DE102006008969A1 - Additive Baustoffmischungen mit Mikropartikeln mit sehr dünnen Schalen - Google Patents

Additive Baustoffmischungen mit Mikropartikeln mit sehr dünnen Schalen Download PDF

Info

Publication number
DE102006008969A1
DE102006008969A1 DE200610008969 DE102006008969A DE102006008969A1 DE 102006008969 A1 DE102006008969 A1 DE 102006008969A1 DE 200610008969 DE200610008969 DE 200610008969 DE 102006008969 A DE102006008969 A DE 102006008969A DE 102006008969 A1 DE102006008969 A1 DE 102006008969A1
Authority
DE
Germany
Prior art keywords
microparticles
polymeric
cavity
microparticles according
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE200610008969
Other languages
English (en)
Inventor
Jan Hendrik Dr. Schattka
Holger Dr. Kautz
Gerd Dr. Löhden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Construction Research and Technology GmbH
Roehm GmbH Darmstadt
Original Assignee
Roehm GmbH Darmstadt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roehm GmbH Darmstadt filed Critical Roehm GmbH Darmstadt
Priority to DE200610008969 priority Critical patent/DE102006008969A1/de
Priority to US11/387,812 priority patent/US20070197671A1/en
Priority to CNA2006100817499A priority patent/CN101024561A/zh
Priority to PCT/EP2007/050910 priority patent/WO2007096237A2/de
Priority to JP2008555735A priority patent/JP2009527450A/ja
Priority to CA 2642996 priority patent/CA2642996A1/en
Priority to BRPI0708241-0A priority patent/BRPI0708241A2/pt
Priority to EP07704255A priority patent/EP2021299A2/de
Priority to RU2008137547/03A priority patent/RU2008137547A/ru
Priority to KR1020087020706A priority patent/KR20080112205A/ko
Publication of DE102006008969A1 publication Critical patent/DE102006008969A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/08Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/08Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
    • C04B16/082Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons other than polystyrene based, e.g. polyurethane foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00405Materials with a gradually increasing or decreasing concentration of ingredients or property from one layer to another
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/29Frost-thaw resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/249968Of hydraulic-setting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung von polymeren Mikropartikeln mit dünnen Schalen in hydraulisch abbindenden Baustoffgemischen zur Verbesserung deren Frost- bzw. Frost-Tauwechsel-Beständigkeit.

Description

  • Die vorliegende Erfindung betrifft die Verwendung von polymeren Mikropartikeln in hydraulisch abbindenden Baustoffgemischen zur Verbesserung deren Frost- bzw. Frost-Tauwechsel-Beständigkeit.
  • Beton als wichtiger Baustoff ist nach DIN 1045 (07/1988) definiert als künstlicher Stein, der aus einem Gemisch von Zement, Betonzuschlag und Wasser, gegebenenfalls auch mit Betonzusatzmitteln und Betonzusatzstoffen, durch Erhärten entsteht. Beton ist u.a. eingeteilt in Festigkeitsgruppen (BI-BII) und Festigkeitsklassen (B5-B55). Beim Zumischen von gas- oder schaumbildenden Stoffen entsteht Porenbeton bzw. Schaumbeton (Römpp Lexikon, 10.Aufl., 1996, Georg Thieme Verlag).
  • Der Beton hat zwei zeitabhängige Eigenschaften. Erstens erfährt er durch die Austrocknung eine Volumenabnahme, die als Schwinden bezeichnet wird. Der größte Teil des Wassers wird jedoch als Kristallwasser gebunden. Beton trocknet nicht, er bindet ab, d.h., der zunächst dünnflüssige Zementleim (Zement und Wasser) steift an, erstarrt und wird schließlich fest, je nach Zeitpunkt und Ablauf der chemisch-mineralogischen Reaktion des Zements mit dem Wasser, der Hydratation. Durch das Wasserbindevermögen des Zements kann der Beton, im Gegensatz zum gebrannten Kalk, auch unter Wasser erhärten und fest bleiben. Zweitens verformt sich Beton unter Last, das so genannte Kriechen.
  • Der Frost-Tau-Wechsel bezeichnet den klimatischen Wechsel von Temperaturen um den Gefrierpunkt von Wasser. Insbesondere bei mineralisch gebundenen Baustoffen wie Beton ist der Frost-Tau-Wechsel ein Schädigungsmechanismus. Diese Werkstoffe besitzen eine poröse, kapillare Struktur und sind nicht wasserdicht. Wird eine solche, mit Wasser getränkte Struktur Temperaturen unter 0°C ausgesetzt, so gefriert das Wasser in den Poren. Durch die Dichteanomalie des Wassers dehnt sich das Eis nun aus. Dadurch kommt es zu einer Schädigung des Baustoffs. In den sehr feinen Poren kommt es aufgrund von Oberflächeneffekten zu einer Erniedrigung des Gefrierpunktes. In Mikroporen gefriert Wasser erst unter –17°C. Da sich durch Frost-Tau-Wechsel auch der Werkstoff selbst ausdehnt und zusammenzieht, kommt es zusätzlich zu einem kapillaren Pumpeffekt, der die Wasseraufnahme, und damit indirekt die Schädigung weiter steigert. Für die Schädigung ist somit die Anzahl der Frost-Tau-Wechsel entscheidend.
  • Für den Widerstand des Betons gegen Frost und Frost-Tauwechsel bei gleichzeitiger Einwirkung von Taumitteln sind die Dichtigkeit seines Gefüges, eine bestimmte Festigkeit der Matrix und das Vorhandensein eines bestimmten Porengefüges maßgebend. Das Gefüge eines zementgebundenen Betons wird von Kapillarporen (Radius: 2 µm-2 mm) bzw. Gelporen (Radius: 2-50 nm) durchzogen. Darin enthaltenes Porenwasser unterscheidet sich in seiner Zustandsform in Abhängigkeit vom Porendurchmesser. Während Wasser in den Kapillarporen seine gewöhnlichen Eigenschaften beibehält, klassifiziert man in den Gelporen nach kondensiertem Wasser (Mesoporen: 50 nm) und adsorptiv gebundenem Oberflächenwasser (Mikroporen: 2 nm), deren Gefrierpunkte beispielsweise weit unter –50°C liegen kann [M.J.Setzer, Interaction of water with hardened cement paste, "Ceramic Transactions" 16 (1991) 415-39]. Das hat zur Folge, dass selbst bei tiefen Abkühlungen des Betons ein Teil des Porenwassers ungefroren bleibt (metastabiles Wasser). Bei gleicher Temperatur ist aber der Dampfdruck über Eis geringer als der über Wasser. Da Eis und metastabiles Wasser gleichzeitig nebeneinander vorliegen, entsteht ein Dampfdruckgefälle, das zu einer Diffusion des noch flüssigen Wassers zum Eis und zu dessen Eisbildung führt, wodurch eine Entwässerung der kleineren bzw. eine Eisansammlung in den größeren Poren stattfindet. Diese Wasser umverteilung infolge Abkühlung findet in jedem porigen System statt und ist maßgeblich von der Art der Porenverteilung abhängig.
  • Die künstliche Einführung von mikrofeinen Luftporen im Beton erzeugt also in erster Linie so genannte Entspannungsräume für expandierendes Eis und Eiswasser. In diesen Poren kann gefrierendes Porenwasser expandieren bzw. internen Druck und Spannungen von Eis und Eiswasser auffangen, ohne dass es zu Mikrorissbildungen und damit zu Frostschäden am Beton kommt. Die prinzipielle Wirkungsweise solcher Luftporensysteme ist im Zusammenhang mit dem Mechanismus der Frostschädigung von Beton in einer Vielzahl von Übersichten beschrieben worden [Schulson, Erland M. (1998) Ice damage to concrete. CRREL Special Report 98-6; S.Chatterji, Freezing of air-entrained cement-based materials and specific actions of air-entraining agents, "Cement & Concrete Composites" 25 (2003) 759-65; G.W.Scherer, J.Chen & J.Valenza, Methods for protecting concrete from freeze damage, US-Patent 6,485,560 B1 (2002); M.Pigeon, B.Zuber & J.Marchand, Freeze/thaw resistance, "Advanced Concrete Technology" 2 (2003) 11/1-11/17; B.Erlin & B.Mather, A new process by which cyclic freezing can damage concrete – the Erlin/Mather effect, "Cement & Concrete Research" 35 (2005) 1407-11].
  • Voraussetzung für eine verbesserte Beständigkeit des Betons bei Frost- und Tauwechsel ist, dass der Abstand jedes Punktes im Zementstein von der nächsten künstlichen Luftpore einen bestimmten Wert nicht überschreitet. Dieser Abstand wird auch als Abstandsfaktor oder "Powers spacing factor" bezeichnet [T.C.Powers, The air requirement of frost-resistant concrete, "Proceedings of the Highway Research Board" 29 (1949) 184-202]. Laborprüfungen haben dabei gezeigt, dass ein Überschreiten des kritischen "Power spacing factor" von 500 µm zu einer Schädigung des Betons bei Frost- und Tauwechsel führt. Um dies bei beschränktem Luftporengehalt zu erreichen, muss der Durchmesser der künstlich eingeführten Luftporen daher kleiner 200-300 µm sein [K.Snyder, K.Natesaiyer & K.Hover, The stereological and statistical properties of entrained air voids in concrete: A mathematical basis for air void systems characterization) "Materials Science of Concrete" VI (2001) 129-214].
  • Die Bildung eines künstlichen Luftporensystems hängt maßgeblich von der Zusammensetzung und der Kornformität der Zuschläge, der Art und Menge des Zements, der Betonkonsistenz, dem verwendeten Mischer, der Mischzeit, der Temperatur, aber auch von der Art und Menge des Luftporenbildners ab. Unter Berücksichtigung entsprechender Herstellungsregeln lassen sich deren Einflüsse zwar beherrschen, jedoch kann es zu einer Vielzahl von ungewünschten Beeinträchtigungen kommen, was letztendlich dazu führt, dass der gewünschte Luftgehalt im Beton über- oder unterschritten werden kann und somit die Festigkeit oder den Frostwiderstand des Betons negativ beeinflusst.
  • Solche künstlichen Luftporen lassen sich nicht direkt dosieren, sondern durch die Zugabe von so genannten Luftporenbildnern wird die durch das Mischen eingetragene Luft stabilisiert [L.Du & K.J.Folliard, Mechanism of air entrainment in concrete "Cement & Concrete Research" 35 (2005) 1463-71]. Herkömmliche Luftporenbildner sind zumeist tensidartiger Struktur und brechen die durch das Mischen eingeführte Luft zu kleinen Luftbläschen mit einem Durchmesser möglichst kleiner 300 µm und stabilisieren diese im feuchten Betongefüge. Man unterscheidet dabei zwischen zwei Typen.
  • Der eine Typ – z.B. Natriumoleat, das Natriumsalz der Abietinsäure oder Vinsolharz, einem Extrakt aus Kiefernwurzeln – reagiert mit dem Caiciumhydroxid der Porenlösung im Zementleim und fällt als unlösliches Calciumsalz aus. Diese hydrophoben Salze reduzieren die Oberflächenspannung des Wassers und sammeln sich an der Grenzfläche zwischen Zementkorn, Luft und Wasser. Sie stabilisieren die Mikrobläschen und finden sich daher im aushärtenden Beton an den Oberflächen dieser Luftporen wieder.
  • Der andere Typ – z.B. Natriumlaurylsulfat (SDS) oder Natriumdodecylphenylsulfonat – bildet dagegen mit Calciumhydroxid lösliche Calciumsalze, die aber ein anormales Lösungsverhalten zeigen. Unter einer gewissen kritischen Temperatur zeigen diese Tenside eine sehr geringe Löslichkeit, oberhalb dieser Temperatur sind sie sehr gut löslich. Durch eine bevorzugtes Ansammeln an der Luft-Wasser-Grenzschicht verringern sie ebenfalls die Oberflächenspannung, stabilisieren somit die Mikrobläschen und sind bevorzugt an der Oberflächen dieser Luftporen im ausgehärteten Beton wiederzufinden.
  • Bei der Verwendung dieser Luftporenbildner nach dem Stand der Technik treten eine Vielzahl von Probleme auf [L.Du & K.J.Folliard, Mechanism of air entrainment in concrete "Cement & Concrete Research" 35 (2005) 1463-71. Beispielsweise können längere Mischzeiten, unterschiedliche Mischerdrehzahlen, veränderte Dosierabläufe bei den Transportbetonen dazu führen, dass die stabilisierte Luft (in den Luftporen) wieder ausgetrieben wird.
  • Die Beförderung von Betonen mit verlängerten Transportzeiten, schlechter Temperierung und unterschiedlichen Pump- und Fördereinrichtungen, sowie das Einbringen dieser Betone einhergehend mit veränderter Nachbearbeitung, Ruckelverhalten und Temperaturbedingungen kann einen zuvor eingestellten Luftporengehalt signifikant verändern. Das kann im schlimmsten Fall bedeuten, dass ein Beton die erforderlichen Grenzwerte einer bestimmten Expositionsklasse nicht mehr erfüllt und somit unbrauchbar geworden ist [EN 206-1 (2000), Concrete-Part 1: Secification, performance, production and conformity].
  • Der Gehalt an feinen Stoffen im Beton (z.B. Zement mit unterschiedlichem Alkaligehalt, Zusatzstoffe wie Flugasche, Silikastaub, oder Farbzusätze) beeinträchtigt die Luftporenbildung ebenfalls. Auch können Wechselwirkungen mit entschäumend wirkenden Fließmitteln auftreten, die somit Luftporen austreiben, aber auch zusätzlich unkontrolliert einführen können.
  • Als Nachteil des Einbringens von Luftporen ist außerdem zu sehen, daß die mechanische Festigkeit des Betons mit steigendem Luftgehalt abnimmt.
  • All diese die Herstellung von frostbeständigen Beton erschwerenden Einflüsse lassen sich vermeiden, wenn das erforderliche Luftporensystem nicht durch o.g. Luftporenbildner mit tensidartiger Struktur erzeugt wird, sondern der Luftgehalt durch das Zumischen bzw. feste Dosieren von polymeren Mikropartikeln (Mikrohohlkugeln) herrührt [H.Sommer, A new method of making concrete resistant to frost and de-icing salts, "Betonwerk & Fertigteiltechnik" 9 (1978) 476-84]. Da die Mikropartikel zumeist Partikelgrößen kleiner 100 µm aufweisen, lassen sie sich im Betongefüge auch feiner und gleichmäßiger als künstlich eingeführte Luftporen verteilen. Dadurch reichen bereits geringe Mengen für einen ausreichenden Widerstand des Betons gegen Frost- und Tauwechsel aus.
  • Die Verwendung von solchen polymeren Mikropartikeln zur Verbesserung der Frost- und Frost-Tauwechsel-Beständigkeit von Beton ist entsprechend dem Stand der Technik bereits bekannt [vgl. DE 22 290 94 A1 , US 4,057,526 B1 , US 4,082,562 B1 , DE 30 267 19 A1 ]. Die darin beschriebenen Mikropartikel haben Durchmesser von mindestens 10 µm (üblicherweise deutlich größer) und besitzen luft- bzw. gasgefüllte Hohlräume. Das schließt ebenfalls poröse Partikel ein, die größer 100 µm sein können und eine Vielzahl an kleineren Hohlräumen und/oder Poren besitzen können.
  • Bei der Verwendung von hohlen Mikropartikeln zur künstlichen Luftporenbildung im Beton erwiesen sich zwei Faktoren nachteilig für die Durchsetzung dieser Technologie auf dem Markt aus. Es ist nur mit relativ hohen Dosierungen eine zufrieden stellende Resistenz des Betons gegenüber Frost- und Tauwechseln zu erzielen. Der vorliegenden Erfindung lag daher die Aufgabe zu Grunde, ein Mittel zur Verbesserung der Frost- bzw. Frost-Tauwechsel-Beständigkeit für hydraulisch abbindende Baustoffmischungen bereitzustellen, welches auch bei relativ geringen Dosierungen seine volle Wirksamkeit entfaltet. Aufgabe war es auch, eine hohe Effizienz dieses Mittels zu erreichen um eine entsprechende Wirksamkeit mit möglichst geringen Mengen davon zu erzielen; lezteres ist nötig um die Herstellungskosten einer entsprechend ausgerüsteten Baustoffmischung nicht übermäßig zu erhöhen Eine weitere Aufgabe bestand darin, die Wirkung dieses Mittels möglichst bald nach Verarbeitung und Erhärtung der Baustoffmischung eintreten zu lassen.
  • Die Aufgabe wurde gelöst durch die Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikeln in hydraulisch abbindenden Baustoffmischungen, dadurch gekennzeichnet, dass die Schale der Mikropartikel Vernetzer enthält und/oder dass die Schale einen Weichmacher enthält und/oder dass sich die Monomerzusammensetzung vom Kern zur Schale in Schritten oder in Form eines Gradienten ändert.
  • Mikropartikel, die erfindungsgemäß eines oder mehrere dieser Aufbaukriterien erfüllen, lassen sich mit sehr dünnen Schale herstellen. Als Additiv in Baustoffmischungen eingesetzt weisen solche Mikropartikel eine hohe Effektivität auf und führen bereits in geringen Mengen zu der gewünschten Beständigkeit gegen Frost bzw. Frost/Tau-Wechsel.
  • Die Schalen der erfindungsgemäßen Mikropartikel sind im Mittel vorzugsweise dünner als 140 nm; mehr bevorzugt sind Schalen welche dünner sind als 100 nm; am meisten bevorzugt sind Schalen welche dünner sind als 70 nm.
  • Die Bestimmung der mittleren Schalendicke erfolgt zweckmäßig durch Ausmessung einer statistisch signifikanten Menge an Partikeln anhand von transmissionselektronenmikroskopischen Aufnahmen.
  • Es wurde gefunden, dass Mikropartikel mit dünnen Schalen besonders schnell das Wasser aufnehmen und auch wieder abgeben können. Somit wird beim Erhärten des Betons die Frost- bzw. Frost-Tauwechsel-Beständigkeit wesentlich schneller hergestellt.
  • Die zur Herstellung der erfindungsgemäßen Mikropartikel bevorzugt eingesetzen Mengen an Vernetzer betragen 0,3-15 Gew% (bezogen auf die Gesamtmenge an Monomeren in der Schale); weiter bevorzugt sind 0,5-8 Gew% Vernetzer; am meisten bevorzugt sind 0,8-3 Gew%.
  • Besonders bevorzugt sind Vernetzer ausgewählt aus der Gruppe Ethylenglycol(meth)acrylat, Propylenglycol(meth)acrylat, Allyl(meth)acrylat, Divinylbenzol, Diallylmaleinat, Trimethylolpropantrimethacrylat, Glycerindimethacrylat, Glycerintrimethacrylat, Pentaerythrittetramethacrylat oder deren Mischungen.
  • Durch den Einsatz der Vernetzer, der nicht notwendigerweise zur Vernetzung des Schalenpolymers führen muß, sondern vielmehr auch lediglich eine Erhöhung des Molekulargewichtes bewirken kann, gelingt es Schalen herzustellen, die bereits bei geringerer Dicke ausreichende Festigkeiten besitzen, um während der Quellung der Mikropartikel intakt zu bleiben. Gleichzeitig werden bei der Verwendung von Vernetzer in der Schale weniger Partikel beobachtet, die nach dem Quellen – ähnlich einer erschlafften Fußballhülle – eingefallen sind.
  • Die erfindungsgemäßen Mikropartikel können in einer weiteren bevorzugten Ausführungsform Weichmacher in der Schale enthalten.
  • Bei der bevorzugten Herstellung dieser Partikel durch Emulsionspolymerisation werden vorzugsweise 0,3 bis 12 Gew% (bezogen auf das Gesamtgewicht der Schale als 100%) zusammen mit der Monomermischung der Schale in den Reaktor gegeben, so daß sie bereits während der Polymerisation und also dem Aufbau der Schale anwesend sind.
  • Alternativ kann die bevorzugte Menge an Weichmacher auch nach der Polymerisation, aber vor dem Quellen zugesetzt werden.
  • Besonders bevorzugt sind Mengen von 0,6 bis 8 Gew% Weichmacher (bezogen auf das Gesamtgewicht der Schale als 100%); am meisten bevorzugt sind 1 bis 3 Gew% Weichmacher.
  • Die Weichmacher sorgen für eine zähe und flexible Schale, die ein vollständiges Quellen der Mikropartikel erlaubt. Auf diese Weise können ebenfalls sehr dünne Schalen erreicht werden.
  • Bevorzugt werden Weichmacher ausgewählt aus der Gruppe der Phthalate, Adipate, Phosphate oder Zitrate eingesetzt; wobei Phthalate besonders bevorzugt sind.
  • Die folgenden Weichmacher seien besonders erwähnt, wobei die Liste beliebig weiter fortsetzbar ist und nicht einschränkend verstanden werden soll:
    Ester der Phthalsäure, wie z.B. Diundecylphthalat, Diisodecylphthalat, Diisononylphthalat, Dioctylphthalat, Diethylhexylphthalat, Di-C7-C11-n-alkylphthalat, Dibutylphthalat, Diisobutylphthalat, Dicyclohexylphthalat, Dimethylphthalat, Diethylphthalat, Benzyloctylphthalat, Butylbenzylphthalat, Dibenzylphthalat und Trikresylphosphat, Dihexyldicaprylphthalat.
  • Hydroxycarbonsäureester, wie z.B. Ester der Zitronensäure (beispielsweise Tributyl-O-acetylcitrat, Triethyl-O-acetylcitrat), Ester der Weinsäure oder Ester der Milchsäure.
  • Aliphatische Dicarbonsäureester, wie z.B. Ester der Adipinsäure (beispielsweise Dioctyladipat, Diisodecyladipat), Ester der Sebacinsäure (beispielsweise Dibutylsebacat, Dioctylsebacat, Bis(2-ethylhexyl)-sebacat) oder Ester der Azelainsäure.
  • Ester der Trimellithsäure, wie z.B. Tris(2-ethylhexyl)trimellitat. Ester der Benzoesäure, wie z.B. Benzylbenzoat Ester der Phosphorsäure, wie z.B. Trikresylphosphat, Triphenylphosphat, Diphenylkresylphosphat, Diphenyloctylphosphat, Tris(2-ethylhexyl)-phosphat, Tris(2-butoxyethyl)phosphat.
  • Alkylsulfonsäureester des Phenols oder des Kresols, Dibenzyltoluol, Diphenylether.
  • Alle diese und weitere Weichmacher können allein oder auch als Mischungen eingesetzt werden.
  • In einer weiteren bevorzugten Ausführungsform ändert sich die Monomerzusammensetzung des Kernes und der Schale nicht sprunghaft, wie dies bei einem ideal aufgebauten Kern/Schale-Partikel der Fall ist, sondern allmählich in zwei oder mehr Schritten oder in Form eines Gradienten.
  • Befindet sich zwischen dem Kern, der gequollen wird, und der Schale, die gleich einer Luftballonhülle die Quellung zulassen und gleichwohl den eingeschlossenen Hohlraum umhüllen soll ohne zu zerreißen, eine Zwischenschale, die einen Teil der Funktion von beiden übernimmt, so gelingt es den Polymergehalt der Mikropartikel weiter zu senken.
  • Durch weitere Schalen gelingt es diesen Effekt weiter zu verstärken. Ein Gradient entspricht einer sehr großen Anzahl von Schalen.
  • Da durch den nicht mehr abrupten Übergang von Kern zu Schale eine exakte Bestimmung der Schalendicke nicht mehr möglich bwz. nicht mehr sinnvoll ist, ist es praktikabler den Polymergehalt der Mikropartikel zu betrachten.
  • Bei reinen Kern/Schale Partikeln entspricht ein sinkender Polymergehalt einer dünnerer Wandung bei gleichem Partikeldurchmesser.
  • Entsprechend der vorliegenden Erfindung werden polymere Mikropartikel verwendet, deren Hohlraum mit 1 bis 100 Vol-%, insbesondere 10 bis 100 Vol.-%, Wasser gefüllt ist.
  • Derartige wassergefüllte Mikropartikel sind entsprechend dem Stand der Technik bereits bekannt und in den Druckschriften EP 22 633 B1 , EP 73 529 B1 sowie EP 188 325 B1 beschrieben. Außerdem werden diese wassergefüllten Mikropartikel unter dem Markennamen ROPAQUE® von der Fa. Rohm & Haas kommerziell vertrieben. Diese Produkte fanden bislang hauptsächlich ihre Verwendung in Tinten und Farben zur Verbesserung der Deckfähigkeit und Lichtundurchlässigkeit (Opazität) von Anstrichen oder Drucken auf Papier, Pappen und anderen Materialien.
  • Gemäß einer bevorzugten Ausführungsform bestehen die eingesetzten Mikropartikel aus Polymerteilchen, die einen Kern (A) und mindestens eine Schale (B) besitzen, wobei die Kern/Schale-Polymerteilchen mit Hilfe einer Base gequollen wurden.
  • Der Kern (A) des Partikels enthält eine oder mehrere ethylenisch ungesättigte Carbonsäure-(Derivat-)Monomere die eine Quellung des Kerns ermöglichen; diese Monomere sind vorzugsweise ausgewählt aus der Gruppe Acrylsäure, Methacrylsäure, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, Itaconsäure und Crotonsäure und deren Mischungen. Acrylsäure und Methacrlysäure sind besonders bevorzugt.
  • Als nicht-ionische, ethylenisch ungesättigte Monomere, welche die Polymerhülle (B) bilden, werden insbesondere Styrol, Butadien, Vinyltoluol, Ethylen, Vinylacetat, Vinylchlorid, Vinylidenchlorid, Acrylnitril, Acrylamid, Methacrylamid, C1-C12-Alkylester der Acryl- oder Methacrylsäure eingesetzt.
  • Die Herstellung dieser polymeren Mikropartikel durch Emulsionspolymerisation sowie deren Quellung mit Hilfe von Basen wie z.B. Alkali- oder Alkalihydroxide sowie Ammoniak oder einem Amin werden ebenfalls in den europäischen Patentschriften EP 22 633 B1 , EP 735 29 B1 sowie EP 188 325 B1 beschrieben.
  • Es können Kern-Schale Teilchen dargestellt werden, die ein- oder mehrschalig aufgebaut sind, oder deren Schalen einen Gradienten aufweisen, wobei erfindungsgemäß besonders dünne Schalen hergestellt werden. Die Monomerzusammensetzung ändert sich vom Kern zur Schale allmählich in 2 oder mehr Schritten oder in Form eines Gradienten.
  • Die erfindungsgemäß eingesetzten Mikropartikel weisen eine bevorzugte mittlere Teilchengröße von 100 bis 5000 nm auf. Der Polymergehalt der eingesetzten Mikropartikel kann in Abhängigkeit vom Durchmesser und dem Wassergehalt bei 2 bis 98 Gew.-% (Gewicht Polymer bezogen auf die Gesamtmasse des wassergefüllten Partikels) liegen.
  • Besonders bevorzugt sind Durchmesser von 200 bis 2000 nm, am meisten bevorzugt sind Teilchengrößen von 250 bis 1000 nm.
  • Die besonders bevorzugten Polymergehalte liegen bei 2 bis 98 Gew.-%, bevorzugt von 2 bis 60 Gew.-%, am meisten bevorzugt sind Polymergehalte von 2 bis 40 Gew.-%.
  • Die handelsüblichen Mikropartikel (bspw. vom Typ ROPAQUE®) liegen in der Regel in Form einer wässrigen Dispersion vor, die einen gewissen Anteil an Dispersionsmittel tensidischer Struktur enthalten müssen, um Agglomerationen der Mikropartikel zu unterdrücken. Man kann aber auch alternativ Dispersionen dieser Mikropartikel verwenden, die keine oberflächenaktiven (und im Beton möglicherweise störend wirkenden) Tenside aufweisen. Dazu werden die Mikropartikel in wässrigen Lösungen dispergiert, die ein rheologisches Stellmittel aufweisen. Solche verdickenden Agenzien, die eine pseudoplastische Viskosität besitzen, sind zumeist polysaccharidischer Natur [D.B.Braun & M.R.Rosen, "Rheology Modifiers Handbook" (2000), William Andrew Publ.]. Hervorragend geeignet sind mikrobielle Exopolysaccharide der Gellan-Gruppe (S-60) und insbesondere Welan (S-130) und Diutan (S-657) [E.J.Lee & R. Chandrasekaran, X-ray and computer modeling studies on gellanrelated polymers: Molecular structures of welan, S-657, and rhamsan, „Carbohydrate Research" 214 (1991) 11-24].
  • Erfindungsgemäß werden die wassergefüllten, polymeren Mikropartikel in Form einer wässrigen Dispersion eingesetzt.
  • Es ist im Rahmen der vorliegenden Erfindung ohne weiteres möglich, die wassergefüllten Mikropartikel direkt als Feststoff der Baustoffmischung zuzugeben. Dazu werden die Mikropartikel – wie zuvor beschrieben – koaguliert und durch übliche Methoden (z.B. Filtration, Zentrifugieren, Sedimentieren und Dekantieren) aus der wässrigen Dispersion isoliert und die Partikel anschließend getrocknet, wodurch der wasserhaltige Kern durchaus erhalten bleiben kann. Um den Wassergehalt in den Mikropartikeln möglichst unverändert zu lassen, kann ein Waschen des koagulierten Materials mit leicht flüchtigen Flüssigkeiten hilfreich sein. Bei den verwendeten ROPAQUE®-Typen mit ihrer (Poly)styrolschale haben sich beispielsweise Alkohole wie MeOH oder EtOH bewährt.
  • Die wassergefüllten Mikropartikel werden der Baustoffmischung in einer bevorzugten Menge von 0,01 bis 5 Vol%, insbesondere 0,1 bis 0,5 Vol%, zugegeben. Die Baustoffmischung bspw. in Form von Beton oder Mörtel kann hierbei die üblichen hydraulisch abbindenden Bindemittel wie z.B. Zement, Kalk, Gips oder Anhydrit enthalten.
  • Ein wesentlicher Vorteil durch die Verwendung der wassergefüllten Mikropartikel besteht darin, dass nur ein außerordentlich geringer Lufteintrag in den Beton erfolgt. Dadurch sind deutlich verbesserte Druckfestigkeiten des Betons zu erzielen. Diese liegen etwa 25-50% über den Druckfestigkeiten von Beton, der mit herkömmlicher Luftporenbildung erhalten wurde. Somit können Festigkeitsklassen erreicht werden, die sonst nur durch einen wesentlich niedrigeren Wasser/Zement-Wert (W/Z-Wert) einstellbar sind. Geringe W/Z-Werte schränken aber wiederum die Verarbeitbarkeit des Betons unter Umständen deutlich ein.
  • Außerdem können höhere Druckfestigkeiten zur Folge haben, dass der für die Festigkeitsentwicklung erforderliche Gehalt an Zement im Beton verringert werden könnte und somit der Preis pro m3 Beton signifikant reduziert wird.

Claims (16)

  1. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikeln in hydraulisch abbindenden Baustoffmischungen, dadurch gekennzeichnet, dass die Schale der Mikropartikel Vernetzer enthält und/oder dass die Schale einen Weichmacher enthält und/oder daß sich die Monomerzusammensetzung vom Kern zur Schale in Schritten oder in in Form eines Gradienten ändert.
  2. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikeln nach Anspruch 1, dadurch gekennzeichnet, dass die Vernetzer ausgewählt sind aus der Gruppe Ethylenglycol(meth)acrylat, Propylenglycol(meth)acrylat, Allyl(meth)acrylat, Divinylbenzol, Diallylmaleinat, Trimethylolpropantrimethacrylat, Glycerindimethacrylat, Glycerintrimethacrylat, Pentaerythrittetramethacrylat oder deren Mischungen.
  3. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikeln nach Anspruch 1, dadurch gekennzeichnet, dass die Weichmacher ausgewählt sind aus der Gruppe der Phthalate, Adipate, Phosphate, Zitrate oder Mischungen daraus.
  4. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikeln nach Anspruch 1, deren Monomerzusammensetzung sich vom Kern zur Schale allmählich in zwei oder mehr Schritten oder in Form eines Gradienten ändert.
  5. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikeln nach Anspruch 1, dadurch gekennzeichnet, dass die Dicke der Schalen im Mittel dünner als 140 nm ist.
  6. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikeln nach Anspruch 1, dadurch gekennzeichnet, dass die Mikropartikel aus Polymerteilchen bestehen, die einen mit Hilfe einer wässrigen Base gequollenen Polymerkern (A), der eine oder mehrere ungesättigte Carbonsäure-(Derivat-)Monomers enthält, sowie eine Polymerhülle (B), die überwiegend aus nicht-ionischen, ethylenisch ungesättigten Monomeren besteht, enthalten.
  7. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikeln nach Anspruch 6, dadurch gekennzeichnet, dass die ungesättigten Carbonsäure-(Derivat-)Monomere gewählt sind aus der Gruppe Acrylsäure, Methacrylsäure, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, Itaconsäure und Crotonsäure.
  8. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikeln nach Anspruch 6, dadurch gekennzeichnet, dass die nicht-ionischen, ethylenisch ungesättigten Monomere aus Styrol, Butadien, Vinyltoluol, Ethylen, Vinylacetat, Vinylchlorid, Vinylidenchlorid, Acrylnitril, Acrylamid, Methacrylamid, C1-C12-Alkylester der Acryl- oder Methacrylsäure bestehen.
  9. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 1, dadurch gekennzeichnet, dass die Mikropartikel einen Polymergehalt von 2 bis 98 Gew.-% aufweisen.
  10. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 8, dadurch gekennzeichnet, dass die Mikropartikel einen Polymergehalt von 2 bis 60 Gew.-% aufweisen.
  11. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 9, dadurch gekennzeichnet, dass die Mikropartikel einen Polymergehalt von 2 bis 40 Gew.-% aufweisen.
  12. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 1, dadurch gekennzeichnet, dass die Mikropartikel einen Durchmesser von 100 bis 5000 nm besitzen.
  13. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 11, dadurch gekennzeichnet, dass die Mikropartikel einen Durchmesser von 200 bis 2000 nm besitzen.
  14. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 1, dadurch gekennzeichnet, dass die Mikropartikel in einer Menge von 0.01 bis 5 Vol.-%, insbesondere von 0.1 bis 0.5 Vol.-%, bezogen auf die Baustoffmischung, eingesetzt werden.
  15. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 1, dadurch gekennzeichnet, dass die Baustoffmischungen aus einem Bindemittel, ausgewählt aus der Gruppe Zement, Kalk, Gips und Anhydrit, bestehen.
  16. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei den Baustoffmischungen um Beton oder Mörtel handelt.
DE200610008969 2006-02-23 2006-02-23 Additive Baustoffmischungen mit Mikropartikeln mit sehr dünnen Schalen Withdrawn DE102006008969A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE200610008969 DE102006008969A1 (de) 2006-02-23 2006-02-23 Additive Baustoffmischungen mit Mikropartikeln mit sehr dünnen Schalen
US11/387,812 US20070197671A1 (en) 2006-02-23 2006-03-24 Additive building material mixtures containing microparticles having very thin shells
CNA2006100817499A CN101024561A (zh) 2006-02-23 2006-05-10 含有具有非常薄的壳的微粒子的建筑材料混合物添加剂
PCT/EP2007/050910 WO2007096237A2 (de) 2006-02-23 2007-01-30 Additive baustoffmischungen mit mikropartikeln mit sehr dünnen schalen
JP2008555735A JP2009527450A (ja) 2006-02-23 2007-01-30 非常に薄いシェルを有するマイクロ粒子を有する建材用添加剤混合物
CA 2642996 CA2642996A1 (en) 2006-02-23 2007-01-30 Additive building material mixtures comprising microparticles with extremely thin shells
BRPI0708241-0A BRPI0708241A2 (pt) 2006-02-23 2007-01-30 misturas aditivadas de materiais de contrução contendo micropartìculas com cascas extremamente finas
EP07704255A EP2021299A2 (de) 2006-02-23 2007-01-30 Additive baustoffmischungen mit mikropartikeln mit sehr dünnen schalen
RU2008137547/03A RU2008137547A (ru) 2006-02-23 2007-01-30 Аддитивные строительные смеси с микрочастицами, имеющими очень тонкую оболочку
KR1020087020706A KR20080112205A (ko) 2006-02-23 2007-01-30 극히 얇은 쉘을 갖는 미립자를 포함하는 부가적인 건축 자재 혼합물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200610008969 DE102006008969A1 (de) 2006-02-23 2006-02-23 Additive Baustoffmischungen mit Mikropartikeln mit sehr dünnen Schalen

Publications (1)

Publication Number Publication Date
DE102006008969A1 true DE102006008969A1 (de) 2007-08-30

Family

ID=38171154

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200610008969 Withdrawn DE102006008969A1 (de) 2006-02-23 2006-02-23 Additive Baustoffmischungen mit Mikropartikeln mit sehr dünnen Schalen

Country Status (10)

Country Link
US (1) US20070197671A1 (de)
EP (1) EP2021299A2 (de)
JP (1) JP2009527450A (de)
KR (1) KR20080112205A (de)
CN (1) CN101024561A (de)
BR (1) BRPI0708241A2 (de)
CA (1) CA2642996A1 (de)
DE (1) DE102006008969A1 (de)
RU (1) RU2008137547A (de)
WO (1) WO2007096237A2 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1233765C (zh) * 2001-02-07 2005-12-28 罗姆两合公司 用于对聚丙烯和聚苯乙烯施用的铝箔的热封物料
DE10350786A1 (de) * 2003-10-29 2005-06-02 Röhm GmbH & Co. KG Mischungen zur Herstellung von Reaktivschmelzklebstoffen sowie daraus erhältliche Reaktivschmelzklebstoffe
DE102004035937A1 (de) * 2004-07-23 2006-02-16 Röhm GmbH & Co. KG Plastisole mit verringerter Wasseraufnahme
DE102005042389A1 (de) * 2005-06-17 2006-12-28 Röhm Gmbh Heißversiegelungsmasse für Aluminium- und Polyethylenterephthalatfolien gegen Polypropylen-Polyvinylchlorid- und Polystyrolbehälter
DE102005045458A1 (de) * 2005-09-22 2007-03-29 Röhm Gmbh Verfahren zur Herstellung von ABA-Triblockcopolymeren auf (Meth)acrylatbasis
DE102005046681A1 (de) * 2005-09-29 2007-04-05 Construction Research & Technology Gmbh Verwendung von polymeren Mikropartikeln in Baustoffmischungen
DE102005052130A1 (de) * 2005-10-28 2007-05-03 Röhm Gmbh Spritzbare Akustikmassen
DE102006009842A1 (de) * 2006-03-01 2007-09-06 Röhm Gmbh Additive Baustoffmischungen mit Mikropartikeln die in der Mischung quellen
KR101308094B1 (ko) * 2011-04-18 2013-09-12 계명대학교 산학협력단 코어-쉘 구조를 갖는 시멘트 페이스트의 마이크로캡슐 흡수제 및 그 제조방법
WO2014058163A1 (ko) * 2012-10-11 2014-04-17 (주) 엘지화학 저온충격강도가 향상된 알킬아크릴레이트-비닐방향족 화합물-비닐시안 화합물 공중합체 및 이를 포함하는 폴리카보네이트 조성물
CN110577613A (zh) * 2019-09-09 2019-12-17 张家港市德宝化工有限公司 一种利用特种丙烯酸酯废水制备混凝土助剂的工艺方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE418736B (sv) * 1976-12-23 1981-06-22 Bofors Ab Sett att vid framstellning av ett cementbruk innefattande cement, sand och vatten initiera en indragning av finfordelad luft i bruket
US5328952A (en) * 1992-02-14 1994-07-12 Rohm And Haas Company Multi-stage polymer latex cement modifier and process of making
EP0654454A1 (de) * 1993-11-22 1995-05-24 Rohm And Haas Company Kern/Schale Polymerisat-Pulver
WO1997003112A1 (en) * 1995-07-07 1997-01-30 Mitsubishi Rayon Co., Ltd. Powdery material and modifier for cementitious material
DE19733157A1 (de) * 1997-07-31 1999-02-04 Wacker Chemie Gmbh Vernetzbare, in Wasser redispergierbare Pulverzusammensetzung
DE19833062A1 (de) * 1998-07-22 2000-02-03 Elotex Ag Sempach Station Redispergierbares Pulver und dessen wäßrige Dispersion, Verfahren zur Herstellung sowie Verwendung
JP2004131361A (ja) * 2002-08-09 2004-04-30 Sekisui Chem Co Ltd 軽量セメント製品およびその製造方法
US20040034147A1 (en) * 2002-08-13 2004-02-19 Jsr Corporation Hollow polymer particle, process for producing the same, paper coating composition using the same, coated paper and process for producing the same
EP1758832A2 (de) * 2004-06-15 2007-03-07 Construction Research & Technology GmbH Bereitstellung von einfrier- und auftaufestigkeit für zementzusammensetzungen
DE102005046681A1 (de) * 2005-09-29 2007-04-05 Construction Research & Technology Gmbh Verwendung von polymeren Mikropartikeln in Baustoffmischungen
DE102006008970A1 (de) * 2006-02-23 2007-08-30 Röhm Gmbh Additive Baustoffmischungen mit nichtionischen Emulgatoren
DE102006008963A1 (de) * 2006-02-23 2007-08-30 Röhm Gmbh Additive Baustoffmischungen mit sterisch oder elektrostatisch abstoßenden Monomeren in der Schale der Mikropartikel

Also Published As

Publication number Publication date
JP2009527450A (ja) 2009-07-30
US20070197671A1 (en) 2007-08-23
BRPI0708241A2 (pt) 2011-05-24
RU2008137547A (ru) 2010-03-27
CA2642996A1 (en) 2007-08-30
WO2007096237A2 (de) 2007-08-30
CN101024561A (zh) 2007-08-29
WO2007096237A3 (de) 2008-05-02
EP2021299A2 (de) 2009-02-11
KR20080112205A (ko) 2008-12-24

Similar Documents

Publication Publication Date Title
DE102006008969A1 (de) Additive Baustoffmischungen mit Mikropartikeln mit sehr dünnen Schalen
DE102006008968A1 (de) Additive Baustoffmischungen mit Mikropartikeln, deren Schalen porös und/oder hydrophil sind
DE102005046681A1 (de) Verwendung von polymeren Mikropartikeln in Baustoffmischungen
DE102006009842A1 (de) Additive Baustoffmischungen mit Mikropartikeln die in der Mischung quellen
DE102006008965A1 (de) Additive Baustoffmischungen mit Mikropartikeln verschiedener Größe
DE102006008966A1 (de) Additive Baustoffmischungen mit sprühgetrockneten Mikropartikeln
WO2007096234A2 (de) Additive baustoffmischungen mit nichtionischen emulgatoren
DE102006009841A1 (de) Additive Baustoffmischungen mit quellbaren Polymergebilden
DE2756798A1 (de) Verfahren zur herstellung eines zementmoertels sowie seine verwendung zur herstellung eines leichtgewichtige zuschlagstoffe enthaltenden betons
DE102006008963A1 (de) Additive Baustoffmischungen mit sterisch oder elektrostatisch abstoßenden Monomeren in der Schale der Mikropartikel
DE102006008967A1 (de) Additive Baustoffmischungen mit Mikropartikeln mit unpolaren Schalen
DE102006009823A1 (de) Additive Baustoffmischungen mit ionisch gequollenen Mikropartikeln
WO2011044605A1 (de) Dämmstoff
AT509576A1 (de) Mineralschaum
AT509575A1 (de) Mineralschaum
DE102006008964A1 (de) Additive Baustoffmischungen mit ionischen Emulgatoren
DE102006009840A1 (de) Additive Baustoffmischungen mit Mikrovollpartikeln
DE69909164T2 (de) Verstärkungsmaterial für geknetetes und geformtes hydraulisches Material sowie gekneteter und geformter Gegenstand
EP1963239A2 (de) Verwendung eines additivs als entschalungshilfsmittel
DE2756797A1 (de) Verfahren zur herstellung eines betons mit leichtgewichtigen zuschlaegen und eines fuer die herstellung des betons geeigneten zementmoertels

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: EVONIK ROEHM GMBH, 64293 DARMSTADT, DE

8127 New person/name/address of the applicant

Owner name: EVONIK ROEHM GMBH, 64293 DARMSTADT, DE

Owner name: CONSTRUCTION RESEARCH & TECHNOLOGY GMBH, 83308, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20120901