Faltenballonbeschichtungsverfahren
Beschreibung
Die vorliegende Erfindung betrifft Zusammensetzungen geeignet für die gezielte Befüllung oder gezielte Beschichtung von Falten eines Faltenballons und insbesondere Zusammensetzungen aus einem Kontrastmittel und einem Wirkstoff in einem Lösungsmittel zur Befüllung von Falten eines Katheterfaltenballons sowie Verfahren zur gezielten Befüllung oder gezielten Beschichtung der Falten eines Katheterfaltenballons und befüllte oder beschichtete Katheterfaltenballons erhältlich nach einem dieser Verfahren.
Zur Behandlung von Stenosen ist es Stand der Technik, Stents zu setzen oder durch sogenanntes biologisches Stenting die verengte Gefäßregion wieder aufzuweiten. Dazu werden oftmals Stents und/oder Katheterballons verwendet, welche mit einem Polymer als Wirkstoffträger und einem Anti-Restenose-Wirkstoff beschichtet sind.
Da in der Regel der Katheterballon mit oder ohne aufgesetztem, d.h. gekrimptem Stent eine längere Gefäßstrecke passieren muss, um zum Ort der Gefäßverengung zu gelangen, stellt sich das Problem, den Wirkstoff vor führzeitiger Ablösung von dem Stent und/oder Ballon zu schützen.
Bezüglich der Stents hat man bereits diverse Lösungsvorschläge für dieses Problem vorgeschlagen. So offenbaren US 2004/0071861 und WO 03/035131 A beispielsweise, dass in das Gittergerüst des Stent kleine Kavitäten zur Aufnahme eines Wirkstoffs vorgesehen werden können und man den Wirkstoff in den Kavitäten durch das Aufbringen einer Schutzbeschichtung schützen kann.
WO 02/45744 A beschreibt einen Stent ohne Kavitäten, der mit einer ersten Beschichtung umfassend einen Wirkstoff und einer darüber liegenden unelastischen Deckschicht versehen ist, welche den Wirkstoff schützt. Die Erfindung gemäß WO 02/45744 A bestehe nun darin, dass bei der Expansion des Stent die unelastische Deckschicht aufbricht und den Wirkstoff gezielt am Ort seiner Bestimmung freisetzt.
Für Katheterballons sind derartige Deckschichten auch denkbar, aufgrund der großen Fläche des Katheterballons jedoch als praktikable Ausführungsformen schwerer zu realisieren.
Das europäische Patent EP 0 519 063 B1 offenbart die Möglichkeit, einen Faltenballon mit Mikrokapseln zu beschichten, wobei in den Mikrokapseln ein pharmakologischer Wirkstoff eingeschlossen sein kann. Ferner offenbart EP 0 519 063 B1 die Möglichkeit, einen Teil der Mikrokapseln in den Falten des Katheterballon einzuschließen, wenn der Katheterballon im expandierten, d.h. im inflatierten Zustand mit den Mikrokapseln bestäubt und danach wieder zusammengefaltet, d.h. deflatiert wird (s. Anspruch 8 von EP 0 519 063 B1).
Diese Ausführungsform weist jedoch weiterhin das Problem auf, dass nur ein Teil der Mikrokapseln in den Falten eingeschlossen wird und somit die in den Falten befindliche Wirkstoffmenge nicht bekannt ist. Die nicht in den Falten eingeschlossenen Mikrokapseln werden beim Einführen des Katheterballons fast vollständig von der Ballonoberfläche gelöst und gelangen nicht zum Bestimmungsort.
Zudem ist das Beschichtungsverfahren gemäß EP 0 519 063 B1 nur auf Feststoffe und insbesondere Mikrokapseln beschränkt und kann nicht auf Flüssigkeiten angewendet werden.
Die Aufgabe der vorliegenden Erfindung bestand darin, bei der Wirkstoffapplikation via Katheterballon den Wirkstoff derart aufzutragen, dass eine ungewünschte vorzeitige Ablösung nicht eintritt.
Diese Aufgabe wird durch die Bereitstellung eines mit Wirkstoff befüllten Katheterfaltenballons gemäß Patentanspruch 14 sowie Beschichtungsverfahren gemäß Patentansprüchen 2 und 3 als auch eine für diese Beschichtungsverfahren geeignete Zusammensetzung gemäß Patentanspruch 1 gelöst. Weitere vorteilhafte Ausgestaltungen, Aspekte und Details der Erfindung ergeben sich aus den abhängigen Ansprüchen, der Beschreibung, den Beispielen und den Figuren.
Die Aufgabe wird durch die Bereitstellung von Beschichtungsverfahren gelöst, welche den Faltenballon im komprimierten oder nur minimal inflatierten Zustand beschichten.
Dadurch ist die in die Falten eingebrachte Wirkstoffmenge genau bekannt, was für klinische Zulassungen ein wichtiger Aspekt ist und zudem können die Wirkstoffe bequem in gelöster Form eingebracht werden, ohne eine vorherige komplizierte Bereitstellung von speziellen pharmakologischen Formulierungen wie beispielsweise Mikrokapseln.
•Sv
Die erfindungsgemäßen Beschichtungsverfahren beschichten gezielt die Falten, d.h. befüllten gezielt die Falten, wobei die restliche Ballonoberfläche, welche sich nicht unter den Falten befindet, unbeschichtet bleibt.
5 Die gezielte Befüllung der Falten erfolgt mittels sogenannter punktueller oder linearer Beschichtungsverfahren. Nicht angewendet werden Tauchverfahren oder
Sprühverfahren, welche die gesamte Ballonoberfläche abdecken. Zudem werden die erfindungsgemäßen Verfahren bei deflatierten und komprimierten oder nur geringfügig aufgeblasenen Katheterballons angewendet.
10
Erfindungsgemäß wird ein Pipettierverfahren eingesetzt, welches die Kapillarkräfte ausnutzt, ein Spritzverfahren, wobei eine feine Düse relativ zur Längsrichtung der Falte bewegt wird oder ein Sprühverfahren, wobei eine oder mehrere in Reihe befindliche feine Düsen unter die Falte geführt werden und die Falte an einem oder
15 mehreren Punkten befüllen bis die Falte vollständig befüllt ist.
Grundsätzlich wird bei den erfindungsgemäßen Verfahren jede Falte einzeln befüllt oder beschichtet. Bevor die nächste Falte befüllt oder beschichtet wird, kann der Inhalt der ersten Falte getrocknet werden, was jedoch nicht in jedem Fall erforderlich 20 ist. Möglich ist auch, alle Falten nacheinander zu befüllen bzw. zu beschichten und danach den Inhalt aller Falten zu trocknen.
Erfindungsgemäß erfolgt die Trocknung unter Rotation des Katheterballon, worauf später noch genauer eingegangen wird. 25
Die Beschichtung oder Befüllung der Falten erfolgt mit einem flüssigen Gemisch umfassend zumindest einen Wirkstoff und ein Lösungsmittel oder einen Trägerstoff.
Des weiteren können noch Kontrastmittel, Salze, Hilfsstoffe oder andere pharmakologisch verträgliche Stoffe anwesend sein. 30
Als Wirkstoffe können beliebige antiproliferative, antiinflammatorische, antiphlogistische, zytostatische, zytotoxische, antiangiogene, antirestenotische oder antithrombotische Wirkstoffe eingesetzt werden.
35 Beispiele derartiger Wirkstoffe sind Abciximab, Acemetacin, Acetylvismion B, Aclarubicin, Ademetionin, Adriamycin, Aescin, Afromoson, Akagerin, Aldesleukin, Amidoron, Aminoglutethemid, Amsacrin, Anakinra, Anastrozol, Anemonin, Anopterin, Antimykotika, Antithrombotika, Apocymarin, Argatroban, Aristolactam-All, Aristolochsäure, Ascomycin, Asparaginase, Aspirin, Atorvastatin, Auranofin,
H
Azathioprin, Azithromycin, Baccatin, Bafilomycin, Basiliximab, Bendamustin, Benzocain, Berberin, Betulin, Betulinsäure, Bilobol, Biolimus, Bisparthenolidin, Bleomycin, Bombrestatin, Boswellinsäuren und ihre Derivate, Bruceanole A, B und C, Bryophyllin A, Busulfan, Antithrombin, Bivalirudin, Cadherine, Camptothecin, 5 Capecitabin, o-Carbamoylphenoxyessigsäure, Carboplatin, Carmustin, Celecoxib, Cepharantin, Cerivastatin, CETP-Inhibitoren, Chlorambucil, Chloroquinphosphat, Cictoxin, Ciprofloxacin, Cisplatin, Cladribin, Clarithromycin, Colchicin, Concanamycin, Coumadin, C-Type Natriuretic Peptide (CNP), Cudraisoflavon A, Curcumin, Cyclophosphamid, Cyclosporin A, Cytarabin, Dacarbazin, Daclizumab, Dactinomycin,
10 Dapson, Daunorubicin, Diclofenac, 1 ,11-Dimethoxycanthin-6-on, Docetaxel, Doxorubicin, Dunaimycin, Epirubicin, Epothilone A und B, Erythromycin, Estramustin, Etobosid, Everolimus, Filgrastim, Fluroblastin, Fluvastatin, Fludarabin, Fludarabin-5'- dihydrogenphosphat, Fluorouracil, Folimycin, Fosfestrol, Gemcitabin, Ghalakinosid, Ginkgol, Ginkgolsäure, Glykosid 1 a, 4-Hydroxyoxycyclophosphamid, Idarubicin,
15 Ifosfamid, Josamycin, Lapachol, Lomustin, Lovastatin, Melphalan, Midecamycin, Mitoxantron, Nimustin, Pitavastatin, Pravastatin, Procarbazin, Mitomycin, Methotrexat, Mercaptopurin, Thioguanin, Oxaliplatin, Irinotecan, Topotecan, Hydroxycarbamid, Miltefosin, Pentostatin, Pegasparase, Exemestan, Letrozol, Formestan, SMC-Proliferation-lnhibitor-2ω, Mitoxanthrone, Mycophenolatmofetil, c-
20 myc-Antisense, b-myc-Antisense, ß-Lapachon.Podophyllotoxin, Podophyllsäure-2- ethylhydrazid, Molgramostim (rhuGM-CSF), Peginterferon α-2b, Lanograstim (r-HuG- CSF), Macrogol, Selectin (Cytokinantagonist), Cytokininhibitoren, COX-2-lnhibitor, NFkB, Angiopeptin, die Muskelzellproliferation hemmende monoklonale Antikörper, bFGF-Antagonisten, Probucol, Prostaglandine, 1-Hydroxy-11-Methoxycanthin-6-on,
25 Scopolectin, NO-Donatoren, Pentaerythrityltetranitrat, Syndnoeimine, S- Nitrosoderivate, Tamoxifen, Staurosporin, ß-Estradiol, α-Estradiol, Estriol, Estron, Ethinylestradiol, Medroxyprogesteron, Estradiolcypionate, Estradiolbenzoate, Tranilast, Kamebakaurin und andere Terpenoide, die in der Krebstherapie eingesetzt werden, Verapamil, Tyrosin-Kinase-Inhibitoren (Tyrphostine), Paclitaxel, Derivate
30 und Analog des Paclitaxel, 6-α-Hydroxy-Paclitaxel, 2'-Succinylpaclitaxel, 2'- Succinylpaclitaxeltriethanolamin, 2'-Glutarylpaclitaxel, 2'-
Glutarylpaclitaxeltriethanolamin, 2'-O-Ester von Paclitaxel mit N- (Dimethylaminoethyl)glutamid, 2'-O-Ester von Paclitaxel mit N- (Dimethylaminoethyl)glutamidhydrochlorid, Taxotere, Kohlensuboxids (MCS),
35 macrocyclische Oligomere von Kohensuboxid, Mofebutazon, Lonazolac, Lidocain, Ketoprofen, Mefenaminsäure, Piroxicam, Meloxicam, Penicillamin, Hydroxychloroquin, Natriumaurothiomalat, Oxaceprol, ß-Sitosterin, Myrtecain, Polidocanol, Nonivamid, Levomenthol, Ellipticin, D-24851 (Calbiochem), Colcemid, Cytochalasin A-E, Indanocine, Nocadazole, S 100 Protein, Bacitracin, Vitronectin-
Rezeptor Antagonisten, Azelastin, Guanidylcyclase-Stimulator Gewebsinhibitor der Metallproteinase-1 und 2, freie Nukleinsäuren, in Virenüberträger inkorporierte Nukleinsäuren, DNA- und RNA-Fragmente, Plaminogen-Aktivator lnhibitor-1 , Plasminogen-Aktivator lnhibitor-2, Antisense Oligonucleotide, VEGF-Inhibitoren, IGF- 1 , Wirkstoffe aus der Gruppe der Antibiotika wie Cefadroxil, Cefazolin, Cefaclor, Cefotixin, Tobramycin, Gentamycin, Penicilline wie Dicloxacillin, Oxacillin, Sulfonamide, Metronidazol, Enoxoparin, desulfatiertes und N-reacetyliertes Heparin, Gewebe-Plasminogen-Aktivator, Gpllb/Illa-Plättchenmembranrezeptor, Faktor Xa- Inhibitor Antikörper, Heparin, Hirudin, r-Hirudin, PPACK, Protamin, Prourokinase, Streptokinase, Warfarin, Urokinase, Vasodilatoren wie Dipyramidol, Trapidil, Nitroprusside, PDGF-Antagonisten wie Triazolopyrimidin und Seramin, ACE- Inhibitoren wie Captopril, Cilazapril, Lisinopril, Enalapril, Losartan, Thioproteaseinhibitoren, Prostacyclin, Vapiprost, Interferon a, ß und γ_ Histaminantagonisten, Serotoninblocker, Apoptoseinhibitoren, Apoptoseregulatoren wie p65, NF-kB oder Bcl-xL-Antisense-Oligonukleotiden, Halofuginon, Nifedipin, Tocopherol Tranilast, Molsidomin, Teepolyphenole, Epicatechingallat, Epigallocatechingallat, Leflunomid, Etanercept, Sulfasalazin, Etoposid, Dicloxacyllin, Tetracyclin, Triamcinolon, Mutamycin, Procainimid, Retinolsäure, Quinidin, Disopyrimid, Flecainid, Propafenon, Sotalol, natürliche und synthetisch hergestellte Steroide wie Inotodiol, Maquirosid A, Ghalakinosid, Mansonin, Streblosid, Hydrocortison, Betamethason, Dexamethason, nichtsteroidale Substanzen (NSAIDS) wie Fenoporfen, Ibuprofen, Indomethacin, Naproxen, Phenylbutazon und andere antivirale Agentien wie Acyclovir, Ganciclovir und Zidovudin, Clotrimazol, Flucytosin, Griseofulvin, Ketoconazol, Miconazol, Nystatin, Terbinafin, antiprozoale Agentien wie Chloroquin, Mefloquin, Quinin, des weiteren natürliche Terpenoide wie Hippocaesculin, Barringtogenol-C21-angelat, 14-Dehydroagrostistachin, Agroskerin, Agrostistachin, 17-Hydroxyagrostistachin, Ovatodiolide, 4,7-Oxycycloanisomelsäure, Baccharinoide B1 , B2, B3 und B7, Tubeimosid, Bruceantinoside C, Yadanzioside N, und P, Isodeoxyelephantopin, Tomenphantopin A und B, Coronarin A1B, C und D, Ursolsäure, Hyptatsäure A, Iso-Iridogermanal, Maytenfoliol, Effusantin A, Excisanin A und B, Longikaurin B, Sculponeatin C, Kamebaunin, Leukamenin A und B, 13,18- Dehydro-6-alpha-Senecioyloxychaparrin, Taxamairin A und B, Regenilol, Triptolid, Cymarin, Hydroxyanopterin, Protoanemonin, Cheliburinchlorid, Sinococulin A und B, Dihydronitidin, Nitidinchlorid, 12-beta-Hydroxypregnadien 3,20-dion, Helenalin, Indicin, Indicin-N-oxid, Lasiocarpin, Inotodiol, Podophyllotoxin, Justicidin A und B, Larreatin, Malloterin, Mallotochromanol, Isobutyrylmallotochromanol, Maquirosid A, Marchantin A, Maytansin, Lycoridicin, Margetin, Pancratistatin, Liriodenin, Bispsrthenolidin, Oxoushinsunin, Periplocosid A, Ursolsäure, Deoxypsorospermin, Psycorubin, Ricin A, Sanguinarin, Manwuweizsäure, Methylsorbifolin,
v,
Sphathθliachromen, Stizophyllin, Mansonin, Streblosid, Dihydrousambaraensin, Hydroxyusambarin, Strychnopentamin, Strychnophyllin, Usambarin, Usambarensin, Liriodenin, Oxoushinsunin, Daphnoretin, Lariciresinol, Methoxylariciresinol, Syringaresinol, Sirolimus (Rapamycin), Somatostatin, Tacrolimus, Roxithromycin, 5 Troleandomycin, Simvastatin, Rosuvastatin, Vinblastin, Vincristin, Vindesin, Teniposid, Vinorelbin, Tropfosfamid, Treosulfan, Tremozolomid, Thiotepa, Tretinoin, Spiramycin, Umbelliferon, Desacetylvismion A, Vismion A und B, Zeorin sowie Gemische der vorgenannten Wirkstoffe.
10 Insbesondere bevorzugte Wirkstoffe sind Rapamycin (Sirolimus) und Paclitaxel, Derivate und Analog des Paclitaxel, 6-α-Hydroxy-PacIitaxel, 2'-Succinylpaclitaxel, 21- Succinylpaclitaxeltriethanol-amin, 2'-Glutarylpaclitaxel, 21-
Glutarylpaclitaxeltriethanolamin, 2'-O-Ester von Paclitaxel mit N- (Dimethylaminoethyl)glutamid, 2'-O-Ester von Paclitaxel mit N-
15 (Dimethylaminoethyl)glutamidhydrochlorid, Taxotere sowie Gemische der vorgenannten Wirkstoffe. Insbesondere bevorzugt ist Paclitaxel.
Natürlich können auch Wirkstoffgemische eingesetzt werden wie beispielsweise ein Wirkstoffgemisch aus Paclitaxel und Trapidil oder aus Paclitaxel mit einem NO-Donor 20 oder aus Rapamycin mit Vitamin A oder Vitamin C.
Auch wichtig ist das verwendete Lösungsmittel, welches nach Befüllung der Falten durch Trocknung bei Normaldruck oder im Vakuum entfernt wird.
25 Als Lösungsmittel können leichtflüchtige organische Verbindungen verwendet werden wie beispielsweise Dichlormethan, Chloroform, Ethanol, Aceton, Heptan, n- Hexan, DMF, DMSO, Methanol, Propanol, Tetrahydrofuran (THF), Methylenchlorid, Ether, Petrolether, Essigsäureethylester, Cyclohexan. Bei der Wahl des Lösungsmittel ist es vor allem wichtig, dass es das Material des Katheterballons nicht
30 angreift bzw. unbrauchbar macht bzw. die Kontaktzeit des Lösungsmittels so gering ist, dass keine Schädigung entstehen kann bzw. eine eventuelle Schädigung unerheblich ist und nicht zu Schädigungen führt, welche bei der Dilatation ein' Platzen des Ballons verursachen können.
35 Als Lösungsmittel haben sich vorzugsweise Alkohole und insbesondere Diole und Triole auch in Kombination mit Monoolen bewährt. Das bevorzugte Lösungsmittel kann vorzugsweise aus folgender Gruppe ausgewählt werden: Methanol, Ethanol, lospropanol, n-Butanol, iso-Butanol, t-Butanol, Ethylenglykol, Propylenglykol, 1 ,3- Propandiol, Butylenglykol, 1 ,3-Butandiol, 1 ,4-Butandiol, Glycerin, 1 ,2,3-Butantriol,
1 ,2,4-Butantriol und 1 ,2,3,4-Butantetraol, wobei auch Gemische dieser Lösungsmittel sowie Gemische mit den vorher genannten organischen Lösungsmitteln eingesetzt werden können. Bevorzugt sind Ethylenglykol, Propylenglykol, 1 ,3-Propandiol, Butylenglykol, 1 ,3-Butandiol, 1 ,4-Butandiol und insbesondere bevorzugt ist Glycerin.
Auch Wasser kann im Lösungsmittelgemisch enthalten sein, jedoch vorzugsweise in einer Menge geringer als 50 Gew.-%, vorzugsweise 30 Gew.-% und insbesondere bevorzugt 10 Gew.-% bezogen auf die Gesamtlösung.
Je nach erfindungsgemäßem Beschichtungsverfahren werden dünnviskose Lösungen des Wirkstoffs oder dickviskose Lösungen des Wirkstoffs oder der Wirkstoffkombination benötigt.
Viskositätsmessungen sind für einen Fachmann gängige Praxis und erfolgen vorzugsweise mit Viskosimetern. Die Viskosität muss je nach Art und Ausgestaltung der Falten eingestellt werden.
Diverse Faltentypen und Typen und Ausführungsformen von Faltenballons sind beispielsweise in EP 0 519 063 B1 , WO 94/23787 A1 oder WO 03/059430 A1 offenbart. Da jedoch fast jeder deflatierbare bzw. dilatierbare Katheterballon Falten aufweist, sind die erfindungsgemäßen Beschichtungsverfahren grundsätzlich auf jeden aufblasbaren Katheterballon und nicht nur auf die in WO 94/23787 A1 oder WO 03/059430 A1 genannten speziellen Ausführungsformen beschränkt.
Als Lösungsmittel können neben den oben genannten oder zusammen mit den oben genannten Lösungsmitteln auch Öle, Fettsäuren und Fettsäureester verwendet werden. Bevorzugte Öle sind beispielsweise: Leinöl, Flachsöl, Hanföl, Maiskeimöl, Walnussöl, Rapsöl, Sojaöl, Sonnenblumenöl, Mohnöl, Safloröl (Färberdistelöl), Weizenkeimöl, Distelöl, Traubenkernöl, Nachtkerzenöl, Borretschöl, Schwarzkümmelöl, Algenöl, Fischöl, Lebertran und/oder Mischungen der vorgenannten Öle eingesetzt.
Unverdünnte Öle werden dann als Lösungsmittel eingesetzt, wenn eine dickviskose Beschichtungslösung benötigt wird. Durch Zugabe lipophiler Lösungsmittel kann die Viskosität erniedrigt und somit ein gewünschter Viskositätsgrad eingestellt werden. Andererseits können dünnviskose Lösungen durch Zugabe von Ölen oder Fetten in ihrer Viskosität erhöht werden.
Der Begriff "Lösung" oder "Beschichtungslösung" wie hierin verwendet soll nicht nur klare Lösungen bezeichnen sondern auch Emulsionen, Dispersionen und Suspensionen von einem oder mehreren Wirkstoffen in einem Lösungsmittel oder Lösungsmittelgemisch optional mit weiteren Trägern, Hilfsstoffen oder beispielsweise Kontrastmitteln.
Der Begriff "Zusammensetzung" oder "wirkstoffenthaltende Zusammensetzung" wie hierin verwendet soll nicht nur Lösungen bezeichnen sondern auch Emulsionen, Dispersionen, Suspensionen, Öle, Pasten und dickflüssige Mischungen enthaltend mindestens eine pharmakologischen Wirkstoff. Dennoch sind diese
Zusammensetzungen nicht fest, sondern dünnflüssig bis dickflüssig oder gel- oder pastenförmig.
Als Öle oder grundsätzlich als lipophile Substanzen können natürliche und synthetische Öle, Fette, Lipide, Lipoide und Wachse eingesetzt werden.
WO 03/022265 A1 beschreibt beispielsweise ölige Formulierungen von Paclitaxel, welche ebenfalls eingesetzt werden können und bevorzugt sind. Vergleichbare Öllösungen lassen sich auch mit anderen Wirkstoffen wie beispielsweise Trapidil oder Rapamycin herstellen.
Weitere Beispiele für geeignete Öle oder lipophile Substanzen lassen sich durch folgende allgemeinen Formeln darstellen:
R" — (CH2)n— CH=CH- (CH2)m-X R' R
R" — (C H2)n— C H-(C H2)m— CH=C H-(C H2)r— C H-(C H2)s— X
R1 R
R" — (CH2)n— CH- (CH2)m— CH- (CH2)p— CH=CH- (CH2)r— CH- (CH2)s— CH- (CH2)t— X R' R* R** R
R"— (CH2)n— CH- (CH2)m— (CH=CH)p— (CH2)q— (CH=CH)r— (CH2)S- CH- (CH2)t— X R' R
R"— (CH2)n— CH- (CH2)m— (CH=CH)r— (CH2)S- CH- (CH2)t— X R' R worin
R, R1, R", R* und R** unabhängig voneinander für Alkyl-, Alenyl-, Alkinyl-,
Heteroalkyl-, Cycloalkyl-, Heterocyclylreste mit 1 bis 20 Kohlenstoffatomen, Aryl-,
Arylalkyl-, Alyklaryl-, Heteroarylreste mit 3 bis 20 Kohlenstoffatomen oder für
funktionelle Gruppen stehen und bevorzugt folgende Reste bedeuten: -H, -OH, -OCH
3, -OC
2H
5, -OC
3H
7, -0-CVClO-C
3H
5, -OCH(CH
3)
2, -OC(CH
3)
3, -OC
4H
9, -OPh, -OCH
2-Ph, -OCPh
3, -SH, -SCH
3, -SC
2H
5, -NO
2, -F, -Cl, -Br, -I, -CN, -OCN, -NCO, -SCN, -NCS, -CHO, -COCH
3, -COC
2H
5, -COC
3H
7, -CO-CyCIo-C
3H
5, -COCH(CH
3)
2, -COC(CH
3)
3, -COOH, -COOCH
3, -COOC
2H
5, -COOC
3H
7, -COO-cyclo-C
3H
5, -COOCH(CH
3)
2, -COOC(CH
3)
3, -0OC-CH
3, -0OC-C
2H
5, -0OC-C
3H
7, -OOC-cyclo-C
3H
5, -OOC-CH(CH
3)
2, -OOC-C(CH
3)
3, -CONH
2, -CONHCH
3, -CONHC
2H
5, -CONHC
3H
7, -CON(CH
3)
2, -CON(C
2Hs)
2, -CON(C
3H
7)
2, -NH
2, -NHCH
3, -NHC
2H
5, -NHC
3H
7, -NH-cyclo-C
3H
5, -NHCH(CH
3)
2, -NHC(CH
3)
3, -N(CH
3)
2, -N(C
2Hg)
2, -N(C
3H
7)
2, -N(cyclo-C
3H
5)
2, -N[CH(CH
3)
2]
2, -N[C(CH
3)
3]
2, -SOCH
3, -SOC
2H
5, -SOC
3H
7, -SO
2CH
3, -SO
2C
2H
5, -SO
2C
3H
7, -SO
3H, -SO
3CH
3, -SO
3C
2H
5, -SO
3C
3H
7, -OCF
3, -OC
2F
5, -0-COOCH
3, -0-COOC
2H
5, -0-COOC
3H
7, -0-COO-CyCIo-C
3H
5, -O-COOCH(CH
3)
2, -O-COOC(CH
3)
3, -NH-CO-NH
2, -NH-CO-NHCH
3, -NH-CO-NHC
2H
5, -NH-CO-N(CH
3)
2, -NH-CO-N(C
2Hs)
2, -0-CO-NH
2, -0-CO-NHCH
3, -0-CO-NHC
2H
5, -0-CO-NHCsH
7, -O-CO-N(CH
3)
2, -O-CO-N(C
2H
5)
2, -0-CO-OCH
3, -0-CO-OC
2H
5, -0-CO-OC
3H
7, -O-CO-O- cyclo-C
3H
5, -O-CO-OCH(CH
3)
2) -O-CO-OC(CH
3)
3, -CH
2F, -CHF
2, -CF
3, -CH
2CI, -CH
2Br, -CH
2I, -CH
2-CH
2F, -CH
2-CHF
2, -CH
2-CF
3, -CH
2-CH
2CI, -CH
2-CH
2Br, -CH
2-CH
2I, -CH
3, -C
2H
5, -C
3H
7, -cyclo-C
3H
5, -CH(CHs)
2, -C(CHs)
3, -C
4H
9, -CH
2-CH(CH
3)
2, -CH(CHs)-C
2H
5, -Ph, -CH
2-Ph, -CPh
3, -CH=CH
2, -CH
2-CH=CH
2,
-CH=CH-CH
3, -C
2H
4-CH=CH
2, -CH=C(CHs)
2, -C≡CH, -C≡C-CHs, -CH
2-C≡CH; X für eine Estergruppe oder Amidgruppe und insbesondere für -O-alkyl, -O-CO-alykl, -O-CO-O-alkyl, -O-CO-NH-alkyl, -O-CO-N-dialkyl, -CO-NH-alkyl, -CO-N-dialkyl, -CO-O-alkyl, -CO-OH, -OH; m, n, p, q, r, s und t unabhängig voneinander ganze Zahlen von O bis 20, bevorzugt von O bis 10 bedeuten.
Die Bezeichnung "alkyl" beispielsweise bei -CO-O-alkyl bedeutet vorzugsweise eine der für die vorgenannten Reste R, R1 usw. genannten Alkylreste, z.B. -CH2-Ph. Die Verbindungen der vorgenannten allgemeinen Formeln können auch in Form ihrer Salze, als Racemate oder Diastereomerengemische, als reine Enantiomeren oder Diastereomeren sowie als Gemische oder Oligomere oder Copolymere oder Blockcopolymere vorliegen. Ferner können die vorgenannten Verbindungen im Gemisch mit anderen Substanzen wie den biostabilen und biodegradierbaren Polymeren und insbesondere im Gemisch mit den hierin genannten Ölen und/oder Fettsäuren eingesetzt werden. Bevorzugt sind derartige Gemische und
Einzelsubstanzen, welche zur Polymerisation, insbesondere zur Autopolymerisation geeignet sind.
Bevorzugt sind jedoch natürlich vorkommende Öle, Fettsäuren und Fettsäureester wie beispielsweise Ölsäure, Eicosapentaensäure, Timnodonsäure, Docosahexaensäure, Arachidonsäure, Linolsäure, α-Linolensäure, γ-Unolensäure sowie Mischungen und Ester der vorgenannten Fettsäuren. Insbesondere bevorzugt sind Omega-9-Fettsäuren, Omega-3-Fettsäuren und Omega-6-Fettsäuren sowie deren Ester und Mischungen enthaltend diese Stoffe vorzugsweise mit einem Gewichtsanteil von mindestens 10 Gew.-%.
Weitere geeignete Fettsäuren sind in den Tabellen 1 bis 4 aufgeführt.
Tabelle 1 : Monoolefinische Fettsäuren
Tabelle 2: Polyungesättigte Fettsäuren
Tabelle 3: Acetylenische Fettsäuren
Tabelle 4: gesättigte Fettsäuren
Des weiteren sind die Ester der in den Tabellen 1 - 4 aufgeführten Fettsäuren und insbesondere deren Ethylester und Gemische enthaltend diese Fettsäuren und/oder Fettsäureester bevorzugt. Weitere bevorzugte Fettsäuren sind 6,8-
Dithianoctansäure, γ-Linolensäure und α-Liponsäure sowie deren Ester.
Des weiteren können als Zusatzstoffe in der einzubringenden Zusammensetzung auch Kontrastmittel enthalten sein.
Als Matrix zur Aufnahme des Wirkstoffs in den Falten des Katheterballons haben sich niedermolekulare Verbindungen und insbesondere Kontrastmittel, Kontrastmittelanaloga oder Kontrastmittel-ähnliche Verbindungen als geeignet herausgestellt. Als Kontrastmittelanaloga oder Kontrastmittel-ähnliche
Verbindungen werden Stoffe bezeichnet, welche nicht mit der Bezeichnung "Kontrastmittel" betitelt werden, jedoch die Eigenschaften eines Kontrastmittels besitzen, nämlich durch bildgebende Verfahren und Diagnoseverfahren dargestellt zu werden. Bei diesen Verbindungen handelt es sich zumeist um Stoffe, welche Barium, lod, Mangan, Eisen, Lanthan, Cer, Praseodym, Neodym, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium und/oder Lutetium enthalten.
Als Kontrastmittel können übliche Kontrastmittel für Röntgenaufnahmen, Computertomographie (CT), Kernspintomographie oder Magnetresonanztomographie (MRT) eingesetzt werden.
Prinzipiell zu unterscheiden sind Kontrastmittel, die bei Röntgenuntersuchungen zum Einsatz kommen (Röntgenkontrastmittel), und die, die bei magnetresonanz- tomographischen Untersuchungen eingesetzt werden (MR-Kontrastmittel), wobei die Röntgenkontrastmittel wie z.B. Jod-Lipiodol® bevorzugt sind.
Im Falle von Röntgenkontrastmitteln handelt es sich um Substanzen, die entweder zu einer vermehrten Absorption einfallender Röntgenstrahlen gegenüber der umgebenden Struktur führen (sog. positive Kontrastmittel) oder einfallende Röntgenstrahlen vermehrt ungehindert durchlassen (sog. negative Kontrastmittel).
Des weiteren sind jodhaltige Kontrastmittel bevorzugt, welche bei der Gefäßdarstellung (Angiographie und Phlebographie) und bei der CT (Computertomographie) verwendet werden.
Insbesondere bevorzugt sind Kontrastmittel mit einem 1 ,3,5-Triiodbenzolkem, nephrotrope niederosmolare Röntgenkontrastmittel, Amidotrizoesäure, lothalaminsäure, lotrolan, lopamidol, lodoxaminsäure, Diatrizoesäure, lomeprol, lopromid, Desmethoxyacetyl-Iopromid (DAMI) oder 5-Amino-2,4,6-triiodphthalsäure- (2,3-dihydroxypropyl)-amid (ATH).
Im folgenden sind einige Strukturen der insbesondere bevorzugten Kontrastmittel gezeigt:
Amidotrizoesäure lothalaminsäure
Desmethoxyacetyl-Iopromid (DAMI)
5-Amino-2,4,6-triiodphthalsäure-(2,3-dihydroxypropyl)-amid (ATH)
Eine weitere Klasse von bevorzugten Kontrastmitteln stellen die paramagnetischen Kontrastmittel dar, welche zumeist ein Lanthanoid enthalten.
Zu den paramagnetischen Substanzen, die über ungepaarte Elektronen verfügen, zählt z.B. das Gadolinium (Gd3+), das insgesamt sieben ungepaarte Elektronen besitzt. Des weiteren gehören zu dieser Gruppe das Europium (Eu2+, Eu3+), Dysprosium (Dy3+) und Holmium (Ho3+). Diese Lanthanoide können auch in chelatisierter Form unter Verwendung von beispielsweise Hämoglobin, Chlorophyll, Polyazasäuren, Polycarbonsäuren und insbesondere EDTA, DTPA sowie DOTA als
Chelatbildner eingesetzt werden. Beispiele für Gadolinium-haltige Kontrastmittel sind Gadolinium-Diethylentriaminpentaessigsäure, Gadopentetsäure (GaDPTA), Gadodiamid, Meglumin-Gadoterat oder Gadoteridol
Erfindungsgemäß können natürlich auch Mischungen zweier oder mehrerer Kontrastmittel eingesetzt werden.
Des weiteren können auch physiologisch verträgliche Salze in der Zusammensetzung des Wirkstoffs oder des Wirkstoffgemisches anwesend sein. Bevorzugt sind Lösungen oder Dispersionen eines Wirkstoffs vorzugsweise Paclitaxel oder Rapamycin und insbesondere Paclitaxel zusammen mit einem oder mehreren physiologisch verträglichen Salzen.
Als Salze können bevorzugt Verbindungen enthaltend Natriumkationen, Calcium-, Magnesium-, Zink-, Eisen- oder Lithiumkationen zusammen mit Sulfat-, Chlorid-, Bromit-, lodid-, Phosphat-, Nitrat-, Citrat- oder Acetatanionen eingesetzt werden. Als Salze können zudem auch ionische Kontrastmittel eingesetzt werden oder ionische Kontrastmittel können den oben genannten Salzen zugesetzt werden.
Einer solchen Lösung, Dispersion oder Aufschlämmung wird der Wirkstoff oder die Wirkstoffkombination zugesetzt. Als Lösungsmittel dient vorzugsweise Wasser eventuell mit Cosolventien. Der Salzgehalt sollte relativ hoch liegen. Bei derartigen Salzlösungen ist das hauptsächliche Lösungsmittel Wasser, welches bis zu 30 Gew.- %, vorzugsweise 20 Gew.-% und insbesondere bevorzugt bis maximal 10 Gew.-% noch ein oder mehrere Cosolventien enthalten kann.
Derartige Salzlösungen werden zumeist für das Spritzverfahren verwendet.
Diese Salzlösung mit Wirkstoff wird unter die Falten des Faltenballon gespritzt und getrocknet. Die Salzbeschichtung ist sehr hygroskopisch und besitzt daher eine hohe Affinität zum Gefäßgewebe. Bei der Dilatation öffnen sich die Falten und drücken die salzige Beschichtung gegen die Gefäßwand. Die Salzbeschichtung klebt dann regelrecht an der Gefäßwand, wo sie mehrere Aufgaben erfüllt. Zum einen führt die lokale sehr hohe Salzkonzentration zu einem hohen isotonischen Druck, der Zellen zum Platzen bringt und zum anderen löst die hohe Salzkonzentration auch harte Plaque und andere Ablagerungen im Gefäß auf und setzt zudem noch den Wirkstoff frei, welcher insbesondere die Proliferation der glatten Muskelzellen unterbindet.
Nach wenigen Minuten bis maximal ein paar Stunden ist je nach Menge die auf die Gefäßwand übertragene Salzbeschichtung vollständig aufgelöst.
Anstelle oder in Kombination mit den vorgenannten Salzen können auch Aminosäuren, Oligopeptide, Polyaminosäuren, Peptide und/oder Vitamine eingesetzt werden.
Geeignete Aminosäuren sind: Glycin, Alanin, Valin, Leucin, Isoleucin, Serin, Threonin, Phenylalanin, Tyrosin, Tryptophan, Lysin, Arginin, Histidin, Aspartat, Glutamat, Asparagin, Glutamin, Cystein, Methionin, Prolin, 4-Hydroxyprolin, N, N, N- Trimethyllysin, 3-Methylhistidin, 5-HydroxyIysin, O-Phosphoserin, γ-Carboxyglutamat, ε-N-Acetyllysin, ω-N-Methylarginin, Citrullin, Ornithin und Derivate dieser Aminosäuren.
Geeignete Vitamine umfassen: Vitamin A, Vitamin C (Ascorbinsäure), Vitamin D, Vitamin H, Vitamin K, Vitamin E, VitaminBI , VitaminB2, VitaminB3, VitaminBδ, VitaminBΘ, VitaminBI 2, Thiamin, Riboflavin, Niacin, Pyridoxin und Folsäure.
Ferner sind auch liposomale Formulierungen des Wirkstoffs oder Wirkstoffgemisches für die Beschichtung bzw. Befüllung von Katheterballons einsetztbar.
Die liposomalen Formulierungen werden vorzugsweise hergestellt, indem in einem ersten Schritt der Wirkstoff (z.B. Paclitaxel oder Rapamycin) bzw. die Wirkstoffkombination in einem wässrigen Medium oder Puffermedium gelöst und anschließend mit Lösungen, die membranbildende Substanzen enthalten, in Kontakt gebracht wird. Bei diesem Verfahren ergeben sich hohe Einschlussraten von mindestens 30% bis zu 95%.
Membranbildende Substanzen sind geladene amphiphile Verbindungen bevorzugt Alkylcarbonsäuren, Alkylsulfonsäuren, Alkylamine, Alkylammoniumsalze, Phosphorsäureester mit Alkoholen, natürliche sowie synthetische Lipide, wie Phosphatidylglycerol (PG), Phosphatidylserin (PS), Derivate des Phophatidylethanolamins (PE-Derivate) sowie des Cholesterols, Phosphatidsäure, Phosphatidylinositol, Cardiolipin, Sphingomyelin, Ceramid in seinen natürlichen, halb-synthetischen oder synthetischen Formen, Stearylamin und Stearinsäure, Palmitoyl-D-glucuronid und/oder geladene Sphingolipide, wie z. B. Sulfatid.
Als neutrale membranbildende Substanzen fungieren an sich bekannte Komponenten wie z. B. Phosphatidylcholin (PC), Phophatidylethanolamin (PE), Steroide, vorzugsweise Cholesterol, komplexe Lipide und/oder neutrale Sphingolipide.
Die Gewinnung der Liposomen aus der wässrigen Lösung erfolgt ebenfalls nach an sich bekannten Techniken so z. B. durch Dialyse, Ultrafiltration, Gelfiltration, Sedimentation oder Flotation. Die Liposomen besitzen einen durchschnittlichen Durchmesser von 10 bis 400 nm.
Derartige liposomale Formulierungen lassen sich auch bevorzugt in die Falten eines Faltenballons mittels Spritzverfahren oder Kapillarverfahren (Pipettierverfahren) einbringen.
Die erfindungsgemäßen Faltenbeschichtungsverfahren oder
Faltenbefüllungsverfahren sind das Pipettierverfahren auch als Kapillarverfahren bezeichnet, das Spritzverfahren und das Sprühverfahren auch als Faltensprühverfahren bezeichnet, um den Unterschied zum unselektiven Sprühverfahren für den gesamten Katheterballon zu verdeutlichen.
Somit betrifft die vorliegende Erfindung Verfahren zur Beschichtung oder Befüllung der Falten eines Katheterfaltenballons auf folgende Weise: a) eine wirkstoffenthaltende Zusammensetzung am distalen oder proximalen Ende einer Falte des Katheterfaltenballons abgegeben und die Falte aufgrund von Kapillarkräften befüllt wird; oder b) eine Spritze, welche einen kontinuierlichen Fluß einer wirkstoffenthaltenden Zusammensetzung abgibt, relativ zum Katheterfaltenballon entlang der Falte bewegt wird; oder c) eine Vielzahl in Reihe befindlicher Abgabeöffnungen unter die Falte des
Faltenballons geschoben werden und gleichzeitig aus der Vielzahl von Abgabeöffnungen eine wirkstoffenthaltende Zusammensetzung in die Falte abgegeben wird.
Vorteilhaft ist, dass diese Beschichtungs- oder Befüllungsverfahren vorzugsweise im komprimierten oder deflatierten Zustand oder maximal 10% inflatierten Zustand des Katheterballons durchgeführt werden. Unter dem Begriff "10% inflatierten Zustand" soll verstanden werden, dass der Katheterballon 10% der Inflation, d.h. der Aufdehnung bis zur bei der Dilatation geplanten Maximalausdehnung erfahren hat.
Wird die bei der Dilatation vorgesehene Aufdehnung mit 100% bezeichnet und der deflatierte Zustand mit 0% angesetzt, so ergibt sich eine 10%ige Inflation gemäß folgender Formel:
(Durchmesser des Katheterballons im deflatierten Zustand) +
(Durchmesser des Katheterballons im inflatierten Zustand - Durchmesser des Katheterballons im deflatierten Zustand) / 10
Ferner können gemäß den erfindungsgemäßen Verfahren mehrere oder alle Falten gleichzeitig beschichtet oder befüllt werden und die Beschichtung oder Befüllung kann gezielt erfolgen. Eine gezielte Befüllung der Falten oder gezielte Beschichtung der Falten soll heißen, dass nur die Falten befüllt oder beschichtet werden und die Oberfläche des Katheterfaltenballons außerhalb der Falten nicht beschichtet wird.
Eine bevorzugt verwendete Zusammensetzung aus Wirkstoff, Lösungsmittel und Kontrastmittel hat die Konsistenz einer Paste oder einer dickflüssigen Masse oder einer viskosen Dispersion oder Emulsion oder eines zähen Breis.
Diese Zusammensetzung hat den Vorteil, dass sie nicht polymerisiert und während des Beschichtungsvorgangs ihre Konsistenz beibehält. Diese Paste oder (hoch)viskose Masse oder dickflüssige Aufschlämmung wird mittels einer Spritzvorrichtung, vorzugsweise einer Düse wie in Fig. 1 gezeigt unter Druck in die Falten eingebracht.
Die Düse kann sofern nötig, die Ballonfalten aufweiten und gezielt die durch die Falten gebildeten Hohlräume befüllen. Die Faltenballons weisen in der Regel 4 oder mehr Falten auf, welche einzeln befüllt werden.
Als besonders vorteilhaft hat sich erwiesen, nach Befüllung einer oder mehrerer oder aller Falten den Faltenballon in Richtung der Öffnungen der Falten zu rotieren. Diese Drehung bewirkt, dass die dickflüssige Paste vollständig und gleichmäßig in den Falten verteilt wird und eventuelle Lufteinschlüsse freigesetzt werden. Die Rotationsrichtung ist in Fig. 2 angedeutet. Nach der Drehung des Faltenballons kann eine weitere Befüllung von bereits befüllten oder leeren Falten erfolgen.
Während und/oder nach der Rotation trocknet die Zusammensetzung in den Falten entweder bei Atmosphärendruck oder unter vermindertem Druck. Trocknung oder Aushärtung der Zusammensetzung erfolgt durch die Entfernung des mindestens einen Alkohols durch Verdunstung. Die getrocknete Zusammensetzung hat eine
poröse Konsistenz und löst sich sehr leicht von der Ballonoberfläche bei der Dilatation ab. Der Alkohol als Lösungsmittel wurde bis auf die üblichen Rückstände entfernt und das Kontrastmittel bildet eine poröse Matrix für den Wirkstoff und ist zudem in der Lage, nach Dilatation des Faltenballons den Wirkstoff schnell und in großer Konzentration freizusetzen. Zudem hat das erfindungsgemäße Verfahren den Vorteil, sehr materialschonend zu arbeiten, da nur die Falten beschichtet oder befüllt werden und somit sich kein Wirkstoff auf der äußeren Ballonoberfläche befindet, der bei der Einführung des Katheters verloren geht.
Im folgenden wird auf die drei erfindungsgemäßen Beschichtungs- und Befüllungsverfahren genauer eingegangen.
Pipettierverfahren oder Kapillarverfahren:
Bei diesem Verfahren wird eine Pipette oder Spritze oder eine andere zur punktförmigen Abgabe der wirkstoffenthaltenden Zusammensetzung befähigte Vorrichtung eingesetzt.
Unter dem Begriff "wirkstoffenthaltende Zusammensetzung" wie hierin verwendet wird das Gemisch aus Wirkstoff und Lösungsmittel und/oder Hilfsstoff und/oder Träger verstanden, also eine tatsächliche Lösung, Dispersion, Suspension oder Emulsion aus einem Wirkstoff oder einem Wirkstoffgemisch und mindestens einem weiteren Bestandteil ausgewählt aus den hierin genannten Lösungsmitteln, Ölen, Fettsäuren, Fettsäureester, Aminosäuren, Vitaminen, Kontrastmitteln, Salzen und/oder membranbildenden Substanzen. Der Begriff "Lösung" soll ferner verdeutlichen, dass es sich um ein flüssiges Gemisch handelt, welches jedoch auch zähflüssig (dickviskos oder hochviskos) sein kann.
Die Pipette oder Spritze oder die andere zur punktförmigen Abgabe der wirkstoffenthaltenden Zusammensetzung befähigte Vorrichtung wird mit der Zusammensetzung befüllt und vorzugsweise am proximalen oder am distalen Ende einer Falte angesetzt. Die austretende Zusammensetzung wird aufgrund von Kapillarkräften in die Falte und entlang der Falte gezogen bis das gegenüberliegende Ende der Falte erreicht ist.
Der Katheterballon befindet sich im komprimierten, d.h. deflatierten Zustand. Eine auch nur teilweise oder geringfügige Inflation des Katheterballons ist in der Regel nicht erforderlich um die Falten ein wenig zu öffnen. Dennoch kann die Befüllung der Falten bei einer geringfügigen Inflation des Katheterballons von maximal 10% des bei der Dilatation vorgesehenen Durchmessers erfolgen. Die Befüllung der
Falten kann zudem bei einer leichten Aufweitung der Falten erfolgen indem 100 kPa (1 bar) Überdruck, vorzugsweise 50 kPa (0,5 bar) Überdruck angelegt werden, um die Falten leicht aufzuweiten.
Bei diesem Verfahren ist es wichtig, dass die wirkstoffenthaltende Zusammensetzung dünnflüssig genug ist, um die entsprechenden Kapillarkräfte zu entwickeln.
Als Zusammensetzungen werden insbesondere Lösungen von einem Wirkstoff oder Wirkstoffgemisch in einem Alkohol oder Alkoholgemisch bevorzugt.
Die Kapillarkräfte sollten derart stark sein, dass sich eine Falte einer Länge von 10 mm innerhalb von 5 bis 80 Sekunden, vorzugsweise innerhalb von 15 bis 60 Sekunden und insbesondere bevorzugt innerhalb von 25 bis 45 Sekunden vollständig füllt.
Ist die Zusammensetzung bzw. Lösung zu viskos kann es zudem von Vorteil sein, den Katheterballon mit der zu befüllenden Falte nach oben aus der horizontalen Lage um maximal 45°, vorzugsweise maximal 30° zu neigen und dadurch auch die Schwerkraft mit zu nutzen. In der Regel erfolgt die Befüllung einer Falte mittels Kapillarkräften jedoch im horizontalen Zustand des Katheterballons mit der zu befüllenden Falte nach oben. Die Spritze oder Pipette oder die andere zur punktförmigen Abgabe der wirkstoffenthaltenden Zusammensetzung befähigte Vorrichtung wird vorzugsweise am proximalen oder am distalen Ende der Falte spitz in Richtung des Faltenverlaufs in einem Winkel von 10° bis 65°, vorzugsweise 20° bis 55°, weiter bevorzugt in einem Winkel von 27° bis 50° und insbesondere bevorzugt in einem Winkel von 35° bis 45° gemessen von der Horizontalen an die Falte angesetzt.
Grundsätzlich besteht natürlich auch die Möglichkeit, die Spritze oder Pipette oder die andere zur punktförmigen Abgabe der wirkstoffenthaltenden Zusammensetzung befähigte Vorrichtung in der Mitte der Falten oder an einem beliebigen anderen zwischen dem distalen und proximalen Ende liegenden Punkt anzusetzen, so dass sich die Falte aufgrund von Kapillarkräften gleichzeitig in Richtung des proximalen und des distalen Endes befüllt, jedoch haben sich die Ansatzpunkte am Ende der Falte als bevorzugt erwiesen.
Hat die Zusammensetzung zum Befüllen der Falten bzw. der vorliegenden Falte das gegenüberliegende Ende erreicht, so stoppt der Substanzfluß in der Regel von selbst
und die Spritze oder Pipette oder die andere zur punktförmigen Abgabe der wirkstoffenthaltenden Zusammensetzung befähigte Vorrichtung kann entfernt werden.
Damit nun kein größerer Tropfen an wirkstoffenthaltender Zusammensetzung am Ansatzpunkt der Spritze oder Pipette oder der anderen zur punktförmigen Abgabe der wirkstoffenthaltenden Zusammensetzung befähigten Vorrichtung zurückbleibt, hat sich als vorteilhaft erwiesen, die Spritze oder Pipette oder die andere Abgabevorrichtung bereits zu entfernen, bevor die wirkstoffenthaltende Zusammensetzung vollständig bis an das andere Ende der Falte gelangt ist. Dadurch wird auch noch die restliche am Ansatzpunkt der Spritze oder der Pipette oder der anderen Abgabevorrichtung verbliebene wirkstoffenthaltende Zusammensetzung in die Falte hineingezogen, so dass keine Beschichtungszusammensetzung oder besser Befüllungszusammensetzung außerhalb der Falte verbleibt.
Vorzugsweise wird die Spritze oder Pipette oder die andere Abgabevorrichtung dann entfernt, wenn ca. 90% der Falte mit wirkstoffenthaltender Zusammensetzung befüllt sind. Der optimale Zeitpunkt zur Entfernung der Spritze oder Pipette oder der anderen Abgabevorrichtung kann durch wenige Versuche genau bestimmt werden und ist auch reproduzierbar.
Unter dem Begriff "eine andere zur punktförmigen Abgabe der wirkstoffenthaltenden Zusammensetzung befähigte Vorrichtung" bezeichnet eine Vorrichtung, welche ähnlich einer Pipette befähig ist, einen gleichmäßigen und kontinuierlichen Fluß an wirkstoffenthaltender Zusammensetzung zu liefern, so dass darunter auch eine Pumpe, Mikropumpe oder ein anderes Reservoir verstanden werden kann, welches diese gleichmäßige und kontinuierliche Abgabe an wirkstoffenthaltender Zusammensetzung gewährleistet.
Nach dem Befüllen einer Falte wird der Katheterballon gedreht, so dass die nächste zu beschichtende Falte nach oben und vorzugsweise horizontal liegt. Der Faltenbefüllungsvorgang wird nun wiederholt.
Je nach Konsistenz der wirkstoffenthaltenden Zusammensetzung kann es notwendig sein, die vorher befüllte Falte zu trocknen bevor der Ballon gedreht wird, um die nächste Falte zu befüllen. Die Trocknung erfolgt vorzugsweise durch Verdunstung des Lösungsmittels.
Ferner ist es bei diesem Verfahren auch möglich zwei, mehr als zwei oder alle Falten eines Katheterballons gleichzeitig zu befüllen oder zu beschichten, falls die Konsistenz der wirkstoffenthaltenden Zusammensetzung dies zulässt, d.h. die Konsistenz nicht derart dünnflüssig ist, dass die Zusammensetzung aus den nicht horizontal liegenden Falten ausläuft.
Insbesondere das Pipettierverfahren eignet sich zur gleichzeitigen Befüllung mehrerer oder aller Falten eines Katheterballons. Dabei kann der Katheterballon waagerecht oder vorzugsweise senkrecht gelagert werden und die Abgabevorrichtungen werden von oben an die Enden der Falten vorzugsweise im Winkel von 10 bis 70 Grad angesetzt, so dass die wirkstoffenthaltende Zusammensetzung in die Falten fließen kann.
Wurden alle Falten des Ballons befüllt, so erfolgt die Endtrocknung. Grundsätzlich ist es natürlich nicht erforderlich, dass alle Falten des Katheterfaltenballons befüllt werden, wobei jedoch die Befüllung aller Falten die gängige und bevorzugte Ausführungsform ist, da bei der Dilatation in möglichst kurzer Zeit eine größtmögliche Menge an Wirkstoff auf die Gefäßwand übertragen werden soll.
Bei den erfindungsgemäßen Faltenballons dauert die Dilatation vorzugsweise maximal 60 Sekunden und insbesondere bevorzugt maximal 30 Sekunden.
Nach der Befüllung der letzten Falte erfolgt die Trocknung der letzten Falten, d.h. des Inhalts der letzten Falte vorzugsweise ohne Vakuum unter Normaldruck durch Verdunstung des Lösungsmittels.
An diese Vortrocknung kann sich eine Endtrocknung anschließen, welche erfindungsgemäß bei rotierendem Katheterballon durchgeführt wird. Falls erforderlich oder gewünscht kann zudem noch Vakuum während der Rotation angelegt werden. Dieses besondere Trocknungsverfahren wird im Anschluß an die erfindungsgemäßen Beschichtungsverfahren eingehender beschrieben.
Spritzverfahren oder Spritzenverfahren: Bei diesem erfindungsgemäßen Verfahren wird eine feine Spritze oder Nadel oder Düse am proximalen oder distalen Ende einer Falte angesetzt und diese Abgabevorrichtung in Form einer Spritze, Nadel oder Düse entlang der Längsrichtung der Falte relativ zur Falte bewegt und pro zurückgelegter Teilstrecke eine bestimmte Menge einer wirkstoffenthaltenden Zusammensetzung abgegeben.
Dabei ist es unerheblich, ob der Katheterballon fixiert ist und sich die Abgabevorrichtung entlang der Falte bewegt oder die Abgabevorrichtung fixiert ist und sich relativ dazu der Katheterballon bewegt oder sich sogar Katheterballon und Abgabevorrichtung beide relativ zueinander bewegen. Sollten sich Katheterballon und Abgabevorrichtung relativ zueinander bewegen, so ist eine Bewegung auf einer Geraden in entgegengesetzter Richtung bevorzugt.
Von der Abgabevorrichtung, d.h. der Spritze, Nadel oder Düse oder ähnlichem wird vorzugsweise eine mittel- bis dickviskose wirkstoffenthaltende Zusammensetzung vorzugsweise in Form einer Paste oder eines Gels oder eines Öls in das Falteninnere abgegeben. Die Viskositäten bevorzugter Lösungen liegen zwischen 101 bis 10δ mPa-s, vorzugsweise zwischen 102 bis 105 mPa-s und insbesondere bevorzugt zwischen 103 bis 104 mPa-s.
Somit eignen sich als wirkstoffenthaltende Zusammensetzungen insbesondere solche mit den oben bezeichneten Ölen, Alkoholen (insbesondere Diolen und Polyolen), Fettsäuren, Fettsäureestern, Aminosäuren, Polyaminosäuren, membranbildenden Substanzen, liposomalen Formulierungen und/oder Salzen.
Bei dem Beschichtungsvorgang reicht die Spitzte der Spritze, Düse oder Nadel bis ca. in die Mitte des Falteninneren, also bis ca. in die Mitte der Falte. Dort wird ein kontinuierlicher Fluß der wirkstoffenthaltenden Zusammensetzung derart abgegeben, dass Abgabegeschwindigkeit und Abgabemenge in Bezug auf die relative Bewegungsgeschwindigkeit von Abgabevorrichtung und Katheterballon geeignet sind, die Falte bzw. das Falteninnere zu mindestens 50 Vol.-%, bevprzugt zu mindestens 70 Vol.-% und insbesondere bevorzugt zu mindestens 85 Vol.-% mit der wirkstoffenthaltenden Zusammensetzung zu füllen.
Die Befüllung einer Falte dauert ca. von 5 bis 80 Sekunden, vorzugsweise ca. 15 bis 60 Sekunden und insbesondere bevorzugt ca. 25 bis 45 Sekunden bei einer Faltenlänge von 10 mm.
Der Katheterballon befindet sich beim Befüllungsvorgang der Falten im komprimierten, d.h. deflatierten Zustand. Eine auch nur teilweise oder geringfügige Inflation des Katheterballons ist in der Regel nicht erforderlich um die Falten ein wenig zu öffnen. Dennoch kann die Befüllung der Falten bei einer geringfügigen Inflation des Katheterballons von maximal 10% des bei der Dilatation vorgesehenen Durchmessers erfolgen. Die Befüllung der Falten kann zudem bei .einer leichten
Aufweitung der Falten erfolgen indem 100 kPa (1 bar) Überdruck, vorzugsweise 50 kPa (0,5 bar) Überdruck angelegt werden, um die Falten leicht aufzuweiten.
Dieses Beschichtungsverfahren kann natürlich auch mit dünnflüssigen wirkstoffenthaltenden Zusammensetzungen durchgeführt werden ist aber eher für ölige Zusammensetzungen geeignet als auch für hochkonzentrierte Salzlösungen.
Ferner bietet dieses Verfahren noch den Vorteil, dass mehr als eine Falte und insbesondere alle falten gleichzeitig beschichtet oder befüllt werden können. Dabei wird eine ringförmige Anordnung von Abgabevorrichtungen entsprechend der Anzahl an Falten derart angeordnet, dass pro Falte ein Abgabevorrichtung bereitsteht. Durch eine geringfügige Drehung werden die Spitzen der Abgabevorrichtungen in die Falten eingeführt und ca. mittig im Falteninneren platziert. Durch eine relative und gleichzeitige Bewegung der Abgabevorrichtungen relativ zur Längsrichtung der Falten, können alle Falten gleichzeitig mit einem kontinuierlichen und gleichmäßigen Fluß an wirkstoffenthaltender Zusammensetzung befüllt werden.
Beim Beschichten oder Befüllen einer oder aller Falten kann sich der Katheterballon in senkrechter oder horizontaler Lage oder einer schrägen Lage befinden.
Wurden in der wirkstoffenthaltenden Zusammensetzung flüchtige Lösungsmittel verwendet, so kann eine Trocknung des Falteninhalts erforderlich sein. Bei flüchtigen Lösungsmitteln erfolgt dies bevorzugt zuerst aufgrund Verdunstung des oder der flüchtigen Lösungsmittel.
Danach kann eine Endtrocknung erfolgen, wobei der Katheterballon in Richtung der Faltenöffnungen gesehen vom Falterinnenraum gedreht wird. Auf dieses Verfahren wird weiter unter ausführlich eingegangen.
Die Drehung oder Rotation des Katheterballons in Richtung der Faltenöffnungen kann zudem auch dazu dienen, die in den Falten bzw. unter den Falten befindlichen Zusammensetzungen gleichmäßig in der jeweiligen Falte zu verteilen.
Diese Rotation des Faltenballons kann insbesondere bei der Verwendung von öligen oder pastenförmigen wirkstoffenthaltenden Zusammensetzungen vorteilhaft sein, um eine gleichmäßige Verteilung der wirkstoffenthaltenden Zusammensetzung in den Falten als auch auf der Innenoberfläche der Falten zu gewährleisten.
Wie hierin verwendet bezieht sich der Begriff "Beschichtung" daher auch vorrangig auf die Beschichtung der Falteninnenoberflächen, wobei der gesamte Falteninnenraum in der Regel nicht mit wirkstoffenthaltender Zusammensetzung bzw. nach der Trocknung mit der verbliebenen Zusammensetzung ausgefüllt ist.
Hingegen bezeichnet der Begriff "Befüllung" eher die vollständige Ausfüllung des Falteninnenraumes mit wirkstoffenthaltender Zusammensetzung.
Werden Lösungsmittel verwendet, welche durch Trocknung entfernt werden, so ist eine Befüllung in der Regel nicht zu erreichen und es wird eher von Beschichtung der inneren Oberflächen der Falten gesprochen.
Werden hingegen als Trägerstoffe oder Hilfsstoffe Substanzen mit hohen Siedepunkten wie beispielsweise Öle verwendet, so ist auch eine mehr oder weniger vollständige Befüllung der Falten möglich, sofern keine nennenswerten Mengen von flüchtigen Substanzen in der wirkstoffenthaltenden Zusammensetzung anwesend sind.
Dieses Spritzverfahren oder Spritzenverfahren eignet sich insbesondere zur Einbringung von wirkstoffenthaltenden Zusammensetzungen in die Falten von Katheterfaltenballons, welche mittels herkömmlicher Tauch- oder Sprühverfahren nicht auf einen Katheterballon aufgetragen geschweige denn in die Falten eingebracht werden können.
Im Gegensatz zu den herkömmlich verwendeten festen Beschichtungen auf Stents oder auf Katheterballons bieten die öligen und pastenförmigen Beschichtungen und Befüllungen den Vorteil, dass diese wirkstoffenthaltenden Zusammensetzungen eben nicht vollständig trocknen, sondern ihre Konsistenz weitgehend beibehalten.
Wird am Ort de stenosierten Stelle der Katheterballon inflatiert bzw. dilatiert, so wird diese ölige oder pastenförmige Zusammensetzung zumindest teilweise auf die Gefäßwand übertragen und dient als Wirkstoffreservoir für eine verzögerte Wirkstoffabgabe von mehreren Stunden bis tagen an das umliegende Gewebe und hat zudem die positive Eigenschaft Plaque aufzulösen und wird selber danach biologisch abgebaut, ohne physiologisch bedenkliche Abbauprodukte freizusetzen.
Sprühverfahren oder Faltensprühverfahren:
Bei diesem erfindungsgemäßen Verfahren wird eine Vielzahl in Reihe befindlicher Abgabeöffnungen unter die Falte des Faltenballons geschoben oder gebracht und gleichzeitig wird aus der Vielzahl von Abgabeöffnungen eine wirkstoffenthaltende Zusammensetzung in die jeweilige Falte abgegeben.
Die Abgabevorrichtung besteht vorzugsweise aus 2 bis 10 Düsen oder Abgabeöffnungen, welche in vorzugsweise gleichmäßigen Abständen entlang der Längsrichtung der Falten angeordnet sind.
Diese Abgabevorrichtung wird dann unter die Falte des Katheterballons eingeführt und die jeweilige Falte wird durch gleichzeitige Abgabe der wirkstoffenthaltenden Zusammensetzung aus den Düsen oder anderen Abgabeöffnungen befüllt oder beschichtet.
Bei dieser Beschichtungs- oder Befüllungsvariante ist es nicht erforderlich, dass die Abgabevorrichtung in der Falte des Katheterballons relativ zur Faltenlängsrichtung bewegt wird. In der Regel sind Katheterballon und Abgabevorrichtung während der Befüllung oder Beschichtung fixiert, wobei jedoch eine Bewegung entlang der Längsrichtung der Falte möglich ist. Ist eine relative Bewegung vorgesehen, so ist die Distanz für die Bewegung vorzugsweise nicht größer als der Abstand zwischen zwei Düsen oder Abgabeöffnungen der Abgabevorrichtung.
Die Abgabevorrichtung umfasst oder besteht aus mindestens 2 und maximal 10 Abgabeöffnungen oder Düsen oder ähnlichem und vorzugsweise aus 3 bis 6 und insbesondere bevorzugt aus 4 oder 5 Abgabeöffnungen oder Düsen oder ähnlichem, welche über eine Distanz von 10 mm vorzugsweise gleichmäßig verteilt sind.
Die Abgabevorrichtung weist 2 bis 10 Düsen oder ähnliche Öffnungen auf, welche befähigt sind, die wirkstoffenthaltende Zusammensetzung gleichmäßig abzugeben oder gleichmäßig in die Falte zu sprühen.
Für dieses Befüllungs- oder Beschichtungsverfahren werden vorzugsweise mittel- bis dünnviskose Zusammensetzungen oder Lösungen eines Wirkstoffs oder einer Wirkstoffkombination eingesetzt, welche insbesondere ein alkoholisches Lösungsmittel enthalten.
Bei diesem Faltensprühverfahren befindet sich der Katheterballon im komprimierten, d.h. deflatierten Zustand. Eine auch nur teilweise oder geringfügige Inflation des
Katheterballons ist in der Regel nicht erforderlich um die Falten ein wenig zu öffnen. Dennoch kann die Befüllung der Falten bei einer geringfügigen Inflation des Katheterballons von maximal 10% des bei der Dilatation vorgesehenen Durchmessers erfolgen. Die Befüllung der Falten kann zudem bei einer leichten Aufweitung der Falten erfolgen indem 100 kPa (1 bar) Überdruck, vorzugsweise 50 kPa (0,5 bar) Überdruck angelegt werden, um die Falten leicht aufzuweiten.
Nach dem Befüllen einer Falte wird der Katheterballon gedreht, so dass die nächste zu beschichtende Falte vorzugsweise nach oben und vorzugsweise horizontal liegt. Der Faltenbefüllungs- oder Faltenbeschichtungsvorgang wird nun wiederholt.
Je nach Konsistenz der wirkstoffenthaltenden Zusammensetzung kann es notwendig sein, die vorher befüllte Falte zu trocknen bevor der Ballon gedreht wird, um die nächste Falte zu befüllen. Die Trocknung erfolgt vorzugsweise durch Verdunstung des Lösungsmittels.
Femer ist es bei diesem Verfahren auch möglich zwei, mehr als zwei oder alle Falten eines Katheterballons gleichzeitig zu befüllen oder zu beschichten, falls die Konsistenz der wirkstoffenthaltenden Zusammensetzung dies zulässt, d.h. die Konsistenz nicht derart dünnflüssig ist, dass die Zusammensetzung aus den nicht horizontal liegenden Falten ausläuft. Zur Befüllung oder Beschichtung mehrerer oder aller Falten wird eine entsprechende kreisförmige Anordnung von Abgabevorrichtungen entsprechende der Anzahl an falten bereitgestellt, um den vorzugsweise senkrecht angeordneten Katheterballon platziert und durch Drehung werden die Abgabeöffnungen unter die Falten geführt, wo dann gleichzeitige die Abgabe der wirkstoffenthaltenden Zusammensetzung stattfindet.
Wurden alle Falten des Ballons befüllt, so erfolgt die Endtrocknung. Grundsätzlich ist es natürlich nicht erforderlich, dass alle Falten des Katheterfaltenballons befüllt werden, wobei jedoch die Befüllung aller Falten die gängige und bevorzugte Ausführungsform ist, da bei der Dilatation in möglichst kurzer Zeit eine größtmögliche Menge an Wirkstoff auf die Gefäßwand übertragen werden soll.
Nach der Befüllung der letzten Falte erfolgt die Trocknung der letzten Falten, d.h. des Inhalts der letzten Falte vorzugsweise ohne Vakuum unter Normaldruck durch Verdunstung des Lösungsmittels.
An diese Vortrocknung kann sich eine Endtrocknung anschließen, welche erfindungsgemäß bei rotierendem Katheterballon durchgeführt wird. Falls
erforderlich oder gewünscht kann zudem noch Vakuum während der Rotation angelegt werden. Dieses besondere Trocknungsverfahren wird im Anschluß an die erfindungsgemäßen Beschichtungsverfahren eingehender beschrieben.
Rotationstrocknung:
Wie oben erwähnt können die beschichteten oder befüllten Katheterballons nach dem Befüllen oder Beschichten jeder Falte oder nach der Beschichtung oder Befüllung aller Falten oder der zu beschichtenden bzw. zu befüllenden Falten, falls nicht alle Falten beschichtet oder befüllt werden sollen, im rotierenden Zustand getrocknet werden.
Diese Rotationstrocknung hat mehrere Vorteile. Zum einen wird dadurch die wirkstoffenthaltende Zusammensetzung getrocknet und zudem gleichmäßig in den Falten als auch auf der Oberfläche innerhalb der Falten verteilt.
Die Rotationstrocknung ist insbesondere bei öligen oder zähflüssigen wirkstoffenthaltenden Zusammensetzung geeignet, eine gleichmäßige Verteilung der Zusammensetzung in der jeweiligen Falte zu erreichen.
Zudem kann bei der Rotation des Katheterballons Vakuum angelegt werden, um eine intensive Trocknung der wirkstoffenthaltenden Zusammensetzung zu erreichen.
Bei der Trocknung im Vakuum treten gerade bei zähflüssigen, hochviskosen oder in den festen Zustand übergehenden Lösungen Siedeverzüge auf, d.h. in dem Öl oder
Feststoff eingeschlossene Lösungsmittelreste werden spontan freigesetzt und zerreißen oder sprengen die Beschichtung oder Befüllung. Durch eine Trocknung im Vakuum bei gleichzeitiger Rotation wird werden diese Siedeverzüge vermieden und es wird eine getrocknete gleichmäßige Beschichtung der inneren Oberfläche der Falten erfalten.
Zudem ist die Drehrichtung der Rotation entscheidend. Die Drehrichtung erfolgt in Richtung der Faltenöffnungen, wenn man dies aus dem Inneren der Falte betrachtet. In Figur 2 ist die Drehrichtung angezeigt und der Katheterballon wird so wie ein Schaufelrad einer Schaufelradbaggers gedreht, damit die wirkstoffenthaltende Zusammensetzung aufgrund der Rotationskraft in das Falteninnere gedrückt wird.
Vorzugsweise wird der Faltenballon mit einer Rotationsgeschwindigkeit von 50 bis 500, vorzugsweise 150 bis 300 Umdrehungen pro Minute gedreht.
Je nach in die Falten einzubringendem Wirkstoff oder je nach Konsistenz der wirkstoffenthaltenden Zusammensetzung, welche unter die Falten eines Katheterfaltenballons eingebracht werden soll, kann das geeignete erfindungsgemäße Beschichtungsverfahren ausgewählt werden.
Das Faltensprühverfahren eignet sich bevorzugt für dünnviskose bis mittelviskose wirkstoffenthaltende Zusammensetzungen, während das Pipettierverfahren sich bevorzugt für leichtviskose, mittelviskose bis leicht zähviskose Zusammensetzungen eignet und das Spritzverfahren besonders gut für mittelviskose, viskose bis hochviskose Zusammensetzungen einsetzbar ist.
Der Begriff Viskosizität bezieht sich auf die dynamische Viskosität [η]:
[η] = — -≥- = Pa • s = — L 'J m - s m2
Das Spritzverfahren kann vorzugsweise bei dickviskosen Zusammensetzungen eingesetzt werden. Bevorzugt sind Viskositäten bei Raumtemperatur im Bereich von Ölen (Olivenöl: 102 mPa s), Honig (103 mPa s), Glycerin (1480 mPa s) oder Sirup (105 mPa s). Selbstverständlich funktioniert dieses Verfahren auch mit dünnviskosen Lösungen mit η < 102 mPa s.
Das Pipettierverfahren kann vorzugsweise bei mittelviskosen Zusammensetzungen eingesetzt werden. Bevorzugt sind Viskositäten bei Raumtemperatur im Bereich von vorzugsweise 0,5 mPa s bis 5000 mPa s, weiter bevorzugt im Bereicht von 0,7 mPa s bis 1000 mPa s, noch weiter bevorzugt im Bereicht von 0,9 mPa s bis 200 mPa s und insbesondere bevorzugt im Bereicht von 1 ,0 mPa s bis 100 mPa s. In diesem Viskositätsbereich liegen Zusammensetzungen aus Ölen, Kontrastmitteln und/oder Salzen, welche mit üblichen Lösungsmitteln insbesondere Alkoholen verdünnt sind. Das Pipettierverfahren kann über einen sehr breiten Viskositätsbereich angewendet werden.
Das Faltensprühverfahren kann vorzugsweise bei dünnviskosen Zusammensetzungen eingesetzt werden. Bevorzugt sind Viskositäten bei Raumtemperatur im Bereich von vorzugsweise 0,1 mPa s bis 400 mPa s, weiter bevorzugt im Bereicht von 0,2 mPa s bis 100 mPa s und insbesondere bevorzugt im Bereicht von 0,3 mPa s bis 50 mPa s (Wasser: 1 ,0 mPa s; Petrolium: 0,65 mPa s; Pentan: 0,22 mPa s; Hexan: 0,32 mPa s; Heptan: 0,41 mPa s; Oktan: 0,54 mPa s; Nonan: 0,71 mPa s; Chloroform: 0,56 mPa s; Ethanol 1 ,2 mPa s; Propanol 2,3 mPa s; Isopropanol: 2,43 mPa s; Isobutanol: 3,95 mPa s; Isotridecanol: 42 mPa s).
Überraschenderweise wurde ferner gefunden, dass eine Zusammensetzung umfassend mindestens ein Kontrastmittel und mindestens einen antiproliferativen, antiinflammatorischen, antiphlogistischen, zytostatischen, zytotoxischen, antiangiogenen, anti-restenotischen oder antithrombotischen Wirkstoff und mindestens einen Alkohol als Lösungsmittel sich für die Beschichtung bzw. Befüllung der Falten von Katheterfaltenballons besonders gut eignet.
Es wurde bewußt kein Polymer als Wirkstoffträger eingesetzt, welches durch das erfindungsgemäße Beschichtungsverfahren nur schwer in die Falten des Katheterballons einzubringen war, die Falten teilweise verklebte, so dass bei der Dilatation des Katheterfaltenballons eine ungleichmäßige Öffnung der Falten und eine nicht einheitliche Wirkstoffabgabe eintrat.
Beim Spritzenverfahren wird zur Befüllung der Falten eines Faltenballons vorzugsweise eine feine Düse oder Kanüle unter die Falte geschoben und die einzubringende Mischung wird in die Falte gespritzt, wobei vorzugsweise die Düse oder Kanüle entlang der Falte bewegt wird oder bei ortfester Düse oder Kanüle der Faltenballon in Längsrichtung der Falte bewegt wird. Dieses Verfahren ermöglicht eine sehr präzise und genaue Beschichtung einer jeden einzelnen Falte bzw. des gesamten Faltenballons. Ein eventuell verwendetes Lösungsmittel verdunstet oder wird im Vakuum entfernt.
Hat die einzubringende Mischung oder Lösung eine Konsistenz, so dass sie in die Falten hineinfließen kann, dann wird der Faltenballon mit einer Falte noch oben horizontal gelagert oder vorzugsweise um 5 bis 25 Grad geneigt, so dass die Spritze oder Düse am unteren Ende des Faltenballons an der Faltenöffnung angesetzt werden kann und die Mischung eigenständig in die Falte hineinfließt und diese voll ausfüllt.
Bei diesen Salzlösungen mit hohem Salzgehalt wird vorzugsweise Wasser als Lösungsmittel eingesetzt, weil Wasser das Ballonmaterial nicht angreift und beschädigt. Sobald die Mischung eine Konsistenz hat, dass sie nicht mehr aus der Falte herausfließen kann, wird der Faltenballon gedreht und die nächste Falte wird befüllt bis in der Regel alle 4 bis 6 Falten des Ballons befüllt sind. Faltenballons werden bevorzugt im komprimierten Zustand beschichtet, wobei einige spezielle Ausführungsformen von Faltenballons auch im expandierten Zustand beschichtet werden können.
Ein solches Beschichtungsverfahren umfasst die Schritte a) Bereitstellen eines Faltenballons b) Platzierung einer Falte des Ballons in einer horizontalen oder bis zu 25 Grad geneigten Position, c) Ansetzen der Spritzenöffnung an die dem Kopfende des Ballons zugewandten Faltenöffnung, d) Ausführung einer Relativbewegung von Spritzenöffnung und Faltenballon in Längsrichtung der Falte, e) Befüllung der Falte während des Bewegungsvorgangs mit einer Mischung aus einem Wirkstoff und einem Salz und/oder einem ionischen Kontrastmittel in einem geeigneten Lösungsmittel, f) sofern erforderlich Trocknung der in der Falte befindlichen Mischung bis zu einem Grad, der ein Auslaufen der Mischung aus der Falte verhindert, g) Drehung des Ballons um 360° dividiert durch die Anzahl der Falten, h) Wiederholung der Schritte b) bis g) bis alle Falten befüllt sind und i) Trocknung der Mischungen in des Falten bis sich die Mischung verfestigt.
Werden dünnflüssigere Mischungen eingesetzt, so wird bei Schritt c) die Spritzenöffnung an das Fußende angesetzt und ohne Relativbewegung gemäß Schritt d) die Falte vorwiegend aufgrund von Kapillarkräften befüllt.
Die vorliegende Erfindung betrifft ferner ein Verfahren zur Offenhaltung von verengten Gefäßdurchgängen insbesondere von kardiovaskulären Gefäßen mittels
Kurzzeitdilatation. Bei diesem Verfahren wird innerhalb von maximal 50 Sekunden, bevorzugt maximal 40 Sekunden, weiter bevorzugt maximal 30 Sekunden und insbesondere bevorzugt maximal 20 Sekunden ein Katheterballon ohne Stent expandiert und wieder auf einen Durchmesser kleiner als der 1 ,5-fache Ausgangsdurchmesser im komprimierten Zustand komprimiert, wobei während dieses Vorgangs das Gefäß nur bis maximal 10% seines Durchmessers im unverengten Zustand überdehnt wird und pro mm2 Ballonoberfläche mindestens 20% des enthaltenen Wirkstoffs abgegeben und größtenteils auf die Gefäßwand übertragen werden.
Dabei findet die Übertragung des Wirkstoffs vorzugsweise nicht in reiner Form statt sondern in einer Matrix, welche zumindest innerhalb einer Stunde nach erfolgter Dilatation noch als Wirkstoffreservoir wirkt und weiteren Wirkstoff an die Gefäßwand abgibt, bevor sie ausgelöst oder abgebaut worden ist.
Dieses Verfahren zeichnet sich also dadurch aus, in möglichst kurzer Zeit eine möglichst große Wirkstoffmenge lokal und gezielt auf die Gefäßwand einer verengten Gefäßstelle zu übertragen und noch innerhalb der nachfolgenden 30 bis 60 Minuten für ein lokales Wirkstoffreservoir zu sorgen, welches danach aufgelöst oder abgebaut ist.
Für dieses Verfahren haben sich insbesondere Paclitaxel und Paclitaxel-Derivate sowie Rapamycin als geeignet erwiesen.
Ein weiteres erfindungsgemäßes Verfahren betrifft die Beschichtung von Katheterballons mit öligen polymerisierbaren Substanzen. Dieses Verfahren umfasst die Schritte: a) Bereitstellen eines Katheterballons (nicht Faltenballon), b) Bereitstellen eines Gemisches, welches zu mindestens 50 Gew.-% aus öligen Substanzen mit mindestens einer Mehrfachbindung bestehen und mindestens einen Wirkstoff enthalten, c) Auftragen eines Gleitmittels auf die Oberfläche des Katheterballons, welches weitgehend das Anhaften der öligen Substanzen auf der Oberfläche des Katheterballons verhindert, d) Auftragen der öligen Mischung auf das Gleitmittel bzw. die Gleitmittelschicht auf dem Katheterballon, e) Rotation des Katheterballons während des Beschichtungsschritts d), f) Initiierung der Polymerisation mittels Licht, Sauerstoff oder Radikalstartern bis hin zu einer nicht harten aber elastischen Polymerschicht, g) eventuell Wiederholung der Beschichtungsschritte d) bis f).
Gemäß den hierin offenbarten Verfahren lassen sich Katheterballons gezielt in den Falten beschichten oder befüllen, so dass die vorliegende Erfindung in den Falten beschichtete oder befüllte Katheterballons betrifft, welche gemäß den hierin beschriebenen Verfahren erhalten werden können.
Die verwendeten Katheterballons liegen im nicht dilatierten Zustand in Falten, welche einen zugänglichen Innenraum bilden, der die darin enthaltenen Substanzen schützt. Mögliche Formen von Faltenballons sind beispielsweise in WO 03/059430 A, WO 94/23787 A oder EP 0 519 063 B1 beschrieben.
Es ist Stand der Technik, einen Faltenballon zu verwenden und auch in die Falten eines solchen Ballons einen pharmakologischen Wirkstoff einzubringen. Ein Verfahren für eine gezielte und ausschließliche und auch vollständige Befüllung der Falten ist jedoch nicht bekannt. Die in den zitierten Dokumenten beschriebenen Verfahren beschichten den Ballon im expandierten Zustand und schließen eine gewissen Menge des Wirkstoffs bei Deflation in den Falten ein, wobei die restliche nicht in den Falten liegende Oberfläche des Katheterballons auch weiterhin beschichtet ist.
Die erfindungsgemäßen Verfahren beschichten bzw. befüllen gezielt die Falten des Katheterballons im nicht expandierten, d.h. zusammengefalteten Zustand. Die erfindungsgemäß beschichteten oder befüllten Katheterballons sind zwar vorzugsweise für den kardiovaskulären Bereich vorgesehen, können aber auch zur Offenhaltung aller gangartigen Strukturen eingesetzt werden wie beispielsweise von Harnwegen, Speiseröhren, Luftröhren, Gallenwegen, Nierenwegen, Dünn- und Dickdarm und insbesondere von Blutgefäßen im gesamten Körper einschließlich Gehirn, Duodenum, Pilorus.
Somit sind die beschichteten oder befüllten Katheterballons insbesondere zur Verhinderung, Verminderung oder Behandlung von Stenosen, Restenosen, Arteriosklerose, Atherosklerose und allen anderen Formen eines Gefäßverschlusses oder einer Gefäßverengungen von Durchgängen oder Ausgängen geeignet.
Die erfindungsgemäß beschichteten Katheterballons eignen sich zudem insbesondere zur Behandlung von In-Stent-Restenose, d.h. zur Behandlung einer erneuten Gefäßverengung innerhalb eines bereits implantierten Stent, der vorzugsweise nicht bioresorbierbar ist. Bei derartigen In-Stent-Restenosen ist das Setzen eines weiteren Stent innerhalb eines bereits liegenden Stent besonders problematisch, da das Gefäß in der Regel durch den zweiten Stent nur unzureichend aufgeweitet werden kann. Hier bietet die Wirkstoffapplikation mittels Ballondilatation eine ideale Behandlungsmöglichkeit, da diese Behandlung mehrmals wiederholt werden kann, falls erforderlich und therapeutisch gesehen dieselben oder deutlich bessere Erfolge erzielen kann als die erneute Stentimplantation.
Ferner sind die erfindungsgemäß beschichteten bzw. befüllten Katheterballons insbesondere zur Behandlung kleiner Gefäße, vorzugsweise kleiner Blutgefäße geeignet. Als kleine Gefäße werden solche mit einem Gefäßdurchmesser kleiner als 2,5 mm, vorzugsweise kleiner als 2,2 mm bezeichnet.
Figurenbeschreibung
Fig. 1 zeigt einen Katheterfaltenballon mit vier Falten im nicht dilatierten Zustand, wobei eine Falte gerade mittels einer Spritzdüse mit einer
Zusammensetzung aus Kontrastmittel, Wirkstoff und Lösungsmittel befüllt wird.
Fig. 2 zeigt einen vollständig in allen vier Falten befüllten Katheterfaltenballon im nicht expandierten Zustand, wobei die in den Falten befindliche Zusammensetzung während der Rotation des Faltenballons getrocknet bzw. das Lösungsmittel entfernt wird.
Beispiele
Beispiel 1 :
Ein üblicher Katheterfaltenballon mit vier Falten wird im zusammengefalteten Zustand mit einer Zusammensetzung aus lopromid, welches als Lösung unter der Marke Ultravist® kommerziell erhältlich ist, Paclitaxel, Glycerin und Ethanol mittels einer Spritzdüse befüllt.
Die Zusammensetzung enthält 0,150 g lopromid, 0,300 g Paclitaxel, 0,220 g Glycerin und 1 ,130 g Ethanol.
In jede Falte wird ca. 174 μg - 621 μg der Zusammensetzung eingebracht.
Nach Befüllung aller Falten wird der Faltenballon für 1 Minuten in Richtung der Faltenöffnungen rotiert und über Nacht getrocknet.
Insgesamt wurden 696 μg - 2484 μg der getrockneten Zusammensetzung verteilt in vier Falten eingebracht.
Beispiel 2:
Ca. 10mg KMnO4 werden in 500μl Wasser gelöst und soviel PVP wie möglich zugegeben. Die Masse wird flächig auf einer Polypropylenunterlage ausgebreitet und bei Raumtemperatur über Nacht trocknen gelassen.
Von dieser spröden Masse werden 4,5 mg in 0,5 ml Chloroform oder 0,6 ml Methanol oder 0,8 ml DMSO gelöst. Ungelöste Partikel können abfiltriert werden. Zu dieser Lösung werden 100 μg Paclitaxel gegeben und nach Zugabe von 12,0 μl Leinöl wird die resultierende Lösung mittels des oben beschriebenen Faltensprühverfahrens über 4 in Reihe befindliche Düsen mit einem Abstand von 2 mm zueinander gleichmäßig in eine Falte gesprüht.
Nach der Beschichtung der ersten Falte im waagerechten Zustand wird die Beschichtung ohne Vakuum getrocknet und der vier Falten umfassende Ballon wird um 90 Grad gedreht, um die nächste oben liegende Falte zu beschichten.
Nach erfolgter Beschichtung aller Falten erfolgt eine Trocknung im Vakuum unter Rotation des Katheterballons gemäß dem oben beschriebenen Rotationstrocknungsverfahren.
Beispiel 3:
Paclitaxel (250 mg) oder Rapamycin (250 mg) oder eine Kombination aus Paclitaxel (150 mg) und Rapamycin (150 mg) werden in einem wässrigen Medium mit einem Ethanolanteil von ca. 5 Vol.-% und bei einem pH-Wert von 4 bis 5 gelöst oder suspendiert und anschließend mit einer Lösung aus Phosphatidylserin und Phosphatidylcholin im Gewichtsverhältnis 50 : 50 versetzt.
Es bildet sich eine liposomale Formulierung bei der der Wirkstoff oder die Wirkstoffkombination in den Vesikeln eingeschlossen ist.
Die Gewinnung der Liposomen aus der wässrigen Lösung erfolgt mittels Ultrafiltration, wobei eine Gewinnung der Liposomen nicht unbedingt zwingend ist.
Die gewonnenen Liposome oder die liposomale wässrige Formulierung wird in eine Kavität gefüllt und mittels des oben beschriebenen Pipettierverfahrens in eine Falte gefüllt, wobei eine Kapillare im Winkel von ca. 40 Grad an das distale Ende der Falte angesetzt. Der Katheterballon liegt dabei horizontal und die zu beschichtende FaIt liegt oben. Aufgrund von Kapillarkräften zieht sich die Zusammensetzung innerhalb von ca. 48 Sekunden in die Falte. Bevor die Zusammensetzung das proximale Ende der Falte erreicht hat, wird die Kapillare entfernt, so dass auch noch die am Ansatzpunkt der Kapillare vorhandene Zusammensetzung in die Falte gezogen wird.
Der beschichtete Katheterballon wird danach an der Luft getrocknet und anschließend mittels des oben beschriebenen Rotationstrocknungsverfahren abschließend getrocknet.
Beispiel 4:
400 mg Trapidil werden mit 1 ml Safloröl vermischt und mittels des oben beschriebenen Spritzenverfahrens gleichzeitig in die vier Falten eines Faltenballons eingebracht.
Die Abgabeöffnungen der Abgabevorrichtung werden am distalen Ende der jeweiligen Falte angesetzt und mit einer Geschwindigkeit von 1 cm pro Minute in Richtung des proximalen Endes in der Falte bewegt während ein kontinuierlicher Fluß an öliger Trapidillösung in die Falte abgegeben wird.
Eine Trocknung der beschichteten oder besser gesagt befüllt Falten ist nicht erforderlich. Jede Falte wurde mit ca. 1 ,5 mg öliger Tripidil-Zusammensetzung befüllt.
Beispiel 5:
300 mg Rapamycin werden in 1 ml Essigsäureethylester gelöst und mit 200 mg EPA (5,8,11 ,14,17-Eicosapentaensäure) versetzt. Durch Zugabe von Ethanol kann die Viskosität so eingestellt werden, dass sich eine sprühbare Mischung ergibt.
Mittels des oben beschriebenen Faltensprühverfahren werden alle 6 Falten eines Faltenballons gleichzeitig beschichtet.
Die Sprühvorrichtung besteht aus einer Anordnung von insgesamt 6 Reihen aus jeweils drei Sprühdüsen. Die Reihen von jeweils drei Sprühdüsen sind auf einem Drehgestellt gelagert und können einzeln in die jeweilige Falte des Faltenballons eingeführt werden.
Sind die Reihen an Sprühdüsen richtig platziert wird aus jeder Düse die wirkstoffenthaltenden Zusammensetzung unter die jeweilige Falte abgegeben.
Der Katheterballon befindet sich in einer vorzugsweise senkrechten Position und die drei Düsen einer Sprühreihe haben einen Abstand von 3 mm zueinander.
Nach erfolgter Beschichtung der Falten, welche auch intervallmäßig durchgeführt werden kann, werden die beschichteten Falten an der Luft bei Normaldruck und bei Raumtemperatur getrocknet und können anschließend bei einer Temperatur von 500C bis 7O0C bei Normaldruck weiter getrocknet werden falls nötig.
Der Faltenballon wurde in den Falten mit insgesamt 76 mg festen Substanzen beschichtet.
Beispiel e:
Eine Lösung aus 250 μg Paclitaxel in einem Gemisch aus Ethanol, n-Butanol und Ethylenglykol im Volumenverhältnis 50 : 25 : 25 wird angesetzt und zu dieser Lösung werden 200 μg Vitamin A gegeben.
Diese Zusammensetzung wird dann in eine Abgabevorrichtung mit insgesamt 4 Kanülen gefüllt. Jede dieser vier Kanülen wird im spitzen Winkel von ca. 30 Grad an eine der vier Falten eines Katheterfaltenballons angesetzt und die vier Falten werden gleichzeitig mittels des oben beschriebenen Pipettierverfahrens befüllt.
Nach der Befüllung wird der Katheterballon langsam in Rotation versetzt und zeitgleich wird Vakuum angelegt und die Rotationsgeschwindigkeit mit steigendem Vakuum kurzzeitig bis auf 1.200 Umdrehungen gesteigert und der Falteninhalt wird gemäß dem oben beschriebenen Rotationstrocknungsverfahren getrocknet.
Beispiel 7:
Borretschöl oder Leinöl und Paclitaxel im Gewichtsverhältnis 80 zu 20 werden miteinander vermischt und im Mischungsverhältnis 1 :1 in Chloroform oder DMSO gelöst, so dass eine viskose Zusammensetzung entsteht.
Diese Zusammensetzung wird mittels des oben beschriebenen Spritzenverfahrens in eine Falte eines Faltenballons mit insgesamt 5 Falten gefüllt. Dazu wird der Katheterballon fixiert und so gedreht, dass in die zu befüllende Falte die Nadel der Abgabevorrichtung eingeführt werden kann. Die Nadel wird am proximalen Ende des Katheterballon in die Falte bis ca. zur Mitte eingeführt und während einer Zeit von ca. 50 Sekunden wird die Nadel gleichmäßig in Längsrichtung der Falte bewegt während ein kontinuierlicher Fluß an viskoser wirkstoffenthaltender Zusammensetzung in die Falte abgegeben wird.
Die durchschnittliche Beschichtungsmasse an Zusammensetzung pro Falte kann zwischen 0,4 und 2,8 mg je nach Ausgestaltung der Falte betragen. Im vorliegenden fall beträgt die durchschnittliche Beschichtungsmasse an Zusammensetzung pro Falte ca. 0,8 mg im getrockneten Zustand.
Nach der Befüllung aller 5 Falten wird der Katheterballon unter Verwendung des oben beschriebenen Rotationstrocknungsverfahren getrocknet.
Der Faltenballon ist mit insgesamt ca. 4,0 mg getrockneter Zusammensetzung befüllt bzw. beschichtet worden.
Beispiel 8:
500μg Paclitaxel wird in 1 ml wasserfreiem Ethanol und 0,4 ml Essigsäure gelöst und mittels des oben beschriebenen Pipettierverfahrens in die Falten eines Katheterballon gefüllt.
Die anschließende Trocknung erfolgt nach Verdunstung des Lösungsmittels gemäß dem oben beschriebenen Rotationstrocknungsverfahren.
Nach der Beschichtung und Trocknung befinden sich in jeder Falte ca. 10 μg Paclitaxel.
Beispiel 9:
200 μg Paclitaxel werden in 0,5 ml Ethanol und 0,5 ml DMSO und 0,1 ml Essigsäure gelöst. Ferner wird eine Lösung von 350 μg Kaliumacetal in Ethanol - Wasser im Volumenverhältnis 90 : 10 bereitgestellt. Die Kaliumacetatlösung wird nun zur Paclitaxellösung gegeben und die Lösungsmittel können verdunsten, bis die ersten Bestandteile beginnen auszufallen oder die Zusammensetzung beginnt sich zu trüben oder eine mittelviskose Zusammensetzung entsteht.
Diese Zusammensetzung wird mittels dem oben beschriebenen Spritzenverfahren oder dem Pipettierverfahren in die Falten des Katheterballons gegeben. Erfindungsgemäß können die Falten einzeln und nacheinander befüllt oder auch gleichzeitig zusammen befüllt werden. Nach Verdunstung des Lösungsmittels erfolgt die finale Trocknung gemäß dem Rotationstrocknungsverfahren wie eingangs beschrieben.
Beispiel 10a:
500 μg Rapamycin und 25 mg lopamidol werden in 1 ml Ethanol gelöst.
Diese Lösung kann in der vorliegenden Form in die Falten des Katheterballons mittels des oben beschriebenen Faltensprühverfahren eingebracht werden, wobei die Falten wie oben beschrieben einzeln oder gleichzeitig beschichtet werden können.
Trocknung erfolgt vorzugsweise mittels des oben beschriebenen Rotationstrocknungsverfahrens.
Beispiel 10b:
Die Lösung aus Beispiel 10a wird durch Zugabe von Propylenglykol und/oder Glycerin auf eine Viskosität von 103 bis 104 mPa-s eingestellt.
Die so erhaltene Zusammensetzung wird gemäß dem oben beschriebenen Pipettierverfahren in die Falten eingebracht werden, wobei die Falten einzeln nacheinander oder gleichzeitig zusammen befüllt werden können.
Die abschließende Trocknung erfolgt vorzugsweise mittels des oben beschriebenen Rotationstrocknungsverfahrens.
Beispiel 10c:
Die Lösung aus Beispiel 10a oder aus Beispiel 10b wird durch Zugabe eines Öles ausgewählt aus der Gruppe bestehend aus Leinöl, Flachsöl, Hanföl, Maiskeimöl, Walnussöl, Rapsöl, Sojaöl, Sonnenblumenöl, Mohnöl, Safloröl (Färberdistelöl), Weizenkeimöl, Distelöl, Traubenkernöl, Nachtkerzenöl, Borretschöl, Schwarzkümmelöl auf eine Viskosität größer als 104 mPa-s eingestellt.
Die so erhaltene Zusammensetzung wird mittels Spritzverfahren wie oben beschrieben in die Falten des Katheterballons eingebracht, wobei die Falten einzeln nacheinander oder gleichzeitig zusammen befüllt werden können.
Die abschließende Trocknung sofern überhaupt notwendig erfolgt vorzugsweise mittels des oben beschriebenen Rotationstrocknungsverfahrens.