WO2007099005A1 - Additive baustoffmischungen mit mikropartikeln die in der baustoffmischung gequollen werden - Google Patents

Additive baustoffmischungen mit mikropartikeln die in der baustoffmischung gequollen werden Download PDF

Info

Publication number
WO2007099005A1
WO2007099005A1 PCT/EP2007/050882 EP2007050882W WO2007099005A1 WO 2007099005 A1 WO2007099005 A1 WO 2007099005A1 EP 2007050882 W EP2007050882 W EP 2007050882W WO 2007099005 A1 WO2007099005 A1 WO 2007099005A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
microparticles
building material
core
polymeric core
Prior art date
Application number
PCT/EP2007/050882
Other languages
English (en)
French (fr)
Inventor
Jan Hendrik Schattka
Thorsten Goldacker
Holger Kautz
Gerd LÖHDEN
Original Assignee
Evonik Röhm Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Röhm Gmbh filed Critical Evonik Röhm Gmbh
Priority to JP2008556735A priority Critical patent/JP5473337B2/ja
Priority to CA002644507A priority patent/CA2644507A1/en
Priority to BRPI0708410-2A priority patent/BRPI0708410A2/pt
Priority to MX2008011030A priority patent/MX2008011030A/es
Priority to EP07704234A priority patent/EP1989157A1/de
Publication of WO2007099005A1 publication Critical patent/WO2007099005A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/08Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
    • C04B16/085Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons expanded in situ, i.e. during or after mixing the mortar, concrete or artificial stone ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2664Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of ethylenically unsaturated dicarboxylic acid polymers, e.g. maleic anhydride copolymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0049Water-swellable polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0057Polymers chosen for their physico-chemical characteristics added as redispersable powders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0065Polymers characterised by their glass transition temperature (Tg)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/29Frost-thaw resistance

Definitions

  • the present invention relates to the use of polymeric microparticles in hydraulically setting building material mixtures to improve their Frostg. Freeze-thaw resistance.
  • the structure of a cement-bound concrete is traversed by capillary pores (radius: 2 ⁇ m - 2 mm) or gel pores (radius: 2 - 50 nm). Pore water contained therein differs in its state form depending on the pore diameter.
  • a prerequisite for an improved resistance of the concrete during frost and thaw changes is that the distance of each point in the cement stone from the next artificial air pore does not exceed a certain value. This distance is also referred to as the "distance factor” or “powers spacing factor” [TCPowers, The air requirement of frost-resistant concrete, "Proceedings of the Highway Research Board” 29 (1949) 184-202]. Laboratory tests have shown that exceeding the critical "Power spacing factor" of 500 ⁇ m leads to damage to the concrete during frost and thaw cycles. In order to achieve this with a restricted air-pore content, the diameter of the artificially introduced air pores must therefore be less than 200-300 ⁇ m [K.Snyder, K. Natesaiyer & K.Hover, The stereological and Statistical properties of entrained air voids in concrete: A mathematical basis for air void system characterization) "Materials Science of Concrete” VI (2001) 129-214].
  • an artificial air pore system depends largely on the composition and grain size of the aggregates, the type and amount of cement, the concrete consistency, the mixer used, the mixing time, the temperature, but also on the type and amount of the air entraining agent. Under consideration of the appropriate manufacturing rules, their effects can indeed be mastered, however, there may be a large number of undesired impairments, which ultimately leads to the desired air content in the concrete can be exceeded or fallen below and thus adversely affected the strength or frost resistance of the concrete ,
  • Such artificial air pores can not be metered directly, but by the addition of so-called air-entraining agents, the air introduced by mixing is stabilized [L. Du & K.J. Folliard, Mechanism of air entrainment in concrete "Cement & Concrete Research” 35 (2005) 1463-71].
  • Conventional air entraining agents are mostly of a surfactant-like structure and break the air introduced by the mixing into small air bubbles with a diameter as small as possible of 300 ⁇ m and stabilize them in the moist concrete structure. One distinguishes between two types.
  • These hydrophobic salts reduce the surface tension of the water and accumulate at the interface between cement grain, air and water. They stabilize the microbubbles and are therefore found in the hardening concrete on the surfaces of these air pores again.
  • the other type e.g. Sodium lauryl sulfate (SDS) or Natriumdodecylphenylsulfonat - on the other hand forms with calcium hydroxide soluble calcium salts, but show an abnormal solution behavior. Below a certain critical temperature these surfactants show a very low solubility, above this temperature they are very soluble. By preferentially accumulating at the air-water interface, they also reduce the surface tension, thus stabilizing the microbubbles, and are preferably found on the surfaces of these air voids in the hardened concrete.
  • SDS Sodium lauryl sulfate
  • Natriumdodecylphenylsulfonat forms with calcium hydroxide soluble calcium salts, but show an abnormal solution behavior. Below a certain critical temperature these surfactants show a very low solubility, above this temperature they are very soluble.
  • microparticles described therein are characterized in particular by the fact that they have a cavity which is smaller than 200 microns (diameter) and this hollow core consists of air (or a gaseous substance). This also includes porous microparticles of the 100 ⁇ m scale, which can have a multiple of smaller cavities and / or pores.
  • hollow microparticles for artificial air entrainment in concrete, two factors proved detrimental to the enforcement of this technology in the marketplace.
  • the production costs of hollow microspheres according to the prior art are too high and, on the other hand, only with relatively high dosages can a satisfactory resistance of the concrete to frost and thaw cycles be achieved.
  • the present invention was therefore based on the object to provide a means for improving the frost or freeze-thaw resistance for hydraulically setting building material mixtures, which develops its full effectiveness even at relatively low dosages. Another object was to not or not significantly affect the mechanical strength of the building material by this means.
  • core / shell microparticles which have a base swellable core and their shell of polymers having a glass transition temperature below 50 0 C exist; preferred are glass transition temperatures of less than 30 0 C; particularly preferred are glass transition temperatures of less than 15 ° C; most preferred are glass transition temperatures less than 5 ° C.
  • the particles according to the invention are preferably prepared by emulsion polymerization.
  • the particles according to the invention are suitable for giving a very good resistance to frost or frost / thaw changes even at very low dosages.
  • the unshuffled core / shell particles are added to the building material mixture, these swelling in the strongly alkaline mixture and thus forming the cavity, as it were, in situ.
  • a method for producing a building material mixture wherein swellable but still unswollen core / shell particles are mixed with the usual components of a building material and the swelling of the particles takes place only in the building material mixture.
  • the microparticles used consist of polymer particles which have a core (A) and at least one shell (B), the core / shell polymer particles having been swollen with the aid of a base.
  • the core (A) of the particle contains one or more ethylenically unsaturated carboxylic acid (derivative) monomers which allow swelling of the core; these monomers are preferably selected from the group of acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid and crotonic acid and mixtures thereof. Acrylic acid and methacrylic acid are particularly preferred.
  • the polymers forming the core may also be crosslinked.
  • the preferred amounts of crosslinker used are 0-10% by weight (based on the total amount of monomers in the core); more preferred are 0-6 wt% crosslinker; most preferred are 0-3 wt%.
  • the amount of crosslinker must be chosen in each case so that a swelling is not completely prevented.
  • crosslinkers examples include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, allyl (meth) acrylate, divinylbenzene, diallyl maleate, trimethylolpropane trimethacrylate, glycerol di (meth) acrylate, glycerol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate or mixtures thereof.
  • the notation (meth) acrylate as used herein means both methacrylate, e.g. Methyl methacrylate, ethyl methacrylate, etc., as well as acrylate, e.g. Methyl acrylate, ethyl acrylate, etc., as well as mixtures of both.
  • the shell (B) consists predominantly of nonionic, ethylenically unsaturated monomers.
  • Preferred such monomers are styrene, butadiene, vinyltoluene, ethylene, vinyl acetate, vinyl chloride, vinylidene chloride, acrylonitrile, acrylamide, methacrylamide, C1-C12-alkyl esters of (meth) acrylic acid or mixtures thereof.
  • the glass transition temperature of the resulting copolymer is less than 50 0 C; Preferably, the glass transition temperature is less than 30 0 C, more preferably glass transition temperatures of less than 15 ° C; most preferred are glass transition temperatures less than 5 ° C.
  • the glass transition temperature is expediently calculated using the Fox equation.
  • Fox's equation in this document means the following formula known to those skilled in the art:
  • Tg (P) denotes the glass transition temperature of the copolymer to be calculated in degrees Kelvin.
  • Tg (A), Tg (B), Tg (C), etc. designate the respective glass transition temperatures (in degrees Kelvin) of the high molecular weight homopolymers of monomers A, B, C, etc. measured by dynamic heat flow differential calorimetry (Dynamic Scanning Calorimetry, DSC).
  • the Fox equation has been proven to estimate the glass transition temperature, although under certain conditions, deviations from measured values may occur.
  • the shell polymer can be prepared separately; then the glass transition temperature can be measured with the aid of the DSC (read from the second heating curve, heating or cooling rate 10 K / min).
  • the polymer shell (B) may contain monomers which improve the permeability of the shell for bases - and especially ionic bases here.
  • these may be, for example, acidic monomers such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, monoesters of fumaric acid, itaconic acid, crotonic acid, maleic acid, monoesters of maleic acid, acrylamidoglycolic acid, methacrylamidobenzoic acid, cinnamic acid, vinylacetic acid, trichloroacrylic acid, 10-hydroxy-2-decenoic acid, 4 Methacryloxyethyltrimethylic acid, styrenecarboxylic acid, 2- (isopropenylcarbonyloxy) ethanesulfonic acid, 2- (vinylcarbonyloxy) ethanesulfonic acid, 2- (isopropenylcarbonyloxy) propylsulf
  • the permeability can also be improved by hydrophilic, nonionic monomers, of which acrylonitrile, (meth) acrylamide, cyanomethyl methacrylate, N-vinylamides, N-vinylformamides, N-vinylacetamides, N-vinyl-N-methylacetamides, N-vinylbenzenes are examples here.
  • monomers consists only in that the glass transition temperatures of the invention are not exceeded and the monomer mixture of the preparation and the ordered structure of the particle should not be in the way.
  • hydrophilic and acidic monomers together do not constitute more than 30% by weight (based on the total monomer mixture of the shell) of the composition of the polymer shell (B); contents between 0.2 and 20% by weight are particularly preferred, and contents between 0.5 and 10% by weight are most preferred.
  • the monomer composition of the core and the shell does not change abruptly, as in an ideally designed core / shell particle, but gradually in two or more steps or in the form of a gradient.
  • the composition of the shells located between core and outer shell is often oriented to the respective adjacent shells, which means that the content of a monomer Mx usually between the content M (x + 1) in the next outer shell (which may also be the outer shell) and the content M (x-1) in the next inner shell (or the core).
  • the compositions of such shells can also be chosen freely, as long as this does not interfere with the production and the ordered structure of the particle.
  • the shell B of the particles according to the invention preferably accounts for 10 to 96% by weight of the total weight of the particle, with shell fractions of 20 to 94% by weight being particularly preferred. Most preferred are shell portions of from 30 to 92% by weight.
  • microparticles are only swollen in the building material mixture itself, it is possible dispersions with significantly higher solids contents (ie Parts by weight of polymer based on the total weight of the dispersion), since the volume occupied by the unswollen particles is naturally smaller than that of the swollen particles.
  • the polymer particles can also be swollen with a small amount of base and added to the building material mixture in this partially swollen state. This corresponds to a compromise in that a slightly lower increase of the solids content is still possible, on the other hand, the time to be provided for swelling in the building material mixture can be shortened.
  • the polymer content of the microparticles used can be from 2 to 98% by weight (weight of polymer based on the total weight of the water-filled particle).
  • polymer contents of 5 to 60 wt .-% particularly preferred are polymer contents of 10 to 40 wt .-%.
  • microparticles according to the invention can preferably be prepared by emulsion polymerization and preferably have an average particle size of 100 to 5000 nm; particularly preferred is an average particle size of 200 to 2000 nm. Most preferred are average particle sizes of 250 to 1000 nm.
  • the mean particle size is determined, for example, by counting a statistically significant amount of particles on the basis of transmission electron micrographs.
  • the microparticles are obtained in the form of an aqueous dispersion. Accordingly, the addition of the microparticles to the building material mixture preferably also takes place in this form.
  • the microparticles are e.g. coagulated and isolated from the aqueous dispersion by conventional methods (eg filtration, centrifuging, sedimentation and decanting) and the particles are subsequently dried.
  • the water-filled microparticles are added to the building material mixture in a preferred amount of 0.01 to 5% by volume, in particular 0.1 to 0.5% by volume.
  • the building material mixture for example.
  • the usual hydraulically setting binder such as cement, lime, gypsum or anhydrite.
  • An essential advantage of using the water-filled microparticles is that only an extremely small air is introduced into the concrete. As a result, significantly improved compressive strengths of the concrete can be achieved. These are about 25-50% above the compressive strengths of concrete obtained with conventional air entrainment. Thus, strength classes can be achieved, which are otherwise adjustable only by a much lower water / cement value (W / Z value). Low W / Z However, values may in turn significantly limit the workability of the concrete.

Abstract

Die vorliegende Erfindung betrifft die Verwendung von polymeren Mikropartikeln in hydraulisch abbindenden Baustoffgemischen zur Verbesserung deren Frostbzw. Frost-Tauwechsel-Beständigkeit.

Description

Additive Baustoffmischungen mit Mikropartikeln die in der Baustoffmischung gequollen werden
Die vorliegende Erfindung betrifft die Verwendung von polymeren Mikropartikeln in hydraulisch abbindenden Baustoffgemischen zur Verbesserung deren Frostbzw. Frost-Tauwechsel-Beständigkeit.
Für den Widerstand des Betons gegen Frost und Frost-Tauwechsel bei gleichzeitiger Einwirkung von Taumitteln sind die Dichtigkeit seines Gefüges, eine bestimmte Festigkeit der Matrix und das Vorhandensein eines bestimmten Porengefüges maßgebend. Das Gefüge eines zementgebundenen Betons wird von Kapillarporen (Radius: 2 μm - 2mm) bzw. Gelporen (Radius: 2 - 50 nm) durchzogen. Darin enthaltenes Porenwasser unterscheidet sich in seiner Zustandsform in Abhängigkeit vom Porendurchmesser. Während Wasser in den Kapillarporen seine gewöhnlichen Eigenschaften beibehält, klassifiziert man in den Gelporen nach kondensiertem Wasser (Mesoporen: 50 nm) und adsorptiv gebundenem Oberflächenwasser (Mikroporen: 2 nm), deren Gefrierpunkte beispielsweise weit unter -500C liegen kann [M.J.Setzer, Interaction of water with hardened cement paste, "Ceramic Transactions" 16 (1991 ) 415-39]. Das hat zur Folge, dass selbst bei tiefen Abkühlungen des Betons ein Teil des Porenwassers ungefroren bleibt (metastabiles Wasser). Bei gleicher Temperatur ist aber der Dampfdruck über Eis geringer als der über Wasser. Da Eis und metastabiles Wasser gleichzeitig nebeneinander vorliegen, entsteht ein Dampfdruckgefälle, das zu einer Diffusion des noch flüssigen Wassers zum Eis und zu dessen Eisbildung führt, wodurch eine Entwässerung der kleineren bzw. eine Eisansammlung in den größeren Poren stattfindet. Diese Wasserumverteilung infolge Abkühlung findet in jedem porigen System statt und ist maßgeblich von der Art der Porenverteilung abhängig. Die künstliche Einführung von mikrofeinen Luftporen im Beton erzeugt also in erster Linie sogenannte Entspannungsräume für expandierendes Eis und Eiswasser. In diesen Poren kann gefrierendes Porenwasser expandieren bzw. internen Druck und Spannungen von Eis und Eiswasser auffangen, ohne dass es zu Mikrorissbildungen und damit zu Frostschäden am Beton kommt. Die prinzipielle Wirkungsweise solcher Luftporensysteme ist im Zusammenhang mit dem Mechanismus der Frostschädigung von Beton in einer Vielzahl von Übersichten beschrieben worden [Schulson, Erland M. (1998) Ice damage to concrete. CRREL Special Report 98-6; S.Chatterji, Freezing of air-entrained cement-based materials and specific actions of air-entraining agents, "Cement & Concrete Composites" 25 (2003) 759-65; G.W.Scherer, J.Chen & J.Valenza, Methods for protecting concrete from freeze damage, US-Patent 6,485,560 B1 (2002); M.Pigeon, B.Zuber & J. Marchand, Freeze/thaw resistance, "Advanced Concrete Technology" 2 (2003) 11/1-11/17; B. Erlin & B. Mather, A new process by which cyclic freezing can damage concrete - the Erlin/Mather effect, "Cement & Concrete Research" 35 (2005) 1407-11].
Voraussetzung für eine verbesserte Beständigkeit des Betons bei Frost- und Tauwechsel ist, dass der Abstand jedes Punktes im Zementstein von der nächsten künstlichen Luftpore einen bestimmten Wert nicht überschreitet. Dieser Abstand wird auch als Abstandsfaktor oder "Powers spacing factor" bezeichnet [T.C.Powers, The air requirement of frost-resistant concrete, "Proceedings of the Highway Research Board" 29 (1949) 184-202]. Laborprüfungen haben dabei gezeigt, dass ein Überschreiten des kritischen "Power spacing factor" von 500 μm zu einer Schädigung des Betons bei Frostund Tauwechsel führt. Um dies bei beschränktem Luftporengehalt zu erreichen, muss der Durchmesser der künstlich eingeführten Luftporen daher kleiner 200 - 300 μm sein [K.Snyder, K.Natesaiyer & K.Hover, The stereological and Statistical properties of entrained air voids in concrete: A mathematical basis for air void Systems characterization) "Materials Science of Concrete" VI (2001 ) 129-214].
Die Bildung eines künstlichen Luftporensystems hängt maßgeblich von der Zusammensetzung und der Kornformität der Zuschläge, der Art und Menge des Zements, der Betonkonsistenz, dem verwendeten Mischer, der Mischzeit, der Temperatur, aber auch von der Art und Menge des Luftporenbildners ab. Unter Berücksichtigung entsprechender Herstellungsregeln lassen sich deren Einflüsse zwar beherrschen, jedoch kann es zu einer Vielzahl von ungewünschten Beeinträchtigungen kommen, was letztendlich dazu führt, dass der gewünschte Luftgehalt im Beton über- oder unterschritten werden kann und somit die Festigkeit oder den Frostwiderstand des Betons negativ beeinflusst.
Solche künstlichen Luftporen lassen sich nicht direkt dosieren, sondern durch die Zugabe von sogenannten Luftporenbildnern wird die durch das Mischen eingetragene Luft stabilisiert [L. Du & K.J.Folliard, Mechanism of air entrainment in concrete "Cement & Concrete Research" 35 (2005) 1463-71]. Herkömmliche Luftporenbildner sind zumeist tensidartiger Struktur und brechen die durch das Mischen eingeführte Luft zu kleinen Luftbläschen mit einem Durchmesser möglichst kleiner 300 μm und stabilisieren diese im feuchten Betongefüge. Man unterscheidet dabei zwischen zwei Typen.
Der eine Typ - z.B. Natriumoleat, das Natriumsalz der Abietinsäure oder Vinsolharz, einem Extrakt aus Kiefernwurzeln - reagiert mit dem Calciumhydroxid der Porenlösung im Zementleim und fällt als unlösliches Calciumsalz aus. Diese hydrophoben Salze reduzieren die Oberflächenspannung des Wassers und sammeln sich an der Grenzfläche zwischen Zementkorn, Luft und Wasser. Sie stabilisieren die Mikrobläschen und finden sich daher im aushärtenden Beton an den Oberflächen dieser Luftporen wieder.
Der andere Typ - z.B. Natrium-Iaurylsulfat (SDS) oder Natriumdodecylphenylsulfonat - bildet dagegen mit Calciumhydroxid lösliche Calciumsalze, die aber ein anormales Lösungsverhalten zeigen. Unter einer gewissen kritischen Temperatur zeigen diese Tenside eine sehr geringe Löslichkeit, oberhalb dieser Temperatur sind sie sehr gut löslich. Durch eine bevorzugtes Ansammeln an der Luft-Wasser-Grenzschicht verringern sie ebenfalls die Oberflächenspannung, stabilisieren somit die Mikrobläschen und sind bevorzugt an der Oberflächen dieser Luftporen im ausgehärteten Beton wiederzufinden.
Bei der Verwendung dieser Luftporenbildner nach dem Stand der Technik treten eine Vielzahl von Probleme auf [L. Du & K.J.Folliard, Mechanism of air entrainment in concrete "Cement & Concrete Research" 35 (2005) 1463-71. Beispielsweise können längere Mischzeiten, unterschiedliche Mischerdrehzahlen, veränderte Dosierabläufe bei den Transportbetonen dazu führen, dass die stabilisierte Luft (in den Luftporen) wieder ausgetrieben wird.
Die Beförderung von Betonen mit verlängerten Transportzeiten, schlechter Temperierung und unterschiedlichen Pump- und Fördereinrichtungen, sowie das Einbringen dieser Betone einhergehend mit veränderter Nachbearbeitung, Ruckelverhalten und Temperaturbedingungen kann einen zuvor eingestellten Luftporengehalt signifikant verändern. Das kann im schlimmsten Fall bedeuten, dass ein Beton die erforderlichen Grenzwerte einer bestimmten Expositionsklasse nicht mehr erfüllt und somit unbrauchbar geworden ist [EN 206-1 (2000), Concrete - Part 1 : Secification, Performance, production and conformity]. Der Gehalt an feinen Stoffen im Beton (z.B. Zement mit unterschiedlichem Alkaligehalt, Zusatzstoffe wie Flugasche, Silikastaub, oder Farbzusätze) beeinträchtigt die Luftporenbildung ebenfalls. Auch können Wechselwirkungen mit entschäumend wirkenden Fließmitteln auftreten, die somit Luftporen austreiben, aber auch zusätzlich unkontrolliert einführen können.
All diese die Herstellung von frostbeständigen Beton erschwerenden Einflüsse lassen sich vermeiden, wenn das erforderliche Luftporensystem nicht durch o.g. Luftporenbildner mit tensidartiger Struktur erzeugt wird, sondern der Luftgehalt durch das Zumischen bzw. feste Dosieren von polymeren Mikropartikeln (Mikrohohlkugeln) herrührt [H.Sommer, A new method of making concrete resistant to frost and de-icing salts, "Betonwerk & Fertigteiltechnik" 9 (1978) 476-84]. Da die Mikropartikel zumeist Partikelgrößen kleiner 100 μm aufweisen, lassen sie sich im Betongefüge auch feiner und gleichmäßiger als künstlich eingeführte Luftporen verteilen. Dadurch reichen bereits geringe Mengen für einen ausreichenden Widerstand des Betons gegen Frost- und Tauwechsel aus.
Die Verwendung von solchen polymeren Mikropartikeln zur Verbesserung der Frost- und Frost-Tauwechsel-Beständigkeit von Beton ist entsprechend dem Stand der Technik bereits bekannt [vgl. DE 2229094 A1 , US 4,057,526 B1 , US 4,082,562 B1 , DE 3026719 A1]. Die darin beschriebenen Mikropartikel zeichnen sich vor allem dadurch aus, dass sie einen Hohlraum besitzen, der kleiner 200 μm (Durchmesser) ist und dieser hohle Kern aus Luft (oder einer gasförmigen Substanz) besteht. Das schließt ebenfalls poröse Mikropartikel der 100 μm Skala ein, die ein Vielfaches an kleineren Hohlräumen und/oder Poren besitzen können. Bei der Verwendung von hohlen Mikropartikeln zur künstlichen Luftporenbildung im Beton erwiesen sich zwei Faktoren nachteilig für die Durchsetzung dieser Technologie auf dem Markt aus. Zum einen sind die Herstellungskosten von Mikrohohlkugeln nach dem Stand der Technik zu hoch, und zum anderen ist nur mit relativ hohen Dosierungen eine zufrieden stellende Resistenz des Betons gegenüber Frost- und Tauwechseln zu erzielen.
Der vorliegenden Erfindung lag daher die Aufgabe zu Grunde, ein Mittel zur Verbesserung der Frost- bzw. Frost-Tauwechsel-Beständigkeit für hydraulisch abbindende Baustoffmischungen bereitzustellen, welches auch bei relativ geringen Dosierungen seine volle Wirksamkeit entfaltet. Eine weitere Aufgabe bestand darin, die mechanische Festigkeit der Baustoffmischung durch dieses Mittel nicht oder nicht wesentlich zu beeinträchtigen.
Gelöst werden diese sowie weitere nicht explizit genannten Aufgaben, die jedoch aus den hierin einleitend diskutierten Zusammenhängen ohne weiteres ableitbar oder erschließbar sind, durch Kern/Schale-Mikropartikel, welche einen durch Basen quellbaren Kern besitzen, und deren Schale aus Polymeren mit einer Glasübergangstemperatur von unter 500C bestehen; bevorzugt sind Glasübergangstemperaturen von weniger als 300C; besonders bevorzugt sind Glasübergangstemperaturen von weniger als 15°C; am meisten bevorzugt sind Glasübergangstemperaturen von weniger als 5°C.
Die erfindungsgemäßen Partikel werden vorzugsweise durch Emulsionspolymerisation hergestellt.
Es wurde gefunden, daß die erfindungsgemäßen Partikel geeignet sind um bereits in sehr geringen Dosierungen eine gute Beständigkeit gegen Frost- bzw. Frost/Tau-Wechsel zu ergeben. In einer besonders bevorzugten Ausführungsform der Erfindung werden der Baustoffmischung die ungequollenen Kern/Schale-Partikel zugesetzt, wobei diese in der stark alkalischen Mischung quellen und mithin den Hohlraum gleichsam 'in situ' ausbilden.
Erfindungsgemäß ist auch ein Verfahren zur Herstellung einer Baustoffmischung, wobei quellbare aber noch ungequollene Kern/Schale- Partikel mit den üblichen Komponenten einer Baustoffmischung gemischt werden und die Quellung der Partikel erst in der Baustoffmischung erfolgt.
Gemäß einer bevorzugten Ausführungsform bestehen die eingesetzten Mikropartikel aus Polymerteilchen, die einen Kern (A) und mindestens eine Schale (B) besitzen, wobei die Kern/Schale-Polymerteilchen mit Hilfe einer Base gequollen wurden.
Die Herstellung dieser polymeren Mikropartikel durch Emulsionspolymerisation sowie deren Quellung mit Hilfe von Basen wie z. B. Alkali- oder Alkalihydroxide sowie Ammoniak oder einem Amin werden in den europäischen Patentschriften EP 22 633 B1 , EP 735 29 B1 sowie EP 188 325 B1 beschrieben.
Der Kern (A) des Partikels enthält eine oder mehrere ethylenisch ungesättigte Carbonsäure-(Derivat-)Monomere die eine Quellung des Kerns ermöglichen; diese Monomere sind vorzugsweise ausgewählt aus der Gruppe Acrylsäure, Methacrylsäure, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, Itaconsäure und Crotonsäure und deren Mischungen. Acrylsäure und Methacrlysäure sind besonders bevorzugt. In einer besonderen Ausführungsform der Erfindung können die den Kern bildenden Polymere auch vernetzt sein. Die bevorzugt eingesetzen Mengen an Vernetzer betragen dabei 0-10 Gew% (bezogen auf die Gesamtmenge an Monomeren im Kern); weiter bevorzugt sind 0-6 Gew% Vernetzer; am meisten bevorzugt sind 0-3 Gew%. Die Menge des Vernetzers muß in jedem Falle so gewählt sein, daß eine Quellung nicht vollständig unterbunden wird.
Als Beispiele für in Frage kommende Vernetzer seien genannt Ethylenglycoldi(meth)acrylat, Propylenglycoldi(meth)acrylat, Allyl(meth)acrylat, Divinylbenzol, Diallylmaleinat, Trimethylolpropantrimethacrylat, Glycerindi(meth)acrylat, Glycerintri(meth)acrylat, Pentaerythrittetra(meth)acrylat oder deren Mischungen.
Die Schreibweise (Meth)acrylat bedeutet hier sowohl Methacrylat, wie z.B. Methylmethacrylat, Ethylmethacrylat usw., als auch Acrylat, wie z.B. Methylacrylat, Ethylacrylat usw., sowie Mischungen aus beiden.
Die Schale (B) besteht überwiegend aus nicht-ionischen, ethylenisch ungesättigten Monomeren. Als solche Monomere werden bevorzugt Styrol, Butadien, Vinyltoluol, Ethylen, Vinylacetat, Vinylchlorid, Vinylidenchlorid, Acrylnitril, Acrylamid, Methacrylamid, C1-C12-Alkylester der (Meth)acrylsäure oder Mischungen daraus eingesetzt.
Bei der Wahl der Monomere ist erfindungsgemäß zu beachten, daß die Glasübergangstemperatur des erhaltenen Copolymers kleiner als 500C ist; vorzugsweise ist die Glasübergangstemperatur kleiner 300C, besonders bevorzugt sind Glasübergangstemperaturen von weniger als 15°C; am meisten bevorzugt sind Glasübergangstemperaturen von weniger als 5°C.
Die Glasübergangstemperatur wird dabei zweckmäßigerweise mit Hilfe der Fox- Gleichung berechnet. Mit Fox-Gleichung ist in dieser Schrift die folgende, dem Fachmann bekannte Formel gemeint :
l a b e = + + + ...
Tg(P) Tg(A) Tg(B) Tg(C)
Dabei bezeichnet Tg(P) die zu berechnende Glasübergangstemperatur des Copolymers in Grad Kelvin. Tg(A), Tg(B), Tg(C), usw. bezeichnen die jeweiligen Glasübergangstemperaturen (in Grad Kelvin) der hochmolekularen Homopolymere der Monomere A, B, C, usw., gemessen mit Dynamischer Wärmestrom-Differenz-Kalorimetrie (Dynamic Scanning Calorimetry, DSC).
(Tg-Werte für Homopolymerisate sind z.B. auch im "Polymer Handbook", Johannes Brandrup, Edmund H. Immergut, Eric A. Grulke; John Wiley & Sons, New York (1999) aufgeführt).
Die Fox-Gleichung hat sich zur Abschätzung der Glasübergangstemperatur bewährt, auch wenn unter bestimmten Bedingungen Abweichungen zu gemessenen Werten auftreten können.
Für eine genauere Bestimmung der Glasübergangstemperatur kann das Schalenpolymer separat hergestellt werden; dann kann die Glasübergangstemperatur mit Hilfe der DSC gemessen werden (abgelesen von der zweiten Aufheizkurve, Heiz- bzw. Kühlraterate 10 K/Min).
Neben den oben genannten Monomeren kann die Polymerhülle (B) Monomere enthalten, die die Permeabilität der Schale für Basen - und hier speziell ionische Basen - verbessert. Dies können zum einen säurehaltige Monomere sein wie Acrylsäure, Methacrylsäure, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, Monoester der Fumarsäure, Itaconsäure, Crotonsäure, Maleinsäure, Monoester der Maleinsäure, Acrylamidoglykolsäure, Methacrylamidobenzoesäure, Zimtsäure, Vinylessigsäure, Trichloracrylsäure, 10-Hydroxy-2-decensäure, 4- Methacryloxyethyltrimethylsäure, Styrolcarbonsäure, 2- (Isopropenylcarbonyloxy)-ethansulfonsäure, 2-(Vinylcarbonyloxy)- ethansulfonsäure, 2-(lsopropenylcarbonyloxy)-propylsulfonsäure, 2- (Vinylcarbonyloxy)-propylsulfonsäure, 2-Acrylamido-2- methylpropansulfonsäure, Acrylamidododecansulfonsäure, 2-Propen-1 - sulfonsäure, Methallylsulfonsäure, Styrolsulfonsäure, Styroldisulfonsäure, Methacrylamidoethanphosphonsäure, Vinylphosphonsäure, sowie Mischungen daraus. Zum anderen kann die Permeabilität auch durch hydrophile, nichtionische Monomere verbessert werden, von denen hier als Beispiele Acrylnitril, (Meth)acrylamid, Cyanomethylmethacrylat, N-Vinylamide, N- Vinylformamide, N-Vinylacetamide, N-Vinyl-N-Methylacetamide, N-Vinyl-N- methylformamide, N-Methylol(meth)acrylamid, Vinylpyrrolidon, N, N- Dimethylpropylacrylamid, Dimethylacrylamid, sowie andere hydroxy-, amin-, amid- und/oder cyanogruppen enthaltende Monomere bzw. Mischungen daraus genannt sein sollen.
Eine Beschränkung dieser oder anderer, an dieser Stelle nicht genannter Monomere besteht lediglich dadurch, daß die erfindungsgemäßen Glasübergangstemperaturen nicht überschritten werden und die Monomermischung der Herstellung und dem geordneten Aufbau des Partikels nicht im Wege stehen soll.
Üblicherweise machen hydrophile und säurehaltige Monomere zusammen nicht mehr als 30 Gew% (bezogen auf die Gesamtmonomermischung der Schale) der Zusammensetzung der Polymerhülle (B) aus; besonders bevorzugt sind Gehalte zwischen 0,2 und 20 Gew%, am meisten bevorzugt sind Gehalte zwischen 0,5 und 10 Gew%. In einer weiteren bevorzugten Ausführungsform ändert sich die Monomerzusammensetzung des Kernes und der Schale nicht sprunghaft, wie dies bei einem ideal aufgebauten Kern/Schale-Partikel der Fall ist, sondern allmählich in zwei oder mehr Schritten oder in Form eines Gradienten.
Werden die Mikropartikel als mehrschalige Partikel aufgebaut, so ist die Zusammensetzung der zwischen Kern und Außenschale liegenden Schalen oftmals orientiert an den jeweils benachbarten Schalen, was bedeutet, daß der Gehalt eines Monomeren Mx in der Regel zwischen dem Gehalt M(x+1 ) in der nächst äußeren Schale (die auch die Außenschale sein kann) und dem Gehalt M(x-1 ) in der nächst inneren Schale (bzw. des Kerns). Dies ist jedoch nicht zwingend und in weiteren besonderen Ausführungsformen können die Zusammensetzungen solcher Zwischenschalen auch frei gewählt werden, solange dies der Herstellung und dem geordneten Aufbau des Partikels nicht im Wege steht.
Die Schale B der erfindungsgemäßen Partikel macht vorzugsweise 10 bis 96 Gew% des Gesamtgewichts des Partikels aus, besonders bevorzugt sind Schalenanteile von 20 bis 94 Gew%. Am meisten bevorzugt sind Schalenanteile von 30 bis 92 Gew%.
Im Falle sehr dünner Schalen kann dies dazu führen, daß die Schalen der Partikel beim Quellen platzen. Es wurde gefunden, daß dies jedoch nicht zwangsläufig dazu führt, daß die Wirkung dieser Partikel verloren geht. In besonderen Ausführungsformen der Erfindung, und speziell wenn die Quellung im der Baustoffmischung erfolgt, kann dieser Effekt vorteilhaft sein, da ohne die Restriktion der Schale eine bessere Quellung der Partikel erfolgen kann.
Werden die Mikropartikel erst in der Baustoffmischung selbst gequollen, so ist es möglich Dispersionen mit deutlich höheren Feststoffgehalten (d.h. Gewichtsanteilen Polymer bezogen auf Gesamtgewicht der Dispersion) herzustellen, da das von den ungequollenen Partikeln eingenommene Volumen naturgemäß kleiner ist, als das der gequollenen Partikel.
Die Polymerpartikel können auch mit einer geringen Menge Base angequollen werden, und der Baustoffmischung in diesem teilweise gequollenen Zustand zugesetzt werden. Dies entspricht insofern einem Kompromiß, als eine etwas geringere Anhebung des Feststoffgehalts noch immer möglich ist, anderseits die Zeit, die zur Quellung in der Baustoffmischung vorzusehen ist verkürzt werden kann.
Der Polymergehalt der eingesetzten Mikropartikel kann in Abhängigkeit vom Durchmesser und dem Wassergehalt bei 2 bis 98 Gew.-% (Gewicht Polymer bezogen auf das Gesamtgewicht des wassergefüllten Partikels) liegen.
Bevorzugt sind Polymergehalte von 5 bis 60 Gew.-%, besonders bevorzugt sind Polymergehalte von 10 bis 40 Gew.-%.
Die erfindungsgemäßen Mikropartikel können vorzugsweise durch Emulsionspolymerisation hergestellt werden und weisen vorzugsweise eine mittlere Teilchengröße von 100 bis 5000 nm auf; besonders bevorzugt ist eine mittlere Teilchengröße von 200 bis 2000 nm. Am meisten bevorzugt sind mittlere Teilchengrößen von 250 bis 1000 nm.
Die Bestimmung der mittleren Teilchengröße erfolgt zum Beispiel durch Auszählung einer statistisch signifikanten Menge an Partikeln anhand von transmissionselektronenmikroskopischen Aufnahmen. Bei der Herstellung durch Emulsionspolymerisation werden die Mikropartikel in Form einer wäßrigen Dispersion erhalten. Entsprechend erfolgt der Zusatz der Mikropartikel zur Baustoffmischung vorzugsweise ebenfalls in dieser Form.
Es ist im Rahmen der vorliegenden Erfindung jedoch auch ohne weiteres möglich, die wassergefüllten Mikropartikel der Baustoffmischung direkt als Feststoff zuzugeben. Dazu werden die Mikropartikel z.B. koaguliert und durch übliche Methoden (z. B. Filtration, Zentrifugieren, Sedimentieren und Dekantieren) aus der wässrigen Dispersion isoliert und die Partikel anschließend getrocknet.
Ist die Zugabe als Feststoff gewünscht oder aus verarbeitungstechnischen Gründen notwendig, so sind weitere bevorzugte Methoden der Trocknung die Sprühtrocknung und die Gefriertrocknung.
Die wassergefüllten Mikropartikel werden der Baustoffmischung in einer bevorzugten Menge von 0,01 bis 5 Vol%, insbesondere 0,1 bis 0,5 Vol%, zugegeben. Die Baustoffmischung bspw. in Form von Beton oder Mörtel kann hierbei die üblichen hydraulisch abbindenden Bindemittel wie z. B. Zement, Kalk, Gips oder Anhydrit enthalten.
Ein wesentlicher Vorteil durch die Verwendung der wassergefüllten Mikropartikel besteht darin, dass nur ein außerordentlich geringer Lufteintrag in den Beton erfolgt. Dadurch sind deutlich verbesserte Druckfestigkeiten des Betons zu erzielen. Diese liegen etwa 25-50% über den Druckfestigkeiten von Beton, der mit herkömmlicher Luftporenbildung erhalten wurde. Somit können Festigkeitsklassen erreicht werden, die sonst nur durch einen wesentlich niedrigeren Wasser/Zement-Wert (W/Z-Wert) einstellbar sind. Geringe W/Z- Werte schränken aber wiederum die Verarbeitbarkeit des Betons unter Umständen deutlich ein.
Außerdem können höhere Druckfestigkeiten zur Folge haben, dass der für die Festigkeitsentwicklung erforderliche Gehalt an Zement im Beton verringert werden könnte und somit der Preis pro m3 Beton signifikant reduziert wird.

Claims

PATENTANSPRÜCHE
1. Verwendung von polymeren Kern/Schale-Mikropartikeln in hydraulisch abbindenden Baustoffmischungen, dadurch gekennzeichnet, dass diese einen durch Basen quellbaren Kern besitzen, und dass deren Schale aus Polymeren mit einer Glasübergangstemperatur von unter 500C bestehen.
2. Verwendung von polymeren Kern/Schale-Mikropartikeln in hydraulisch abbindenden Baustoffmischungen nach Anspruch 1 , dadurch gekennzeichnet, dass deren Schale aus Polymeren mit einer Glasübergangstemperatur von unter 300C bestehen.
3. Verwendung von polymeren Kern/Schale-Mikropartikeln nach Anspruch 1 , dadurch gekennzeichnet, dass der Kern vor der Zugabe der Partikel zur Baustoffmischung gequollen wird.
4. Verwendung von polymeren Kern/Schale-Mikropartikeln nach Anspruch 1 , dadurch gekennzeichnet, dass der Kern 'in situ' im alkalischen Millieu der Baustoffmischung gequollen wird.
5. Verwendung von polymeren Kern/Schale-Mikropartikeln nach Anspruch 1 , dadurch gekennzeichnet, dass die Mikropartikel aus Polymerteilchen bestehen, die einen mit Hilfe einer Base gequollenen oder quellbaren Polymerkern (A), der eine oder mehrere ungesättigte Carbonsäure-(Derivat- )Monomers enthält, sowie eine Polymerhülle (B), die überwiegend aus nichtionischen, ethylenisch ungesättigten Monomeren besteht, enthalten.
6. Verwendung von polymeren Kern/Schale-Mikropartikeln nach Anspruch 5, dadurch gekennzeichnet, dass die nicht-ionischen, ethylenisch ungesättigten Monomere der Schale aus Styrol, Butadien, Vinyltoluol, Ethylen, Vinylacetat, Vinylchlorid, Vinylidenchlorid, Acrylnitril, Acrylamid, Methacrylamid, C1 -C12- Alkylester der Acryl- oder Methacrylsäure bestehen.
7. Verwendung von polymeren Kern/Schale-Mikropartikeln nach Anspruch 5, dadurch gekennzeichnet, dass die ungesättigten Carbonsäure-(Derivat- )Monomere des Kerns A gewählt sind aus der Gruppe Acrylsäure, Methacrylsäure, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, Itaconsäure und Crotonsäure.
8. Verwendung von polymeren Kern/Schale-Mikropartikeln nach Anspruch 1 , dadurch gekennzeichnet, dass die Mikropartikel einen Polymergehalt von 2 bis 98 Gew.-% aufweisen.
9. Verwendung von polymeren Kern/Schale-Mikropartikeln nach Anspruch 1 , dadurch gekennzeichnet, die Schale (B) 10 bis 96 Gew% des Gesamtgewichts des Partikels ausmacht.
10. Verwendung von polymeren Kern/Schale-Mikropartikeln nach Anspruch 1 dadurch gekennzeichnet, dass die Mikropartikel eine mittlere Teilchengröße von 100 bis 5000 nm aufweisen.
11. Verwendung von polymeren Kern/Schale-Mikropartikeln nach Anspruch 10, dadurch gekennzeichnet, dass die Mikropartikel eine mittlere Teilchengröße von 200 bis 2000 nm aufweisen.
12. Verwendung von polymeren Kern/Schale-Mikropartikeln nach Anspruch 11 , dadurch gekennzeichnet, dass die Mikropartikel eine mittlere Teilchengröße von 250 bis 1000 nm aufweisen
13. Verwendung von polymeren Kern/Schale-Mikropartikeln nach Anspruch 1 , dadurch gekennzeichnet, dass die Mikropartikel in einer Menge von 0.01 bis 5 Vol.-%, bezogen auf die Baustoffmischung, eingesetzt werden.
14. Verwendung von polymeren Kern/Schale-Mikropartikeln nach Anspruch 13, dadurch gekennzeichnet, dass die Mikropartikel in einer Menge von 0.1 bis 0,5 Vol.-%, bezogen auf die Baustoffmischung, eingesetzt werden.
15. Verwendung von polymeren Kern/Schale-Mikropartikeln nach Anspruch 1 , dadurch gekennzeichnet, dass die Baustoffmischungen aus einem Bindemittel, ausgewählt aus der Gruppe Zement, Kalk, Gips und Anhydrit, bestehen.
16. Verwendung von polymeren Kern/Schale-Mikropartikeln nach
Anspruch 1 , dadurch gekennzeichnet, dass es sich bei den Baustoffmischungen um Beton oder Mörtel handelt.
17. Verfahren zur Herstellung einer Baustoffmischung, die nach dem
Erhärten Beständig gegen Frost bzw. Frost/Tau-Wechsel ist, dadurch gekennzeichnet, daß quellbare aber ungeqollene Kern/Schale-Partikel mit den restlichen Komponenten der Baustoffmischung gemischt werden, bei der die Quellung der Partikel in der Baustoffmischung selbst statt findet.
PCT/EP2007/050882 2006-03-01 2007-01-30 Additive baustoffmischungen mit mikropartikeln die in der baustoffmischung gequollen werden WO2007099005A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008556735A JP5473337B2 (ja) 2006-03-01 2007-01-30 建材混合物中で膨潤するマイクロ粒子を有する建材用添加剤混合物
CA002644507A CA2644507A1 (en) 2006-03-01 2007-01-30 Additive building material mixtures comprising microparticles swollen therein
BRPI0708410-2A BRPI0708410A2 (pt) 2006-03-01 2007-01-30 misturas de materiais aditivos para construção civil, contendo micropartìculas expandidas na mistura de materiais de construção
MX2008011030A MX2008011030A (es) 2006-03-01 2007-01-30 Mezclas de aditivos de material para construccion que comprende microparticulas hinchadas en la mezcla de material para construccion.
EP07704234A EP1989157A1 (de) 2006-03-01 2007-01-30 Additive baustoffmischungen mit mikropartikeln die in der baustoffmischung gequollen werden

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006009842A DE102006009842A1 (de) 2006-03-01 2006-03-01 Additive Baustoffmischungen mit Mikropartikeln die in der Mischung quellen
DE102006009842.0 2006-03-01

Publications (1)

Publication Number Publication Date
WO2007099005A1 true WO2007099005A1 (de) 2007-09-07

Family

ID=37964600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/050882 WO2007099005A1 (de) 2006-03-01 2007-01-30 Additive baustoffmischungen mit mikropartikeln die in der baustoffmischung gequollen werden

Country Status (11)

Country Link
US (1) US20070208107A1 (de)
EP (1) EP1989157A1 (de)
JP (1) JP5473337B2 (de)
KR (1) KR20080102140A (de)
CN (1) CN101028970B (de)
BR (1) BRPI0708410A2 (de)
CA (1) CA2644507A1 (de)
DE (1) DE102006009842A1 (de)
MX (1) MX2008011030A (de)
RU (1) RU2432337C2 (de)
WO (1) WO2007099005A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2437045C (en) * 2001-02-07 2010-09-14 Guenter Schmitt Hot sealing compound for aluminum foils applied to polypropylene and polystyrene
DE10350786A1 (de) * 2003-10-29 2005-06-02 Röhm GmbH & Co. KG Mischungen zur Herstellung von Reaktivschmelzklebstoffen sowie daraus erhältliche Reaktivschmelzklebstoffe
DE102004035937A1 (de) * 2004-07-23 2006-02-16 Röhm GmbH & Co. KG Plastisole mit verringerter Wasseraufnahme
DE102005042389A1 (de) * 2005-06-17 2006-12-28 Röhm Gmbh Heißversiegelungsmasse für Aluminium- und Polyethylenterephthalatfolien gegen Polypropylen-Polyvinylchlorid- und Polystyrolbehälter
DE102005045458A1 (de) * 2005-09-22 2007-03-29 Röhm Gmbh Verfahren zur Herstellung von ABA-Triblockcopolymeren auf (Meth)acrylatbasis
DE102005052130A1 (de) * 2005-10-28 2007-05-03 Röhm Gmbh Spritzbare Akustikmassen
DE102006007563A1 (de) * 2006-02-16 2007-08-30 Röhm Gmbh Verfahren zum Verkleben von Werkstoffen mit nanoskaligen superparamagnetischen Poly(meth)acrylatpolymeren
DE102006009511A1 (de) * 2006-02-28 2007-08-30 Röhm Gmbh Synthese von Polyester-pfropf-Poly(meth)acrylat
DE102006009586A1 (de) * 2006-02-28 2007-09-06 Röhm Gmbh Heißversiegelungsmasse für Aluminium- und Polyethylenterephthalatfolien gegen Polypropylen-Polyvinylchlorid- und Polystyrolbehälter
DE102006015846A1 (de) * 2006-04-03 2007-10-04 Röhm Gmbh Kupferentfernung aus ATRP-Produkten mittels Zugabe von Schwefelverbindungen
DE102006035726A1 (de) 2006-07-28 2008-01-31 Evonik Röhm Gmbh Verfahren zur Herstellung von ABA-Triblockcopolymeren auf (Meth)acrylatbasis
DE102006037352A1 (de) * 2006-08-09 2008-02-14 Evonik Röhm Gmbh Verfahren zur Herstellung von säureterminierten ATRP-Produkten
DE102006037351A1 (de) * 2006-08-09 2008-02-14 Evonik Röhm Gmbh Verfahren zur Herstellung von hydroxytelecheler ATRP-Produkten
DE102006048154A1 (de) * 2006-10-10 2008-04-17 Evonik Röhm Gmbh Verfahren zur Herstellung von silyltelechelen Polymeren
DE102006057145A1 (de) * 2006-11-22 2008-05-29 Evonik Röhm Gmbh Verfahren zur Herstellung verbesserter Bindemittel für Plastisole
CN102050637B (zh) * 2010-11-23 2012-11-14 哈尔滨工业大学深圳研究生院 一种泡沫混凝土材料、泡沫混凝土及制备方法
JP5353916B2 (ja) * 2011-02-01 2013-11-27 トヨタ自動車株式会社 絶縁樹脂材料の製造方法
KR101308094B1 (ko) * 2011-04-18 2013-09-12 계명대학교 산학협력단 코어-쉘 구조를 갖는 시멘트 페이스트의 마이크로캡슐 흡수제 및 그 제조방법
US9365453B2 (en) * 2012-04-19 2016-06-14 Construction Research & Technology Gmbh Admixture and method for freeze-thaw damage resistance and scaling damage resistance of cementitious compositions
US9333685B2 (en) 2012-04-19 2016-05-10 AkzoNobel Chemicals International B.V. Apparatus and system for expanding expandable polymeric microspheres
DE102012213978A1 (de) * 2012-08-07 2014-02-13 Evonik Degussa Gmbh Unterkritisch formulierte Beschichtungen
EP3077344A1 (de) 2013-12-06 2016-10-12 Construction Research & Technology GmbH Verfahren zur herstellung von zementzusammensetzungen
RU2562313C1 (ru) * 2014-08-01 2015-09-10 федеральное государственное автономное образовательное учреждение высшего образования "Нижегородский государственный университет им. Н.И. Лобачевского" Цементная композиция
WO2020045515A1 (ja) * 2018-08-31 2020-03-05 株式会社日本触媒 水硬性材料用添加剤

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594363A (en) * 1985-01-11 1986-06-10 Rohm And Haas Company Production of core-sheath polymer particles containing voids, resulting product and use
EP0555959A1 (de) * 1992-02-14 1993-08-18 Rohm And Haas Company Verfahren zur Herstellung eines mehrstufiges Polymers
EP0654454A1 (de) * 1993-11-22 1995-05-24 Rohm And Haas Company Kern/Schale Polymerisat-Pulver
EP0725092A2 (de) * 1995-02-06 1996-08-07 DSM Chemie Linz GmbH Redispergierbare, pulverförmige Kern-Mantel-Polymere, deren Herstellung und Verwendung
JPH09110495A (ja) * 1995-10-12 1997-04-28 Lion Corp 半たわみ性舗装用ポリマーエマルジョン
DE19833062A1 (de) * 1998-07-22 2000-02-03 Elotex Ag Sempach Station Redispergierbares Pulver und dessen wäßrige Dispersion, Verfahren zur Herstellung sowie Verwendung
US6288174B1 (en) * 1995-07-07 2001-09-11 Mitsubishi Rayon Co., Ltd. Powdery material and modifier for cementitious material
JP2001253742A (ja) * 2000-03-10 2001-09-18 Lion Corp 水硬性無機質硬化体の凍結融解抵抗性向上剤

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7505525A (nl) * 1975-05-12 1976-11-16 Akzo Nv Werkwijze voor de bereiding van een vorstbesten- dig beton.
JPH08217513A (ja) * 1995-02-09 1996-08-27 Mitsubishi Chem Basf Co Ltd ポリマーセメント組成物
ID18920A (id) * 1996-11-15 1998-05-20 Rohm & Haas Komposisi lapisan dengan gloss rendah
JPH10152357A (ja) * 1996-11-18 1998-06-09 Mitsui Chem Inc 押出成形用水硬性モルタル組成物、セメント成形体の製造方法、セメント成形体、及び、セメント硬化体形成方法
US6498209B1 (en) * 1998-03-31 2002-12-24 Roehm Gmbh & Co. Kg Poly(meth)acrylate plastisols
DE19826412C2 (de) * 1998-06-16 2002-10-10 Roehm Gmbh Geruchsvermindertes, kalthärtendes (Meth)acrylat-Reaktionsharz für Bodenbeschichtungen, dieses Reaktionsharz aufweisende Bodenbeschichtungen sowie Verfahren zur Herstellung solcher Bodenbeschichtungen
DE19833061A1 (de) * 1998-07-22 2000-02-03 Elotex Ag Sempach Station Verfahren zur Herstellung wäßriger Dispersionen von Latexteilchen mit heterogener Morphologie, die mit dem Verfahren erhältlichen Latexteilchen, die Dispersionen und redispergierbaren Pulver sowie deren Verwendung
DE19928352A1 (de) * 1999-06-21 2000-12-28 Roehm Gmbh Verbesserte Poly(meth)acrylatptastisole und Verfahren zu ihrer Herstellung
CN1317328C (zh) * 2000-09-21 2007-05-23 罗姆和哈斯公司 纳米复合材料水分散体:方法、组合物及其用途
CA2437045C (en) * 2001-02-07 2010-09-14 Guenter Schmitt Hot sealing compound for aluminum foils applied to polypropylene and polystyrene
JP4282982B2 (ja) * 2001-12-26 2009-06-24 旭化成ケミカルズ株式会社 樹脂モルタル用ラテックス及び樹脂モルタル組成物
DE10227898A1 (de) * 2002-06-21 2004-01-15 Röhm GmbH & Co. KG Verfahren zur Herstellung sprühgetrockneter Poly(meth)acrylatpolymere, ihre Verwendung als Polymerkomponente für Plastisole und damit hergestellte Plastisole
JP2004238245A (ja) * 2003-02-05 2004-08-26 Sekisui Chem Co Ltd 金属スラグ含有セメント組成物
DE10350786A1 (de) * 2003-10-29 2005-06-02 Röhm GmbH & Co. KG Mischungen zur Herstellung von Reaktivschmelzklebstoffen sowie daraus erhältliche Reaktivschmelzklebstoffe
EP1758832A2 (de) * 2004-06-15 2007-03-07 Construction Research & Technology GmbH Bereitstellung von einfrier- und auftaufestigkeit für zementzusammensetzungen
DE102004035937A1 (de) * 2004-07-23 2006-02-16 Röhm GmbH & Co. KG Plastisole mit verringerter Wasseraufnahme
DE102005042389A1 (de) * 2005-06-17 2006-12-28 Röhm Gmbh Heißversiegelungsmasse für Aluminium- und Polyethylenterephthalatfolien gegen Polypropylen-Polyvinylchlorid- und Polystyrolbehälter
DE102005046681A1 (de) * 2005-09-29 2007-04-05 Construction Research & Technology Gmbh Verwendung von polymeren Mikropartikeln in Baustoffmischungen
DE102006008965A1 (de) * 2006-02-23 2007-08-30 Röhm Gmbh Additive Baustoffmischungen mit Mikropartikeln verschiedener Größe
DE102006008969A1 (de) * 2006-02-23 2007-08-30 Röhm Gmbh Additive Baustoffmischungen mit Mikropartikeln mit sehr dünnen Schalen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594363A (en) * 1985-01-11 1986-06-10 Rohm And Haas Company Production of core-sheath polymer particles containing voids, resulting product and use
EP0555959A1 (de) * 1992-02-14 1993-08-18 Rohm And Haas Company Verfahren zur Herstellung eines mehrstufiges Polymers
EP0654454A1 (de) * 1993-11-22 1995-05-24 Rohm And Haas Company Kern/Schale Polymerisat-Pulver
EP0725092A2 (de) * 1995-02-06 1996-08-07 DSM Chemie Linz GmbH Redispergierbare, pulverförmige Kern-Mantel-Polymere, deren Herstellung und Verwendung
US6288174B1 (en) * 1995-07-07 2001-09-11 Mitsubishi Rayon Co., Ltd. Powdery material and modifier for cementitious material
JPH09110495A (ja) * 1995-10-12 1997-04-28 Lion Corp 半たわみ性舗装用ポリマーエマルジョン
DE19833062A1 (de) * 1998-07-22 2000-02-03 Elotex Ag Sempach Station Redispergierbares Pulver und dessen wäßrige Dispersion, Verfahren zur Herstellung sowie Verwendung
JP2001253742A (ja) * 2000-03-10 2001-09-18 Lion Corp 水硬性無機質硬化体の凍結融解抵抗性向上剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1989157A1 *

Also Published As

Publication number Publication date
CN101028970B (zh) 2013-06-12
RU2008138648A (ru) 2010-04-10
CN101028970A (zh) 2007-09-05
RU2432337C2 (ru) 2011-10-27
JP5473337B2 (ja) 2014-04-16
DE102006009842A1 (de) 2007-09-06
US20070208107A1 (en) 2007-09-06
EP1989157A1 (de) 2008-11-12
KR20080102140A (ko) 2008-11-24
MX2008011030A (es) 2008-09-08
CA2644507A1 (en) 2007-09-07
JP2009528242A (ja) 2009-08-06
BRPI0708410A2 (pt) 2011-05-31

Similar Documents

Publication Publication Date Title
EP1989157A1 (de) Additive baustoffmischungen mit mikropartikeln die in der baustoffmischung gequollen werden
WO2007096233A1 (de) Additive baustoffmischungen mit mikropartikeln, deren schalen porös und/oder hydrophil sind
DE102006008965A1 (de) Additive Baustoffmischungen mit Mikropartikeln verschiedener Größe
DE102005046681A1 (de) Verwendung von polymeren Mikropartikeln in Baustoffmischungen
EP1986976A1 (de) Additive baustoffmischungen mit sprühgetrockneten mikropartikeln
WO2007096237A2 (de) Additive baustoffmischungen mit mikropartikeln mit sehr dünnen schalen
WO2007096234A2 (de) Additive baustoffmischungen mit nichtionischen emulgatoren
WO2007096231A2 (de) Additive baustoffmischungen mit mikropartikeln mit unpolaren schalen
EP1991510A2 (de) Additive baustoffmischungen mit quellbaren polymergebilden
WO2007099004A1 (de) Additive baustoffmischungen mit ionisch gequollenen mikropartikeln
EP1986977A2 (de) Additive baustoffmischungen mit sterisch oder elektrostatisch abstossenden monomeren in der schale der mikropartikel
DE2837898C2 (de)
EP1042391B1 (de) Redispergierbare polymerisatpulver
WO2007099009A1 (de) Polymere mikropartikel als additive für baustoffmischungen
WO2007096232A2 (de) Additive baustoffmischungen mit ionischen emulgatoren
EP0630920A1 (de) Polymerisatpulver
DE69909164T2 (de) Verstärkungsmaterial für geknetetes und geformtes hydraulisches Material sowie gekneteter und geformter Gegenstand
EP2318326B1 (de) Verwendung von aldehyd-kondensaten als trocknungshilfsmittel in zubereitungen auf basis mineralischer bindemittel
DE2756797A1 (de) Verfahren zur herstellung eines betons mit leichtgewichtigen zuschlaegen und eines fuer die herstellung des betons geeigneten zementmoertels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007704234

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/011030

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2644507

Country of ref document: CA

Ref document number: 1020087021278

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008556735

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008138648

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0708410

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080829