御信号生成部は、前記第 1及び第 2の検出部力 の検出信号に基づいて、 前記制御信号を生成してもよ!/、。
[0036] (12)本発明に係る計測方法は、
分析の対象である分析対象光の偏光状態を計測する計測方法であって、 回転可能に構成されたリターダ及び検光子を含む変調部で前記分析対象光を変 調させることによって得られる変調光の光強度情報を取得する光強度情報取得手順 と、
前記変調光の光強度情報に基づいて前記分析対象光の偏光特性要素を算出す る演算処理を行う演算処理手順と、
を含み、
前記変調光は、
前記分析対象光が、前記リターダを透過し、その後、前記検光子を透過した光であ り、
前記光強度情報取得手順では、
前記リターダの主軸方位と前記検光子の主軸方位とが所与の関係を満たし、かつ 、前記リターダ及び前記検光子の主軸方位の少なくとも一方が異なる第 1〜第 N (N は 2以上の整数)の主軸方位条件に設定された前記変調部で前記分析対象光を変 調させることによって得られる、第 1〜第 Nの変調光の光強度情報を取得し、 前記演算処理手順では、
前記分析対象光の偏光特性要素及び前記変調部の主軸方位条件を反映した前 記第 1〜第 Nの変調光の光強度の理論式と、前記第 1〜第 Nの変調光の光強度情 報とに基づいて、前記偏光特性要素を算出する処理を行う。
[0037] 本発明に係る計測方法では、光強度情報取得部で取得される変調光の光強度の 理論式は、分析対象光の偏光特性要素及び変調部の主軸方位条件を反映して ヽる 。そのため、変調光の光強度の理論式と実測値とを対応させることによって、分析対 象光の偏光特性要素を算出することが可能になる。
[0038] すなわち、本発明によると、分析の対象である分析対象光の偏光状態を、分析対 象光の波長毎に位相子を取り替えることなぐ高精度に分析することが可能な計測方 法を提供することが可能になる。
[0039] なお、変調光の光強度情報は、変調光を解析処理して得ることができる。そして、 変調部が満たすべき第 1〜第 Nの主軸方位条件は、光強度情報の解析手法にあわ せて選択することができる。現在、光強度情報の解析手法として、フーリエ解析法な どの種々の手法が知られている力 解析手法によって、解析に適するデータが異な ることがある。そのため、本発明では、第 1〜第 Nの主軸方位条件を、選択する解析 手法に適したデータを取得することが可能な設定としてもよい。
[0040] ただし、リターダ及び検光子の主軸方位を 0 , Θ とおくと、 θ , Θ は、 20 -2Θ
1 2 1 2 1
≠0、力、つ、 4Θ -2Θ ≠0、力、つ、 2Θ -2Θ ≠4Θ -2Θ ≠2Θ という条件を
2 1 2 1 2 1 2 2
満たしていてもよい。これによると、フーリエ解析処理により、スト一タスパラメータのす ベての要素を算出することが可能になる。
[0041] (13)この計測方法において、
前記リターダ及び前記検光子の主軸方位を、それぞれ、 θ , Θ
1 2とおくと、 前記変調部の第 Κの主軸方位条件 (Κは 1〜Νの各整数)は、
(θ , Θ ) =(180XLXK/N, 180XMXK/N)
1 2 K
(ただし、 L, Mは 1以上の整数で、 L≠M, L≠2M, 2L≠M)
であってもよい。
[0042] 上記のように、リターダ及び検光子の主軸方位を、それぞれ等間隔に設定し、リタ ーダ及び検光子をそれぞれ 180度以上(360度以上)の帯域で変化させることによつ て、データの解析処理 (フーリエ解析処理)による解析精度を高めることができる。
[0043] なお、この計測方法では、例えば、 L = 2、 M = 6、 N = 30としてもよい。また、リタ一 ダ及び検光子の主軸方位は、上記の条件に初期位相を含んだ設定としてもょ ヽ。
[0044] (14)本発明に係る計測方法は、
分析の対象である分析対象光の偏光状態を計測する計測方法であって、 リターダ及び検光子が所与の回転比で回転する変調部で前記分析対象光を変調 させることによって得られる変調光の光強度情報を取得する光強度情報取得手順と 前記変調光の光強度情報とに基づいて前記分析対象光の偏光特性要素を算出す る演算処理を行う演算処理手順と、
を含み、
前記変調光は、
前記分析対象光が、前記リターダを透過し、その後、前記検光子を透過した光であ り、
前記光強度情報取得手順では、
連続的に強度が変化する前記変調光の前記光強度情報をアナログ情報として取 得し、
前記演算処理手順では、
前記分析対象光の前記偏光特性要素及び前記変調部の主軸方位条件を反映し た前記変調光の光強度の理論式と、前記変調光の光強度情報とに基づいて、前記 偏光特性要素を算出する処理を行う。
[0045] 本発明に係る計測方法では、光強度情報取得部で取得される変調光の光強度の 理論式は、分析対象光の偏光特性要素及び変調部の主軸方位条件を反映して ヽる 。そのため、変調光の光強度の理論式と実測値とを対応させることによって、分析対 象光の偏光特性要素を算出することが可能になる。
[0046] すなわち、本発明によると、分析の対象である分析対象光の偏光状態を、分析対 象光の波長毎に位相子を取り替えることなぐ高精度に分析することが可能な計測方 法を提供することが可能になる。
[0047] なお、本発明に係る計測方法では、リターダ及び検光子の回転比は、光強度情報 の解析手法にあわせて選択することができる。すなわち、変調光の光強度情報は、 変調光を解析処理して得ることができるが、現在、光強度情報の解析手法として、フ 一リエ解析法などの種々の手法が知られており、解析手法によって解析に適するデ ータが異なることがある。そのため、本発明では、リターダ及び検光子の回転比を、選 択する解析手法に適したデータを取得することが可能になるように設定してもよい。
[0048] (15)この計測方法において、
前記光強度情報取得手順では、
前記リターダ及び前記検光子の回転比が 1対 3になるように回転する前記変調部で 前記分析対象光を変調させることによって得られる変調光の光強度情報を取得して ちょい。
[0049] (16)この計測方法において、
前記演算処理手順では、
前記光強度情報取得手順で取得された光強度情報を解析処理して得られる複数 のピークスペクトルと、前記理論式とに基づいて、前記偏光特性要素を算出する処理 を行ってもよい。
[0050] (17)この計測方法において、
前記偏光特性要素を算出する処理に先立って、前記分析対象光に変えて所定の 偏光状態を示すサンプル光を前記変調部で変調させることによって得られる変調光 の光強度情報を取得し、前記光強度情報と前記変調光の理論式とに基づいて前記 リタ一ダの複屈折位相差を算出する、複屈折位相差算出処理手順をさらに含み、 前記演算処理手順では、
前記複屈折位相差算出処理手順で算出された前記リタ一ダの複屈折位相差に基 づ ヽて前記偏光特性要素を算出する処理を行ってもょ ヽ。
[0051] この計測方法によれば、リタ一ダの複屈折位相差を算出することができる。そのた め、リタ一ダの複屈折位相差を予め算出しておいて、この値を利用して偏光特性要 素を算出する処理を行えば、演算処理速度を高めることができる。
図面の簡単な説明
[0052] [図 1]図 1は、本発明の実施の形態に係る計測装置を説明するための図である。
[図 2]図 2は、本発明の実施の形態に係る計測装置を説明するための図である。
[図 3]図 3は、演算処理システムの機能ブロックの一例を示す図である。
[図 4]図 4は、光強度情報取得手順を説明するためのフローチャート図である。
[図 5]図 5は、偏光特性要素算出手順を説明するためのフローチャート図である。
[図 6]図 6は、光強度情報の一例を示す図である。
[図 7A]図 7Aは、光強度情報の一例を示す図である。
[図 7B]図 7Bは、光強度情報の一例を示す図である。
[図 8]図 8は、検証実験について説明するための図である。 [図 9]図 9は、検証実験について説明するための図である。
[図 10A]図 10Aは、検証実験について説明するための図である。
[図 10B]図 10Bは、検証実験について説明するための図である。
[図 10C]図 10Cは、検証実験について説明するための図である。
[図 11A]図 11Aは、検証実験について説明するための図である。
[図 11B]図 11Bは、検証実験について説明するための図である。
[図 11C]図 11Cは、検証実験について説明するための図である。
[図 12]図 12は、検証実験について説明するための図である。
[図 13]図 13は、検証実験について説明するための図である。
[図 14]図 14は、検証実験について説明するための図である。
[図 15A]図 15Aは、円偏光フィルムの視野角特性評価の結果を示す図である。
[図 15B]図 15Bは、円偏光フィルムの視野角特性評価の結果を示す図である。
[図 15C]図 15Cは、円偏光フィルムの視野角特性評価の結果を示す図である。
[図 15D]図 15Dは、円偏光フィルムの視野角特性評価の結果を示す図である。 発明を実施するための最良の形態
[0053] 以下、本発明の実施の形態を、図面を参照しながら説明する。なお、以下に説明 する実施の形態は、本発明の一例であり、本発明がこれに限定されるものではない。 また、本発明は、以下の内容を自由に組み合わせたものを含むものとする。
[0054] 以下、本発明を適用した実施の形態に係る計測装置として、試料 100から出射した 光 (分析対象光)の偏光状態を計測する計測装置 1について説明する。なお、本発 明に適用可能な試料 100の性質は特に限定されな 、。
[0055] (1)装置構成
図 1及び図 2は、計測装置 1の装置構成を説明するための図である。なお、図 1は、 本発明(計測装置 1)に適用可能な光学系 10を模式的に示す図であり、図 2は、計測 装置 1の構成を説明するためのブロック図である。
[0056] 計測装置 1は、光学系 10と、光強度情報取得部 30と、演算処理部 50とを含む。光 強度情報取得部 30では、変調部 20で分析対象光 (試料 100によって変調した光)を 変調させることによって得られる変調光の光強度情報を取得する。すなわち、計測装 置 1では、光強度情報取得部 30は、光源 12から出射され、光学系 10に含まれる光 学素子及び試料 100によって変調された光 (変調光)の光強度情報を取得する。ま た、計測装置 1では、演算処理部 50は、変調光の光強度の理論式と、変調光の光強 度情報とに基づいて、試料 100によって変調した光 (分析対象光)の光学特性要素 を算出する処理を行う。なお、試料 100は、光を透過させる物質であってもよぐ光を 反射させる物質であってもよ 、。
[0057] 以下、計測装置 1の装置構成について説明する。
[0058] 1 1 :光学系 10
光学系 10は、光源 12と受光部 14とを含む。光学系 10は、また、光源 12と受光部 1 4とを結ぶ光路 L上に設けられた、リターダ 22、検光子 24を含む。リターダ 22及び検 光子 24は、試料 100から出射された光 (分析対象光)を変調させる光学素子である。 すなわち、リターダ 22及び検光子 24は、光路 Lにおける、試料 100の下流側に配置 される。リターダ 22と検光子 24とをあわせて、変調部 20と呼ぶことができる。以下、光 学系 10の各要素にっ 、て説明する。
[0059] 光学系 10は、光源 12を含む。光源 12は、光を発生し、出射する装置である。本実 施の形態では、光源 12として、所与の波長 (波数)帯域成分を含む光を出射する装 置を利用してもよい。例えば、光源 12として、ハロゲンランプなどの白色光源を使用 してもよい。光源 12は、あるいは、所与の波長(波数)の光を出射する光源であっても よい。このとき、光源 12は、単色光を出射する発光装置であるといえる。光源 12とし て、レーザーや SLDなどを利用してもよい。なお、光源 12は、出射する光の波長(波 数)を変更することが可能な構成をなして 、てもよ 、。
[0060] 光学系 10は、リターダ 22を含む。リターダ 22は、透過する光の波長によってその複 屈折位相差の大きさが異なる光学素子である。従って、リターダ 22を透過した光は、 その波長によって偏光状態が変化することになる。なお、計測装置 1では、リターダ 2 2 (変調部 20)に入射する光を、分析対象光と称してもよい。試料 100とリターダ 22と の間に光学素子を配置しない場合には、試料 100から出射した光を指して、分析対 象光と称してもよい。また、本発明では、リターダ 22として、 0次のリターダを利用する [0061] 光学系 10は、検光子 24を含む。検光子 24は、リターダ 22を透過した光(リターダ 2 2から出射した光)を直線偏光とする出射側の偏光子である。そして、光学系 10では 、検光子 24を透過した光 (検光子 24から出射された光)が、受光部 14に入射する。
[0062] 本発明では、リターダ 22と検光子 24とをあわせて、変調部 20と称する。そして、リタ ーダ 22及び検光子 24は、主軸方位が変更可能に構成されてなる。リターダ 22及び 検光子 24は、回転させることによって、主軸方位を変更することができるように構成さ れていてもよい。そして、計測装置 1では、分析対象光を変調部 20で変調させること によって得られる光を、変調光と称する。
[0063] 光学系 10は、受光部 14を含む。受光部 14は、分析対象光を変調部 20で変調さ せることによって得られる光 (変調光)を受光するように構成されて 、てもよ 、。受光部 14として、例えば、 CCDを禾 IJ用してもよい。
[0064] 分析対象光 (試料 100によって変調された光)が所与の帯域成分を含む光である 場合、受光部 14は、分光器と、複数の受光素子とを含んでいてもよい。分析対象光 が所与の帯域成分を含む光である場合には、受光部 14に入射する変調光も帯域成 分を含む光となる。このときに、分光器によって変調光を波長毎に分光し、それぞれ の受光素子で各波長の光の強度を計測すれば、複数の波長帯における変調光の光 強度を、同時に計測することができる。
[0065] なお、分光器とは、所与の帯域成分を含む光 (例えば白色光)を、波長毎に分光す る光学装置 (光学素子)である。分光器として、例えば、プリズムや回折格子を利用す ることができる。また、受光素子は、入射した光を例えば光電変換することによって、 入射光の強度を測定する光学装置 (光学素子)である。
[0066] 光学系 10は、また、光路 L上に設けられた偏光子 28を含んでいてもよい(図 2参照 )。偏光子 28は、光路 Lにおける、試料 100の上流側に配置される。すなわち、光学 系 10〖こよると、光源 12から出射された光を、偏光子 28を介して試料 100に入射させ 、試料 100によって変調された光を、リターダ 22及び検光子 24 (変調部 20)を介して 受光部 14に入射させるように構成されてなる。すなわち、光源 12から出射された光を 偏光子 28及び試料 100によって変調させた光が、計測装置 1における分析対象光と なる。 [0067] なお、本実施の形態に係る計測装置 1は、変調部 20 (リターダ 22)に入射する光( 分析対象光)の偏光状態を計測する装置である。そのため、光路 Lにおける変調部 2 0よりも上流側の構成は、特に限定されるものではない。例えば、計測装置 1では、偏 光子 28を含まな 、光学系を利用してもょ 、(図 1参照)。
[0068] 1 - 2 :光強度情報取得部 30
光強度情報取得部 30は、変調光の光強度情報を取得する。すなわち、光強度情 報取得部 30は、変調部 20に入射する光 (分析対象光)を変調部 20で変調させること によって得られる光 (変調光)の光強度情報を取得する。なお、光強度情報取得部 3 0で行われる、変調光の光強度情報を取得する処理を、光強度情報取得処理と称し てもよい。光強度情報取得部 30は、受光部 14に入射する光の光強度情報を取得す るように構成されていてもよい。また、受光部 14 (分光器及び受光素子)は、光強度 情報取得部 30の一部を構成して 、てもよ 、。
[0069] 計測装置 1では、光強度情報取得部 30は、リターダ 22の主軸方位と検光子 24の 主軸方位とが所与の関係を満たし、かつ、リターダ 22及び検光子 24の主軸方位の 少なくとも一方が異なる第 1〜第 N (Nは 2以上の整数)の主軸方位条件に設定され た変調部 20で分析対象光を変調させることによって得られる、第 1〜第 Nの変調光( 複数の変調光)の光強度情報を取得する。
[0070] すなわち、光強度情報取得部 30では、第 1〜第 N (Nは 2以上の整数)の光強度情 報、すなわち、 N個の光強度情報を取得する。ここで、第 1〜第 Nの光強度情報は、 それぞれ、第 1〜第 Nの主軸方位条件に設定された変調部 20によって変調された変 調光の光強度である。そして、第 1〜第 Nの主軸方位条件とは、相互に、光学素子 (リ ターダ 22及び検光子 24)の少なくとも 1つの主軸方位設定が異なっている。また、第 1〜第 Nの主軸方位条件では、リターダ 22の主軸方位と検光子 24の主軸方位とは、 所定の関係を満たしている。
[0071] なお、リターダ 22の主軸方位を 0 と、検光子 24との主軸方位を 0 とそれぞれおく
1 2
と、第 Kの主軸方位条件は、( 0 、 Θ ) = (180 X L XKZN、 180 X M XKZN)で
1 2 K
あってもよい。ただし、 L, Mは 1以上の整数であり、 L≠Mを満たす。なお、 L, Mは、 偶数であってもよい。また、 Mは Lの奇数倍 (Lは Mの奇数倍)であってもよい。例えば 、L= 2、M = 6、N = 30としてもよい。 Θ 及び 0 をそれぞれ等間隔に設定し、リタ
1 2 一 ダ 22及び検光子 24をそれぞれ 180度以上(360度以上)の帯域で変化させることに よって、データの解析処理 (フーリエ解析処理)による解析精度を高めることができる
[0072] ただし、本発明では、変調部 20は、必ずしも上述の主軸方位条件を満たして!/、る 必要はない。すなわち、本発明では、既に公知となっているいずれかの解析手法を 適用することができるため、選択した解析手法に適したデータを取得することが可能 な、いずれかの主軸方位条件で光強度情報を取得してもよい。あるいは、上述の主 軸方位条件に初期位相を考慮して、リターダ 22の主軸方位と検光子 24の主軸方位 とを決定してもよい。
[0073] そして、光強度情報取得部 30で取得された複数の光強度情報は、記憶装置 40に 格納されてもよい。記憶装置 40は、変調部 20 (リターダ 22及び検光子 24)の主軸方 位情報 (第 1〜第 Νの主軸方位条件)と、第 1〜第 Νの光強度情報とを対応付けて格 納してもよい。そして、記憶装置 40に格納された光強度情報に基づいて、演算処理 部 50が、分析対象光の偏光状態を計測する処理を行う。
[0074] なお、計測装置 1では、光強度情報取得部 30で、リターダ 22の主軸方位と検光子 24の主軸方位とが所与の関係を満たし、かつ、リターダ 22及び検光子 24の少なくと も一方の主軸方位が異なる変調部 20で分析対象光を変調させることによって得られ る複数の変調光の光強度情報を取得すると言ってもょ 、。
[0075] すなわち、光強度情報取得部 30では、複数の変調光の光強度情報を取得する。
そして、当該複数の変調光とは、それぞれ、分析対象光を、光学素子 (リターダ 22及 び検光子 24)の少なくとも一方の主軸方位の設定が異なる変調部 20で変調させるこ とによって得られる光である。また、複数の変調光とは、それぞれ、分析対象光を、リ ターダ 22の主軸方位と検光子 24の主軸方位とが所与の関係を満たす変調部 20で 変調させることによって得られる光であるといえる。
[0076] 1 3 :演算処理部 50
演算処理部 50は、分析対象光の偏光状態を計測する演算処理を行う。演算処理 部 50は、変調光の光強度の理論式と、変調光の光強度情報とに基づいて、分析対 象光の偏光特性要素を算出する処理 (偏光特性要素算出処理)を行い、分析対象 光の偏光状態を計測する。後で詳述するが、変調光の光強度の理論式は、分析対 象光の偏光状態を示すパラメータを含んでいる。そのため、変調光の光強度の理論 式と、変調光の光強度情報とを利用すれば、分析対象光の偏光状態を示すパラメ一 タ (偏光特性要素)を算出することが可能になる。そして、分析対象光の偏光特性要 素を算出すれば、分析対象光の偏光状態を計測することができる。
[0077] 1 4 :駆動'検出部
計測装置 1は、第 1及び第 2の駆動'検出部 62, 64をさらに含んでいてもよい。駆 動'検出部のうち、駆動部は、光学系を構成する光学素子の主軸方位を可変設定す る了クチユエータである。また、検出部は、光学素子の主軸方位を検出するセンサで ある。計測装置 1では、第 1の駆動 ·検出部 62は、リターダ 22を回転駆動させ、リタ一 ダ 22の主軸方位を検出する。また、第 2の駆動 ·検出部 64は、検光子 24を回転駆動 し、検光子 24の主軸方位を検出する。
[0078] そして、計測装置 1は、第 1及び第 2の駆動 ·検出部 62, 64の動作を制御する制御 信号生成部 65をさらに含んでいてもよい。例えば、制御信号生成部 65は、第 1及び 第 2の駆動 ·検出部 62, 64からの検出信号に基づいて制御信号を生成し、第 1及び 第 2の駆動 ·検出部 62, 64の動作を制御するように構成されて 、てもよ 、。
[0079] 1 5 :制御装置 70
計測装置 1は、制御装置 70を含んでいてもよい。制御装置 70は、計測装置 1の動 作を統括制御する機能を有していてもよい。すなわち、制御装置 70は、第 1及び第 2 の駆動'検出部 62, 64を制御して光学素子の主軸方位を設定し、光源 12の発光動 作を制御し、そして、光強度情報取得部 30及び演算処理部 50の動作を制御しても よい。
[0080] 制御装置 70は、記憶装置 40及び演算処理部 50を含んで 、てもよ 、。なお、記憶 装置 40は、種々のデータを一時記憶する機能を有する。記憶装置 40は、例えば、 変調光の光強度情報を、リターダ 22及び検光子 24の主軸方位情報と対応付けて記 憶してもよい。そして、演算処理部 50は、記憶装置 40に格納された光強度情報に基 づいて、分析対象光の偏光特性要素を算出する処理を行ってもよい。制御装置 70 は、また、制御信号生成部 65を含んでいてもよい。
[0081] なお、計測装置 1は、特に制御装置 70 (演算処理部 50)において、コンピュータを 利用した処理が可能である。ここで、コンピュータとは、プロセッサ(処理部: CPU等) 、メモリ (記憶部)、入力装置、及び、出力装置を基本的な構成要素とする物理的装 置(システム)を言う。
[0082] 図 3には、制御装置 70を構成する、演算処理システムの機能ブロックの一例を示す
[0083] 処理部 110は、情報記憶媒体 130に格納されるプログラム (データ)に基づいて本 実施形態の種々の処理を行う。即ち情報記憶媒体 130には、本実施形態の各部とし てコンピュータを機能させるためのプログラム (各部の処理をコンピュータに実行させ るためのプログラム)が記憶される。
[0084] 処理部 110の機能は、各種プロセッサ(CPU、 DSP等)、 ASIC (ゲートアレイ等)な どのハードウェアや、プログラムにより実現できる。
[0085] 記憶部 120は、処理部などのワーク領域となるもので、その機能は RAMなどにより 実現できる。
[0086] 情報記憶媒体 130 (コンピュータにより読み取り可能な媒体)は、プログラムゃデー タなどを格納するものであり、その機能は、光ディスク (CD、 DVD)、光磁気ディスク( MO)、磁気ディスク、ハードディスク、磁気テープ、或いはメモリ(ROM)などにより実 現できる。計測装置 1では、情報記憶媒体 130に格納されたプログラムに基づいて、 変調部 20 (リターダ 22及び検光子 24)の主軸方位が設定され、光源 12の発光動作 が制御されてもよい。
[0087] (2)偏光特性計測原理
次に、本実施の形態に係る計測装置が採用する、偏光状態を計測する原理 (偏光 特性要素を算出する原理)を説明する。
[0088] 2- 1 :変調光の光強度の理論式
リターダ 22のミュラー行列 Rと、検光子 24のミュラー行列 Aとは、
[数 1] 1 0 0 0
0 1— (1 _ cos ^(^))sin 2λ (1 - cos δ{λ)) sin 2θλ cos 2ΘΧ -sin^(A) sin 2
(1)
0 (1— cos δ{λ)) sin 2θλ cos 2θλ 1— (1— cos δ{λ)) cos 2ί sin ( ) cos 2( j
0 sin δ{λ) sin 2Θ1 - sin δ{λ) cos 2^ cos δ (X)
1 cos2¾ sin26»2 0
cos2( 2 cos22^ cos 26>2 sin 26>2 0
(2) sin W2 cosW2smW2 sin22¾ 0
0 0 0 0 と表すことができる。
[0089] なお、 δ (λ), θ , θ は、リターダ 22の持つ複屈折位相差、リターダ 22の回転角
1 2
(主軸方位)、検光子 24の回転角(主軸方位)である。なお、リターダ 22の複屈折位 相差は波長依存性を有するため、波長 λの関数となる。すなわち、式(1)は、リタ一 ダ 22に波長 λ光が入射した場合の、リターダ 22の複屈折位相差である。
[0090] 試料 100を出射後の光 (分析対象光)の偏光状態 S (スト一タスパラメータ)を、
[数 2] s0W
(3) s3W と表すと、分析対象光を変調部 20で変調させることによって得られる変調光の偏光 状態である S は、
out
[数 3]
S0Ut =A-R-Sm (4) と表すことができる。
[0091] なお、 S における s ( λ )は光強度、 s (λ)は直線偏光成分、 s ( λ )は
in 0 1 2
45度偏光成分、 s (λ)は円偏光成分のベクトル量を表す。そして、 S における s (
3 out 0, λ)は、受光部 14に入射する光 (変調光)の光強度成分である。変調光の光 強度 Ι(λ , θ , Θ )は、式 (4)から、
1 2
[数 4] Ι(λ,θΑ) = ^^-l ¾ ) + (A)cos2^^cos W2 + 52( l)cos2 ^^sin 2Θ2
- s3 (A) sin δ{λ) sin(2 -2Θ2) + st (λ) sin 2 cos(45>,― 2Θ2 )
+ s2 (λ) sin2 ^-sm( 01― 2Θ2 (5) と表すことができる。なお、式 (5)に表れる I ( λ )は、光強度の比例定数である。
0
[0092] ところで、光強度 1(え, Θ , Θ )のバイアス成分及び、 cos20 , sin2 Θ sin
1 2 2 2,
(2Θ -2 Θ ), cos(40 -2 Θ ), sin(49 -2 θ )における振幅成分は、式(5)よ
1 2 1 2 1 2
[数 5]
(6 a),
/"つ、 ( ) ,つ、 2
2θτ ) = "Ji (ス) COS (6 b),
/つ、 ( ) /つ、 · 2
α θι-2θ2 W =— ^(^sin -^— (6 c),
, 、 ) ,ハ 2 δ{λ)
b2e2U) = ^—s2(A os - (6d),
bWl W =―" J~ s3 (A) sin δ (λ) (6 e),
¾Θ, -ΙΘ2 ( ) = W sin ~ - (6 f), と表すことができる。
[0093] そして、式 (6a)〜式 (6f)を利用すると、リターダ 22の複屈折位相差 δ (え)は、 [数 6] αΑθί-2θϊ ( ) +わ — ( )
δ{λ) = 2tan" (V) と表すことができる。
[0094] なお、後述するとおり、式 (6a)〜式 (6f)の各左辺は、光強度情報から算出可能で あることから、これらの値を式 (7)に代入することで、複屈折位相差 δ (λ)を算出する ことができる。
[0095] さらに、式 (6a)〜式 (6f)を利用すると、分析対象光のスト一タスパラメータである s
0
(え), S (え), S (え), S ( λ )は、それぞれ、
1 2 3
[数 7] s0W = - a0W (8a) ro ( )
2
2 ( ) + )) (8b)
Figure imgf000024_0001
s2W ゆ 2 2( )—わ — 2 ( )) (8c)
/0( )
Figure imgf000024_0002
と表すことができる。
[0096] 式 (6a)〜式 (6f)の各左辺、及び、リターダ 22の複屈折位相差 δ (λ)が算出可能 であることから、これらの値を式 (8a)〜式 (8d)に代入することで、分析対象光のスト 一タスパラメータの各値も算出可能である。
[0097] そして、分析対象光の楕円率 ε ( λ )と主軸方位 φ ( λ )は、スト一タスパラメータを 用いて、
[数 8] 1
tan — arctan j
(9a)
2 I 2 , 2
V i 1 s X)
(λ) =—arctan— (9b)
2 Sl(X) と表すことができる。
[0098] 以上のことから、本発明が採用する原理によると、波長 λの分析対象光の偏光特 性要素を算出することができ、波長えの分析対象光の偏光特性 (偏光状態)を計測 することができることがゎカゝる。すなわち、複屈折位相差に波長依存性が表れるリタ ーダを利用した場合でも、分析対象光の全波長における偏光特性計測を行うことが 可能であることがわかる。
[0099] 2— 2:実測値の利用
式(6a)〜式(6f)の左辺が示す、 a (え)、 a (λ), a ( λ )、及び、 b (λ)
0 2Θ2 401—202 2Θ2
, b (λ), b ( λ )は、光強度のバイアス成分、 cos成分、及び、 sin成分を
201—202 401—202
示している。つまり、フーリエ係数である。そのため、これらの係数は、
[数 9]
«o ) = ^l Ι(Λ,Θい θ2)άθ (10)
αη(Α) =— I(A,0l,02)cos(n0)d0 (11)
„( )=丄丄
Figure imgf000025_0001
(12) 力ら算出することができる。すなわち、式(6a)〜式(6f)の左辺に現れる、 a (
0 え)、 a (え), a (え)、及び、 b (λ), b (λ), b ( λ )は、光
2Θ2 401—202 2Θ2 201—202 401—202
強度情報 (光強度の実測値)を利用して、数値としてその値を算出することができる。
[0100] そして、これらの値を利用すると、式(7)、及び、式(8a)〜式(8d)から、スト タス ノ ラメータの各値を算出することができる。 [0101] そして、スト一タスパラメータの各値を利用すると、式(9a)及び式(9b)から、楕円率 及び主軸方位を数値として算出することができる。
[0102] 2-3:リターダ 22及び検光子 24が満たすべき主軸方位条件
先に説明したように、変調光の光強度の理論式は式 (5)で表すことができるが、リタ ーダ 22の主軸方位 Θ と、検光子 24の主軸方位 Θ の設定いかんによっては、すべ
1 2
てのスト一タスパラメータ s (λ), s (λ), s (λ), s (λ)を算出できない事態が発生
0 1 2 3
しうる。
[0103] 例えば、リターダ 22の主軸方位と検光子 24の主軸方位とが 20 -2Θ =0の関係
1 2 を満たす変調部によって変調された光の光強度の理論式では、式(5)の第 4項は 0 になり、得られた光強度を解析処理しても s (λ)を測定することができなくなる。すな
3
わち、 s (λ)を測定するためには、リターダ 22の主軸方位と検光子 24の主軸方位と
3
は、 20 -2Θ ≠0という条件を満たしている必要がある。
1 2
[0104] 同様に考えると、すべてのスト一タスパラメータを算出するためには、リターダ 22の 主軸方位と検光子 24の主軸方位とが、 20 -2Θ ≠0、力、つ、 40 -2Θ ≠0、力、
1 2 1 2 つ、 20 -2Θ ≠4Θ -2Θ ≠2Θ を満たしている必要がある。
1 2 1 2 2
[0105] すなわち、リターダ 22の主軸方位と検光子 24の主軸方位とが上記の関係を満たし ている場合には、すべてのスト一タスパラメータを算出することができる。そのため、効 率のよい計測が可能になる。
[0106] 具体的には、光強度情報取得部 30では、リターダ 22の主軸方位 Θ と検光子 24の 主軸方位 Θ とが、 3Θ = θ の関係を満たす変調部 20によって分析対象光を変調
2 1 2
させ、それによつて得られる変調光の光強度情報を取得してもよい。これによると、リ ターダ 22と検光子 24とが上記の条件を満たすことができるため、すべてのスト一タス ノ ラメータを算出することが可能になる。
[0107] 例えば、リターダ 22と検光子 24とを、回転比が 1:3になるように回転させて、一定の 期間毎に光強度情報を取得してもよい。これにより、すべてのスト一タスパラメータを 算出可能な光強度情報を、効率よく取得することができる。
[0108] (3)計測手順
次に、本実施の形態に係る計測装置による偏光状態の計測手順について説明す る。
[0109] 図 4及び図 5は、本実施の形態に係る計測装置の動作フローチャートを示す。
[0110] 3- 1 :光強度情報取得手順
図 4は、光強度情報取得手順のフローチャートである。
[0111] 光強度情報取得手順では、まず、リターダ 22及び検光子 24 (変調部 20)の主軸方 位を設定する (ステップ S 10)。
[0112] この状態で、光源 12から光を出射し、光学素子及び試料 100によって変調された 光 (変調光)を、受光部 14で受光する。そして、光強度情報取得部 30で、受光部 14 が受光した光 (変調光)の光強度情報を取得する (ステップ S 12)。
[0113] なお、光強度情報取得手順では、複数の変調光の光強度情報 (第 1〜第 Nの変調 光の光強度情報)を取得する。ここで、第 1〜第 Nの変調光は、第 1〜第 Nの主軸方 位条件に設定された変調部 20で分析対象光を変調させることによって得られる測定 光である。すなわち、光強度情報取得手順では、上記のステップ S 10及びステップ S 12を、光学素子の主軸方位設定を変更して複数回行う。
[0114] 詳しくは、計測装置 1では、はじめに、光学素子の主軸方位を第 1の条件に設定し て、第 1の光強度情報を取得する。そして、上述の記憶装置 40に、第 1の条件 (主軸 方位情報)と第 1の光強度情報とを対応付けして格納する。続いて、光学素子の主軸 方位を第 2の条件に設定 (変更)して、第 2の光強度情報を取得し、記憶装置 40で、 第 2の条件と第 2の光強度情報とを対応付けして格納する。以下、この動作を繰り返 し、 N個の主軸方位情報と、 N個の光強度情報を取得し、それぞれを対応させて、記 憶装置 40に格納してもよ 、。
[0115] なお、光学系の光学素子の主軸方位は、制御信号生成部 65により、駆動'検出部 62, 64のァクチユエータを動作させて設定 (変更)してもよい。また、光学系の光学素 子の主軸方位情報は、検出部で検出してもよぐ予めプログラムされた情報に従って ちょい。
[0116] 3— 2 :演算処理手順
図 5は、演算処理手順のフローチャートである。演算処理手順では、光強度情報取 得手順で取得された変調光の光強度情報と、変調光の理論式とに基づいて、分析 対象光の偏光特性要素を算出する。
[0117] 演算処理手順では、まず、式(10)〜式(12)に基づいて、 a (え)、 a (λ), a
0 2Θ2 4Θ 1-
(λ)、及び、 b (λ), b (λ), b (λ)の各値を算出する (ステップ S
202 202 201—202 401—202
20)。
[0118] 次に、式(7)及び式 (8a)〜式 (8d)に基づいて、リターダ 22の複屈折位相差 δ (λ )と、分析対象光のスト一タスパラメータ s (λ), s (λ), s (λ), s (ぇ)を算出する(
0 1 2 3
ステップ S22)。
[0119] そして、分析対象光のスト一タスパラメータの各値を利用して、式(9a)及び式(9b) に基づいて、分析対象光の楕円率 ε (λ)及び主軸方位 φ (λ)を算出する (ステツ プ S24)。
[0120] 以上の手順によって、分析対象光の偏光特性要素である楕円率と主軸方位を算出 することができ、分析対象光の偏光状態を計測することができる。
[0121] (4)リターダ 22の複屈折位相差 δ (λ)について
上述したように、計測装置 1によると、複屈折位相差が未知のリターダを利用した場 合であっても、式 (7)からリターダ 22の複屈折位相差 δ (λ)を算出することができる ため、これを用いて分析対象光のスト一タスパラメータを算出することができる。
[0122] ところが、分析対象光のスト一タスパラメータ力 S ={s (λ), s (λ), s (λ), s ( in 0 1 2 3 λ)} = {1, O, 0, 1}になる場合には、式 (7)を用いて複屈折位相差 δ U)を算出す ることができなくなる。この事態を避けるため、リターダ 22の複屈折位相差 δ (λ)を 予め算出し、キャリブレーションデータを取得し、この値を利用して計測を行ってもよ い。
[0123] 具体的には、分析対象光に変えて、スト一タスパラメータカ 1, 0, 0, 1}ではない サンプル光を変調部 20に入射させて光強度情報取得処理を行 ヽ、取得された光強 度情報と、光強度の理論式 (式 (7)参照)とに基づ 、て、複屈折位相差 δ ( λ )を、キ ヤリブレーシヨンデータとして算出する処理を行ってもよい。そして、本手順によつて 算出された複屈折位相差 δ ( λ )を記憶装置 40に格納し、記憶装置 40に格納され た複屈折位相差 δ (λ)を利用して、上述した偏光特性要素を算出する処理を行つ てもよい。 [0124] なお、複屈折位相差 δ ( λ )は、リターダ 22に固有の値となるため、これは一度算出 し、記憶装置 40に格納することで、以降、複屈折位相差 δ ( λ )を算出する作業を行 う必要がなくなり、演算効率を高めることができる。
[0125] (5)変形例
以下、本発明を適用した実施の形態の変形例に係る計測装置について説明する。 なお、本実施の形態でも、既に説明した内容を可能な限り適用するものとする。
[0126] 本実施の形態に係る計測装置では、光強度情報取得部 30は、リターダ 22及び検 光子 24が所与の回転比で回転する変調部 20で分析対象光を変調させることによつ て得られる変調光の光強度情報を取得する。これによると、光強度情報取得部 30は 、図 6に示すように、連続的に強度が変化する変調光の光強度情報をアナログ情報 として取得することができる。
[0127] 図 6に示すように、光強度は周期を持つ関数ととらえることができる。そのため、これ を解析処理 (例えばフーリエ解析処理)すると、図 7に示すように、ピークスペクトルを 抽出することができる。これらのピークスペクトルを、光強度の理論式 (上述した式 (6a )〜式(6f)の左辺)に対応させれば、式(8a)〜式(8d)に基づ 、て、分析対象光のス トークスパラメータを算出することができる。
[0128] (6)検証結果
本発明の計測原理及びその精度を確認するために検証実験を行った。以下、その 結果を示す。
[0129] はじめに、 633nmのヘリウムネオンレーザを用いた単波長計測を行った。本実験 では、図 8に示すように、ヘリウムネオンレーザの光源 82とパワーメータ 84 (受光部 1 4及び光強度情報取得部 30)との間に、偏光子 86と、リターダ 22及び検光子 24を配 置した。なお、偏光子 86の主軸方位は 0度に設定した。また、リターダ 22は、 12度お きに回転させ、リターダ 22と検光子 24とを 1対 3の回転比で回転させた。なお、リタ一 ダ 22として、 633nmのヘリウムネオンレーザの 1Z4波長板を利用した。
[0130] 本実験によると、リターダ 22の複屈折量は 90度、主軸方位は 0. 15度、楕円率 は 0. 1%であった。
[0131] 次に、図 9に示すように、実際に試料を入れて楕円率の計測を行った。なお、本実 験では、試料として、バビネソレイュ補償器 88を利用した。なお、ハビネソレィュ補償 器 88とは、任意に複屈折位相差量を調整することができる光学素子 (装置)である。 図 10A〜図 10Cは、本実験で計測されたスト一タスパラメータ、楕円率、及び、主軸 方位の結果を示す。なお、本実験は、バビネソレイュ補償器 88の主軸方位を、 0度 力も 90度まで、 5度おきに変えて行った。なお、図 10A〜図 10Cの実線及び破線は 理論値であり、プロット点が計測結果である。
[0132] 図 10A〜図 10Cを見ると、スト一タスパラメータと楕円率の結果ともに、理論値と同 等の結果が得られ、試料の複屈折量が 90度付近での計測精度であっても、 0. 3% で得られることがわ力 た。なお、主軸方位の計測結果では、バビネソレイュ補償器 88の回転角 45度付近で、理論値とずれている。このずれは、 99. 7%の円偏光とな つて 、るために起こって!/、るものと思われる。
[0133] 次に、位相子の取替えの必要性について検証するために、リターダを変えて同じ実 験を行った。本実験では、リターダ 22として、波長 457nmの 1Z4波長板を利用した 。なお、波長 457nmの 1Z4波長板は、 633nmの光に対しては、複屈折量が約 65 度である。そのため、リターダの変調量が 90度以外の場合にも計測することが可能か どうかについて判断することができる。この実験結果を、図 11A〜図 11Cに示す。
[0134] 図 11A〜図 11Cを見ると、スト一タスパラメータ、楕円率、及び、主軸方位ともに理 論値と同様の結果が得られた。このことから、本発明によると、リターダ 22の位相変調 量に依存することなく偏光特性を計測することが可能であることを確認することができ る。なお、本実験結果から、波長 457nmの光源を用い、 633nmの 1/4波長板を利 用した場合でも、偏光特性を計測することが可能であるとの予測が立てられる。
[0135] 次に、多波長帯域の光を利用した実験を行った。図 12には、本実験に使用した実 験装置を示す。
[0136] 図 12に示すように、光源 92としてハロゲンランプを利用し、光源 92からの光を光フ アイバー 94に導出させ、コリメートレンズによって平行光を作る。計測試料には、単波 長実験と同様に、バビネソレイュ補償器 88を利用し、リターダ 22として雲母板を利用 した。なお、ハロゲンランプは、 400nm〜800nmの波長域まで広がる白色光源であ る。ハロゲンランプは、一般的に、 400nm〜440nmと 700nm〜800nmの端波長域 で光強度が弱い。このため、測定波長域は、 450ηπ!〜 660nmとした。
[0137] 計測にあたっては、まず、リターダ 22の複屈折位相差を求め、キャリブレーションデ ータを取得する。キャリブレーションデータは、ヘリウムネオンレーザでの計測と同様 に、バビネソレイュ補償器 88を取り除いた実験装置によって、偏光子 86を透過して きた光をリターダ 22 (雲母板)により位相変調させた光強度の波形を解析する。キヤリ ブレーシヨンから得られた雲母板の複屈折分散を図 13に示す。
[0138] 次に、実際に測定試料 (バビネソレイュ補償器 88)を入れて、多波長域での楕円率 の計測を行った。本実験では、バビネソレイュ補償器 88を主軸方位 45度に設置し、 任意の波長で円偏光状態を作る。バビネソレイュ補償器 88の複屈折位相差はマイク 口メータを送ることによって変化させることにより、円偏光状態の波長をシフトさせた。 図 14に、マイクロメータを変化させ、バビネソレイュ補償器の複屈折位相差を変化さ せた結果を示す。リターダ 22は、 12度毎に回転させた。図中のプロット点は、波長 5 nmおきにとっている。
[0139] いずれの結果においても、楕円率は 99%以上の値が得られた。楕円率 100%の 結果を得るためには、バビネソレイュ補償器の設置ゃ検出系の回転をさらに高精度 に行うことで改善されると考察する。
[0140] 本実験結果から、本計測装置によると、多波長域の光を利用した場合でも、リタ一 ダ 22の取替えの必要がなぐ高精度な楕円率計測が可能であることがわかる。
[0141] なお、本発明は、上述の実施の形態に限定されるものではなぐ種々の変形が可 能である。本発明は、実施の形態で説明した構成と実質的に同一の構成 (例えば、 機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。 また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成 を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構 成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形 態で説明した構成に公知技術を付加した構成を含む。
[0142] 例えば、変調部 20 (リターダ 22及び検光子 24)は、手動で、その主軸方位を変更 可能に構成されていてもよい。この場合には、検出部によってその主軸方位情報を 取得し、各種演算処理を行ってもよい。 [0143] また、上記の実施の形態では、ミュラー行列を利用した演算処理にっ 、て説明した 。ただし、本発明は、ジヨーンズ行列を利用した演算処理を行ってもよい。
[0144] また、本発明によると、分析対象光の偏光状態を計測し、明らかにすることができる 。そのため、偏光状態が未知の光に適用し、その偏光状態を計測することができる。 すなわち、測定試料の性質にとらわれることなぐ偏光状態の計測が可能である。す なわち、光学系 10 (光路 L)におけるリターダ 22よりも上流側の構成にとらわれること なぐ偏光状態を計測することができる。
[0145] なお、本発明に係る計測装置 (計測方法)は、試料 100の光学特性要素 (複屈折位 相差、主軸方位、旋光性、あるいは、スト一タスパラメータ、ミュラー行列要素、ジョー ンズ行列要素など)を計測する計測装置 (計測方法)として構成されて!ヽてもよ!ヽ。光 源の性質や、光源と試料 100との間に配置する光学素子を選択することによって、試 料 100の光学特性要素を算出することが可能になる。
[0146] 本発明は、液晶をはじめとする有機高分子材料の評価や新材料の研究開発に利 用することができる。さらに、高分子の配向状態を品質管理などにも応用が可能であ る。これらより得られる知見は新しい材料に非常に有効なものとなる。
[0147] なお、図 15A〜図 15Dに、本発明を用いて円偏光フィルムの視野角特性を評価し た結果を示す。ここで、図 15Aは、視野角分布の表示モデルを表している。そして、 図 15B〜図 15Dは、それぞれ、測定対象 (試料 100)を出射した波長 450nm, 550 nm, 650nmの光 (分析対象光)の楕円率の計測結果を示す図である。なお、各図 におけるグレーレベルは、楕円率の大きさを表している。
[0148] 本発明によると、測定対象を出射した光 (分析対象光)の楕円率の視野角分布を、 図 15B〜図 15Dに示すように検出することができる。
[0149] なお、図 15B〜図 15Dに示す結果から、本実験に利用した測定対象は、波長によ つて楕円率視野角分布が異なっていることがわかる。例えば、図 15Bを見ると、波長 450nmの上下左右の楕円率はほぼ均一であることがわかる。これに対し、図 15Dを 見ると、波長 650nmでは上下方向の楕円率が高ぐ左右方向の楕円率が低くなつて いることがわ力る。
[0150] すなわち、本発明によると、図 15B〜図 15Dに示すように、波長帯毎の、測定対象 の楕円率分布 (分析対象光の偏光状態)を、効率よく正確に計測することができる。

Claims

請求の範囲
[1] 分析の対象である分析対象光の偏光状態を計測する計測装置であって、
回転可能に構成されたリターダ及び検光子を含む、前記分析対象光を変調させる 変調部と、
前記変調部で前記分析対象光を変調させることによって得られる変調光の光強度 情報を取得する光強度情報取得部と、
前記変調光の光強度情報に基づいて前記分析対象光の偏光特性要素を算出す る演算処理を行う演算処理部と、
を含み、
前記変調部は、
前記分析対象光が、前記リターダを透過し、その後、前記検光子を透過するように 構成されてなり、
前記光強度情報取得部は、
前記リターダの主軸方位と前記検光子の主軸方位とが所与の関係を満たし、かつ
、前記リターダ及び前記検光子の主軸方位の少なくとも一方が異なる第 1〜第 N (N は 2以上の整数)の主軸方位条件に設定された前記変調部で前記分析対象光を変 調させることによって得られる、第 1〜第 Nの変調光の光強度情報を取得し、 前記演算処理部は、
前記分析対象光の偏光特性要素及び前記変調部の主軸方位条件を反映した前 記第 1〜第 Nの変調光の光強度の理論式と、前記第 1〜第 Nの変調光の光強度情 報とに基づいて、前記偏光特性要素を算出する処理を行う計測装置。
[2] 分析の対象である分析対象光の偏光状態を計測する計測装置であって、
回転可能に構成されたリターダ及び検光子を含む変調部で前記分析対象光を変 調させることによって得られる変調光の光強度情報を取得する光強度情報取得部と 前記変調光の光強度情報に基づいて前記分析対象光の偏光特性要素を算出す る演算処理を行う演算処理部と、
を含み、 前記変調光は、
前記分析対象光が、前記リターダを透過し、その後、前記検光子を透過した光であ り、
前記光強度情報取得部は、
前記リターダの主軸方位と前記検光子の主軸方位とが所与の関係を満たし、かつ 、前記リターダ及び前記検光子の主軸方位の少なくとも一方が異なる第 1〜第 N (N は 2以上の整数)の主軸方位条件に設定された前記変調部で前記分析対象光を変 調させることによって得られる、第 1〜第 Nの変調光の光強度情報を取得し、 前記演算処理部は、
前記分析対象光の偏光特性要素及び前記変調部の主軸方位条件を反映した前 記第 1〜第 Nの変調光の光強度の理論式と、前記第 1〜第 Nの変調光の光強度情 報とに基づいて、前記偏光特性要素を算出する処理を行う計測装置。
[3] 請求項 1又は請求項 2記載の計測装置にお 、て、
前記リターダ及び前記検光子の主軸方位を、それぞれ、 θ , Θ
1 2とおくと、 前記変調部の第 Kの主軸方位条件 (Kは 1〜Nの各整数)は、
( θ , Θ ) = (180 X L X K/N, 180 X M X K/N)
1 2 K
(ただし、 L, Mは 1以上の整数で、 L≠M, L≠2M, 2L≠M)
である計測装置。
[4] 分析の対象である分析対象光の偏光状態を計測する計測装置であって、
回転可能に構成されたリターダ及び検光子を含む、前記分析対象光を変調させる 変調部と、
前記リターダ及び前記検光子が所与の回転比で回転する前記変調部で前記分析 対象光を変調させることによって得られる変調光の光強度情報を取得する光強度情 報取得部と、
前記変調光の光強度情報に基づいて偏光特性要素を算出する演算処理を行う演 算処理部と、
を含み、
前記変調部は、 前記分析対象光が、前記リターダを透過し、その後、前記検光子を透過するよう〖こ 構成されてなり、
前記光強度情報取得部は、
連続的に強度が変化する前記変調光の光強度情報をアナログ情報として取得し、 前記演算処理部は、
前記分析対象光の前記偏光特性要素及び前記変調部の主軸方位条件を反映し た前記変調光の光強度の理論式と、前記変調光の光強度情報とに基づいて、前記 偏光特性要素を算出する処理を行う計測装置。
[5] 分析の対象である分析対象光の偏光状態を計測する計測装置であって、
リターダ及び検光子を含み、前記リターダ及び前記検光子が所与の回転比で回転 する変調部で前記分析対象光を変調させることによって得られる変調光の光強度情 報を取得する光強度情報取得部と、
前記変調光の光強度情報に基づいて前記分析対象光の偏光特性要素を算出す る演算処理を行う演算処理部と、
を含み、
前記変調光は、
前記分析対象光が、前記リターダを透過し、その後、前記検光子を透過した光であ り、
前記光強度情報取得部は、
連続的に強度が変化する前記変調光の前記光強度情報をアナログ情報として取 得し、
前記演算処理部は、
前記分析対象光の前記偏光特性要素及び前記変調部の主軸方位条件を反映し た前記変調光の光強度の理論式と、前記変調光の光強度情報とに基づいて、前記 偏光特性要素を算出する処理を行う計測装置。
[6] 請求項 1から請求項 5のいずれかに記載の計測装置において、
前記光強度情報取得部は、
前記リターダ及び前記検光子が、回転比が 1対 3になるように回転する前記変調部 で前記分析対象光を変調させることによって得られる変調光の光強度情報を取得す る計測装置。
[7] 請求項 1から請求項 6のいずれかに記載の計測装置において、
前記演算処理部は、
前記光強度情報取得部で取得された光強度情報を解析処理して得られる複数の ピークスぺ外ルと、前記理論式とに基づいて、前記偏光特性要素を算出する処理を 行う計測装置。
[8] 請求項 1から請求項 7のいずれかに記載の計測装置において、
前記演算処理部は、
前記偏光特性要素を算出する処理に先立って、前記分析対象光に変えて所定の 偏光状態を示すサンプル光を前記変調部で変調させることによって得られる変調光 の光強度情報と前記変調光の理論式とに基づいて前記リタ一ダの複屈折位相差を 算出する、複屈折位相差算出処理を行い、
前記複屈折位相差算出処理によって算出された前記リタ一ダの複屈折位相差に 基づいて前記偏光特性要素を算出する処理を行う計測装置。
[9] 請求項 1から請求項 8のいずれかに記載の計測装置において、
前記演算処理部は、前記分析対象光のスト一タスパラメータを算出する計測装置。
[10] 請求項 1から請求項 9のいずれかに記載の計測装置において、
前記演算処理部は、前記分析対象光の楕円率及び主軸方位の少なくとも一方を 算出する計測装置。
[11] 請求項 1から請求項 10のいずれかに記載の計測装置において、
前記リターダ及び前記検光子を回転駆動させる第 1及び第 2のァクチユエータと、 前記リターダ及び前記検光子の主軸方位を検出する第 1及び第 2の検出部と、 前記第 1及び第 2のァクチユエータの動作を制御する制御信号を生成する制御信 号生成部と、
をさらに含み、
前記制御信号生成部は、前記第 1及び第 2の検出部力 の検出信号に基づいて、 前記制御信号を生成する計測装置。
[12] 分析の対象である分析対象光の偏光状態を計測する計測方法であって、 回転可能に構成されたリターダ及び検光子を含む変調部で前記分析対象光を変 調させることによって得られる変調光の光強度情報を取得する光強度情報取得手順 と、
前記変調光の光強度情報に基づいて前記分析対象光の偏光特性要素を算出す る演算処理を行う演算処理手順と、
を含み、
前記変調光は、
前記分析対象光が、前記リターダを透過し、その後、前記検光子を透過した光であ り、
前記光強度情報取得手順では、
前記リターダの主軸方位と前記検光子の主軸方位とが所与の関係を満たし、かつ 、前記リターダ及び前記検光子の主軸方位の少なくとも一方が異なる第 1〜第 N (N は 2以上の整数)の主軸方位条件に設定された前記変調部で前記分析対象光を変 調させることによって得られる、第 1〜第 Nの変調光の光強度情報を取得し、 前記演算処理手順では、
前記分析対象光の偏光特性要素及び前記変調部の主軸方位条件を反映した前 記第 1〜第 Nの変調光の光強度の理論式と、前記第 1〜第 Nの変調光の光強度情 報とに基づいて、前記偏光特性要素を算出する処理を行う計測方法。
[13] 請求項 12記載の計測方法において、
前記リターダ及び前記検光子の主軸方位を、それぞれ、 θ , Θ
1 2とおくと、 前記変調部の第 Kの主軸方位条件 (Kは 1〜Nの各整数)は、
( θ , Θ ) = (180 X L X K/N, 180 X M X K/N)
1 2 K
(ただし、 L, Mは 1以上の整数で、 L≠M, L≠2M, 2L≠M)
である計測方法。
[14] 分析の対象である分析対象光の偏光状態を計測する計測方法であって、
リターダ及び検光子が所与の回転比で回転する変調部で前記分析対象光を変調 させることによって得られる変調光の光強度情報を取得する光強度情報取得手順と 前記変調光の光強度情報とに基づいて前記分析対象光の偏光特性要素を算出す る演算処理を行う演算処理手順と、
を含み、
前記変調光は、
前記分析対象光が、前記リターダを透過し、その後、前記検光子を透過した光であ り、
前記光強度情報取得手順では、
連続的に強度が変化する前記変調光の前記光強度情報をアナログ情報として取 得し、
前記演算処理手順では、
前記分析対象光の前記偏光特性要素及び前記変調部の主軸方位条件を反映し た前記変調光の光強度の理論式と、前記変調光の光強度情報とに基づいて、前記 偏光特性要素を算出する処理を行う計測方法。
[15] 請求項 12から請求項 14のいずれかに記載の計測方法において、
前記光強度情報取得手順では、
前記リターダ及び前記検光子の回転比が 1対 3になるように回転する前記変調部で 前記分析対象光を変調させることによって得られる変調光の光強度情報を取得する 計測方法。
[16] 請求項 12から請求項 15のいずれかに記載の計測方法において、
前記演算処理手順では、
前記光強度情報取得手順で取得された光強度情報を解析処理して得られる複数 のピークスペクトルと、前記理論式とに基づいて、前記偏光特性要素を算出する処理 を行う計測方法。
[17] 請求項 12から請求項 16のいずれかに記載の計測方法において、
前記偏光特性要素を算出する処理に先立って、前記分析対象光に変えて所定の 偏光状態を示すサンプル光を前記変調部で変調させることによって得られる変調光 の光強度情報を取得し、前記光強度情報と前記変調光の理論式とに基づいて前記 リタ一ダの複屈折位相差を算出する、複屈折位相差算出処理手順をさらに含み、 前記演算処理手順では、
前記複屈折位相差算出処理手順で算出された前記リタ一ダの複屈折位相差に基 づいて前記偏光特性要素を算出する処理を行う計測方法。
PCT/JP2007/052844 2006-02-28 2007-02-16 計測装置及び計測方法 WO2007099791A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/224,491 US20090040522A1 (en) 2006-02-28 2007-02-16 Measuring Apparatus and Measuring Method
JP2008502703A JP4677570B2 (ja) 2006-02-28 2007-02-16 計測装置及び計測方法
KR1020087022194A KR101267119B1 (ko) 2006-02-28 2008-09-11 계측 장치 및 계측 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006054153 2006-02-28
JP2006-054153 2006-02-28

Publications (1)

Publication Number Publication Date
WO2007099791A1 true WO2007099791A1 (ja) 2007-09-07

Family

ID=38458904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052844 WO2007099791A1 (ja) 2006-02-28 2007-02-16 計測装置及び計測方法

Country Status (4)

Country Link
US (1) US20090040522A1 (ja)
JP (1) JP4677570B2 (ja)
KR (1) KR101267119B1 (ja)
WO (1) WO2007099791A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085853A (ja) * 2007-10-01 2009-04-23 Tokyo Univ Of Agriculture & Technology 計測装置及び計測方法
JP2011501166A (ja) * 2007-10-23 2011-01-06 ハネウェル・アスカ・インコーポレーテッド ストークスパラメータを用いて繊維材料を特徴付けるためのシステム及び方法
JP2014522986A (ja) * 2011-07-18 2014-09-08 ブイユーブイ・アナリティクス・インコーポレイテッド 真空紫外(vuv)またはより短波長の円偏光二色性分光のための方法および装置
JP2020526746A (ja) * 2017-07-01 2020-08-31 ケーエルエー コーポレイション 偏光レティクル検査方法及び装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111159A1 (ja) * 2006-03-20 2007-10-04 National University Corporation Tokyo University Of Agriculture And Technology 光学特性計測装置及び光学特性計測方法、並びに、光学特性計測ユニット
DE102009015393B3 (de) * 2009-03-20 2010-09-02 Carl Zeiss Smt Ag Messverfahren und Messsystem zur Messung der Doppelbrechung
KR102095051B1 (ko) 2019-03-18 2020-04-24 피알씨(주) 의료폐기물 전용용기 덮개의 실링재 주입장치
KR102281167B1 (ko) * 2020-02-27 2021-07-26 전북대학교산학협력단 스토크스 편광계 기반 리타더 리타데이션 측정 장치 및 방법
KR102192224B1 (ko) 2020-07-14 2020-12-17 피알씨(주) 밀폐용기 덮개의 실링재 자동주입장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283428A (ja) * 1988-09-20 1990-03-23 Tsunehiro Umeda 自動複屈折測定装置
JPH0458138A (ja) * 1990-06-27 1992-02-25 Asahi Optical Co Ltd 複屈折測定方法
JPH07318817A (ja) * 1994-05-19 1995-12-08 Toppan Printing Co Ltd 光チョッピング装置
JP2004020343A (ja) * 2002-06-14 2004-01-22 Unie Opt:Kk 複屈折測定装置
JP2005241406A (ja) * 2004-02-26 2005-09-08 Nokodai Tlo Kk 複屈折分散計測装置および複屈折分散計測方法
JP2005257508A (ja) * 2004-03-12 2005-09-22 Nokodai Tlo Kk 複屈折特性測定装置および複屈折特性測定方法
JP2005292028A (ja) * 2004-04-02 2005-10-20 Toshiyoshi Kihara 楕円偏光入射による複屈折板の測定法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0737856B1 (en) * 1995-04-14 2010-04-28 J.A. Woollam Co. Inc. A method of investigating samples by changing polarisation
US8107075B2 (en) * 2005-03-28 2012-01-31 Utsunomiya University Optical characteristic measuring apparatus and optical characteristics measuring method
WO2006134840A1 (ja) * 2005-06-13 2006-12-21 National University Corporation Tokyo University Of Agriculture And Technology 光学特性計測装置及び光学特性計測方法
JP4747304B2 (ja) * 2006-01-13 2011-08-17 国立大学法人東京農工大学 計測装置及び計測方法、並びに、特性計測ユニット

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283428A (ja) * 1988-09-20 1990-03-23 Tsunehiro Umeda 自動複屈折測定装置
JPH0458138A (ja) * 1990-06-27 1992-02-25 Asahi Optical Co Ltd 複屈折測定方法
JPH07318817A (ja) * 1994-05-19 1995-12-08 Toppan Printing Co Ltd 光チョッピング装置
JP2004020343A (ja) * 2002-06-14 2004-01-22 Unie Opt:Kk 複屈折測定装置
JP2005241406A (ja) * 2004-02-26 2005-09-08 Nokodai Tlo Kk 複屈折分散計測装置および複屈折分散計測方法
JP2005257508A (ja) * 2004-03-12 2005-09-22 Nokodai Tlo Kk 複屈折特性測定装置および複屈折特性測定方法
JP2005292028A (ja) * 2004-04-02 2005-10-20 Toshiyoshi Kihara 楕円偏光入射による複屈折板の測定法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ASATO N. ET AL.: "Isoshi.Kenkoshi no Niju Kaiten ni yoru Bunko Polarimeter (Spectroscopic polarimeter with dual rotating compensator and analyzer)", 2006 NENDO SEIMITSU KOGAKUKAI SHUNKI TAIKAI GAKUJUTSU KOENKAI KOEN RONBUNSHU UCD-ROM], 1 March 2006 (2006-03-01), pages 1179 - 1180, XP003017348 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085853A (ja) * 2007-10-01 2009-04-23 Tokyo Univ Of Agriculture & Technology 計測装置及び計測方法
JP2011501166A (ja) * 2007-10-23 2011-01-06 ハネウェル・アスカ・インコーポレーテッド ストークスパラメータを用いて繊維材料を特徴付けるためのシステム及び方法
JP2014522986A (ja) * 2011-07-18 2014-09-08 ブイユーブイ・アナリティクス・インコーポレイテッド 真空紫外(vuv)またはより短波長の円偏光二色性分光のための方法および装置
JP2020526746A (ja) * 2017-07-01 2020-08-31 ケーエルエー コーポレイション 偏光レティクル検査方法及び装置
JP7053683B2 (ja) 2017-07-01 2022-04-12 ケーエルエー コーポレイション 偏光レティクル検査方法及び装置

Also Published As

Publication number Publication date
KR20080100452A (ko) 2008-11-18
KR101267119B1 (ko) 2013-05-23
JP4677570B2 (ja) 2011-04-27
JPWO2007099791A1 (ja) 2009-07-16
US20090040522A1 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
WO2007099791A1 (ja) 計測装置及び計測方法
JP5368507B2 (ja) 自己較正機能を備える表面特性解析用システム
US9200998B2 (en) Method and apparatus for ellipsometry measurement
KR100765709B1 (ko) 분광 편광 계측 방법
JP4926957B2 (ja) 光学特性計測装置及び光学特性計測方法
JP4779124B2 (ja) 光学特性計測装置及び光学特性計測方法
WO2007111159A1 (ja) 光学特性計測装置及び光学特性計測方法、並びに、光学特性計測ユニット
JP2012202812A (ja) 円二色性測定装置及び円二色性測定方法
JP3844222B2 (ja) 複屈折測定装置
JP2007232550A (ja) 光学特性計測装置及び光学特性計測方法
JP3285365B2 (ja) フォトアレイ検出器を備える回帰較正による回転補正器型分光エリプソメータシステム
JP4700667B2 (ja) 計測装置及び計測方法
JP5041508B2 (ja) 光学特性計測装置および方法
JP2005241406A (ja) 複屈折分散計測装置および複屈折分散計測方法
JP5747317B2 (ja) 偏光測定装置及び偏光測定方法
JPH06288835A (ja) エリプソメータ
JP5140789B2 (ja) 分光偏光計測装置
CN113654996A (zh) 一种复合消色差波片相位延迟量测量装置和方法
JP6180311B2 (ja) 偏光解析装置
JP6239335B2 (ja) 円二色性計測方法及び円二色性計測装置
JP2012122835A (ja) 磁気光学スペクトル分光装置、磁気光学スペクトル測定方法およびプログラム
JP2010271279A (ja) 計測装置及び計測方法
Wang et al. A method for calibration of Soleil-Babinet compensator using a spectrophotometer
KR102281167B1 (ko) 스토크스 편광계 기반 리타더 리타데이션 측정 장치 및 방법
JP2010139345A (ja) 複屈折測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2008502703

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087022194

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12224491

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07714374

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)