WO2007094471A1 - メタノール合成用触媒及び当該触媒の製造方法、並びにメタノールの製造方法 - Google Patents

メタノール合成用触媒及び当該触媒の製造方法、並びにメタノールの製造方法 Download PDF

Info

Publication number
WO2007094471A1
WO2007094471A1 PCT/JP2007/052886 JP2007052886W WO2007094471A1 WO 2007094471 A1 WO2007094471 A1 WO 2007094471A1 JP 2007052886 W JP2007052886 W JP 2007052886W WO 2007094471 A1 WO2007094471 A1 WO 2007094471A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
methanol
producing
formate
reaction
Prior art date
Application number
PCT/JP2007/052886
Other languages
English (en)
French (fr)
Inventor
Kaoru Fujimoto
Kenichiro Fujimoto
Noriyuki Yamane
Original Assignee
Nippon Steel Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co., Ltd. filed Critical Nippon Steel Engineering Co., Ltd.
Publication of WO2007094471A1 publication Critical patent/WO2007094471A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/643Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of R2C=O or R2C=NR (R= C, H)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • Methanol synthesis catalyst method for producing the catalyst, and method for producing methanol
  • the present invention relates to a catalyst for methanol synthesis, a method for producing the catalyst, and a method for producing methanol. More specifically, the present invention relates to a highly active catalyst and a method for obtaining a product with high efficiency when producing methanol from hydrogen from either carbon monoxide or carbon dioxide and hydrogen.
  • the present inventors have so far used one or both of an alkali metal catalyst and an alkaline earth metal catalyst excluding alkali metal alkoxide as a catalyst with a small decrease in activity due to water and carbon dioxide.
  • a system that is used in combination with a hydrocracking catalyst has been found (Patent Document 1).
  • Patent Document 1 it is possible to synthesize product methanol with high efficiency by further improving the catalytic activity.
  • Patent Document 1 JP 2001-862701
  • Non-Patent Document 1 J. C. J. Bart et al, Catal. Today, 2, 1 (1987)
  • Non-Patent Document 2 Satoshi Oyama, PETROTECH, 18 (1), 27 (1995)
  • Non-Patent Document 3 S. Ohyama, Applied Catalysis A: General, 180, 217 (1999) Disclosure of Invention
  • the present invention aims to solve the above problems, and even if a small amount of carbon dioxide, water, etc. are mixed in the methanol synthesis raw material gas, the degree of decrease in the activity of the catalyst is low.
  • the present invention provides a catalyst capable of synthesizing formate ester and methanol at low temperature and low pressure, a method for producing the catalyst, and a method for synthesizing methanol in a liquid phase using the catalyst.
  • the supported amount of Pd in the hydrocracking catalyst is 0.001 to lmass% (2) to (4
  • the catalyst for methanol synthesis according to any one of the above.
  • a method for producing methanol by reacting a source gas containing at least one of carbon monoxide and carbon dioxide and hydrogen, comprising sodium formate, rubidium carbonate, cesium carbonate A method for producing methanol, wherein a reaction is carried out in the presence of at least one of a hydrocracking catalyst and an alcohol to produce a formate ester and methanol, and the produced formate ester is hydrogenated to produce methanol.
  • a source gas containing at least one of carbon monoxide and carbon dioxide and hydrogen is used as a hydrocracking catalyst, at least one of sodium formate, rubidium carbonate, and cesium carbonate.
  • carbon monoxide which is a synthetic raw material gas
  • a catalyst containing Cu, Mg, Na, and Pd coexists in addition to at least one of sodium formate, rubidium carbonate, and cesium carbonate.
  • formate and methanol are produced in the presence of at least one of diacid-carbon and hydrogen power in the presence of solvent alcohol, it is possible to synthesize methanol stably and efficiently in a continuous reaction at low temperature and low pressure.
  • the degree of decrease in the activity of the catalyst is low, so that methanol can be produced at low cost.
  • FIG. 1 A reactor for carrying out the low-temperature liquid-phase methanol synthesis of the present invention.
  • the present inventors have determined that sodium formate, rubidium carbonate, cesium carbonate in a semi-batch continuous reaction in which a catalyst and a solvent are charged into a reactor and a raw material gas is supplied. If a catalyst containing a hydrocracking catalyst is used in addition to at least one of the above, a high yield in the production of at least one of carbon monoxide, carbon dioxide, and hydrogen and alcohols methanol Thus, the present invention has been found. In particular, when a catalyst containing Cu, Mg, Na and Pd is used as a hydrocracking catalyst, it has been found that it can be produced in a higher yield, and the present invention has been achieved.
  • methanol can be continuously produced by a reaction process as shown in FIG.
  • a semi-batch reactor 2 is charged with at least one of sodium formate, rubidium carbonate, and cesium carbonate, charged with a solid catalyst containing Cu, Mg, Na, and Pd together with a solvent alcohol, and a synthetic gas 1 is supplied.
  • the product 3 at the outlet of the reactor (formate ester, methanol) and unreacted gas mixture 3 is cooled by cooler 4 and separated into unreacted gas 5 and liquid mixture 6 of formate ester and alcohol.
  • the latter is separated into formate ester 8 and methanol 9 in distillation column 7 installed in the next stage. If the conversion rate is low, the unreacted gas 5 can be supplied again to the semi-batch reactor 2, but if it is obtained in high yield, the unreacted gas can be used as a heat source (fuel) for syngas production. Use.
  • the solid catalyst containing Cu, Mg, Na and Pd is specifically CuZMgO 2 / Na / Pd (
  • X is a chemically acceptable value which may be 0), for example, Cu / MgO / HCOONa /
  • Cu / MgO can be prepared by impregnation, precipitation,
  • the pH at which to prepare is from 8 to: L 1 is more preferably 8.5 to 10.5, and even more preferably 9 to 10. In the range where the pH exceeds 11, the amount of alkaline compound used as a precipitating agent is significantly increased to maintain a highly alkaline atmosphere, which is not economical.
  • the loading method of Na salt on Cu / MgO is good according to the above normal method.
  • the amount of Na supported on Cu / MgO is more than the minimum amount that exhibits the effect.
  • the range of 0.1 to 60 mass% is more preferably 1 to 4 Omass%, and further preferably 3 to 30 mass%.
  • Na salt to carry Sodium formate, sodium carbonate and the like are preferred. Catalytic activity is increased by loading these Na salts.
  • CuZMgO ZNa is also slightly observed in CuZMgO.
  • the addition effect of alkali metal carbonate is to improve activity and suppress activity decrease.
  • the loading method of Pd is not particularly limited as long as it is a normal method, but similarly, good results are easily obtained by the impregnation method and the evaporation to dryness method.
  • the amount of Pd supported is not less than the minimum amount that exhibits the effect, and is not particularly limited.
  • the range of Lmass% is more preferably 0.005 ⁇ 0.5mass%, and still more preferably 0.01 ⁇ 0.1lmass%. Catalytic activity is improved by loading Pd.
  • Na and Pd are preferably supported sequentially on CuZMgO as described above.
  • the salt and the Pd precursor which is a precursor of Pd to be supported, dissolve in the same liquid, they can be supported at the same time. Also, CuZMgO ZPd is supported by loading Pd first.
  • the solid catalyst containing Cu, Mg, Na and Pd described above exhibits a catalytic action mainly in the hydrogenolysis of the produced formate ester, but also exhibits a catalytic action in a CO insertion reaction into a solvent alcohol.
  • Alkali metal salts of sodium formate, rubidium carbonate, and cesium carbonate are highly active in the CO insertion reaction into solvent alcohol.
  • the alcohol used in the reaction may be a chain or alicyclic hydrocarbon having a hydroxyl group, phenol and its substitute, and further a thiol and its substitute.
  • These alcohols may be any of primary, secondary and tertiary alcohols, but from the viewpoint of reaction efficiency, primary alcohols are preferred, and lower alcohols such as methyl alcohol and ethyl alcohol are most common. It is.
  • a system capable of selecting a mild condition that can be carried out in either the liquid phase or the gas phase can be employed.
  • a temperature of 70 to 250 ° C., a pressure of 3 to: LOO atmospheric pressure is a suitable condition, and more preferably a temperature of 120 to 200 ° C. and a pressure of 15 to 80 atmospheric pressure is not limited thereto.
  • Alcohols only need to have an amount that allows the reaction to proceed. The above amount can also be used as a solvent.
  • an organic solvent can be used as appropriate.
  • the formic acid ester obtained can be used for the production of methanol as it is, as it can be purified by a conventional method such as distillation. That is, methanol can be produced by hydrogenolysis of formate.
  • a hydrocracking catalyst is used for hydrocracking.
  • general hydrocracking catalysts such as Cu, Pt, Ni, Co, Ru, and Pd can be used, but the CuZMgO / Na of the present invention can be used.
  • the product obtained in the reaction is distilled from the reaction system by distillation or the like. After separation, it is also possible to obtain methanol by hydrocracking the formate in the product in the presence of a hydrocracking catalyst and hydrogen.
  • the activity is low.
  • the method for producing methanol in the present invention is presumed to be based on the following reaction formula (in the case where the alcohol is a chain or alicyclic hydrocarbon having a hydroxyl group attached thereto). Show).
  • the raw material for producing methanol is at least one of carbon monoxide and hydrogen, carbon dioxide and hydrogen, and alcohols can be recovered and reused. According to the method of the present invention Even if a small amount of water or carbon dioxide is present in the raw material gas, the decrease in the activity of the catalyst is small.
  • a catalyst having a hydrocracking catalyst when used in a liquid phase, sodium formate, rubidium carbonate, carbonate At least one of the cesium is dissolved partially or wholly depending on the conditions, and even if separated from the hydrocracking catalyst, it has the effect of acting as a catalyst. Therefore, when preparing the catalyst, sodium formate
  • at least one of rubidium carbonate and cesium carbonate and a hydrocracking catalyst may be added to the reaction system, or a mixture of both may be input to the reaction system and used as the catalyst of the present invention.
  • the reaction was carried out at 60 ° C for 5 hours, and the reaction product was analyzed by gas chromatography.
  • the amount of methanol produced was 84.6 mmol, and the amount of ethyl formate produced was 2. lmmol.
  • the reaction was performed by the method described in Example 1 except that the amount of rubidium carbonate added was 1.25 mmol.
  • the amount of methanol produced was 55.6 mmol and the amount of ethyl formate produced was 1.9 mmol.
  • the reaction was performed by the method described in Example 2.
  • the amount of methanol produced was 61.2 mmol and the amount of ethanol formate produced was 2. lmmol.
  • the reaction was performed by the method described in Example 2.
  • the amount of methanol produced was 85.3 mmol, and the amount of ethanol formate produced was 2.2 mmol.
  • the reaction was performed by the method described in Example 2.
  • the amount of methanol produced was 129.2 mmol and the amount of ethanol formate produced was 2.4 mmol.
  • the reaction was carried out by the method described in Example 2.
  • the amount of methanol produced was 104. lmmol and the amount of ethyl formate produced was 2. Ommol.
  • the reaction was performed by the method described in Example 13 except that the reaction temperature was 140 ° C.
  • the amount of methanol produced was 30.5 mmol and the amount of ethyl formate produced was 3.6 mmol.
  • the reaction was carried out by the method described in Example 13 except that the reaction pressure was 3.5 MPa.
  • the amount of methanol produced was 29.4 mmol, and the amount of ethyl formate produced was 1.7 mmol.
  • the reaction was carried out by the method described in Example 13 except that 2.5 mmol of cesium carbonate was added instead of 2.5 mmol of rubidium carbonate.
  • the amount of methanol produced was 55.8 mmol, and the amount of ethyl formate produced was 2.3 mmol.
  • the reaction was carried out by the method described in Example 13, except that 1.25 mmol of cesium carbonate was added instead of 2.5 mmol of rubidium carbonate.
  • the amount of methanol produced was 42.7 mmol and the amount of ethanol formate produced was 1.9 mmol.
  • the present invention is for methanol synthesis via a formate ester that reacts in the presence of at least one of carbon monoxide and carbon dioxide carbon and hydrogen and a raw material gas containing alcohol as a solvent.
  • the present invention relates to a catalyst for methanol synthesis characterized by having a hydrocracking catalyst in addition to at least one of sodium formate, rubidium carbonate, and cesium carbonate. According to the catalyst for methanol synthesis of the present invention, it is possible to stably synthesize methanol with high efficiency in a continuous reaction at low temperature and low pressure. In addition, even if a small amount of water, carbon dioxide, or the like is mixed in the synthesis raw material gas, the degree of decrease in the activity of the catalyst is low, so that methanol can be produced at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 本発明のメタノール合成用触媒は、一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスと、溶媒としてのアルコールの存在下で反応を行うギ酸エステルを経由するメタノール合成用触媒であって、ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれかに加えて、水素化分解触媒を有する。

Description

メタノール合成用触媒及び当該触媒の製造方法、並びにメタノールの製 造方法
技術分野
[0001] 本発明は、メタノール合成用触媒、及び該触媒の製造方法、並びにメタノールの製 造方法に関する。さらに詳しくは、一酸化炭素、二酸化炭素のいずれかの炭素源と 水素からメタノールを製造する際に、活性の高い触媒及びこれを用いて高効率で生 成物を得る方法に関する。
本願は、 2006年 2月 17日に出願された日本国特許出願 2006— 041627号及び 2007年 1月 31日に出願された日本国特許出願 2007— 021950号について優先権 を主張し、その内容をここに援用する。
背景技術
[0002] 一般的に、工業的にメタノールを合成する際には、メタンを主成分とする天然ガスを 水蒸気改質して得られる一酸化炭素と水素 (合成ガス)を原料とし、銅 ·亜鉛系等の 触媒を用いて固定床気相法にて、 200〜300°C、 5〜25MPaという厳しい条件で合 成される (非特許文献 1)。反応機構としては以下に示すように、二酸化炭素の水素 化により、メタノール、水が生成し、次いで生成水が一酸化炭素と反応し二酸化炭素 と水素が生成 (水性ガスシフト反応)する逐次反応であるとする説が一般的に受け入 れられている。
[0003] CO + 3H→CH OH+H O (1)
2 2 3 2
H 0 + CO→CO +H (2)
2 2 2
CO + 2H→CH OH (3)
2 3
本反応は発熱反応であるが、気相法では熱伝導が悪いために、効率的な抜熱が 困難であることから、反応器通過時の転化率を低く抑えて、未反応の高圧原料ガスを リサイクルするという効率に難点のあるプロセスとなっている。しかし、合成ガス中に含 まれる、水、二酸ィ匕炭素による反応阻害は受けにくいという長所を活力して、様々な プラントが稼働中である。 [0004] 一方、液相でメタノールを合成して、抜熱速度を向上させる様々の方法が検討され ている。中でも、低温(100〜180°C程度)で活性の高い触媒を用いる方法は、熱力 学的にも生成系に有利であり、注目を集めている(非特許文献 2等)。使用される触 媒はアルカリ金属アルコキサイドである力 これらの方法では、合成ガス中に必ず含 有される水、二酸ィ匕炭素による活性低下が報告され、何れも実用には至っていない( 非特許文献 3)。これは活性の高いアルカリ金属アルコキサイドが反応中に、低活性 で安定なギ酸塩等に変化するためである。活性低下を防ぐためには ppbオーダーま で、原料ガス中の水、二酸ィ匕炭素を除去する必要がある力 そのような前処理を行う とコストが高くなり現実的ではな 、。
[0005] 本発明者らはこれまでに、水、二酸ィ匕炭素による活性低下が小さい触媒として、ァ ルカリ金属アルコキサイドを除くアルカリ金属系触媒とアルカリ土類金属系触媒の一 方又は双方を水素化分解触媒と共存させて使用する系を見出している (特許文献 1) 。しかし、更なる触媒活性向上によって高効率に製品メタノールを合成することが可 會 になる。
特許文献 1 :特開 2001— 862701
非特許文献 1 :J. C. J. Bart et al, Catal. Today, 2, 1 (1987)
非特許文献 2 :大山聖ー, PETROTECH, 18(1), 27 (1995)
非特許文献 3 : S. Ohyama, Applied Catalysis A: General, 180, 217 (1999) 発明の開示
発明が解決しょうとする課題
[0006] 本発明は、上記の課題を解決することを目的とするものであり、メタノールの合成原 料ガス中に二酸化炭素、水等が少量混在しても触媒の活性低下の度合いが低ぐか つ、低温、低圧でギ酸エステル及びメタノールを合成することが可能な触媒及び該触 媒の製造方法、並びに該触媒を用いた液相でのメタノールの合成方法を提供するも のである。
課題を解決するための手段
[0007] 本発明の特徴とするところは、以下に記す通りである。
(1) 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスと、 溶媒としてのアルコールの存在下で反応を行うギ酸エステルを経由するメタノール合 成用触媒であって、ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいず れかに加えて、水素化分解触媒を有するメタノール合成用触媒。
[0008] (2) 前記水素化分解触媒が Cu、 Mg、 Na及び Pdを含有する(1)に記載のメタノー ル合成用触媒。
[0009] (3) 前記水素化分解触媒の前記 Naが炭酸塩又はギ酸塩として CuZMgOの固体 触媒に担持されて!ヽる (2)に記載のメタノール合成用触媒。
[0010] (4) 前記水素化分解触媒の前記 Pdが CuZMgOの固体触媒に担持されている(2
)又は(3)に記載のメタノール合成用触媒。
[0011] (5) 前記水素化分解触媒の前記 Pdの担持量が 0. 001〜lmass%である(2)〜(4
)の 、ずれかに記載のメタノール合成用触媒。
[0012] (6) (3)〜(5)の 、ずれかに記載のメタノール合成用触媒の製造方法であって、前 記 CuZMgOを共沈法で調製した後、 CuZMgOに Na及び Pdを含浸法で担持する メタノール合成用触媒の製造方法。
[0013] (7) (3)〜(5)の 、ずれかに記載のメタノール合成用触媒の製造方法であって、前 記 CuZMgOを共沈法において pH = 8〜: L 1の範囲で一定に保ちながら調製するメ タノール合成用触媒の製造方法。
[0014] (8) 一酸ィ匕炭素、二酸ィ匕炭素の少なくともいずれか、及び水素を含む原料ガスを反 応させてメタノールを製造する方法であって、ギ酸ナトリウム、炭酸ルビジウム、炭酸 セシウムの少なくともいずれか、水素化分解触媒、及びアルコール類の存在下に反 応を行い、ギ酸エステル及びメタノールを生成すると共に、生成したギ酸エステルを 水素化してメタノールを製造するメタノールの製造方法。
[0015] (9) 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスをギ 酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれか、水素化分解触媒
、及びアルコール類の存在下に反応を行うことで得られた生成物を反応系から分離 した後、該生成物中のギ酸エステルを水素化分解触媒で水素化してメタノールを製 造するメタノールの製造方法。
[0016] (10) 前記水素化分解触媒が Cu、 Mg、 Na及び Pdを含有する(8)又は(9)に記載 のメタノールの製造方法。
[0017] (11) 前記アルコール類が第一級アルコールである(8)〜(10)のいずれかに記載 のメタノールの製造方法。
発明の効果
[0018] 本発明における、ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれ かに加えて、 Cu、 Mg、 Na、 Pdを含有する触媒を共存させた系で、合成原料ガスで ある、一酸化炭素、二酸ィ匕炭素の少なくともいずれか及び水素力も溶媒アルコール の存在下ギ酸エステル及びメタノールを製造すると、低温、低圧で連続反応におい て安定的にメタノールを高効率で合成することが可能となった。また、合成原料ガス 中に水、二酸化炭素等が少量混在しても触媒の活性低下の度合!/ヽが低!ヽため安価 でメタノールを製造することが可能となった。
図面の簡単な説明
[0019] [図 1]本発明の低温液相メタノール合成を実施する反応装置である。
符号の説明
1 合成ガス
2 半回分式反応器
3 生成物、未反応ガスの混合物
4 冷却器
5 未反応ガス
6 ギ酸エステルとメタノールの液体混合物
7 蒸留塔
8 ギ酸エステノレ
9 メタノーノレ
発明を実施するための最良の形態
[0021] 以下、本発明を詳細に説明する。
本発明者らは、鋭意検討した結果、触媒及び溶媒を反応器に仕込み原料ガスを供 給する半回分式の連続反応において、ギ酸ナトリウム、炭酸ルビジウム、炭酸セシゥ ムの少なくともいずれかに加えて、水素化分解触媒を含有する触媒を用いると、一酸 化炭素、二酸ィ匕炭素の少なくともいずれか、及び水素とアルコール類力 メタノール の製造において、高収率で製造可能であることを見出し、本発明に至った。特に水 素化分解触媒として、 Cu、 Mg、 Na及び Pdを含有する触媒を用いると、より高収率で 製造可能であることを見出し、本発明に至った。
[0022] 例えば、図 1に示すような反応プロセスで連続的にメタノールを製造し得る。半回分 式反応器 2にギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれかに カロえて、 Cu、 Mg、 Na、 Pdを含有する固体触媒を溶媒アルコールと共に仕込み、合 成ガス 1を供給する。反応器出口の生成物(ギ酸エステル、メタノール)、未反応ガス の混合物 3を冷却器 4で冷却し、未反応ガス 5、ギ酸エステルとアルコールの液体混 合物 6に分離する。後者は次段に設置した蒸留塔 7においてギ酸エステル 8、メタノ ール 9に分離する。転化率が低い場合は未反応ガス 5を再度半回分式反応器 2に供 給することも可能であるが、高収率で得られる場合は未反応ガスを合成ガス製造の 熱源 (燃料)として利用する。
[0023] Cu、 Mg、 Na及び Pdを含有する固体触媒は具体的には CuZMgO /Na/Pd (
X
Xは 0でもよい化学的に許容し得る値)であり、例えば、 Cu/MgO /HCOONa/
X
Pd (Xは化学的に許容し得る値)である。 Cu/MgO の調製は、含浸法、沈殿法、ゾ
X
ルゲル法、共沈法、イオン交換法、混練法、蒸発乾固法などの通常の方法によれば 良ぐ特に限定されるものではないが、共沈法によると好結果が得られやすい。共沈 法で調製する際に一定に保つ pHによって、 CO転ィ匕率は大きく異なる。 Cu/MgO
X
を調製する際の pHは 8〜: L 1が好ましぐより好ましくは 8. 5〜10. 5であり、更に好ま しくは 9〜10である。 pHが 11を超える範囲については、高アルカリ雰囲気に保持す る為に沈殿剤として使用するアルカリ性化合物の使用量が著しく増加する為、経済 的でない。 Cu/MgOへの Na塩の担持方法は、上記の通常の方法によれば良ぐ
X
特に限定されるものではないが、含浸法又は蒸発乾固法によると好結果が得られや すい。 Cu/MgOに対する Naの担持量は、効果を発現する最低量以上であり、特
X
に限定されることは無いが、 0. l〜60mass%の範囲が好ましぐより好ましくは 1〜4 Omass%であり、更に好ましくは 3〜30mass%である。また、担持する Na塩としては ギ酸ナトリウム、炭酸ナトリウムなどが好ましい。これらの Na塩を担持することで触媒 活性が増加する。また、 CuZMgO ZNaは、 CuZMgOにおいてわずかに見られ
X X
る経時的な活性低下を抑制することができる。よって、アルカリ金属炭酸塩の添加効 果は、活性向上と活性低下抑制にある。
[0024] Pdの担持方法も通常の方法によれば良ぐ特に限定されるものではないが、同様 に含浸法、蒸発乾固法によると好結果が得られやすい。 Cu/MgO X ZNaに対する
Pdの担持量は、効果を発現する最低量以上であり、特に限定されることは無いが、 0
. 001〜: Lmass%の範囲が好ましぐより好ましくは 0. 005〜0. 5mass%、更に好ま しくは 0. 01〜0. lmass%である。 Pdを担持することによって、触媒活性が向上する
[0025] Na、 Pdは上述のように CuZMgO へ逐次担持することが好ましいが、担持する Na
X
塩と担持する Pdの前駆体である Pdプレカーサ一が同一の液体に溶解する場合、同 時に担持することも可能である。また、 Pdを先に担持することで CuZMgO ZPdを
X
調製し、次いで Na塩を担持することもできる。
[0026] 上述の Cu、 Mg、 Na及び Pdを含有する固体触媒は、主に生成ギ酸エステルの水 素化分解において触媒作用を示すが、溶媒アルコールへの CO挿入反応にも触媒 作用を示す。
[0027] ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムのアルカリ金属塩は、溶媒アルコー ルへの CO挿入反応にお!、て高!、活性を示す。
[0028] 反応に用いるアルコール類としては、鎖状または脂環式炭化水素類に水酸基が付 いたものの他、フエノール及びその置換体、更には、チオール及びその置換体でも 良い。これらアルコール類は、第 1級、第 2級および第 3級のいずれでもよいが、反応 効率等の点からは第 1級アルコールが好ましぐメチルアルコール、ェチルアルコー ル等の低級アルコールが最も一般的である。
[0029] 反応は、液相、気相のいずれでも行うことができる力 温和な条件を選定しうる系を 採用することができる。具体的には、温度 70〜250°C、圧力 3〜: LOO気圧が好適な 条件であり、より好ましくは温度 120〜200°C、圧力 15〜80気圧である力 これらに 限定されない。アルコール類は、反応が進行する程度の量があればよいが、それ以 上の量を溶媒として用いることもできる。また、上記反応に際してアルコール類の他に 、適宜有機溶媒を併せて用いることができる。
[0030] 得られるギ酸エステルは、蒸留等の常法により精製することができる力 そのままメ タノールの製造に供することもできる。すなわち、ギ酸エステルを水素化分解してメタ ノールを製造しうる。
[0031] 水素化分解には水素化分解触媒が用いられ、たとえば Cu、 Pt、 Ni、 Co、 Ru、 Pd 系の一般的な水素化分解触媒を用いることができるが、本発明の CuZMgO /Na
X
/Pdを使用することもできる。原料ガスとアルコール類力ゝらギ酸エステルとメタノール を生成させる前記反応系にこれらの一般的な水素化分解触媒を共存させておくこと により、メタノール選択率を増加させ効率良くメタノールを製造することも可能である。
[0032] また、ギ酸エステル選択率が高 、反応条件にお!、て、一段階でメタノールを製造す ることが困難な場合は、反応で得られた生成物を反応系から蒸留法等で分離した後 、該生成物中のギ酸エステルを水素化分解触媒および水素を共存させて、水素化 分解してメタノールを得ることも可能である。
[0033] 本発明の触媒を用いた方法では、原料ガス中の炭素源としては COのみでもメタノ
2
ールを得ることができる力 COのみの場合と比較すると活性は低い。また、炭素源と して COを主成分とする原料ガス中に含有される CO、 H O濃度は、低いほど高収率
2 2
でメタノールを得ることができる力 それぞれ 1%程度含有しても、 CO転化率、メタノ ール収率はほとんど影響を受けない。しかし、それ以上の濃度で含有すると CO転化 率、メタノール収率は低下する。
[0034] 本発明におけるメタノールの製造方法は、次の反応式に基づくものと推定される(ァ ルコール類が鎖状または脂環式炭化水素類に水酸基が付いたものである場合を例 にとつて示す)。
[0035] ROH + CO→HCOOR (4)
HCOOR+ 2H→CH OH+ROH (5)
2 3
(ここで Rはアルキル基を示す)
[0036] したがって、メタノールの製造原料は、一酸化炭素と水素、二酸化炭素と水素の、 少なくともいずれかであり、アルコール類は回収、再利用しうる。本発明方法によれば 、原料ガス中に水、二酸化炭素が、少量存在していても、触媒の活性低下は小さい。
[0037] 尚、本発明における、ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともい ずれかに加えて、水素化分解触媒を有する触媒においては、液相で使用すると、ギ 酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれかは一部又は条件に よっては全部が溶解して、水素化分解触媒とは分離しても、互いに触媒としての作用 効果を奏することから、触媒を用意する際に、ギ酸ナトリウム、炭酸ルビジウム、炭酸 セシウムの少なくともいずれかと、水素化分解触媒とをそれぞれ反応系に投入、又は 、両者を混合したものを反応系に投入して、本発明の触媒として用いても構わない。 実施例
[0038] 以下、実施例 1〜13、比較例 1、 2により本発明をさらに詳細に説明するが、本発明 はこれら実施例に限定されない。また、これらの結果は表 1、表 2として一覧化した。
[実施例 1]
内容積 50mlのオートクレーブを用い、溶媒として水 1質量%を含むエタノール 10m 1に、炭酸ルビジウム 2. 5mmolに加えて、 Cu(NO ) · 3Η 0、 Mg (NO ) · 6Η Oを
3 2 2 3 2 2 原料として共沈法で pH= 10. 0に保持しながら CuZMgOを調製し、 Cu/MgO
X X
に対して Na CO (18. 7mass%)、 Pd (0. 25mass%)を逐次含浸担持した CuZ
2 3
MgO /Na CO (18. 7mass%) /Pd (0. 25mass%)触媒 lgを添カ卩し、合成ガス
X 2 3
(CO 32. 40vol%、水素 64. 58vol%、Ar 3. 02vol%)を 5MPa 充填して、 1
60°C、 5時間反応を行い、反応生成物をガスクロマトグラフで分析した。メタノール生 成量 84. 6mmol、ギ酸ェチル生成量 2. lmmolであった。
[0039] [実施例 2]
炭酸ルビジウム 2. 5mmolの代わりにギ酸ナトリウム 2. 5mmolを添加する他は、実 施例 1に記載の方法で反応を行った。メタノール生成量 109. ImmoUギ酸ェチル 生成量 2. 7mmolであった。
[0040] [実施例 3]
炭酸ルビジウム 2. 5mmolの代わりに炭酸セシウム 2. 5mmolを添カ卩する他は、実 施例 1に記載の方法で反応を行った。メタノール生成量 77. 8mmol、ギ酸ェチル生 成量 2. 2mmolであった。 [0041] [比較例 1]
炭酸ルビジウム 2. 5mmolの代わりにギ酸カリウム 2. 5mmolを添カ卩する他は、実施 例 1に記載の方法で反応を行った。メタノール生成量 55. 3mmol、ギ酸ェチル生成 量 2. 丄 πιπιοΓ :、あつ 7こ。
[0042] [実施例 4]
炭酸ルビジウムの添加量を 1. 25mmolとする他は、実施例 1に記載の方法で反応 を行った。メタノール生成量 55. 6mmol、ギ酸ェチル生成量 1. 9mmolであった。
[0043] [実施例 5]
炭酸ルビジウム 2. 5mmolの代わりにギ酸ナトリウム 1. Ommolを添加する他は、実 施例 1に記載の方法で反応を行った。メタノール生成量 79. 4mmol、ギ酸ェチル生 成直 1. 8mmoi "あつ 7こ。
[0044] [実施例 6]
炭酸ルビジウム 2. 5mmolの代わりに炭酸セシウム 1. 25mmolを添カ卩する他は、 実施例 1に記載の方法で反応を行った。メタノール生成量 38. 7mmol、ギ酸ェチル 生成直 1. 7mmoi "あつ 7こ。
[0045] [実施例 7]
Cu/MgO /Na CO (18. 7mass%) /Pd (0. 25mass%)触媒 lgの代わりに C
X 2 3
u/MgO /Na CO (18. 7mass%) /Pd(0. 001mass%)触媒 lgを添加する他
X 2 3
は、実施例 2に記載の方法で反応を行った。メタノール生成量 61. 2mmol、ギ酸ェ チノレ生成量 2. lmmolであった。
[0046] [実施例 8]
Cu/MgO /Na CO (18. 7mass%) /Pd (0. 25mass%)触媒 lgの代わりに C
X 2 3
u/MgO /Na CO (18. 7mass%) /Pd(0. 005mass%)触媒 lgを添加する他
X 2 3
は、実施例 2に記載の方法で反応を行った。メタノール生成量 85. 3mmol、ギ酸ェ チノレ生成量 2. 2mmolであった。
[0047] [実施例 9]
Cu/MgO /Na CO (18. 7mass%) /Pd (0. 25mass%)触媒 lgの代わりに C
X 2 3
u/MgO /Na CO (18. 7mass%) /Pd(0. 01mass%)触媒 lgを添カ卩する他は 、実施例 2に記載の方法で反応を行った。メタノール生成量 127. ImmoUギ酸ェチ ル生成量 2. 5mmolであった。
[0048] [実施例 10]
Cu/MgO /Na CO (18. 7mass%) /Pd (0. 25mass%)触媒 lgの代わりに C
X 2 3
u/MgO /Na CO (18. 7mass%) /Pd(0. 025mass%)触媒 lgを添加する他
X 2 3
は、実施例 2に記載の方法で反応を行った。メタノール生成量 129. 2mmol、ギ酸ェ チノレ生成量 2. 4mmolであった。
[0049] [実施例 11]
Cu/MgO /Na CO (18. 7mass%) /Pd (0. 25mass%)触媒 lgの代わりに C
X 2 3
u/MgO /Na CO (18. 7mass%) /Pd(0. 05mass%)触媒 lgを添カ卩する他は
X 2 3
、実施例 2に記載の方法で反応を行った。メタノール生成量 116. OmmoUギ酸ェチ ノレ生成量 2. lmmolであった。
[0050] [実施例 12]
Cu/MgO /Na CO (18. 7mass%) /Pd (0. 25mass%)触媒 lgの代わりに C
X 2 3
u/MgO /Na CO (18. 7mass%) /Pd(0. lmass%)触媒 lgを添カ卩する他は、
X 2 3
実施例 2に記載の方法で反応を行った。メタノール生成量 104. lmmol,ギ酸ェチ ル生成量 2. Ommolであった。
[0051] [実施例 13]
内容積 50mlのオートクレーブを用い、溶媒として水 1質量%を含むエタノール 10m 1に、炭酸ルビジウム 2. 5mmolに加えて、 Cu(NO ) · 3Η 0、 Mg (NO ) · 6Η Oを
3 2 2 3 2 2 原料として共沈法で pH= 10. 0に保持しながら CuZMgOを調製し、 Na CO (18
X 2 3
. 7mass%)を含浸担持した CuZMgO /Na CO (18. 7mass%)触媒 lgを添カロ
X 2 3
し、合成ガス(CO 32. 40%、水素 64. 58%, Ar 3. 02%) ^5MPa 充填して、 160°C、 5時間反応を行い、反応生成物をガスクロマトグラフで分析した。メタノール 生成量 75. 6mmol、ギ酸ェチル生成量 1. 6mmolであった。
[0052] [実施例 14]
炭酸ルビジウムの添加量を 1. 25mmolとする他は、実施例 13に記載の方法で反 応を行った。メタノール生成量 46. 8mmol、ギ酸ェチル生成量 1. 9mmolであった。 [0053] [実施例 15]
反応温度を 140°Cとする他は、実施例 13に記載の方法で反応を行った。メタノー ル生成量 30. 5mmol、ギ酸ェチル生成量 3. 6mmolであった。
[0054] [実施例 16]
反応圧力を 3. 5MPaとする他は、実施例 13に記載の方法で反応を行った。メタノ ール生成量 29. 4mmol、ギ酸ェチル生成量 1. 7mmolであった。
[0055] [実施例 17]
炭酸ルビジウム 2. 5mmolの代わりに炭酸セシウム 2. 5mmolを添カ卩する他は、実 施例 13に記載の方法で反応を行った。メタノール生成量 55. 8mmol、ギ酸ェチル 生成量 2. 3mmolであった。
[0056] [実施例 18]
炭酸ルビジウム 2. 5mmolの代わりに炭酸セシウム 1. 25mmolを添カ卩する他は、 実施例 13に記載の方法で反応を行った。メタノール生成量 42. 7mmol、ギ酸ェチ ノレ生成量 1. 9mmolであった。
[0057] [実施例 19]
炭酸ルビジウム 2. 5mmolの代わりにギ酸ナトリウム 2. 5mmolを添加する他は、実 施例 13に記載の方法で反応を行った。メタノール生成量 34. ImmoUギ酸ェチル 生成量丄. 9mmolでめった。
[0058] [比較例 2]
炭酸ルビジウム 2. 5mmolの代わりにギ酸カリウム 2. 5mmolを添カ卩する他は、実施 例 8に記載の方法で反応を行った。メタノール生成量 20. OmmoUギ酸ェチル生成 量 2. dmmolであつ 7こ。
[0059] [表 1] 実験の特徴 メタノール ギ酸ェチル 生成量 生成量 (ιηπιοΙ) (麵 01 ) 実施例 1 炭酸ルビジウム; 2.5隱 ol + 84.6 2.1
Cu/MgOx/NajCO, (18.7mass¾) /Pd (0.25massX) Ig
実施例 2 ギ酸ナトリウム; 2.5mmol + 109.1 2.7
Cu MgOx/Na2C03 (18.7massJ!) /Pd (0.25mass¾) Ig
実施例 3 炭酸セシウム; 1.5mmol + 77.8 2.2
Cu/MgOx/Na2C03 (18.7mass«) /Pd (0.25mass¾) ; Ig
実施例 4 炭酸ルビジウム; 1.25讓 ol + 55.6 1.9
Cu/MgO!/Na?C03 (18.7mass¾} /Pd (0.25mass¾) Ig
実施例 5 ギ酸ナトリウム; 1.0mmol + 79.4 1.8
Cu/MgO¾/Na?C03 (18.7(nass¾) /Pd (0.25mass%) 1g
実施例 6 炭酸セシウム 1.25mmol + 38.7 1.7
Cu/ eO»/Na2C03 (18.7mass¾) /Pd (0.25mass¾) ; Ig
実施例 7 ギ酸ナトリウム; 1.5mmol + 61.2 2.1
Cu/Mg0,/Na2 C03 (18.7mass¾) /Pd (0- 001mass¾) Ig
実施例 8 ギ酸ナトリウム 1.5豳 ol + 85.3 2.2
Cu/MgOx/Na2C03 (18.7mass¾) /Pd (0.005massX) Ig
実施例 9 ギ酸ナ卜リウム 1.5mmol + 127.1 2.5
Cu/MgOx/Na2C03 (18.7mass¾) /Pd (0.01(nass¾) Ig
実施例 10 ギ酸ナ卜リウム 15画 ol + 129.1 2.4
Cu/MgOx/Na2 C03 (18.7mass¾) /Pd (0.025mass%) Ig
実施例 11 ギ酸ナトリウム; I.5mmol - 116.0 2.1
Cu/MgO,/Na2C03 (18.7mass¾) /Pd (0.05nass¾) 1g
実施例 12 ギ酸ナトリウム; 2.5imnol + 104.1 2.0
Cu MgO,/Na?C03 (18.7massX) /Pd (0. ImassX) Ig
実施例 13 炭酸ルビジウム; 1.5mmol + 75.6 1.6
Cu/MgO|/Na?C03 <18.7mass5i) 1g
実施例 14 炭酸ルビジウム; 1.25mmol + 46.8 1.9
Cu/MgO,/Na2C03 (18.7mass¾) 1g
実施例 15 炭酸ルビジウム; 1.5画 ol + 30.5 3.6
Cu/MgOx/Na,C03 (18.7mass¾) ; 1g、 温度; 140で
実施例 16 炭酸ルビジウム; I.5mmol + 29.4 1.7
Cu/MgOx/Na2C03 (18.7mass!K) ; 1g、 圧力; 3.5UPa
実施例 17 炭酸セシウム; 2.5nmol + 55.8 1.3
Cu/MgOr/Na, C03 (18.7mass¾) Ig
実施例 18 炭酸セシウム; 1.25議 1 + 42.7 1.9
Cu/Mg0x/Na?C03 (18.7mass¾) 1g
実施例 19 ギ酸ナトリウム; 2.5mmol + 34.1 1.
Cu/MgO,/Na,C03 (18.7mass¾) 1g 2] 実験の特徴 メタノール ギ酸ェチル 生成量 生成量 (團 1} (mmo 1 ) 比較例 1 ギ酸カリウム; 2.5mmol + 75.2 2.1
Cu/MgOx/NajC03 (18.7随 ¾)/Pd (0.25mass¾) ; Ig
比較例 2 ギ酸カリウム; 1.5删 ol + 42.1 2.3
Cu/Mg0x/Na2C03 (18.7mass¾) ; lg [0061] 上記の実施例、比較例より、ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムは、他の アルカリ金属塩、例えばギ酸カリウムと比較して著しくメタノール生成量が増加し、水 素化分解触媒としては Cu、 Mg、 Na及び Pdを含有した触媒を使用すると良好な結 果が得られることが明らかである。
産業上の利用可能性
[0062] 本発明は、一酸化炭素、二酸ィヒ炭素の少なくともいずれか、及び水素を含む原料 ガスと、溶媒としてのアルコールの存在下で反応を行うギ酸エステルを経由するメタノ ール合成用触媒であって、ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくと も!ヽずれかに加えて、水素化分解触媒を有することを特徴とするメタノール合成用触 媒に関する。本発明のメタノール合成用触媒によれば、低温、低圧で連続反応にお いて安定的にメタノールを高効率で合成することが可能となる。また、合成原料ガス 中に水、二酸化炭素等が少量混在しても触媒の活性低下の度合!/ヽが低!ヽため安価 でメタノールを製造することが可能となる。

Claims

請求の範囲
[1] 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスと、溶媒 としてのアルコールの存在下で反応を行うギ酸エステルを経由するメタノール合成用 触媒であって、ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれか に加えて、水素化分解触媒を有するメタノール合成用触媒。
[2] 前記水素化分解触媒力 SCu、 Mg、 Na及び Pdを含有する請求項 1に記載のメタノー ル合成用触媒。
[3] 前記水素化分解触媒の前記 Naが炭酸塩又はギ酸塩として CuZMgOの固体触媒 に担持されている請求項 2に記載のメタノール合成用触媒。
[4] 前記水素化分解触媒の前記 Pdが CuZMgOの固体触媒に担持されている請求項
2又は 3に記載のメタノール合成用触媒。
[5] 前記水素化分解触媒における前記 Pdの担持量が 0. 001〜: LmaSS%である請求 項 2〜4のいずれか 1項に記載のメタノール合成用触媒。
[6] 請求項 3〜5の 、ずれか 1項に記載のメタノール合成用触媒の製造方法であって、 前記 CuZMgOを共沈法で調製した後、 CuZMgOに Na及び Pdを含浸法で担持 するメタノール合成用触媒の製造方法。
[7] 請求項 3〜5の 、ずれか 1項に記載のメタノール合成用触媒の製造方法であって、 前記 CuZMgOを共沈法において pH = 8〜: L 1の範囲で一定に保ちながら調製する メタノール製造用触媒の製造方法。
[8] 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスを反応 させてメタノールを製造する方法であって、ギ酸ナトリウム、炭酸ルビジウム、炭酸セ シゥムの少なくともいずれか、水素化分解触媒、及びアルコール類の存在下に反応 を行い、ギ酸エステル及びメタノールを生成すると共に、生成したギ酸エステルを水 素化してメタノールを製造するメタノールの製造方法。
[9] 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスを、ギ酸 ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれか、水素化分解触媒、 及びアルコール類の存在下に反応を行うことで得られた生成物を反応系から分離し た後、該生成物中のギ酸エステルを水素化分解触媒で水素化してメタノールを製造 するメタノールの製造方法。
[10] 前記水素化分解触媒力 SCu、 Mg、 Na及び Pdを含有する請求項 8又は 9に記載のメ タノールの製造方法。
[11] 前記アルコール類が第一級アルコールである請求項 8〜10のいずれか 1項に記載 のメタノールの製造方法。
PCT/JP2007/052886 2006-02-17 2007-02-16 メタノール合成用触媒及び当該触媒の製造方法、並びにメタノールの製造方法 WO2007094471A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-041627 2006-02-17
JP2006041627 2006-02-17
JP2007021950A JP5264083B2 (ja) 2006-02-17 2007-01-31 メタノール合成用触媒及び当該触媒の製造方法、並びにメタノールの製造方法
JP2007-021950 2007-01-31

Publications (1)

Publication Number Publication Date
WO2007094471A1 true WO2007094471A1 (ja) 2007-08-23

Family

ID=38371647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052886 WO2007094471A1 (ja) 2006-02-17 2007-02-16 メタノール合成用触媒及び当該触媒の製造方法、並びにメタノールの製造方法

Country Status (2)

Country Link
JP (1) JP5264083B2 (ja)
WO (1) WO2007094471A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261960A (ja) * 2006-03-01 2007-10-11 Tokyo Electric Power Co Inc:The Co2から高級脂肪酸メチルエステルを連続的に製造する方法
JP2014523448A (ja) * 2011-07-27 2014-09-11 ビーエーエスエフ ソシエタス・ヨーロピア ホルムアミドおよびギ酸エステルの製造方法
JP2015537037A (ja) * 2012-11-26 2015-12-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se アルカリ金属ホルメートおよびアルカリ金属アルコラートを含有する触媒系の存在下で、メタノールと一酸化炭素とを反応させることにより、ギ酸メチルを製造する方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585530A (en) * 1978-12-19 1980-06-27 Inst Francais Du Petrole Manufacture of alcohols
JPS5695137A (en) * 1979-12-19 1981-08-01 Union Carbide Corp Manufacture of methanol from synthetic gas by use of palladiummcalcium catalyst
JPS5998024A (ja) * 1982-11-29 1984-06-06 Res Assoc Petroleum Alternat Dev<Rapad> 混合アルコ−ルの合成方法
JPS59116238A (ja) * 1982-08-04 1984-07-05 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− メタノール製造方法
JPH06319999A (ja) * 1993-05-07 1994-11-22 Exxon Res & Eng Co 一酸化炭素及び水素からイソ−アルコールを合成するための触媒
JPH0987217A (ja) * 1995-09-22 1997-03-31 Tsushosangyosho Kiso Sangyokyokucho エタノールの製造方法
JPH09509881A (ja) * 1994-03-04 1997-10-07 インペリアル・ケミカル・インダストリーズ・ピーエルシー 銅触媒
WO2001062701A1 (fr) * 2000-02-25 2001-08-30 Nippon Steel Corporation Procede de preparation d'esters de formate ou de methanol et catalyseur destine a cet effet
JP2005095872A (ja) * 2003-08-19 2005-04-14 Nippon Steel Corp ギ酸エステル及びメタノール合成用触媒とギ酸エステル及びメタノールの製造方法
JP2005126427A (ja) * 2003-09-30 2005-05-19 Nippon Steel Corp ギ酸エステル及びメタノールの製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585530A (en) * 1978-12-19 1980-06-27 Inst Francais Du Petrole Manufacture of alcohols
JPS5695137A (en) * 1979-12-19 1981-08-01 Union Carbide Corp Manufacture of methanol from synthetic gas by use of palladiummcalcium catalyst
JPS59116238A (ja) * 1982-08-04 1984-07-05 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− メタノール製造方法
JPS5998024A (ja) * 1982-11-29 1984-06-06 Res Assoc Petroleum Alternat Dev<Rapad> 混合アルコ−ルの合成方法
JPH06319999A (ja) * 1993-05-07 1994-11-22 Exxon Res & Eng Co 一酸化炭素及び水素からイソ−アルコールを合成するための触媒
JPH09509881A (ja) * 1994-03-04 1997-10-07 インペリアル・ケミカル・インダストリーズ・ピーエルシー 銅触媒
JPH0987217A (ja) * 1995-09-22 1997-03-31 Tsushosangyosho Kiso Sangyokyokucho エタノールの製造方法
WO2001062701A1 (fr) * 2000-02-25 2001-08-30 Nippon Steel Corporation Procede de preparation d'esters de formate ou de methanol et catalyseur destine a cet effet
JP2005095872A (ja) * 2003-08-19 2005-04-14 Nippon Steel Corp ギ酸エステル及びメタノール合成用触媒とギ酸エステル及びメタノールの製造方法
JP2005126427A (ja) * 2003-09-30 2005-05-19 Nippon Steel Corp ギ酸エステル及びメタノールの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ARAKURA Y. ET AL.: "Formice acid esters o Keiyu suru Gosei Gas kara no Teion Methanol Gosei", DAI 85 KAI SHOKUBAI TORONKAI TORONKAI A YOKOSHU, 24 March 2000 (2000-03-24), pages 74, XP003016665 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261960A (ja) * 2006-03-01 2007-10-11 Tokyo Electric Power Co Inc:The Co2から高級脂肪酸メチルエステルを連続的に製造する方法
JP2014523448A (ja) * 2011-07-27 2014-09-11 ビーエーエスエフ ソシエタス・ヨーロピア ホルムアミドおよびギ酸エステルの製造方法
JP2015537037A (ja) * 2012-11-26 2015-12-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se アルカリ金属ホルメートおよびアルカリ金属アルコラートを含有する触媒系の存在下で、メタノールと一酸化炭素とを反応させることにより、ギ酸メチルを製造する方法

Also Published As

Publication number Publication date
JP5264083B2 (ja) 2013-08-14
JP2007245138A (ja) 2007-09-27

Similar Documents

Publication Publication Date Title
JP5067996B2 (ja) メタノールの製造方法ならびにその合成触媒
EP2072487A1 (en) Process for the conversion of hydrocarbons to ethanol
WO2009077725A1 (en) Process for the production of ethanol from a carbonaceous feedstock
EA021535B1 (ru) Способ получения этанола и высших спиртов
JP4963112B2 (ja) メタノール合成用触媒の製造方法、及びメタノールの製造方法
JP5127145B2 (ja) メタノール合成用触媒及び当該触媒の製造方法、並びにメタノールの製造方法
JP5264084B2 (ja) メタノール合成用触媒及び当該触媒の製造方法、並びにメタノールの製造方法
JP5264083B2 (ja) メタノール合成用触媒及び当該触媒の製造方法、並びにメタノールの製造方法
JP5626077B2 (ja) メタノールの製造方法およびメタノール製造用触媒
JP4845530B2 (ja) メタノール合成用触媒及び当該触媒の製造方法、並びにメタノールの製造方法
JP2005126427A (ja) ギ酸エステル及びメタノールの製造方法
JP5464339B2 (ja) メタノール合成用触媒の製造方法及びメタノールの製造方法
JP2005095872A (ja) ギ酸エステル及びメタノール合成用触媒とギ酸エステル及びメタノールの製造方法
JP4990125B2 (ja) ギ酸エステル及びメタノールの製造方法、メタノール製造用触媒、並びに当該触媒の製造方法
US4894394A (en) Process for the manufacture of methanol in combination with steam reforming of light hydrocarbons
JP2005246261A (ja) ギ酸エステル及びメタノール合成用触媒とギ酸エステル及びメタノールの製造方法
JP5843250B2 (ja) メタノールの製造方法
JP2011083724A (ja) メタノール製造用触媒、及びメタノールの製造方法
EP0309047A1 (en) Process for the production of methanol and catalyst composition for said process
JP2010215543A (ja) メタノールの製造方法
WO2005030686A1 (ja) 有機化合物の製造方法
WO2021054962A1 (en) Process for isobutanol production from ethanol and syngas
WO2020127287A1 (en) A process for preparing dimethyl carbonate
JP2001342160A (ja) ジメチルエーテルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714416

Country of ref document: EP

Kind code of ref document: A1