WO2007089824A1 - Compositions and methods for cmp of phase change alloys - Google Patents
Compositions and methods for cmp of phase change alloys Download PDFInfo
- Publication number
- WO2007089824A1 WO2007089824A1 PCT/US2007/002611 US2007002611W WO2007089824A1 WO 2007089824 A1 WO2007089824 A1 WO 2007089824A1 US 2007002611 W US2007002611 W US 2007002611W WO 2007089824 A1 WO2007089824 A1 WO 2007089824A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cmp
- composition
- substrate
- polishing
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F3/00—Brightening metals by chemical means
- C23F3/04—Heavy metals
- C23F3/06—Heavy metals with acidic solutions
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09G—POLISHING COMPOSITIONS; SKI WAXES
- C09G1/00—Polishing compositions
- C09G1/02—Polishing compositions containing abrasives or grinding agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1409—Abrasive particles per se
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1454—Abrasive powders, suspensions and pastes for polishing
- C09K3/1463—Aqueous liquid suspensions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/061—Shaping switching materials
- H10N70/066—Shaping switching materials by filling of openings, e.g. damascene method
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/231—Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/882—Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
- H10N70/8828—Tellurides, e.g. GeSbTe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/884—Switching materials based on at least one element of group IIIA, IVA or VA, e.g. elemental or compound semiconductors
Definitions
- This invention relates to polishing compositions and methods for polishing a substrate using the same. More particularly, this invention relates to chemical-mechanical polishing compositions suitable for polishing substrates comprising a phase change alloy, such as a germanium-antimony-tellurium alloy.-
- Typical solid state memory devices dynamic random access memory (DRAM), static random access memory (SRAM), erasable programmable read only memory (EPROM);, and electrically erasable programmable read only memory (EEPROM)
- DRAM dynamic random access memory
- SRAM static random access memory
- EPROM erasable programmable read only memory
- EEPROM electrically erasable programmable read only memory
- DRAM dynamic random access memory
- SRAM static random access memory
- EPROM erasable programmable read only memory
- EEPROM electrically erasable programmable read only memory
- EEPROM electrically erasable programmable read only memory
- PRAM Phase Change Access Memory
- PCMs Phase Change Access Memory
- Typical materials suited for these applications utilize various chalcogenide (Group VIB) and Group VB elements of the periodic table (e.g., Te, Po, and Sb) in combination with one or more of In, Ge, Ga, Sn, or Ag (sometimes referred to herein as a "phase change alloy").
- Particularly useful phase change alloys are germanium (Ge)-antimony (Sb)-tellurium (Te) alloys (GST alloys), such as an alloy having the formula Ge 2 Sb 2 Tes. These materials can reversibly change physical states depending on heating/cooling rates, temperatures, and times.
- Other useful alloys include indium antimonite (InSb).
- InSb indium antimonite
- polishing compositions also known as polishing slurries, CMP slurries, and CMP compositions
- CMP chemical-mechanical polishing
- metal-containing surfaces of semiconductor substrates typically contain an oxidizing agent, various additive compounds, abrasives, and the like.
- a substrate carrier or polishing head is mounted on a carrier assembly and positioned in contact with a polishing pad in a CMP apparatus.
- the carrier assembly provides a controllable pressure to the substrate, urging the substrate against the polishing pad.
- the pad and carrier, with its attached substrate are moved relative to one another.
- the relative movement of the pad and substrate serves to abrade the surface of the substrate to remove a portion of the material from the substrate surface, thereby polishing the substrate.
- the polishing of the substrate surface typically is further aided by the chemical activity of the polishing composition (e.g., by oxidizing agents present in the CMP composition) and/or the mechanical activity of an abrasive suspended in the polishing composition.
- Typical abrasive materials include silicon dioxide, cerium oxide, aluminum oxide, zirconium oxide, and tin oxide.
- U.S. Pat. No. 5,527,423 to Neville, et al describes a method for chemically-mechanically polishing a metal layer by contacting the surface of the metal layer with a polishing slurry comprising high purity fine metal oxide particles suspended in an aqueous medium.
- the abrasive material may be incorporated into the polishing pad.
- U.S. Pat. No. 5,489,233 to Cook et al. discloses the use of polishing pads having a surface texture or pattern
- U.S. Pat. No. 5,958,794 to Bruxvoort et al. discloses a fixed abrasive polishing pad.
- CMP techniques can be utilized to manufacture memory devices employing phase change materials; however, current CMP compositions do not provide sufficient for planarity when utilized for polishing substrates including relatively soft phase change alloys, such as a GST or InSb alloy.
- phase change alloys e.g., GST or InSb
- the physical properties of many phase change alloys make them "soft" relative to other materials utilized in PCM chips.
- typical CMP polishing slurries containing relatively high solid concentrations (> 3%) remove a phase change alloy (e.g., a GST alloy) through the mechanical action of the abrasive particles resulting in heavy scratching on the surface of the phase change alloy.
- phase change alloy residues often remain on the underlying dielectric film after polishing, since the CMP slurry is not able to remove all of the phase change alloy material.
- the phase change alloy residues cause further integration issues in subsequent steps of device manufacturing.
- the present invention provides a chemical-mechanical polishing (CMP) composition suitable for polishing phase change alloy (PCA)-containing materials.
- CMP composition comprises a particulate abrasive material in combination with at least one chelating agent, an optional oxidizing agent, and an aqueous carrier therefor.
- the abrasive material is present in an amount of not more than 6% by weight.
- the chelating agent comprises a compound or combination of compounds capable of chelating a PCA material or component thereof (e.g., germanium, indium, antimony and/or tellurium species) that is present in a substrate being polished, or chelating a substance (e.g., an oxidation product) that is formed from the PCA material during polishing of the substrate with the CMP composition.
- a PCA material or component thereof e.g., germanium, indium, antimony and/or tellurium species
- a substance e.g., an oxidation product
- the present invention also provides a method of polishing a surface of a substrate comprising a PCA with a CMP composition of the invention.
- the method comprises the steps of contacting a surface of a PCA-containing substrate with a polishing pad and an aqueous CMP composition, and causing relative motion between the polishing pad and the substrate, while maintaining a portion of the CMP composition in contact with the surface between the pad and the substrate.
- the relative motion is maintained for a period of time sufficient to abrade at least a portion of the PCA from the substrate.
- the CMP composition comprises not more than 6% by weight of a particulate abrasive material in combination with at least one chelating agent, an optional oxidizing agent, and an aqueous carrier therefor.
- the chelating agent comprises a compound or combination of compounds capable of chelating a phase change alloy or component thereof (e.g., germanium, indium, antimony and/or tellurium species) that is present in a substrate, or chelating a substance that is formed from the PCA material during polishing of the substrate with the CMP composition.
- a phase change alloy or component thereof e.g., germanium, indium, antimony and/or tellurium species
- Figure 1 shows a plot of GST removal rate versus polishing duration for a CMP composition of the invention compared to a conventional CMP composition.
- the present invention provides a CMP composition useful for polishing a substrate containing a phase change alloy (PCA).
- the CMP compositions of the invention provide for even removal of a PCA with reduced defectivity relative to conventional CMP compositions.
- the CMP compositions contain a particulate abrasive material and a chelating agent that is capable of chelating a PCA material or component thereof (e.g., germanium, indium, antimony and/or tellurium species) present in the substrate being polished or a substance formed from the PCA material during the polishing process (e.g., an oxidation product formed from the PCA material).
- the composition also comprises an oxidizing agent.
- the particulate abrasive materials useful in the CMP compositions of the invention include any abrasive material suitable for use in CMP of semiconductor materials.
- suitable abrasive materials include, without limitation silica, alumina, titania, ceria, zirconia, or a combination of two or more of the foregoing abrasives, which are well known in the CMP art.
- Preferred metal oxide abrasives include colloidal silica, fumed silica, and alpha-alumina.
- the abrasive material is present in the composition in an amount of not more than 6% by weight.
- the abrasive material is present in the CMP composition in an amount in the range of 0.001 to 6% by weight, more preferably in the range of 0.01 to 5% by weight, most preferably in the range of 0.1 to 1% by weight.
- the abrasive particles preferably have a mean particle size in the range of 5 nm to 150 nm, more preferably 70 nm to 110 nm, as determined by laser light scattering techniques, which are well known in the art.
- the abrasive desirably is suspended in the CMP composition, more specifically in the aqueous component of the CMP composition.
- the abrasive preferably is colloidally stable.
- colloid refers to the suspension of abrasive particles in the liquid carrier.
- Colloidal stability refers to the maintenance of that suspension over time.
- an abrasive is considered colloidally stable if, when the abrasive is placed into a 100 mL graduated cylinder and allowed to stand without agitation for a time of 2 hours, the difference between the concentration of particles in the bottom 50 mL of the graduated cylinder ([B] in terms of g/mL) and the concentration of particles in the top 50 mL of the graduated cylinder ([T] in terms of g/mL) divided by the initial concentration of particles in the abrasive composition ([C] in terms of g/mL) is less than or equal to 0.5 (i.e., ([B] - [T])/[C] ⁇ 0.5).
- Oxidizing agents suitable for use in the CMP compositions and methods of the present invention include, without limitation hydrogen peroxide, persulfate salts (e.g., ammonium monopersulfate, ammonium dipersulfate, potassium monopersulfate, and potassium dipersulfate), periodate salts (e.g., potassium periodate), salts thereof, and a combination of two or more of the foregoing.
- the oxidizing agent is present in the composition in an amount in the range of 0.1 to 6% by weight, more preferably 2 to 4% by weight.
- the CMP compositions of the invention preferably have a pH in the range of 2 to 11, more preferably 2 to 5, most preferably 2 to 4.
- the CMP compositions can optionally comprise one or more pH buffering materials, for example, ammonium acetate, disodium citrate, and the like. Many such pH buffering materials are well known in the art.
- the CMP compositions of the invention also comprise at least one chelating agent capable of chelating a PCA material or a component thereof (e.g., germanium, indium, antimony, and/or tellurium species) present in the substrate being polished or chelating a substance formed therefrom during the CMP process.
- Suitable chelating agents include, without limitation dicarboxylic acids (e.g., oxalic acid, malonic acid, succinic acid, maleic acid, phthalic acid, tartaric acid, aspartic acid, glutamic acid, and the like), polycarboxylic acids (e.g., citric acid, 1,2,3,4-butane tetracarboxylic acid, polyacrylic acid, polymaleic acid, and the like), aminocarboxylic acids (e.g., alpha-amino acids, beta amino acids, omega-amino acids, and the like), phosphates, polyphosphates, amino phosphonates, phosphonocarboxylic acids, polymeric chelating agents capable of chelating phase change alloy materials or particles, salts thereof, combinations of two or more of the foregoing, and the like.
- dicarboxylic acids e.g., oxalic acid, malonic acid, succinic acid, maleic acid, phthalic acid, tartaric acid
- Preferred chelating agents include oxalic acid, malonic acid, succinic acid, citric acid, salts thereof, and combinations of two or more of the foregoing. More preferably, the chelating agent is selected from the group consisting of oxalic acid, malonic acid, salts thereof, and a combination thereof.
- the CMP compositions of the invention can be prepared by any suitable technique, many of which are known to those skilled in the art.
- the CMP composition can be prepared in a batch or continuous process. Generally, the CMP composition can be prepared by combining the components thereof in any order.
- component includes individual ingredients (e.g., abrasives, chelating agents, acids, bases, oxidizing agents, and the like), as well as any combination of ingredients.
- an abrasive can be dispersed in water, and the chelating agent can be added, and mixed by any method that is capable of incorporating the components into the CMP composition.
- the oxidizing agent when present, can be added to the composition at any suitable time. In some embodiments, the oxidizing agent is not added to the CMP composition until the composition is ready for use in a CMP process, for example, the oxidizing agent is added just prior to initiation of polishing.
- the pH can be adjusted at any suitable time.
- the CMP compositions of the present invention also can be provided as a concentrate, which is intended to be diluted with an appropriate amount of water prior to use.
- the CMP composition concentrate can include the various components dispersed or dissolved in aqueous solvent in amounts such that, upon dilution of the concentrate with an appropriate amount of aqueous solvent, each component of the polishing composition will be present in the CMP composition in an amount within the appropriate range for use.
- the invention also provides a method of chemically-mechanically polishing a substrate that includes a PCA material.
- the method comprises (i) contacting a surface of a substrate with a polishing pad and a CMP composition of the invention as described herein, and (ii) moving the polishing pad relative to the surface of the substrate with the polishing composition therebetween, thereby abrading at least a portion of a PCA from the substrate to polish the surface thereof.
- the CMP methods of the present invention can be used to polish any suitable substrate, and is especially useful for polishing substrates comprising a GST alloy, InSb, and the like.
- the PCA is a GST alloy (e.g., Ge 2 Sb 2 Te 5 ) or InSb.
- the substrate also includes a liner material such as Ti or TiN, as well as a layer of silicon dioxide thereunder. In a preferred method, a PCA material and a liner layer are abraded, and the abrading is stopped at a silicon dioxide layer.
- the CMP methods of the present invention are particularly suited for use in conjunction with a chemical-mechanical polishing apparatus.
- the CMP apparatus comprises a platen, which, when in use, is in motion and has a velocity that results from orbital, linear, and/or circular motion, a polishing pad in contact with the platen and moving with the platen when in motion, and a carrier that holds a substrate to be polished in contact with the pad and moving relative to the surface of the polishing pad.
- a CMP composition is typically pumped onto the polishing pad to aid in the polishing process.
- a substrate can be planarized or polished with a CMP composition of the invention using any suitable polishing pad (e.g., polishing surface).
- suitable polishing pads include, for example, woven and non-woven polishing pads.
- suitable polishing pads can comprise any suitable polymer of varying density, hardness, thickness, compressibility, ability to rebound upon compression, and compression modulus.
- Suitable polymers include, for example, polyvinyl chloride, polyvinylfluoride, nylon, fluorocarbon, polycarbonate, polyester, polyacrylate, polyether, polyethylene, polyamide, polyurethane, polystyrene, polypropylene, coformed products thereof, and mixtures thereof.
- the CMP apparatus further comprises an in situ polishing endpoint detection system, many of which are known in the art. Techniques for inspecting and monitoring the polishing process by analyzing light or other radiation reflected from a surface of the workpiece are known in the art. Such methods are described, for example, in U.S. Patent 5,196,353 to Sandhu et al, U.S.
- This example illustrates the performance of a conventional CMP composition for removal of a GST film from a substrate, compared to a composition of the invention.
- Wafers having a GST film surface 200 mm TEOS wafers having 2000A thickness of a Ge 2 Sb 2 Te 5 film on the surface thereof) were polished on an IPEC 472 polisher having an IClOOO polishing pad, with a platen speed of 90 rpm, a carrier speed of 87 rpm, a down pressure of 3 psi, and a slurry flow rate of 200 mL/minute.
- the conventional CMP compositions evaluated had the formulations shown in Table 1, along with the GST removal rates obtained therefrom.
- This example illustrates the ability of CMP compositions containing a chelating agent to effectively remove a GST film.
- Wafers having a GST film surface (200 mm TEOS wafers having 2000A thickness of a Ge 2 Sb 2 Tes film on the surface thereof) were polished on a Mirra polisher having an IClOlO polishing pad, with a platen speed of 90 rpm, a carrier speed of 87 rpm, a down pressure of 3 psi, and a slurry flow rate of 200 mL/minute.
- the CMP compositions evaluated included either 1 % by weight malonic acid or 1% by weight succinic acid as the chelating agent, 3% by weight of hydrogen peroxide, and either 1% by weight or 3% by weight of colloidal silica having an average particle size of 70 nm, in water at pH 3.
- the results (GST removal rates) are shown in Table 2. All of the formulations provided relatively even and scratch-free removal of GST.
- Wafers having a GST film surface (200 mm TEOS wafers having 2000A thickness of a Ge 2 Sb 2 Te S film on the surface thereof) were polished on an IPEC 472 polisher having an IC 1000 polishing pad, with a platen speed of 90 rpm, a carrier speed of 87 rpm, a down pressure of 3 psi, and a slurry flow rate of 200 mL/minute.
- the CMP compositions evaluated included either 1% by weight malonic acid or 1% by weight oxalic acid as the chelating agent, 3% by weight of hydrogen peroxide, and either 1% by weight or 0.2% by weight of colloidal silica having an average particle size of 20 nm or 80 nm, in water at pH 3.
- the results (GST removal rates) are shown in Table 3.
- An examination of the wafers after polishing indicated that the scratching and residue problems associated with the use of conventional CMP compositions was eliminated when a chelating agent was present.
- the results in Table 3 indicate that chelating agents greatly aided in removal of GST, providing GST removal rates of around 1000 A/min or greater, while utilizing relatively low abrasive levels to reduce scratching of the GST surface.
- This example illustrates the time dependence of GST removal using the CMP compositions of the invention, compared to a conventional CMP slurry that does not include a chelating agent.
- Wafers having a GST film surface (200 mm TEOS wafers having 2000A thickness of a Ge 2 Sb 2 Te S film on the surface thereof) were polished on a Mirra polisher having an IClOlO polishing pad, with a platen speed of 90 rpm, a carrier speed of 87 rpm, a down pressure of 3 psi, and a slurry flow rate of 200 mL/minute.
- the CMP compositions evaluated included a conventional CMP slurry, which contained 0.5% by weight fumed silica and 3% by weight hydrogen peroxide, compared to a CMP composition of the invention containing 1% by weight of 80 nm colloidal silica, 3% by weight hydrogen peroxide, and 1% by weight malonic acid in water at pH 3.
- the results, plotted as amount of GST removed versus time of polishing (in seconds) are shown in Figure 1, and indicate that the conventional CMP slurry exhibited an initiation time before removal of GST began, indicating an important mechanical component in the removal mechanism.
- the CMP composition of the invention exhibited a "static" removal rate, indicating an enhancement in chemical effects in the removal mechanism.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP07717147.8A EP1979431B1 (en) | 2006-02-01 | 2007-01-31 | Compositions and methods for cmp of phase change alloys |
| CN2007800029065A CN101370897B (zh) | 2006-02-01 | 2007-01-31 | 用于相变合金的化学机械抛光的组合物及方法 |
| KR1020087021237A KR101173720B1 (ko) | 2006-02-01 | 2007-01-31 | 상변화 합금의 cmp를 위한 조성물 및 방법 |
| JP2008553321A JP5356832B2 (ja) | 2006-02-01 | 2007-01-31 | 相変化合金をcmpするための方法 |
| IL192528A IL192528A (en) | 2006-02-01 | 2008-06-30 | Compositions and methods for cmp of phase change alloys |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US76416106P | 2006-02-01 | 2006-02-01 | |
| US60/764,161 | 2006-02-01 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2007089824A1 true WO2007089824A1 (en) | 2007-08-09 |
| WO2007089824A8 WO2007089824A8 (en) | 2007-12-06 |
Family
ID=38327727
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2007/002611 Ceased WO2007089824A1 (en) | 2006-02-01 | 2007-01-31 | Compositions and methods for cmp of phase change alloys |
Country Status (9)
| Country | Link |
|---|---|
| US (1) | US7897061B2 (enExample) |
| EP (1) | EP1979431B1 (enExample) |
| JP (2) | JP5356832B2 (enExample) |
| KR (1) | KR101173720B1 (enExample) |
| CN (1) | CN101370897B (enExample) |
| IL (1) | IL192528A (enExample) |
| MY (1) | MY147946A (enExample) |
| TW (1) | TWI359192B (enExample) |
| WO (1) | WO2007089824A1 (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009147337A (ja) * | 2007-12-11 | 2009-07-02 | Samsung Electronics Co Ltd | 相変化物質層パターンの形成方法、相変化メモリー装置の製造方法、及びこれに使用される相変化物質層研磨用スラリー造成物 |
| WO2010060004A3 (en) * | 2008-11-24 | 2010-10-28 | Applied Materials, Inc. | Slurry composition for gst phase change memory materials polishing |
| US9631121B2 (en) | 2012-05-29 | 2017-04-25 | Fujimi Incorporated | Polishing composition |
Families Citing this family (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8518296B2 (en) | 2007-02-14 | 2013-08-27 | Micron Technology, Inc. | Slurries and methods for polishing phase change materials |
| US20090001339A1 (en) * | 2007-06-29 | 2009-01-01 | Tae Young Lee | Chemical Mechanical Polishing Slurry Composition for Polishing Phase-Change Memory Device and Method for Polishing Phase-Change Memory Device Using the Same |
| SG183081A1 (en) * | 2007-07-26 | 2012-08-30 | Cabot Microelectronics Corp | Compositions and methods for chemical-mechanical polishing of phase change materials |
| EP2048207A1 (en) * | 2007-10-11 | 2009-04-15 | STMicroelectronics S.r.l. | Method of planarizing chalcogenide alloys, in particular for use in phase change memory devices |
| US8735293B2 (en) | 2008-11-05 | 2014-05-27 | Rohm And Haas Electronic Materials Cmp Holdings, Inc. | Chemical mechanical polishing composition and methods relating thereto |
| US8226841B2 (en) * | 2009-02-03 | 2012-07-24 | Cabot Microelectronics Corporation | Polishing composition for nickel-phosphorous memory disks |
| US20120003834A1 (en) * | 2010-07-01 | 2012-01-05 | Koo Ja-Ho | Method Of Polishing Chalcogenide Alloy |
| US20120001118A1 (en) * | 2010-07-01 | 2012-01-05 | Koo Ja-Ho | Polishing slurry for chalcogenide alloy |
| CN102554783B (zh) * | 2010-12-23 | 2014-12-03 | 中芯国际集成电路制造(上海)有限公司 | 研磨垫清洗方法 |
| US8790160B2 (en) * | 2011-04-28 | 2014-07-29 | Rohm And Haas Electronic Materials Cmp Holdings, Inc. | Chemical mechanical polishing composition and method for polishing phase change alloys |
| US8309468B1 (en) * | 2011-04-28 | 2012-11-13 | Rohm And Haas Electronic Materials Cmp Holdings, Inc. | Chemical mechanical polishing composition and method for polishing germanium-antimony-tellurium alloys |
| EP2554612A1 (en) | 2011-08-01 | 2013-02-06 | Basf Se | A process for the manufacture of semiconductor devices comprising the chemical mechanical polishing of elemental germanium and/or Si1-xGex material in the presence of a CMP composi-tion having a pH value of 3.0 to 5.5 |
| EP2742103B1 (en) * | 2011-08-01 | 2016-09-21 | Basf Se | A PROCESS FOR THE MANUFACTURE OF SEMICONDUCTOR DEVICES COMPRISING THE CHEMICAL MECHANICAL POLISHING OF ELEMENTAL GERMANIUM AND/OR Si1-xGex MATERIAL IN THE PRESENCE OF A CMP COMPOSITION COMPRISING A SPECIFIC ORGANIC COMPOUND |
| EP2554613A1 (en) | 2011-08-01 | 2013-02-06 | Basf Se | A process for the manufacture of semiconductor devices comprising the chemical mechanical polishing of elemental germanium and/or si1-xgex material in the presence of a cmp composi-tion comprising a specific organic compound |
| JP2013084876A (ja) * | 2011-09-30 | 2013-05-09 | Fujimi Inc | 研磨用組成物 |
| JP2013080751A (ja) * | 2011-09-30 | 2013-05-02 | Fujimi Inc | 研磨用組成物 |
| KR20130081599A (ko) * | 2012-01-09 | 2013-07-17 | 에스케이하이닉스 주식회사 | 연마 조성물 및 이를 이용한 화학기계적 평탄화 방법 |
| US10143358B2 (en) | 2012-02-07 | 2018-12-04 | Treble Innovations, Llc | System and method for a magnetic endoscope |
| US9376594B2 (en) | 2012-03-16 | 2016-06-28 | Fujimi Incorporated | Polishing composition |
| JP6132315B2 (ja) * | 2012-04-18 | 2017-05-24 | 株式会社フジミインコーポレーテッド | 研磨用組成物 |
| US9039914B2 (en) | 2012-05-23 | 2015-05-26 | Cabot Microelectronics Corporation | Polishing composition for nickel-phosphorous-coated memory disks |
| US8778211B2 (en) * | 2012-07-17 | 2014-07-15 | Cabot Microelectronics Corporation | GST CMP slurries |
| US8920667B2 (en) * | 2013-01-30 | 2014-12-30 | Cabot Microelectronics Corporation | Chemical-mechanical polishing composition containing zirconia and metal oxidizer |
| JP6139975B2 (ja) * | 2013-05-15 | 2017-05-31 | 株式会社フジミインコーポレーテッド | 研磨用組成物 |
| EP2810997A1 (en) | 2013-06-05 | 2014-12-10 | Basf Se | A chemical mechanical polishing (cmp) composition |
| US9434859B2 (en) | 2013-09-24 | 2016-09-06 | Cabot Microelectronics Corporation | Chemical-mechanical planarization of polymer films |
| CN107406721A (zh) | 2014-12-16 | 2017-11-28 | 巴斯夫欧洲公司 | 用于高效率抛光含锗基材的化学机械抛光(cmp)组合物 |
| US9597768B1 (en) * | 2015-09-09 | 2017-03-21 | Cabot Microelectronics Corporation | Selective nitride slurries with improved stability and improved polishing characteristics |
| SG11201803373UA (en) * | 2015-10-30 | 2018-05-30 | Corning Inc | Glass articles with mixed polymer and metal oxide coatings |
| CN110788739A (zh) * | 2019-10-31 | 2020-02-14 | 云南北方昆物光电科技发展有限公司 | 一种锑化铟单晶片的抛光方法 |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5196353A (en) | 1992-01-03 | 1993-03-23 | Micron Technology, Inc. | Method for controlling a semiconductor (CMP) process by measuring a surface temperature and developing a thermal image of the wafer |
| US5433651A (en) | 1993-12-22 | 1995-07-18 | International Business Machines Corporation | In-situ endpoint detection and process monitoring method and apparatus for chemical-mechanical polishing |
| US5489233A (en) | 1994-04-08 | 1996-02-06 | Rodel, Inc. | Polishing pads and methods for their use |
| US5527423A (en) | 1994-10-06 | 1996-06-18 | Cabot Corporation | Chemical mechanical polishing slurry for metal layers |
| US5949927A (en) | 1992-12-28 | 1999-09-07 | Tang; Wallace T. Y. | In-situ real-time monitoring technique and apparatus for endpoint detection of thin films during chemical/mechanical polishing planarization |
| US5958794A (en) | 1995-09-22 | 1999-09-28 | Minnesota Mining And Manufacturing Company | Method of modifying an exposed surface of a semiconductor wafer |
| US5964643A (en) | 1995-03-28 | 1999-10-12 | Applied Materials, Inc. | Apparatus and method for in-situ monitoring of chemical mechanical polishing operations |
| EP1150341A1 (en) * | 1998-12-28 | 2001-10-31 | Hitachi Chemical Company, Ltd. | Materials for polishing liquid for metal, polishing liquid for metal, method for preparation thereof and polishing method using the same |
| US20040006924A1 (en) | 2002-02-11 | 2004-01-15 | Scott Brandon Shane | Free radical-forming activator attached to solid and used to enhance CMP formulations |
| WO2004055916A2 (en) * | 2002-12-13 | 2004-07-01 | Intel Corporation | Phase change memory and manufacturing method therefor |
| WO2005007770A1 (en) | 2003-07-11 | 2005-01-27 | W.R. Grace & Co.-Conn. | Abrasive particles for chemical mechanical polishing |
| CN1632023A (zh) * | 2004-11-24 | 2005-06-29 | 中国科学院上海微系统与信息技术研究所 | 硫系相变材料化学机械抛光的无磨料抛光液及其应用 |
Family Cites Families (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE142830C (enExample) * | ||||
| DE148914C (enExample) * | ||||
| GB1278499A (en) * | 1968-10-17 | 1972-06-21 | Texas Instruments Inc | Improved process for polishing oxidizable surfaces |
| SU1059033A1 (ru) * | 1982-04-16 | 1983-12-07 | Ордена Ленина физико-технический институт им.А.Ф.Иоффе | Полирующий травитель дл антимонида инди |
| JPS59196385A (ja) * | 1983-04-23 | 1984-11-07 | Shinko Electric Ind Co Ltd | 化学研摩液 |
| JP3147168B2 (ja) * | 1990-10-08 | 2001-03-19 | 日産化学工業株式会社 | 第3―5族化合物半導体の研磨剤 |
| JPH06124931A (ja) * | 1992-08-28 | 1994-05-06 | Hitachi Cable Ltd | 基板貼付用接着剤及び基板の研磨方法 |
| JP2585963B2 (ja) * | 1993-12-10 | 1997-02-26 | 日本エクシード株式会社 | 化合物半導体のための研磨液及びこれを用いた化合物半導体の研磨方法 |
| US6719920B2 (en) * | 2001-11-30 | 2004-04-13 | Intel Corporation | Slurry for polishing a barrier layer |
| EP1505639B1 (en) * | 2002-04-30 | 2008-08-06 | Hitachi Chemical Company, Ltd. | Polishing fluid and polishing method |
| JP4167928B2 (ja) * | 2003-04-23 | 2008-10-22 | 住友金属鉱山株式会社 | Iii−v族化合物半導体ウェハ用の研磨液及びそれを用いたiii−v族化合物半導体ウェハの研磨方法 |
| JP2005032855A (ja) * | 2003-07-09 | 2005-02-03 | Matsushita Electric Ind Co Ltd | 半導体記憶装置及びその製造方法 |
| JP2005268666A (ja) * | 2004-03-19 | 2005-09-29 | Fujimi Inc | 研磨用組成物 |
| KR100850877B1 (ko) * | 2004-06-18 | 2008-08-07 | 주식회사 동진쎄미켐 | 철 함유 콜로이달 실리카를 포함하는 화학 기계적 연마슬러리 조성물 |
| US7303993B2 (en) * | 2004-07-01 | 2007-12-04 | Rohm And Haas Electronic Materials Cmp Holdings, Inc. | Chemical mechanical polishing compositions and methods relating thereto |
| CN1300271C (zh) * | 2004-09-24 | 2007-02-14 | 中国科学院上海微系统与信息技术研究所 | 硫系化合物相变材料化学机械抛光的纳米抛光液及其应用 |
-
2007
- 2007-01-29 US US11/699,129 patent/US7897061B2/en active Active
- 2007-01-31 JP JP2008553321A patent/JP5356832B2/ja active Active
- 2007-01-31 CN CN2007800029065A patent/CN101370897B/zh active Active
- 2007-01-31 WO PCT/US2007/002611 patent/WO2007089824A1/en not_active Ceased
- 2007-01-31 KR KR1020087021237A patent/KR101173720B1/ko active Active
- 2007-01-31 EP EP07717147.8A patent/EP1979431B1/en active Active
- 2007-02-01 TW TW096103738A patent/TWI359192B/zh active
-
2008
- 2008-06-30 IL IL192528A patent/IL192528A/en not_active IP Right Cessation
- 2008-07-30 MY MYPI20082866A patent/MY147946A/en unknown
-
2013
- 2013-07-04 JP JP2013141021A patent/JP5643393B2/ja active Active
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5196353A (en) | 1992-01-03 | 1993-03-23 | Micron Technology, Inc. | Method for controlling a semiconductor (CMP) process by measuring a surface temperature and developing a thermal image of the wafer |
| US5949927A (en) | 1992-12-28 | 1999-09-07 | Tang; Wallace T. Y. | In-situ real-time monitoring technique and apparatus for endpoint detection of thin films during chemical/mechanical polishing planarization |
| US5433651A (en) | 1993-12-22 | 1995-07-18 | International Business Machines Corporation | In-situ endpoint detection and process monitoring method and apparatus for chemical-mechanical polishing |
| US5489233A (en) | 1994-04-08 | 1996-02-06 | Rodel, Inc. | Polishing pads and methods for their use |
| US5527423A (en) | 1994-10-06 | 1996-06-18 | Cabot Corporation | Chemical mechanical polishing slurry for metal layers |
| US5964643A (en) | 1995-03-28 | 1999-10-12 | Applied Materials, Inc. | Apparatus and method for in-situ monitoring of chemical mechanical polishing operations |
| US5958794A (en) | 1995-09-22 | 1999-09-28 | Minnesota Mining And Manufacturing Company | Method of modifying an exposed surface of a semiconductor wafer |
| EP1150341A1 (en) * | 1998-12-28 | 2001-10-31 | Hitachi Chemical Company, Ltd. | Materials for polishing liquid for metal, polishing liquid for metal, method for preparation thereof and polishing method using the same |
| US20040006924A1 (en) | 2002-02-11 | 2004-01-15 | Scott Brandon Shane | Free radical-forming activator attached to solid and used to enhance CMP formulations |
| WO2004055916A2 (en) * | 2002-12-13 | 2004-07-01 | Intel Corporation | Phase change memory and manufacturing method therefor |
| WO2005007770A1 (en) | 2003-07-11 | 2005-01-27 | W.R. Grace & Co.-Conn. | Abrasive particles for chemical mechanical polishing |
| CN1632023A (zh) * | 2004-11-24 | 2005-06-29 | 中国科学院上海微系统与信息技术研究所 | 硫系相变材料化学机械抛光的无磨料抛光液及其应用 |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP1979431A4 |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009147337A (ja) * | 2007-12-11 | 2009-07-02 | Samsung Electronics Co Ltd | 相変化物質層パターンの形成方法、相変化メモリー装置の製造方法、及びこれに使用される相変化物質層研磨用スラリー造成物 |
| WO2010060004A3 (en) * | 2008-11-24 | 2010-10-28 | Applied Materials, Inc. | Slurry composition for gst phase change memory materials polishing |
| US9631121B2 (en) | 2012-05-29 | 2017-04-25 | Fujimi Incorporated | Polishing composition |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101370897B (zh) | 2012-09-05 |
| US7897061B2 (en) | 2011-03-01 |
| WO2007089824A8 (en) | 2007-12-06 |
| EP1979431A4 (en) | 2009-04-29 |
| TW200734439A (en) | 2007-09-16 |
| IL192528A0 (en) | 2009-02-11 |
| JP2009525615A (ja) | 2009-07-09 |
| JP5356832B2 (ja) | 2013-12-04 |
| JP5643393B2 (ja) | 2014-12-17 |
| EP1979431B1 (en) | 2018-01-10 |
| EP1979431A1 (en) | 2008-10-15 |
| US20070178700A1 (en) | 2007-08-02 |
| IL192528A (en) | 2012-10-31 |
| MY147946A (en) | 2013-02-15 |
| KR20080092976A (ko) | 2008-10-16 |
| JP2013214769A (ja) | 2013-10-17 |
| KR101173720B1 (ko) | 2012-08-13 |
| TWI359192B (en) | 2012-03-01 |
| CN101370897A (zh) | 2009-02-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7897061B2 (en) | Compositions and methods for CMP of phase change alloys | |
| EP2183333B1 (en) | Compositions and methods for chemical-mechanical polishing of phase change materials | |
| CN104428386B (zh) | 锗‑锑‑碲化学机械抛光浆料 | |
| US7915071B2 (en) | Method for chemical mechanical planarization of chalcogenide materials | |
| KR101069472B1 (ko) | 칼코게나이드 물질의 화학 기계적 평탄화 방법 | |
| US8920667B2 (en) | Chemical-mechanical polishing composition containing zirconia and metal oxidizer | |
| CN111183195B (zh) | 用于钨磨光应用的经表面处理的研磨剂颗粒 | |
| TW202342660A (zh) | 研磨劑、2液式研磨劑及研磨方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2007717147 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 200780002906.5 Country of ref document: CN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2008553321 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020087021237 Country of ref document: KR |