WO2007099658A1 - プラズマガン及びそれを備えるプラズマガン成膜装置 - Google Patents

プラズマガン及びそれを備えるプラズマガン成膜装置 Download PDF

Info

Publication number
WO2007099658A1
WO2007099658A1 PCT/JP2006/316942 JP2006316942W WO2007099658A1 WO 2007099658 A1 WO2007099658 A1 WO 2007099658A1 JP 2006316942 W JP2006316942 W JP 2006316942W WO 2007099658 A1 WO2007099658 A1 WO 2007099658A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
film forming
gun
outlet
chamber
Prior art date
Application number
PCT/JP2006/316942
Other languages
English (en)
French (fr)
Inventor
Masao Marunaka
Takayuki Tsuchiya
Atsuhiro Terakura
Original Assignee
Shinmaywa Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinmaywa Industries, Ltd. filed Critical Shinmaywa Industries, Ltd.
Priority to JP2007524106A priority Critical patent/JP5416351B2/ja
Priority to US12/281,312 priority patent/US20110011734A1/en
Priority to EP06796922A priority patent/EP1991037A1/en
Priority to KR1020087020227A priority patent/KR101237184B1/ko
Publication of WO2007099658A1 publication Critical patent/WO2007099658A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/54Plasma accelerators

Definitions

  • Plasma gun and plasma gun film forming apparatus having the same
  • the present invention relates to a plasma gun and a plasma gun film forming apparatus including the same.
  • a plasma film forming apparatus is an apparatus that forms a film using plasma generated by a plasma gunker as an ion source.
  • a plasma gun used in such a plasma film forming apparatus a composite cathode type plasma gun, a pressure gradient type plasma gun, and a dual type plasma gun combining these are known (for example, patents). Reference 1).
  • plasma is generally generated using argon (Ar) gas as a carrier gas.
  • the plasma is generated by first performing a glow discharge with the power sword of the plasma gun and then transferring to the arc discharge.
  • a composite cathode type plasma gun or a dual type plasma gun a glow discharge is performed.
  • Patent Document 2 For such a problem, a plasma generator using hydrogen gas or helium gas as a carrier gas during glow discharge is known (for example, see Patent Document 2).
  • hydrogen gas having a small mass is used, so that the etching action by sputtering can be reduced.
  • Patent Document 1 Patent No. 2921874
  • Patent Document 2 JP-A-6-251897
  • the present invention has been made to solve the above-mentioned problems, and a plasma gun and a plasma gun component capable of preventing outflow of plasma gun force with a simple configuration of metal sputtered during glow discharge.
  • An object is to provide a membrane device.
  • a plasma gun includes a container having a plasma outlet, a force sword disposed inside the container and generating plasma by discharge, and the plasma An auxiliary anode provided between the outlet and the force sword so as to be able to receive plasma generated by the force sword, and an exhaust valve for exhausting and sealing the inside of the container.
  • a plasma outflow prevention z permissible device for preventing and permitting the outflow of the plasma outflow locuser of the plasma generated by the discharge of the force sword.
  • the plasma outflow prevention Z allowing device includes an open / close member that can open and close the plasma outlet, and a drive device that opens and closes the open / close member, and the auxiliary anode May be formed in an annular shape.
  • the auxiliary anode may be provided between the force sword and the opening / closing member.
  • the plasma outflow prevention Z permitting device includes an opening / closing member that can open and close the plasma outlet, and a drive device that opens and closes the opening / closing member.
  • An anode may be provided on the opening / closing member such that the anode faces the force sword when the opening / closing member closes the plasma outlet.
  • a plasma gun deposition apparatus includes a container having a plasma outlet, a force sword that is disposed inside the container and generates plasma by electric discharge, and exhausts the interior of the container.
  • a plasma gun having an exhaust valve for sealing; a film forming chamber having a plasma inlet capable of reducing the pressure inside; and a position between the plasma inlet and the force sword.
  • An auxiliary anode capable of receiving plasma generated by a force sword; a plasma outflow prevention Z-permissible device for preventing and allowing inflow of plasma generated by discharge of the force sword from the plasma inlet; and A main anode disposed in the inside of the film-forming nitrogen, and the plasma gun communicates with the inside of the film-forming chamber through the plasma outlet and the plasma inlet.
  • the main anode is in a state where the auxiliary anode does not receive the plasma generated by the force sword, and the plasma outflow prevention Z permitting device allows the plasma inflow from the plasma inlet. On the other hand, it is arranged so that it can receive the plasma generated by the force sword.
  • the base material can be formed uniformly.
  • a base material holder and a hearth for containing and evaporating the film forming material are disposed inside the film forming chamber, and the hearth is the main A deposition material contained in the hearth is evaporated by the plasma received by the hearth and deposited on the substrate held by the substrate holder. Also good.
  • the plasma gun film forming apparatus includes a sheet plasma deformation chamber disposed between the container and the film formation chamber, and a sheet plasma deformation mechanism, wherein the sheet plasma deformation chamber includes:
  • the plasma gun is arranged to communicate with the inside of the film forming chamber through the plasma inlet, and to communicate with the inside of the container through the plasma outlet, and the plasma gun has a cylindrical plasma formed in the container.
  • the plasma outflow rocker is configured to flow out, and the columnar plasma that has flowed out is deformed into sheet plasma by the sheet plasma deformation mechanism in the sheet plasma deformation chamber, and enters the film formation chamber.
  • the film may be formed using the sheet plasma which flows into the sheet plasma deformation chamber and flows toward the main anode.
  • the metal spattered during the glow discharge can prevent the plasma gun force from flowing out, and does not contaminate the base material or the like. Therefore, the base material can be uniformly formed.
  • FIG. 1 is a schematic diagram showing a configuration of a plasma gun film forming apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic view showing a state where an opening / closing member of a plasma outflow prevention Z permitting device of the plasma gun film forming apparatus shown in FIG. 1 is opened.
  • FIG. 3 is a schematic diagram showing a configuration of a plasma gun film forming apparatus according to a first modification of the first embodiment.
  • FIG. 4 is a schematic view showing a state in which an opening / closing member of the plasma outflow prevention Z permitting device of the plasma gun film forming apparatus shown in FIG. 3 is opened.
  • FIG. 5 is a schematic diagram showing a configuration of a plasma gun film forming apparatus according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic view showing a state in which an opening / closing member of the plasma outflow prevention Z permitting device of the plasma gun film forming apparatus shown in FIG. 5 is opened.
  • FIG. 7 is a schematic diagram showing a configuration of a plasma gun film forming apparatus according to a second modification of the second embodiment.
  • FIG. 8 is a schematic view showing a state in which the opening / closing member of the plasma outflow prevention Z permitting device of the plasma gun film forming apparatus shown in FIG. 7 is opened.
  • Bottle neck 60 targets
  • FIG. 1 is a schematic diagram showing a configuration of a plasma gun film forming apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing a state in which the opening / closing member of the plasma outflow prevention Z permitting device of the plasma gun film forming apparatus shown in FIG. 1 is opened.
  • the direction in the structure of the plasma gun deposition apparatus is represented by the X-axis, Y-axis, and Z-axis directions of the three-dimensional orthogonal coordinate system shown in FIGS. 1 and 2 for convenience.
  • a plasma gun film forming apparatus 100 uses a dual type plasma gun 1 that generates plasma at a high density and a plasma generated by the plasma gun 1. And a film forming chamber 2 for forming a base material.
  • the plasma gun 1 and the film forming chamber 2 communicate with each other while maintaining an airtight state.
  • the plasma gun 1 has a cylindrical tube 11.
  • a discharge space 12 is formed by the internal space of the cylindrical body 11.
  • a plate-like lid member 13 is disposed at one end of the cylinder 11 so as to close the discharge space 12.
  • An annular lid member 19 is disposed at the other end of the cylinder 11, and the internal space of the lid member 19 constitutes a plasma outlet 70.
  • a container 72 is constituted by the cylinder 11 and the lid members 13 and 19.
  • the lid member 13 has a cylindrical shape made of tantalum (Ta) so as to penetrate the central portion of the lid member 13 in an airtight manner and extend along the central axis (Z axis) of the cylindrical body 11.
  • An auxiliary cathode 14 is provided.
  • the base end of the auxiliary cathode 14 (the end located outside the cylindrical body 11) is connected to an argon (Ar) gas tank (not shown) by appropriate piping, and Ar gas enters the discharge space 12 from the tip of the auxiliary cathode 14. Supplied.
  • an annular main cathode 17 made of lanthanum hexaboride (LaB) is provided on the outer peripheral surface near the tip of the auxiliary cathode 14.
  • auxiliary cathode 14 With auxiliary cathode 14
  • a force sword 18 is constituted by the main cathode 17.
  • the force sword 18 is electrically connected to the negative electrode of the main power source 20 composed of a DC power source via a resistor 21.
  • molybdenum (Mo) having a diameter larger than that of the auxiliary cathode 14 so as to extend along the central axis (Z axis) of the cylindrical body 11 coaxially with the auxiliary cathode 14, or
  • a cylindrical protective member 15 made of tungsten (W) is hermetically disposed on the lid member 13. Protection An annular window member 16 made of tungsten is provided at the tip of the protective member 15. The force sword 18 is protected by the protection member 15 and the window member 16.
  • the plasma gun 1 has a pair of annular grit electrodes 22 and 23.
  • a pair of grit electrodes 22 and 23 are provided so as to penetrate the cylinder 11 in an airtight manner, and are electrically connected to the main power source 20 and appropriate resistors 24 and 25 between the force swords 18. And a predetermined positive voltage is applied. As a result, the arc discharge generated by the force sword 18 is maintained, and plasma is formed in the discharge space 12 of the plasma gun 1 as an aggregate of charged particles (Ar + and electrons in this case).
  • a vacuum pump connection port 27 that can exhaust and seal the inside of the cylinder 11 by the exhaust valve 26 is provided on the peripheral wall on the other end side of the cylinder 11.
  • the vacuum pump connection port 27 is connected to a vacuum pump (not shown) (for example, a turbo pump).
  • a vacuum pump for example, a turbo pump.
  • an annular electromagnetic coil 29 that can control the strength of the magnetic force is provided concentrically with the cylinder 11 so as to surround the peripheral wall of the cylinder 11.
  • the discharge space 12 of the plasma gun 1 has a magnetic flux density based on the coil magnetic field and the electric field generated by the grid electrodes 22 and 23.
  • a gradient in the Z-axis direction is formed. Due to the gradient of the magnetic flux density in the Z-axis direction, the charged particles that make up the plasma advance in the Z-axis direction while turning around the lines of magnetic force so that they move from the discharge space in the Z-axis direction.
  • the plasma as an aggregate of charged particles is drawn into the film formation chamber 2 as a cylindrical plasma (hereinafter referred to as a cylindrical plasma) CP having a substantially equal density distribution.
  • the cylinder 11, the grid electrodes 22, 23, and the force sword 18 are insulated from each other by appropriate means.
  • the shape, height (Y-axis direction dimension) and width (X-axis direction dimension) of the internal space (plasma outlet 70) provided in the lid member 19 are set so as to pass through the cylindrical plasma CP appropriately. Is designed. From this, it is possible to prevent excess argon ions (Ar +) and electrons that do not constitute the cylindrical plasma CP from being introduced into the deposition chamber 2, and the density of the cylindrical plasma CP is increased. Can be kept in a state.
  • the lid member 19 is provided with a plasma outflow prevention Z permitting device 30 that prevents and allows plasma outflow from the plasma outlet 70.
  • the plasma outflow prevention Z permission device 30 includes an opening / closing member 31 that opens and closes the plasma outlet 70, and a driving device 71 that moves the opening / closing member 31 parallel to the opening surface of the plasma outlet 70.
  • the opening / closing member 31 is configured to maintain an airtight state in the discharge space 12 when the plasma outlet 70 is closed.
  • An auxiliary anode 32 is disposed on the inner surface of the opening / closing member 31 so as to face the force sword 18 when the opening / closing member 31 closes the plasma outlet 70. Is electrically connected to the positive electrode via the switch 34.
  • the plasma outflow prevention Z permission device 30 is configured by a gate valve
  • the opening / closing member 31 is configured by the valve body
  • the drive device 71 is the valve body drive device (electromagnetic drive mechanism, air cylinder, etc.). It consists of FIG. 1 shows only the actuator of the valve body driving device constituting the driving device 71.
  • the film forming chamber 2 has a chamber 35, and a film forming space 46 is formed by the internal space of the chamber 35.
  • a through hole 36 is provided at an appropriate position on the side of the plasma gun 1 on the side wall of the chamber 35.
  • the through hole 36 forms a plasma inlet 36.
  • the plasma outflow prevention Z-allowing device 30 is disposed so as to communicate with the through hole 36 provided in the film forming chamber 2.
  • the plasma inlet 1 (through hole) 36 passes through the cylindrical plasma CP, and the plasma gun 1 and the deposition chamber 2 communicate with each other through the opening / closing member 31 of the plasma outflow prevention Z allowance device 30 in an airtight state. If it is, the shape and the like are not particularly limited. As a result, the inside of the container 72 communicates with the inside of the film forming chamber 2 through the plasma outlet 70.
  • a substrate holder 38 is disposed in the upper part of the chamber 35.
  • the substrate holder 38 holds the substrate 39.
  • the substrate holder 38 has a holder portion 38a and a rotating shaft 38b. ing.
  • the rotary shaft 38b passes through the ceiling wall 35a of the chamber 35 in an airtight and rotatable manner, and is connected to a rotation drive mechanism (not shown), and is rotated thereby.
  • the base material holder 38 is electrically connected to the bias power source 48.
  • the bias power supply 48 applies a negative bias voltage to the holder 38a with respect to the cylindrical plasma CP.
  • the rotating shaft 38b of the base holder 38 and the ceiling wall 35a (chamber 35) are insulated and connected.
  • a vacuum pump connection port 45 that can be opened and closed by an exhaust nozzle 44 is provided at an appropriate position on the ceiling wall 35a.
  • a vacuum pump (not shown) is connected to the vacuum pump connection port 45 mm.
  • a vacuum is evacuated by this vacuum pump (for example, a turbo pump), and the film formation space 46 is quickly depressurized to a degree of vacuum that allows film formation.
  • an evaporation source 47 including a hearth 40, a permanent magnet 41, and a support 42 is provided in the lower part of the chamber 35.
  • the inside of the hearth 40 is filled with a film forming material 43.
  • the hearth 40 is supported by a support body 42 in which a permanent magnet 41 is provided, and is electrically connected to the main power supply 20 via a switching switch 34.
  • the cylindrical plasma CP flowing into the film forming chamber 2 bends in the Z-axis direction force Y-axis along the magnetic field lines of the magnetic field formed by the permanent magnet 41, and the hearth 40 can receive the plasma as the main anode.
  • the plasma gun film forming apparatus 100 includes a control device (not shown) that controls the operation of the entire apparatus.
  • the driving device 71 of the plasma outflow prevention Z permitting device 30 is activated, and the opening / closing member 31 closes the plasma outlet 70.
  • each of the plasma gun 1 and the film forming chamber 2 is evacuated by evacuation by a vacuum pump (not shown).
  • the grit electrodes 22 and 23 generate a pressure gradient in the plasma gun 1 (more precisely, the discharge space 12) such that the pressure on the side of the force sword 18 increases.
  • Ar gas is supplied into the discharge space 12 from the tip of the auxiliary cathode 14 provided in the plasma gun 1, and glow discharge is performed at the auxiliary cathode 14.
  • the glow discharge force shifts to a holo force sword discharge at the auxiliary cathode 14.
  • the main cathode 17 is heated to a high temperature by this heat, and arc discharge is performed. In this way, plasma discharge is generated from the force sword 25 and plasma discharge is generated.
  • the generated plasma is drawn out from the force sword 18 to the auxiliary anode 32 side by the electric field generated by the dalit electrodes 22 and 23 and the magnetic field generated by the electromagnetic coil 29, and is formed into a cylindrical shape. At this time, the auxiliary anode 32 receives the generated plasma.
  • the drive mechanism 71 is activated, and the opening / closing member 31 moves in parallel to the opening surface of the plasma outlet 70, allowing the plasma to flow out of the plasma outlet 70, and the plasma gun 1 And the film forming chamber 2 communicate with each other.
  • the switching switch 34 is switched so that current flows through the hearth 40, which is the main anode, so that the auxiliary anode 32 does not receive the plasma generated by the force sword 18 and the hearth 40, which is the main anode, receives the plasma. (See Figure 2).
  • a negative bias voltage with respect to the plasma is applied to the base material 39 via the base material holder 38.
  • arc discharge is generated between the heart anode 40 or the auxiliary anode 32 and the power sword 18 which is the main anode in the state of receiving plasma.
  • the formed cylindrical plasma CP flows out from the plasma outlet 70 and is guided to the film formation chamber 2 (more precisely, the film formation space 46).
  • the cylindrical plasma CP guided to the deposition chamber 2 bends from the Z-axis direction to the Y-axis direction along the magnetic field lines of the magnetic field formed by the permanent magnet 41, and the hearth 40 receives the cylindrical plasma CP.
  • the film forming material filled in the hearth 40 is evaporated.
  • the evaporated film forming material passes through the plasma existing in the film forming space 46 and is ionized into cations at this time.
  • the cations are deposited on the negatively biased substrate 39, receive electrons, and are deposited on the substrate 39.
  • FIG. 3 is a schematic diagram showing the configuration of the plasma gun film forming apparatus according to the first modification.
  • FIG. 4 is a schematic diagram showing a state in which the opening / closing member 31 of the plasma outflow prevention Z permitting device 70 of the plasma gun film forming apparatus 101 shown in FIG. 3 is opened.
  • the auxiliary anode 32 shown in FIG. 1 is provided in the middle of the cylindrical body 11, and the plasma generated by the force sword 17 is received by the auxiliary anode 32. It is configured so that no current flows through the electromagnetic coil 29! RU
  • the auxiliary anode 32 has a cylindrical anode member 74 made of metal (for example, copper) provided coaxially with the cylinder 11.
  • the anode member 74 is airtightly provided at appropriate positions between the grid electrode 23 of the cylindrical body 11 and the plasma outflow prevention Z tolerance device 30 via cylindrical attachment members 73a and 73b.
  • the anode member 74 is electrically connected to the positive electrode of the main power supply 20 via the switching switch 34.
  • the anode member 74 is insulated from the cylinder 11 by the attachment members 73a and 73b.
  • a metal (for example, copper) cooling pipe 75 is wound in the circumferential direction of the anode member 74.
  • a cooling medium supply device (not shown) for circulating a cooling medium (here, water) is connected to the cooling pipe 75, and the anode member 74 is configured to be cooled.
  • glow discharge is performed at the auxiliary cathode 14, then arc discharge is performed at the main cathode 17, and plasma is generated at the force sword 17.
  • the generated plasma is shaped into a cylindrical shape by the electric field of the grid electrodes 22 and 23, passes through the internal space of the grid electrodes 22 and 23, and is drawn out to the auxiliary anode 32 side.
  • the cylindrical plasma CP that has passed through the grid electrode 23 spreads toward the inner wall of the cylindrical body 11 because no current flows through the electromagnetic coil 29, and the auxiliary anode 32 receives this spread plasma.
  • the drive mechanism 71 is activated, and the opening / closing member 31 moves parallel to the opening surface of the plasma outlet 70 to allow the plasma outflow from the plasma outlet 70, and the plasma gun 1 and the film are formed. Room 2 communicates.
  • the switching switch 34 is switched so that current flows through the hearth 40, which is the main anode, so that the auxiliary anode 32 does not receive the plasma generated by the force sword 18 and the hearth 40, which is the main anode, receives the plasma.
  • a current is passed through the electromagnetic coil 29 to cause a magnetic field to act on the discharge space 12 to form a plasma spreading toward the inner wall of the cylinder 11 in a cylindrical shape.
  • the cylindrical plasma CP flows out of the plasma outlet 70 and is guided to the film formation chamber 2 (more precisely, the film formation space 46).
  • the cylindrical plasma CP guided to the deposition chamber 2 bends from the Z-axis direction to the Y-axis direction along the magnetic field lines of the magnetic field formed by the permanent magnet 41, and the hearth 40 receives the cylindrical plasma CP.
  • the cylindrical plasma CP spreads toward the inner wall of the cylindrical body 11, and the auxiliary anode 32 You can receive this spread plasma.
  • FIG. 5 is a schematic diagram showing a configuration of a plasma gun deposition apparatus 200 according to the second embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing a state where the opening / closing member of the plasma outflow prevention Z permitting device of the plasma gun film forming apparatus 200 of FIG. 5 is opened.
  • the direction in the structure of the plasma gun film forming apparatus 200 is represented by the X-axis, Y-axis, and Z-axis directions of the three-dimensional orthogonal coordinate system shown in FIGS. 5 and 6 for convenience.
  • the plasma gun film forming apparatus 200 has a substantially cross shape in the YZ plane. And a cylindrical nonmagnetic (for example, stainless steel or glass) sheet plasma deformation chamber 3 centered on the Z-axis axis, and a cylindrical nonmagnetic (for example, stainless steel) centered on the Y-axis axis. ) Film formation chamber 2a.
  • the plasma gun 1, the sheet plasma deformation chamber 3 and the film formation chamber 2a communicate with each other while maintaining an airtight state.
  • the sheet plasma deformation chamber 3 has a cylindrical tube body 50.
  • a transport space 51 is formed by the internal space of the cylinder 50.
  • One end (plasma gun 1 side) end of the cylindrical body 50 is closed by a lid member 52a, and the other end is closed by a lid member 52b.
  • a through-hole 68 is provided in the center of the lid member 52a, and the lid member 19 is disposed so that the through-hole 68 and the internal space (plasma outlet 70) provided in the lid member 19 communicate with each other.
  • a slit hole 56 is formed at the center of the lid member 52b so as to extend in the X-axis direction.
  • the cylinder 50 is connected to the cylinder 11 coaxially (so as to share the central axis) so as to be hermetically and electrically insulated by appropriate means.
  • the cylindrical body 50 is made of a non-magnetic material such as glass or SUS from the viewpoint of easily applying the magnetic force of the permanent magnet 53 or the like to the cylindrical plasma.
  • the cylinder 50 (exactly, the transport space 51) is sandwiched outside the cylinder 50 and magnetized in the Y-axis direction so that the same poles (here, N poles) face each other.
  • a pair of square permanent magnets 53 extending in the X-axis direction are provided.
  • annular molded electromagnetic coil 54 air core coil 1S is disposed so as to surround the peripheral surface of the cylindrical body 50.
  • the molded electromagnetic coil 54 is energized with a current in the direction of the S pole on the force sword 18 side and the N pole on the main anode 40 side.
  • the permanent magnet 53 and the formed electromagnetic coil 54 constitute a sheet plasma deformation mechanism.
  • the cylindrical plasma CP force moves in the 3 ⁇ 4 axis direction in the transport space 51 of the sheet plasma deformation chamber 3.
  • the cylindrical plasma CP is transformed into a uniform sheet-like plasma (hereinafter referred to as sheet plasma) SP that spreads along the XZ plane.
  • the sheet plasma SP thus deformed is transferred to the film formation chamber 2a via a slit-like bottleneck portion 55 interposed between the lid member 52b of the cylinder 50 and the side wall of the film formation chamber 2a. Inflow.
  • the film formation chamber 2a includes a cylindrical cylinder 37, and a cylindrical cylinder 59 having a central axis in the Z-axis direction that communicates with the cylinder 37 via the bottle neck 58. Yes.
  • a film formation space 46 is formed by the internal space of the cylindrical body 37.
  • One end portion of the cylindrical body 37 is closed by a lid portion 37a, and the other end portion is closed by a lid portion 37b.
  • a slit hole 57 extending in the X-axis direction is provided at the center of the peripheral surface of the cylinder 37 near the cylinder 50, and the slit hole 57 forms a plasma inlet 57.
  • the slit hole 57 is airtightly provided with a cylindrical bottle neck portion 55 having a quadrangular cross section so that the internal spaces of the cylindrical body 37 and the cylindrical body 50 are continuous.
  • the bottle neck portion 55 is hermetically connected to a slit hole 56 provided in the lid member 52b. Note that the height (Y-axis dimension), length (Z-axis dimension) and width (X-axis dimension) of the bottleneck 55 are appropriate for the sheet plasma SP. Designed to pass through.
  • the width of the slit holes 56 and 57 is designed to be an appropriate size as long as it is formed larger than the width of the deformed sheet plasma SP.
  • excess argon ions (Ar +) and electrons that do not constitute the sheet plasma SP can be prevented from being introduced into the film forming chamber 2a, and the density of the sheet plasma SP can be kept high. .
  • a target 60 and a substrate holder 28 are disposed as film forming materials so as to face each other with the sheet plasma SP interposed therebetween.
  • the target 60 is held by a target holder 61, and the target holder 61 has a holder portion 6 la and a support portion 6 lb.
  • the support portion 61b penetrates the lid member 37b in an airtight and slidable manner, is connected to a drive mechanism (not shown), and is configured to be movable in the Y-axis direction.
  • the target holder 61 is electrically connected to the bias power source 62.
  • the bias power source 62 applies a negative bias voltage to the sheet plasma SP to the holder unit 61a. Note that the support portion 61b of the target holder 61 and the lid member 37b are insulated.
  • the substrate holder 28 holds the substrate 39.
  • the substrate holder 28 has a holder portion 28a and a support portion 28b.
  • the support portion 28b penetrates the lid portion 37a in an airtight and slidable manner, is connected to a drive mechanism (not shown), and is configured to be movable in the Y-axis direction.
  • the substrate holder 28 is electrically connected to the bias power supply 48.
  • the bias power supply 48 applies a negative bias voltage with respect to the sheet plasma SP to the holder portion 28a.
  • the support portion 28b and the lid portion 37a of the base material holder 28 are insulated and connected.
  • the bias power source 62 connected to the target holder 61 and the bias power source 48 connected to the base material holder 28 are provided separately, but these may be configured by one common bias power source.
  • the main power source 20 may be configured such that the target holder 61 and the base material holder 28 are connected to each other.
  • the distance between the target 60 and the base material 39 can be freely set by providing a bias power source separately for the target holder 61 and the base material holder 28 as described above, and negative. Can be applied to both the target 60 and the substrate 39, resulting in improved sputtering efficiency.
  • a vacuum pump connection port 45 that can be opened and closed by an exhaust nozzle 44 is provided at an appropriate position of the lid member 37a.
  • Vacuum pump connection port 45 mm is connected to a vacuum pump (not shown). It is. The vacuum is drawn by this vacuum pump (for example, a turbo pump), and the film formation space 46 is quickly depressurized to a degree of vacuum that allows a sputtering process.
  • electromagnetic coils 63 and 64 that can control the strength of the magnetic force are provided so as to penetrate the central axes of the cylinders 11 and 50 in pairs.
  • the electromagnetic coils 63 and 64 are provided with opposite poles facing each other (here, the electromagnetic coil 63 is N pole and the electromagnetic coil 64 is S pole).
  • the width direction (X-axis direction) of the sheet plasma SP is adjusted in the film formation chamber 3. While moving in the Z-axis direction across the gap 51, the shape of the mirror magnetic field is shaped so as to appropriately suppress the spread in the width direction.
  • the film forming chamber 2 a includes a cylinder 59 having a central axis in the Z-axis direction that communicates with the cylinder 37 via the bottle neck portion 58.
  • One end (on the cylinder 37 side) of the cylindrical body 59 is closed by a lid member 65a, and the other end is closed by a lid member 65b.
  • a slit hole 67 extending in the X-axis direction is formed at the center of the lid member 65a.
  • the slit hole 67 is airtightly provided with a cylindrical bottle neck portion 58 having a square cross section so that the internal space of the cylindrical body 59 and the cylindrical body 37 is continuous.
  • the bottleneck part 58 is airtightly connected to a slit hole 66 formed in the central part of the peripheral surface of the cylindrical body 37 so as to extend in the X-axis direction.
  • the height (Y-axis direction dimension) and length (Z-axis direction dimension) and width (X-axis direction dimension) of the bottleneck part 58 are set so as to pass through the sheet plasma SP appropriately as with the bottleneck part 55. Designed. Further, the height and width of the slit holes 66 and 67 are configured in the same manner as the slit holes 56 and 57 described above.
  • a main anode 40 is provided on the inner surface of the lid member 65b, and the main anode 40 is electrically connected to the positive electrode of the main power supply 20 via the switching switch 34.
  • the main anode 40 is applied with an appropriate positive voltage (for example, 100 V) between the power sword 18 and thereby charged particles in the sheet plasma SP (particularly, the arc discharge between the main anode 40 and the cathode 18). E) can be recovered.
  • a permanent magnet 41 is disposed with the main anode 40 side as the S pole and the atmosphere side as the N pole. This makes the permanent magnet
  • the sheet plasma SP is converged in the width direction so as to suppress diffusion in the width direction (X-axis direction) of the sheet plasma SP toward the main anode 40 by the magnetic field lines along the XZ plane that exit from the 41 N pole and enter the S pole.
  • the charged particle force of the sheet plasma SP is properly collected in the main anode 40.
  • the plasma outflow prevention Z tolerance device 30 may be provided in the sheet plasma deformation chamber 3 (more precisely, the bottleneck portion 55).
  • the cross section of the cylinder 11, the cylinder 50, and the cylinder 59 parallel to the XY plane is circular here, but may be a polygon or the like that is not limited to this.
  • the cross section of the cylindrical body 37 parallel to the XZ plane is circular here, but may be a polygon or the like that is not limited to this.
  • a cylindrical plasma CP is formed.
  • the formed cylindrical plasma CP is guided to the sheet plasma deformation chamber 3 along the magnetic field lines of the magnetic field formed by the electromagnetic coil 29.
  • the cylindrical plasma CP guided to the sheet plasma deformation chamber 3 spreads in a sheet shape (extends in the XZ plane) by the magnetic field generated from the pair of permanent magnets 53 and the formed electromagnetic coil 54, and is transformed into the sheet plasma SP. .
  • the sheet plasma SP is guided to the film forming chamber 2a through the slit hole 56, the bottle neck portion 55, and the slit hole 57.
  • the sheet plasma SP introduced into the film formation chamber 2a is shaped in the width direction by the magnetic field generated by the electromagnetic coils 63 and 64, and is guided to the space between the target 60 and the substrate 39. .
  • a negative bias voltage with respect to the sheet plasma SP is applied to the target 60 via the target holder 61. Further, a negative bias voltage is applied to the base material 39 via the base material holder 28 with respect to the sheet plasma SP. Since the target 60 is negatively biased, Ar + ions efficiently sputter the target.
  • the atoms constituting the sputtered target 60 pass through the sheet plasma SP in the vertical direction and are ionized into cations at this time.
  • the cations are deposited on the negatively-nominated base material 39, receive electrons, and form the base material 39 into a film. Then, the sheet plasma SP is converged in the width direction by the magnetic lines of force of the permanent magnet 41 and receives the main-node 40-force sheet plasma SP.
  • the substrate can be formed uniformly.
  • FIG. 7 is a schematic diagram showing a configuration of a plasma gun film forming apparatus according to Modification 2.
  • FIG. 8 is a schematic diagram showing a state where the opening / closing member 31 of the plasma outflow prevention Z permitting device 70 of the plasma gun film forming apparatus 201 shown in FIG. 7 is opened.
  • the auxiliary anode 32 shown in FIG. 5 is provided in the middle of the cylinder 11 and the auxiliary anode 32 receives the plasma generated by the force sword 17.
  • current is not supplied to each of the electromagnetic coils 29, 63, 64 and the molded electromagnetic coil 54.
  • the auxiliary anode 32 has a cylindrical anode member 74 made of metal (for example, copper) provided coaxially with the cylindrical body 11.
  • the anode member 74 is airtightly provided at appropriate positions between the grid electrode 23 of the cylindrical body 11 and the plasma outflow prevention Z tolerance device 30 via cylindrical attachment members 73a and 73b.
  • the anode member 74 is electrically connected to the positive electrode of the main power supply 20 via the switching switch 34.
  • the anode member 74 is insulated from the cylinder 11 by the attachment members 73a and 73b.
  • a metal (for example, copper) cooling pipe 75 is wound in the circumferential direction of the anode member 74.
  • a cooling medium supply device (not shown) for circulating a cooling medium (here, water) is connected to the cooling pipe 75, and the anode member 74 is configured to be cooled.
  • the generated plasma is grid electrode 2 It is formed into a cylindrical shape by the electric fields 2 and 23, passes through the internal space of the grid electrodes 22 and 23, and is drawn out to the auxiliary anode 32 side.
  • the cylindrical plasma CP that has passed through the grid electrode 23 spreads by force toward the inner wall of the cylinder 11 because no current flows through each of the electromagnetic coils 29, 63, and 64 and the molded electromagnetic coil 54.
  • the auxiliary anode 32 receives the plasma. Note that, from the viewpoint of preventing the plasma generated by the force sword 17 from being formed into a cylindrical shape, it is possible not to pass an electric current only through the electromagnetic coil 29.
  • the drive mechanism 71 is activated, and the opening / closing member 31 moves in parallel with the opening surface of the plasma outlet 70 to allow the plasma outflow from the plasma outlet 70, and the plasma gun 1 and the sheet plasma are allowed to flow.
  • the deformation chamber 3 is communicated with.
  • the switching switch 34 is switched so that a current flows through the main anode 40, and the auxiliary anode 32 does not receive the plasma generated by the force sword 18, and the main anode 40 receives the plasma (see FIG. 8).
  • a current is passed through each of the electromagnetic coils 29, 63, 64 and the molded electromagnetic coil 54 to cause a magnetic field to act on the discharge space 12 etc. Form in a columnar shape.
  • the columnar plasma CP guided to the sheet plasma deformation chamber 3 is transformed into the sheet plasma SP by the interaction between the coil magnetic field generated by the forming electromagnetic coil and the magnet magnetic field generated by the permanent magnet 53, and is guided to the film forming chamber 2a.
  • the sheet plasma SP guided to the film forming chamber 2a is shaped by a coil magnetic field generated by the electromagnetic coils 63 and 64, and the main anode 40 receives the sheet plasma SP.
  • the cylindrical plasma CP is formed in the cylindrical body 11 by preventing current from flowing through the electromagnetic coils 29, 63, 64 and the molded electromagnetic coil 54. It spreads toward the inner wall of the substrate and can receive the spread plasma at the auxiliary anode 32.
  • the film was formed in a vacuum state in the plasma film forming apparatus, but a reactive gas was introduced into the film forming chamber and a reaction product of this gas and the film forming material was used. Therefore, it may be configured to form a base material.
  • the plasma outflow prevention Z tolerance device opens and closes the plasma outlet by swinging the opening and closing member. It may be closed.
  • the plasma gun and the plasma gun deposition apparatus of the present invention are useful because they can prevent impurities from entering the deposition chamber.
  • the deposition chamber and the plasma gun can be depressurized separately, the inside of the deposition chamber is operated under atmospheric pressure while plasma is generated by the plasma gun, or the deposition chamber is evacuated. It is useful as a plasma gun and plasma gun deposition device that can be used to replace the plasma gun while it is maintained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
  • Nozzles (AREA)

Abstract

本発明のプラズマガン(1)は、プラズマ流出口(70)を有する容器(72)と、容器(72)の内部に配設され放電によりプラズマを発生するカソード(18)と、プラズマ流出口(70)とカソード(18)との間に位置可能に設けられ、カソード(18)で発生したプラズマを受けることが可能な補助アノード(31)と、容器(72)の内部を排気及び封止するための排気バルブ(26)と、を備え、カソード(18)の放電により発生するプラズマのプラズマ流出口(70)からの流出を阻止及び許容するプラズマ流出阻止/許容装置(30)と、を備える。

Description

明 細 書
プラズマガン及びそれを備えるプラズマガン成膜装置
技術分野
[0001] 本発明は、プラズマガン及びそれを備えるプラズマガン成膜装置に関する。
背景技術
[0002] プラズマ成膜装置は、プラズマガンカゝら発生されたプラズマをイオン源として用いて 成膜する装置である。このようなプラズマ成膜装置に用いられているプラズマガンとし て、複合陰極型のプラズマガン、圧力勾配型のプラズマガン及びこれらを組み合わ せたデュアルタイプのプラズマガンが知られている(例えば、特許文献 1参照)。これ らのプラズマガンでは、キャリアガスとしてアルゴン (Ar)ガスを使用してプラズマを発 生させるのが一般的である。プラズマの発生には、まず、プラズマガンの力ソードでグ ロー放電を行い、その後、アーク放電へと移行する力 複合陰極型のプラズマガンや デュアルタイプのプラズマガンを用いた場合に、グロ一放電中にアルゴンイオン (Ar+ )によって力ソードがスパッタリングされ、スパッタリングされた金属が成膜室に混入し 、成膜する基材ゃターゲット等に付着するという問題があった。
[0003] このような問題に対して、グロ一放電時に水素ガスやヘリウムガスをキャリアガスとし て使用するプラズマ発生装置が知られている (例えば、特許文献 2参照)。特許文献 2のプラズマ発生装置では、質量の小さい水素ガス等を用いるので、スパッタリングに よるエッチング作用を減少させることが可能である。
特許文献 1:特許第 2921874号
特許文献 2:特開平 6 - 251897号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、特許文献 2に開示されているプラズマ発生装置では、グロ一放電から アーク放電に移行するときに、水素ガス等カゝらアルゴンガスへの移行を徐々に行うた め、力ソードのスパッタリングは発生し、また、グロ一放電時の放電圧力が高いとその スパッタリングによるエッチング作用は大きくなるため、未だ改善する余地があった。 また、水素ガス等とアルゴンガスとを用いるために、成膜装置自体の構成が煩雑とな る問題があった。
[0005] 本発明は、上記課題を解決するためになされたもので、グロ一放電時にスパッタリ ングされた金属を簡易な構成でプラズマガン力 の流出を防止することができるブラ ズマガン及びプラズマガン成膜装置を提供することを目的とする。
課題を解決するための手段
[0006] 上記目的を達成するために、本発明に係るプラズマガンは、プラズマ流出口を有す る容器と、前記容器の内部に配設され放電によりプラズマを発生する力ソードと、前 記プラズマ流出口と前記力ソードとの間に位置可能に設けられ、前記力ソードで発生 したプラズマを受けることが可能な補助アノードと、前記容器の内部を排気及び封止 するための排気バルブと、を有し、前記力ソードの放電により発生するプラズマの前 記プラズマ流出ロカゝらの流出を阻止及び許容するプラズマ流出阻止 z許容装置と、 を備える。
[0007] これにより、グロ一放電時にスパッタリングされた金属のプラズマガンからの流出を 防止することが可能となる。
[0008] 本発明に係るプラズマガンでは、前記プラズマ流出阻止 Z許容装置は、前記ブラ ズマ流出口を開閉自在な開閉部材と、前記開閉部材を開閉駆動する駆動装置とを 有し、前記補助アノードは、環状に形成されていてもよい。
[0009] 本発明に係るプラズマガンでは、前記補助アノードは、前記力ソードと前記開閉部 材の間に設けられて 、てもよ 、。
[ooio] 本発明に係るプラズマガンでは、前記プラズマ流出阻止 Z許容装置は、前記ブラ ズマ流出口を開閉自在な開閉部材と、前記開閉部材を開閉駆動する駆動装置と、を 有し、前記補助アノードが、前記開閉部材が前記プラズマ流出口を閉鎖したとき前記 力ソードと対向するように、前記開閉部材に設けられて 、てもよ 、。
[0011] 本発明に係るプラズマガンでは、前記開閉部材が、前記プラズマ流出口の開口面 に平行に移動して該プラズマ流出口を開閉自在なように構成され、前記駆動装置は 、前記プラズマ流出口を開閉するよう前記開閉部材を移動させるように構成されてい てもよい。 [0012] また、本発明に係るプラズマガン成膜装置は、プラズマ流出口を有する容器と、前 記容器の内部に配設され放電によりプラズマを発生する力ソードと、前記容器の内部 を排気及び封止するための排気バルブと、を有するプラズマガンと、内部を減圧可能 なプラズマ流入口を有する成膜室と、前記プラズマ流入口と前記力ソードとの間に位 置可能に設けられ、前記力ソードで発生したプラズマを受けることが可能な補助ァノ ードと、前記力ソードの放電により発生するプラズマの前記プラズマ流入口からの流 入を阻止及び許容するプラズマ流出阻止 Z許容装置と前記成膜窒の内部に配設さ れた主アノードと、を備え、前記プラズマガンは、前記容器の内部が前記プラズマ流 出口及び前記プラズマ流入口を通じて前記成膜室の内部と連通するように配設され 、前記主アノードは、前記補助アノードが前記力ソードで発生したプラズマを受けず、 かつ、前記プラズマ流出阻止 Z許容装置が前記プラズマ流入口から前記プラズマの 流入を許容する状態にぉ ヽて、前記力ソードで発生したプラズマを受けることが可能 なように配設されている。
[0013] これにより、グロ一放電時にスパッタリングされた金属力 成膜室に混入することを 防止できる。また、成膜室への汚染がないため、基材を均一に成膜することが可能と なる。
[0014] また、本発明に係るプラズマガン成膜装置では、前記成膜室の内部に基材ホルダ と、成膜材料を収容しかつ蒸発させるハースと、が配設され、前記ハースが前記主ァ ノードを構成しており、前記ハースが受ける前記プラズマにより該ハースに収容され た成膜材料が蒸発されて、基材ホルダに保持された基材上に成膜されるように構成 されていてもよい。
さらに、本発明に係るプラズマガン成膜装置は、前記容器と前記成膜室との間に配 設されたシートプラズマ変形室と、シートプラズマ変形機構と、を備え、前記シートプ ラズマ変形室は、前記成膜室の内部と前記プラズマ流入口を通じて連通し、かつ、 前記容器の内部と前記プラズマ流出口を通じて連通するよう配設され、前記プラズマ ガンは前記容器内に円柱状のプラズマが形成されて前記プラズマ流出ロカゝら流出 するよう構成され、前記流出した前記円柱状プラズマが前記シートプラズマ変形室に おいて前記シートプラズマ変形機構によりシートプラズマに変形され、前記成膜室に ぉ ヽて、前記シートプラズマ変形室力 流入し前記主アノードに向力う前記シートプ ラズマを利用して成膜が行われるように構成されて 、てもよ 、。
本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好 適な実施態様の詳細な説明から明らかにされる。
発明の効果
[0015] 本発明のプラズマガン及びプラズマガン成膜装置によれば、グロ一放電時にスパッ タリングされた金属が、プラズマガン力も流出することを防止することができ、また、基 材等を汚染しないため、基材を均一に成膜することができる。
図面の簡単な説明
[0016] [図 1]図 1は、本発明の実施の形態 1に係るプラズマガン成膜装置の構成を示す模式 図である。
[図 2]図 2は、図 1に示したプラズマガン成膜装置のプラズマ流出阻止 Z許容装置の 開閉部材を開けた状態を示す模式図である。
[図 3]図 3は、実施の形態 1の変形例 1に係るプラズマガン成膜装置の構成を示す模 式図である。
[図 4]図 4は、図 3に示したプラズマガン成膜装置のプラズマ流出阻止 Z許容装置の 開閉部材を開けた状態を示す模式図である。
[図 5]図 5は、本発明の実施の形態2に係るプラズマガン成膜装置の構成を示す模式 図である。
[図 6]図 6は、図 5に示したプラズマガン成膜装置のプラズマ流出阻止 Z許容装置の 開閉部材を開けた状態を示す模式図である。
[図 7]図 7は、実施の形態 2の変形例 2に係るプラズマガン成膜装置の構成を示す模 式図である。
[図 8]図 8は、図 7に示したプラズマガン成膜装置のプラズマ流出阻止 Z許容装置の 開閉部材を開けた状態を示す模式図である。
符号の説明
[0017] 1 プラズマガン
2 成膜室 a 成膜室
シートプラズマ変形室1 筒体
2 放電空間
3 蓋部材
4 補助陰極
5 保護部材
6 窓部材
7 主陰極
8 力ソード
9 蓋部材
0 主電源
1 抵抗体
2 グリット電極
3 ダリット電極
抵抗体
5 抵抗体
6 排気バノレブ7 真空ポンプ接続口8 基材ホルダ
8a ホノレダ咅
8b 支持部
9 電磁コイル
プラズマ流出阻止 ,1 開閉部材
2 補助アノード
切り替えスィッチ チャンバ a 天井壁
貫通孔 (プラズマ流入口) 筒体
a 蓋部材
b 蓋部材
基材ホルダ
a ホノレダ咅
b 回転軸
基材
ハース (主アノード) 永久磁石
支持体
成膜材料
排気バルブ
真空ポンプ接続口 成膜空間
蒸発源
バイアス電源
筒体
輸送空間
a 蓋部材
b 蓋部材
永久磁石
成形電磁コイル
ボトルネック部
スリット孔
スリット孔 (プラズマ流入口) ボトルネック部 60 ターゲット
61 ターゲットホルダ
61a ホノレダ咅
61b 支持部
62 バイアス電源
63 電磁コイル
64 電磁コイル
65a 蓋部材
65b 蓋部材
66 スジッ卜孑し
67 スリット孔
68 貫通孔
70 プラズマ流出口
71 駆動装置
72 容器
73a 取り付け部材
73b 取り付け部材
74 アノード部材
75 冷却管
100 プラズマガン成膜装置
101 プラズマガン成膜装置
200 プラズマガン成膜装置
201 プラズマガン成膜装置
CP 円柱プラズマ
SP シートプラズマ
発明を実施するための最良の形態
以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。 (実施の形態 1)
図 1は、本発明の実施の形態 1に係るプラズマガン成膜装置の構成を示す模式図 である。図 2は、図 1に示したプラズマガン成膜装置のプラズマ流出阻止 Z許容装置 の開閉部材が開放した状態を示す模式図である。
[0019] まず、本実施の形態 1に係るプラズマガン成膜装置の構成について、図 1及び図 2 を参照しながら説明する。なお、本実施の形態では、プラズマガン成膜装置の構造 における方向を、便宜上、図 1及び図 2に示す、三次元直交座標系の X軸、 Y軸及び Z軸の方向で表わす。
[0020] 図 1に示すように、本実施の形態 1に係るプラズマガン成膜装置 100は、プラズマを 高密度に生成するデュアルタイプのプラズマガン 1と、プラズマガン 1で発生したブラ ズマを利用して基材を成膜する成膜室 2と、を備えている。プラズマガン 1と成膜室 2 は、互いに気密状態を保って連通されている。
[0021] プラズマガン 1は、円筒状の筒体 11を有している。筒体 11の内部空間により、放電 空間 12が構成される。筒体 11の一方の端部には、放電空間 12を塞ぐように板状の 蓋部材 13が配設されている。また、筒体 11の他方の端部には、円環状の蓋部材 19 が配設されており、蓋部材 19の内部空間が、プラズマ流出口 70を構成している。そ して、筒体 11と、蓋部材 13、 19から容器 72が構成される。
[0022] 蓋部材 13には、蓋部材 13の中心部を気密的に貫通して、筒体 11の中心軸 (Z軸) に沿って延びるように、タンタル (Ta)で構成された円筒状の補助陰極 14が配設され ている。補助陰極 14の基端 (筒体 11の外に位置する端)は、図示されないアルゴン( Ar)ガスタンクと適宜な配管により接続されており、補助陰極 14の先端から Arガスが 放電空間 12内に供給される。また、補助陰極 14の先端近傍の外周面には、 6ホウ化 ランタン (LaB )で構成された円環状の主陰極 17が設けられている。補助陰極 14と
6
主陰極 17によって、力ソード 18が構成されている。力ソード 18は、直流電源からなる 主電源 20の負極と抵抗体 21を介して電気的に接続されている。
[0023] 筒体 11の内部空間には、補助陰極 14と同軸状に筒体 11の中心軸 (Z軸)に沿って 延びるように、補助陰極 14よりも径の大きいモリブデン (Mo)、又は、タングステン (W )で構成された円筒状の保護部材 15が、蓋部材 13に気密的に配設されている。保 護部材 15の先端には、タングステンで構成された円環状の窓部材 16が設けられて いる。この保護部材 15と窓部材 16により、力ソード 18が保護される。
[0024] また、プラズマガン 1は、一対の円環状のグリット電極 22、 23を有している。一対の グリット電極 22、 23は、筒体 11を気密的に貫通するように設けられており、力ソード 1 8との間で、主電源 20と適宜の抵抗体 24、 25と電気的に接続され、所定のプラス電 圧を印加される。これにより力ソード 18で発生したアーク放電が維持され、プラズマガ ン 1の放電空間 12には、荷電粒子(ここでは Ar+と電子)の集合体としてのプラズマが 形成される。
[0025] 筒体 11の他方の端部側の周壁には、排気バルブ 26により筒体 11の内部を排気及 び封止することが可能な真空ポンプ接続口 27が設けられて 、る。真空ポンプ接続口 27には、図示されない真空ポンプ (例えば、ターボポンプ)が接続されている。真空 ポンプにより真空引きされると、放電空間 12はプラズマを発生可能なレベルにまで速 やかに減圧される。このとき、放電空間 12には、グリット電極 22、 23によって空気の 流れが妨げられるので、力ソード 18側の圧力が高くなるような圧力勾配が生じる。
[0026] 筒体 11の径方向の外側には、磁力の強さをコントロールできる環状の電磁コイル 2 9が、筒体 11周壁を取り囲むように、筒体 11と同心に設けられている。この電磁コィ ル 29に電流を流し、グリッド電極 22、 23に所定のプラス電圧を印加することにより、 プラズマガン 1の放電空間 12にはコイル磁界及びグリッド電極 22、 23による電界に 基づく磁束密度の Z軸方向の勾配が形成される。このような磁束密度の Z軸方向の勾 配により、プラズマを構成する荷電粒子は、この放電空間から Z軸方向に運動するよ う、磁力線の回りを旋回しながら Z軸方向に進み、これらの荷電粒子の集合体として のプラズマが、略等密度分布してなる円柱状のプラズマ(以下、円柱プラズマという) CPとして、成膜室 2へ引き出される。なお、筒体 11と、グリット電極 22、 23と、力ソード 18は、適宜な手段によって、互いに絶縁されている。
[0027] 蓋部材 19に設けられた内部空間(プラズマ流出口 70)の形状やその高さ (Y軸方 向寸法)及び幅 (X軸方向寸法)は、円柱プラズマ CPを適切に通過するように設計さ れている。これ〖こより、円柱プラズマ CPを構成しない余分なアルゴンイオン (Ar+)と電 子が、成膜室 2に導入されるのを防止することができ、円柱プラズマ CPの密度を高い 状態に保つことができる。
[0028] また、蓋部材 19には、プラズマ流出口 70からプラズマの流出を阻止及び許容する プラズマ流出阻止 Z許容装置 30が気密的に設けられて 、る。プラズマ流出阻止 Z 許容装置 30は、プラズマ流出口 70を開閉する開閉部材 31と、開閉部材 31をプラズ マ流出口 70の開口面に平行に移動させる駆動装置 71と、を有する。開閉部材 31は 、プラズマ流出口 70を閉鎖したときに、放電空間 12内の気密状態を保てるように構 成されている。また、開閉部材 31の内面には、開閉部材 31がプラズマ流出口 70を 閉鎖したときに力ソード 18と対向するように補助アノード 32が配設されており、補助ァ ノード 32は、主電源 20の正極と切り替えスィッチ 34を介して電気的に接続されてい る。
[0029] これにより、開閉部材 31が閉じた状態で切り替えスィッチ 34により補助アノード 32と 力ソード 18が接続された状態(図 1参照)では、成膜室 2内が真空状態であるか否か に関わらず、プラズマガン 1の放電空間 12内を真空状態に保つことができ、力ソード 18と補助アノード 32との間でアーク放電が生じ、プラズマを発生させることができる。 本実施の形態では、プラズマ流出阻止 Z許容装置 30は、ゲートバルブで構成され、 開閉部材 31がその弁体で構成され、駆動装置 71がその弁体駆動装置 (電磁駆動 機構、エアシリンダ等)で構成されている。図 1には、駆動装置 71を構成する弁体駆 動装置のァクテユエータのみが示されて 、る。
[0030] 成膜室 2は、チャンバ 35を有しており、チャンバ 35の内部空間により、成膜空間 46 が形成される。チャンバ 35の側壁のプラズマガン 1側の適所には、貫通孔 36が設け られている。該貫通孔 36が、プラズマ流入口 36を形成する。プラズマ流出阻止 Z許 容装置 30は、成膜室 2に設けられた貫通孔 36と連通するように配設されている。ブラ ズマ流入口(貫通孔) 36は、円柱プラズマ CPが通過し、プラズマ流出阻止 Z許容装 置 30の開閉部材 31を介してプラズマガン 1と成膜室 2とが気密状態を保って連通さ れれば、その形状等は特に限定されない。これにより、容器 72の内部が、プラズマ流 出口 70を通じて成膜室 2の内部と連通する。
[0031] チャンバ 35内の上部には、基材ホルダ 38が配設されている。基材ホルダ 38は、基 材 39を保持するものである。該基材ホルダ 38は、ホルダ部 38aと回転軸 38bを有し ている。回転軸 38bは、チャンバ 35の天井壁 35aを気密的に、かつ、回動自在に貫 通し、図示されない回転駆動機構と接続されており、それにより回転される。また、基 材ホルダ 38は、バイアス電源 48と電気的に接続されている。バイアス電源 48は、ホ ルダ部 38aに円柱プラズマ CPに対して負のバイアス電圧を印加する。なお、基材ホ ルダ 38の回転軸 38bと天井壁 35a (チャンバ 35)とは、絶縁されて接続されている。
[0032] また、天井壁 35aの適所には、排気ノ レブ 44により開閉可能な真空ポンプ接続口 45が設けられている。真空ポンプ接続口 45〖こは、図示されない真空ポンプが接続さ れている。この真空ポンプ (例えばターボポンプ)により真空引きされ、成膜空間 46は 成膜可能なレベルの真空度にまで速やかに減圧される。
[0033] 一方、チャンバ 35内の下部には、ハース 40、永久磁石 41及び支持体 42から構成 される蒸発源 47が設けられている。ハース 40の内部には、成膜材料 43が充填され ている。また、ハース 40は、永久磁石 41が内部に設けられた支持体 42に支持されて おり、切り替えスィッチ 34を介して主電源 20と電気的に接続されている。これにより、 成膜室 2に流入した円柱プラズマ CPは、永久磁石 41が形成する磁場の磁力線に沿 つて Z軸方向力 Y軸方向に曲がり、ハース 40が主アノードとしてプラズマを受けるこ とができる。なお、プラズマガン成膜装置 100は、装置全体の動作を制御する制御装 置(図示せず)を備えている。
[0034] 次に、本実施の形態 1に係るプラズマガン成膜装置 100の動作について説明する 。この動作は、図示されない制御装置の制御によって実現される。
[0035] まず、プラズマ流出阻止 Z許容装置 30の駆動装置 71が作動して、プラズマ流出口 70を開閉部材 31が閉鎖する。そして、図示されない真空ポンプの真空引きにより、 プラズマガン 1と成膜室 2内のそれぞれが真空状態になる。このとき、グリット電極 22、 23によって、プラズマガン 1 (正確には、放電空間 12)内は、力ソード 18側の圧力が 高くなるような圧力勾配が生じる。そして、プラズマガン 1に設けられた補助陰極 14の 先端から、 Arガスが放電空間 12内に供給され、補助陰極 14でグロ一放電が行われ る。このグロ一放電によって、保護部材 15を形成するタングステン等がスパッタされる 1S 開閉部材 31によって、スパッタされた金属が成膜室 2に混入されるのが防止され る。 [0036] 次に、グロ一放電力 補助陰極 14でのホロ力ソード放電に移行する。このホロカソ ード放電により、補助陰極 14の先端部分の温度が上昇すると、この熱で主陰極 17が 加熱されて高温になり、アーク放電が行われる。このようにして、力ソード 25からブラ ズマ放電誘発用熱電子が放出され、プラズマが発生する。発生したプラズマは、ダリ ット電極 22、 23による電界と電磁コイル 29による磁界により、力ソード 18から補助ァノ ード 32側に引き出され、円柱状に成形される。このとき、補助アノード 32が発生した プラズマを受ける。
[0037] 次に、駆動機構 71が作動して、開閉部材 31がプラズマ流出口 70の開口面に平行 に移動して、プラズマ流出口 70からプラズマの流出を許容する状態になり、プラズマ ガン 1と成膜室 2とが連通される。それと同時に切り替えスィッチ 34は、主アノードで あるハース 40に電流が流れるように切り替えられ、補助アノード 32が力ソード 18で発 生したプラズマを受けず、主アノードであるハース 40がプラズマを受ける状態となる( 図 2参照)。また、基材 39には、基材ホルダ 38を介して、プラズマに対して負のバイ ァス電圧が印加される。なお、プラズマを受けている状態における主アノードであるハ ース 40、又は、補助アノード 32と力ソード 18との間にはアーク放電が生じている。
[0038] これにより、成形された円柱プラズマ CPは、プラズマ流出口 70から流出して成膜室 2 (正確には、成膜空間 46)に導かれる。成膜室 2に導かれた円柱プラズマ CPは、永 久磁石 41が形成する磁場の磁力線に沿って Z軸方向から Y軸方向に曲がり、ハース 40が円柱プラズマ CPを受ける。このハース 40に照射されるプラズマにより、ハース 4 0に充填されている成膜材料が蒸発する。蒸発した成膜材料は、成膜空間 46中に存 在するプラズマ中を通過し、このとき陽イオンにイオンィ匕される。この陽イオンは、負 にバイアスされた基材 39上に堆積し、電子を受け取り、基材 39上に成膜される。
[0039] このような構成とすることにより、グロ一放電時にスノッタリングされた陰極を形成す る金属が、成膜室に混入することを防止することができる。また、基材ゃ成膜材料に 不純物が付着することが防止されるので、基材上に均一に成膜することができる。 次に、本実施の形態 1に係るプラズマガン成膜装置の変形例について説明する。
[変形例 1]
図 3は、変形例 1に係るプラズマガン成膜装置の構成を示す模式図である。また、 図 4は、図 3に示したプラズマガン成膜装置 101のプラズマ流出阻止 Z許容装置 70 の開閉部材 31が開放した状態を示す模式図である。なお、以下の説明では、図 1と 同一又は相当部分には同一符号を付し、重複する説明は省略する。
[0040] 図 3に示すように、本変形例では、図 1に示した補助アノード 32が、筒体 11の途中 に設けられており、力ソード 17で発生したプラズマを補助アノード 32で受ける場合に は、電磁コイル 29に電流を流さな 、ように構成されて!、る。
[0041] 具体的には、補助アノード 32は、筒体 11と同軸上に設けられた金属製 (例えば、銅 )で円筒状のアノード部材 74を有している。アノード部材 74は、筒体 11のグリッド電 極 23とプラズマ流出阻止 Z許容装置 30との間の適所に円筒状の取り付け部材 73a 及び 73bを介して気密的に設けられている。また、アノード部材 74は、主電源 20の 正極と切り替えスィッチ 34を介して電気的に接続されている。なお、アノード部材 74 は、取り付け部材 73a及び 73bにより、筒体 11と絶縁されている。
[0042] また、アノード部材 74の外周には、金属製 (例えば、銅)の冷却管 75が、アノード部 材 74の周方向に卷回されている。そして、冷却管 75には、冷却媒体 (ここでは、水) を循環させる冷却媒体供給装置(図示せず)が接続されており、アノード部材 74が冷 却されるように構成されて 、る。
[0043] 次に、本変形例に係るプラズマガン成膜装置 101の動作について説明する。
上述したように、補助陰極 14でグロ一放電が行われ、ついで、主陰極 17でアーク放 電が行われ、力ソード 17でプラズマが発生する。発生したプラズマは、グリッド電極 2 2、 23の電界により、円柱状に成形され、グリッド電極 22、 23の内部空間を通過して 、補助アノード 32側に引き出される。そして、グリッド電極 23を通過した円柱プラズマ CPは、電磁コイル 29に電流が流されていないため、筒体 11の内壁に向かって広が り、この広がったプラズマを補助アノード 32が受ける。
次に、駆動機構 71が作動して、開閉部材 31がプラズマ流出口 70の開口面に平行 に移動して、プラズマ流出口 70からプラズマの流出を許容する状態になり、プラズマ ガン 1と成膜室 2とが連通される。それと同時に切り替えスィッチ 34は、主アノードで あるハース 40に電流が流れるように切り替えられ、補助アノード 32が力ソード 18で発 生したプラズマを受けず、主アノードであるハース 40がプラズマを受ける状態となる。 また、同時に電磁コイル 29に電流を流して放電空間 12に磁界を作用させ、筒体 11 の内壁に向かって広がっているプラズマを、円柱状に形成する。そして、この円柱プ ラズマ CPが、プラズマ流出口 70から流出して成膜室 2 (正確には、成膜空間 46)に 導かれる。成膜室 2に導かれた円柱プラズマ CPは、永久磁石 41が形成する磁場の 磁力線に沿って Z軸方向から Y軸方向に曲がり、ハース 40が円柱プラズマ CPを受け る。
このように、本変形例 1に係るプラズマガン成膜装置では、電磁コイル 29に電流を 流さないようにすることにより、円柱プラズマ CPが筒体 11の内壁に向力つて広がり、 補助アノード 32でこの広がったプラズマを受けることができる。
(実施の形態 2)
図 5は、本発明の実施の形態2に係るプラズマガン成膜装置 200の構成を示す模 式図である。図 6は、図 5のプラズマガン成膜装置 200のプラズマ流出阻止 Z許容装 置の開閉部材が開放した状態を示す模式図である。なお、以下の説明では、図 1と 同一又は相当部分には同一符号を付し、重複する説明は省略する。また、本実施の 形態では、プラズマガン成膜装置 200の構造における方向を、便宜上、図 5及び図 6 に示す、三次元直交座標系の X軸、 Y軸及び Z軸の方向で表わす。
[0044] 図 5に示すように、本実施の形態 2に係るプラズマガン成膜装置 200は、 YZ平面に おいて略十字形をなしており、 Z軸方向から見て順番に、プラズマガン 1と、 Z軸方向 の軸を中心とした円筒状の非磁性 (例えばステンレス製やガラス製)のシートプラズマ 変形室 3と、 Y軸方向の軸を中心とした円筒状の非磁性 (例えばステンレス製)の成 膜室 2aと、を備えて構成されている。なお、プラズマガン 1、シートプラズマ変形室 3 及び成膜室 2aは、互いに気密状態を保って連通されて!/ヽる。
[0045] シートプラズマ変形室 3は、円筒状の筒体 50を有している。筒体 50の内部空間に より、輸送空間 51が形成される。筒体 50の一方 (プラズマガン 1側)の端部は、蓋部 材 52aにより閉鎖されており、他方の端部は、蓋部材 52bにより閉鎖されている。蓋部 材 52aの中心部には、貫通孔 68が設けられ、この貫通孔 68と蓋部材 19に設けられ た内部空間(プラズマ流出口 70)が連通するように、蓋部材 19が配設されている。ま た、蓋部材 52bの中心部には、スリット孔 56が X軸方向に延びるように形成されてい る。筒体 50は、適宜な手段により、気密的に、かつ、電気的に絶縁されるように、筒 体 11と同軸状(中心軸を共有するように)に接続されている。筒体 50は、永久磁石 5 3等の磁力を円柱プラズマに作用させやすい観点から、ガラスや SUS等の非磁性の 材料で構成されている。
[0046] 筒体 50の外側には、筒体 50 (正確には、輸送空間 51)を挟み、互いに同極(ここで は N極)が対向するようにして、 Y軸方向に磁化され、かつ X軸方向に延びる一対の 角形の永久磁石 53が設けられている。
[0047] また、永久磁石 53の力ソード 18に近い側には、環状の成形電磁コイル 54 (空心コ ィル) 1S 筒体 50の周面を囲むように配設されている。なお、成形電磁コイル 54には 、力ソード 18側を S極、主アノード 40側を N極とする向きの電流が通電されている。こ の永久磁石 53と成形電磁コイル 54からシートプラズマ変形機構が構成される。
[0048] そして、成形電磁コイル 54に電流を流すことにより、シートプラズマ変形室 3の輸送 空間 51に形成されるコイル磁界と、永久磁石 53によりこの輸送空間 51に形成される 磁石磁界との相互作用により、シートプラズマ変形室 3の輸送空間 51を円柱プラズマ CP力 ¾軸方向に移動する。この間に、円柱プラズマ CPは、 XZ平面に沿って拡がる、 均一なシート状のプラズマ(以下、シートプラズマという) SPに変形される。
[0049] このようにして変形されたシートプラズマ SPは、筒体 50の蓋部材 52bと成膜室 2aの 側壁との間に介在するスリット状のボトルネック部 55を介して成膜室 2aへ流入する。
[0050] 成膜室 2aは、円筒状の筒体 37と、ボトルネック部 58を介して筒体 37と連通する Z 軸方向に中心軸を有する円筒状の筒体 59と、を有している。筒体 37の内部空間に より、成膜空間 46が形成される。筒体 37の一方の端部は、蓋部 37aにより閉鎖され ており、他方の端部は、蓋部 37bにより閉鎖されている。
[0051] 筒体 37の筒体 50近傍側の周面の中央部には、 X軸方向に延びるスリット孔 57が 設けられており、該スリット孔 57が、プラズマ流入口 57を形成する。このスリット孔 57 には、筒体 37と筒体 50の内部空間が連続するように、断面が四角形で筒状のボトル ネック部 55が気密的に設けられている。ボトルネック部 55は、蓋部材 52bに設けられ たスリット孔 56と気密的に接続されている。なお、ボトルネック部 55の高さ (Y軸方向 寸法)及び長さ(Z軸方向寸法)並びに幅 (X軸方向寸法)は、シートプラズマ SPを適 切に通過するように設計されている。また、スリット孔 56、 57の幅は、変形されたシー トプラズマ SPの幅よりも大きく形成されていればよぐ適宜な大きさに設計される。こ れにより、シートプラズマ SPを構成しない余分なアルゴンイオン (Ar+)と電子が、成膜 室 2aに導入されるのを防止することができ、シートプラズマ SPの密度を高い状態に 保つことができる。
[0052] 筒体 37の内部には、シートプラズマ SPを挟んで対抗するように成膜材料としてター ゲット 60と基材ホルダ 28が配設されている。ターゲット 60は、ターゲットホルダ 61に 保持されており、該ターゲットホルダ 61は、ホルダ部 6 laと支持部 6 lbを有している。 支持部 61bは、蓋部材 37bを気密的に、かつ、摺動自在に貫通し、図示されない駆 動機構と接続されており、 Y軸方向に移動可能に構成されている。また、ターゲットホ ルダ 61には、バイアス電源 62と電気的に接続されている。バイアス電源 62は、ホル ダ部 61aにシートプラズマ SPに対して負のバイアス電圧を印加する。なお、ターゲッ トホルダ 61の支持部 61bと蓋部材 37bとは、絶縁されている。
一方、基材ホルダ 28は、基材 39を保持するものである。該基材ホルダ 28は、ホル ダ部 28aと支持部 28bを有している。支持部 28bは、蓋部 37aを気密的に、かつ、摺 動自在に貫通し、図示されない駆動機構と接続されており、 Y軸方向に移動可能に 構成されている。また、基材ホルダ 28は、バイアス電源 48と電気的に接続されている 。バイアス電源 48は、ホルダ部 28aにシートプラズマ SPに対して負のバイアス電圧を 印加する。なお、基材ホルダ 28の支持部 28bと蓋部 37aとは、絶縁されて接続されて いる。また、ここでは、ターゲットホルダ 61と接続するバイアス電源 62と基材ホルダ 28 と接続するバイアス電源 48を別々に設けたが、これらを 1つの共通のバイアス電源で 構成してもよい。さらに、主電源 20にターゲットホルダ 61と基材ホルダ 28がそれぞれ 接続されるような構成としてもよい。但し、上述のようにターゲットホルダ 61と基材ホル ダ 28とに、別々にバイアス電源を設けることにより、ターゲット 60と基材 39の間の距 離を自由に設定することができ、かつ、負のバイアス電圧をターゲット 60と基材 39の 両方に印加することができる、その結果、スパッタ効率が向上する。
[0053] また、蓋部材 37aの適所には、排気ノ レブ 44により開閉可能な真空ポンプ接続口 45が設けられている。真空ポンプ接続口 45〖こは、図示されない真空ポンプが接続さ れている。この真空ポンプ (例えばターボポンプ)により真空引きされ、成膜空間 46は スパッタリングプロセス可能なレベルの真空度にまで速やかに減圧される。
[0054] 筒体 37の外部には、磁力の強さをコントロールできる電磁コイル 63、 64力 互いに 対を成して筒体 11、 50の中心軸を貫通せしめるように設けられている。電磁コイル 6 3、 64は、異極同士(ここでは、電磁コイル 63は N極、電磁コイル 64は S極)を向かい 合わせて設けられている。
[0055] この電磁コイル 63、 64に電流を流すことにより作られるコイル磁界(例えば 10G〜3 OOG程度)によって、シートプラズマ SPの幅方向(X軸方向)は、成膜室 3の成膜空 間 51を跨ぐように Z軸方向に移動する間に、ミラー磁界として、その幅方向拡散を適 切に抑えるように形状を整形される。
[0056] また、成膜室 2aは、ボトルネック部 58を介して筒体 37と連通する Z軸方向に中心軸 を有する筒体 59を有している。筒体 59の一方の (筒体 37側)端部は、蓋部材 65aに より閉鎖されており、他方の端部は、蓋部材 65bにより閉鎖されている。蓋部材 65aの 中心部には、 X軸方向に延びるスリット孔 67が形成されている。このスリット孔 67には 、筒体 59と筒体 37の内部空間が連続するように、断面が四角形で筒状のボトルネッ ク部 58が気密的に設けられている。ボトルネック部 58は、筒体 37の周面の中央部に X軸方向に延びるように形成されたスリット孔 66と気密的に接続されている。なお、ボ トルネック部 58の高さ ( Y軸方向寸法)及び長さ(Z軸方向寸法)並びに幅 (X軸方向 寸法)は、ボトルネック部 55と同様にシートプラズマ SPを適切に通過するように設計 されている。また、スリット孔 66、 67の高さ及び幅は、上述したスリット孔 56、 57と同 様に構成されている。
[0057] 蓋部材 65bの内面には、主アノード 40が設けられており、主アノード 40は、切り替 えスィッチ 34を介して主電源 20の正極と電気的に接続されている。主アノード 40は 、力ソード 18との間で適宜の正の電圧(例えば 100V)を印加され、これにより、カソー ド 18で主アノード 40の間のアーク放電によるシートプラズマ SP中の荷電粒子(特に 電子)を回収することができる。
[0058] 主アノード 40の裏面(力ソード 18に対する対向面の反対側の面)には、主アノード 4 0側を S極、大気側を N極とした永久磁石 41が配置されている。これにより、永久磁石 41の N極から出て S極に入る XZ平面に沿った磁力線により、主アノード 40に向かう シートプラズマ SPの幅方向(X軸方向)の拡散を抑えるようにシートプラズマ SPが幅 方向に収束され、シートプラズマ SPの荷電粒子力 主アノード 40に適切に回収され る。
[0059] なお、本発明の効果が得られるという観点から、プラズマ流出阻止 Z許容装置 30を シートプラズマ変形室 3 (正確には、ボトルネック部 55)に設けてもよい。また、筒体 11 、筒体 50及び筒体 59の XY平面に平行な断面は、ここでは円形であるが、これに限 定されるものではなぐ多角形等であってもよい。また、筒体 37の XZ平面に平行な断 面は、ここでは円形であるが、これに限定されるものではなぐ多角形等であってもよ い。
[0060] 次に、本実施の形態 2に係るプラズマガン成膜装置 200の動作について説明する
[0061] まず、実施の形態 1に係るプラズマガン成膜装置 100の動作と同様に、円柱プラズ マ CPが形成される。形成された円柱プラズマ CPは、電磁コイル 29によって形成され る磁場の磁力線に沿ってシートプラズマ変形室 3に導かれる。
シートプラズマ変形室 3に導かれた円柱プラズマ CPは、一対の永久磁石 53と成形 電磁コイル 54から発生する磁場によってシート状に広がって (XZ平面に延びるように )、シートプラズマ SPに変形される。このシートプラズマ SPは、スリット孔 56、ボトルネ ック部 55及びスリット孔 57を通過して成膜室 2aに導かれる。
[0062] 成膜室 2aに導入されたシートプラズマ SPは、電磁コイル 63、 64による磁場によつ て、幅方向の形状が整えられ、ターゲット 60と基材 39の間の空間にまで導かれる。タ 一ゲット 60には、ターゲットホルダ 61を介して、シートプラズマ SPに対して負のバイァ ス電圧が印加される。また、基材 39にも、基材ホルダ 28を介して、シートプラズマ SP に対して負のバイアス電圧が印加される。ターゲット 60が負にバイアスされることによ り、 Ar+イオンがターゲットを効率よくスパッタする。スパッタされたターゲット 60を構成 する原子は、垂直方向にシートプラズマ SP中を通過し、このとき陽イオンにイオンィ匕 される。この陽イオンは、負にノィァスされた基材 39上に堆積し、電子を受け取り、基 材 39を成膜する。 そして、シートプラズマ SPは、永久磁石 41の磁力線により幅方向に収束され、主ァ ノード 40力 シートプラズマ SPを受ける。
[0063] このように構成することにより、グロ一放電時にスパッタリングされた陰極を形成する 金属が、成膜室に混入することを防止することができる。また、基材ゃ成膜材料に不 純物が付着することが防止されるので、基材を均一に成膜することができる。
[0064] 次に、本実施の形態 2に係るプラズマガン成膜装置の変形例について説明する。
[変形例 2]
図 7は、変形例 2に係るプラズマガン成膜装置の構成を示す模式図である。また、 図 8は、図 7に示したプラズマガン成膜装置 201のプラズマ流出阻止 Z許容装置 70 の開閉部材 31が開放した状態を示す模式図である。なお、以下の説明では、図 5と 同一又は相当部分には同一符号を付し、重複する説明は省略する。
[0065] 図 7に示すように、本変形例では、図 5に示した補助アノード 32が、筒体 11の途中 に設けられており、力ソード 17で発生したプラズマを補助アノード 32で受ける場合に は、電磁コイル 29、 63、 64及び成形電磁コイル 54のそれぞれに電流を流さないよう に構成されている。
具体的には、補助アノード 32は、筒体 11と同軸上に設けられた金属製 (例えば、銅 )で円筒状のアノード部材 74を有している。アノード部材 74は、筒体 11のグリッド電 極 23とプラズマ流出阻止 Z許容装置 30との間の適所に円筒状の取り付け部材 73a 及び 73bを介して気密的に設けられている。また、アノード部材 74は、主電源 20の 正極と切り替えスィッチ 34を介して電気的に接続されている。なお、アノード部材 74 は、取り付け部材 73a及び 73bにより、筒体 11と絶縁されている。
[0066] また、アノード部材 74の外周には、金属製 (例えば、銅)の冷却管 75が、アノード部 材 74の周方向に卷回されている。そして、冷却管 75には、冷却媒体 (ここでは、水) を循環させる冷却媒体供給装置(図示せず)が接続されており、アノード部材 74が冷 却されるように構成されて 、る。
[0067] 次に、本変形例に係るプラズマガン成膜装置 201の動作について説明する。
上述したように、補助陰極 14でグロ一放電が行われ、ついで、主陰極 17でアーク放 電が行われ、力ソード 17でプラズマが発生する。発生したプラズマは、グリッド電極 2 2、 23の電界により、円柱状に成形され、グリッド電極 22、 23の内部空間を通過して 、補助アノード 32側に引き出される。そして、グリッド電極 23を通過した円柱プラズマ CPは、電磁コイル 29、 63、 64及び成形電磁コイル 54のそれぞれに電流が流されて いないため、筒体 11の内壁に向力つて広がり、この広がったプラズマを補助アノード 32が受ける。なお、力ソード 17で発生したプラズマを円柱状に成形させない観点か ら、電磁コイル 29のみに電流を流さずにしてもよい。
次に、駆動機構 71が作動して、開閉部材 31がプラズマ流出口 70の開口面に平行 に移動して、プラズマ流出口 70からプラズマの流出を許容する状態になり、プラズマ ガン 1とシートプラズマ変形室 3とが連通される。それと同時に切り替えスィッチ 34は、 主アノード 40に電流が流れるように切り替えられ、補助アノード 32が力ソード 18で発 生したプラズマを受けず、主アノード 40がプラズマを受ける状態となる(図 8参照)。ま た、同時に電磁コイル 29、 63、 64及び成形電磁コイル 54のそれぞれに電流を流し て放電空間 12等に磁界を作用させ、筒体 11の内壁に向力つて広がっているプラズ マを、円柱状に形成する。そして、この円柱プラズマ CP力 プラズマ流出口 70から流 出してシートプラズマ変形室 3 (正確には、輸送空間 51)に導かれる。シートプラズマ 変形室 3に導かれた円柱プラズマ CPは、成形電磁コイルによるコイル磁界と永久磁 石 53による磁石磁界との相互作用により、シートプラズマ SPに変形され、成膜室 2a に導かれる。そして、成膜室 2aに導かれたシートプラズマ SPは、電磁コイル 63、 64 によるコイル磁界によって形状が成形され、主アノード 40がシートプラズマ SPを受け る。
このように、本変形例 2に係るプラズマガン成膜装置では、電磁コイル 29、 63、 64 及び成形電磁コイル 54のそれぞれに電流を流さないようにすることにより、円柱ブラ ズマ CPが筒体 11の内壁に向かって広がり、補助アノード 32でこの広がったプラズマ を受けることができる。
なお、本発明の実施の形態では、プラズマ成膜装置内を真空状態にして成膜を行 つたが、成膜室に反応性のガスを導入し、このガスと成膜材料の反応物を用いて基 材を成膜するような構成としてもょ ヽ。
また、プラズマ流出阻止 Z許容装置は、開閉部材が揺動してプラズマ流出口を開 閉するものであってもよい。
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らか である。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行 する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を 逸脱することなぐその構造及び Z又は機能の詳細を実質的に変更できる。
産業上の利用可能性
本発明のプラズマガン及びプラズマガン成膜装置は、成膜室に不純物が混入する のを防止することができるので有用である。また、成膜室とプラズマガンとを別々に減 圧することができるため、プラズマガンでプラズマを発生させた状態で成膜室内部を 大気圧下で作業する、あるいは、成膜室内を真空状態に保った状態でプラズマガン の取替え作業等をすることができるプラズマガン及びプラズマガン成膜装置として有 用である。

Claims

請求の範囲
[1] プラズマ流出口を有する容器と、
前記容器の内部に配設され放電によりプラズマを発生する力ソードと、 前記プラズマ流出口と前記力ソードとの間に位置可能に設けられ、前記力ソードで発 生したプラズマを受けることが可能な補助アノードと、
前記容器の内部を排気及び封止するための排気バルブと、を有し、
前記力ソードの放電により発生するプラズマの前記プラズマ流出口からの流出を阻 止及び許容するプラズマ流出阻止 Z許容装置と、を備える、プラズマガン。
[2] 前記プラズマ流出阻止 Z許容装置は、前記プラズマ流出口を開閉自在な開閉部 材と、前記開閉部材を開閉駆動する駆動装置と、を有し、
前記補助アノードは、環状に形成されている、請求項 1に記載のプラズマガン。
[3] 前記補助アノードは、前記力ソードと前記開閉部材の間に設けられている、請求項 2 に記載のプラズマガン。
[4] 前記プラズマ流出阻止 Z許容装置は、前記プラズマ流出口を開閉自在な開閉部 材と、前記開閉部材を開閉駆動する駆動装置と、を有し、
前記補助アノードが、前記開閉部材が前記プラズマ流出口を閉鎖したとき前記カソ ードと対向するように、前記開閉部材に設けられている、請求項 1に記載のプラズマ ガン。
[5] 前記開閉部材は、前記プラズマ流出口の開口面に平行に移動して該プラズマ流出 口を開閉自在なように構成され、前記駆動装置は、前記プラズマ流出口を開閉する よう前記開閉部材を移動させる、請求項 2〜4のいずれかに記載のプラズマガン。
[6] プラズマ流出口を有する容器と、前記容器の内部に配設され放電によりプラズマを 発生する力ソードと、前記容器の内部を排気及び封止するための排気バルブと、を 有するプラズマガンと、
プラズマ流入口を有する内部を減圧可能な成膜室と、
前記プラズマ流入口と前記力ソードとの間に位置可能に設けられ、前記力ソードで 発生したプラズマを受けることが可能な補助アノードと、
前記力ソードの放電により発生するプラズマの前記プラズマ流入口からの流入を阻 止及び許容するプラズマ流出阻止 z許容装置と
前記成膜窒の内部に配設された主アノードと、を備え、
前記プラズマガンは、前記容器の内部が前記プラズマ流出口及び前記プラズマ流 入口を通じて前記成膜室の内部と連通するように配設され、
前記主アノードは、前記補助アノードが前記力ソードで発生したプラズマを受けず、 かつ、前記プラズマ流出阻止 Z許容装置が前記プラズマ流入口から前記プラズマの 流入を許容する状態にぉ ヽて、前記力ソードで発生したプラズマを受けることが可能 なように配設されている、プラズマガン成膜装置。
[7] 前記成膜室の内部に基材ホルダと、成膜材料を収容し、かつ、蒸発させるハースと
、が配設され、前記ハースが前記主アノードを構成しており、前記ハースが受ける前 記プラズマにより該ハースに収容された成膜材料が蒸発されて、基材ホルダに保持 された基材上に成膜される、請求項 6に記載のプラズマガン成膜装置。
[8] 前記容器と前記成膜室との間に配設されたシートプラズマ変形室と、
シートプラズマ変形機構と、を備え、
前記シートプラズマ変形室は、前記成膜室の内部と前記プラズマ流入口を通じて連 通し、かつ、前記容器の内部と前記プラズマ流出口を通じて連通するよう配設され、 前記プラズマガンは前記容器内に円柱状のプラズマが形成されて前記プラズマ流出 口から流出するよう構成され、
前記流出した前記円柱状プラズマが前記シートプラズマ変形室において前記シート プラズマ変形機構によりシートプラズマに変形され、
前記成膜室において、前記シートプラズマ変形室力 流入し前記主アノードに向かう 前記シートプラズマを利用して成膜が行われる、請求項 6に記載のプラズマガン成膜 装置。
PCT/JP2006/316942 2006-03-01 2006-08-29 プラズマガン及びそれを備えるプラズマガン成膜装置 WO2007099658A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007524106A JP5416351B2 (ja) 2006-03-01 2006-08-29 プラズマガン成膜装置及びその運転方法
US12/281,312 US20110011734A1 (en) 2006-03-01 2006-08-29 Plasma Gun and Plasma Gun Deposition System Including the Same
EP06796922A EP1991037A1 (en) 2006-03-01 2006-08-29 Plasma gun and plasma gun film forming apparatus provided with same
KR1020087020227A KR101237184B1 (ko) 2006-03-01 2006-08-29 플라즈마 건 및 이를 구비한 플라즈마 건 성막장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-054603 2006-03-01
JP2006054603 2006-03-01

Publications (1)

Publication Number Publication Date
WO2007099658A1 true WO2007099658A1 (ja) 2007-09-07

Family

ID=38458780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316942 WO2007099658A1 (ja) 2006-03-01 2006-08-29 プラズマガン及びそれを備えるプラズマガン成膜装置

Country Status (6)

Country Link
US (1) US20110011734A1 (ja)
EP (1) EP1991037A1 (ja)
JP (1) JP5416351B2 (ja)
KR (1) KR101237184B1 (ja)
TW (1) TW200735726A (ja)
WO (1) WO2007099658A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153865A1 (ja) * 2012-04-12 2013-10-17 中外炉工業株式会社 プラズマ発生装置および蒸着装置並びにプラズマ発生方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8749053B2 (en) * 2009-06-23 2014-06-10 Intevac, Inc. Plasma grid implant system for use in solar cell fabrications
JP6068491B2 (ja) 2011-11-08 2017-01-25 インテヴァック インコーポレイテッド 基板処理システムおよび基板処理方法
KR101503401B1 (ko) * 2012-03-05 2015-03-17 삼성디스플레이 주식회사 유기 발광 장치의 제조 방법
CN102781156A (zh) * 2012-06-25 2012-11-14 中国科学院等离子体物理研究所 带有磁场约束的在大气压条件下产生等离子体射流的装置
CN102781157B (zh) * 2012-07-17 2014-12-17 西安电子科技大学 平面射流等离子体产生装置
WO2014100506A1 (en) 2012-12-19 2014-06-26 Intevac, Inc. Grid for plasma ion implant
JP6403269B2 (ja) * 2014-07-30 2018-10-10 株式会社神戸製鋼所 アーク蒸発源
CN108770176B (zh) * 2018-08-06 2023-11-17 法德(浙江)机械科技有限公司 一种大型低压高效高束流直流空心阴极源
US11630505B2 (en) 2020-10-26 2023-04-18 Universal City Studios Llc Interactive energy effect attraction
CN113042742A (zh) * 2021-03-17 2021-06-29 南京工业大学 一种用于钛粉制备深度精炼装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202467A (ja) * 1992-01-28 1993-08-10 Stanley Electric Co Ltd 真空蒸着装置
JP2001177372A (ja) * 1999-12-15 2001-06-29 Seiko Epson Corp 圧電振動子と圧電振動片の周波数調整方法及び周波数調整用の加工装置
JP2001239153A (ja) * 2000-03-01 2001-09-04 Sumitomo Heavy Ind Ltd イオン発生装置及び成膜装置
JP2003264098A (ja) * 2002-03-08 2003-09-19 Sumitomo Heavy Ind Ltd シートプラズマ処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0385475A3 (en) * 1989-03-02 1991-04-03 Asahi Glass Company Ltd. Method of forming a transparent conductive film
JPH05287510A (ja) * 1992-04-10 1993-11-02 Asahi Glass Co Ltd 蒸着装置
JPH0669267U (ja) * 1993-03-10 1994-09-27 中外炉工業株式会社 プラズマガン式成膜装置
JPH0817377A (ja) * 1994-06-27 1996-01-19 Rikagaku Kenkyusho 電子ビーム励起イオンプラズマ発生装置
JPH11279748A (ja) * 1998-03-27 1999-10-12 Dainippon Printing Co Ltd イオンプレーティング装置
JPWO2002098812A1 (ja) * 2001-06-04 2004-09-16 日本板硝子株式会社 透明基板の製造方法及び透明基板、並びに該透明基板を有する有機エレクトロルミネッセンス素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202467A (ja) * 1992-01-28 1993-08-10 Stanley Electric Co Ltd 真空蒸着装置
JP2001177372A (ja) * 1999-12-15 2001-06-29 Seiko Epson Corp 圧電振動子と圧電振動片の周波数調整方法及び周波数調整用の加工装置
JP2001239153A (ja) * 2000-03-01 2001-09-04 Sumitomo Heavy Ind Ltd イオン発生装置及び成膜装置
JP2003264098A (ja) * 2002-03-08 2003-09-19 Sumitomo Heavy Ind Ltd シートプラズマ処理装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153865A1 (ja) * 2012-04-12 2013-10-17 中外炉工業株式会社 プラズマ発生装置および蒸着装置並びにプラズマ発生方法
JP2013218985A (ja) * 2012-04-12 2013-10-24 Chugai Ro Co Ltd プラズマ発生装置および蒸着装置並びにプラズマ発生方法
US9824867B2 (en) 2012-04-12 2017-11-21 Chugai Ro Co., Ltd. Plasma generation apparatus, deposition apparatus, and plasma generation method

Also Published As

Publication number Publication date
KR101237184B1 (ko) 2013-02-25
TW200735726A (en) 2007-09-16
EP1991037A1 (en) 2008-11-12
JPWO2007099658A1 (ja) 2009-07-16
JP5416351B2 (ja) 2014-02-12
US20110011734A1 (en) 2011-01-20
KR20080099273A (ko) 2008-11-12

Similar Documents

Publication Publication Date Title
JP5416351B2 (ja) プラズマガン成膜装置及びその運転方法
US10982318B2 (en) Arc evaporation source
US20070023282A1 (en) Deflection magnetic field type vacuum arc vapor deposition device
WO2007066574A1 (ja) シートプラズマ成膜装置
JPH11158625A (ja) マグネトロンスパッタ成膜装置
JP4795174B2 (ja) スパッタリング装置
JP2013036106A (ja) 成膜装置及び成膜方法
JPWO2007066606A1 (ja) プラズマ成膜装置
CN112708858B (zh) 磁控液体阴极电弧等离子体蒸发离化源、镀膜装置及方法
JP5231962B2 (ja) シートプラズマ成膜装置
JP2008038197A (ja) プラズマ成膜装置
KR20190108812A (ko) 전자석을 포함하는 스퍼터장치용 스퍼터건
JP2008038196A (ja) プラズマ成膜装置
JP5175229B2 (ja) 成膜装置及びその運転方法
JP5271145B2 (ja) プラズマ成膜装置
WO2023018758A1 (en) Sputtering machines, substrate holders, and sputtering processes with magnetic biasing
JP2022515745A (ja) プラズマ処理を実行するためのプラズマ源のための磁石構成
JP2023071282A (ja) 真空処理装置及び真空処理方法
JP3898318B2 (ja) スパッタリング装置
KR20190080129A (ko) 중심전자석을 포함하는 스퍼터장치용 스퍼터건
JP2024011979A (ja) 成膜装置
KR20190080128A (ko) 박막 균일성이 향상된 반응형 스퍼터장치
JP5060436B2 (ja) シートプラズマ成膜装置
JP4860594B2 (ja) スパッタリング装置
JP2009087664A (ja) プラズマガン及びそれを備える成膜装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007524106

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006796922

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087020227

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12281312

Country of ref document: US