WO2007088972A1 - 光記録再生装置、光記録方法、及び光再生方法 - Google Patents

光記録再生装置、光記録方法、及び光再生方法 Download PDF

Info

Publication number
WO2007088972A1
WO2007088972A1 PCT/JP2007/051805 JP2007051805W WO2007088972A1 WO 2007088972 A1 WO2007088972 A1 WO 2007088972A1 JP 2007051805 W JP2007051805 W JP 2007051805W WO 2007088972 A1 WO2007088972 A1 WO 2007088972A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical recording
light
recording medium
optical
layer
Prior art date
Application number
PCT/JP2007/051805
Other languages
English (en)
French (fr)
Inventor
Yoshihisa Usami
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Priority to US12/162,639 priority Critical patent/US20080316896A1/en
Priority to EP07707954A priority patent/EP1981024A4/en
Publication of WO2007088972A1 publication Critical patent/WO2007088972A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/02Control of operating function, e.g. switching from recording to reproducing
    • G11B19/04Arrangements for preventing, inhibiting, or warning against double recording on the same blank or against other recording or reproducing malfunctions
    • G11B19/046Detection or prevention or problems due to temperature
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/18Particular processing of hologram record carriers, e.g. for obtaining blazed holograms
    • G03H2001/186Swelling or shrinking the holographic record or compensation thereof, e.g. for controlling the reconstructed wavelength
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/30Details of photosensitive recording material not otherwise provided for
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2534Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycarbonates [PC]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers

Definitions

  • the present invention relates to an optical recording / reproducing apparatus, an optical recording method, and an optical reproducing method for an optical recording medium provided with a recording layer for recording information using holography, and within an allowable temperature range of the optical recording medium.
  • the present invention relates to an optical recording / reproducing apparatus, an optical recording method, and an optical reproducing method capable of appropriately recording and reproducing and capable of recording and reproducing with excellent SNR (signal to noise ratio).
  • a method of recording information on an optical recording medium using holography generally, information light (object light) having image information and reference light are caused to interfere inside the optical recording medium, This is done by writing interference fringes generated in the process onto the optical recording medium.
  • the optical recording method for example, a method in which the information light and the reference light are irradiated so that the optical axis of the information light and the optical axis of the reference light are coaxial is called a collinear method. It is known as a recording method that is less affected by errors in recording devices and optical recording media.
  • the interference fringes are generated in the recording layer formed on the optical recording medium by irradiation of information light and reference light in the collinear method, and optical information is recorded on the recording layer.
  • the information recorded on the optical recording medium is reproduced by irradiating the same reproducing light as the reference light used for recording on the optical recording medium from the same direction as the recording.
  • interference image force diffracted light as interference fringe force is generated as optical information on the optical recording medium, and the information is reproduced by receiving the diffracted light.
  • the shift multiplex recording is performed by moving either the light irradiation or the optical recording medium little by little in the plane direction parallel to the recording layer, and over-recording the first recording, Recording discs such as conventional CDs and DVDs that record while rotating the disc It is excellent in random access with high recording and affinity, and is used in the collinear method in which recording is performed using a single lens (see Non-Patent Document 1).
  • the optical recording medium 21 is rotated by one pitch, and the information is obtained for each pitch.
  • a light irradiation spot is irradiated, and multiple recordings are sequentially performed.
  • the irradiation angle of the reproducing light 38a and the focal length in the optical axis direction are the irradiation angle of the reference light and the optical axis during recording.
  • the focal length in the direction is deviated, the diffracted light 39 is deviated from the original vertical direction by an angle ⁇ , for example, and the reproduction interference image deviated from the genuine interference image detected by the detector.
  • for example
  • Such a deviation in the reproduction interference image may cause the entire reproduction interference image 35 to be reduced compared to the original genuine interference image 34 received by the light receiving unit 33 of the detector in FIG. 11 (see FIG. 12).
  • the entire reproduction interference image 35 is enlarged (see Fig. 13), the entire reproduction interference image 35 is shifted to the right side of the diagram (see Fig. 14), and the reproduction interference image 35 is diagonally lower left.
  • the image is shifted in the direction (see Fig. 15), only the side of the reproduction interference image 35 is reduced (see Fig. 16), or the reproduction interference image 35 is distorted (see Fig. 17). It occurs in.
  • Such a phenomenon occurs not only during reproduction but also during recording.
  • the cause of such deviation or distortion is the irradiation angle or optical axis of the information light, the reference light, and the reproduction light due to the influence of changes in the surface temperature of the optical recording medium due to recording and reproduction. It is conceivable that the focal length of the direction is shifted or distorted.
  • the surface temperature at the time of recording and reproduction of such an optical recording medium is usually controlled! /, Etc., and the aforementioned deviation or distortion is caused by the difference between the surface temperature of the optical recording medium at the time of recording and at the time of reproduction.
  • the surface temperature of the optical recording medium is within the operating temperature range at the time of recording, if it deviates from the operating temperature range at the time of reproduction, it similarly causes deviation and distortion. In either case, if it can be recognized that the surface temperature of the optical recording medium deviates from the operating temperature range, it can be dealt with by stopping recording or reproduction.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-177958
  • Non-Patent Document 1 "Nikkei Electronics” January 17, 2005 Issue P105-P114 Disclosure of the invention
  • An object of the present invention is to solve the conventional problems and achieve the following objects. That is, the present invention can easily recognize whether or not the surface temperature of an optical recording medium capable of high-multiplex recording in the collinear method deviates from the temperature range allowed during recording and reproduction.
  • An object of the present invention is to provide an optical recording / reproducing apparatus, an optical recording method, and an optical reproducing method capable of obtaining excellent reproduction with no image shift or distortion during recording and reproduction.
  • Optical recording that performs at least one of recording that irradiates information light and reference light, and reproduction that irradiates reproduction light to an optical recording medium including a recording layer that records information using holography
  • a warning means for informing that the surface temperature of the optical recording medium has deviated from a use allowable temperature range with respect to a reference temperature
  • the optical recording A function stop means for indicating that at least one of recording and reproduction is to be stopped when the surface temperature of the medium deviates from the use limit temperature range with respect to the reference temperature, and for stopping the recording and reproduction functions; It is an optical recording / reproducing apparatus characterized by having at least one of the following.
  • ⁇ 2> The optical recording / reproducing apparatus according to ⁇ 1>, wherein the reference temperature is 0 to 50 ° C.
  • ⁇ 4> The optical recording / reproducing apparatus according to any one of ⁇ 1> to ⁇ 3>, wherein an allowable use temperature range is 5 to 5 ° C.
  • ⁇ 5> The optical recording / reproducing apparatus according to any one of ⁇ 1> to ⁇ 4>, wherein a use limit temperature range is 40 to 40 ° C.
  • ⁇ 6> The optical recording / reproducing apparatus according to any one of ⁇ 1> to ⁇ 5>, wherein a use limit temperature range is 10 to 10 ° C.
  • the surface temperature of the optical recording medium is the surface temperature opposite to the incident side of the information light, the reference light, and the reproduction light, and the temperature sensed by the temperature sensor from ⁇ 1> to ⁇ 6> !
  • the optical recording / reproducing apparatus according to any one of the above.
  • the optical recording medium has a disk shape, the line L1 connecting the center position of the pickup that irradiates information light and reference light and the center of the optical recording medium, the center position of the temperature sensor, and the center of the optical recording medium
  • the angle ⁇ 1 formed by the line L2 connecting the two is 10 to 180 °
  • the temperature sensor is located on the inner side of the outer edge of the optical recording medium and is in a non-contact position with the surface of the optical recording medium.
  • the optical recording medium has a disc shape, the distance dl between the center position of the pickup that irradiates information light and reference light and the center of the optical recording medium, the center position of the temperature sensor, and the center of the optical recording medium.
  • the information light and the reference light are irradiated such that the optical axis of the information light and the optical axis of the reference light are coaxial.
  • This is an optical recording / reproducing device.
  • V is a reproducing apparatus for optical recording according to any of the above.
  • optical recording / reproducing apparatus according to any one of ⁇ 1> to ⁇ 11>, wherein the optical recording medium has a first substrate, a recording layer, a filter layer, and a second substrate in this order. It is.
  • the filter layer is a laminate in which two or more cholesteric liquid crystal layers are laminated.
  • the power recording / reproducing apparatus according to any one of 16>.
  • the optical recording / reproducing apparatus of ⁇ 17> two or more cholesteric liquid crystal layers are laminated, and information light used at the time of recording or reproducing without causing a shift in the selective reflection wavelength even when the incident angle changes, and Since the reference light and further the reproduction light do not reach the reflection film, it is possible to prevent the generation of diffused light due to irregular reflection on the reflection surface. Accordingly, the noise generated by the diffused light is superimposed on the reproduced image and detected on the CMOS sensor or CCD, so that the reproduced image can be detected at least to the extent that error correction is possible.
  • the noise component due to diffused light becomes a serious problem as the multiplicity of holograms increases.
  • the greater the multiplicity for example, when the multiplicity is 10 or more, the diffraction efficiency of one hologram force becomes extremely small, and the presence of diffusion noise makes it very difficult to detect the reproduced image. According to this configuration, such difficulty can be eliminated, and unprecedented high-density image recording can be realized.
  • ⁇ 18> The optical recording / reproducing apparatus according to any one of ⁇ 16>, ⁇ 17>, wherein the selective reflection wavelength band in the cholesteric liquid crystal layer is continuous.
  • cholesteric liquid crystal layer strength includes at least a nematic liquid crystal compound and a photoreactive chiral compound.
  • ⁇ 22> The optical recording / reproducing apparatus according to any one of ⁇ 16> to ⁇ 21>, wherein the selective reflection center wavelengths in the cholesteric liquid crystal layer are different from each other.
  • ⁇ 24> The optical recording / reproducing apparatus according to any one of ⁇ 12> to ⁇ 23>, wherein the filter layer transmits the first light and reflects the second light different from the first light. is there.
  • the wavelength of the first light is 350 to 600 nm, and the wavelength of the second light is 600
  • the optical recording / reproducing apparatus according to the above item 24> which is ⁇ 900 nm.
  • ⁇ 26> The optical recording / reproducing apparatus according to any one of the above ⁇ 12> and ⁇ 25>, wherein the filter layer is used as a reflective film to select an optical recording medium for recording information using holography.
  • the filter layer has a photoreactive chiral compound, the photoreactive chiral compound force has a chiral moiety and a photoreactive group, and the chiral moiety force S isosorbide compound, isomann
  • the optical recording / reproducing apparatus according to any one of the above ⁇ 12>, ⁇ 26>, which is at least one kind selected from a composite compound and a binaphthol compound.
  • ⁇ 28> The optical recording / reproducing apparatus according to ⁇ 27>, wherein the photoreactive group is a group that causes isomerization of a carbon-carbon double bond from trans to cis upon irradiation with light.
  • ⁇ 29> The optical recording / reproducing apparatus according to any one of ⁇ 12> and ⁇ 28>, wherein the second substrate has a servo pit pattern.
  • ⁇ 31> The optical recording / reproducing apparatus according to ⁇ 30>, wherein the reflective film is a metal reflective film.
  • ⁇ 32> The optical recording / reproducing apparatus according to any one of the above ⁇ 12>, ⁇ 31>, ⁇ 31>, which has a first gap layer for smoothing the surface of the second substrate between the filter layer and the reflective film. It is.
  • ⁇ 33> The optical recording / reproducing apparatus according to any one of ⁇ 12> and ⁇ 32>, wherein a second gap layer is provided between the recording layer and the filter layer.
  • ⁇ 34> The optical recording / reproducing apparatus according to any one of ⁇ 12> to ⁇ 33>, wherein the optical recording medium is a reflection hologram.
  • An optical recording method for performing recording by irradiating information light and reference light on an optical recording medium provided with a recording layer for recording information using holography A warning is displayed when the surface temperature of the optical recording medium deviates from the allowable temperature range for use with respect to the reference temperature, and recording is performed when the surface temperature of the optical recording medium deviates from the use limit temperature range with respect to the reference temperature. Indicating that it will be stopped, and stopping, An optical recording method characterized by performing at least one of the following.
  • ⁇ 36> The optical recording method according to ⁇ 35>, wherein the reference temperature is 0 to 50 ° C.
  • ⁇ 37> The optical recording method according to any one of ⁇ 35> to ⁇ 36>, wherein the allowable temperature range for use is -30 to 30 ° C.
  • ⁇ 38> The optical recording method according to any one of ⁇ 35> to ⁇ 37>, wherein the permissible temperature range is 5 to 5 ° C.
  • ⁇ 39> The optical recording method according to any one of ⁇ 35> to ⁇ 38>, wherein a use limit temperature range is 40 to 40 ° C.
  • ⁇ 40> The optical recording method according to any one of the above ⁇ 35> to ⁇ 39>, wherein a use limit temperature range is 10 to 10 ° C.
  • An optical recording / reproducing apparatus that performs reproduction by irradiating reproduction light to an optical recording medium including a recording layer that records information using holography, and when performing the reproduction, A warning is displayed that the surface temperature of the optical recording medium has deviated from the allowable temperature range for use with respect to the reference temperature, and the surface temperature of the optical recording medium has deviated from the useable temperature range with respect to the reference temperature.
  • An optical regeneration method characterized by displaying that the regeneration is stopped and at least one of stopping.
  • ⁇ 42> The optical regeneration method according to ⁇ 41>, wherein the reference temperature is 0 to 50 ° C.
  • ⁇ 43> The optical regeneration method according to any one of ⁇ 41>, ⁇ 42>, wherein the allowable temperature range of use is ⁇ 30 to 30 ° C.
  • ⁇ 45> The optical regeneration method according to any one of the above ⁇ 41>, ⁇ 44>, and ⁇ 44>, wherein a use limit temperature range is 40 to 40 ° C.
  • ⁇ 46> The optical regeneration method according to any one of the above ⁇ 41> to ⁇ 45>, wherein a use limit temperature range is 10 to 10 ° C.
  • the present invention conventional problems can be solved, and the surface temperature of an optical recording medium capable of high-multiplex recording in the collinear method deviates from a temperature range allowed at the time of recording and reproduction. It is possible to easily recognize whether the power is It is possible to provide an optical recording / reproducing apparatus, an optical recording method, and an optical reproducing method capable of obtaining excellent reproduction with no shift or distortion.
  • FIG. 1 is a flowchart of an optical regeneration method of the present invention.
  • FIG. 2 is an explanatory view showing an example of an optical system around an optical recording medium according to the present invention.
  • FIG. 3 is a conceptual diagram in which information light and reference light are condensed and irradiated onto an optical recording medium and recorded on a recording layer.
  • FIG. 4 is an explanatory diagram of the optical paths of the reproduction light incident on the optical recording medium and the diffracted light generated by the interference image force.
  • FIG. 5 is an explanatory diagram of an optical path of reproduction light incident on an optical recording medium and diffracted light generated by interference image force.
  • FIG. 6 is an explanatory diagram of the optical paths of the reproduction light incident on the optical recording medium and the diffracted light generated by the interference image force.
  • FIG. 7 is an example of a warning display regarding reproduction with respect to the surface temperature of the optical recording medium.
  • FIG. 8 shows an example of a warning display regarding recording with respect to the surface temperature of the optical recording medium.
  • FIG. 9 is a perspective view showing the arrangement of the pickup and the temperature sensor with respect to the optical recording medium.
  • FIG. 10 is a plan view showing the arrangement of the pickup and the temperature sensor with respect to the optical recording medium.
  • FIG. 11 is an explanatory view showing an interference image in the light receiving part of the photodetector of the present invention.
  • FIG. 12 is an explanatory view showing an interference image in the light receiving part of the photodetector of the present invention.
  • FIG. 13 is an explanatory view showing an interference image in the light receiving part of the photodetector of the present invention.
  • FIG. 14 is an explanatory view showing an interference image in the light receiving part of the photodetector of the present invention.
  • FIG. 15 is an explanatory view showing an interference image in the light receiving part of the photodetector of the present invention.
  • FIG. 16 is an explanatory view showing an interference image in the light receiving part of the photodetector of the present invention.
  • FIG. 17 is an explanatory view showing an interference image in the light receiving part of the photodetector of the present invention.
  • FIG. 18 is a perspective view showing an example of an optical recording medium used in the optical reproducing method of the present invention.
  • FIG. 19 is an exploded perspective view of a laminate of an example optical recording medium used in the optical reproducing method of the present invention.
  • FIG. 20 is a perspective view showing an example of an optical recording medium used in the optical reproducing method of the present invention.
  • FIG. 21 is a perspective view showing an example of an optical recording medium used in the optical reproducing method of the present invention.
  • FIG. 22 is a graph showing optical characteristics of the filter layer of the optical recording medium used in the optical reproducing method of the present invention.
  • FIG. 23 is a graph showing optical characteristics of the filter layer of the optical recording medium used in the optical reproducing method of the present invention.
  • FIG. 24 is a block diagram showing an example of the overall configuration of the optical recording / reproducing apparatus of the present invention.
  • FIG. 25 is a block diagram illustrating an example of an arithmetic processing unit according to the present invention.
  • the optical recording / reproducing apparatus of the present invention at least performs recording for irradiating information light and reference light, and reproducing for irradiating the reproducing light to an optical recording medium having a recording layer for recording information using holography.
  • An optical recording / reproducing apparatus that performs any one of the above, and when performing either the recording or the reproduction, a warning means for informing that the surface temperature of the optical recording medium has deviated from the allowable temperature range for the reference temperature.
  • a preferable temperature for recording and reproduction of the optical recording medium that is, a reference temperature is preferably 0 to 50 ° C., more preferably 10 to 40 ° C.
  • the reference temperature is less than 0 ° C, the moisture in the recording layer material may freeze, resulting in a significant change in the characteristics of the recording layer. If the reference temperature exceeds 50 ° C, the recording layer material Diffusivity may increase and normal recording may not be possible.
  • the allowable temperature range for use with respect to the reference temperature is preferably 30 to 30 ° C, more preferably -5 to 5 ° C.
  • the limit temperature range is preferably set in a temperature range wider than the above-mentioned preferable temperature range, preferably 40 to 40 ° C, more preferably 10 to 10 ° C.
  • the recording layer material, the substrate and other members may be softened and the optical recording medium may be deformed.
  • the information light and the reference light are irradiated so that the optical axis of the information light and the optical axis of the reference light are coaxial. And preferably used in a reproduction method.
  • the force mainly described for the collinear method is not limited to the collinear method, and other optical recording and reproducing methods using the two-beam interference method are also used.
  • a reproduction method can be used.
  • optical recording / reproducing apparatus of the present invention Through the following description of the optical recording / reproducing apparatus of the present invention, the optical recording method and optical reproducing method of the present invention will also be clarified.
  • the alerting means measures the surface temperature of the optical recording medium when the optical recording medium to be recorded or the optical recording medium to be reproduced is attached to the optical recording / reproducing apparatus, and When the surface temperature deviates from a use allowable temperature range with respect to a reference temperature, the optical recording medium is means for displaying a warning on the display unit of the optical recording / reproducing apparatus.
  • the surface temperature of the optical recording medium which is preferably a means for displaying a warning on the display unit of the optical recording / reproducing apparatus, is More preferably, it is a means for displaying a warning on the display unit of the optical recording / reproducing apparatus when the temperature deviates from the quasi temperature ⁇ 5 ° C.
  • the display can be appropriately selected according to the purpose for which there is no particular limitation. For example, “the surface temperature of the optical recording medium is not normal”, “the surface temperature of the optical recording medium is within the allowable temperature range for use. Display of characters and voices such as “The surface temperature of the optical recording medium exceeds the allowable operating temperature range—30 to 30 ° C”, “The recorded content cannot be retained”, etc. , Warning lamps, LED lights and other displays. As described above, when the optical recording / reproducing apparatus of the present invention is used, a notice is given that the measured surface temperature of the optical recording medium has deviated from the allowable use temperature, thereby improving the recording and reproducing quality. The decrease can be notified to the user.
  • the function stopping means measures the surface temperature of the optical recording medium when the optical recording medium to be recorded or the optical recording medium to be reproduced is attached to the optical recording / reproducing apparatus, and When the surface temperature deviates from the temperature range in which recording or reproduction is impossible, that is, out of the limit temperature range for use with respect to the reference temperature, the display unit of the optical recording / reproducing apparatus displays that recording or reproduction is impossible. And means for stopping any one of the reproductions. Further, the function stop means displays that recording or reproduction is impossible on the display unit of the optical recording / reproducing device when the surface temperature of the optical recording medium deviates from the reference temperature ⁇ 40 ° C.
  • the surface temperature of the optical recording medium which is preferably a means for stopping either recording or reproduction, deviates from the reference temperature ⁇ 10 ° C, recording or recording is performed on the display unit of the optical recording / reproducing apparatus. More preferably, it is means for displaying that reproduction is impossible and stopping either recording or reproduction.
  • the use limit temperature range is wider than the allowable use temperature range of the alerting means and does not overlap with the allowable use temperature range. This is because if there are overlapping temperature ranges, the overlapped range falls under both alerting and function stoppage, and it is not possible to determine which method is used! Therefore, the use limit temperature range in the function stop means is set in a range that does not overlap with the use allowable temperature range in the alerting means. If these temperature ranges overlap, both the alerting means and the function stopping means can be adopted in the overlapping part, and new conditions will be required, and the means will be complicated. become.
  • the display can be appropriately selected according to the purpose without any particular restrictions. For example, “the surface temperature of the optical recording medium is abnormal. The recording (playback) function is stopped.”, “The optical recording medium “Surface temperature exceeds the use limit temperature range. Recording (playback) function is stopped.”, “Use limit temperature range—over 40 to 40 ° C. Good recording (playback) is obtained. The function stops because there is no such thing ”,“ Recording content cannot be retained ”, etc. Display with text or voice, recording (playback) function stop lamp, LED lighting, etc.
  • the function stopping method can be appropriately selected according to the purpose without any particular limitation.
  • the surface temperature of the optical recording medium is temporarily within the use limit temperature range, preferably the use allowable. Examples include a method of stopping at least one of the information light, the reference light, and the reproduction light before returning to the temperature range.
  • the optical recording / reproducing apparatus when the optical recording / reproducing apparatus is turned on, the optical recording / reproducing apparatus is installed in a non-contact and close proximity to the surface of the optical recording medium attached to the optical recording / reproducing apparatus.
  • the temperature sensor is activated and measures the surface temperature of the optical recording medium.
  • the alerting means determines whether or not the measured surface temperature is within the allowable temperature range for use with respect to the reference temperature. If the temperature is within the allowable operating temperature range, during recording, the optical recording medium is irradiated with information light and reference light, and an interference image is formed on the recording layer for recording.
  • the hologram recorded on the optical recording medium is irradiated with reproduction light, diffracted light is generated from the hologram, received by a detector, image data is decoded, and the recorded information is reproduced.
  • the warning means is used when the surface temperature deviates from the allowable operating temperature range! / Displays the warning on the display unit, and if the surface temperature is out of the use limit temperature range, the function stop means displays that, and the function of recording or reproduction Is stopped.
  • the temperature sensor can be appropriately selected according to the purpose for which there is no particular limitation, and examples thereof include a non-contact radiation thermometer, a contact thermometer, and a thermometer.
  • the arrangement of the temperature sensor with respect to the optical recording medium can be appropriately selected according to the purpose for which there is no particular limitation.
  • the optical recording medium has a disk shape.
  • the angle ⁇ 1 between the line L1 connecting the center position of the pickup that irradiates information light and reference light and the center of the optical recording medium, and the line L2 connecting the center position of the temperature sensor and the center of the optical recording medium is 10 to 180 °, and the temperature sensor is located on the inner side of the outer edge of the optical recording medium and disposed at a non-contact position with the surface of the optical recording medium.
  • the ⁇ 1 is particularly preferably 60-180 °, more preferably 30-180 ° force. ⁇ If 1 is less than 10 °, the temperature may not be measured accurately due to the influence of the recording light. Further, the difference between the distance dl between the center position of the pickup that irradiates the information light and the reference light and the center of the optical recording medium and the distance d2 between the center position of the temperature sensor and the center of the optical recording medium is 20 mm or less. It is preferable to have 10mm or less, and more preferably 5mm or less. If the differential force of the distance between dl and d2 exceeds 20 mm, the actual temperature of the recording layer and the disengaged temperature are measured, and temperature control may not be performed properly.
  • the difference between the distance dl and the distance d2 corresponds to the movement.
  • the temperature sensor may be movable to the radius method of the optical recording medium so as to keep the numerical range. Further, the temperature sensor may be fixedly installed at a position where the difference between the distance dl and the distance d2 is within the numerical range regardless of the position of the pickup force.
  • the distance between the temperature sensor and the surface of the optical recording medium is preferably 0.5 to 50 mm, more preferably 1 to 2 Omm. If the distance is less than 0.5 mm, the temperature sensor may come into contact with the surface of the optical recording medium, and normal rotation of the optical recording medium may not be obtained. If the distance exceeds 50 mm, In some cases, the surface temperature of the optical recording medium cannot be measured properly.
  • the number of the temperature sensors can be appropriately selected according to the purpose without any limitation as long as it is installed at least at one place, and may be 2 to 5, for example. If it is installed in large numbers, the surface temperature can be measured with such accuracy, but processing such as collection of each measured temperature and calculation of the average value may be complicated.
  • the display unit is provided at an easy-to-see position such as the operation unit of the optical recording / reproducing apparatus of the present invention, and displays alerts, function stops, and the like.
  • the display unit can be selected as appropriate according to the purpose for which there is no particular limitation, and examples thereof include characters and image displays, voice displays, and vibration displays shown in FIGS.
  • Examples of the image display or character stop include display on a liquid crystal, LED, indicator lamp, and the like.
  • Examples of the voice stop include a recorded voice, a buzzer, and the like. An indication is given.
  • As the previous period vibration display there is a display such as vibrating a button such as an operation part.
  • the other means is not particularly limited and can be appropriately selected according to the purpose.
  • Examples thereof include a cooling means and a heating means for the optical recording medium, and further include information light, reference light, and reproduction.
  • the cooling means is not particularly limited and can be appropriately selected according to the purpose.
  • a non-contact type cooler is preferred. Specifically, when a current is passed through a joint between two kinds of metals, One metal force When heat is transferred to the other metal, cooling by a Peltier cooler incorporating an element utilizing the Peltier effect, cooling by external air supply, cooling by a heat pipe, and the like can be mentioned. Among these, a Peltier cooler is preferable in terms of easy control.
  • the heating means is not particularly limited and can be appropriately selected according to the purpose.
  • non-contact type heaters using electromagnetic waves such as light and RF are preferred.
  • optical lamps such as lamps (however, the photosensitive wavelength is cut so that the optical recording medium is not exposed), hot plates, cable heaters, cartridge heaters, multi-cell heaters, thick film heaters, flexible heaters, and the like.
  • the infrared heater and the halogen lamp are preferable.
  • the focusing and tracking servo means can be appropriately selected according to the purpose without any particular limitation.
  • distortion information such as positional deviation of the reproduction interference image is detected and performed based on the distortion information.
  • a control means etc. are mentioned.
  • the method for detecting the distortion information is not particularly limited, and can be appropriately selected according to the purpose.
  • a genuine interference image is used as a reference and a value that minimizes a certain calculation formula is obtained. Therefore, there is a method for obtaining the X and Y deviations in the surface direction of the diffracted light receiving part.
  • Examples of the method for obtaining the minimum value include a sequential calculation method, a partial differentiation method, and a nonlinear least square method.
  • D (x, y) is represented as pixel density information
  • the genuine interference image is represented as D (x, y)
  • the reproduced interference image is represented as D (x, y).
  • the density information of the pixel takes a value of 0 to 255 for an 8-bit sensor, for example. Setting a threshold level (threshold) and separating it into two values, 0 and 1, is preferable because it simplifies the calculation.
  • the x and y represent the vertical and horizontal axis position coordinates in the two-dimensional sensor (the diffracted light receiving part of the detector). For example, in a two-dimensional sensor having 1,024 X 768 pixels, X takes a value from 1 to 1,024 and y takes a value from 1 to 768. In the two-dimensional sensor of X X y, x takes a value in the range of l to x, and max max max y takes a value in the range of l to y.
  • ⁇ , Ay calculation may be performed to minimize the following ⁇ .
  • the sequential calculation method changes ⁇ ⁇ , A y, ⁇ within a certain range, calculates K respectively, and when ⁇ is minimized, ⁇ ⁇ , ⁇ ⁇ , ⁇ seems to be the most probable It is a method of setting a value.
  • the calculation processing time is a little hard. The minimum value can be found most reliably.
  • the equation for obtaining ⁇ is partially differentiated with respect to respective parameters ⁇ ⁇ and A y. This is a method of solving this as a simultaneous equation.
  • Computational processing time is a force that can be shortened. Sometimes it is difficult to find a solution, or multiple solutions can be obtained, so it is preferable to use it only when the displacement is not significantly shifted.
  • the non-linear least square method is a method of determining an unknown parameter so as to minimize the sum of squares of the residual of a measured value and a calculated value. For a set of structural parameters, a residual sum of squares is obtained. Generate a set of structural parameters such that the derivative of the residual sum of squares is negative, and calculate the residual sum of squares for those values. This process is repeated to reach the minimum residual sum of squares. Examples include the steepest descent method, the Gauss-Newton method, and the (modified) Marquardt method.
  • the steepest descent method is a method of searching for a solution along a direction in which the decrease in the residual sum of squares is locally maximized in the number of iterations, and the convergence region around the minimum point is a relatively wide force convergence speed. Can be slow.
  • the Gauss-Newton method is an iterative improvement method using an approximation that assumes that the least squares problem to be solved is almost linear, and it can converge quickly when the initial value of the estimation is close to the solution.
  • the convergence area is generally narrow.
  • the (modified) Marquardt method is a combination of the steepest descent method and the Gauss-Newton method.
  • the steepest descent method is used.
  • the Gauss-Newton method is estimated. As a result, the solution can be obtained stably and with a small number of repetitions.
  • the distortion information detection target can be appropriately selected according to the purpose without any particular limitation.
  • the intensity of diffracted light WZcm 2
  • SNR ratio of signal to noise
  • the detection method based on the intensity (WZcm 2 ) of the diffracted light can be appropriately selected according to the purpose without any particular limitation, and examples include a detection method using a photodiode, CCD, CMOS, or the like. It is done.
  • an optical branching mirror is installed in a part of the optical path, and the branched light having the optical spectral mirror force is made incident on the photodiode, so that the diffracted light can be detected.
  • the intensity can be detected.
  • Strain information is detected based on the intensity distribution of the diffracted light.
  • the detection method further includes a detection method for calculating the image data force. Specifically, the distribution of the amount of light corresponding to the element itself that detects the image data is obtained by calculating the image data, and the amount of the amount of light is calculated. This is a method for detecting the amount of deviation based on the distribution. Based on the calculated light intensity distribution, distortion information is detected from the position of the peak value. Among the detection methods based on the intensity of the diffracted light, it is preferable to use a detection method that calculates from image data because the device can be simplified.
  • the detection method based on the SNR can be appropriately selected according to the purpose for which there is no particular limitation. Examples thereof include a method of calculating from image data and providing an SNR detector.
  • the distortion information can be detected by decoding the image data and calculating the number of errors at that time.
  • a reference value for determining the contrast of image data is provided, the reference value is compared with the image data, the signal amount and the noise amount are calculated, and the distortion information is calculated from the ratio. Can be detected.
  • the detection method based on the number of errors in the reproduction signal can be selected as appropriate according to the purpose without any particular restriction, and includes, for example, a detection method that also calculates image data force.
  • distortion information can be detected by decoding image data and calculating the number of errors at that time.
  • the detection method of the reproduction interference image shift or the like can be appropriately selected according to the purpose without any particular limitation.
  • the amount of positional deviation for example, (1 .5 bit, 0.3 bit, —0.2 bit), (1 5 nm, 3 nm, — 0.2 nm).
  • the angle from the Y axis of the rotation method about the Z axis may be ⁇ (rad) and the angle ⁇ may be 0.5 °, for example, and the deviation may be expressed by the angle change amount. Further, it can be processed as a positional shift of the diffracted light receiving surface in the X-axis and Y-axis directions, and it does not have to be detected as an angle change amount.
  • the deviation may be expressed by a reduction ratio and an enlargement ratio.
  • the enlargement ratio when the true interference image is 100, the increase / decrease in the area of the reproduced interference image with respect to the area of the true interference image is reduced, and the enlargement ratio.
  • it can be expressed as -10% (reduction rate).
  • the reduction ratio and the enlargement ratio when the genuine interference image is 1 can be expressed as 0.1, for example.
  • the method of correcting the irradiation direction of the reproduction light can be appropriately selected according to the purpose without any particular limitation.
  • the reproduction light can be focused or tracked based on the detected distortion amount.
  • the image data of the reproduction interference image detected by the diffracted light receiving unit is taken into the image sensor 71. Further, the data is read into the CPU (central processing unit) 73.
  • the image data of the intrinsic interference image is stored in the memory 74 and is read into the CPU 73 as necessary.
  • a calculation process is performed by the CPU 73, and a deviation amount, an enlargement rate, a reduction rate, etc. of the reproduced interference image with respect to the intrinsic interference image are obtained. Desired.
  • tracking is controlled based on the shift amount, and focus control is performed based on the enlargement ratio or reduction ratio.
  • the correction based on the enlargement ratio (or reduction ratio) is preferably performed by controlling the focusing lens in the depth direction in the optical path of the reproduction light.
  • a control method that changes the magnification of the reproduction light in the optical system is more preferable. For example, a method of controlling an expansion rate of the reproduction light by installing an expander in the optical path of the reproduction light is more preferable.
  • the image data of the intrinsic interference image may be (1) a fixed pattern common to any hardware object (optical recording / reproducing device), or (2) an individual determined for each disk (optical recording medium). It may be a pattern.
  • the disk it is preferable to record on the disk by a method other than the hologram image (interference image).
  • a method other than the hologram image interference image
  • RFID Radio Frequency—IDentication
  • a recording layer for example, DVD-R
  • DVD-R DVD-R
  • the wavelength of the laser beam As a correction for the temperature change, it is also possible to change the wavelength of the laser beam.
  • the correction is preferably performed in combination with the focus and tracking control method. Examples of the method for changing the wavelength of the laser beam include laser temperature control.
  • Examples include a method of calculating the focal length to be controlled based on the amount of distortion obtained by detecting ⁇ , the reduction ratio, the enlargement ratio, and the like, and moving by the obtained movement amount.
  • the method for detecting the amount of movement for fine adjustment of the amount of movement during the movement for example, the astigmatism method, Foucault method, and critical angle method ("Illustrated Compact Disc Reader” Ohm, Hirataro Nakajima, , Hiroshi Ogawa, 1st edition, published on November 10, 1986)).
  • a deviation amount between a position to be reproduced on a recording layer formed on a detected disk and a focal position of the reproduction light is detected. That is, the deviation amount between the focal length (the distance between the center of the objective lens and the focal point of the reproduction light) and the distance from the center of the objective lens to the portion of the recording layer to be reproduced is detected.
  • a beam splitter or the like is placed from the light source in the middle of the objective lens in the optical path through which the light beam emitted from the light source passes through the object lens and is irradiated onto the optical recording medium, and the reflected light is removed from the cylinder. The light is transmitted through a lenticular lens and imaged.
  • the imaging surface is circular, the focal lengths coincide with each other.
  • the optical recording medium is located too close to the objective lens. It can be detected that the recording medium is too far from the objective lens.
  • the detection is performed by dividing the reflected light into four parts and comparing the brightness of the diagonal regions of the imaging.
  • the Foucault method uses the same configuration as the method using the astigmatism and the method in which the beam splitter is arranged to extract the reflected light and the reflected light passes through the cylindrical lens.
  • a prism is used for the portion where the reflected light transmitted by the cylindrical lens forms an image, and the image is formed at the apex angle of the prism, the focal lengths coincide with each other, and when the image passes through the apex angle, the image is formed.
  • the optical recording medium is too close to the objective lens and an image is formed before the apex angle, it can be detected that the optical recording medium is too far from the objective lens.
  • the detection is not performed for the reflected light divided in two.
  • One sensor can be arranged to sense the brightness of the divided reflected light and detect the imaging position.
  • the critical method detects a shift between a position where the recording layer formed on the detected disk is to be reproduced and a focus position of the reproduction light. That is, a deviation between the focal length (the distance between the center of the objective lens and the focal point of the reproduction light) and the distance from the center of the objective lens to the portion of the recording layer to be reproduced is detected.
  • the incident angle is exactly the critical angle with respect to the light beam at the center of the incident light beam between the light source and the objective lens in the optical path where the light beam emitted from the light source passes through the objective lens and is irradiated onto the optical recording medium.
  • a prism having an angle of (all incident light rays are reflected at the prism boundary surface) is disposed, the reflected light is extracted from the prism, and the focus position is detected by sensing the brightness of the reflected light.
  • the reflected light reflected by the prism makes use of the fact that the amount of light is reduced, and the distance is determined by the polarity of + ⁇ . The position can be detected.
  • the tracking control can be selected as appropriate according to the purpose for which there is no particular limitation.
  • the above-mentioned device in the X-axis direction, deviation in the Y-axis direction, deviation in the Z-axis direction
  • the angle ⁇ Examples include a method of calculating a shift of a track to be controlled based on the amount of distortion obtained by detecting the reduction ratio, the enlargement ratio, and the like, and moving by the obtained movement amount.
  • the movement amount detection method for fine adjustment of the movement amount during the movement for example, a three-beam method, a push-pull method, and a phase difference detection method ("illustrated compact disc reader” Ohm, Nakajima Tracking control using track position detection by Hirataro and Hiroshi Ogawa, 1st edition, published on November 10, 1986).
  • the three-beam method is a method for detecting a misalignment position of servo light with respect to a track formed on a disk to be detected.
  • Three beams of a substantially circular main beam, sub beam A, and sub beam B are detected.
  • the secondary beam A, the main beam, and the secondary beam B are arranged in a substantially straight line at equal intervals, and the center of the circle of the main beam is illuminated with respect to the center of the track width.
  • the lower part of the circle of the secondary beam A is placed at a position where it touches the end of the width of the track, and the upper part of the circle of the secondary beam B is located at the position where it touches the end of the width of the track.
  • the push-pull method is a method of detecting an irradiation position deviation of servo light with respect to a track formed on a detected disk, and irradiating the track with one beam.
  • a two-split photodetector that detects the reflected light in two is used.
  • the beam is irradiated to the central portion of the track width, the right and left light intensities of the divided reflected light are equal, and when the beam is shifted left and right in the width direction of the track, the reflection of the track partial force is reflected. Since the intensity of the reflected light from the track other than the track is strong, the left and right light intensity distributions of the divided divided light are non-target and can be detected to be shifted.
  • the phase difference detection is a method of detecting the irradiation position deviation of the servo light for the track formed on the detected disk.
  • the push-pull method is further divided into two parts.
  • a quadrant photodetector is used.
  • the left and right light intensities of the four areas of the reflected light divided into four are equal, and if the beam is shifted left or right in the width direction of the track, The intensity of the reflected light from the track portion is weak, and the intensity of the reflected light with the force other than the track is strong. Therefore, the light intensity distribution in the four regions of the four-part divided reflected light By detecting the cloth, it becomes a non-right and left object, and it can be detected that it is displaced.
  • the means for tracking control and focus control can be appropriately selected according to the purpose for which there is no particular limitation, and examples thereof include a servo mechanism.
  • the servo mechanism can be appropriately selected according to the purpose without any particular limitation.
  • the movement amount is generated as a focus error signal, and a phase compensation drive amplifier that amplifies the signal is used.
  • Command the drive device to move the position of the objective lens For example, a mechanism for controlling the focal length by moving.
  • the driving device can be appropriately selected according to the purpose without any particular limitation, and examples thereof include a finisher and a stepping motor.
  • the optical recording method and the optical reproducing method of the present invention are performed on the recording information recorded on the optical recording medium.
  • FIG. 24 is an overall configuration diagram of an optical recording / reproducing apparatus according to the present invention.
  • the optical recording / reproducing apparatus includes an optical recording apparatus and an optical reproducing apparatus, and can record on and reproduce from an optical recording medium.
  • the optical recording / reproducing apparatus 100 controls a spindle 81 to which the optical recording medium 21 is attached, a spindle motor 82 for rotating the spindle 81, and the spindle motor 82 so as to keep the rotational speed of the optical recording medium 21 at a predetermined value.
  • Spindle servo circuit 83 that performs!
  • the optical recording / reproducing apparatus 100 records information by irradiating the optical recording medium 21 with information light and a recording reference light, and irradiates the optical recording medium 21 with a reproduction reference light, and replays it.
  • a pick-up 31 for detecting the raw light and reproducing the information recorded on the optical recording medium 21 and a drive device 84 that enables the pickup 31 to move in the radial direction of the optical recording medium 21 are provided. ing.
  • a temperature sensor 93 is provided in the vicinity of the optical recording medium 21, and a display unit 92 that displays a warning or warning based on the temperature sensed by the temperature sensor 93 is provided.
  • a function stop device is provided to stop the recording or playback function when the sensed temperature deviates from a predetermined temperature range.
  • the optical recording / reproducing apparatus 100 includes a detection circuit 85 for detecting a focus error signal FE, a tracking error signal TE, and a reproduction signal RF from the output signal of the pickup 31, and a focus error detected by the detection circuit 85. Based on the signal FE, the actuator in the pickup 31 is driven to move the objective lens (not shown) in the thickness direction of the optical recording medium 21. Based on the tracking error signal TE detected by the detection servo circuit 85 and the focus servo circuit 86 for moving the focus servo, the actuator in the pickup 31 is driven to move the objective lens in the radial direction of the optical recording medium 21.
  • a tracking servo circuit 87 that performs tracking servo, a slide servo that moves the pickup 31 in the radial direction of the optical recording medium 21 by controlling the driving device 84 based on the tracking error signal TE and a command from the controller described later.
  • slide servo circuit 88 To perform tracking servo, a slide servo that moves the pickup 31 in the radial direction of the optical recording medium 21 by controlling the driving device 84 based on the tracking error signal TE and a command from the controller described later.
  • the optical recording / reproducing apparatus 100 further decodes output data of a later-described CMOS or CCD array in the pickup 31 to reproduce data recorded in the data area of the optical recording medium 21, and to Data correction circuit (not shown) that corrects the amount, signal processing circuit 89 that reproduces the basic clock and discriminates the address from the reproduction signal RF from the detection circuit 85, and the entire optical recording and reproduction device 100 And a controller 90 for giving various instructions to the controller 90.
  • the controller 90 inputs the basic clock and address information output from the signal processing circuit 89, and controls the pickup 31, spindle servo circuit 83, slide servo circuit 88, and the like.
  • the spindle servo circuit 83 inputs the basic clock output from the signal processing circuit 89.
  • the controller 90 has a CPU (Central Processing Unit), ROM (Read Only Memory), and RAM (Random Access Memory), and the CPU executes a program stored in the ROM using the RAM as a work area. The function of the controller 90 is realized.
  • the information light and the reference light can be appropriately selected according to the purpose without any particular limitation.
  • coherent laser light emitted from a light source is preferable.
  • the laser beam is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include laser light having a wavelength of 360 to 850 nm and also having one or more wavelength forces. .
  • the wavelength is preferably 380-800 nm force S, more preferably 400-750 force, most easily visible in the center of the visible region, and more preferably 500-600 nm force! /.
  • the wavelength is less than 360 nm, it is difficult to design an optical system, and when it exceeds 850 nm, the recording capacity may be reduced.
  • the light source of the laser light can be appropriately selected according to the purpose without any particular limitation, and examples thereof include a solid-state laser light oscillator, a semiconductor laser light oscillator, a liquid laser light oscillator, and a gas laser light oscillator. It is done. Of these, gas laser oscillators and semiconductor laser oscillators are preferred.
  • the irradiation method of the information light and the reference light can be appropriately selected according to the purpose without any particular limitation. For example, one laser beam emitted from the same light source is divided. Two laser beams emitted from different light source powers that may be irradiated as the information light and the reference light may be irradiated.
  • the irradiation directions of the information light and the reference light can be appropriately selected according to the purpose without any particular limitation.
  • the information light and the reference light can be coaxial with the optical axis. U, what is irradiated.
  • the information is recorded by causing the information light (object light) and reference light to interfere with each other inside the optical recording medium and writing interference fringes generated at that time on the optical recording medium.
  • information to be recorded is processed into digital data in units of one spot to be irradiated, and about 4, OOObit data is used as a page data pattern in each spot. It is formed.
  • a spatial light modulator (SLM: Spatial Light Modulator) is used to make the screen a pixel (pixel) that is the smallest unit of two-dimensional pattern data. ) Is finely processed.
  • the image information is subjected to arithmetic processing for representing a time signal in the frequency domain by computer digital processing using Fourier transform, and becomes digital data of “0” or “1”.
  • the information light composed of the digital data passes through the objective lens 12 and is condensed to a certain size at the recording portion of the recording layer 4 in the optical recording medium 21, Recording is performed in units of 32 light irradiation spots that are focused.
  • the information light 37 is collected as a light irradiation spot 32 having a diameter of about 200 m, and the reference light 38 is irradiated at a certain angle.
  • the information light 37 and the reference light 38 are recorded on the recording layer 4 as interference fringes.
  • the optical recording medium 21 is rotated by a force pitch, and the light irradiation spot 32 is irradiated for each pitch, so that multiple recordings are sequentially performed.
  • optical recording / reproducing apparatus, the optical recording method, and the optical recording medium used in the optical reproducing method of the present invention are appropriately selected on a support, a recording layer for recording information using holography, and as necessary. This is an optical recording medium having other layers.
  • the optical recording medium may be a transmissive type or a reflective type, which may be a relatively thin planar hologram that records information such as two dimensions, or a volume hologram that records a large amount of information such as a three-dimensional image. Good.
  • any hologram recording method may be used, such as an amplitude hologram, a phase hologram, a blazed hologram, or a complex amplitude hologram.
  • the optical recording medium has at least a first substrate, a second substrate, a recording layer on the second substrate, and a filter layer between the second substrate and the recording layer.
  • An optical recording medium used in a collinear method in which the information light and the reference light are irradiated so that the optical axis of the information light and the optical axis of the reference light are coaxial is preferable.
  • the shape, structure, size and the like of the first substrate are not particularly limited and can be appropriately selected according to the purpose.
  • Examples of the shape include a disk shape and a card shape flat plate.
  • the structure may be a single layer structure, or may be a laminated structure.
  • the size may be appropriately determined according to the size of the optical recording medium. You can choose.
  • any of inorganic materials and organic materials that are not particularly limited can be preferably used, but the mechanical strength of the optical recording medium can be ensured, Use in the case of a transmissive type where light used for recording and reproduction enters through the substrate It is necessary to be sufficiently transparent in the wavelength region of light, and the light transmittance is preferably 70 to 99.9%, preferably 80 to 99%, more preferably 90 to 98%. If the light transmittance is less than 70%, the signal reading accuracy may be lowered, and the higher the light transmittance, the better. However, if it exceeds 99.9%, the production efficiency may be lowered. is there.
  • the inorganic material include glass, quartz, and silicon. Among these, glass is preferable from the viewpoint of accuracy.
  • the organic material examples include acetate-based resins such as triacetyl cellulose, polyester-based resins, polyethersulfone-based resins, polysulfone-based resins, polycarbonate-based resins, polyamide-based resins, and polyimide-based resins.
  • acetate-based resins such as triacetyl cellulose, polyester-based resins, polyethersulfone-based resins, polysulfone-based resins, polycarbonate-based resins, polyamide-based resins, and polyimide-based resins.
  • such resins include polyethylene resin, polysalt vinylidene resin, polyacrylic resin, polylactic acid resin, plastic film laminated paper, and synthetic paper. These may be used alone or in combination of two or more.
  • the first substrate may be appropriately synthesized or a commercially available product may be used.
  • the thickness of the first substrate is not particularly limited and can be appropriately selected according to the purpose, and is preferably 0.1 to 5 mm, more preferably 0.3 to 2 mm. If the thickness of the substrate is less than 0.1 mm, it may not be possible to suppress distortion of the shape during storage of the disc. If the thickness exceeds 5 mm, the overall weight of the disc increases and it is rotated by a drive motor or the like. If used, an excessive load may be applied.
  • the shape, structure, size and the like of the second substrate can be appropriately selected according to the purpose without particular limitation, and examples of the shape include a disk shape and a card shape. Therefore, it is necessary to select a material that can ensure the mechanical strength of the optical recording medium. In addition, when light used for recording and reproduction enters through the substrate, it is necessary to be sufficiently transparent in the wavelength region of the light used.
  • the material for the second substrate glass, ceramics, resin, etc. are usually used, but resin is particularly preferable from the viewpoints of moldability and cost. Moreover, glass is also suitable from the point of accuracy.
  • the resin examples include polycarbonate resin, acrylic resin, epoxy resin, polystyrene resin, acrylonitrile styrene copolymer, polyethylene resin, polypropylene resin, silicone resin, fluorine resin, ABS resin. Fat, urethane slag, etc. are mentioned. Of these, polycarbonate resin and amorphous polyolefin resin are particularly preferred from the viewpoints of moldability, optical properties, and cost.
  • the second substrate is provided with a plurality of address servo areas serving as positioning areas extending linearly in the radial direction at predetermined angular intervals, and a sector-shaped section between adjacent address servo areas is a data area. It has become.
  • address servo area information for recording focus servo and tracking servo using the sampled servo method, address information, and force are recorded in advance using embossed pits (servo pits) (preformat).
  • servo pits embossed pits
  • the focus servo can be performed using the reflective surface of the reflective film. For example, wobble pits can be used as information for performing tracking servo. If the optical recording medium has a card shape, the servo pit pattern may be omitted.
  • the wavelength of the servo light is not particularly limited and can be appropriately selected according to the purpose.
  • a wavelength different from the information light and the reference light is preferable.
  • the force is more preferable, among these, 405, 650, 780nm! /
  • the displacement force Particularly preferred is the power of 405 nm, and most preferred is 405 nm.
  • the track pitch of the servo pit pattern there is no particular limitation on the track pitch of the servo pit pattern, depending on the purpose. For example, when the wavelength of the servo light is 620 to 700 nm, the track pitch is 0.85 to 30 111, preferably 1 to 20 111, and 1. 3-10 / zm is more preferable 1. 5-2 m force S is more preferable. If the track pitch is less than 0.85 m, tracking may become unstable due to light scattering in the middle of the recording layer, and if it exceeds 30 m, the recording density may decrease.
  • the track pitch is preferably 1.7 to 3 O / zm force, preferably 1.9 to 20 111, and particularly preferably 2.3 to 5 m force. It's better! If the track pitch is less than 1.7 m, tracking may become unstable due to light scattering in the middle of the recording layer, and if it exceeds 30 m, the recording density may decrease.
  • the track pitch is preferably 0.4 to 30 m force S, more preferably 0.6 to 20 m force S, and more preferably 0.8 to 5 m force S. 1 ⁇ 2 111 is particularly preferred. If the track pitch is less than 0, tracking may become unstable due to light scattering in the middle of the recording layer, and if it exceeds 30 m, the recording density may decrease.
  • the track pitch is preferably 0.32 to 0.4 / zm.
  • the groove depth of the servo pit pattern is not particularly limited and can be appropriately selected according to the purpose.
  • the groove depth is ⁇ ⁇ ( 10 ⁇ ) to ⁇ (3 ⁇ ) is preferable, ⁇ ⁇ (8 ⁇ ) to ⁇ (4 ⁇ ) is more preferable, and ⁇ / (7 ⁇ ) to ⁇ / (5 ⁇ ) is more preferable.
  • represents the medium refractive index of the pit portion of the servo pit pattern, that is, the refractive index of the material on the light incident surface side of the pit portion.
  • the groove depth is preferably 135 to 41 nm. Usually, even if n varies somewhat, in the case of 650 nm, 50 to 120 nm force S is preferable, and 60 to 110 nm is more preferable 80 to: LOOnm is particularly preferable.
  • the groove depth is preferably a value proportional to the wavelength. For example, if the wavelength of servo light is 780 nm and n is 1.6, 163 to 49 nm is preferable, and if the wavelength of servo light is 405 ⁇ m and n is 1.6, 84 to 25 nm is preferred.
  • the groove width of the servo pit pattern is not particularly limited, and is appropriately selected according to the purpose. For example, it is preferably wider than the width of normal CD, DVD, BD, HD, DVD. Specifically, when the wavelength of the servo light is 650 nm, 0.25 ⁇ : L 0 force S is preferable, 0.35 ⁇ 0.95 m force S is more preferable, 0.45 ⁇ 0.85 111 More preferred, especially between 0.55 and 0.75 power! / ⁇ .
  • the wavelength of the servo light is 780 nm
  • 0.4 to 2 m force is preferable, 0.6 to 1.6 m force is more preferable, 0.8 to 1.3 m force is more preferable, 1.0 to 1 1 power ⁇ especially preferred!
  • 0.2 to 1.0 m force S is preferable, 0.25 to 0. force S is more preferable, 0.3 to 0. force S is more preferable, 0.35 to 0.5 Power S Especially preferred.
  • the angle of the servo pit pattern is not particularly limited and may be appropriately selected according to the purpose.
  • the angle is preferably 25 to 90 degrees, and more preferably 35 to 80 degrees. 40-70 A degree of 45-60 degrees is particularly preferred.
  • the pattern shape is rectangular.
  • the thickness of the second substrate is not particularly limited and can be appropriately selected depending on the purpose, and is preferably 0.1 to 5 mm, more preferably 0.3 to 2 mm. If the thickness of the substrate is less than 0.1 mm, it may not be possible to suppress the distortion of the shape during storage of the disc. If the thickness exceeds 5 mm, the weight of the entire disc increases and an excessive load is applied to the drive motor. There are times when I can help.
  • the reflective film is formed on the surface of the servo pit pattern of the substrate.
  • the material of the reflective film it is preferable to use a material having a high reflectance with respect to the recording light and the reference light.
  • the wavelength of light to be used is 400 to 780 nm, for example, Al, A1 alloy, Ag, Ag alloy, etc. are preferably used.
  • the wavelength of light to be used is 650 nm or more, it is preferable to use Al, A1 alloy, Ag, Ag alloy, Au, Cu alloy, TiN, or the like.
  • an optical recording medium that reflects light and can be added or deleted such as a DVD (digital video disc), is used. There is an error in which part It is also possible to add or rewrite directory information such as how the replacement process was performed without affecting the hologram.
  • the method for forming the reflective film can be appropriately selected according to the purpose without any particular limitation, and various vapor phase growth methods such as vacuum deposition, sputtering, plasma CVD, photo-CVD, An ion plating method, an electron beam evaporation method, or the like is used. Among these, the sputtering method is excellent in terms of mass productivity and film quality.
  • the thickness of the reflective film is preferably 50 nm or more, more preferably lOOnm or more, so that sufficient reflectance can be realized.
  • the recording layer can record information using holography, and when irradiated with an electromagnetic wave of a predetermined wavelength ( ⁇ -ray, X-ray, ultraviolet ray, visible ray, infrared ray, radio wave, etc.), the recording layer depends on its intensity. Therefore, a material whose optical characteristics such as an extinction coefficient and a refractive index change is used.
  • a predetermined wavelength ⁇ -ray, X-ray, ultraviolet ray, visible ray, infrared ray, radio wave, etc.
  • the material of the recording layer includes a photothermal conversion material, a photosensitive resin, a binder, and other components appropriately selected as necessary.
  • the photosensitive resin is not particularly limited as long as it is used for holography, and can be appropriately selected according to the purpose.
  • a photopolymer is preferable.
  • the photopolymer can be appropriately selected according to the purpose without any particular limitation as long as it is a polymer that undergoes a polymerization reaction upon irradiation with light, and includes, for example, a monomer and a photoinitiator. Further, it contains other components such as a sensitizer and oligomer as required.
  • Examples of the photopolymer include, for example, "Photopolymer Handbook” (Industry Research Council, 1 989), "Photopolymer Technology” (Nikkan Kogyo Shimbun, 1989), SPIE Proceedings Vol. 3010 p354-372 (1997) and SPIE Proceedings Vol. 3291 p89-103 (1998) can be used. Also, U.S. Patent Nos. 5,759,721, 4,942,112, 4,959,284, 6,221,536, U.S. Patents No. 6, 743, 552, WO 97/44714 Bread FLET'S K No. 97Z13183 Panfrets ⁇ 99Z26112 Panflets ⁇ , No. 97 Z13183 Pamphlet, Patent No. 2880342, No. 2873126, No. 28 49021, No. 3057082, No. 3161230 It is possible to use photopolymers described in JP-A-2001-316416, JP-A-2000-275859 and the like.
  • Examples of the method of changing the optical characteristics by irradiating the photopolymer with recording light include a method using diffusion of a low molecular component.
  • a component that diffuses in the opposite direction to the polymerization component may be added, or a compound having an acid cleavage structure may be added separately from the polymer.
  • Good When forming a recording layer using a photopolymer containing the low molecular component, a structure capable of holding a liquid in the recording layer may be required.
  • the compound having an acid cleavage structure is added, the volume change may be suppressed by compensating for the expansion caused by the cleavage and the shrinkage caused by the polymerization of the monomer.
  • the monomer can be appropriately selected according to the purpose without any particular limitation.
  • a radical polymerization type monomer having an unsaturated bond such as an acryl group or a methacryl group, an epoxy ring oxetane.
  • examples thereof include a cationic polymerization type monomer having an ether structure such as a ring.
  • These monomers may be monofunctional or polyfunctional.
  • what utilized the photocrosslinking reaction may be used.
  • radical polymerization type monomer examples include, for example, attalyloyl morpholine, phenoxy shetyl acrylate, isobornyl acrylate, 2-hydroxypropyl acrylate, 2-ethyl hexyl acrylate, 1,6 hexanediol Diatalylate, Tripropylene glycol diatalylate, Neopentyl glycol ⁇ Modified diatalylate, 1,9-nonanediol diatalylate, Hydroxypivalate neopentyl glycol diatalylate, ⁇ Modified bisphenol ⁇ ⁇ ⁇ Diatalylate, polyethylene glycol Diatalylate, Pentaerythritol Triatalylate, Pentaerythritol Tetraatalylate, Pentaerythritol Hexaatalylate, EO Modified Glycerol Tritalylate, Trimethylol Property Bird strike rate
  • Examples of the cationic polymerization type monomer include bisphenol A epoxy resin, phenol novolac epoxy resin, glycerol triglycidyl ether, 1,6 hexane glycidyl ether, butyltrimethoxysilane, and 4-butylphenol trimethoxysilane. , ⁇ -methacryloxypropyltriethoxysilane, compounds represented by the following structural formulas ( ⁇ 1) to ( ⁇ 6), and the like.
  • These monomers may be used alone or in combination of two or more.
  • Examples of the photoinitiator include materials that cause radical polymerization, cationic polymerization, crosslinking reaction, and the like by light irradiation as long as they are sensitive to recording light.
  • photoinitiator examples include 2, 2′-bis (o black-mouthed) 4, 4 ′, 5, 5, —tetraphenyl 1, 1, 1, biimidazole, 2, 4, 6 Tris (trichloromethyl) 1, 3, 5 Triazine, 2, 4 Bis (trichloromethyl) 6— (p-methoxyphenol) 1, 3, 5—Triazine, diphenyl tetrafluoroborate, diphenyl rhododonium Xafluorophosphate, 4,4'-di-tert-butyldiphenyl-tetrafluoroborate, 4-jetylaminophenol-benzenediazo-umhexafluorophosphate, benzoin, 2-hydroxy-1-2-methyl 1-phenol 2-Lupropane-2-one, benzophenone, thixanthone, 2, 4, 6 trimethylbenzoyldiphenyl sulphosphoxide, triphenylbutyl borate tetraethylamine, bis (7 ⁇ 5
  • a photopolymerization inhibitor or an acid inhibitor may be added.
  • polymerization inhibitors and antioxidants include hydroquinone, p-benzoquinone, hydroquinone monomethyl ether, 2,6 di tert-butyl-p talezole, 2,2, -methylenebis (4-methyl-6 tert butylphenol), trifel phosphite, Examples include trisnoylferuphosphite, phenothiazine, N-isopropyl N, phenyl p-phenylene amine.
  • the amount used is within 3% by mass with respect to the total amount of monomers used in the yarn and the composition, and when it exceeds 3% by mass, the polymerization slows down.
  • the photopolymer can be obtained by stirring and mixing the monomer, the photoinitiator, and, if necessary, other components and reacting them. If the obtained photopolymer has a sufficiently low viscosity, a recording layer can be formed by casting. On the other hand, in the case of a high-viscosity photopolymer that cannot be cast, the photopolymer is placed on the second substrate using a dispenser, pressed onto the photopolymer so as to cover the first substrate, and spread over the entire surface. A recording layer can be formed.
  • Useful photosensitive resins other than the photopolymer include (1) photorefractive effect.
  • Photorefractive material that exhibits a space charge distribution (modulation of refractive index caused by light irradiation) (2) Photochromic materials in which molecular isomerism occurs upon light irradiation and the refractive index is modulated, (3) Inorganic materials such as lithium niobate and barium titanate, and (4) Chalcogen materials.
  • the photorefractive material (1) is not particularly limited as long as it exhibits a photorefractive effect, and can be appropriately selected according to the purpose.
  • a charge generating material and a charge transporting material And other components as necessary.
  • the charge generating material is not particularly limited and may be appropriately selected depending on the purpose.
  • examples thereof include phthalocyanine dye Z pigments such as metal phthalocyanine, metal-free phthalocyanine, or derivatives thereof; naphthalocyanine dye Z Azo dyes such as monoazo, disazo and trisazo Z pigments; perylene dyes Z pigments; indigo dyes Z pigments; quinatalidone dyes Z pigments; polycyclic quinone dyes such as anthraquinones and anthanthrones Z pigments; Cyanine dye Z pigment; TTF—charge transfer complex consisting of electron acceptor and electron acceptor such as represented by TCNQ; azulhenium salt;
  • charge generating materials may be used alone or in combination of two or more.
  • the charge transport material is a material that transports holes or electrons, and may be a low molecular compound or a high molecular compound.
  • the charge transport material is not particularly limited and can be appropriately selected according to the purpose.
  • Nitrogen-containing cyclic compounds such as, or derivatives thereof; hydrazone compounds; triphenylamines; triphenylmethanes; butadienes; stilbenes; quinone compounds such as anthraquinone diphenoquinone; Fullerenes and their invitations
  • ⁇ -conjugated high molecular weight or oligomer such as polyacetylene, polypyrrole, polythiophene, polyarine, etc.
  • ⁇ -conjugated high molecular weight or oligomer such as polysilane, polygerman, etc.
  • Polycyclic aromatic compounds such as anthracene, pyrene, phenanthrene, coronene, etc. Is mentioned. These may be used alone or in combination of two or more.
  • a coating film is formed using a coating solution obtained by dissolving or dispersing the photorefractive material in a solvent, and this coating is performed.
  • the recording layer can be formed by removing the solvent from the film.
  • a recording layer can be formed by forming a coating film using the photorefractive material heated and fluidized and rapidly cooling the coating film.
  • the photochromic material of (2) is not particularly limited as long as it is a material that causes a photochromic reaction, and can be appropriately selected according to the purpose.
  • azobenzene compounds and stilbene compounds that undergo structural changes due to light irradiation by cis-trans isomerism, spiropyranic compounds that undergo structural changes from ring opening to ring closure by light irradiation, and spiroxadine compounds. Is particularly preferred.
  • the chalcogen material (4) includes, for example, a chalcogenide glass containing a chalcogen element and metal particles having a metal force that are dispersed in the chalcogenide glass and can be diffused into the chalcogenide glass by light irradiation. Materials, etc. included.
  • the chalcogenide glass is not particularly limited as long as it has a non-acidic amorphous material strength containing a chalcogen element such as S, Te or Se, and can dope metal particles.
  • Examples of the amorphous material containing the chalcogen element include Ge—S glass, As—S glass, As—Se glass, As—Se—Ce glass, and the like. I prefer glass.
  • Ge—S glass is used as the chalcogenide glass, the composition ratio of Ge constituting the glass and S can be arbitrarily changed according to the wavelength of light to be irradiated.
  • Id glass is preferred.
  • the metal particles are not particularly limited as long as they have the property of being light-doped into chalcogenide glass by light irradiation, and can be appropriately selected according to the purpose.
  • Ag, Au, or Cu has a characteristic that it is more likely to cause light doping, and Ag is particularly preferable because it significantly causes light doping.
  • the content of the metal particles dispersed in the chalcogenide glass is preferably 0.1 to 2% by volume based on the total volume of the recording layer, and more preferably 0.1 to 1.0% by volume. If the content of the metal particles is less than 0.1% by volume, the change in transmittance due to light doping may be insufficient, and the recording accuracy may decrease. If the content exceeds 2% by volume, the recording material In some cases, it is difficult to sufficiently generate light dope due to a decrease in light transmittance.
  • the binder is used for the purpose of enhancing the effect of improving coating properties, film strength, and hologram recording characteristics, and is appropriately selected in consideration of compatibility with the hologram material and the photothermal conversion substance.
  • the noder is not particularly limited, and can be appropriately selected according to the purpose.
  • unsaturated acid such as (meth) acrylic acid or itaconic acid, alkyl (meth) acrylate, (meth) ) Acrylic acid copolymer, Copolymer with (meth) acrylic acid benzyl, Styrene, ⁇ -Methyl styrene, etc .
  • Copolymers of acrylonitrile with salt butyl or chloride vinylidene modified with cellulose having a carboxyl group in the side chain Polyethylene oxide; Polyburpyrrolidone; Phenols, o-, m-, p Cresol, and Z or Xylenol Novolak
  • the content of noinda in the solid content of the recording layer can be appropriately selected according to the purpose for which there is no particular limitation. For example, it is preferably 10 to 95% by mass. More preferably, it should be 90% by mass. If the content is less than 10% by mass, a stable interference image may not be obtained, and if it exceeds 95% by mass, desirable performance may not be obtained in terms of diffraction efficiency.
  • the content of the binder in the photosensitive layer is preferably 10 to 95% by mass and more preferably 35 to 90% by mass in the total solid content of the photosensitive layer.
  • Nitrocellulose can be decomposed by heat generated by absorption of near-infrared laser light by a light absorber, and can efficiently promote the photopolymerization reaction.
  • the -trocellulose natural cellulose purified by a conventional method is esterified with a mixed acid to nitrate, and the -tro group is combined with the three hydroxyl groups present in the dalcobilanose ring, which is a constituent unit of cellulose. It can be obtained by introducing part or all.
  • the degree of nitrification of the -trocellulose is 2 to 13 intensities, more preferably 11 to 12.5, more preferably 10 to 12.5.
  • the nitrification degree represents mass% of nitrogen atoms in nitrocellulose.
  • the nitrification degree is extremely high, the effect of promoting the polymerization reaction of the photopolymer is enhanced, but the room temperature stability tends to be lowered. Also, nitrocellulose is explosive and dangerous. If the nitrification degree is extremely low, the effect of promoting the polymerization reaction of the photopolymer cannot be obtained sufficiently.
  • the degree of polymerization of nitrocellulose is preferably 20 to 200, more preferably 25 to 150 force S.
  • the content of nitrocellulose in the recording layer is preferably 0 to 80% by mass, more preferably 0.5 to 50% by mass, and more preferably 1 to 25% by mass, based on the total solid components of the recording layer. .
  • the recording layer can be formed according to a known method depending on the material. It can be suitably formed by a deposition method, a wet film formation method, an MBE (molecular beam epitaxy) method, a cluster ion beam method, a molecular lamination method, an LB method, a printing method, a transfer method, or the like.
  • MBE molecular beam epitaxy
  • a cluster ion beam method a molecular lamination method
  • LB method a printing method
  • transfer method or the like.
  • the two-component urethane matrix forming method described in US Pat. No. 6,743,552 may be used.
  • the formation of the recording layer by the wet film-forming method is preferably performed by using (applying and drying) a solution (coating liquid) in which the recording layer material is dissolved or dispersed in a solvent.
  • a solution coating liquid
  • I can.
  • a known medium force can be appropriately selected according to the purpose without any particular limitation. For example, an ink jet method, a spin coat method, a kneader coat method, a bar coat method, a blade coat method, a cast Law, dipping method, curtain coating method, etc.
  • the thickness of the recording layer in particular limitation put out be appropriately selected depending on the Nag purpose, 1 to 1, OOO / zm force preferably, 100 to 700 111 Ca ⁇ Yori preferably 1 ⁇ 0
  • the thickness of the recording layer is in the preferable numerical range, a sufficient SZN ratio can be obtained even when 10-300 multiple shift multiple recording is performed, and it is more preferable that the thickness is in the numerical range. This is advantageous.
  • the filter layer has a function of preventing the occurrence of noise by preventing irregular reflection from the reflection film of the optical recording medium by the information light and the reference light that do not cause a shift in the selective reflection wavelength even when the incident angle changes. is there.
  • the function of the filter layer is such that the wavelength of the first light is preferably 350 to 600 nm and preferably transmits the first light and reflects the second light different from the first light.
  • the wavelength of the second light is preferably 600 to 900 nm.
  • the optical recording medium has a structure in which a recording layer, a filter layer, and a servo bit pattern are laminated in this order as viewed from the optical system side.
  • the filter layer has an optical transmittance at 655 nm of 50% or higher at an incident angle of ⁇ 40 °, more preferably 80% or higher, and a light reflectance at 532 nm of 30% or higher. More than 40% is more preferable.
  • the filter layer can be appropriately selected according to the purpose without any particular limitation. For example, a dielectric vapor deposition layer, a single layer or two or more cholesteric liquid crystal layers, and, if necessary, a laminate of other layers. It is formed by. Moreover, you may have a color material content layer.
  • the filter layer is directly laminated with a recording layer or the like on a substrate such as a film which may be laminated on the support by coating or the like to produce a filter for an optical recording medium, and the optical recording medium filter May be laminated on a support.
  • the dielectric vapor-deposited layer is formed by laminating a plurality of dielectric thin films having different refractive indexes.
  • a dielectric thin film having a high refractive index and a dielectric thin film having a low refractive index are used. It is preferable to alternately laminate a plurality of times, but the number of layers is not limited to two or more, and more types may be used.
  • the number of layers formed below the dielectric vapor deposition layer is preferably 2 to 20 layers, more preferably 2 to 12 layers, and 4 to more preferably the LO layer. 6 to 8 layers are particularly preferred. If the number of stacked layers exceeds 20, the production efficiency may decrease due to multi-layer deposition, and the objects and effects of the present invention may not be achieved.
  • the stacking order of the dielectric thin films can be appropriately selected according to the purpose without any particular restriction. For example, when the refractive index of an adjacent film is high, a film having a lower refractive index is selected. Laminate first. Conversely, when the refractive index of the adjacent layer is low, a film having a higher refractive index is first laminated.
  • the threshold for determining whether the refractive index is high or low! / Is preferably 1.8.
  • the refractive index is high or low.
  • those with a relatively high refractive index and those with a relatively low refractive index may be used alternately. Also good.
  • the material for the dielectric thin film having a high refractive index can be appropriately selected according to the purpose without any particular limitation.
  • Sb 2 O, Sb 2 S :: Bi 2 O, CeO, CeF, HfO: La O,
  • YO, ZnSe, ZnS, ZrO are preferred, SiO, TaO, TiO, YO , ZnSe, ZnS, ZrO power ⁇ Better than! / ⁇ .
  • the material for the low-refractive-index dielectric thin film can be appropriately selected according to the purpose without any particular limitation.
  • Examples include F, MgO, NdF, SiO, Si 2 O, NaF, ThO, and ThF. Among these
  • Al O, BiF, CaF, MgF, MgO, SiO, and Si O are preferred.
  • Al 2 O, CaF, MgF, MgO, SiO, and Si 2 O are more preferable.
  • the atomic ratio can be appropriately selected depending on the purpose, and the atomic ratio can be adjusted by changing the atmospheric gas concentration during film formation. it can.
  • the method for forming the dielectric thin film is not particularly limited and can be appropriately selected according to the purpose.
  • physical vapor deposition such as ion plating or ion beam
  • physical sputtering such as sputtering, etc.
  • Examples include vapor deposition (PVD) and chemical vapor deposition (CVD). Of these, vacuum deposition and sputtering, with sputtering being preferred, are more preferred.
  • a DC sputtering method having a high film formation rate is preferable.
  • the DC sputtering method it is preferable to use a material having high conductivity.
  • a method for forming a multilayer film by sputtering for example, (1) a one-chamber method in which a single chamber forms a film alternately or sequentially from a plurality of targets, and (2) a continuous formation by a plurality of chambers.
  • a multi-chamber method for forming a film There is a multi-chamber method for forming a film. Among these, the multi-chamber method is particularly preferable from the viewpoint of productivity and prevention of material contamination.
  • the film thickness of the dielectric thin film is preferably on the order of the optical wavelength ⁇ , with a film thickness of ⁇ 16 to ⁇ , preferably 8 to 3 to 4, more preferably 6 to 3 to 8 temples.
  • the color material-containing layer is formed of a color material, a binder resin, a solvent, and other components as necessary.
  • Preferred examples of the coloring material include pigments and dyes that are at least! / ⁇ misaligned, and among these, from the viewpoint of absorbing 532 nm light and transmitting 655 nm or 780 nm servo light.
  • Particularly preferred are red pigments, preferred are red dyes and red pigments.
  • the red dye can be appropriately selected from known ones that are not particularly limited, depending on the purpose.
  • the red pigment can be appropriately selected according to the purpose from known ones without particular limitations.
  • a red pigment exhibiting a transmission spectrum having a transmittance of 10% or less for 532 nm light and a transmittance of 90% or more for 655 nm light is particularly preferably used.
  • the content of the colorant is preferably 0.05 to 90% by mass, more preferably 0.1 to 70% by mass, based on the total solid mass of the colorant-containing layer.
  • the thickness of the color material-containing layer may be required to be 500 m or more.
  • the self-supporting property of the color material-containing layer is lost. In some cases, the film may collapse during the production process of the colorant-containing layer.
  • the binder resin used in the color material-containing layer is not particularly limited and may be a known one. It can be appropriately selected according to the purpose, for example, polyvinyl alcohol resin, butyl chloride, Z-butyl acetate copolymer; chlor chloride, butyl acetate and butyl alcohol, maleic acid, and acrylic acid.
  • Copolymers Salty vinyl z Salty-bidenidene copolymer; Vinyl chloride z Atari mouth-mouth ril copolymer; Ethylene Z vinyl acetate copolymer; Cellulose derivatives such as nitrocellulose resin; Examples thereof include fats, polybutacetal resins, polybulutyl resin resins, epoxy resins, phenoxy resins, polyurethane resins, and polycarbonate resins. These may be used alone or in combination of two or more.
  • polar groups epoxy groups, COH, OH, NH, SOM, OSOM, POM, OPO
  • M is a hydrogen atom, an alkali metal, or ammonia
  • the binder ⁇ per gram 10_ 6 ⁇ L0- 4 equivalents favored.
  • the binder resins listed above are preferably cured by adding known isocyanate crosslinking agents.
  • the content of the binder resin is 10 with respect to the total solid mass of the colorant-containing layer.
  • Each of the above components is dissolved or dispersed in a suitable solvent, prepared as a coating solution, and this coating solution is applied onto a substrate to be described later by a desired coating method to form a color material-containing layer. It can be done.
  • the solvent can be appropriately selected according to the purpose from known ones that are not particularly limited.
  • water 3-methoxypropionic acid methyl ester, 3-methoxypropionic acid ethyl ester, 3-methoxypropion Alkoxypropionates, such as acid propyl ester, 3-ethoxypropionic acid methyl ester, 3-ethoxypropionic acid ethyl ester, 3-ethoxypropionic acid propyl ester; 2-methoxypropinoacetate, 2-ethoxypropinolate acetate, 3 - esters of alkoxy alcohols such as methoxy butyl Honoré acetate; methyl lactate esters such as lactic Echiru; methyl E chill ketone, cyclohexanone, ketones such as cyclohexanone methylcyclohexane; Y over Bed Examples include tyrolatatone, N-methylpyrrolidone, dimethyl sulfoxide, black mouth form, and te
  • the coating method can be appropriately selected according to the purpose without any particular limitation.
  • the inkjet method spin coating method, kneader coating method, bar coating method, blade coating method, casting method, dip method. , Curtain coating method, and the like.
  • the thickness of the colorant-containing layer is, for example, preferably 0.5 to 200 ⁇ m, more preferably 1.0 to LOO ⁇ m. If the thickness is less than 0.5 m, it may not be possible to add a sufficient amount of binder resin for wrapping the color material to form a film, and if it exceeds 200 / zm, The thickness of the medium becomes too large, and an excessive optical system for irradiation light and servo light may be required.
  • the cholesteric liquid crystal layer contains at least a cholesterol derivative, a nematic liquid crystal compound, and a chiral compound, and further contains a polymerizable monomer and, if necessary, other components.
  • the cholesteric liquid crystal layer may be shifted between a single-layer cholesteric liquid crystal layer and two or more cholesteric liquid crystal layers! /.
  • the cholesteric liquid crystal layer preferably has a circularly polarized light separation function.
  • the cholesteric liquid crystal layer having the function of separating circularly polarized light has a circularly polarized component in which the direction of rotation of the liquid crystal spiral (clockwise or counterclockwise) and the direction of circular polarization are aligned and the wavelength is the spiral pitch of the liquid crystal. It has a selective reflection characteristic that reflects only light. Using the selective reflection characteristics of this cholesteric liquid crystal layer, only circularly polarized light of a specific wavelength is transmitted and separated from natural light in a certain wavelength band, and the rest is reflected.
  • the filter for an optical recording medium has a range of ⁇ 20 ° with a normal incidence of 0 °.
  • Light reflectivity at / cos20 ° (where ⁇ represents the wavelength of irradiated light) is 40% or more
  • the normal incidence is 0 °, and it is in the range of ⁇ 40 ° ⁇ ⁇ / cos40 ° (however,
  • represents an irradiation light wavelength
  • the light reflectance is particularly preferably 40% or more.
  • the selective reflection wavelength width of the cholesteric liquid crystal layer is preferably large.
  • the selective reflection wavelength region width ⁇ of the cholesteric liquid crystal layer is expressed by the following formula 1, so that a liquid crystal having a large (ne-no) is used. I like it! /
  • Equation 1 no represents the refractive index of normal nematic liquid crystal molecules contained in the cholesteric liquid crystal layer.
  • ne represents the refractive index of the nematic liquid crystal molecules with respect to extraordinary light.
  • represents the center wavelength of selective reflection.
  • a photoreactive chiral compound having photosensitivity as a chiral compound and capable of greatly changing the helical pitch of liquid crystal by light is used. It is preferable to use a filter for an optical recording medium in which the helical pitch is continuously changed in the thickness direction of the liquid crystal layer by adjusting the compound content and the UV irradiation time.
  • the cholesteric liquid crystal layer can be appropriately selected depending on the purpose without particular limitation as long as the above characteristics are satisfied.
  • the cholesteric liquid crystal layer contains a nematic liquid crystal compound and a chiral compound. It contains other ingredients as necessary.
  • the nematic liquid crystal compound is characterized in that its liquid crystal phase is fixed below the liquid crystal transition temperature, and its refractive index anisotropy ⁇ is from 0.10 to 0.40, a polymer liquid crystal compound And a polymerizable liquid crystal compound can be appropriately selected according to the purpose. Alignment that has been subjected to alignment treatment such as rubbing while it is in the liquid crystal state at the time of melting It can be used as a solid phase by orienting it by using a substrate, etc., and cooling it as it is to fix it.
  • the nematic liquid crystal compound can be appropriately selected according to the purpose without any particular limitation, and from the viewpoint of ensuring sufficient curability, a nematic liquid crystal compound having a polymerizable group in the molecule is preferred.
  • ultraviolet (UV) polymerizable liquid crystal is preferable.
  • Commercially available products can be used as the UV-polymerizable liquid crystal, for example, product name PALIOCOLOR LC242 manufactured by BASF; product name E7 manufactured by Merck; product name LC-Silicon-CC3767 manufactured by Wacker-Chem; Takasago
  • the brand names L35, L42, L55, L59, L63, L79, and L83 manufactured by Perfume Co., Ltd. can be mentioned.
  • the content of the nematic liquid crystal compound is preferably 30 to 99 mass%, more preferably 50 to 99 mass%, based on the total solid mass of each cholesteric liquid crystal layer. When the content is less than 30% by mass, the alignment of the nematic liquid crystal compound may be insufficient.
  • the chiral compound in the case of a multi-layer cholesteric liquid crystal layer, it can be appropriately selected according to the purpose from known ones with no particular restrictions. From the viewpoint of improving the hue and color purity of the liquid crystal compound, For example, isomandy compounds, force-bonded compounds, isosorbide compounds, Fencon compounds, carvone compounds, and the like. These may be used alone or in combination of two or more.
  • a commercially available product can be used as the chiral compound.
  • examples of the commercially available product include Merck's trade name S 101, R811, CB15; BASF's trade name PALIO COLOR LC756. Can be mentioned.
  • the content of the chiral compound in each liquid crystal layer of the multi-layer cholesteric liquid crystal layer is preferably 0 to 30% by mass based on the total solid content of each cholesteric liquid crystal layer. % Is more preferable. When the content exceeds 30% by mass, the orientation of the cholesteric liquid crystal layer may be insufficient.
  • the degree of curing such as film strength is improved.
  • polymerizable monomers can be used in combination.
  • the polymerizable monomer after changing (patterning) the twisting force of the liquid crystal due to light irradiation (for example, after forming a selective reflection wavelength distribution), the helical structure (selective reflectivity) is fixed, The strength of the cholesteric liquid crystal layer after fixing can be further improved.
  • the liquid crystal compound has a polymerizable group in the same molecule, it is not necessarily added.
  • the polymerizable monomer can be appropriately selected according to the purpose from known ones that are not particularly limited, and examples thereof include a monomer having an ethylenically unsaturated bond. Specifically, pentaerythritol tetra And polyfunctional monomers such as attalylate and dipentaerythritol hexaatalylate. These may be used alone or in combination of two or more.
  • the addition amount of the polymerizable monomer is preferably 1 to 20% by mass, more preferably 0 to 50% by mass with respect to the total solid mass of the cholesteric liquid crystal layer. When the added amount exceeds 50% by mass, the orientation of the cholesteric liquid crystal layer may be inhibited.
  • the other components are not particularly limited and can be appropriately selected according to the purpose.
  • a photopolymerization initiator for example, a sensitizer, a binder resin, a polymerization inhibitor, a solvent, a surfactant, a thickening agent.
  • the photopolymerization initiator can be appropriately selected from known ones that are not particularly limited, depending on the purpose. For example, p-methoxyphenol 2, 4 bis (trichloromethyl) -s triazine , 2— (p-Butoxystyryl) -15 trichloromethyl 1,3,4-oxadiazole, 9 phenylclidine, 9,10 dimethylbenzphenazine, benzophenone Z Michler's ketone, hexaarylbiimidazole Z mercaptovenes Examples include imidazole, benzyldimethyl ketal, acyl phosphine derivatives, thixanthone Zamine. These may be used alone or in combination of two or more.
  • the photopolymerization initiator a commercially available product can be used.
  • the commercially available product include trade names such as Irgacure 907, Irgacure 369, Irgacure 784, Irgacure 814; manufactured by BASF, manufactured by Ciba Specialty Chemicals. Names such as Lucillin TPO are listed.
  • the addition amount of the photopolymerization initiator is preferably 0.1 to 20% by mass, more preferably 0.5 to 5% by mass, based on the total solid mass of the cholesteric liquid crystal layer. If the addition amount is less than 0.1% by mass, the curing efficiency at the time of light irradiation may be low, so it may take a long time. If the addition amount exceeds 20% by mass, the ultraviolet region force also causes light transmittance in the visible region. May be inferior.
  • the sensitizer is added as necessary to increase the degree of cure of the cholesteric liquid crystal layer.
  • the sensitizer can be appropriately selected according to the purpose from known ones that are not particularly limited, and examples thereof include jetyl thioxanthone and isopropyl thixanthone.
  • the addition amount of the sensitizer is preferably 0.001 to 1.0% by mass with respect to the total solid mass of the cholesteric liquid crystal layer.
  • the binder resin can be appropriately selected from known ones that are not particularly limited, for example, polyvinyl alcohol; polystyrene compounds such as polystyrene and poly-methylstyrene; methylcellulose; Cellulose resin such as chilled cellulose and acetylcellulose; acidic cellulose derivatives having a carboxyl group in the side chain; acetal resin such as polybule formal and polybulutyl; methacrylic acid copolymer, acrylic acid Copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer, partially ester-hymaleic acid copolymer; homopolymer of alkyl acrylate ester or homopolymer of methacrylic acid alkyl ester; other And a polymer having a hydroxyl group. These may be used alone or in combination of two or more.
  • alkyl group in the homopolymer of the acrylic acid alkyl ester or the homopolymer of the alkyl methacrylate examples include, for example, methyl group, ethyl group, n-propyl group, n-butyl group, iso-butyl group, n —Hexyl group, cyclohexyl group, 2-ethylhexyl group and the like can be mentioned.
  • the addition amount of the Noinda rosin is preferably 0 to 80% by mass, more preferably 0 to 50% by mass, based on the total solid mass of the cholesteric liquid crystal layer. When the addition amount exceeds 80% by mass, the orientation of the cholesteric liquid crystal layer may be insufficient.
  • the polymerization inhibitor is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include hydroquinone, hydroquinone monomethyl ether, phenothiazine, benzoquinone, and derivatives thereof.
  • the addition amount of the polymerization inhibitor is preferably 0 to 10% by mass, more preferably 1 OOppm to 1% by mass, based on the solid content of the polymerizable monomer.
  • the solvent can be appropriately selected from known solvents without particular limitation according to the purpose.
  • 3-methoxypropionic acid methyl ester, 3-methoxypropionic acid ethyl ester, 3- Alkoxypropionic acid esters such as methoxypropionic acid propyl ester, 3-ethoxypropionic acid methyl ester, 3-ethoxypropionic acid ethyl ester, 3-ethoxypropionic acid propyl ester; 2-methoxypropionic acid acetate, 2-ethoxypropynole Esters of alcoholic alcohols such as acetate and 3-methoxybutynoleacetate; Lactic acid esters such as methyl lactate and ethyl lactate; Ketones such as methyl ethyl ketone, cyclohexanone and methylcyclohexanone; ⁇ -Butyloraton , ⁇ -Mechi Pyrrolidone, dimethyl sulfoxide, black hole Holm
  • a cholesteric liquid crystal layer coating solution (in the case of a plurality of layers, each cholesteric liquid crystal layer coating solution) prepared using the solvent is formed on the substrate.
  • the cholesteric liquid crystal layer can be formed by applying, drying, and irradiating with ultraviolet rays, for example.
  • the most suitable method for mass production is to prepare the substrate in the form of a roll and prepare a coating solution for the cholesteric liquid crystal layer on the substrate with bar coating, die coating, blade coating, curtains. It is preferable to use a long continuous coater such as a coat.
  • Examples of the coating method include spin coating, casting, roll coating, flow coating, printing, dip coating, casting film formation, bar coating, and gravure printing. Law.
  • the conditions for the ultraviolet irradiation can be appropriately selected according to the purpose for which there is no particular limitation.
  • the irradiation ultraviolet is preferably 160 to 380 nm, more preferably 250 to 380 nm.
  • As the irradiation time for example, 0.1 to 600 seconds is preferable, and 0.3 to 300 seconds is more preferable.
  • an ultraviolet absorber may be added to the cholesteric liquid crystal layer.
  • the ultraviolet absorber can be appropriately selected according to the purpose without any particular limitation.
  • benzophenone ultraviolet absorber benzotriazole ultraviolet absorber
  • salicylic acid ultraviolet absorber cyanoacrylate ultraviolet absorber.
  • Preferred examples include collectors and oxalic acid-based ultraviolet absorbers. Specific examples of these ultraviolet absorbers include JP-A-47-10537, JP-A-58-111942, JP-A-58-212844, JP-A-59-19945, JP-A-59-46646, and JP-A-5.
  • the thickness of each cholesteric liquid crystal layer is, for example, preferably 1 to: LO / zm, more preferably 2 to 7 / zm.
  • the thickness is less than L m, the selective reflectance is not sufficient, and when it exceeds 10 / z m, the uniform alignment of the liquid crystal layer may be disturbed.
  • each cholesteric liquid crystal layer (in the case of a single layer, the thickness of the cholesteric liquid crystal layer) is preferably 1 to 30 ⁇ m, and more preferably 3 to 10 ⁇ m.
  • the method for producing the filter for optical recording media can be appropriately selected according to the purpose without particular limitation.
  • the filter for the optical recording medium can be appropriately selected according to the purpose without any particular limitation. However, it is preferable that the whole substrate is processed into a disk shape (for example, punching) and disposed on the second substrate of the optical recording medium. Further, when it is used for a filter layer of an optical recording medium, it can be provided directly on the second substrate without using a base material.
  • the base material can be appropriately selected according to the purpose for which there is no particular limitation.
  • the base material may be appropriately synthesized or a commercially available product may be used.
  • the thickness of the substrate can be appropriately selected according to the purpose for which there is no particular limitation, and is preferably 10 to 500 111, more preferably 50 to 300 111.
  • the thickness force of the base material is less than 10 m, the adhesion may be lowered due to the stagnation of the substrate.
  • the distance exceeds 500 m the focal positions of the information beam and the reference beam must be shifted greatly, which may increase the optical system size.
  • any known binder can be used in any combination.
  • the pressure-sensitive adhesive can be appropriately selected depending on the purpose for which there is no particular restriction.
  • rubber pressure-sensitive adhesive acrylic pressure-sensitive adhesive, silicone pressure-sensitive adhesive, urethane pressure-sensitive adhesive, vinyl alkyl ether type
  • examples thereof include a pressure-sensitive adhesive, a polybula alcohol-based pressure-sensitive adhesive, a polybutylpyrrolidone-based pressure-sensitive adhesive, a polyacrylamide-based pressure-sensitive adhesive, and a cellulose-based pressure-sensitive adhesive.
  • the coating thickness of the adhesive or the pressure-sensitive adhesive can be appropriately selected according to the purpose without any particular restriction. From the viewpoint of optical properties and thinning, in the case of an adhesive, 0.1 to 10; ⁇ ⁇ is Preferred 0.1 to 5 ⁇ m is more preferred. In the case of the pressure-sensitive adhesive, 1 to 50 ⁇ m is preferable, and 2 to 30 111 is preferred.
  • the filter layer can be formed directly on the substrate.
  • the other layers can be appropriately selected according to the purpose without particular limitation, and examples thereof include a first gap layer, a second gap layer, an antireflection layer, and a protective layer.
  • the first gap layer is provided between the filter layer and the reflective film as necessary, and is formed for the purpose of smoothing the second substrate surface. It is also effective for adjusting the size of the hologram generated in the recording layer. That is, the recording layer is a recording reference. Since it is necessary to form a light and information light interference region to a certain size, it is effective to provide a gap between the recording layer and the servo pit pattern.
  • the first gap layer can be formed, for example, by applying a material such as an ultraviolet curable resin by spin coating or the like to harden the servo pit pattern.
  • a material such as an ultraviolet curable resin by spin coating or the like to harden the servo pit pattern.
  • the transparent base material when a filter layer coated on a transparent base material is used, the transparent base material also functions as the first gap layer.
  • the thickness of the first gap layer can be appropriately selected according to the purpose without particular limitation, and is preferably 1 to 200 m.
  • the second gap layer is provided between the recording layer and the filter layer as necessary.
  • the material of the second gap layer is not particularly limited and can be appropriately selected according to the purpose.
  • TAC triacetyl cellulose
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PSF polystyrene
  • Transparent resin films such as PS
  • PSF polysulfone
  • PMMA polybutal alcohol
  • Examples include a norbornene-based resin film such as ZEONOR manufactured by Nippon Zeon Co., Ltd. Of these, TAC, PC, trade name ARTON, and trade name ZENOA are particularly preferred.
  • the thickness of the second gap layer can be appropriately selected according to the purpose without particular limitation, and is preferably 1 to 200 m.
  • the protective layer is used for the purpose of (1) protection of scratches, dust, dirt, etc. on the dye-containing recording layer, (2) improvement of storage stability of the dye-containing recording layer, and (3) improvement of reflectance. Is done.
  • an inorganic material or an organic material is used as the material of the protective layer. Examples of the inorganic material that can be used include SiO and SiO.
  • the organic material for example,
  • the protective layer further includes a stabilizer, a dispersant, a flame retardant, a lubricant, an antistatic agent, a surfactant, and a plasticizer depending on the purpose. Etc. can be contained.
  • the thickness of the protective layer is particularly limited, can be appropriately selected depending on the Nag purposes, from 0.01 to 30 111 Ca ⁇ Preferably, from 0.05 to 10 111 Ca ⁇ Yori preferably 1 ⁇ 0
  • the method for producing the optical recording medium of the present invention can be appropriately selected according to the purpose without any particular limitation.
  • the composition preparing step, the recording layer laminating step, the filter layer forming step, the first step It includes a gap layer forming step and a laminated body forming step, and further includes other steps as necessary.
  • the composition preparation step is a step of preparing an optical recording composition, which is a monomer, a photoinitiator, a sensitizer, an oligomer, a powerful photopolymer such as a binder, and other appropriately selected as necessary.
  • An optical recording composition containing components is prepared by dissolving, dispersing, mixing, etc. with a solvent.
  • the preparation conditions for example, the temperature is 23 ° C., the humidity is 10%, and the drying is performed at a low temperature.
  • the recording layer laminating step is a step of laminating a recording layer for recording information by holography on the second gap layer when the second gap layer is laminated on the filter layer or the filter layer. It is a step of laminating the optical recording composition prepared in the composition preparation step by coating or the like.
  • the method for laminating the recording layer can be appropriately selected according to the purpose without any particular limitation, and examples thereof include a laminating method by a wet film forming method or an injection method.
  • the wet film-forming method is a method of forming (using and drying) a solution (coating liquid) in which the recording layer material is dissolved or dispersed in a solvent, and the wet film-forming method is particularly limited.
  • a known medium force can be selected as appropriate. Examples thereof include a coating method, a spin coating method, a kneader coating method, a bar coating method, a blade coating method, a casting method, a dip method, and a curtain coating method.
  • the injection method is a method of injecting the recording layer solution into the gap between the first substrate and the second substrate.
  • the outer circumferential spacer and the inner circumferential spacer are previously sandwiched between the first substrate and the second substrate to form a disk cell, and a notch is provided in a part of the outer circumferential spacer, and the mouth is used as an injection port to form a recording layer. Inject the solution.
  • the injection method can be appropriately selected according to the purpose without any particular limitation, and examples thereof include an outer periphery injection method, an inner periphery injection method, and a gap injection method.
  • the injection conditions include a temperature of 23 ° C., a viscosity of 330 mPa's, a pressure of 0.5 MPa, a humidity of 10%, and a curing time of 80 ° C. for 40 minutes.
  • the injecting device can be appropriately selected according to the purpose for which there is no particular limitation, and examples thereof include a syringe and an air pressure dispenser.
  • the thickness of the recording layer in particular limitation put out be appropriately selected depending on the Nag purpose, 1 to 1, 000 / zm force preferably, 100 to 700 111 Ca ⁇ Yori preferably 1 ⁇ 0
  • the thickness of the recording layer is within the preferable numerical range, a sufficient SZN ratio can be obtained even when shift multiplexing of 10 to 300 is performed, and when the thickness is within the more preferable numerical range, this is remarkable. It is advantageous in some respects.
  • the shape of the outer periphery spacer can be appropriately selected according to the purpose without particular limitation, as long as the outer periphery is substantially the same as the outer periphery shape of the optical recording medium. Etc. Among these, a circle is preferable.
  • Examples of the cross-sectional shape of the outer circumferential spacer include a quadrangle, a rectangle, a trapezoid, a circle, and an ellipse.
  • the viewpoint power of the action of making the thickness constant is preferably a square, a trapezoid, a rectangle or the like.
  • the outer circumferential spacer 27 and the inner circumferential spacer 28 shown in FIG. 19 are examples of a square cross section.
  • the thickness of the outer periphery spacer can be appropriately selected according to the purpose without any particular limitation.
  • the thickness is preferably substantially the same as the thickness of the recording layer.
  • the thickness is preferably 100 to 1,000 m which is the same as the thickness of the recording layer.
  • the width of the outer circumferential spacer is not particularly limited as long as it is at least 0.5 mm.
  • 0.5 to 5 mm is preferable, and 0.5 to 3 mm is preferable.
  • a thickness of 0.5 to 2 mm is particularly preferable.
  • the width is less than 0.5 mm, the holding function for making the recording layer thickness constant may be reduced in terms of mechanical strength and support area. May be reduced and the recording capacity may be impaired.
  • any of inorganic materials and organic materials that are not particularly limited can be used suitably, but the organic materials are preferable in terms of moldability and cost.
  • Examples of the inorganic material include glass, ceramic, quartz, silicon, and the like.
  • the organic material is not particularly limited and can be appropriately selected according to the purpose.
  • acetate-based resin such as triacetinoresenorelose, polyester-based resin, polyethersulfone-based resin, polysulfone-based resin.
  • Fats polycarbonate-based resins, polyamide-based resins, polyimide-based resins, polyolefin-based resins, acrylic-based resins, polynorbornene-based resins, cellulose-based resins, polyarylate-based resins, polystyrene-based resins, polyvinyl resins
  • examples thereof include alcohol-based resins, polyvinyl chloride-based resins, poly-salt-vinylidene-based resins, and polyacrylic-based resins. These may be used alone or in combination of two or more.
  • polycarbonate resin and acrylic resin are preferable in terms of moldability, releasability, and cost.
  • the method for producing the spacer is not particularly limited, and can be appropriately selected according to the purpose. For example, injection molding, blow molding, compression molding, vacuum molding die extrusion processing, and machining mold ⁇ e.
  • the shape of the inner circumference spacer is not particularly limited as long as the inner circumference is substantially the same as the shape of the opening provided in the optical recording medium, and can be appropriately selected according to the purpose. , Circle, ellipse, polygon and the like. Among these, a circle is preferable.
  • the cross-sectional shape of the inner circumferential spacer is preferably the same shape as the outer circumferential spacer. For example, a quadrangle, a rectangle, a trapezoid, a circle, an ellipse, and the like can be given. Among these, the viewpoint power for making the thickness constant is preferably square, trapezoid, rectangular or the like.
  • the thickness of the inner spacer is required to be the same as that of the outer spacer from the viewpoint of the uniformity of the thickness of the recording layer.
  • the width of the inner circumferential spacer is different from the viewpoint of the function of maintaining the uniformity of the thickness of the recording layer and the viewpoint of securing the recording area of the recording layer. It may be.
  • the material and manufacturing method of the inner circumferential spacer may be different from the outer circumferential spacer or the same.
  • the filter layer forming step is a step of forming the filter layer by processing the optical recording medium filter of the present invention into an optical recording medium shape, and bonding the processed filter to the second substrate.
  • the method for producing the filter for optical recording media is as described above.
  • the filter layer can be formed directly on the substrate. Examples thereof include a method of forming a color material-containing layer by applying a coating material for a color material-containing layer on a substrate, and forming a dielectric vapor deposition film on the color material-containing layer by a sputtering method.
  • the shape of the filter for optical recording media include a disc shape, a card shape, and the like, and the processing can be appropriately selected according to the purpose without particular limitation. And punching with a punching cutter.
  • an adhesive, a pressure-sensitive adhesive, or the like is used to bond the filter to the substrate so that bubbles do not enter.
  • the adhesive can be appropriately selected according to the purpose without any particular limitation, and examples thereof include various adhesives such as a UV curable type, an emulsion type, a one-component curable type, and a two-component curable type, Any known adhesive can be used in any combination.
  • the pressure-sensitive adhesive can be appropriately selected depending on the purpose for which there is no particular restriction.
  • rubber pressure-sensitive adhesive acrylic pressure-sensitive adhesive, silicone pressure-sensitive adhesive, urethane pressure-sensitive adhesive, vinyl alkyl ether type
  • examples thereof include a pressure-sensitive adhesive, a polybula alcohol-based pressure-sensitive adhesive, a polybutylpyrrolidone-based pressure-sensitive adhesive, a polyacrylamide-based pressure-sensitive adhesive, and a cellulose-based pressure-sensitive adhesive.
  • the application thickness of the adhesive or the pressure-sensitive adhesive is appropriately determined according to the purpose for which there is no particular limitation.
  • an adhesive 0.1 to 10; ⁇ ⁇ is preferable, and 0.1 to 5 ⁇ m is more preferable from the viewpoint of optical characteristics and thinning.
  • the pressure-sensitive adhesive 1 to 50 ⁇ m is preferable, and 2 to 30 111 is preferred.
  • the first gap layer forming step is a step of forming a first gap layer between the second substrate and the filter layer.
  • the method for forming the first gap layer can be appropriately selected according to the purpose without particular limitation. For example, the method by spin coating on the second substrate, the non-thermosoftening sheet, The method of sticking, the said vapor deposition, the said sputtering, etc. are mentioned.
  • the stacked body forming step includes a second layer in which the recording layer, the filter layer, and the first gap layer are formed by the recording layer stacking step, the filter layer forming step, and the first gap layer forming step.
  • This is a process including a laminated body formed by laminating the substrate and the first substrate, and including other processes appropriately selected as necessary.
  • the laminating method can be appropriately selected according to the purpose without particular limitation, for example, the first substrate, the second substrate and other layers appropriately selected as necessary, Examples include a method of bonding with an adhesive, a method of pressure bonding without using an adhesive, and a method of bonding in a vacuum.
  • the method of adhering with the adhesive is to apply the adhesive between the first substrate, the second substrate, and other layers appropriately selected as necessary, by matching each outer periphery. Then, apply pressure of 0.01 to 0.5 MPa from the outside and bond at 23-100 ° C. In order to adhere without any bubbles during the bonding, it is preferable to bond them in a vacuum.
  • the adhesive can be appropriately selected according to the purpose without particular limitation, and examples thereof include acrylic adhesives, epoxy adhesives, rubber adhesives, and the like. Of these, acrylic adhesives and epoxy adhesives are more preferred because of their excellent transparency.
  • the method of performing the pressure bonding without using the adhesive is to make close contact using the adhesiveness of each layer. It is also possible to form a laminate.
  • the first substrate, the second substrate, and other layers appropriately selected as necessary are matched with each other, and a pressure of 0.01-0. Adhere at ⁇ 100 ° C. In order to adhere without any bubbles at the time of the adhesion, it is preferable to bond them in a vacuum.
  • a second gap layer forming step of forming a second gap layer between the recording layer and the filter layer A side sealing step for sealing the periphery of the side surface of the optical recording medium with an adhesive may be used.
  • FIGS. 18 and 20 are schematic cross-sectional views showing the configuration of the optical recording medium in Example 1 of the present invention.
  • a servo pit pattern 3 is formed on a second substrate 1 made of polycarbonate resin or glass, and the servo pit pattern 3 is coated with aluminum, gold, platinum, or the like.
  • a reflective film 2 is provided.
  • the servo pit pattern 3 may be formed periodically on the entire surface of the second substrate 1.
  • the height of the servo pit pattern 3 is usually 1,750 A (175 nm), which is sufficiently smaller than the thicknesses of the substrate and other layers.
  • the first gap layer 8 is formed by applying a material such as ultraviolet curable resin on the reflective film 2 of the second substrate 1 by spin coating or the like.
  • the first gap layer 8 is effective for protecting the reflective film 2 and adjusting the size of the hologram generated in the recording layer 4. In other words, it is necessary to form an interference area between the recording reference light and the information light to a certain size in the recording layer 4, so it is effective to provide a gap between the recording layer 4 and the servo pit pattern 3. .
  • a filter layer 6 is provided on the first gap layer 8, and a second gap layer 7 is provided between the filter layer 6 and the recording layer 4, and the filter layer 6 and the first substrate 5 (polycarbonate glass) are provided.
  • An optical recording medium 21 is formed by sandwiching the second gap layer 7 and the recording layer 4 with a fat substrate or a glass substrate. Note that there is a point where information light and reproduction light are focused. If this focusing area is filled with photopolymer, overexposure occurs. As a result, excessive consumption of the monomer occurs, and the multiple recording ability decreases. Therefore, it is effective to provide the second gap layer 7 that is non-reactive and transparent.
  • the filter layer 6 transmits only red light and does not transmit light of other colors. Therefore, since the information light, recording and reproduction reference light is green or blue light, it does not pass through the filter layer 6 but becomes return light that does not reach the reflective film 2 and is emitted from the incident / exit surface A. become.
  • the filter layer 6 is composed of three cholesteric liquid crystal layers 6a, 6b, and 6c whose spiral pitch continuously changes in the thickness direction of the liquid crystal layer.
  • the filter layer 6 having the cholesteric liquid crystal layer force may be directly formed on the first gap layer 8 by coating, or a film having a cholesteric liquid crystal layer formed on a substrate is punched into an optical recording medium shape. You can place it.
  • three cholesteric liquid crystal layers whose spiral pitch changed continuously in the thickness direction of the liquid crystal layer as shown in Fig. 23, when the incident angle force of the irradiated light is 30 °, ⁇ force 70 to 620nm (however,
  • X represents the wavelength of irradiated light
  • the light reflectance is 90% or more.
  • ⁇ force 70 to 620nm (where ⁇ represents the wavelength of the irradiated light) and the light transmittance is 10% or less
  • the optical recording medium 21 in the specific example 1 may have a disk shape or a card shape. In the case of a card shape, there is no need for the servo pit pattern. Further, in this optical recording medium 21, the second substrate 1 is 0.6 mm, the first gap layer 8 is 100 m, the filter layer 6 is 2 to 3 ⁇ m, the second gap layer 7 is 70 ⁇ , and the recording layer 4 Is 0.6 mm, the first substrate 5 is 0.6 mm thick, and the total thickness is about 1.9 mm.
  • light (red light) emitted from the servo laser is reflected almost 100% by the dichroic mirror 13 and passes through the objective lens 12.
  • Servo light is irradiated onto the optical recording medium 21 by the objective lens 12 so as to be focused on the reflective film 2.
  • the dichroic mirror 13 transmits light of green and blue wavelengths and reflects almost 100% of light of red wavelengths.
  • the servo light incident from the light incident / exit surface A of the optical recording medium 21 passes through the first substrate 5, the recording layer 4, the second gap layer 7, the filter layer 6, and the first gap layer 8.
  • the light passes through the first substrate 5 and is emitted from the incident / exit surface A.
  • the emitted return light passes through the objective lens 12, is reflected almost 100% by the dichroic mirror 13, and servo information is detected by a servo information detector (not shown).
  • the detected servo information is used for focus servo, tracking servo, slide servo, and so on.
  • the hologram material composing the recording layer 4 is not sensitive to red light, so even if the servo light passes through the recording layer 4 or the servo light is irregularly reflected by the reflective film 2, Layer 4 is not affected.
  • the servo light reflecting film 2 is reflected almost 100% by the dichroic mirror 13
  • the servo light is detected by the CMOS sensor or the CCD 14 for detecting the reproduced image. In other words, there is no noise for the reproduced light.
  • the information light and the recording reference light pass through the polarizing plate 16 to become linearly polarized light, pass through the half mirror 17 and pass through the 1Z4 wavelength plate 15. It becomes circularly polarized at the point.
  • the optical recording medium 21 is irradiated with information light and recording reference light by the objective lens 12 so as to generate an interference pattern in the recording layer 4.
  • Information light and recording reference light are incident from the entrance / exit surface A and interfere with each other at the recording layer 4 to generate an interference pattern there. Thereafter, the information light and the recording reference light pass through the recording layer 4 and are reflected between the force incident on the filter layer 6 and the bottom surface of the filter layer 6 to become return light.
  • the filter layer 6 is formed of three cholesteric liquid crystal layers whose spiral pitch continuously changes in the thickness direction of the liquid crystal layer, and has a property of transmitting only red light.
  • the light passing through the filter layer leaks to less than 20% of the incident light intensity, even if the leaked light reaches the bottom surface and becomes return light, it is reflected again by the filter layer and regenerated.
  • the interference pattern is recorded as the interference pattern.
  • Diffracted light 39 is generated from the hologram, that is, the interference image, and the diffracted light 39 is detected by the detector 14. The detected image is decoded and the recorded information is reproduced.
  • FIG. 21 is a schematic cross-sectional view showing the configuration of the optical recording medium in the second specific example.
  • This The optical recording medium 22 according to Example 2 is configured in the same manner as Example 1 except for the filter layer 6.
  • the filter layer 6 transmits only red light and does not transmit light of other colors. Therefore, since the information light, recording and reproduction reference light is green or blue light, it does not pass through the filter layer 6 but becomes return light that does not reach the reflective film 2 and is emitted from the incident / exit surface A. become.
  • the filter layer 6 is a laminated body in which a dielectric vapor deposition layer is formed by stacking seven dielectric thin films having different refractive indexes on a color material-containing layer.
  • the filter layer 6 that is a combination of the color material-containing layer and the dielectric vapor-deposited film may be directly formed on the first gap layer 8 by coating and vapor deposition, or may be formed directly on the substrate.
  • a film on which a dielectric deposited film is formed may be punched into an optical recording medium shape.
  • the light transmittance at 655 nm is approximately 80% or more at an incident angle of ⁇ 40 ° as shown in Fig. 22 and Fig. 23.
  • the light reflectance at 532 nm is about 90% or more, and the light wavelength can be selected and reflected.
  • the shape of the optical recording medium 22 in the specific example 2 is formed in the same manner as in the specific example 1 which may be a disk shape or a card shape.
  • the optical recording medium 22 As in the optical recording medium 21, first, light (red light) emitted from the servo laser is reflected almost 100% by the dichroic mirror 13 and passes through the objective lens 12. Servo light is applied to the optical recording medium 22 by the objective lens 12 so as to be focused on the reflective film 2.
  • the dichroic mirror 13 transmits light of green or blue wavelength, and reflects almost 100% of light of red wavelength.
  • the servo light incident from the light incident / exit surface A of the optical recording medium 22 passes through the first substrate 5, the recording layer 4, the second gap layer 7, the filter layer 6, and the first gap layer 8 and is reflected.
  • the light is reflected by the film 2, passes through the first gap layer 8, the filter layer 6, the second gap layer 7, the recording layer 4, and the first substrate 5 and is emitted from the incident / exit surface A again.
  • the returned return light passes through the objective lens 12, is almost 100% reflected by the dichroic mirror 13, and servo information is detected by a servo information detector (not shown).
  • Detected servo information includes focus servo, track Used for rotating servo, slide servo, etc.
  • the hologram material constituting the recording layer 4 is not sensitive to red light, so that the servo light passes through the recording layer 4 or the servo light is reflected from the reflective film 2.
  • the recording layer 4 is not affected even if it is diffusely reflected.
  • the servo light reflecting film 2 is reflected almost 100% by the dichroic mirror 13
  • the servo light is detected by the CMOS sensor or CCD 14 for detecting the reproduced image. In other words, it does not become a noise for the reproduced light.
  • the optical recording medium 22 is irradiated with information light and recording reference light by the objective lens 12 so as to generate an interference pattern in the recording layer 4.
  • Information light and recording reference light are incident from the entrance / exit surface A and interfere with each other at the recording layer 4 to generate an interference pattern there. Thereafter, the information light and the recording reference light pass through the recording layer 4 and are reflected between the force incident on the filter layer 6 and the bottom surface of the filter layer 6 to become return light.
  • the filter layer 6 is a combination of a color material-containing layer and a dielectric deposited film, and has a property of transmitting only red light.
  • the filter layer 6 if the light passing through the filter layer leaks to 20% or less of the incident light intensity, even if the leaked light reaches the bottom surface and becomes return light, it is reflected again by the filter layer and regenerated.
  • the reproduction interference image of the diffracted light 39 in the specific example 1 is corrected, a good image is always reproduced.
  • the optical recording medium of Example 1 includes a first substrate, a recording layer, a second gap layer, and a filter layer.
  • the first gap layer and the second substrate are stacked in this order to produce the following: It was.
  • the filter layer was formed as follows by preparing and laminating a film-like filter.
  • polycarbonate film Mitsubishi Gas Chemical Co., Ltd., trade name Iupilon, thickness 100 / zm
  • polybulu alcohol Karl Fischer Co., Ltd., trade name MP203
  • a coated base phenolic was prepared.
  • a colorant-containing layer coating solution having the following composition was prepared by a conventional method.
  • Red pigment C.I. Pigment Red 9
  • the color material-containing layer coating solution was applied onto the base film with a bar coater and dried to form a color material-containing layer having a thickness of 3 m.
  • the thickness was optimized to increase the reflectance at 532 nm and the transmittance at 650 nm.
  • the refractive index of the medium is 1.52.
  • the wavelength was calculated with reference light and information light of 532 nm (for recording) and servo light of 650 nm (for tracking).
  • dipentaerythritol hexaatalylate manufactured by Nippon Gyaku Co., Ltd.
  • a triacetylcellulose film Fuji Photo Film Co., Ltd., 12/3 with a thickness of 100 ⁇ m is 0.5 ⁇ m thick.
  • a base film coated so as to be prepared was prepared.
  • a dielectric vapor deposition filter in which nine layers were laminated was produced on the base film by sputtering by a multi-chamber method (Cube made by Unaxis) in the same manner as in the simulation in the case of the nine layers.
  • the base film provided with the color material-containing layer and the dielectric vapor deposition filter were bonded together with an adhesive to produce an optical recording medium filter.
  • the obtained optical recording medium filter was used to measure the light reflection characteristics by spectroscopic reflection measuring instrument (Hamamatsu Photonics Co., Ltd., L 5662 as a light source, Hamamatsu Photonics Co., Ltd., PMA-11 as a photomultichannel analyzer). It measured using.
  • the filter for the optical recording medium of Example 1 is capable of receiving light with an incident angle within ⁇ 40 °. It was confirmed that more than 30% of 532nm light, which is the selected wavelength, can be reflected.
  • the produced optical recording medium filter was punched into a predetermined disk size so that it could be placed on the substrate.
  • a polycarbonate resin plate having a diameter of 120 mm and a thickness of 0.6 mm was used as the first substrate.
  • the surface of this substrate is smooth and has no irregularities such as servo pit patterns.
  • a polycarbonate resin substrate formed by injection molding having a diameter of 120 mm and a plate thickness of 1.2 mm was used as the second substrate.
  • a servo pit pattern is formed over the entire surface of the substrate, the track pitch is 1.5 ⁇ m, the groove depth is 100 nm, and the pit; S: 1 ⁇ m.
  • a reflective film was formed on the surface of the servo pit pattern of the second substrate so that the reflectance of incident light perpendicular to the wavelength of 532 nm was 90%.
  • Aluminum (A1) was used as the reflective film material.
  • the A1 reflective film with a thickness of 50 nm was formed by DC magnetron sputtering.
  • the outer spacer is a circle having a diameter of 120 mm, which is the same as the outer shape of the first substrate and the second substrate, the width in the surface direction is 0.5 ⁇ ⁇ 100 / ⁇ ⁇ , and the thickness is the thickness of the recording layer 4 Therefore, the cross-sectional shape is a square of 0.5 mm x 600 m.
  • the material of the outer periphery spacer was produced by injection molding (manufactured by Sumitomo Heavy Industries, Ltd.) using polycarbonate excellent in moldability and mechanical strength.
  • the inner circumferential spacer is a 15 mm circle having the same outer shape as the opening portions of the first substrate 5 and the second substrate 1, and the width in the surface direction is 0.5 ⁇ .
  • ⁇ 100 / ⁇ ⁇ the thickness is 600 m, which is the same as the thickness of the recording layer 4, and therefore the cross-sectional shape is a square of 0.5 mm ⁇ 600 / zm which is the same as the outer spacer.
  • the material of the inner peripheral spacer is the same as the outer peripheral spacer in formability and mechanical strength. It was produced by injection molding (manufactured by Sumitomo Heavy Industries, Ltd.) using an excellent polycarbonate.
  • a second substrate on which a first gap layer 8 made of UV-cured resin (model name SD-640, manufactured by Dainippon Ink & Chemicals, Inc.) is spin-coated to a thickness of 0.1 mm.
  • a UV adhesive (model name SD-640, manufactured by Dainippon Ink & Chemicals, Inc.) was applied to the filter so that air bubbles would not enter the gap, and then the filter layer 6 was formed by laminating. .
  • a laminator device model name HAL110aa, manufactured by Sankyo Co., Ltd.
  • the outer peripheral spacer 27 obtained was bonded to the surface of the second gap layer 7 so that the outer shape of the second substrate 1 and the outer periphery of the outer spacer 27 were matched, and further, the inner peripheral spacer was bonded.
  • the spacer 28 was bonded so that the center of the inner circumferential spacer 28 and the center of the second substrate 1 coincided with each other.
  • a UV adhesive (model name SD-640, manufactured by Dainippon Ink & Chemicals, Inc.) was used and adhered by irradiating UV light.
  • the composition coating solution for an optical recording layer obtained by the injection method was injected into the groove portion having a depth of 600 / zm formed by the outer periphery spacer 27 and the inner periphery spacer 28 by a syringe.
  • the injection conditions were a temperature of 23 ° C, a liquid viscosity of 300 mPas, and a humidity of 50%.
  • the optical recording layer composition was cured under the conditions of a temperature of 80 ° C. for 40 minutes to form a recording layer 4.
  • the recording layer 4 had a thickness of 600 m.
  • an adhesive (type name: GM-9002, manufactured by Brennie Giken Co., Ltd.) is applied, and the outside of the first substrate and the outside of the second substrate are applied at a pressure of 0.08 MPa. Press for 40 minutes at 80 ° C to form a laminate.Finally, seal the edges with moisture-curing adhesive and leave it at 45 ° C for 24 hours.
  • An optical recording medium similar to the optical recording medium 22 shown was produced.
  • the temperature sensor employs an infrared temperature sensor 44, and the center position of the pickup 43 that irradiates the information light and the reference light and the center of the optical recording medium 21 are detected.
  • the angle ⁇ 1 formed by the line L 1 connecting the line L 2 connecting the center position of the infrared temperature sensor 44 and the center of the optical recording medium 21 is about 135 °, and the optical recording medium 21
  • the infrared temperature sensor 44 was installed with a back surface force of 10 mm apart.
  • the reference temperature of the optical recording medium was set to 30 ° C
  • the warning and recording function and playback function stop operating temperature limits were set to 10 ° C
  • the allowable temperature range for warning display was set to ⁇ 5 ° C.
  • Recording and playback tester SHOT-1000 manufactured by Pulstec Industrial Co., Ltd.
  • SHOT-1000 is used to irradiate information light and recording reference light, and a series of multiples with a recording spot size diameter of 200 m at the focal position of the recording hologram.
  • Information was written as an interference image on the recording layer of the optical recording medium using hologram 13 X 13 (49 multiples).
  • the optical recording medium 21 on which the writing has been performed is irradiated with the same reproduction light as the recording reference light from the same direction as the recording reference light, and the recorded interference image force also generates diffracted light 39, and the diffraction light 39 is generated.
  • Light 39 was detected by detector 14, and the recorded image was decoded and reproduced.
  • the allowable temperature range for use was set to ⁇ 5 ° C.
  • the limit temperature range for use was set to ⁇ 10 ° C.
  • the attention calling means does not display a warning. If the recording was continued as it was, the error was 30 Z frames when the recording was reproduced properly.
  • This error was 10 Z-frames when recorded under normal conditions within the allowable operating temperature range.
  • the surface temperature of the optical recording media during reproduction exceeds 25 to 35 ° C (allowable temperature range temperature ⁇ 5 ° C relative to the reference temperature)
  • the error is 30 Z-frames.
  • This error was 10 Z-frames when regenerated under normal conditions within the allowable temperature range.
  • optical recording / reproducing apparatus of the present invention when the surface temperature force of the optical recording medium to be recorded and reproduced exceeds a predetermined temperature range, a warning is displayed and the recording and reproducing functions are stopped. Therefore, recording and playback of optical recording media can be performed under an environment of appropriate temperature, high-precision recording and playback images can be obtained, and recording and playback with excellent SNR can be obtained, and high-density recording can be performed. It is suitably used for a medium. Further, it can be suitably used for any of a relatively thin flat hologram for recording information such as two-dimensional information, a volume hologram for recording a large amount of information such as a three-dimensional image, a transmission type, and a reflection type.
  • holograms such as amplitude holograms, phase holograms, blazed holograms, and complex amplitude holograms.
  • it is used for CDs, DVDs, BDs, HDs, magnetic tapes, computer backup tapes, broadcast tapes, and the like.

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Holo Graphy (AREA)
  • Optical Head (AREA)

Abstract

コリニア方式における高多重記録可能な光記録媒体の表面温度が、記録時、及び再生時に所定の温度範囲を逸脱しているか否かを容易に認識することができ、記録、及び再生の際に、画像のずれや歪がない優れた再生が得られる光記録再生装置、光記録方法、及び光再生方法を提供する。そのために、ホログラフィを利用して情報を記録する記録層を備えた光記録媒体に対して、前記記録、及び再生のいずれかを行う際、該光記録媒体の表面温度が、基準温度に対する使用許容温度範囲を逸脱したことを知らせる注意喚起手段、及び、該光記録媒体の表面温度が、基準温度に対する使用限界温度範囲を逸脱した場合に、記録、及び再生の少なくともいずれかを停止する旨表示し、かつ前記記録、及び前記再生の機能を停止する機能停止手段、の少なくともいずれかを有する光記録再生装置である。また、光記録方法、及び光再生方法である態様が好ましい。

Description

明 細 書
光記録再生装置、光記録方法、及び光再生方法
技術分野
[0001] 本発明は、ホログラフィを利用して情報を記録する記録層を備えた光記録媒体の光 記録再生装置、光記録方法、及び光再生方法に関し、該光記録媒体の許容温度範 囲内で適正に記録、及び再生を行うことができ、 SNR (信号対ノイズ比)の優れた記 録、及び再生が得られる光記録再生装置、光記録方法、及び光再生方法に関する。 背景技術
[0002] ホログラフィを利用して光記録媒体へ情報を記録する方法としては、一般に、ィメー ジ情報を持った情報光 (物体光)と参照光とを前記光記録媒体の内部で干渉させ、 その際に生成される干渉縞を前記光記録媒体に書き込むことによって行われる。 前記光記録方法として、例えば、前記情報光の光軸と参照光の光軸とが同軸にな るようにして該情報光、及び参照光が照射される方法が、コリニア方式と称され、光記 録装置や光記録媒体の誤差などの影響を受けることが少ない記録方法として知られ ている。
該コリニア方式における情報光、及び参照光の照射により光記録媒体に形成され て ヽる記録層内に前記干渉縞が生成され、光情報が該記録層に記録される。
このような光記録媒体に記録された情報の再生は、前記光記録媒体の記録に用い られた参照光と同じ再生光を、記録時と同じ方向から照射することにより行われる。該 光照射により、前記光記録媒体に光情報としての干渉縞力 なる干渉像力 回折光 が生成され、該回折光を受光することにより前記情報が再生される。
[0003] このような情報の記録容量を増大させる方法として、前記干渉縞の記録密度を高め る多重記録方法があり、具体的には、シフト多重記録、角度多重記録、波長多重記 録、位相多重記録などの記録方法が用いられて 、る。
これらの中でも、シフト多重記録は、光照射又は光記録媒体のいずれかを記録層 に平行な面方向に少しずつ移動させながら最初の記録の上に重ねて記録を追カロし て 、くため、ディスクを回転させながら記録する従来の CDや DVDなどのディスク記 録と親和性が高ぐランダムアクセスに優れており、単一のレンズを用いて記録を行う 前記コリニア方式などに用いられている(非特許文献 1参照)。
前記コリニア方式におけるシフト多重記録は、図 3に示すように、情報光 37、及び 参照光 38が対物レンズ 12を透過した後、光記録媒体 21内の記録層 4において一定 の大きさに集光される光照射スポット 32単位で行われ、該光照射スポット 32が照射さ れ、干渉像力 なるデータページとして記録されると、光記録媒体 21が 1ピッチ分回 転し、ピッチ毎に前記情報光照射スポットが照射され、順次多重に記録がなされる。
[0004] このような、シフト多重記録がなされた光記録媒体の光情報を再生する方法として、 図 4に示すように、前記再生光 38aの照射により生成された前記回折光 39を、図 2に 示す検出器 14で前記光照射スポット 32の単位、即ち、図 2に示す再生干渉像 35か らなるデータページ単位で受光し、該データページに含まれる符号化された元の情 報を処理して再生する (特許文献 1参照)。
[0005] しかし、前記再生方法の場合、図 5、及び図 6に示すように、再生光 38aの照射角 度や光軸方向における焦点距離が、記録時の参照光の照射角度、及び光軸方向に おける焦点距離とずれてしまった場合には、回折光 39は、本来の垂直方向から例え ば角度 Θ分だけずれが生じ、検出器により検出される真正干渉像からずれた再生干 渉像となってしま 、、正確な再生ができな ヽと 、う問題がある。
このような再生干渉像のずれは、図 11の検出器の受光部 33で受光する本来の真 正干渉像 34に対して、再生干渉像 35の全体が縮小されてしまったり(図 12参照)、 再生干渉像 35の全体が拡大されてしまったり(図 13参照)、再生干渉像 35の全体が 図の右側にシフトしてしまったり(図 14参照)、再生干渉像 35が左斜め下側方向にシ フトしてしまったり(図 15参照)、再生干渉像 35の横のみが縮小されてしまったり(図 1 6参照)、再生干渉像 35が歪んでしまったり(図 17参照)する形で生ずる。
また、このような現象は、再生時だけでなく前記記録時にも同様に生ずる。 このような、ずれや歪が生ずる原因としては、前記光記録媒体が記録、及び再生に よる表面温度の変化などの影響により、前記情報光、参照光、及び再生光の照射角 度や光軸方向の焦点距離がずれたり、歪んだりすることが考えられる。
ホログラム記録では、特に、記録時の光記録媒体の表面温度と、再生時の光記録 媒体の表面温度とが異なっていると、顕著に現れる。
例えば、表面温度が、予め設定された使用温度範囲の 20〜30°Cを超えた 40° で 記録した光記録媒体を、前記表面温度が 50°Cで再生した場合には、前記ずれや歪 の差が顕著に影響し、再生不能となることがある。また、前記表面温度が使用温度範 囲内の 25°Cで記録したものを、 40°Cで再生した場合にも、再生不能となることがある したがって、光記録媒体の記録時の表面温度と再生時の表面温度がほぼ等しけれ ば、再生不能となることはない。
このような光記録媒体の記録時や再生時の表面温度はコントロールされて!/、な 、の が通常であり、前記ずれや歪が、記録時と再生時の光記録媒体の表面温度の差によ り拡大されたことを認識する手段が未だ設けられていない。特に、光記録媒体の表面 温度などが許容された使用温度範囲を逸脱した状態で記録が行われると、いくら再 生時に使用温度範囲内で正常な再生を行なっても、前記ずれや歪が現れることがあ る。
即ち、前記光記録媒体の記録時の表面温度が、そのような許容温度範囲を逸脱し て!、ることが記録時に認識できれば、そのような異常な状態での記録を停止すること ができる。
一方、記録時に光記録媒体の表面温度が使用温度範囲内であっても、再生時に 使用温度範囲を逸脱していれば、同様にずれや歪の原因となってしまう。いずれの 場合も、光記録媒体の表面温度が使用温度範囲を逸脱して!/ヽることを認識すること ができれば、記録や再生の停止などにより対処することが可能となる。
[0006] したがって、前記コリニア方式における高多重記録が可能な光記録媒体の表面温 度が、許容された使用温度範囲を逸脱しているか否かを容易に認識することができ、 記録、及び再生の際に無駄な記録や再生を回避できる光記録再生装置、光記録方 法、及び光再生方法は未だ実現されておらず、その提供が望まれているのが現状で ある。
[0007] 特許文献 1 :特開 2004— 177958号公報
非特許文献 1 :「日経エレクトロニクス」 2005年 1月 17日号 P105〜P114 発明の開示
[0008] 本発明は、従来における前記問題を解決し、以下の目的を達成することを課題とす る。即ち、本発明は、前記コリニア方式における高多重記録可能な光記録媒体の表 面温度が、記録時、及び再生時に許容された温度範囲を逸脱しているか否かを容易 に認識することができ、記録、及び再生の際に、画像のずれや歪がない優れた再生 が得られる光記録再生装置、光記録方法、及び光再生方法を提供することを目的と する。
[0009] 前記課題を解決するための手段としては、以下の通りである。即ち、
< 1 > ホログラフィを利用して情報を記録する記録層を備えた光記録媒体に対し て、情報光、及び参照光を照射する記録、及び再生光を照射する再生の少なくとも いずれかを行う光記録再生装置であって、前記記録、及び再生のいずれかを行う際 、該光記録媒体の表面温度が、基準温度に対する使用許容温度範囲を逸脱したこ とを知らせる注意喚起手段、及び、該光記録媒体の表面温度が、基準温度に対する 使用限界温度範囲を逸脱した場合に、記録、及び再生の少なくともいずれかを停止 する旨表示し、かつ前記記録、及び前記再生の機能を停止する機能停止手段、 の少なくともいずれかを有することを特徴とする光記録再生装置である。
< 2> 基準温度が、 0〜50°Cである前記 < 1 >に記載の光記録再生装置である。
< 3> 使用許容温度範囲が、 30〜30°Cである前記 < 1 >から < 2>のいずれ かに記載の光記録再生装置である。
<4> 使用許容温度範囲が、 5〜5°Cである前記 < 1 >から < 3>のいずれか に記載の光記録再生装置である。
< 5> 使用限界温度範囲が、 40〜40°Cである前記 < 1 >から <4>のいずれ かに記載の光記録再生装置である。
< 6> 使用限界温度範囲が、 10〜10°Cである前記く 1 >からく 5>のいずれ かに記載の光記録再生装置である。
< 7> 光記録媒体の表面温度が、情報光、参照光、及び再生光の入射側と反対 側の表面温度であり、温度センサにより感知された温度である前記 < 1 >から < 6> の!、ずれかに記載の光記録再生装置である。 <8> 光記録媒体が円盤状であり、情報光、及び参照光を照射するピックアップ の中心位置と光記録媒体の中心とを結ぶ線 L1と、温度センサの中心位置と光記録 媒体の中心とを結ぶ線 L2とのなす角 θ 1が、 10〜180° であり、前記温度センサが 前記光記録媒体の外縁よりも内側であって、前記光記録媒体の表面と非接触位置 に配置される前記 <1>から < 7 >のいずれかに記載の光記録再生装置である。
<9> 光記録媒体が円盤状であり、情報光、及び参照光を照射するピックアップ の中心位置と光記録媒体の中心との距離 dlと、温度センサの中心位置と光記録媒 体の中心との距離 d2との差力 20mm以下である前記く 1 >から < 8 >の!、ずれか に記載の光記録再生装置である。
<10> 情報光、及び参照光の照射が、該情報光の光軸と該参照光の光軸とが 同軸となるようにして行われる前記 <1>から <9>のいずれかに記載の光記録再生 装置である。
<11> 再生光が、光記録媒体の記録に用いられた参照光と同じ角度になるよう にして、該再生光を干渉像に照射して記録情報を再生する前記く 1 >からく 10>の V、ずれかに記載の光記録用再生装置である。
<12> 光記録媒体が、第一の基板と、記録層と、フィルタ層と、第二の基板とをこ の順に有する前記 < 1 >からく 11 >のいずれかに記載の光記録再生装置である。
<13> 光記録媒体が、反射型ホログラムである前記く 12>に記載の光記録再 生装置である。
<14> フィルタ層力 顔料、及び染料の少なくともいずれかの色材を含有する色 材含有層と、該色材含有層上にコレステリック液晶層とを有する前記く 12>からく 1 3 >の 、ずれかに記載の光記録再生装置である。
<15> フィルタ層が、顔料、及び染料の少なくとも!/、ずれかの色材を含有する色 材含有層と、色材含有層上に誘電体蒸着層を有する前記 < 12>から < 14>のい ずれかに記載の光記録再生装置である。
<16> フィルタ層力 単層のコレステリック液晶層を有する前記 <12>からく 15 >の 、ずれかに記載の光記録再生装置である。
<17> フィルタ層が、コレステリック液晶層を 2層以上積層した積層体である前記 < 12 >力 く 16 >のいずれかに記載の光記録再生装置である。
該< 17>の光記録再生装置においては、コレステリック液晶層を 2層以上積層して おり、入射角が変化しても選択反射波長にずれが生じることなぐ記録又は再生時に 用いられる情報光、及び参照光、更に再生光は、反射膜に到達しないので、反射面 上での乱反射による拡散光が発生することを防ぐことができる。従って、この拡散光に よって生じるノイズが再生像に重畳されて CMOSセンサ又は CCD上で検出されるこ ともなぐ再生像が少なくともエラー訂正可能な程度に検出することができるようになる 。拡散光によるノイズ成分はホログラムの多重度が大きくなればなるほど大きな問題と なる。つまり、多重度が大きくなればなるほど、例えば多重度が 10以上になると、 1つ のホログラム力 の回折効率が極めて小さくなり、拡散ノイズがあると再生像の検出が 非常に困難となるのである。この構成によれば、このような困難性は除去することがで き、今までにない高密度画像記録が実現できる。
< 18 > コレステリック液晶層における選択反射波長帯域が連続的である前記く 1 6 >からく 17 >のいずれかに記載の光記録再生装置である。
く 19 > コレステリック液晶層力 少なくともネマチック液晶化合物、及び光反応型 カイラル化合物を含有する前記 < 16 >から< 18 >のいずれかに記載の光記録再 生装置である。
< 20> コレステリック液晶層力 円偏光分離特性を有する前記く 16 >からく 19 >の 、ずれかに記載の光記録再生装置である。
< 21 > コレステリック液晶層における螺旋の回転方向が互いに同じである前記く 16 >からく 20 >のいずれかに記載の光記録再生装置である。
< 22> コレステリック液晶層における選択反射中心波長が互いに異なる前記く 1 6 >から < 21 >の 、ずれかに記載の光記録再生装置である。
< 23 > コレステリック液晶層における選択反射波長帯域幅が lOOnm以上である 前記く 16 >からく 22 >のいずれかに記載の光記録再生装置である。
< 24> フィルタ層が、第一の光を透過し、該第一の光と異なる第二の光を反射す る前記 < 12>から < 23 >の 、ずれかに記載の光記録再生装置である。
< 25 > 第一の光の波長が、 350〜600nmであり、かつ第二の光の波長が 600 〜900nmである前記く 24 >に記載の光記録再生装置である。
< 26 > フィルタ層が、ホログラフィを利用して情報を記録する光記録媒体の選択 反射膜として用いられる前記く 12 >からく 25 >の 、ずれかに記載の光記録再生装 置である。
< 27> フィルタ層が、光反応型カイラル化合物を有し、該光反応型カイラル化合 物力 キラル部位と、光反応性基とを有し、該キラル部位力 Sイソソルビドィ匕合物、イソ マン-ドィ匕合物、及びビナフトールイ匕合物力 選択される少なくとも 1種である前記く 12 >力ら< 26 >の 、ずれかに記載の光記録再生装置である。
< 28 > 光反応性基が、光照射により炭素 炭素二重結合のトランスからシスへの 異性化を生じる基である前記 < 27 >に記載の光記録再生装置である。
< 29 > 第二の基板が、サーボピットパターンを有する前記く 12>からく 28 >の V、ずれかに記載の光記録再生装置である。
< 30> サーボピットパターン表面に反射膜を有する前記く 29 >に記載の光記 録再生装置である。
く 31 > 反射膜が、金属反射膜である前記く 30 >に記載の光記録再生装置であ る。
< 32> フィルタ層と反射膜との間に、第二の基板表面を平滑ィ匕するための第 1ギ ヤップ層を有する前記く 12 >からく 31 >のいずれかに記載の光記録再生装置であ る。
< 33 > 記録層とフィルタ層との間に、第 2ギャップ層を有する前記く 12>からく 32 >の 、ずれかに記載の光記録再生装置である。
< 34 > 光記録媒体が反射型ホログラムである前記 < 12 >から < 33 >の 、ずれ か記載の光記録再生装置である。
< 35 > ホログラフィを利用して情報を記録する記録層を備えた光記録媒体に対し て、情報光、及び参照光を照射する記録を行う光記録方法であって、該記録を行う 際、該光記録媒体の表面温度が、基準温度に対する使用許容温度範囲を逸脱した ことを警告表示すること、及び、該光記録媒体の表面温度が基準温度に対する使用 限界温度範囲を逸脱した場合に、記録を停止する旨表示し、かつ停止すること、 の少なくともいずれかを行うことを特徴とする光記録方法である。
< 36 > 基準温度が、 0〜50°Cである前記 < 35 >に記載の光記録方法である。
< 37> 使用許容温度範囲が、—30〜30°Cである前記く 35>からく 36>のい ずれかに記載の光記録方法である。
< 38> 使用許容温度範囲が、 5〜5°Cである前記く 35>からく 37>のいず れかに記載の光記録方法である。
< 39> 使用限界温度範囲が、 40〜40°Cである前記く 35>からく 38>のい ずれかに記載の光記録方法である。
<40> 使用限界温度範囲が、 10〜10°Cである前記く 35>からく 39>のい ずれかに記載の光記録方法である。
[0011] <41 > ホログラフィを利用して情報を記録する記録層を備えた光記録媒体に対し て、再生光を照射する再生を行う光記録再生装置であって、該再生を行う際、該光 記録媒体の表面温度が、基準温度に対する使用許容温度範囲を逸脱したことを警 告表示すること、及び、該光記録媒体の表面温度が、基準温度に対する使用限界温 度範囲を逸脱した場合に、再生を停止する旨表示し、かつ停止すること、 の少なくともいずれかを行うことを特徴とする光再生方法である。
<42> 基準温度が、 0〜50°Cである前記く 41 >に記載の光再生方法である。
<43> 使用許容温度範囲が、—30〜30°Cである前記く 41 >からく 42>のい ずれかに記載の光再生方法である。
<44> 使用許容温度範囲が、 5〜5°Cである前記く 41 >からく 43>のいず れかに記載の光再生方法である。
<45> 使用限界温度範囲が、 40〜40°Cである前記く 41 >力らく 44>のい ずれかに記載の光再生方法である。
<46> 使用限界温度範囲が、 10〜10°Cである前記く 41 >からく 45>のい ずれかに記載の光再生方法である。
[0012] 本発明によると、従来における諸問題を解決でき、前記コリニア方式における高多 重記録可能な光記録媒体の表面温度が、記録時、及び再生時に許容された温度範 囲を逸脱している力否かを容易に認識することができ、記録、及び再生の際に、画像 のずれや歪がない優れた再生が得られる光記録再生装置、光記録方法、及び光再 生方法を提供することができる。
図面の簡単な説明
[図 1]図 1は、本発明の光再生方法のフローチャートである。
[図 2]図 2は、本発明による光記録媒体周辺の光学系の一例を示す説明図である。
[図 3]図 3は、光記録媒体に情報光、及び参照光を集光照射して記録層に記録する 概念図である。
[図 4]図 4は、光記録媒体に入射する再生光と干渉像力 生成される回折光の光路 の説明図である。
[図 5]図 5は、光記録媒体に入射する再生光と干渉像力 生成される回折光の光路 の説明図である。
[図 6]図 6は、光記録媒体に入射する再生光と干渉像力 生成される回折光の光路 の説明図である。
[図 7]図 7は、光記録媒体の表面温度に対する再生についての警告の表示の一例で ある。
[図 8]図 8は、光記録媒体の表面温度に対する記録についての警告の表示の一例で ある。
[図 9]図 9は、光記録媒体に対するピックアップ、温度センサの配置を示す斜視図で ある。
[図 10]図 10は、光記録媒体に対するピックアップ、温度センサの配置を示す平面図 である。
[図 11]図 11は、本発明の光検出器の受光部における干渉像を示す説明図である。
[図 12]図 12は、本発明の光検出器の受光部における干渉像を示す説明図である。
[図 13]図 13は、本発明の光検出器の受光部における干渉像を示す説明図である。
[図 14]図 14は、本発明の光検出器の受光部における干渉像を示す説明図である。
[図 15]図 15は、本発明の光検出器の受光部における干渉像を示す説明図である。
[図 16]図 16は、本発明の光検出器の受光部における干渉像を示す説明図である。
[図 17]図 17は、本発明の光検出器の受光部における干渉像を示す説明図である。 [図 18]図 18は、本発明の光再生方法に用いる光記録媒体の一例を示す斜視図であ る。
[図 19]図 19は、本発明の光再生方法に用いる一例の光記録媒体の積層体の分解 斜視図である。
[図 20]図 20は、本発明の光再生方法に用いる光記録媒体の一例を示す斜視図であ る。
[図 21]図 21は、本発明の光再生方法に用いる光記録媒体の一例を示す斜視図であ る。
[図 22]図 22は、本発明の光再生方法に用いる光記録媒体のフィルタ層の光学特性 を示すグラフである。
[図 23]図 23は、本発明の光再生方法に用いる光記録媒体のフィルタ層の光学特性 を示すグラフである。
[図 24]図 24は、本発明の光記録再生装置の全体構成の一例を表すブロック図であ る。
[図 25]図 25は、本発明の演算処理装置の一例を表すブロック図である。
発明を実施するための最良の形態
(光記録再生装置)
本発明の光記録再生装置は、ホログラフィを利用して情報を記録する記録層を備 えた光記録媒体に対して、情報光、及び参照光を照射する記録、及び再生光を照射 する再生の少なくともいずれかを行う光記録再生装置であって、前記記録、及び再 生のいずれかを行う際、該光記録媒体の表面温度が、基準温度に対する使用許容 温度範囲を逸脱したことを知らせる注意喚起手段、及び、該光記録媒体の表面温度 力 基準温度に対する使用限界温度範囲を逸脱した場合に、記録、及び再生の少 なくともいずれかを停止する旨表示し、かつ前記記録、及び前記再生の機能を停止 する機能停止手段、の少なくともいずれかを有し、必要に応じて適宜選択したその他 の手段を有することが特徴である。
前記注意喚起手段と機能停止手段とは、 V、ずれか一つを有するものであればょ 、 力 注意喚起手段と機能停止手段の双方を有するものであるのが好ましい。 前記光記録媒体の記録、及び再生を行うのに好ましい温度、即ち、基準温度として は、 0〜50°Cが好ましぐ 10〜40°Cがより好ましい。
該基準温度が、 0°C未満であると、記録層の材料中の水分が凍結することにより、 該記録層の特性が著しく変化することがあり、 50°Cを超えると、記録層材料の拡散性 が大きくなり、正常な記録ができなくなることがある。
前記基準温度に対する使用許容温度範囲としては、 30〜30°Cが好ましぐ -5 〜5°Cがより好ましい。
該使用許容温度範囲が、 30〜30°Cの範囲を外れると、記録層材料や基板その 他の部材の熱膨張などによる体積変化により、信号特性が著しく変化することがある 前記基準温度に対する使用限界温度範囲としては、前記好適温度範囲よりも広い 温度範囲で設定するのが好ましぐ 40〜40°Cが好ましぐ— 10〜10°Cがより好ま しい。
該使用許容温度範囲が、 40〜40°Cの範囲を外れると、記録層材料や基板その 他の部材が軟化して、光記録媒体が変形することがある。
本発明の光記録再生装置は、前記情報光、及び参照光の照射が、該情報光の光 軸と該参照光の光軸とが同軸となるようにして行われるいわゆるコリニア方式の光記 録、及び再生方法に用いられることが好ましい。
以下、コリニア方式について主に説明する力 コリニア方式に限定されず、それ以 外の 2光束干渉法による光記録、及び再生方法についても、本発明の光記録再生装 置、光記録方法、及び光再生方法を用いることができる。
本発明の光記録再生装置の以下の説明を通じて、本発明の光記録方法、及び光 再生方法についても明らかにする。
<注意喚起手段 >
前記注意喚起手段は、記録しょうとする光記録媒体、又は再生しょうとする光記録 媒体の 、ずれかを前記光記録再生装置に装着した際の、該光記録媒体の表面温度 を測定し、該表面温度が、基準温度に対する使用許容温度範囲を逸脱したときに、 前記光記録再生装置の表示部に、注意喚起を表示する手段であり、前記光記録媒 体の表面温度が、基準温度 ±30°Cを逸脱したときに、前記光記録再生装置の表示 部に、注意喚起を表示する手段であることが好ましぐ光記録媒体の表面温度が、基 準温度 ±5°Cを逸脱したときに、前記光記録再生装置の表示部に、注意喚起を表示 する手段であることがより好ましい。
前記表示としては、特に制限はなぐ目的に応じて適宜選択することができ、例えば 、「光記録媒体の表面温度が正常ではありません。」、「光記録媒体の表面温度が、 使用許容温度範囲を超えています。」、「光記録媒体の表面温度が、使用許容温度 範囲— 30〜30°Cを超えています。」、「記録内容を保持できません」などのように文 字や音声などの表示、警告のランプ、 LEDなどを点灯する表示などが挙げられる。 このように、本発明の光記録再生装置を使用する際に、測定した光記録媒体の表 面温度が、使用許容温度を逸脱した旨の注意を喚起することにより、記録、及び再生 の品質の低下を使用者に報知することができる。
<機能停止手段 >
前記機能停止手段は、記録しょうとする光記録媒体、又は再生しょうとする光記録 媒体の 、ずれかを前記光記録再生装置に装着した際の、該光記録媒体の表面温度 を測定し、該表面温度が、記録や再生が不能な温度範囲、即ち、基準温度に対する 使用限界温度範囲を逸脱したときに、該光記録再生装置の表示部に記録又は再生 が不能であることを表示し、記録、及び再生のいずれかを停止する手段である。 また、該機能停止手段は、光記録媒体の表面温度が、基準温度 ±40°Cを逸脱し たときに、該光記録再生装置の表示部に記録又は再生が不能であることを表示し、 記録、及び再生のいずれかを停止する手段であることが好ましぐ光記録媒体の表 面温度が、基準温度 ± 10°Cを逸脱したときに、該光記録再生装置の表示部に記録 又は再生が不能であることを表示し、記録、及び再生のいずれかを停止する手段で あることがより好ましい。
ここで、前記使用限界温度範囲は、前記注意喚起手段の使用許容温度範囲よりも 広ぐかつ該使用許容温度範囲と重なる部分がないことが好ましい。重なった温度範 囲があると、その重複範囲では、注意喚起と機能停止と両方に該当することとなり、い ずれの手段を採るか判別できな!、からである。 したがって、前記機能停止手段における使用限界温度範囲は、前記注意喚起手 段における使用許容温度範囲とは、重複しない範囲で設定される。これらの温度範 囲が、重複してしまうと、重複部分では前記注意喚起手段、及び機能停止手段のい ずれも採りうることになり、新たな条件を要することになり、手段が複雑化することにな る。
前記表示としては、特に制限はなぐ目的に応じて適宜選択することができ、例えば 、「光記録媒体の表面温度が異常です。記録 (再生)機能を停止します。」、「光記録 媒体の表面温度が、使用限界温度範囲を超えています。記録 (再生)機能を停止し ます。」、「使用限界温度範囲— 40〜40°Cを超えています。良好な記録 (再生)が得 られないため機能を停止します。」、「記録内容を保持できません」などのように文字 や音声などでの表示、記録 (再生)機能停止のランプ、 LEDなどを点灯する表示など が挙げられる。
このように、記録又は再生機能を停止することにより、記録、及び再生の品質の低 下を使用者に確実に報知することができる。
前記機能停止方法としては、特に制限はなぐ目的に応じて適宜選択することがで き、例えば、一時的に光記録媒体の表面温度が、前記使用限界温度範囲内、好まし くは前記使用許容温度範囲内に戻るまでの間、情報光、参照光、及び再生光の少な くともいずれかの照射を停止する方法、などが挙げられる。
具体的には、図 1のフローチャートに示すように、光記録再生装置の電源を ONに すると、連動して該光記録再生装置に装着された光記録媒体の表面に非接触かつ 近接して設置されて!、る温度センサが作動し、該光記録媒体の表面温度を測定する 。そして、注意喚起手段は、測定された前記表面温度が、基準温度に対する使用許 容温度範囲内にある力否かを判定する。使用許容温度範囲内にある場合には、記 録のときは、前記光記録媒体に情報光、及び参照光が照射され、記録層に干渉像を 形成し、記録する。再生のときは、前記光記録媒体に記録されているホログラムに再 生光を照射し、ホログラムから回折光を生成し、検出器で受光し画像データをデコー ドし記録された情報を再生する。
前記注意喚起手段は、前記表面温度が使用許容温度範囲を逸脱して!/、た場合に は、前記表示部に前記注意喚起の表示をし、更に該表面温度が使用限界温度範囲 を逸脱していた場合には、前記機能停止手段によって、その旨の表示がされ、記録 又は再生の機能が停止される。
特に、光記録媒体の表面温度が使用許容温度範囲又は使用限界温度範囲を逸 脱した状態で、記録が行われると、いくら再生時に使用許容温度範囲内で正常な再 生を行なっても、再生干渉像に位置ずれや歪が現れることがあり、エラーやノイズの 原因となる。
前記光記録媒体の記録時の表面温度が、そのような使用許容温度範囲又は使用 限界温度範囲を逸脱して 、ることが記録時に認識できれば、そのような異常な状態 での記録を停止することができる。
逆に、記録時に光記録媒体の表面温度が使用許容温度範囲内であっても、再生 時に使用許容温度範囲又は使用限界温度範囲を逸脱して 、れば、同様に前記位 置ずれや歪の原因となってしまう。
V、ずれの場合も、光記録媒体の表面温度が使用許容温度範囲を逸脱して!、た場 合に、注意が喚起され、更には、使用限界温度範囲を逸脱していた場合には、記録 、及び再生の機能が停止されるので、再生時の再生不能や、記録時、及び再生時の 品質の低下を防止することができる効果がある。
温度センサー
前記温度センサとしては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、非接触放射温度計、接触式温度計、気温計、などが挙げられる。
前記温度センサの光記録媒体に対する配置としては、特に制限はなぐ目的に応 じて適宜選択することができ、例えば、図 9、及び図 10に示すように、前記光記録媒 体が円盤状であり、情報光、及び参照光を照射するピックアップの中心位置と光記録 媒体の中心とを結ぶ線 L1と、温度センサの中心位置と光記録媒体の中心とを結ぶ 線 L2とのなす角 θ 1が、 10〜180° であり、前記温度センサが前記光記録媒体の外 縁よりも内側であって、前記光記録媒体の表面と非接触位置に配置される形態、な どが挙げられる。
前記 θ 1としては、 30〜180° 力 り好ましぐ 60-180° が特に好ましい。前記 Θ 1が、 10° 未満であると、記録光の影響で温度が正確に測定できないことがある。 また、前記情報光、及び参照光を照射するピックアップの中心位置と光記録媒体の 中心との距離 dlと、温度センサの中心位置と光記録媒体の中心との距離 d2との差 力 20mm以下であるのが好ましぐ 10mm以下がより好ましぐ 5mm以下が更に好 ましい。前記 dlと d2との距離の差力 20mmを超えると、実際の記録層の温度と解 離した温度を測定してしま 、、温度制御が適切に行われなくなることがある。
なお、前記ピックアップは、光記録媒体の記録又は再生対象のトラックの位置に応 じて、光記録媒体の半径方向に移動する場合は、該移動に対応して、距離 dlと距離 d2との差が、前記数値範囲を保つように、温度センサも光記録媒体の半径方法に移 動可能としてもよい。また、ピックアップ力 いずれの位置に移動した場合であっても、 前記距離 dlと距離 d2との差が前記数値範囲内となるような位置に、温度センサを固 定的に設置してもよい。
前記温度センサと光記録媒体の表面との間隔は、 0. 5〜50mmが好ましぐ 1〜2 Ommがより好ましい。前記間隔が 0. 5mm未満であると、温度センサと光記録媒体の 表面とが接触することがあり、前記光記録媒体の正常な回転が得られないことがあり 、前記間隔が 50mmを超えると、前記光記録媒体の表面温度を適格に測定できない ことがある。
前記温度センサの設置個数としては、少なくとも一箇所に設置されていれば、特に 制限はなぐ目的に応じて適宜選択することができ、例えば、 2〜5個でもよい。多数 設置すれば、それだけ的確な表面温度を測定することができるが、各測定温度の集 計や平均値の算出などの処理が煩雑となることがある。
表示部
前記表示部は、本発明の光記録再生装置の操作部などの見やすい位置に設けら れ、注意喚起、機能停止などの表示を行う。
前記表示部としては、特に制限はなぐ目的に応じて適宜選択することができ、例え ば、図 7、及び図 8に示す文字や画像表示、音声表示、振動表示などが挙げられる。 前記画像表示又は文字表止としては、例えば、液晶、 LED、表示灯などへの表示、 が挙げられる。前記音声表止としては、例えば、録音した音声、ブザーなどによる表 示が挙げられる。前期振動表示としては、操作部分などのボタンを振動させるなどの 表示が挙げられる。
[0020] <その他の手段 >
前記その他の手段としては、特に制限はなぐ 目的に応じて適宜選択することがで き、例えば、前記光記録媒体の冷却手段、加熱手段などが挙げられ、更に情報光、 及び参照光、又は再生光の照射角度などを制御するフォーカスやトラッキングなどの サーボ手段などが挙げられる。
[0021] 冷却手段
前記冷却手段としては、特に制限はなぐ 目的に応じて適宜選択することができ、 例えば、非接触型の冷却器が好ましぐ具体的には、二種類の金属の接合部に電流 を流すと、片方の金属力 もう片方の金属へ熱が移動すると 、うペルチェ効果を利用 した素子を込み込んだペルチェ冷却器による冷却、外部からの空気供給による冷却 、ヒートパイプによる冷却、などが挙げられる。これらの中でも、コントロールが容易な 点で、ペルチェ冷却器が好ましい。
[0022] 加熱手段
前記加熱手段としては、特に制限はなぐ 目的に応じて適宜選択することができ、 例えば、非接触型で、光、 RFなどの電磁波によるヒータが好ましぐ具体的には、赤 外線ヒータ、ハロゲンランプなどの光学ランプ (ただし、光記録媒体が感光しないよう に、感光波長をカットしたもの。 )、ホットプレート、ケーブルヒータ、カートリッジヒータ、 マルチセルヒータ、厚膜ヒータ、フレキシブルヒータ、などが挙げられる。これらの中で も、前記赤外線ヒータ、前記ハロゲンランプが好ましい。
[0023] フォーカス、及びトラッキングサーボ手段
前記フォーカス、及びトラッキングサーボ手段としては、特に制限はなぐ 目的に応 じて適宜選択することができ、例えば、前記再生干渉像の位置ずれなどの歪情報を 検出し、該歪情報に基づいて行う制御手段などが挙げられる。
[0024] 歪情報の検出
前記歪情報の検出方法としては、特に制限はなぐ 目的に応じて適宜選択すること ができ、例えば、真正干渉像を基準として用い、一定の計算式を最小にする値を求 め、回折光受光部の面方向の X、及び Y方向のずれを求める方法などが挙げられる
。前記最小値を求める方法として、逐次計算法、偏微分法、非線形最小二乗法など が挙げられる。
具体的には、例えば、 D (x, y)を画素の濃度情報として表した場合、前記真正干渉 像を D (x, y)、前記再生干渉像を D (x, y)と表す。
0 R
前記画素の濃度情報は、例えば、 8bitのセンサであれば、 0〜255の値をとる。ス レツショルド'レベル (しきい値)を設けて、 0と 1の 2値に分別すると、計算が簡単にな るため好ましい。
前記 x、及び yは 2次元センサ (検出器の回折光受光部)における縦軸、及び横軸 位置座標を表す。例えば、 1, 024 X 768画素の 2次元センサでは Xは 1〜1, 024、 y は 1〜768の値をとることになる。また、 X X y の 2次元センサでは、 xは l〜x 、 max max max yは l〜y の範囲の値をとることになる。
max
ここで、前記再生干渉像と前記真性干渉像の画像のずれ量を Δ χ、 A y、拡大率を αとすると、理想的には、以下の式が成り立つ。
X D (χ- Δ χ、 y- A y) =D (x, y)
R 0
[0025] 前記再生干渉像のずれ量、 Δ χ、 A yを求めるには、以下の Κを最小にするように計 算すればよい。
K=∑∑{D (X, y) - a X D (χ— Δ χ、 y— Δ ν) }2
Ο R
ただし、(χ— Δ χ)や (y— A y)が 1より小さい場合や、 χ 、y より大きい場合は、 max max
足し合わせな!/、で計算することが好まし 、。
前記最小の値を求めるためには、以下の逐次計算法、偏微分法、非線形最小二乗 法などが挙げられる。
[0026] 逐次計算法
前記逐次計算法は、 Δ χ、 A y、 αを一定の範囲内で変化させて、 Kをそれぞれ計 算し、 Κが最小となったときに Δ χ、 Δ γ、 αを最も確力らしい値とする方法である。演 算処理時間は多少力かる力 最も確実に最小値を求めることができる。
[0027] 偏微分法
前記偏微分法は、前記 Κを求める式を、それぞれのパラメータ Δ χ、 A yで偏微分し 、これを連立方程式として解く方法である。
演算処理時間は短縮することができる力 時として解が求まらな力つたり、複数の解 が得られたりするため、変位が大きくずれていない場合に限定して用いることが好ま しい。
[0028] 非線形最小二乗法
前記非線形最小二乗法は、計測値と計算値の残差の二乗和を最小にするように未 知パラメータを決定する方法で、ある構造パラメータの組につ!、て残差二乗和を求め 、残差二乗和の微分が負になるような構造パラメータの組を発生させ、それらの値に 対する残差二乗和を計算する。この過程を繰り返して残差二乗和の最小値に到達す る。例えば、最急降下法、 Gauss— Newton法、(修正) Marquardt法などが挙げら れる。
前記最急降下法は、反復の回数において、残差二乗和の減少が局所的に最大と なる方向に沿って解を探索する方法であり、極小点の周りの収束領域は比較的広い 力 収束速度は遅くなることがある。
前記 Gauss— Newton法は、解くべき最小二乗問題が線形に近いと仮定した近似 を用いて解を反復改良する方法で、推定の初期値が解に近い場合には早く収束す ることができるが、その収束領域は一般に狭い。
前記(修正) Marquardt法は、前記最急降下法と前記 Gauss— Newton法を折衷 した方法で、推定する変数が解から遠く離れ、非線形性の影響が大きい場合には最 急降下法的な推定を行い、解に近づくにつれて、 Gauss— Newton法的な推定とな る。これにより安定かつ少ない回数の繰り返しで解を求めることができる。
[0029] ここでの各計算は、 X方向のずれ、 y方向のずれ、拡大、及び縮小が均一に起こると した。しかし、実際には部分的にそのずれ量が変わる場合がある。その場合は、 Δ χ、 Δ γ, aが、 xや yの関数となり、式が複雑になることがある。複雑になっても、前記逐 次計算法を用いれば解くことができるが、演算処理時間を短縮するためには非線形 最小二乗法を用いることが好ま 、。
[0030] 前記∑を求めるときに、 1から max値の全てを計算しないで、(lZ4) x 〜(3 4)
max
X といった範囲のみを計算してもよい。この場合演算ステップが減るため、計算が 速くなるメリットがある。また、画像データの端部について計算しないため、画像デー タの端部で起きる画素からはずれた部分の影響を受けないメリットもある。
[0031] 前記歪情報の検出の対象としては、特に制限はなぐ目的に応じて適宜選択するこ とができ、例えば、回折光の強度 (WZcm2)、 SNR (信号とノイズとの比)、及び再生 信号のエラー数、などが挙げられる。
[0032] 前記回折光の強度 (WZcm2)に基づく検出方法としては、特に制限はなぐ目的 に応じて適宜選択することができ、例えば、フォトダイオード、 CCD, CMOSなどを用 いた検出方法が挙げられる。
前記フォトダイオードを用いた検出方法としては、具体的には、光路の一部に光分 岐ミラーを設置し、フォトダイオードに前記光分光ミラー力 の分岐光を入射させるこ とにより、回折光の強度を検出することができる。
前記回折光の強度の分布をもとに、歪情報を検出する。
前記検出方法としては、更に、画像データ力 演算する検出方法が挙げられ、具体 的には、画像データを検出する素子そのものに当たる光量の分布を、該画像データ を演算することにより求め、該光量の分布によりずれ量を検出する方法である。前記 算出された光量の分布をもとに、そのピーク値の位置により、歪情報を検出する。 前記回折光の強度に基づく検出方法の中でも、画像データから演算する検出方法 を用いるのが、機器を簡略ィ匕できる点で好ま ヽ。
[0033] 前記 SNRに基づく検出方法としては、特に制限はなぐ目的に応じて適宜選択す ることができ、例えば、画像データから演算する、 SNR検出器を設ける、などの方法 が挙げられる。
前記画像データ力 演算する検出方法としては、画像データをデコードし、その際 のエラー数を演算することにより歪情報を検出することができる。
前記 SNR検出器を設けた検出方法としては、画像データの明暗を判定する基準 値を設け、その基準値と画像データとを比較し、 Signal量と Noise量を計算し、その 比率から、歪情報を検出することができる。
前記 SNRに基づく検出方法の中でも、画像データ力 演算する検出方法を用いる のが、機器を簡略ィ匕できる点で好ましい。 [0034] 前記再生信号のエラー数に基づく検出方法としては、特に制限はなぐ目的に応じ て適宜選択することができ、例えば、画像データ力も演算する検出方法などが挙げら れる。
具体的には、画像データをデコードし、その際のエラー数を演算することにより歪情 報を検出することができる。
[0035] 一再生干渉像のずれ等の検出と補正量の算出
前記再生干渉像のずれ等の検出方法としては、特に制限はなぐ目的に応じて適 宜選択することができる。
例えば、再生干渉像の位置ずれにより表すことができ、前記検出器受光部の縦方 向を Y軸、横方向を X軸、前記検出器受光部面に垂直な方向を Z軸とした場合、位置 ずれ量として、(X軸方向のずれ, Y軸方向のずれ, Z軸方向のずれ)、例えば、(一 0 . 5bit, 0. 3bit, —0. 2bit)、(一 5nm, 3nm, —0. 2nm)と表すことができる。 また、前記 Z軸を中心とする回転方法の Y軸からの角度を Θ (rad)とし、角度 Θとし て、例えば、 0. 5° とし、角度変化量でずれを表してもよいが、結局、前記回折光受 光部面の X軸、及び Y軸方向の位置ずれとして処理することができ、特別に角度変 化量として検出しなくてもよい。
また、ずれを縮小率、及び拡大率で表してもよぐ例えば、真正干渉像を 100とした 場合、該真正干渉像の面積に対する再生干渉像の面積の増減を、縮小率、及び拡 大率として表してもよぐ例えば、—10% (縮小率)と表すことができる。また、真正干 渉像を 1とした場合の縮小率、及び拡大率として、例えば、 0. 1などのように表すこと ができる。
[0036] 一再生光の照射方向を補正する方法
前記再生光の照射方向を補正する方法としては、特に制限はなぐ目的に応じて 適宜選択することができ、例えば、検出された前記歪量に基づいて、前記再生光の フォーカス、トラッキング、の中力も選択される少なくともいずれか 1種を補正する方法 などが挙げられる。
[0037] 前記フォーカス、及びトラッキングの制御方法として、例えば、図 25に示すように、 回折光受光部で検出した前記再生干渉像の画像データを画像センサ 71に取り込み 、更に CPU (中央処理装置) 73に読み込む。
前記真性干渉像の画像データは、メモリ 74に格納され、必要に応じて前記 CPU7 3に読み込まれる。
読み込まれた前記再生干渉像の画像データ、及び前記真性干渉像の画像データ に基づいて、 CPU73により演算処理がなされ、前記真性干渉像に対する前記再生 干渉像のずれ量、拡大率、縮小率などが求められる。
フォーカス、トラッキング回路 72において、前記ずれ量に基づいて、トラッキングが 制御され、前記拡大率や縮小率に基づいて、フォーカス制御がなされる。前記拡大 率 (あるいは縮小率)に基づく補正は、フォーカス用のレンズを再生光の光路におけ る深さ方向に制御することが好ましい。該深さ方向の制御以外に、再生光の光学系 における拡大率を変える制御方法がより好ましい。例えば、再生光の光路内にエキス パンダを設置して前記再生光の拡大率を制御する方法がより好ましい。
[0038] 前記真性干渉像の画像データは、 (1)どのハード個体 (光記録再生装置)にも共通 する固定パターンとしてもよ 、し、 (2)ディスク (光記録媒体)個別毎に定める個別パ ターンとしてもよい。
前記(1)の場合、ハード個体の ROMにあらかじめ記録しておくのが好ましい。
前記(2)の場合、ディスクにホログラム像 (干渉像)以外の方法で記録しておくことが 好ましい。例えば、誘導電磁界又は電波によって非接触で半導体メモリのデータを 読み出し、書込みのために近距離通信を行う RFID (Radio Frequency— IDentifi cation)をディスクやカートリッジに設置しておくことが好ましい。あるいは、ホログラム 以外の記録層(例えば、 DVD— R)をディスクに積層して、この積層部分に記録して おいてもよい。
[0039] 前記温度変化に対する補正として、レーザ光の波長を変化させることも可能である 。前記フォーカス、及びトラッキングの制御方法と併用して補正することが好ましい。 前記レーザ光の波長を変化させる方法としては、例えば、レーザの温度制御、など が挙げられる。
[0040] - -フォーカス制御 - - 前記フォーカス制御としては、特に制限はなぐ目的に応じて適宜選択することがで き、例えば、前記 (X軸方向のずれ, Y軸方向のずれ, z軸方向のずれ)、前記角度
Θ、前記縮小率、及び拡大率などを検出して得られた歪量に基づいて、制御すべき 焦点距離を算出し、得られた移動量だけ移動する方法などが挙げられる。前記移動 する際に、移動量の微調整をおこなうための移動量の検出方法としては、例えば、非 点収差法、フーコー法、及び臨界角法(「図解コンパクトディスク読本」オーム社、中 島平太郎、小川博司共著、第一版、昭和 61年 11月 10日発行に記載)などによるフ オーカス検出を用いた制御などが挙げられる。
[0041] 非点収差法
前記非点収差法は、被検出ディスクに形成されて ヽる記録層の再生しょうとする位 置と、前記再生光の焦点の位置との偏差量を検出する。即ち、焦点距離 (対物レンズ の中心と前記再生光の焦点との距離)と、前記対物レンズの中心から前記記録層の 再生しょうとする部分まで距離との偏差量を検出する。光源から出射される光線が対 物レンズを通過し光記録媒体に照射される光路における、前記光源から前記対物レ ンズの中間にビームスプリツターなどを配置し反射光を取り出し、該反射光をシリンド リカルレンズに透過させ、結像させる。該結像面が円形の場合は、前記焦点距離は 一致し、縦長の楕円形の場合は、前記光記録媒体が前記対物レンズに近すぎる位 置にあり、横長の楕円の場合は、前記光記録媒体が前記対物レンズに遠すぎる位置 にあることが検出できる。
前記検出は、前記反射光を 4分割し、前記結像の対角領域の明るさを比較すること により検出する。
[0042] フーコー法
前記フーコー法は、前記非点収差を用いる方法と、前記ビームスプリツターなどを 配置し反射光を取り出し、該反射光がシリンドリカルレンズを透過するところまでは同 じ構成を用いる。該シリンドリカルレンズにより透過した反射光が結像する部分にプリ ズムを用い、該プリズムの頂角に結像した場合は、前記焦点距離は一致し、該頂角 を通過して結像した場合は、前記光記録媒体が前記対物レンズに近すぎる位置にあ り、該頂角の手前で結像した場合は、前記光記録媒体が前記対物レンズに遠すぎる 位置にあることが検出できる。前記検出は、 2分割された前記反射光に対して 1個ず つセンサを配置し、前記 2分割された反射光の明るさを感知し、前記結像位置を検出 することができる。
[0043] 臨界角法
前記臨界法は、被検出ディスクに形成されている記録層の再生しょうとする位置と、 前記再生光の焦点の位置とのずれを検出する。即ち、焦点距離 (対物レンズの中心 と前記再生光の焦点との距離)と、前記対物レンズの中心から前記記録層の再生しよ うとする部分までの距離とのずれを検出する。光源から出射される光線が対物レンズ を通過し光記録媒体に照射される光路における、前記光源から前記対物レンズの中 間に、入射する光束の中心の光線に対して、入射角がちょうど臨界角(入射する光線 がプリズムの境界面で全部反射される角度)となるプリズムを配置し、該プリズムから 前記反射光を取り出し、該反射光の明暗感知することにより焦点位置を検出する。前 記光記録媒体が前記対物レンズに近すぎたり、遠すぎたりする場合、前記プリズムで 反射する反射光は光量が減ることを利用し、遠近を +—の極性で判別することにより 、前記焦点位置を検出することができる。
[0044] トラッキング制御
前記トラッキング制御としては、特に制限はなぐ目的に応じて適宜選択することが でき、例えば、例えば、前記 (X軸方向のずれ, Y軸方向のずれ, Z軸方向のずれ)、 前記角度 Θ、前記縮小率、及び拡大率などを検出して得られた歪量に基づいて、制 御すべきトラックのずれを算出し、得られた移動量だけ移動する方法などが挙げられ る。前記移動する際に、移動量の微調整を行うための移動量の検出方法としては、 例えば、 3ビーム法、プッシュプル法、及び位相差検出法(「図解コンパクトディスク読 本」オーム社、中島平太郎、小川博司共著、第一版、昭和 61年 11月 10日発行に記 載)などによるトラック位置の検出を用いたトラッキング制御などが挙げられる。
[0045] 3ビーム法
前記 3ビーム法は、被検出ディスクに形成されているトラックに対する、サーボ用光 の照射位置ずれを検出する方法で、略円形の主ビーム、副ビーム A、及び副ビーム Bの 3本のビームが用いられる。副ビーム A、主ビーム、及び副ビーム Bの順に略直線 上に等間隔に配置され、主ビームの円の中心が、前記トラックの幅の中央に対して照 射される位置に、副ビーム Aの円の下部が、前記トラックの幅の端に接する位置に、 副ビーム Bの円の上部が、前記トラックの幅の端に接する位置になるように配置される このような配置で、各ビームが前記トラックに照射されると、トラック面では、弱い反 射光、トラック面以外では強い反射光となり、各反射光の強度を検出することにより、 照射された 3本のビームの位置と前記トラックとの位置ずれを検出することができる。
[0046] - -プッシュプノレ法 - - 前記プッシュプル法は、被検出ディスクに形成されているトラックに対する、サーボ 用光の照射位置ずれを検出する方法で、 1つのビームを前記トラックに照射し、該反 射光を 2分割して検出する 2分割光検出器を用いる。該ビームが該トラック幅の中心 部分に照射されると、 2分割された反射光の左右の光強度が等しくなり、該トラックの 幅方向に左右にずれた場合には、該トラック部分力 の反射光の強度は弱ぐ該トラ ック以外からの反射光の強度は強 、ので、 2分割された反射光の左右の光強度分布 は、左右非対象になり、ずれていることが検出できる。
[0047] 位相差検出法
前記位相差検出(DPD法: Differential Phase Detection)は、被検出ディスク に形成されているトラックに対する、サーボ用光の照射位置ずれを検出する方法で、 前記プッシュプル法の 2分割を更に分割して 4分割した光検出器を用いる。 1つのビ 一ムが該トラック幅の中心部分に照射されると、 4分割された反射光の 4つの領域の 左右の光強度が等しくなり、該トラックの幅方向に左右にずれた場合には、該トラック 部分からの反射光の強度は弱ぐ該トラック以外力 の反射光の強度は強いので、 4 分割された反射光の 4つの領域の光強度分布について、対角領域にある光強度分 布を検出することにより左右非対象となり、ずれていることが検出できる。
[0048] 前記トラッキング制御、及びフォーカス制御の手段としては、特に制限はなぐ目的 に応じて適宜選択することができ、例えば、サーボ機構などが挙げられる。
前記サーボ機構としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、前記移動量を、フォーカス誤差信号として生成し、前記信号を増幅する位相 補償ドライブアンプなどを経由して、駆動装置へ指令し前記対物レンズの位置を移 動することにより焦点距離を制御する機構などが挙げられる。
前記駆動装置としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、了クチユエータ、ステッピングモータなどが挙げられる。
[0049] <光記録再生装置の具体例 >
前記光記録再生装置により、光記録媒体に記録された記録情報について、本発明 の光記録方法、及び光再生方法が行われる。
前記光記録方法、及び光再生方法に使用される光記録再生装置の具体例にっ 、 て図 24を参照して説明する。
図 24は、本発明に係る光記録再生装置の全体構成図である。なお、光記録再生 装置は、光記録装置と光再生装置とを含んでなり、光記録媒体への記録、及び再生 が可能である。
この光記録再生装置 100は、光記録媒体 21が取り付けられるスピンドル 81と、この スピンドル 81を回転させるスピンドルモータ 82と、光記録媒体 21の回転数を所定の 値に保つようにスピンドルモータ 82を制御するスピンドルサーボ回路 83とを備えて!/ヽ る。
また、光記録再生装置 100は、光記録媒体 21に対して情報光と記録用参照光とを 照射して情報を記録すると共に、光記録媒体 21に対して再生用参照光を照射し、再 生光を検出して、光記録媒体 21に記録されて 、る情報を再生するためのピックアツ プ 31と、このピックアップ 31を光記録媒体 21の半径方向に移動可能とする駆動装置 84とを備えている。
更に、温度センサ 93を光記録媒体 21に近接して備えると共に、該温度センサ 93に より感知した温度に基づいて、注意喚起又は警告を表示する表示部 92を備えている 。また、前記感知温度が所定温度範囲を逸脱していた場合に、記録又は再生の機能 を停止する機能停止装置を備えて!/ヽる。
[0050] 光記録再生装置 100は、ピックアップ 31の出力信号よりフォーカスエラー信号 FE、 トラッキングエラー信号 TE、及び再生信号 RFを検出するための検出回路 85と、この 検出回路 85によって検出されるフォーカスエラー信号 FEに基づいて、ピックアップ 3 1内のァクチユエータを駆動して対物レンズ (不図示)を光記録媒体 21の厚み方向に 移動させてフォーカスサーボを行うフォーカスサーボ回路 86と、検出回路 85によって 検出されるトラッキングエラー信号 TEに基づいてピックアップ 31内のァクチユエータ を駆動して対物レンズを光記録媒体 21の半径方向に移動させてトラッキングサーボ を行うトラッキングサーボ回路 87と、トラッキングエラー信号 TE、及び後述するコント ローラからの指令に基づいて駆動装置 84を制御してピックアップ 31を光記録媒体 2 1の半径方向に移動させるスライドサーボを行うスライドサーボ回路 88とを備えている
[0051] 光記録再生装置 100は、更に、ピックアップ 31内の後述する CMOS又は CCDァレ ィの出力データをデコードして、光記録媒体 21のデータエリアに記録されたデータを 再生し、前記歪量を補正するデータ補正回路 (不図示)、検出回路 85からの再生信 号 RFより基本クロックを再生したりアドレスを判別したりする信号処理回路 89と、光記 録再生装置 100の全体を制御するコントローラ 90と、このコントローラ 90に対して種 々の指示を与える操作部 91とを備えて 、る。
コントローラ 90は、信号処理回路 89より出力される基本クロックやアドレス情報を入 力すると共に、ピックアップ 31、スピンドルサーボ回路 83、及びスライドサーボ回路 8 8などを制御するようになっている。スピンドルサーボ回路 83は、信号処理回路 89よ り出力される基本クロックを入力するようになっている。コントローラ 90は、 CPU (中央 処理装置)、 ROM (リード オンリ メモリ)、及び RAM (ランダム アクセス メモリ)を 有し、 CPUが、 RAMを作業領域として、 ROMに格納されたプログラムを実行するこ とによって、コントローラ 90の機能を実現するようになっている。
[0052] <情報光、及び参照光 >
前記情報光、及び前記参照光の光としては、特に制限はなぐ 目的に応じて適宜 選択することができ、例えば、光源から出射される可干渉性のあるレーザ光などが好 ましい。
[0053] 前記レーザ光としては、特に制限はなぐ 目的に応じて適宜選択することができ、例 えば、波長が、 360〜850nm力 選択される 1種以上の波長力もなるレーザ光など が挙げられる。該波長は、 380〜800nm力 S好ましく、 400〜750力 り好ましく、可視 領域の中心が最も見え易 、500〜600nm力更に好まし!/、。 前記波長が、 360nm未満であると、光学系の設計が困難になり、 850nmを超える と、記録容量が少なくなることがある。
[0054] 前記レーザ光の光源としては、特に制限はなぐ目的に応じて適宜選択することが でき、例えば、固体レーザ光発振器、半導体レーザ光発振器、液体レーザ光発振器 、気体レーザ光発振器などが挙げられる。これらの中でも、気体レーザ光発振器、半 導体レーザ光発振器などが好まし 、。
[0055] 前記情報光、及び前記参照光の照射方法としては、特に制限はなぐ目的に応じ て適宜選択することができ、例えば、同一の光源から出射される一のレーザ光などを 分割して、該情報光、及び該参照光として照射してもよぐ異なる光源力ゝら出射される 二つのレーザ光などを照射してもよ 、。
前記情報光と前記参照光の照射方向としては、特に制限はなぐ目的に応じて適 宜選択することができ、例えば、前記情報光の光軸と前記参照光の光軸と同軸となる ようにして照射されるものが好ま U、。
前記情報光 (物体光)と参照光とを前記光記録媒体の内部で干渉させ、その際に 生成される干渉縞を前記光記録媒体に書き込むことによって前記情報が記録される
[0056] 前記情報光は、コリニア方式の場合、例えば、照射される 1スポット単位で、記録す べき情報がデジタルデータに加工され、前記 1スポットには約 4, OOObitのデータが ページデータパターンとして形成される。
目的の光記録媒体に記録しょうとする前記情報が、例えば、イメージ情報であれば 、空間光変調器(SLM : Spatial Light Modulator)により、画面を 2次元パターン データの最小の単位である画素(ピクセル)に微細加工される。
前記加工により、前記イメージ情報は、フーリエ変換を利用したコンピュータデジタ ル処理により時間信号を周波数領域で表す演算処理が行われ、「0」か「1」のデジタ ルデータとなる。
[0057] 前記デジタルデータからなる前記情報光は、図 3に示すように、対物レンズ 12を透 過し、光記録媒体 21内の記録層 4の記録部分で一定の大きさに集光され、該集光が なされた光照射スポット 32単位で記録がなされる。 具体的には、コリニア方式の光記録方法の場合、前記情報光 37は、直径 200 m 程の光照射スポット 32として集光され、更に前記参照光 38が一定の角度をもって照 射されることにより、前記情報光 37、及び参照光 38により生成される干渉縞として該 記録層 4に記録される。該光照射スポット 32が照射され記録されると、光記録媒体 21 力 ピッチ分回転し、ピッチ毎に前記光照射スポット 32が照射され、順次多重に記録 がなされる。
[0058] (光記録媒体)
前記本発明の光記録再生装置、光記録方法、及び光再生方法で用いられる光記 録媒体は、支持体上に、ホログラフィを利用して情報を記録する記録層、及び必要に 応じて適宜選択したその他の層を有する光記録媒体である。
前記光記録媒体は、 2次元などの情報を記録する比較的薄型の平面ホログラムや 立体像など多量の情報を記録する体積ホログラムであってもよぐ透過型、及び反射 型のいずれであってもよい。また、ホログラムの記録方式もいずれであってもよぐ例 えば、振幅ホログラム、位相ホログラム、ブレーズドホログラム、複素振幅ホログラムな どでもよ 、。
前記光記録媒体は、少なくとも第一の基板と、第二の基板と、該第二の基板上に記 録層と、前記第二の基板と該記録層との間にフィルタ層とを有し、情報光、及び参照 光の照射が、該情報光の光軸と該参照光の光軸とが同軸になるようにして行われる コリニア方式に用いられる光記録媒体が好ましい。
[0059] <第一の基板 >
前記第一の基板としては、その形状、構造、大きさなどについては、特に制限はな く、目的に応じて適宜選択することができ、前記形状としては、例えば、円盤状、カー ド形状平板状、シート状などが挙げられ、前記構造としては、単層構造であってよも いし、積層構造であってもよぐ前記大きさとしては、前記光記録媒体の大きさなどに 応じて適宜選択することができる。
[0060] 前記第一の基板の材料としては、特に制限はなぐ無機材料、及び有機材料のい ずれをも好適に用いることができるが、光記録媒体の機械的強度を確保できるもので あり、記録、及び再生に用いる光が基板を通して入射する透過型の場合は、用いる 光の波長領域で十分に透明であることが必要であり、光透過率としては、 70-99. 9 %が好ましぐ 80〜99%がより好ましぐ 90〜98%が特に好ましい。前記光透過率 力 70%未満であると、信号の読み取り精度が低下することがあり、また前記光透過 率は高いほど好ましいが、 99. 9%超を求めると、生産効率が低下することがある。 前記無機材料としては、例えば、ガラス、石英、シリコンなどが挙げられる。これらの 中でも、精度の点から、ガラスが好適である。
前記有機材料としては、例えば、トリァセチルセルロースなどのアセテート系榭脂、 ポリエステル系榭脂、ポリエーテルスルホン系榭脂、ポリスルホン系榭脂、ポリカーボ ネート系榭脂、ポリアミド系榭脂、ポリイミド系榭脂、ポリオレフイン系榭脂、ァモノレファ スポリオレフイン榭脂、アクリル系榭脂、ポリノルボルネン系榭脂、セルロース系榭脂、 ポリアリレート系樹脂、ポリスチレン系榭脂、ポリビニルアルコール系榭脂、ポリ塩ィ匕ビ 二ル系榭脂、ポリ塩ィ匕ビニリデン系榭脂、ポリアクリル系榭脂、ポリ乳酸系榭脂、ブラ スチックフィルムラミネート紙、合成紙などが挙げられる。これらは、 1種単独で使用し てもよいし、 2種以上を併用してもよい。これらの中でも、成形性、光学特性、コストの 点から、ポリカーボネート系榭脂、アモルファスポリオレフイン樹脂が好ましい。
[0061] 前記第一の基板としては、適宜合成したものであってもよいし、市販品を使用しても よい。
前記第一の基板の厚みとしては、特に制限はなぐ 目的に応じて適宜選択すること ができ、 0. l〜5mmが好ましぐ 0. 3〜2mmがより好ましい。前記基板の厚みが、 0 . 1mm未満であると、ディスク保存時の形状の歪みを抑えられなくなることがあり、 5 mmを超えると、ディスク全体の重量が大きくなつてドライブモーターなどにより回転し て用いる場合には、過剰な負荷をかけることがある。
[0062] <第二の基板 >
前記第二の基板は、その形状、構造、大きさなどについては、特に制限はなぐ 目 的に応じて適宜選択することができ、前記形状としては、例えば、円盤状、カード形 状などが挙げられ、光記録媒体の機械的強度を確保できる材料のものを選定する必 要がある。また、記録、及び再生に用いる光が基板を通して入射する場合は、用いる 光の波長領域で十分に透明であることが必要である。 前記第二の基板の材料としては、通常、ガラス、セラミックス、榭脂、などが用いられ るが、成形性、コストの点から、榭脂が特に好適である。また、精度の点から、ガラスも 好適である。
前記榭脂としては、例えば、ポリカーボネート榭脂、アクリル榭脂、エポキシ榭脂、ポ リスチレン榭脂、アクリロニトリル スチレン共重合体、ポリエチレン榭脂、ポリプロピレ ン榭脂、シリコーン榭脂、フッ素榭脂、 ABS榭脂、ウレタン榭脂、などが挙げられる。 これらの中でも、成形性、光学特性、コストの点から、ポリカーボネート榭脂、ァモルフ ァスポリオレフイン樹脂が特に好まし 、。
前記第二の基板としては、適宜合成したものであってもよいし、市販品を使用しても よい。
[0063] 前記第二の基板には、半径方向に線状に延びる複数の位置決め領域としてのアド レス サーボエリアが所定の角度間隔で設けられ、隣り合うアドレス サーボエリア間 の扇形の区間がデータエリアになっている。アドレス サーボエリアには、サンプルド サーボ方式によってフォーカスサーボ、及びトラッキングサーボを行うための情報とァ ドレス情報と力 予めエンボスピット(サーボピット)などによって記録されて ヽる(プリフ ォーマット)。なお、フォーカスサーボは、反射膜の反射面を用いて行うことができる。 トラッキングサーボを行うための情報としては、例えば、ゥォブルピットを用いることが できる。なお、光記録媒体がカード形状の場合には、サーボピットパターンは無くても よい。
[0064] サーボ用光、及びサーボピットパターン
前記サーボ用光の波長としては、特に制限はなぐ 目的に応じて適宜選択すること ができる力 前記情報光、及び参照光とは異なる波長が好ましい。具体的には、 350 〜500mn、 620〜700mn、及び 750〜1, OOOrnnの!ヽずれ力であるの力 ^好ましく、 390〜440mn、 640〜690mn、及び 770〜900mnの!ヽずれ力であるの力 ^より好ま しく、 400〜420mn、 650〜680mn、及び 780〜830mnの!ヽずれ力であるの力 ^更 に好ましく、これらの中でち、 405、 650、 780nmの! /、ずれ力であるの力特に好ましく 、 405nmであるのが最も好ましい。
[0065] 前記サーボピットパターンのトラックピッチとしては、特に制限はなぐ 目的に応じて 適宜選択することができ、例えば、サーボ用光の波長が 620〜700nmの場合、前記 トラックピッチは 0. 85〜30 111カ 子ましく、 1. 1〜20 111カ^ょり好ましく、 1. 3〜10 /z mが更に好ましぐ 1. 5〜2 m力 S特〖こ好ましい。前記トラックピッチが 0. 85 m未 満であると、記録層の途中の光の散乱でトラッキングが不安定になることがあり、 30 mを超えると記録密度が下がることがある。
前記サーボ用光の波長が 750〜1, OOOnmの場合、前記トラックピッチは 1. 7〜3 O /z m力好ましく、 1. 9〜20 111カょり好ましく、 2. 3〜5 m力特に好まし!/ヽ。前記ト ラックピッチが 1. 7 m未満であると、記録層の途中の光の散乱でトラッキングが不安 定になることがあり、 30 mを超えると記録密度が下がることがある。
前記サーボ用光の波長が 350〜500nmの場合、前記トラックピッチは 0. 4〜30 m力 S好ましく、 0. 6〜20 m力 Sより好ましく、 0. 8〜5 m力 S更に好ましく、 1〜2 111 が特に好ましい。前記トラックピッチが 0. 未満であると、記録層の途中の光の 散乱でトラッキングが不安定になることがあり、 30 mを超えると記録密度が下がるこ とがある。
前記サーボ用光の波長が 405nm近傍の場合、前記トラックピッチは 0. 32〜0. 4 /z mが好ましい。
[0066] 前記サーボピットパターンの溝深さとしては、特に制限はなぐ 目的に応じて適宜選 択することができ、例えば、サーボ用光の波長をえとすると、前記溝深さは、 λ Ζ(10 η)〜え Ζ(3η)が好ましく、 λ Ζ(8η)〜え Ζ(4η)がより好ましく、 λ / (7η)〜λ /( 5η)が更に好ましい。 ηは、サーボピットパターンのピット部の媒体屈折率、即ち、ピッ ト部の光入射面側の材料の屈折率を表す。
前記え力 50nmであり、 nが 1. 6の場合は、前記溝深さは 135〜41nmが好ましい 。通常、 nが多少変動したとしても、 650nmの場合、 50〜120nm力 S好ましく、 60〜1 10nmがより好ましぐ 80〜: LOOnmが特に好ましい。他の波長の場合は、前記溝深 さは、波長に比例した値であることが好ましい。例えば、サーボ用光の波長が 780nm であり、 nが 1. 6の場合は、 163〜49nm力好ましく、前記サーボ用光の波長が 405η mであり、 nが 1. 6の場合は、 84〜25nmが好ましい。
[0067] 前記サーボピットパターンの溝幅としては、特に制限はなぐ 目的に応じて適宜選 択することができ、例えば、通常の CD、 DVD, BD、 HD、 DVDの幅よりは広いこと が好ましい。具体的には、前記サーボ用光の波長が 650nmの場合は、 0. 25〜: L 0 力 S好ましく、 0. 35〜0. 95 m力 Sより好ましく、 0. 45〜0. 85 111カ更に好ま しく、 0. 55〜0. 75力特に好まし!/ヽ。
前記サーボ用光の波長が 780nmの場合は、 0. 45〜2 m力好ましく、 0. 6〜1. 6 m力より好ましく、 0. 8〜1. 3 m力更に好ましく、 1. 0〜1. 1力 ^特に好まし!/、。 前記サーボ用光の波長力 05nmの場合は、 0. 2〜1. 0 m力 S好ましく、 0. 25〜 0. 力 Sより好ましく、 0. 3〜0. 力 S更に好ましく、 0. 35〜0. 5力 S特に好まし い。
[0068] 前記サーボピットパターンの角度としては、特に制限はなぐ 目的に応じて適宜選 択することができ、例えば、 25〜90度力 S好ましく、 35〜80度がより好ましぐ 40-70 度が更に好ましぐ 45〜60度が特に好ましい。なお、前記角度が 90度の場合は、パ ターン形状が矩形となる。
[0069] 前記第二の基板の厚みとしては、特に制限はなぐ 目的に応じて適宜選択すること ができ、 0. l〜5mmが好ましぐ 0. 3〜2mmがより好ましい。前記基板の厚みが、 0 . 1mm未満であると、ディスク保存時の形状の歪みを抑えられなくなることがあり、 5 mmを超えると、ディスク全体の重量が大きくなつてドライブモーターに過剰な負荷を 力けることがある。
[0070] 一反射膜
前記反射膜は、前記基板のサーボピットパターン表面に形成される。
前記反射膜の材料としては、記録光や参照光に対して高 、反射率を有する材料を 用いることが好ましい。使用する光の波長が 400〜780nmである場合には、例えば 、 Al、 A1合金、 Ag、 Ag合金、などを使用することが好ましい。使用する光の波長が 6 50nm以上である場合には、 Al、 A1合金、 Ag、 Ag合金、 Au、 Cu合金、 TiN、などを 使用することが好ましい。
なお、前記反射膜として、光を反射すると共に、追記、及び消去のいずれかが可能 な光記録媒体、例えば、 DVD (ディジタル ビデオ ディスク)などを用い、ホログラム をどのエリアまで記録した力と力、いつ書き換えたかとか、どの部分にエラーが存在し 交替処理をどのように行ったかなどのディレクトリ情報などをホログラムに影響を与え ずに追記、及び書き換えすることも可能となる。
[0071] 前記反射膜の形成方法としては、特に制限はなぐ目的に応じて適宜選択すること ができ、各種気相成長法、例えば、真空蒸着法、スパッタリング法、プラズマ CVD法 、光 CVD法、イオンプレーティング法、電子ビーム蒸着法などが用いられる。これら の中でも、スパッタリング法が、量産性、膜質などの点で優れている。
前記反射膜の厚さとしては、十分な反射率を実現し得るように、 50nm以上が好ま しぐ lOOnm以上がより好ましい。
[0072] <記録層 >
前記記録層は、ホログラフィを利用して情報が記録され得るものであり、所定の波長 の電磁波( γ線、 X線、紫外線、可視光線、赤外線、電波など)を照射すると、その強 度に応じて吸光係数や屈折率などの光学特性が変化する材料が用いられる。
[0073] 前記記録層の材料は、光熱変換材料、感光性榭脂、バインダー、及び必要に応じ て適宜選択したその他の成分が含まれる。
[0074] 感光性榭脂ー
前記感光性榭脂としては、ホログラフィに用いられるものであれば、特に制限はなく 、目的に応じて適宜選択することができ、例えば、フォトポリマーが好ましい。
[0075] ——フォトポリマ^
前記フォトポリマーとしては、光照射で重合反応が起こり高分子化するものであれ ば、特に制限はなぐ目的に応じて適宜選択することができ、例えば、モノマー、及び 光開始剤を含有してなり、更に必要に応じて増感剤、オリゴマーなどのその他の成分 を含有してなる。
[0076] 前記フォトポリマーとしては、例えば、「フォトポリマーハンドブック」(工業調査会、 1 989年)、「フォトポリマーテクノロジー」(日刊工業新聞社、 1989年)、 SPIE予稿集 Vol. 3010 p354— 372 (1997)、及び SPIE予稿集 Vol. 3291 p89— 103 (19 98)に記載されているものを用いることができる。また、米国特許第 5, 759, 721号 明細書、同第 4, 942, 112号明細書、同第 4, 959, 284号明細書、同第 6, 221, 5 36号明細書、米国特許第 6, 743, 552号明細書、国際公開第 97/44714号パン フレツ K同第 97Z13183号パンフレツ Κ同第 99Z26112号パンフレツ卜、同第 97 Z13183号パンフレット、特許第 2880342号公報、同第 2873126号公報、同第 28 49021号公報、同第 3057082号公報、同第 3161230号公報、特開 2001— 3164 16号公報、特開 2000— 275859号公報などに記載されているフォトポリマーを用い ることがでさる。
[0077] 前記フォトポリマーに記録光を照射して光学特性を変化させる方法としては、低分 子成分の拡散を利用した方法などが挙げられる。また、重合時の体積変化を緩和す るため、重合成分とは逆方向へ拡散する成分を添加してもよぐあるいは、酸開裂構 造を有する化合物を重合体のほかに別途添加してもよい。なお、前記低分子成分を 含むフォトポリマーを用いて記録層を形成する場合には、記録層中に液体を保持可 能な構造を必要とすることがある。また、前記酸開裂構造を有する化合物を添加する 場合には、その開裂によって生じる膨張と、モノマーの重合によって生じる収縮とを 補償させることにより体積変化を抑制してもよい。
[0078] 前記モノマーとしては、特に制限はなぐ目的に応じて適宜選択することができ、例 えば、アクリル基ゃメタクリル基のような不飽和結合を有するラジカル重合型のモノマ 一、エポキシ環ゃォキセタン環のようなエーテル構造を有するカチオン重合型系モノ マーなどが挙げられる。これらのモノマーは、単官能であっても多官能であってもよい 。また、光架橋反応を利用したものであってもよい。
[0079] 前記ラジカル重合型のモノマーとしては、例えば、アタリロイルモルホリン、フエノキ シェチルアタリレート、イソボル-ルアタリレート、 2—ヒドロキシプロピルアタリレート、 2 ェチルへキシルアタリレート、 1, 6 へキサンジオールジアタリレート、トリプロピレ ングリコールジアタリレート、ネオペンチルグリコール ΡΟ変性ジアタリレート、 1, 9ーノ ナンジオールジアタリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアタリレ ート、 ΕΟ変性ビスフエノール Αジアタリレート、ポリエチレングリコールジアタリレート、 ペンタエリスリトールトリアタリレート、ペンタエリスリトールテトラアタリレート、ペンタエリ スリトールへキサアタリレート、 EO変性グリセロールトリアタリレート、トリメチロールプロ パントリアタリレート、 EO変性トリメチロールプロパントリアタリレート、 2—ナフト一 1— ォキシェチルアタリレート、 2—力ルバゾィル—9—ィルェチルアタリレート、 (トリメチル シリルォキシ)ジメチルシリルプロピルアタリレート、ビ-ルー 1 ナフトエート、 N ビ -ノレカルバゾール、 2, 4, 6 トリブロムフエ-ノレアタリレート、ペンタブロムアタリレー ト、フエ-ルチオェチルアタリレート、テトラヒドロフルフリルアタリレートなどが挙げられ る。
前記カチオン重合型系モノマーとしては、例えば、ビスフエノール Aエポキシ榭脂、 フエノールノボラックエポキシ榭脂、グリセロールトリグリシジルエーテル、 1, 6 へキ サングリシジルエーテル、ビュルトリメトキシシラン、 4—ビュルフエ-ルトリメトキシシラ ン、 γ—メタクリロキシプロピルトリエトキシシラン、下記構造式 (Μ1)〜(Μ6)で表さ れる化合物、などが挙げられる。
これらのモノマーは、 1種単独で使用してもよいし、 2種以上を併用してもよい。
[化 1]
-CH20— C- 構造式 (M 1 )
O 一
構造式 (M2)
Figure imgf000038_0001
構造式 (M3)
Figure imgf000038_0002
構造式 (M4)
Figure imgf000038_0003
構造式 (M5)
構造式 (M6)
Figure imgf000038_0004
前記光開始剤としては、記録光に感度を有するものであれば特に制限はなぐ光照 射によりラジカル重合、カチオン重合、架橋反応などを引き起こす材料などが挙げら れる。
前記光開始剤としては、例えば、 2, 2 ' —ビス(o クロ口フエ-ル) 4, 4', 5, 5, —テトラフエ-ル一 1, 1, 一ビイミダゾール、 2, 4, 6 トリス(トリクロロメチル) 1, 3, 5 トリアジン、 2, 4 ビス(トリクロロメチル) 6— (p—メトキシフエ-ルビ-ル)一 1, 3, 5—トリアジン、ジフエ-ルョードニゥムテトラフルォロボレート、ジフエ-ルョードニ ゥムへキサフルォロホスフェート、 4, 4'ージー tーブチルジフエ-ルョードニゥムテトラ フルォロボレート、 4ージェチルァミノフエ-ルベンゼンジァゾ -ゥムへキサフルォロホ スフェート、ベンゾイン、 2—ヒドロキシ一 2—メチル 1—フエ-ルプロパン一 2—オン 、ベンゾフエノン、チォキサントン、 2, 4, 6 トリメチルベンゾィルジフエニルァシルホ スフインォキシド、トリフエ-ルブチルボレートテトラェチルアンモ-ゥム、ビス(7} 5 —2, 4 シクロペンタジェン一 1—ィル)、ビス〔2, 6 ジフルオロー 3— (1H ピロ 一ルー 1ーィノレ)フエ-ルチタニウム〕、ジフエ-ルー 4 フエ-ルチオフエ-ルスルホ -ゥムへキサフルォロホスフェートなどが挙げられる。これらは、 1種単独で使用しても よいし、 2種以上を併用してもよい。また、照射する光の波長に合わせて増感色素を 併用してちょい。
[0081] 前記記録層の貯蔵安定性を改良する目的でフォトポリマーの重合禁止剤や酸ィ匕防 止剤をカ卩えてもよい。重合禁止剤、酸化防止剤としては例えば、ハイドロキノン、 p— ベンゾキノン、ハイドロキノンモノメチルエーテル、 2, 6 ジ tert—ブチルー p タレ ゾール、 2, 2,ーメチレンビス(4ーメチルー 6 tert ブチルフエノール)、トリフェル ホスファイト、トリスノユルフェ-ルホスフアイト,フエノチアジン、 N—イソプロピル N, フエニル p フエ-レンジァミンなどが挙げられる。使用量としては糸且成物に使用 するモノマーの全量に対して 3質量%以内であり、 3質量%を超えると重合が遅くなる 力 著しい場合は重合しなくなる。
[0082] 前記フォトポリマーは、前記モノマー、前記光開始剤、更に必要に応じてその他の 成分を攪拌混合し、反応させること〖こよって得られる。得られたフォトポリマーが十分 低い粘度ならばキャスティングすることによって記録層を形成することができる。一方 、キャスティングできない高粘度フォトポリマーである場合には、ディスペンサーを用 いて第二の基板にフォトポリマーを盛りつけ、このフォトポリマー上に第一の基板で蓋 をするように押し付けて、全面に広げて記録層を形成することができる。
[0083] 前記フォトポリマー以外の有用な感光性榭脂としては、(1)フォトリフラクティブ効果
(光照射で空間電荷分布が生じて屈折率が変調する)を示すフォトリフラクティブ材料 、(2)光照射で分子の異性ィ匕が起こり、屈折率が変調するフォトクロミック材料、 (3) ニオブ酸リチウム、チタン酸バリウムなどの無機材料、(4)カルコゲン材料、などが挙 げられる。
[0084] 前記(1)のフォトリフラクティブ材料としては、フォトリフラクティブ効果を示すもので あるならば特に制限はなぐ 目的に応じて適宜選択することができ、例えば、電荷発 生材、及び電荷輸送材を含有してなり、更に必要に応じてその他の成分を含有して なる。
[0085] 前記電荷発生材としては、特に制限はなぐ 目的に応じて適宜選択することができ 、例えば、金属フタロシアニン、無金属フタロシアニン、又はそれらの誘導体などのフ タロシアニン色素 Z顔料;ナフタロシアニン色素 Z顔料;モノァゾ、ジスァゾ、トリスァ ゾなどのァゾ系色素 Z顔料;ペリレン系染料 Z顔料;インジゴ系染料 Z顔料;キナタリ ドン系染料 Z顔料;アントラキノン、アントアントロンなどの多環キノン系染料 Z顔料; シァニン系染料 Z顔料; TTF— TCNQで代表されるような電子受容性物質と電子供 与性物質とからなる電荷移動錯体;ァズレニウム塩; C 、及び C で代表されるフラ
60 70
一レン並びにその誘導体であるメタノフラーレン、などが挙げられる。これらの電荷発 生材は、 1種単独で使用してもよいし、 2種以上を併用してもよい。
[0086] 前記電荷輸送材は、ホール又はエレクトロンを輸送する材料であり、低分子化合物 であってもよぐ又は高分子化合物であってもよい。
前記電荷輸送材としては、特に制限はなぐ 目的に応じて適宜選択することができ 、例えば、インドール、カルバゾール、ォキサゾール、インォキサゾール、チアゾール 、イミダゾール、ピラゾール、ォキサアジアゾール、ピラゾリン、チアチアゾール、トリア ゾールなどの含窒素環式ィ匕合物、又はその誘導体;ヒドラゾン化合物;トリフエニルァ ミン類;トリフエ-ルメタン類;ブタジエン類;スチルベン類;アントラキノンジフエノキノン などのキノン化合物、又はその誘導体; C 、及び C などのフラーレン並びにその誘
60 70
導体;ポリアセチレン、ポリピロール、ポリチォフェン、ポリア-リンなどの π共役系高 分子又はオリゴマー;ポリシラン、ポリゲルマンなどの σ共役系高分子又はオリゴマー ;アントラセン、ピレン、フエナントレン、コロネンなどの多環芳香族化合物などが挙げ られる。これらは、 1種単独で使用してもよいし、 2種以上を併用してもよい。 [0087] 前記フォトリフラクティブ材料を用いて記録層を形成する方法としては、例えば、前 記フォトリフラクティブ材料を溶媒中に溶解乃至は分散させてなる塗布液を用いて塗 膜を形成し、この塗膜から溶媒を除去することにより記録層を形成することができる。 また、加熱して流動化させた前記フォトリフラクティブ材料を用いて塗膜を形成し、こ の塗膜を急冷することにより記録層を形成することもできる。
[0088] 前記(2)のフォトクロミック材料としては、フォトクロミック反応を起こす材料であれば 特に制限はなぐ 目的に応じて適宜選択することができ、例えば、ァゾベンゼン化合 物、スチルベン化合物、インジゴ化合物、チォインジゴ化合物、スピロピラン化合物、 スピロォキサジンィ匕合物、フルキド化合物、アントラセンィ匕合物、ヒドラゾンィ匕合物、桂 皮酸化合物、ジァリールェテンィ匕合物などが挙げられる。これらの中でも、光照射に よりシス—トランス異性ィ匕により構造変化を起こすァゾベンゼン化合物、スチルベンィ匕 合物、光照射により開環ー閉環の構造変化を起こすスピロピランィ匕合物、スピロォキ サジンィ匕合物が特に好まし 、。
[0089] 前記(4)のカルコゲン材料としては、例えば、カルコゲン元素を含むカルコゲナイド ガラスと、このカルコゲナイドガラス中に分散されており光の照射によりカルコゲナイド ガラス中に拡散可能な金属力 なる金属粒子とを含む材料、などが挙げられる。 前記カルコゲナイドガラスは、 S、 Te又は Seのカルコゲン元素を含む非酸ィ匕物系の 非晶質材料力も構成されるものであり、金属粒子の光ドープが可能なものであれば 特に限定されない。
前記カルコゲン元素を含む非晶質材料としては、例えば、 Ge— S系ガラス、 As— S 系ガラス、 As— Se系ガラス、 As— Se— Ce系ガラスなどが挙げられ、これらの中では Ge S系ガラスが好ま 、。前記カルコゲナイドガラスとして Ge— S系ガラスを用いる 場合には、ガラスを構成する Ge、及び Sの組成比は照射する光の波長に応じて任意 に変化させることができる力 主として GeSで表される化学組成を有するカルコゲナ
2
イドガラスが好ましい。
前記金属粒子は、光の照射によりカルコゲナイドガラス中に光ドープされる特性を 有するものであれば特に制限はなぐ 目的に応じて適宜選択することができ、例えば 、 Al、 Au、 Cu、 Cr、 Ni、 Pt、 Sn、 In、 Pd、 Ti、 Fe、 Ta、 W、 Zn、 Agなどが挙げられ る。これらの中では、 Ag、 Au又は Cuが光ドープをより生じやすい特性を有しており、 Agは光ドープを顕著に生じるため特に好ましい。
前記カルコゲナイドガラスに分散されて 、る金属粒子の含有量としては、前記記録 層の全体積基準で 0. 1〜2体積%が好ましぐ 0. 1〜1. 0体積%がより好ましい。前 記金属粒子の含有量が、 0. 1体積%未満であると、光ドープによる透過率変化が不 充分となって記録の精度が低下することがあり、 2体積%を超えると、記録材料の光 透過率が低下して光ドープを充分に生じさせることが困難となることがある。
バインダ^——
前記バインダーは、塗膜性、膜強度、及びホログラム記録特性向上の効果を高める 目的で使用されるものであり、ホログラム材料および光熱変換物質との相溶性、を考 慮して適宜選択される。
前記ノインダ一としては、特に制限はなぐ 目的に応じて適宜選択することができ、 例えば、例えば、(メタ)アクリル酸やィタコン酸などの不飽和酸と、(メタ)アクリル酸ァ ルキル、 (メタ)アクリル酸フエ-ル、 (メタ)アクリル酸ベンジル、スチレン、 α メチル スチレンなどとの共重合体;ポリメチルメタタリレートに代表されるメタクリル酸アルキル やアクリル酸アルキルの重合体;(メタ)アクリル酸アルキルとアクリロニトリル、塩化ビ -ル、塩ィ匕ビユリデン、スチレンなどとの共重合体;アクリロニトリルと塩ィ匕ビュルや塩 化ビ-リデンとの共重合体;側鎖にカルボキシル基を有するセルロース変性物;ポリ エチレンォキシド;ポリビュルピロリドン;フエノール、 o—、 m—、 p クレゾール、及び Z又はキシレノールとアルデヒド、アセトンなどとの縮合反応で得られるノボラック榭脂 ;ェピクロロヒドリンとビスフエノール Aとのポリエーテル;可溶性ナイロン;ポリ塩化ビ- リデン;塩素化ポリオレフイン;塩化ビュルと酢酸ビュルとの共重合体;酢酸ビニルの 重合体;アクリロニトリルとスチレンとの共重合体;アクリロニトリルとブタジエン、及びス チレンとの共重合体;ポリビュルアルキルエーテル;ポリビュルアルキルケトン;ポリス チレン;ポリウレタン;ポリエチレンテレフタレートイソフタレート;ァセチノレセノレロース; ァセチノレプロピオキシセノレロース;ァセチノレブトキシセノレロース;-トロセノレロース;セ ルロイド;ポリビュルプチラール;エポキシ榭脂;メラミン榭脂;フオルマリン榭脂などが 挙げられる。なお、本明細書では、「アクリル、メタクリル」の双方あるいはいずれかを 指す場合、「(メタ)アクリル」と表記することがある。
[0091] 前記記録層の固形分中のノインダ一の含有量としては、特に制限はなぐ目的に 応じて適宜選択することができ、例えば、 10〜95質量%であることが好ましぐ 35〜 90質量%であれることがより好ましい。前記含有量が、 10質量%未満であると、安定 な干渉像が得られないことがあり、 95質量%を超えると、回折効率の点で望ましい性 能が得られないことがある。
前記バインダーの感光層中における含有量は、全感光層固形分中、 10〜95質量 %が好ましぐ 35〜90質量%がより好ましい。
[0092] 記録層に含まれるその他の成分
本発明においては、光熱変換効果を向上させる目的で、ニトロセルロースを記録層 中に更に含有させることが好ましい。ニトロセルロースは、近赤外レーザ光を光吸収 剤が吸収し発生した熱により分解し、効率よくフォトポリマーの重合反応を促進させる ことができる。
[0093] 前記-トロセルロースは、常法により精製した天然のセルロースを混酸で硝酸エス テル化し、セルロースの構成単位であるダルコビラノース環に存在する 3個の水酸基 の部分に-トロ基を一部又は全部導入することによって得ることができる。前記-トロ セルロースの硝化度としては、 2〜13力 子ましく、 10〜12. 5がより好ましぐ 11〜12 . 5が更に好ましい。ここで、硝化度とは、ニトロセルロース中の窒素原子の質量%を 表す。硝化度が著しく高いと、フォトポリマーの重合反応の促進効果は高められるが 、室温安定性が低下する傾向にある。また、ニトロセルロースが爆発性となり危険が 伴う。硝化度が著しく低いと、フォトポリマーの重合反応の促進効果が充分得られな い。
[0094] また、ニトロセルロースの重合度は 20〜200が好ましぐ 25〜150力 Sより好ましい。
重合度が著しく高いと、記録層の除去が不完全となる傾向にある。重合度が著しく低 いと、記録層の塗膜性が不良になる傾向にある。ニトロセルロースの記録層中におけ る含有率は、記録層全固形成分に対して 0〜80質量%が好ましぐ 0. 5〜50質量% 力 り好ましぐ 1〜25質量%が更に好ましい。
[0095] 前記記録層は、材料に応じて公知の方法に従って形成することができ、例えば、蒸 着法、湿式成膜法、 MBE (分子線エピタキシー)法、クラスターイオンビーム法、分子 積層法、 LB法、印刷法、転写法などにより好適に形成することができる。また、米国 特許 6, 743, 552号明細書に記載されている 2成分ウレタンマトリックス形成方法で ちょい。
[0096] 前記湿式成膜法による前記記録層の形成は、例えば、前記記録層材料を溶剤に 溶解乃至分散させた溶液 (塗布液)を用いる(塗布し、乾燥する)ことにより、好適に行 うことができる。該湿式成膜法としては、特に制限はなぐ目的に応じて公知のものの 中力も適宜選択することができ、例えば、インクジェット法、スピンコート法、ニーダー コート法、バーコート法、ブレードコート法、キャスト法、ディップ法、カーテンコート法 などが挙げられる。
[0097] 前記記録層の厚みとしては、特に制限はなぐ目的に応じて適宜選択することがで さ、 1〜1, OOO /z m力好ましく、 100〜700 111カ^ょり好まし1 ヽ0
前記記録層の厚みが、前記好ましい数値範囲であると、 10〜300多重のシフト多 重記録を行っても十分な SZN比を得ることができ、前記より好ま 、数値範囲である とそれが顕著である点で有利である。
[0098] くフィノレタ層〉
前記フィルタ層は、入射角が変化しても選択反射波長にずれが生じることなぐ情 報光、及び参照光による光記録媒体の反射膜からの乱反射を防止し、ノイズの発生 を防止する機能がある。前記光記録媒体に前記フィルタ層を積層することにより、高 解像度、回折効率の優れた光記録が得られる。
前記フィルタ層の機能は、第一の光を透過し、該第一の光と異なる第二の光を反射 することが好ましぐ前記第一の光の波長が 350〜600nmであり、かつ第二の光の 波長が 600〜900nmであることが好ましい。そのためには、光学系側から見て、記 録層、フィルタ層、及びサーボビットパターンの順に積層されている構造の光記録媒 体であることが好ましい。
また、前記フィルタ層は、入射角度 ±40° における、 655nmでの光透過率が 50% 以上が好ましぐ 80%以上がより好ましぐかつ 532nmでの光反射率が 30%以上が 好ましぐ 40%以上がより好ましい。 前記フィルタ層としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、誘電体蒸着層、単層又は 2層以上のコレステリック液晶層、更に必要に応じ てその他の層の積層体により形成される。また色材含有層を有していてもよい。
前記フィルタ層は、直接記録層など共に、前記支持体上に塗布などにより積層して もよぐフィルムなどの基材上に積層して光記録媒体用フィルタを作製し、該光記録 媒体用フィルタを、支持体上に積層してもよい。
[0099] 誘電体蒸着層
前記誘電体蒸着層は、互いに屈折率の異なる誘電体薄膜を複数層積層してなり、 波長選択反射膜とするためには、高屈折率の誘電体薄膜と低屈折率の誘電体薄膜 とを交互に複数回積層することが好ましいが、 2種以上に限定されず、それ以上の種 類であってもよい。また色材含有層を設ける場合は、誘電体蒸着層の下に形成する 前記積層数は、 2〜20層が好ましぐ 2〜12層がより好ましぐ 4〜: LO層が更に好ま しぐ 6〜8層が特に好ましい。前記積層数が、 20層を超えると、多層蒸着により生産 効率性が低下し、本発明の目的、及び効果を達成できなくなることがある。
[0100] 前記誘電体薄膜の積層順については、特に制限はなぐ目的に応じて適宜選択す ることができ、例えば、隣接する膜の屈折率が高い場合にはそれより低い屈折率の膜 を最初に積層する。その逆に隣接する層の屈折率が低い場合にはそれより高い屈折 率の膜を最初に積層する。前記屈折率が高 ヽか低 ヽかを決めるしき!/、値としては 1. 8が好ましい。
なお、屈折率が高いか低いかは絶対的なものではなぐ高屈折率の材料の中でも、 相対的に屈折率の大きいものと小さいものとが存在してもよぐこれらを交互に使用し てもよい。
[0101] 前記高屈折率の誘電体薄膜の材料としては、特に制限はなぐ目的に応じて適宜 選択することができ、例えば、 Sb O、 Sb S、: Bi O、 CeO、 CeF、 HfO、: La O、
2 3 2 3 2 3 2 3 2 2 3
Nd O、 Pr O 、 Sc O、 SiO、 Ta O、 TiO、 T1C1、 Y O、 ZnSe、 ZnS、 ZrOな
2 3 6 11 2 3 2 5 2 2 3 2 どが挙げられる。これらの中でも、 Bi O、 CeO、 CeF、 HfO、 SiO、 Ta O、 TiO
2 3 2 3 2 2 5 2
、 Y O、 ZnSe、 ZnS、 ZrOが好ましぐこれらの中でも、 SiO、 Ta O、 TiO、 Y O 、 ZnSe、 ZnS、 ZrO力 ^より好まし!/ヽ。
2
[0102] 前記低屈折率の誘電体薄膜の材料としては、特に制限はなぐ 目的に応じて適宜 選択することができ、例えば、 Al O、 BiF、 CaF、 LaF、 PbCl、 PbF、 LiF、 Mg
2 3 3 2 3 2 2
F、 MgO、 NdF、 SiO、 Si O、 NaF、 ThO、 ThFなどが挙げられる。これらの中
2 3 2 2 3 2 4
でも、 Al O、 BiF、 CaF、 MgF、 MgO、 SiO、 Si Oが好ましぐこれらの中でも、
2 3 3 2 2 2 2 3
Al O、 CaF、 MgF、 MgO、 SiO、及び Si Oがより好ましい。
2 3 2 2 2 2 3
なお、前記誘電体薄膜の材料においては、原子比についても特に制限はなぐ 目 的に応じて適宜選択することができ、成膜時に雰囲気ガス濃度を変えることにより、原 子比を調整することができる。
[0103] 前記誘電体薄膜の成膜方法としては、特に制限はなぐ 目的に応じて適宜選択す ることができ、例えば、イオンプレーティング、イオンビームなどの真空蒸着法、スパッ タリングなどの物理的気相成長法 (PVD法)、化学的気相成長法 (CVD法)などが挙 げられる。これらの中でも、真空蒸着法、スパッタリングが好ましぐスパッタリングがよ り好ましい。
前記スパッタリングとしては、成膜レートの高い DCスパッタリング法が好ましい。な お、 DCスパッタリング法においては、導電性が高い材料を用いることが好ましい。 また、前記スパッタリングにより多層成膜する方法としては、例えば、(1) 1つのチヤ ンバで複数のターゲットから交互又は順番に成膜する 1チャンバ法、(2)複数のチヤ ンバで連続的に成膜するマルチチャンバ法とがある。これらの中でも、生産性、及び 材料コンタミネーシヨンを防ぐ観点から、マルチチャンバ法が特に好まし 、。
前記誘電体薄膜の膜厚としては、光学波長 λオーダーで、 λ Ζ16〜 λの膜厚が 好ましく、ぇ 8〜3ぇ 4カょり好ましく、ぇ 6〜3ぇ 8カ 寺に好まし ヽ。
[0104] 一色材含有層
前記色材含有層は、色材、バインダー榭脂、溶剤、及び必要に応じてその他の成 分により形成される。
[0105] 前記色材としては、顔料、及び染料の少なくとも!/ヽずれかが好適に挙げられ、これ らの中でも、 532nmの光を吸収し、 655nm若しくは 780nmのサーボ光を透過させ る観点から、赤色染料、赤色顔料が好ましぐ赤色顔料が特に好ましい。 [0106] 前記赤色染料としては、特に制限はなぐ公知のものの中から目的に応じて適宜選 択すること力 Sでき、 ί列えば、、 C. I.アシッドレッド 1, 8, 13, 14, 18, 26, 27, 35, 37, 42, 52, 82, 87, 89, 92, 97, 106, 111, 114, 115, 134, 186, 249, 254, 28 9等の酸性染料; C. I.ベーシックレッド 2, 12, 13, 14, 15, 18, 22, 23, 24, 27, 29, 35, 36, 38, 39, 46, 49, 51, 52, 54, 59, 68, 69, 70, 73, 78, 82, 102, 104, 109, 112等の塩基性染料; C. I.リアクティブレッド 1, 14, 17, 25, 26, 32, 37, 44, 46, 55, 60, 66, 74, 79, 96, 97等の反応性染料、など力挙げられる。こ れらは、 1種単独で使用してもよいし、 2種以上を併用してもよい。
[0107] 前記赤色顔料としては、特に制限はなぐ公知のものの中から目的に応じて適宜選 択することができ、例えば、 C. I.ビグメントレッド 9、 C. I.ビグメントレッド 97、 C. I.ピ グメン卜レッド 122、 C. I.ビグメン卜レッド 123、 C. I.ビグメン卜レッド 149、 C. I.ピグメ ントレッド 168、 C. I.ビグメントレッド 177、 C. I.ビグメントレッド 180、 C. I.ビグメント レッド 192、 C. I.ビグメントレッド 209、 C. I.ビグメントレッド 215、 C. I.ビグメントレツ ド 216、 C. I.ビグメントレッド 217、 C. I.ビグメントレッド 220、 C. I.ビグメントレッド 2 23、 C. I.ビグメン卜レッド 224、 C. I.ビグメン卜レッド 226、 C. I.ビグメン卜レッド 227 、 C. I.ビグメントレッド 228、 C. I.ビグメントレッド 240、 C. I.ビグメントレッド 48 : 1、 パーマネント.カーミン FBB (C. I.ピグメントレッド 146)、パーマネント 'ルビー FBH ( C. I.ビグメントレッド 11)、フアステル 'ピンク Bスプラ(C. I.ビグメントレッド 81)、など が挙げられる。これらは、 1種単独で使用してもよいし、 2種以上を併用してもよい。
[0108] これらの中でも、 532nmの光に対する透過率が 10%以下であり、かつ 655nmの 光に対する透過率が 90%以上である透過スペクトルを示す赤色顔料が特に好ましく 用いられる。
[0109] 前記色材の含有量としては、前記色材含有層の全固形質量に対し 0. 05〜90質 量%が好ましぐ 0. 1〜70質量%がより好ましい。前記含有量が 0. 05質量%未満 であると、色材含有層の厚みが 500 m以上必要となってしまうことがあり、 90質量 %を超えると、色材含有層の自己支持性がなくなり、色材含有層の作製工程中に膜 が崩れてしまうことがある。
[0110] 前記色材含有層に用いるバインダー榭脂としては、特に制限はなぐ公知のものの 中から目的に応じて適宜選択することができ、例えば、ポリビニルアルコール榭脂、 塩化ビュル Z酢酸ビュル共重合体;塩化ビュル、酢酸ビュルとビュルアルコール、マ レイン酸、及びアクリル酸の少なくとも 、ずれかとの共重合体;塩ィヒビニル z塩ィ匕ビ- リデン共重合体;塩化ビニル zアタリ口-口リル共重合体;エチレン Z酢酸ビニル共重 合体;ニトロセルロース榭脂等のセルロース誘導体;ポリアクリル榭脂、ポリビュルァセ タール榭脂、ポリビュルプチラール榭脂、エポキシ榭脂、フエノキシ榭脂、ポリウレタン 榭脂、ポリカーボネート榭脂、などが挙げられる。これらは、 1種単独で使用してもよい し、 2種以上を併用してもよい。
また、分散性、及び耐久性を更に高めるため、以上に挙げたバインダー榭脂分子 中に、極'性基(エポキシ基、 CO H、 OH、 NH、 SO M、 OSO M、 PO M、 OPO
2 2 3 3 3 2 3
M (ただし、 Mは水素原子、アルカリ金属、又はアンモ-ゥムであり、一つの基の中
2
に複数の Mがあるときは互いに異なって 、てもよ 、)を導入したものが好ま U、。該極 性基の含有量としては、バインダー榭脂 1グラム当り 10_6〜: L0—4当量が好ま 、。 以上列挙したバインダー榭脂は、イソシァネート系の公知の架橋剤を添加して硬化 処理されることが好ましい。
[0111] 前記バインダー榭脂の含有量としては、前記色材含有層の全固形質量に対し 10
〜99. 95質量%が好ましぐ 30〜99. 9質量%がより好ましい。
[0112] 前記各成分は、適当な溶媒に溶解乃至は分散し、塗布液に調製し、この塗布液を 所望の塗布方法により後述する基材上に塗布することにより、色材含有層を形成す ることがでさる。
前記溶媒としては、特に制限はなぐ公知のものの中から目的に応じて適宜選択す ることができ、例えば、水、 3—メトキシプロピオン酸メチルエステル、 3—メトキシプロ ピオン酸ェチルエステル、 3—メトキシプロピオン酸プロピルエステル、 3—エトキシプ ロピオン酸メチルエステル、 3—エトキシプロピオン酸ェチルエステル、 3—エトキシプ ロピオン酸プロピルエステル等のアルコキシプロピオン酸エステル類; 2—メトキシプロ ピノレアセテート、 2—エトキシプロピノレアセテート、 3—メトキシブチノレアセテート等の アルコキシアルコールのエステル類;乳酸メチル、乳酸ェチル等の乳酸エステル類; メチルェチルケトン、シクロへキサノン、メチルシクロへキサノン等のケトン類; Ύーブ チロラタトン、 N—メチルピロリドン、ジメチルスルホキシド、クロ口ホルム、テトラヒドロフ ラン、などが挙げられる。これらは、 1種単独で使用してもよいし、 2種以上を併用して ちょい。
[0113] 前記塗布方法としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、インクジェット法、スピンコート法、ニーダーコート法、バーコート法、ブレード コート法、キャスト法、ディップ法、カーテンコート法、などが挙げられる。
[0114] 前記色材含有層の厚みは、例えば、 0. 5〜200 μ mが好ましぐ 1. 0〜: LOO μ mが より好ましい。前記厚みが、 0. 5 m未満であると、色材を包んで膜とするためのバイ ンダー榭脂を十分な量添加することができなくなることがあり、 200 /z mを超えると、光 記録媒体の厚みが大きくなりすぎて、照射光、及びサーボ光の光学系として過大なも のが必要になることがある。
[0115] ーコレステリック液晶層
前記コレステリック液晶層は、少なくとも、コレステロール誘導体、又はネマチック液 晶化合物、及びカイラルイ匕合物を含有してなり、重合性モノマー、更に必要に応じて その他の成分を含有してなる。
前記コレステリック液晶層は、単層コレステリック液晶層、及び 2層以上の複数層コ レステリック液晶層の 、ずれであってもよ!/、。
[0116] 前記コレステリック液晶層としては、円偏光分離機能を有するものが好ましい。前記 円偏光分離機能を有するコレステリック液晶層は、液晶の螺旋の回転方向(右回り又 は左回り)と円偏光方向とがー致し、波長が液晶の螺旋ピッチであるような円偏光成 分の光だけを反射する選択反射特性を有する。このコレステリック液晶層の選択反射 特性を利用して、一定の波長帯域の自然光から特定波長の円偏光のみを透過分離 し、その残りを反射する。
[0117] 前記光記録媒体用フィルタは、垂直入射を 0° とし ± 20° の範囲であるえ 〜λ
0 0
/cos20° (ただし、 λ は照射光波長を表す)における光反射率が 40%以上である
0
ことが好ましぐ垂直入射を 0° とし ±40° の範囲であるえ 〜λ /cos40° (ただし
0 0
、 λ は照射光波長を表す)における光反射率が 40%以上であることが特に好ましい
0
。前記え 〜λ /cos20° 、特にえ 〜λ /cos40° (ただし、 λ は照射光波長を 表す)における光反射率が 40%以上であれば、照射光反射の角度依存性を解消で き、通常の光記録媒体に用いられているレンズ光学系を採用することができる。この ためにはコレステリック液晶層の選択反射波長幅が大きいことが好ましい。
具体的には、単層コレステリック液晶層の場合には、コレステリック液晶層の選択反 射波長領域幅 Δ λは、下記数式 1で表されることから、(ne— no)の大きな液晶を用 、ることが好まし!/、。
<数式 1 >
Δ = 2 (ne— no) / (ne+no)
ただし、前記数式 1中、 noは、コレステリック液晶層に含有されるネマチック液晶分 子の正常光に対する屈折率を表す。 neは、該ネマチック液晶分子の異常光に対す る屈折率を表す。 λは、選択反射の中心波長を表す。
また、特願 2004— 352081号明細書記載のように、カイラル化合物として感光性を 有し、光によって液晶の螺旋ピッチを大きく変化させることができる光反応型カイラル 化合物を用い、該光反応型カイラル化合物の含有量や UV照射時間を調整すること により、螺旋ピッチを液晶層の厚み方向に連続的に変化した光記録媒体用フィルタ を用いることが好ましい。
[0118] また、複数層コレステリック液晶層の場合には、選択反射中心波長が互いに異なり 、前記各コレステリック液晶層の螺旋の回転方向が互いに同じであるコレステリック液 晶層を積層することが好ましい。
前記コレステリック液晶層は、上記特性を満たせば特に制限はなぐ目的に応じて 適宜選択することができるが、上述したように、ネマチック液晶化合物、及びカイラル 化合物を含有してなり、重合性モノマー、更に必要に応じてその他の成分を含有して なる。
[0119] ネマチック液晶化合物
前記ネマチック液晶化合物は、液晶転移温度以下ではその液晶相が固定ィ匕するこ とを特徴とし、その屈折率異方性 Δ ηが、 0. 10〜0. 40の液晶化合物、高分子液晶 化合物、及び重合性液晶化合物の中から目的に応じて適宜選択することができる。 溶融時の液晶状態にある間に、例えば、ラビング処理などの配向処理を施した配向 基板を用いるなどにより配向させ、そのまま冷却などして固定ィ匕させることにより固相 として使用することができる。
[0120] 前記ネマチック液晶化合物としては、特に制限はなぐ目的に応じて適宜選択する ことができ、十分な硬化性を確保する観点から、分子内に重合性基を有するネマチッ ク液晶化合物が好ましぐこれらの中でも、紫外線 (UV)重合性液晶が好適である。 該 UV重合性液晶としては、市販品を用いることができ、例えば、 BASF社製の商品 名 PALIOCOLOR LC242 ;Merck社製の商品名 E7 ;Wacker— Chem社製の商 品名 LC— Silicon— CC3767 ;高砂香料株式会社製の商品名 L35、 L42、 L55、 L 59、 L63、 L79、 L83など力挙げられる。
[0121] 前記ネマチック液晶化合物の含有量としては、前記各コレステリック液晶層の全固 形分質量に対し 30〜99質量%が好ましぐ 50〜99質量%がより好ましい。前記含 有量が 30質量%未満であると、ネマチック液晶化合物の配向が不十分となることが ある。
[0122] ——カイラル化合物一一
前記カイラルイ匕合物としては、複数層コレステリック液晶層の場合には、特に制限は なぐ公知のものの中から目的に応じて適宜選択することができ、液晶化合物の色相 、色純度改良の観点から、例えば、イソマン-ドィ匕合物、力テキンィ匕合物、イソソルビ ド化合物、フェンコンィ匕合物、カルボン化合物、などが挙げられる。これらは、 1種単 独で使用してもよいし、 2種以上を併用してもよい。
また、前記カイラルイ匕合物としては、市販品を用いることができ、該市販品としては、 例えば、 Merck社製の商品名 S 101、 R811、 CB15 ;BASF社製の商品名 PALIO COLOR LC756などが挙げられる。
[0123] 前記複数層コレステリック液晶層の各液晶層におけるカイラルイ匕合物の含有量とし ては、前記各コレステリック液晶層の全固形分質量に対し 0〜30質量%が好ましぐ 0〜20質量%がより好ましい。前記含有量が 30質量%を超えると、コレステリック液 晶層の配向が不十分となることがある。
[0124] 重合性モノマ
前記コレステリック液晶層には、例えば、膜強度などの硬化の程度を向上させる目 的で重合性モノマーを併用することができる。該重合性モノマーを併用すると、光照 射による液晶の捻れ力を変化 (パターンニング)させた後(例えば、選択反射波長の 分布を形成した後)、その螺旋構造 (選択反射性)を固定化し、固定ィ匕後のコレステリ ック液晶層の強度をより向上させることができる。ただし、前記液晶化合物が同一分 子内に重合性基を有する場合には、必ずしも添加する必要はない。
前記重合性モノマーとしては、特に制限はなぐ公知のものの中から目的に応じて 適宜選択することができ、例えば、エチレン性不飽和結合を持つモノマーなどが挙げ られ、具体的には、ペンタエリスリトールテトラアタリレート、ジペンタエリスリトールへキ サアタリレートなどの多官能モノマーなどが挙げられる。これらは、 1種単独で使用し てもよいし、 2種以上を併用してもよい。
前記重合性モノマーの添加量としては、前記コレステリック液晶層の全固形分質量 に対し 0〜50質量%が好ましぐ 1〜20質量%がより好ましい。前記添加量が 50質 量%を超えると、コレステリック液晶層の配向を阻害することがある。
[0125] その他の成分
前記その他の成分としては、特に制限はなぐ 目的に応じて適宜選択することがで き、例えば、光重合開始剤、増感剤、バインダー榭脂、重合禁止剤、溶媒、界面活性 剤、増粘剤、色素、顔料、紫外線吸収剤、ゲル化剤などが挙げられる。
[0126] 前記光重合開始剤としては、特に制限はなぐ公知のものの中から目的に応じて適 宜選択することができ、例えば、 p—メトキシフエ-ルー 2, 4 ビス(トリクロロメチル) —s トリァジン、 2— (p ブトキシスチリル)一 5 トリクロロメチル 1, 3, 4—ォキサジ ァゾール、 9 フエ二ルァクリジン、 9, 10 ジメチルベンズフエナジン、ベンゾフエノ ン Zミヒラーズケトン、へキサァリールビイミダゾール Zメルカプトべンズイミダゾール、 ベンジルジメチルケタール、ァシルホスフィン誘導体、チォキサントン Zァミンなどが 挙げられる。これらは、 1種単独で使用してもよいし、 2種以上を併用してもよい。 前記光重合開始剤としては、市販品を用いることができ、該市販品としては、例え ば、チバスペシャルティケミカルズ社製の商品名ィルガキュア 907、ィルガキュア 369 、ィルガキュア 784、ィルガキュア 814 ;BASF社製の商品名ルシリン TPOなどが挙 げられる。 [0127] 前記光重合開始剤の添加量としては、前記コレステリック液晶層の全固形分質量に 対し 0. 1〜20質量%が好ましぐ 0. 5〜5質量%がより好ましい。前記添加量が 0. 1 質量%未満であると、光照射時の硬化効率が低いため長時間を要することがあり、 2 0質量%を超えると、紫外線領域力も可視光領域での光透過率が劣ることがある。
[0128] 前記増感剤は、必要に応じてコレステリック液晶層の硬化度を上げるために添加さ れる。
前記増感剤としては、特に制限はなぐ公知のものの中から目的に応じて適宜選択 することができ、例えば、ジェチルチオキサントン、イソプロピルチォキサントンなどが 挙げられる。
前記増感剤の添加量としては、前記コレステリック液晶層の全固形分質量に対し 0 . 001-1. 0質量%が好ましい。
[0129] 前記バインダー榭脂としては、特に制限はなぐ公知のものの中から目的に応じて 適宜選択することができ、例えば、ポリビニルアルコール;ポリスチレン、ポリ— —メ チルスチレンなどのポリスチレン化合物;メチルセルロース、ェチルセルロース、ァセ チルセルロースなどのセルロース榭脂;側鎖にカルボキシル基を有する酸性セル口 ース誘導体;ポリビュルフォルマール、ポリビュルプチラールなどのァセタール榭脂; メタクリル酸共重合体、アクリル酸共重合体、ィタコン酸共重合体、クロトン酸共重合 体、マレイン酸共重合体、部分エステルィヒマレイン酸共重合体;アクリル酸アルキル エステルのホモポリマー又はメタアクリル酸アルキルエステルのホモポリマー;その他 の水酸基を有するポリマーなどが挙げられる。これらは、 1種単独で使用してもよいし 、 2種以上を併用してもよい。
前記アクリル酸アルキルエステルのホモポリマー又はメタアクリル酸アルキルエステ ルのホモポリマーにおけるアルキル基としては、例えば、メチル基、ェチル基、 n—プ 口ピル基、 n—ブチル基、 iso—ブチル基、 n—へキシル基、シクロへキシル基、 2—ェ チルへキシル基などが挙げられる。
前記その他の水酸基を有するポリマーとしては、例えば、ベンジル (メタ)アタリレー ト Z (メタアクリル酸のホモポリマー)アクリル酸共重合体、ベンジル (メタ)アタリレート / (メタ)アクリル酸 Z他のモノマーの多元共重合体などが挙げられる。 [0130] 前記ノインダー榭脂の添加量としては、前記コレステリック液晶層の全固形質量に 対し 0〜80質量%が好ましぐ 0〜50質量%がより好ましい。前記添加量が 80質量 %を超えると、コレステリック液晶層の配向が不十分となることがある。
[0131] 前記重合禁止剤としては、特に制限はなぐ 目的に応じて適宜選択することができ 、例えば、ハイドロキノン、ハイドロキノンモノメチルエーテル、フエノチアジン、ベンゾ キノン、又はこれらの誘導体などが挙げられる。
前記重合禁止剤の添加量としては、前記重合性モノマーの固形分に対し 0〜 10質 量%が好ましく、 1 OOppm〜 1質量%がより好まし ヽ。
[0132] 前記溶媒としては、特に制限はなぐ公知のものの中から目的に応じて適宜選択す ることができ、例えば、 3—メトキシプロピオン酸メチルエステル、 3—メトキシプロピオ ン酸ェチルエステル、 3—メトキシプロピオン酸プロピルエステル、 3—エトキシプロピ オン酸メチルエステル、 3—エトキシプロピオン酸ェチルエステル、 3—エトキシプロピ オン酸プロピルエステルなどのアルコキシプロピオン酸エステル類; 2—メトキシプロピ ノレアセテート、 2—エトキシプロピノレアセテート、 3—メトキシブチノレアセテートなどのァ ルコキシアルコールのエステル類;乳酸メチル、乳酸ェチルなどの乳酸エステル類; メチルェチルケトン、シクロへキサノン、メチルシクロへキサノンなどのケトン類; γ—ブ チロラタトン、 Ν—メチルピロリドン、ジメチルスルホキシド、クロ口ホルム、テトラヒドロフ ランなどが挙げられる。これらは、 1種単独で使用してもよいし、 2種以上を併用しても よい。
[0133] 前記コレステリック液晶層の形成方法としては、例えば、前記溶媒を用いて調製し たコレステリック液晶層用塗布液 (複数層の場合には各コレステリック液晶層用塗布 液)を前記基材上に塗布し、乾燥させて、例えば、紫外線照射することにより、コレス テリック液晶層を形成することができる。
最も量産適性のょ 、手法としては、前記基材をロール状に卷 、た形で準備してお き、該基材上にコレステリック液晶層用塗布液をバーコート、ダイコート、ブレードコー ト、カーテンコートのような長尺連続コーターにて塗布する形式が好ましい。
[0134] 前記塗布方法としては、例えば、スピンコート法、キャスト法、ロールコート法、フロ 一コート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷 法などが挙げられる。
前記紫外線照射の条件としては、特に制限はなぐ目的に応じて適宜選択すること ができ、例えば、照射紫外線は、 160〜380nmが好ましぐ 250〜380nmがより好 ましい。照射時間としては、例えば、 0. 1〜600秒間が好ましぐ 0. 3〜300秒間がよ り好ま ヽ。紫外線照射の条件を調整することによって前記反応性カイラル剤を用い た光コレステリック液晶層における螺旋ピッチを液晶層の厚み方向に沿って連続的 に変ィ匕させることができる。
[0135] 前記紫外線照射の条件を調整するために、前記コレステリック液晶層に紫外線吸 収剤を添加することもできる。該紫外線吸収剤としては、特に制限はなぐ目的に応じ て適宜選択することができ、例えば、ベンゾフエノン系紫外線吸収剤、ベンゾトリアゾ ール系紫外線吸収剤、サリチル酸系紫外線吸収剤、シァノアクリレート系紫外線吸 収剤、ォキザリックアシッドァ-リド系紫外線吸収剤などが好適に挙げられる。これら の紫外線吸収剤の具体例としては、特開昭 47— 10537号公報、同 58— 111942号 公報、同 58— 212844号公報、同 59— 19945号公報、同 59— 46646号公報、同 5 9— 109055号公報、同 63— 53544号公報、特公昭 36— 10466号公報、同 42— 2 6187号公報、同 48— 30492号公報、同 48— 31255号公報、同 48— 41572号公 報、同 48— 54965号公報、同 50— 10726号公報、米国特許第 2, 719, 086号明 細書、同第 3, 707, 375号明細書、同第 3, 754, 919号明細書、同第 4, 220, 71 1号明細書などに記載されている。
[0136] 前記複数層の場合には各コレステリック液晶層の厚みは、例えば、 1〜: LO /z mが好 ましぐ 2〜7 /z mがより好ましい。前記厚みが: L m未満であると、選択反射率が十 分でなくなり、 10 /z mを超えると、液晶層の均一配向が乱れてしまうことがある。
また、各コレステリック液晶層の合計厚み(単層の場合にはコレステリック液晶層の 厚み)は、例えば、 1〜30 μ mが好ましぐ 3〜10 μ mがより好ましい。
[0137] ーコレステリック液晶層を有する光記録媒体用フィルタの製造方法
前記光記録媒体用フィルタの製造方法としては、特に制限はなぐ目的に応じて適 宜選択することができる。
前記光記録媒体用フィルタは、特に制限はなぐ目的に応じて適宜選択することが できるが、基材ごと円盤状に加工 (例えば、打ち抜き加工)されて、光記録媒体の第 二の基板上に配置されるのが好ましい。また、光記録媒体のフィルタ層に用いる場合 は、基材を介さず直接第二の基板上に設けることもできる。
[0138] 基材
前記基材としては、特に制限はなぐ目的に応じて適宜選択することができ、例えば 、適宜合成したものであってもよいし、市販品を使用してもよい。
前記基材の厚みとしては、特に制限はなぐ目的に応じて適宜選択することができ 、 10〜500 111カ好ましく、 50〜300 111カょり好まし1ヽ。前記基材の厚み力 10 m未満であると、基板の橈みにより密着性が低下することがある。一方、 500 mを超 えると、情報光と参照光の焦点位置を大きくずらさなければならなくなり、光学系サイ ズが大きくなつてしまうことがある。波長選択膜の貼り合わせには、それぞれ公知の接 着剤を任意に組み合わせて使用することができる。
前記粘着剤としては、特に制限はなぐ目的に応じて適宜選択することができ、例え ば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ビ- ルアルキルエーテル系粘着剤、ポリビュルアルコール系粘着剤、ポリビュルピロリドン 系粘着剤、ポリアクリルアミド系粘着剤、セルロース系粘着剤などが挙げられる。 前記接着剤又は前記粘着剤の塗布厚みは、特に制限はなぐ目的に応じて適宜 選択することができ、光学特性や薄型化の観点から、接着剤の場合、 0. 1〜10 ;ζ ΐη が好ましぐ 0. 1〜5 μ mがより好ましい。また、粘着剤の場合、 1〜50 μ mが好ましく 、 2〜30 111カ^ょり好まし1ヽ。
[0139] なお、場合によっては、基板上に直接フィルタ層を形成することもできる。
[0140] <その他の層 >
前記その他の層としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、第 1ギャップ層、第 2ギャップ層、反射防止層、保護層などが挙げられる。
[0141] 第 1ギャップ層一
前記第 1ギャップ層は、必要に応じて前記フィルタ層と前記反射膜との間に設けら れ、第二の基板表面を平滑化する目的で形成される。また、記録層内に生成される ホログラムの大きさを調整するのにも有効である。即ち、前記記録層は、記録用参照 光、及び情報光の干渉領域をある程度の大きさに形成する必要があるので、前記記 録層とサーボピットパターンとの間にギャップを設けることが有効となる。
前記第 1ギャップ層は、例えば、サーボピットパターンの上力も紫外線硬化榭脂など の材料をスピンコートなどで塗布し、硬化させることにより形成することができる。また 、フィルタ層として透明基材の上に塗布形成したものを使用する場合には、該透明基 材が第 1ギャップ層としても働くことになる。
前記第 1ギャップ層の厚みとしては、特に制限はなぐ 目的に応じて適宜選択するこ とができ、 1〜 200 mが好ましい。
[0142] 第 2ギャップ層一
前記第 2ギャップ層は、必要に応じて、記録層とフィルタ層との間に設けられる。 前記第 2ギャップ層の材料としては、特に制限はなぐ 目的に応じて適宜選択するこ とができ、例えば、トリァセチルセルロース (TAC)、ポリカーボネート(PC)、ポリェチ レンテレフタラート(PET)、ポリスチレン(PS)、ポリスルホン(PSF)、ポリビュルアルコ ール(PVA)、ポリメタクリル酸メチルーポリメチルメタタリレート(PMMA)などのような 透明榭脂フィルム、又は、 JSR株式会社製商品名 ARTONフィルムや日本ゼオン株 式会社製商品名ゼォノアのような、ノルボルネン系榭脂フィルム、などが挙げられる。 これらの中でも、等方性の高いものが好ましぐ TAC、 PC、商品名 ARTON、及び商 品名ゼォノアが特に好ま U、。
前記第 2ギャップ層の厚みとしては、特に制限はなぐ 目的に応じて適宜選択するこ とができ、 1〜 200 mが好ましい。
[0143] 一保護層
前記保護層は、(1)色素含有記録層の傷、ホコリ、汚れ等力 の保護、(2)色素含 有記録層の保存安定性の向上、(3)反射率の向上等を目的として使用される。前記 保護層の材料としては、無機材料又は有機材料が用いられる。前記無機材料として は、例えば、 SiO、 SiO等も用いることができる。前記有機材料としては、例えば、ポ
2
リメチルアタリレート榭脂、ポリカーボネート榭脂、エポキシ榭脂、ポリスチレン榭脂、 ポリエステル榭脂、ビニル榭脂、セルロース、脂肪族炭化水素榭脂、芳香族炭化水 素榭脂、天然ゴム、スチレン一ブタジエン榭脂、クロロプレンゴム、ワックス、アルキッド 榭脂、乾性油、ロジン等の熱軟化性榭脂、熱溶融性榭脂、紫外線硬化樹脂なども用 いることができる。これらの中でも、生産性に優れた紫外線硬化榭脂が特に好ましい 前記保護層、には、目的に応じて更に、安定剤、分散剤、難燃剤、滑剤、帯電防止 剤、界面活性剤、可塑剤等を含有させることができる。
前記保護層の厚みは、特に制限はなぐ目的に応じて適宜選択することができ、 0. 01〜30 111カ^好ましく、 0. 05〜10 111カ^ょり好まし1ヽ0
[0144] (光記録媒体の製造方法)
本発明の光記録媒体の製造方法としては、特に制限はなぐ目的に応じて適宜選 択することができ、例えば、組成物調製工程と、記録層積層工程と、フィルタ層形成 工程と、第 1ギャップ層形成工程と、積層体形成工程とを含み、更に必要に応じてそ の他の工程を含んでなる。
[0145] <組成物調製工程 >
前記組成物調製工程は、光記録用組成物を調製する工程であり、モノマー、光開 始剤、増感剤、オリゴマー、及びバインダーなど力 なるフォトポリマー、及び必要に 応じて適宜選択したその他の成分を含む光記録用組成物を、溶剤により、溶解、分 散、混合などにより調製する。前記調製の条件としては、例えば、温度 23°C、湿度 10 %、低温度乾燥の環境で行われる。
[0146] <記録層積層工程 >
前記記録層積層工程は、前記フィルタ層上、又は該フィルタ層上に第 2ギャップ層 が積層されている場合は、該第 2ギャップ層上に、ホログラフィにより情報を記録する 記録層を積層する工程であり、前記組成物調製工程において調製された光記録用 組成物を塗工などにより積層する工程である。
前記記録層の積層方法としては、特に制限はなぐ目的に応じて適宜選択すること ができ、例えば、湿式成膜法や注入法による積層方法などが挙げられる。前記湿式 成膜法は、前記記録層材料を溶剤に溶解乃至分散させた溶液 (塗布液)を用いる( 塗布し乾燥する)ことにより形成する方法であり、該湿式成膜法としては、特に制限は なぐ目的に応じて公知のものの中力も適宜選択することができ、例えば、インクジェ ット法、スピンコート法、ニーダーコート法、バーコート法、ブレードコート法、キャスト 法、ディップ法、カーテンコート法などが挙げられる。
前記注入法とは、第一基板と第二基板との隙間に、記録層溶液を注入する方法で ある。外周スぺーサ、及び内周スぺーサを予め第一基板と第二基板で挟み込みディ スクセルを作り、前記外周スぺーサの一部に切り欠きを設けてその口を注入口として 、記録層溶液を注入する。
前記注入法としては、特に制限はなぐ目的に応じて適宜選択することができ、例え ば、外周注入法、内周注入法、ギャップ注入法などが挙げられる。
前記注入の条件としては、温度 23°C、粘度 330mPa's、 0. 5MPaの圧力、湿度 1 0%、硬化時間として温度 80°C、 40分間などが挙げられる。
前記注入装置としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、シリンジ、エア圧ディスペンサーなどが挙げられる。
[0147] 前記記録層の厚みとしては、特に制限はなぐ目的に応じて適宜選択することがで さ、 1〜1, 000 /z m力好ましく、 100〜700 111カ^ょり好まし1ヽ0
前記記録層の厚みが、前記好ましい数値範囲であると、 10〜300多重のシフト多 重を行っても十分な SZN比を得ることができ、前記より好ましい数値範囲であるとそ れが顕著である点で有利である。
[0148] 一外周スぺーサー
前記外周スぺーサの形状は、外周が光記録媒体の外周形状と略同一であれば、 特に制限はなぐ目的に応じて適宜選択することができ、例えば、四角形、円形、楕 円形、多角形などが挙げられる。これらの中でも、円形が好ましい。
前記外周スぺーサの断面形状は、例えば、四角形、矩形、台形、円形、楕円形な どが挙げられる。これらの中でも、厚みを一定にする作用の観点力 四角形、台形、 矩形などが好ましい。図 19に示す外周スぺーサ 27、及び内周スぺーサ 28は、その 断面が四角形の一例である。
前記外周スぺーサの厚みとしては、特に制限はなぐ目的に応じて適宜選択するこ とができ、例えば、前記記録層の厚みと略同一の厚みであることが好ましい。具体的 には、前記記録層の厚みと同じ 100〜1, 000 mであることが好ましい。 前記外周スぺーサの幅としては、少なくとも 0. 5mmあれば、特に制限はなぐ 目的 に応じて適宜選択することができ、例えば、 0. 5〜5mmが好ましぐ 0. 5〜3mmがよ り好ましぐ 0. 5〜2mmが特に好ましい。前記幅が、 0. 5mm未満であると、前記記 録層の厚みを一定にするための保持機能が機械強度の面や支持面積の面で低下 することがあり、 5mmを超えるとホログラム記録領域が狭められ、記録容量が損なわ れることがある。
[0149] 前記外周スぺーサの材料としては、特に制限はなぐ無機材料、及び有機材料の いずれをも好適に用いることができるが、成形性やコストの点力も前記有機材料が好 ましい。
前記無機材料としては、例えば、ガラス、セラミック、石英、シリコン、などが挙げられ る。
前記有機材料としては、特に制限はなぐ 目的に応じて適宜選択することができ、 例えば、トリァセチノレセノレロースなどのアセテート系榭脂、ポリエステル系榭脂、ポリ エーテルスルホン系榭脂、ポリスルホン系榭脂、ポリカーボネート系榭脂、ポリアミド 系榭脂、ポリイミド系榭脂、ポリオレフイン系榭脂、アクリル系榭脂、ポリノルボルネン 系榭脂、セルロース系榭脂、ポリアリレート系榭脂、ポリスチレン系榭脂、ポリビニルァ ルコール系榭脂、ポリ塩ィ匕ビ二ル系榭脂、ポリ塩ィ匕ビニリデン系榭脂、ポリアクリル系 榭脂、などが挙げられる。これらは、 1種単独で使用してもよいし、 2種以上を併用し てもよい。これらの中でも、成形性、剥離性、コストの点から、ポリカーボネート系榭脂 、アクリル系榭脂が好ましい。
[0150] 前記スぺーサの製造方法としては、特に制限はなぐ 目的に応じて適宜選択するこ とができ、例えば、射出成形、ブロー成形、圧縮成形、真空成形型押し出し加工、削 り出しカ卩ェなどが挙げられる。
[0151] 内周スぺーサー
前記内周スぺーサの形状は、内周が光記録媒体に設けられている開口部の形状と 略同一であれば、特に制限はなぐ 目的に応じて適宜選択することができ、例えば、 四角形、円形、楕円形、多角形などが挙げられる。これらの中でも、円形が好ましい。 前記内周スぺーサの断面形状は、前記外周スぺーサと同じ形状が好ましぐ例え ば、四角形、矩形、台形、円形、楕円形などが挙げられる。これらの中でも、厚みを一 定にする作用の観点力 四角形、台形、矩形などが好ましい。
前記内周スぺーサの厚みは、前記記録層の厚みの均一性の観点から前記外周ス ぺーサと同一であることが求められる。
前記内周スぺーサの幅は、前記記録層の厚みの均一性保持機能の観点、及び記 録層の記録領域の確保の観点力 前記外周スぺーサと同一であってもよぐ異なつ ていてもよい。前記内周スぺーサの材料、及び製造方法は外周スぺーサと異なって いてもよく、同一であってもよい。
くフィルタ層形成工程〉
前記フィルタ層形成工程は、本発明の前記光記録媒体用フィルタを光記録媒体形 状に加工し、該加工したフィルタを前記第二の基板に貼り合わせてフィルタ層を形成 する工程である。ここで、前記光記録媒体用フィルタの製造方法については、上述し た通りである。なお、場合によっては、基板上に直接フィルタ層を形成することもでき る。例えば、基板上に色材含有層用塗布液を塗布して色材含有層を形成し、該色材 含有層上にスパッタリング法により誘電体蒸着膜を形成する方法などが挙げられる。 前記光記録媒体用フィルタの形状としては、円盤状、カード形状、などが挙げられ、 前記加工としては、特に制限はなぐ目的に応じて適宜選択することができ、例えば、 プレスカッターによる切り出し力卩ェ、打ち抜きカッターによる打ち抜き加工、などが挙 げられる。前記貼り合わせでは、例えば、接着剤、粘着剤、などを用いて気泡が入ら な 、ようにフィルタを基板に貼り付ける。
前記接着剤としては、特に制限はなぐ目的に応じて適宜選択することができ、例え ば、 UV硬化型、ェマルジヨン型、一液硬化型、二液硬化型などの各種接着剤が挙 げられ、それぞれ公知の接着剤を任意に組み合わせて使用することができる。
前記粘着剤としては、特に制限はなぐ目的に応じて適宜選択することができ、例え ば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ビ- ルアルキルエーテル系粘着剤、ポリビュルアルコール系粘着剤、ポリビュルピロリドン 系粘着剤、ポリアクリルアミド系粘着剤、セルロース系粘着剤、などが挙げられる。 前記接着剤又は前記粘着剤の塗布厚みは、特に制限はなぐ目的に応じて適宜 選択することができ、光学特性や薄型化の観点から、接着剤の場合、 0. 1〜10 ;ζ ΐη が好ましぐ 0. 1〜5 μ mがより好ましい。また、粘着剤の場合、 1〜50 μ mが好ましく 、 2〜30 111カ^ょり好まし1ヽ。
[0153] く第 1ギャップ層形成工程〉
前記第 1ギャップ層形成工程は、前記第二の基板と前記フィルタ層との間に、第 1 ギャップ層を形成する工程である。該第 1ギャップ層の形成方法としては、特に制限 はなぐ目的に応じて適宜選択することができ、例えば、第二の基板上に対して、前 記スピン塗布による方法、前記非熱軟化性シートを貼付する方法、前記蒸着、及び 前記スパッタリングなどが挙げられる。
[0154] く積層体形成工程〉
前記積層体形成工程は、前記記録層積層工程、前記フィルタ層形成工程、及び前 記第 1ギャップ層形成工程により、前記記録層、前記フィルタ層、及び第 1ギャップ層 が形成された第二の基板と、前記第一の基板とを貼り合わせて積層体を形成し、必 要に応じて適宜選択したその他の工程を含む工程である。
前記貼り合わせ方法としては、特に制限はなぐ目的に応じて適宜選択することが でき、例えば、前記第一の基板と前記第二の基板と必要に応じて適宜選択したその 他の層とを、接着剤で接着する方法、接着剤を用いず圧着する方法、真空中で貼り 合わせる方法などが挙げられる。
前記接着剤で接着する方法は、前記第一の基板と、前記第二の基板と、必要に応 じて適宜選択したその他の層とを、各外周を合致させ、各層間に接着剤を塗布し、外 側から 0. 01-0. 5MPaの圧力をかけて、 23〜100°Cで接着する。該接着の際に、 気泡が無く密着させるためには、真空中で貼り合わせることが好ましい。
[0155] 接着剤
前記接着剤としては、特に制限はなぐ目的に応じて適宜選択することができ、例え ば、アクリル系接着剤、エポキシ系接着剤、ゴム系接着剤などが挙げられる。これらの 中でも、透明性に優れていることから、アクリル系接着剤、エポキシ系接着剤がより好 ましい。
[0156] 前記接着剤を用いず圧着する方法は、各層の有する接着性を利用して密着させて 積層体を形成することも可能である。前記第一の基板と、前記第二の基板と、必要に 応じて適宜選択したその他の層とを、各外周を合致させ、外側から 0. 01-0. 5MP aの圧力をかけて、 23〜100°Cで接着する。該密着の際に、気泡が無く密着させるた めには、真空中で貼り合わせることが好ましい。
[0157] くその他の工程 >
前記その他の工程としてとしては、特に制限はなぐ目的に応じて適宜選択すること ができ、例えば、前記記録層と前記フィルタ層の間に第 2ギャップ層を形成する第 2ギ ヤップ層形成工程、光記録媒体の側面周囲を接着剤で封止する側面封止工程など が挙げられる。
[0158] <光記録媒体の具体例 1 >
図 18、及び図 20は、本発明の具体例 1における光記録媒体の構成を示す概略断 面図である。この具体例 1に係る光記録媒体 21では、ポリカーボネート榭脂又はガラ スの第二の基板 1にサーボピットパターン 3が形成され、該サーボピットパターン 3上 にアルミニウム、金、白金などでコーティングして反射膜 2が設けられている。なお、図 20では第二の基板 1全面にサーボピットパターン 3が形成されている力 周期的に形 成されていてもよい。また、このサーボピットパターン 3の高さは、通常 1, 750 A (175 nm)であり、基板を始め他の層の厚みに比べて充分に小さいものである。
[0159] 第 1ギャップ層 8は、紫外線硬化榭脂などの材料を第二の基板 1の反射膜 2上にス ピンコートなどにより塗布して形成される。第 1ギャップ層 8は、反射膜 2を保護すると 共に、記録層 4内に生成されるホログラムの大きさを調整するためにも有効である。つ まり、記録層 4において記録用参照光と情報光の干渉領域をある程度の大きさに形 成する必要があるため、記録層 4とサーボピットパターン 3との間にギャップを設けると 有効である。
第 1ギャップ層 8上にはフィルタ層 6が設けられ、また、フィルタ層 6と記録層 4との間 に第 2ギャップ層 7が設けられ、該フィルタ層 6と第一の基板 5 (ポリカーボネート榭脂 基板やガラス基板)によって第 2のギャップ層 7、及び記録層 4を挟むことによって光 記録媒体 21が構成される。なお、情報光、及び再生光がフォーカシングするポイント が存在する力 このフォーカシングエリアをフォトポリマーで埋めていると過剰露光に よるモノマーの過剰消費が起こり、多重記録能が下がってしまう。そこで、無反応で透 明な第 2ギャップ層 7を設けることが有効となる。
[0160] 図 20において、フィルタ層 6は、赤色光のみを透過し、それ以外の色の光を通さな いものである。従って、情報光、記録、及び再生用参照光は緑色又は青色の光であ るので、フィルタ層 6を透過せず、反射膜 2まで達することなぐ戻り光となり、入出射 面 Aから出射することになる。
このフィルタ層 6は、螺旋ピッチが液晶層の厚み方向に連続的に変化した 3層のコ レステリック液晶層 6a、 6b、 6c力らなる。このコレステリック液晶層力もなるフィルタ層 6は、第 1ギャップ層 8上に塗布によって直接形成してもよいし、基材上にコレステリッ ク液晶層を形成したフィルムを光記録媒体形状に打ち抜 ヽて配置してもよ ヽ。螺旋ピ ツチが液晶層の厚み方向に連続的に変化した 3層のコレステリック液晶層によって、 図 23に示すように、照射光の入射角力 30° の場合、 λ 力 70〜620nm (ただし、
0
X は照射光波長を表す)における光反射率が 90%以上となり、図 22に示すように、
0
λ 力 70〜620nm (ただし、 λ は照射光波長を表す)における光透過率が 10%以
0 0
下となり、 λ 力 70〜620nmを選択した反射することができる。
0
[0161] 具体例 1における光記録媒体 21は、円盤状でもいいし、カード形状であってもよい 。カード形状の場合にはサーボピットパターンは無くてもよい。また、この光記録媒体 21では、第二の基板 1は 0. 6mm、第 1ギャップ層 8は 100 m、フィルタ層 6は 2〜3 ^ m,第 2ギャップ層 7は 70 πι、記録層 4は 0. 6mm、第一の基板 5は 0. 6mmの厚 みであって、合計厚みは約 1. 9mmとなっている。
[0162] 次に、図 2を参照して、光記録媒体 21周辺での光学的動作を説明する。まず、サ ーボ用レーザから出射した光 (赤色光)は、ダイクロイツクミラー 13でほぼ 100%反射 して、対物レンズ 12を通過する。対物レンズ 12によってサーボ用光は反射膜 2上で 焦点を結ぶように光記録媒体 21に対して照射される。つまり、ダイクロイツクミラー 13 は緑色や青色の波長の光を透過し、赤色の波長の光をほぼ 100%反射させるように なっている。光記録媒体 21の光の入出射面 Aから入射したサーボ用光は、第一の基 板 5、記録層 4、第 2ギャップ層 7、フィルタ層 6、及び第 1ギャップ層 8を通過し、反射 膜 2で反射され、再度、第 1ギャップ層 8、フィルタ層 6、第 2ギャップ層 7、記録層 4、 及び第一の基板 5を透過して入出射面 Aから出射する。出射した戻り光は、対物レン ズ 12を通過し、ダイクロイツクミラー 13でほぼ 100%反射して、サーボ情報検出器( 不図示)でサーボ情報が検出される。検出されたサーボ情報は、フォーカスサーボ、 トラッキングサーボ、スライドサーボなどに用いられる。記録層 4を構成するホログラム 材料は、赤色の光では感光しないようになっているので、サーボ用光が記録層 4を通 過したり、サーボ用光が反射膜 2で乱反射したとしても、記録層 4には影響を与えな い。また、サーボ用光の反射膜 2による戻り光は、ダイクロイツクミラー 13によってほぼ 100%反射するようになっているので、サーボ用光が再生像検出のための CMOSセ ンサ又は CCD14で検出されることはなぐ再生光に対してノイズとなることもない。
[0163] また、記録用 Z再生用レーザ力 生成された情報光、及び記録用参照光は、偏光 板 16を通過して線偏光となりハーフミラー 17を通過して 1Z4波長板 15を通った時 点で円偏光になる。ダイクロイツクミラー 13を透過し、対物レンズ 12によって情報光と 記録用参照光が記録層 4内で干渉パターンを生成するように光記録媒体 21に照射 される。情報光、及び記録用参照光は入出射面 Aから入射し、記録層 4で干渉し合 つて干渉パターンをそこに生成する。その後、情報光、及び記録用参照光は記録層 4を通過し、フィルタ層 6に入射する力 該フィルタ層 6の底面までの間に反射されて 戻り光となる。つまり、情報光と記録用参照光は反射膜 2までは到達しない。フィルタ 層 6は螺旋ピッチが液晶層の厚み方向に連続的に変化した 3層のコレステリック液晶 層から形成され、赤色光のみを透過する性質を有するからである。あるいは、フィルタ 層を漏れて通過する光を入射光強度の 20%以下に抑えていれば、たとえその漏れ 光が底面に到達して戻り光となっても、再度フィルタ層で反射されるので再生光へ混 じる光強度は 20% X 20% =4%以下となり、実質的に問題とはならない。
[0164] このように、前記干渉パターンが記録されている記録層 4に、記録用参照光と同じ 再生光を、記録用参照光と同じ方向から照射すると、前記干渉パターンとして記録さ れているホログラム、即ち、干渉像から回折光 39が生成され、該回折光 39を検出器 14で検出する。検出した該干渉像からなる画像をデコードし記録情報を再生する。
[0165] <光記録媒体の具体例 2 >
図 21は、前記具体例 2における光記録媒体の構成を示す概略断面図である。この 具体例 2に係る光記録媒体 22では、フィルタ層 6以外は具体例 1と同様に構成される
[0166] 図 21において、フィルタ層 6は、赤色光のみを透過し、それ以外の色の光を通さな いものである。従って、情報光、記録、及び再生用参照光は緑色又は青色の光であ るので、フィルタ層 6を透過せず、反射膜 2まで達することなぐ戻り光となり、入出射 面 Aから出射することになる。
このフィルタ層 6は、色材含有層上に、互いに屈折率の異なる誘電体薄膜が 7層積 層された誘電体蒸着層を形成した積層体である。この色材含有層と誘電体蒸着膜と の組み合わせであるフィルタ層 6は、第 1ギャップ層 8上に塗布、及び蒸着により直接 形成してもよいし、基材上に色材含有層、及び誘電体蒸着膜を形成したフィルムを 光記録媒体形状に打ち抜いて配置してもよい。フィルタ層として色材含有層と誘電体 蒸着膜との組み合わせを用いることによって、図 22、及び図 23に示すように、入射角 度 ±40° における、 655nmでの光透過率が約 80%以上であり、かつ 532nmでの 光反射率が約 90%以上となり、光の波長を選択して反射することができる。
[0167] 前記具体例 2における光記録媒体 22の形状は、円盤状でも 、し、カード形状で あってもよぐ具体例 1と同様に形成される。
[0168] 次に、図 2を参照して、光記録媒体 21と同様に構成された光記録媒体 22周辺での 光学的動作を説明する。光記録媒体 22では、光記録媒体 21と同様、まず、サーボ 用レーザから出射した光 (赤色光)は、ダイクロイツクミラー 13でほぼ 100%反射して 、対物レンズ 12を通過する。対物レンズ 12によってサーボ用光は反射膜 2上で焦点 を結ぶように光記録媒体 22に対して照射される。つまり、ダイクロイツクミラー 13は緑 色や青色の波長の光を透過し、赤色の波長の光をほぼ 100%反射させるようになつ ている。光記録媒体 22の光の入出射面 Aから入射したサーボ用光は、第一の基板 5 、記録層 4、第 2ギャップ層 7、フィルタ層 6、及び第 1ギャップ層 8を通過し、反射膜 2 で反射され、再度、第 1ギャップ層 8、フィルタ層 6、第 2ギャップ層 7、記録層 4、及び 第一の基板 5を透過して入出射面 Aから出射する。出射した戻り光は、対物レンズ 12 を通過し、ダイクロイツクミラー 13でほぼ 100%反射して、サーボ情報検出器 (不図示 )でサーボ情報が検出される。検出されたサーボ情報は、フォーカスサーボ、トラツキ ングサーボ、スライドサーボなどに用いられる。具体例 1と同様に、記録層 4を構成す るホログラム材料は、赤色の光では感光しないようになっているので、サーボ用光が 記録層 4を通過したり、サーボ用光が反射膜 2で乱反射したとしても、記録層 4には影 響を与えない。また、サーボ用光の反射膜 2による戻り光は、ダイクロイツクミラー 13に よってほぼ 100%反射するようになっているので、サーボ用光が再生像検出のため の CMOSセンサ又は CCD14で検出されることはなぐ再生光に対してノイズとなるこ ともない。
[0169] また、記録用 Z再生用レーザ力 生成された情報光、及び記録用参照光は、偏光 板 16を通過して線偏光となりハーフミラー 17を通過して 1Z4波長板 15を通った時 点で円偏光になる。ダイクロイツクミラー 13を透過し、対物レンズ 12によって情報光と 記録用参照光が記録層 4内で干渉パターンを生成するように光記録媒体 22に照射 される。情報光、及び記録用参照光は入出射面 Aから入射し、記録層 4で干渉し合 つて干渉パターンをそこに生成する。その後、情報光、及び記録用参照光は記録層 4を通過し、フィルタ層 6に入射する力 該フィルタ層 6の底面までの間に反射されて 戻り光となる。つまり、情報光と記録用参照光は反射膜 2までは到達しない。フィルタ 層 6は色材含有層と誘電体蒸着膜とを組み合わせており、赤色光のみを透過する性 質を有するからである。あるいは、フィルタ層を漏れて通過する光を入射光強度の 20 %以下に抑えていれば、たとえその漏れ光が底面に到達して戻り光となっても、再度 フィルタ層で反射されるので再生光へ混じる光強度は 20% X 20% =4%以下となり 、実質的に問題とはならない。具体例 2においても、具体例 1における回折光 39の再 生干渉像の補正がなされるので、常に良好な画像が再生される。
実施例
[0170] 以下、本発明の実施例について説明する力 本発明はこれらの実施例に何ら限定 されるものではない。
[0171] (実施例 1)
<光記録媒体の作製 >
実施例 1の光記録媒体は、第一の基板と、記録層と、第 2ギャップ層と、フィルタ層と
、第 1ギャップ層と、第二の基板とをこの順に積層することにより、以下のように作製し た。前記フィルタ層は、フィルム状のフィルタを作製して、積層することにより以下のよ うに形成した。
[0172] <フィルタの作製 >
—色材含有層の形成—
まず、ポリカーボネートフィルム (三菱瓦斯ィ匕学株式会社製、商品名ユーピロン、厚 み 100 /z m)上に、ポリビュルアルコール (株式会社クラレ製、商品名 MP203)を厚 み 1 μ mとなるように塗布したベースフイノレムを用意した。
[0173] 次に、下記組成の色材含有層用塗布液を常法により調製した。
•赤色顔料 (C. I.ビグメントレッド 9) 10質量部
'バインダー榭脂
(ポリビュルアルコール榭脂、株式会社クラレ製) 100質
•水 700質量部
[0174] 次に、前記ベースフィルム上に、前記色材含有層用塗布液をバーコ一ターで塗布 し、乾燥させて、厚み 3 mの色材含有層を形成した。
[0175] —誘電体蒸着層の膜厚構成、及び反射特性についてのシミュレーション—
次に、光学薄膜計算ソフト(商品名: TFCalc、 Software Spectra社製)を用いて 、以下の計算条件で誘電体蒸着層の膜厚構成、及び反射特性についてのシミュレ ーシヨンを行った。
[0176] <計算条件 >
•TiOや SiOの屈折率は TFCalcのデータベース値を用いた。
2 2
• 532nmの反射率、 650nmの透過率をそれぞれ高めるように厚みを最適化した。 '媒質の屈折率は 1. 52とした。
•波長は、参照光、及び情報光 532nm (記録用)、サーボ用光 650nm (トラッキング 用)で計算した。
[0177] < 9層の積層体 >
誘電体薄膜を、表 1に示すように 9層積層した。 [0178] [表 1]
Figure imgf000069_0001
[0179] 上記誘電体薄膜をシミュレーションした結果、誘電体薄膜を 9層積層した場合にお いて、光の波長が 535nmの反射率は、入射角が 0° の場合 96. 9%、光の波長 650 nmの反射率は、入射角が. 0° の場合 91. 6%であり、実用的な反射特性の結果が 得られた。
[0180] 誘電体蒸着フィルタの形成
まず、厚み 100 μ mのトリアセチルセルロースフィルム(富士写真フィルム株式会社 製、フジタック 12/3)上にジペンタエリスリトールへキサアタリレート(日本ィ匕薬株式 会社製)を厚み 0. 5 μ mとなるように塗布した基材フィルムを用意した。
次に、前記基材フィルム上に、マルチチャンバ法によるスパッタリング (Unaxis社製 、 Cube)により、前記 9層積層の場合のシミュレーションと同様にして、 9層積層した 誘電体蒸着フィルタを作製した。
[0181] 前記色材含有層を設けたベースフィルムと前記誘電体蒸着フィルタとを接着剤で 貼り合わせて、光記録媒体用フィルタを作製した。
得られた光記録媒体用フィルタにつ ヽて、光反射特性を分光反射測定器 (光源とし て浜松ホトニタス株式会社製、 L 5662、フォトマルチチャンネルアナライザ一として 浜松ホトニタス株式会社製、 PMA- 11)を用いて測定した。
その結果、実施例 1の光記録媒体用フィルタは、入射角度 ±40° 以内の光に対し て選択波長である 532nm光を 30%以上反射できることが認められた。
[0182] 次に、作製した光記録媒体用フィルタを前記基板に設置できるように所定のデイス クサイズに打ち抜いた。
[0183] 第一の基板
前記第一の基板は、直径 120mm、板厚 0. 6mmのポリカーボネート榭脂板を使用 した。この基板の表面は滑らかであり、サーボピットパターンなどの凹凸のないものを 用いた。
[0184] 第二の基板
前記第二の基板としては、直径 120mm、板厚 1. 2mmの射出成型により成型した ポリカーボネート榭脂製基板を使用した。この基板表面には、全面にわたってサーボ ピットパターンが形成されており、そのトラックピッチは 1. 5 μ mであり、溝深さは 100 nm、ピット; S:さ 1 μ mである。
まず、第二の基板のサーボピットパターン表面に、波長が 532nmの光に対して垂 直な入射光による反射率が 90%となるように反射膜を成膜した。反射膜材料にはァ ルミ-ゥム (A1)を用いた。成膜は DCマグネトロンスパッタリング法により厚み 50nmの A1反射膜を成膜した。
[0185] 一外周スぺーサー
前記外周スぺーサは、第一の基板、及び第二の基板の外形と同一の直径 120mm の円形で、面方向の幅は、 0. 5πιπι± 100 /ζ πι、厚みは記録層 4の厚みと同じ 600 ^ m,したがって、断面形状は 0. 5mm X 600 mの四角形となる。
前記外周スぺーサの材料は、成形性、及び機械的強度に優れたポリカーボネート を用いて、射出成型 (住友重工株式会社製)により作製した。
[0186] 内周スぺーサー
前記内周スぺーサは、図 19に示すように、第一の基板 5、及び第二の基板 1の開 口部と同じ外形である 15mmの円形で、面方向の幅は、 0. 5πιπι± 100 /ζ πι、厚み は記録層 4の厚みと同じ 600 m、したがって、断面形状は外周スぺーサと同一の 0 . 5mm X 600 /z mの四角形となる。
前記内周スぺーサの材料は、外周スぺーサと同一の、成形性、及び機械的強度に 優れたポリカーボネートを用いて、射出成型 (住友重工株式会社製)により作製した。
[0187] 一積層体の形成
図 19に示すように、紫外線硬化榭脂 (型名 SD— 640、大日本インキ化学工業株式 会社製)カゝらなる第 1ギャップ層 8が厚み 0. 1mmにスピン塗布された第二の基板 1上 に、前記フィルタを、隙間に気泡が入らないように、 UV接着剤 (型名 SD— 640、大 日本インキ化学工業株式会社製)を塗布した後、積層してフィルタ層 6を形成した。 前記第一の基板 5の面上に、ラミネーター装置 (型名 HAL110aa、三共株式会社 製)により、圧着ロール温度 23°C、圧着ロール圧力 0. lMPa、圧着速度 1. OmZ分 の条件の下、厚み 500 μ mの透明ポリエチレンテレフタレートシートからなる第 2ギヤ ップ層 7を貼り付けた。
更に、該第 2ギャップ層 7の表面に、得られた外周スぺーサ 27を、第二の基板 1の 外形と外周スぺーサ 27の外形が合致するように接着し、更に、内周スぺーサ 28を、 該内周スぺーサ 28の中心と、第二の基板 1の中心が合致するように接着した。前記 接着剤は、 UV接着剤 (型名 SD— 640、大日本インキ化学工業株式会社製)を用い 、 UV光を照射して接着した。
外周スぺーサ 27、及び内周スぺーサ 28により形成された、深さ 600 /z mの溝部に 、前記注入法により、得られた光記録層用組成物塗布液を、シリンジにより注入した。 前記注入の条件としては、温度 23°C、液粘度 300mPas、湿度 50%とした。注入後 に、温度 80°C、 40分間の条件の下、光記録層用組成物を硬化させ記録層 4を形成 した。該記録層 4の厚みは 600 mであった。
該記録層 4上に、接着剤 (型名 GM— 9002、ブレニー技研株式会社製)を塗布し、 前記第一の基板の外側、及び前記第二の基板の外側を、 0. 08MPaの圧力で、 80 °Cで、 40分間、加圧し、積層体を形成し、最後に、端部を湿分硬化型の接着剤で封 止し、 45°Cで 24時間放置することにより、図 21に示す光記録媒体 22と同様の光記 録媒体を作製した。
[0188] <温度センサの設置 >
前記温度センサは、図 9、及び図 10に示すように、赤外温度センサ 44を採用し、情 報光、及び参照光を照射するピックアップ 43の中心位置と光記録媒体 21の中心とを 結ぶ線 L 1と、前記赤外線温度センサ 44の中心位置と光記録媒体 21の中心とを結 ぶ線 L2とのなす角 θ 1が、約 135° になるように、かつ、前記光記録媒体 21の裏面 力も 10mm離して前記赤外線温度センサ 44を設置した。
[0189] 一光記録媒体の使用許容温度範囲、及び使用限界温度範囲
前記光記録媒体の基準温度を 30°Cとし、警告し記録機能、及び再生機能停止の 使用限界温度範囲を士 10°Cとし、注意喚起表示の使用許容温度範囲を ± 5°Cとし た。
[0190] <光記録媒体への記録、及び再生 >
得られた光記録媒体について、該光記録媒体の表面温度が、基準温度に対する 使用許容温度範囲を逸脱したことを知らせる注意喚起手段と、前記光記録媒体の表 面温度が、基準温度に対する使用限界温度範囲を逸脱した場合に、記録、及び再 生の少なくともいずれかを停止する旨表示し、かつ前記記録、及び前記再生の機能 を停止する機能停止手段とを有する光記録再生装置、及びコリニアホログラム記録 再生試験機 SHOT— 1000 (パルステック工業株式会社製)を用いて、情報光、及び 記録用参照光を照射し、記録ホログラムの焦点位置における記録スポットの大きさ直 径 200 mで一連の多重ホログラム 13 X 13 (49多重)で光記録媒体の記録層に情 報を干渉像として書き込みした。更に、前記書き込みがなされた光記録媒体 21に、 記録用参照光と同じ再生光を、記録用参照光と同じ方向から照射し、記録されてい る干渉像力も回折光 39を生成し、該回折光 39を検出器 14で検出し、記録画像をデ コードして再生した。
なお、前記光記録再生装置においては、前記使用許容温度範囲を ± 5°Cに設定し 、前記使用限界温度範囲を ± 10°Cに設定した。
[0191] 前記光記録媒体の記録時の表面温度が、 25〜35°C (基準温度に対する許容温度 範囲温度が ± 5°C)を超えた場合、前記注意喚起手段によって、注意喚起表示がな され、そのまま、記録を続行した場合、該記録を適正な再生をした際、エラーは 30個 Zフレームであった。
このエラーは、使用許容温度範囲内の正常な状態で記録を行った場合、 10個 Zフ レームであった。 [0192] 適正な記録がなされている、光記録媒体について、該光記録媒体の再生時の表面 温度が、 25〜35°C (基準温度に対する許容温度範囲温度 ± 5°C)を超えた場合、注 意喚起表示がなされ、そのまま、再生を続行した際、エラーは 30個 Zフレームであつ た。
このエラーは、許容温度範囲内の正常な状態で再生を行った場合、 10個 Zフレー ムであった。
[0193] 前記光記録媒体の表面温度が、 20〜40°C (基準温度に対する許容温度範囲温度 が ± 10°C)を超えた場合、前記機能停止手段によって、警告表示がなされ、記録は 停止した。同様に再生の際も停止した。
産業上の利用可能性
[0194] 本発明の光記録再生装置は、記録、及び再生しょうとする光記録媒体の表面温度 力 所定の温度範囲を超えていた場合には、警告表示され、記録、及び再生機能が 停止するので、適切な温度の環境の下で光記録媒体の記録や再生を行うことができ 、高精度の記録や再生画像が得られ、 SNRの優れた記録、及び再生が得られ、高 密度の記録媒体に好適に用いられる。また、 2次元などの情報を記録する比較的薄 型の平面ホログラムや立体像など多量の情報を記録する体積ホログラム、透過型、 及び反射型のいずれにも好適に用いられる。また、振幅ホログラム、位相ホログラム、 ブレーズドホログラム、複素振幅ホログラムなど種々のホログラムを再生する方法とし て幅広く用いられる。具体的には、 CD、 DVD、 BD、 HD、磁気テープ、コンピュータ 用バックアップテープ、放送用テープなどに用いられる。

Claims

請求の範囲
[1] ホログラフィを利用して情報を記録する記録層を備えた光記録媒体に対して、情報 光、及び参照光を照射する記録、及び再生光を照射する再生の少なくともいずれカゝ を行う光記録再生装置であって、前記記録、及び再生のいずれかを行う際、該光記 録媒体の表面温度が、基準温度に対する使用許容温度範囲を逸脱したことを知らせ る注意喚起手段、
及び、該光記録媒体の表面温度が、基準温度に対する使用限界温度範囲を逸脱し た場合に、記録、及び再生の少なくともいずれかを停止する旨表示し、かつ前記記 録、及び前記再生の機能を停止する機能停止手段、
の少なくともいずれかを有することを特徴とする光記録再生装置。
[2] 基準温度が、 0〜50°Cである請求項 1に記載の光記録再生装置。
[3] 使用許容温度範囲が、 30〜30°Cである請求項 1から 2のいずれかに記載の光 記録再生装置。
[4] 使用限界温度範囲が、 40〜40°Cである請求項 1から 3のいずれかに記載の光 記録再生装置。
[5] 光記録媒体の表面温度が、情報光、参照光、及び再生光の入射側と反対側の表 面温度であり、温度センサにより感知された温度である請求項 1から 4のいずれかに 記載の光記録再生装置。
[6] 光記録媒体が円盤状であり、情報光、及び参照光を照射するピックアップの中心位 置と光記録媒体の中心とを結ぶ線 L1と、温度センサの中心位置と光記録媒体の中 心とを結ぶ線 L2とのなす角 θ 1が、 10〜180° であり、前記温度センサが前記光記 録媒体の外縁よりも内側であって、前記光記録媒体の表面と非接触位置に配置され る請求項 1から 5のいずれかに記載の光記録再生装置。
[7] 光記録媒体が円盤状であり、情報光、及び参照光を照射するピックアップの中心位 置と光記録媒体の中心との距離 dlと、温度センサの中心位置と光記録媒体の中心と の距離 d2との差が、 20mm以下である請求項 1から 6のいずれかに記載の光記録再 生装置。
[8] 情報光、及び参照光の照射が、該情報光の光軸と該参照光の光軸とが同軸となる ようにして行われる請求項 1から 7の 、ずれかに記載の光記録再生装置。
[9] 再生光が、光記録媒体の記録に用いられた参照光と同じ角度になるようにして、該 再生光を干渉像に照射して記録情報を再生する請求項 1から 8に記載の光記録用 再生装置。
[10] 光記録媒体が、第一の基板と、記録層と、フィルタ層と、第二の基板とをこの順に有 する請求項 1から 9のいずれかに記載の光記録再生装置。
[11] 光記録媒体が、反射型ホログラムである請求項 1から 10のいずれかに記載の光記 録再生装置。
[12] ホログラフィを利用して情報を記録する記録層を備えた光記録媒体に対して、情報 光、及び参照光を照射する記録を行う光記録方法であって、該記録を行う際、該光 記録媒体の表面温度が、基準温度に対する使用許容温度範囲を逸脱したことを警 告表示すること、
、及び、該光記録媒体の表面温度が基準温度に対する使用限界温度範囲を逸脱 した場合に、記録を停止する旨表示し、かつ停止すること、
の少なくともいずれかを行うことを特徴とする光記録方法。
[13] 基準温度が、 0〜50°Cである請求項 12に記載の光記録方法。
[14] 使用許容温度範囲が、—30〜30°Cである請求項 12から 13のいずれかに記載の 光記録方法。
[15] 使用限界温度範囲が、—40〜40°Cである請求項 12から 14のいずれかに記載の 光記録方法。
[16] ホログラフィを利用して情報を記録する記録層を備えた光記録媒体に対して、再生 光を照射する再生を行う光記録再生装置であって、該再生を行う際、該光記録媒体 の表面温度が、基準温度に対する使用許容温度範囲を逸脱したことを警告表示する こと、
、及び、該光記録媒体の表面温度が、基準温度に対する使用限界温度範囲を逸 脱した場合に、再生を停止する旨表示し、かつ停止すること、
の少なくともいずれかを行うことを特徴とする光再生方法。
[17] 基準温度が、 0〜50°Cである請求項 16に記載の光再生方法。 使用許容温度範囲が 30〜30°Cである請求項 16から 17のいずれかに記載の 光再生方法。
使用限界温度範囲が 40〜40°Cである請求項 16から 18のいずれかに記載の 光再生方法。
PCT/JP2007/051805 2006-02-03 2007-02-02 光記録再生装置、光記録方法、及び光再生方法 WO2007088972A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/162,639 US20080316896A1 (en) 2006-02-03 2007-02-02 Optical Recording/Reproducing Apparatus, Optical Recording Method, and Optical Reproduction Method
EP07707954A EP1981024A4 (en) 2006-02-03 2007-02-02 OPTICAL RECORDING / REPRODUCING DEVICE, OPTICAL RECORDING METHOD AND OPTICAL PLAYING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006027723A JP2007207386A (ja) 2006-02-03 2006-02-03 光記録再生装置、光記録方法及び光再生方法
JP2006-027723 2006-02-03

Publications (1)

Publication Number Publication Date
WO2007088972A1 true WO2007088972A1 (ja) 2007-08-09

Family

ID=38327540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051805 WO2007088972A1 (ja) 2006-02-03 2007-02-02 光記録再生装置、光記録方法、及び光再生方法

Country Status (4)

Country Link
US (1) US20080316896A1 (ja)
EP (1) EP1981024A4 (ja)
JP (1) JP2007207386A (ja)
WO (1) WO2007088972A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4842175B2 (ja) 2007-03-07 2011-12-21 東京エレクトロン株式会社 温度測定装置及び温度測定方法
US7995444B2 (en) * 2008-02-12 2011-08-09 International Business Machines Corporation Apparatus and method to store and retrieve information using an optical holographic data storage medium
EP2366270A4 (en) * 2008-12-02 2013-04-10 Univ Arizona PROCESS FOR PREPARING A SOFT SUBSTRATE AND SOFT SUBSTRATE THUS OBTAINED
JP2010225245A (ja) * 2009-03-24 2010-10-07 Toshiba Corp 光情報再生方法、光情報再生装置、及び光情報記録媒体
WO2011024297A1 (ja) * 2009-08-28 2011-03-03 株式会社 東芝 ホログラム記録媒体の製造方法
TWI412031B (zh) * 2010-03-29 2013-10-11 Univ Nat Chiao Tung 同軸全像儲存裝置及其方法
TWI412785B (zh) * 2010-04-08 2013-10-21 Univ Nat Chiao Tung 讀取裝置
JP5488241B2 (ja) * 2010-06-18 2014-05-14 信越化学工業株式会社 合成石英ガラス基板の処理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10134375A (ja) * 1996-10-23 1998-05-22 Victor Co Of Japan Ltd 光ディスク再生装置及び光ディスク再生装置のサーボ制御の最適化方法
JP2000105975A (ja) * 1998-09-29 2000-04-11 Sanyo Electric Co Ltd 光ディスク記録再生装置の記録制御方法
JP2002329322A (ja) * 2001-04-27 2002-11-15 Sanyo Electric Co Ltd ディスク記録再生装置
JP2004177958A (ja) * 2002-11-22 2004-06-24 Inphase Technologies Inc ページに基づくホログラフィー記録および読み出しを実行する方法
JP2005044448A (ja) * 2003-07-23 2005-02-17 Fuji Photo Film Co Ltd 光情報再生装置
JP2005190567A (ja) * 2003-12-25 2005-07-14 Sony Corp 記録装置及び方法
JP2005216343A (ja) * 2004-01-28 2005-08-11 Xanavi Informatics Corp 車載用光ディスク装置の汚れ検出方法、および車載用装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2956146B2 (ja) * 1990-07-10 1999-10-04 ソニー株式会社 ディスクカートリッジ並びに記録及び/又は再生装置
JPH07130080A (ja) * 1993-11-02 1995-05-19 Olympus Optical Co Ltd 情報記録装置
JPH08329543A (ja) * 1995-05-30 1996-12-13 Ricoh Co Ltd 光磁気記録再生装置
US6348983B1 (en) * 2000-06-08 2002-02-19 Lucent Technologies Inc. Holographic storage medium having enhanced temperature operating range and method of manufacturing the same
US6958967B2 (en) * 2000-11-17 2005-10-25 Matsushita Electric Industrial Co., Ltd. Holographic optical information recording/reproducing device
EP1596376A4 (en) * 2003-02-06 2008-10-29 Optware Corp OPTICAL INFORMATION RECORDING MEDIUM
JP2005025832A (ja) * 2003-06-30 2005-01-27 Toshiba Corp 光ディスク記録装置及び情報処理装置
KR100536712B1 (ko) * 2003-08-25 2005-12-14 주식회사 대우일렉트로닉스 홀로그래픽 롬 재생 시스템
JP2006171380A (ja) * 2004-12-16 2006-06-29 Sony Corp ホログラム記録再生装置及びホログラム記録再生方法
JP2006252699A (ja) * 2005-03-11 2006-09-21 Fujitsu Ltd 記録再生装置
US7551538B2 (en) * 2005-10-24 2009-06-23 Sanyo Electric Co., Ltd. Optical recording apparatus and optical head

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10134375A (ja) * 1996-10-23 1998-05-22 Victor Co Of Japan Ltd 光ディスク再生装置及び光ディスク再生装置のサーボ制御の最適化方法
JP2000105975A (ja) * 1998-09-29 2000-04-11 Sanyo Electric Co Ltd 光ディスク記録再生装置の記録制御方法
JP2002329322A (ja) * 2001-04-27 2002-11-15 Sanyo Electric Co Ltd ディスク記録再生装置
JP2004177958A (ja) * 2002-11-22 2004-06-24 Inphase Technologies Inc ページに基づくホログラフィー記録および読み出しを実行する方法
JP2005044448A (ja) * 2003-07-23 2005-02-17 Fuji Photo Film Co Ltd 光情報再生装置
JP2005190567A (ja) * 2003-12-25 2005-07-14 Sony Corp 記録装置及び方法
JP2005216343A (ja) * 2004-01-28 2005-08-11 Xanavi Informatics Corp 車載用光ディスク装置の汚れ検出方法、および車載用装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1981024A4 *

Also Published As

Publication number Publication date
EP1981024A4 (en) 2009-05-06
EP1981024A1 (en) 2008-10-15
US20080316896A1 (en) 2008-12-25
JP2007207386A (ja) 2007-08-16

Similar Documents

Publication Publication Date Title
US7894319B2 (en) Optical recording medium, method of producing the same, and, optical recording method and optical reproducing method
WO2007088972A1 (ja) 光記録再生装置、光記録方法、及び光再生方法
WO2007072882A1 (ja) 光記録媒体、並びに光記録装置、光記録方法及び光再生方法
JP2006301171A (ja) 光記録媒体及びその製造方法、並びに、光記録媒体の記録方法及び光記録媒体の再生方法
JP2007257802A (ja) 光記録方法、光記録装置及び光記録媒体
US20080122995A1 (en) Filter For Optical Recording Medium, Optical Recording Medium, Method For Producing The Optical Recording Medium, Optical Recording Method And Optical Reproducing Method
US7990829B2 (en) Optical recording method, optical recording apparatus, optical recording medium, and optical reproducing method
WO2007043300A1 (ja) 光記録媒体用フィルタ及びその製造方法、並びに光記録媒体及びその記録方法及び再生方法
JP2007102185A (ja) 光記録媒体及びその製造方法、並びに、光記録方法及び光再生方法
JP2007079164A (ja) 光記録媒体及びその製造方法、並びに、光記録装置及び光再生装置
JP2006301127A (ja) 光記録媒体及びその製造方法、並びに、光記録媒体の記録方法及び光記録媒体の再生方法
WO2006137367A1 (ja) 光記録方法、光記録装置及び光記録媒体
WO2006059516A1 (ja) 光記録媒体用フィルタ、光記録媒体及びその製造方法、並びに光記録方法及び光再生方法
JP4373383B2 (ja) 光記録方法、光記録装置、光記録媒体及び光記録再生方法
JP2007003692A (ja) 光記録方法、光記録装置及び光記録媒体
JP2007093799A (ja) 光記録媒体及びその製造方法
JP2007257800A (ja) 光記録方法及び光再生方法、並びに光記録装置及び光再生装置
WO2007097352A1 (ja) 光記録方法、光再生方法、光記録装置、及び光記録媒体
WO2006059517A1 (ja) 光記録媒体用フィルタ、光記録媒体及びその製造方法、並びに光記録方法及び光再生方法
JP4724568B2 (ja) 光記録媒体及びその製造方法
JP2007240562A (ja) 光再生方法及び光再生装置
JP2007225887A (ja) 光記録方法及び光再生方法、並びに、光記録装置及び光記録媒体
JP2007148038A (ja) 光記録媒体及びその製造方法
JP2006184897A (ja) 光記録媒体用フィルタ、光記録媒体及びその製造方法、並びに光記録方法及び光再生方法
JP2007087561A (ja) 光記録方法、光記録装置、光記録媒体及び光再生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007707954

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12162639

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE