WO2007088922A1 - 導電性透明フィルムおよびその用途 - Google Patents

導電性透明フィルムおよびその用途 Download PDF

Info

Publication number
WO2007088922A1
WO2007088922A1 PCT/JP2007/051683 JP2007051683W WO2007088922A1 WO 2007088922 A1 WO2007088922 A1 WO 2007088922A1 JP 2007051683 W JP2007051683 W JP 2007051683W WO 2007088922 A1 WO2007088922 A1 WO 2007088922A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective layer
film
transparent film
particles
conductive transparent
Prior art date
Application number
PCT/JP2007/051683
Other languages
English (en)
French (fr)
Inventor
Naoki Sugiyama
Yosuke Fukuse
Masayuki Sekiguchi
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to KR1020087021489A priority Critical patent/KR101340103B1/ko
Publication of WO2007088922A1 publication Critical patent/WO2007088922A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/14Layered products comprising a layer of synthetic resin next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/12Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens

Definitions

  • the present invention relates to a conductive transparent film and its use. Specifically, the present invention relates to a transparent film made of a cyclic polyolefin resin, a conductive transparent film in which a particle-containing protective layer, a transparent conductive layer are laminated in order, a touch panel using the same, and the touch panel.
  • a transparent film made of a cyclic polyolefin resin a conductive transparent film in which a particle-containing protective layer, a transparent conductive layer are laminated in order
  • a touch panel using the same and the touch panel.
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • the cyclic olefin-based resin film has low birefringence, low moisture absorption, high transparency, and high heat resistance, but has a problem that the surface is easily fragile and easily damaged.
  • the surface of the plastic material is coated with an active energy ray-curable resin.
  • molding materials for optical use are particularly clear in application to various displays such as plasma display devices, liquid crystal display devices such as mobile phones, PDAs (personal digital assistants), and video cameras.
  • the above-described high performance is essential in order not to impair the optical characteristics of the display image.
  • the performance of touch panels largely depends on the optical characteristics of the conductive transparent film.
  • the present inventor conducted extensive research on the properties of molding materials for optical applications such as so-called antireflection films and antiglare films, and found that low birefringence, low moisture absorption, and high transparency.
  • basic characteristics such as high heat resistance, partial display unevenness such as so-called white blurring and / or black floating, or unclear display of background images
  • non-uniform display such as glare and Z or glare
  • light interference effect called Newton ring
  • a particle-containing protective layer capable of exhibiting an excellent antiglare effect is formed on the surface of a transparent film made of a cyclic olefin-based resin having properties such as curability, scratch resistance, hardness, adhesion, and transparency.
  • stacked the transparent conductive layer can eliminate these malfunctions with sufficient balance, and came to complete this invention.
  • Patent Document 1 JP-A-8-12787
  • Patent Document 2 JP-A-5-306378
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-275392 Disclosure of the invention
  • the present invention provides partial display such as so-called white blurring and / or black floating.
  • Conductive transparent Finolem and this conductive transparent, which eliminates the three types of problems of unevenness or unclear display of background images, uneven display such as glare and / or glare, and light interference effect of two-tone ring. It is an object of the present invention to provide a touch panel using a film and a display device having the touch panel.
  • the present invention contains particles capable of exhibiting an excellent antiglare effect on the surface of a transparent film made of a cyclic olefin-based resin having properties such as curing properties, scratch resistance, hardness, adhesion, and transparency.
  • An object of the present invention is to provide a conductive transparent film in which a protective layer is formed and further laminated with a transparent conductive layer, a touch panel using the conductive transparent film, and a display device having the touch panel.
  • the conductive transparent film of the present invention is a conductive transparent film constituted by laminating a particle-containing protective layer and a transparent conductive layer in this order on the transparent film surface,
  • Transparent film strength It consists of cyclic olefin-based resin,
  • Particle-containing protective layer strength A layer obtained by photocuring an active energy ray-curable resin composition and a protective layer-forming composition containing particles having an average particle diameter of 50 to 600 nm,
  • the active energy ray curable resin composition (A) and the polyfunctional monomer 40-60 wt 0/0 having Atariroiru based on 3 or more, (B) an addition reaction of Atarinore acid glycidyl (meth) Atari rate based polymer 10 to 60% by weight of polymer and (C) optionally 0 to 50 % by weight of other acrylic oligomers (provided that the sum of components (A), (B) and (C) is 100% by weight) It is characterized by containing and.
  • the cyclic olefin-based resin is preferably composed of a resin obtained by (co) polymerizing a monomer containing at least one compound represented by the following formula (I). Les.
  • I ⁇ to R 4 are each independently a hydrogen atom, a halogen atom, a hydrocarbon group having from 30 to 30 carbon atoms, a polar group, or other monovalent organic group.
  • R 1 and R 2 , or R 3 and R 4 may be combined to form a divalent hydrocarbon group.
  • R 1 or R 2 and R 3 or R 4 are bonded to each other.
  • m may be 0 or a positive integer
  • p may be 0 or a positive integer.
  • the particle-containing protective layer preferably exhibits a haze value of 12% or less per layer.
  • the conductive transparent film of the present invention preferably has the particle-containing protective layer laminated on both surfaces of the transparent film.
  • the conductive transparent film of the present invention it is preferred to contain particles having a protective layer strength of 1300 nm or more in a particle size of 1.5 to 7% by weight of the total particles. It is preferable that the particles having a particle size include primary particles.
  • the conductive transparent film of the present invention is preferably formed by further laminating a polarizing plate, and the polarizing plate is bonded by a pressure-sensitive adhesive.
  • a touch panel of the present invention is characterized by having the conductive transparent film of the present invention as at least one transparent electrode.
  • the display device of the present invention is characterized by having the touch panel of the present invention on the display surface side.
  • a transparent conductive film having basic characteristics such as low birefringence, low moisture absorption, high transparency, and high heat resistance is obtained by using a transparent film made of a cyclic olefin-based resin.
  • a transparent film made of a cyclic olefin-based resin can be provided.
  • the present invention by forming a particle-containing protective layer using specific particles in combination with a specific resin composition, the above-mentioned transparent film has good adhesion and a hard coat function. Added transparent conductive film Lum can be provided.
  • the particles having a specific average particle diameter are used, transparency is ensured, and the transparency increases while preventing partial display irregularities such as so-called white blur and black floating.
  • a transparent conductive layer on the protective layer by laminating a transparent conductive layer on the protective layer, all of the above characteristics are satisfied, and particularly when used as a transparent electrode for a touch panel, a conductive image that provides a clear image can be obtained.
  • a transparent film can be provided.
  • partial display unevenness such as so-called white blurring or black floating is excellent in low birefringence, low moisture absorption, high transparency, high heat resistance, etc., and ensuring transparency.
  • a touch panel and a display device that can effectively prevent Newton's rings, and can display a clear image by sufficiently exhibiting good image clarity that prevents flickering and glare. be able to.
  • the conductive transparent film of the present invention is mainly composed of a transparent film, a particle-containing protective layer, and a transparent conductive layer laminated in this order, and is suitable as an antiglare film, an antireflection film, and the like. Can be used.
  • the transparent film according to the present invention is mainly composed of a cyclic olefin-based resin.
  • the cyclic olefin-based resin include the following (co) polymers.
  • a ring-opening polymer of a cyclic olefin (hereinafter referred to as “specific monomer”) represented by the following formula (I).
  • each R ⁇ R 4 is independently a hydrogen atom, a halogen atom, a hydrocarbon group having from 30 to 30 carbon atoms, a polar group, or other monovalent organic group.
  • R 1 and R 2 , or R 3 and R 4 may be combined to form a divalent hydrocarbon group.
  • R 1 or R 2 and R 3 or R 4 are bonded to each other. And may form a monocyclic or polycyclic structure, m is 0 or a positive integer, and p is 0 or a positive integer.
  • Specific examples of the specific monomer used as a raw material for the cyclic olefin-based resin include the following compounds, but the present invention is not limited to these specific examples.
  • 8-Methinore 8 n propoxycanoleboninole tetra,: / black [4.4 ⁇ 0 ⁇ 1 2 ' 5 .1 7 ⁇ . ] — 3—Dodesen,
  • Mechinore 8 isopropoxide Shikano repo Nino Les tetrachloride [4.4.0.1 2 '5 .1 7,1. ] — 3—Dodesen,
  • R 1 and R 3 are hydrogen atoms or carbon atoms:! To 10, more preferably 1 to 4, particularly preferably 1 to 2.
  • a hydrocarbon group, R 2 and R 4 are hydrogen atoms or monovalent organic groups, and at least one of R 2 and R 4 represents a polar group having a polarity other than a hydrogen atom and a hydrocarbon group;
  • M is an integer from 0 to 3
  • Examples of the polar group of the specific monomer include a carboxyl group, a hydroxyl group, an alkoxycarbonyl group, an allyloxycarbonyl group, an amino group, an amide group, and a cyano group. These polar groups are linked to a methylene group or the like. It may be bonded via a group.
  • a hydrocarbon group in which a divalent organic group having a polarity such as a carbonyl group, an ether group, a silyl ether group, a thioether group, or an imino group is bonded as a linking group can also be exemplified.
  • a carboxyl group, a hydroxyl group, an alkoxycarbonyl group, or an aryloxycarbonyl group is preferable, and an alkoxycarbonyl group or an aryloxycarbonyl group is particularly preferable.
  • R 2 and R 4 is a polar group represented by the formula 1 (CH 3) COOR.
  • Monomers are preferred in that the resulting cyclic olefin-based resin has a high glass transition temperature, a low hygroscopic property, and excellent adhesion to various materials.
  • R is a hydrocarbon group having 1 to 12 carbon atoms, more preferably:! To 4 and particularly preferably 1 to 2 carbon atoms, preferably an alkyl group.
  • n is usually 0 to 5 and the value of force n is smaller, the glass transition temperature of the obtained cyclic olefin-based resin is higher, and thus a specific monomer having n of 0 is preferred. It is preferable in that the synthesis is easy.
  • R 1 or R 3 is an alkyl group:! To 4 an alkenoquinole group, more preferably 1 to 2 alkyl group, particularly a methyl group.
  • the alkyl group is preferably a specific polar group represented by the above formula — (CH 2) COOR.
  • Bonding to the same carbon atom as the bonded carbon atom is preferable in terms of reducing the hygroscopicity of the resulting cyclic polyolefin resin.
  • the number of carbon atoms of cycloolefin is preferably 4 to 20 and more preferably 5 to 12; These may be used alone or in combination of two or more.
  • the preferred use range of the specific monomer Z copolymerizable monomer is 100Z0 to 50Z in weight ratio.
  • the ring-opening polymerization reaction for obtaining (1) a ring-opening polymer of a specific monomer, and (2) a ring-opening copolymer of a specific monomer and a copolymerizable monomer is a metathesis. It is carried out in the presence of a catalyst.
  • the metathesis catalyst comprises: (a) at least one selected from the compound power of W, Mo and Re;
  • Group IA elements eg Li, Na, K etc.
  • Group IV elements eg Mg, Ca etc.
  • Group IIB elements eg Zn, Cd, Hg etc.
  • Group IV elements E.g., B, A1, etc.
  • IVA group elements e.g., Si, Sn, Pb, etc.
  • W, Mo or Re compounds suitable as component (a) include WC1, MoC
  • component (b) include n-C H Li, (C H) Al, (C H) A1C1, and (C H) A1C1.
  • component (c) which is an additive
  • alcohols, aldehydes, ketones, amines and the like can be suitably used, but further, JP-A-1-132626, page 8, right
  • JP-A-1-132626 page 8, right
  • the compounds shown in the lower column, line 16 to page 9, upper left column, line 17 can be used.
  • the amount of metathesis catalyst used is the molar ratio of the above component (a) to the specific monomer "(a) component.
  • the "minute: specific monomer” is usually in the range of 1: 500 to 1: 50,000, preferably in the range of 1: 1,000 to 1: 10,000.
  • the ratio of component (a) to component (b) is in the range of (a): (b) force Si ::! To 1:50, preferably 1: 2 to 1:30 in terms of metal atomic ratio. .
  • the ratio of component (a) to component (c) is molar ratio (c): (a) is 0.005 :! ⁇ 15: 1, preferably 0.0.05 :! ⁇ 7: 1 range.
  • solvent used in the ring-opening polymerization reaction examples include, for example, pentane, hexane, heptane, octane, nonane and decane.
  • Cycloalkanes such as ananolenes, cyclohexane, cycloheptane, cyclooctane, decalin, norbornane; aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; chlorobutane, bromohexane, methylene chloride, dichloroethane, Halogenated alkanes such as hexamethylenedibubutamide, blackened benzene, chloroform, and tetrachloroethylene, halogenated aryls; saturated carboxylic acids such as ethyl acetate, n-butyl acetate, iso-butyl acetate, methyl propionate, and dimethoxyethane Esters Dibutyl ether, tetrahydrofuran, and the like can be illustrated ethers such as dimethoxyethane E Tan, they can and Mochi
  • solvent specific monomer (weight ratio)
  • weight ratio is usually in an amount of 1 ::! To 10: 1, preferably 1 ::! To 5: 1. It is made an amount.
  • the molecular weight of the resulting ring-opening (co) polymer can be adjusted depending on the polymerization temperature, the type of catalyst, and the type of solvent, but in the present invention, a molecular weight regulator is allowed to coexist in the reaction system. Adjust.
  • suitable molecular weight regulators include ethylene, propene, 1-butene, 1-pentene, 1-hexene, 1_heptene, 1-octene, 1_nonene, 1-decene and the like. —Olefins and styrene can be mentioned, and among these, 1-butene and 1-hexene are particularly preferable. These molecular weight regulators can be used alone or in admixture of two or more. [0048] The molecular weight regulator is used in an amount of 0.005 to 0.6 monole, preferably 0.02 to 0.5 monole, per 1 mol of the specific monomer subjected to the ring-opening polymerization reaction. Is done.
  • the specific monomer and the copolymerizable monomer may be ring-opening copolymerized in the ring-opening polymerization step.
  • Unsaturated hydrocarbon polymers containing two or more carbon-carbon double bonds in the main chain such as isoprene and other co-gen compounds, styrene-butadiene copolymers, ethylene-nonconjugated gen copolymers, and polynorbornene.
  • the specific monomer may be subjected to ring-opening polymerization in the presence of.
  • the ring-opening (co) polymer obtained as described above can be used as it is, but obtained by hydrogenating an olefinic unsaturated bond in the molecule of this (co) polymer.
  • Hydrogen-added (co) polymers are preferred because they have excellent heat resistance and light resistance and can improve the durability of the retardation film.
  • the usual method of hydrogenating olefinic unsaturated bonds can be applied. That is, a hydrogenation catalyst is added to the ring-opening polymer solution, and this is at atmospheric pressure to 300 atmospheres
  • the hydrogenation catalyst those used in the usual hydrogenation reaction of olefinic compounds can be used.
  • the hydrogenation catalyst include heterogeneous catalysts and homogeneous catalysts.
  • heterogeneous catalyst examples include a solid catalyst in which a noble metal catalyst material such as noradium, platinum, nickel oleore, rhodium, or ruthenium is supported on a carrier such as carbon, silica, alumina, or titania.
  • a noble metal catalyst material such as noradium, platinum, nickel oleore, rhodium, or ruthenium is supported on a carrier such as carbon, silica, alumina, or titania.
  • the homogeneous catalyst includes naphthenic acid dikekenole / triethylenoreminium, nickel acetylacetonate / triethylaluminum, cobalt otate / n_butyllithium, titanocene dichloride / jetylaluminum monochloride, Examples include rhodium acetate, chlorotris (triphenylphosphine) rhodium, dichlorotris (triphenylphosphine) ruthenium, chlorohydrocarbonyltris (triphenylphosphine) ruthenium, and dichlorocarbonyltris (triphenylphosphine) norethene.
  • the form of the catalyst may be powder or granular.
  • These hydrogenation catalysts are used in such a ratio that the ring-opening (co) polymer: hydrogenation catalyst (weight ratio) is 1: 1 ⁇ 10 16 to 1: 2.
  • the hydrogenation rate of the hydrogenated (co) polymer is 50 MHz or more, preferably 90% or more, more preferably 98% or more, most preferably 99% or more, as measured by 500 MHz, ⁇ -NMR. is there.
  • the higher the hydrogenation rate the better the stability to heat and light.
  • stable characteristics can be obtained over a long period of time.
  • the aromatic group is less likely to reduce the heat-resistant coloration property and light resistance, and conversely optical properties such as refractive index.
  • it may have an advantageous effect on optical properties such as wavelength dispersion or heat resistance, and it is not always necessary to add hydrogen.
  • the ring-opening (co) polymer obtained as described above contains known antioxidants such as 2,6-di-tert-butyl-4-methylphenol, 2,2'dioxy-3,3'-di t -Butyl-5,5'-dimethyldiphenylmethane, tetrakis [methylene 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane; UV-absorbing chiral IJ, for example 2,4 dihydroxybenzophenone, 2-hydroxy-4 It can be stabilized by adding -methoxybenzophenone or the like.
  • additives such as lubricants can be added for the purpose of improving processability.
  • the (co) polymer is preferably less than 1% by weight, more preferably less than 1% by weight of gel content contained in the hydrogenated (co) polymer.
  • the (co) polymer is cyclized by Friedel-Craft reaction and then hydrogenated (co) polymer is used.
  • the method for cyclizing the ring-opening (co) polymer of the above (1) or (2) by Friedel-Craft reaction is not particularly limited, but the acid compound described in JP-A-50-154399 A known method using can be used.
  • acidic compounds include A1C1 and BF Lewis acids such as FeCl, AlO, HC1, CHClCOOH, zeolite, activated clay, and Brnsted acid are used.
  • the cyclized ring-opening (co) polymer can be hydrogenated in the same manner as the ring-opening (co) polymer of (1) or (2) above.
  • cyclic olefin-based resin used in the present invention (5) a saturated copolymer of the specific monomer and an unsaturated double bond-containing compound can also be used.
  • Examples of the unsaturated double bond-containing compound include ethylene, propylene, butene and the like, preferably an olefin compound having 2 to 12 carbon atoms, more preferably 2 to 8 carbon atoms.
  • the preferred range of use of the specific monomer / unsaturated double bond-containing compound is 90/10 to 40/60, more preferably 85/15 to 50/50, by weight.
  • At least one selected from a titanium compound, a zirconium compound and a vanadium compound and an organoaluminum compound as a co-catalyst are used.
  • examples of the titanium compound include titanium tetrachloride and titanium trichloride
  • examples of the zirconium compound include bis (cyclopentagenyl) zirconium chloride and bis (cyclopentagenenyl) zirconium dichloride.
  • R is a hydrocarbon group
  • X is a halogen atom, 0 ⁇ a ⁇ 3, 0 ⁇ b ⁇ 3, 2 ⁇ (a + b) ⁇ 3, 0 ⁇ c ⁇ 4, 0 ⁇ d ⁇ 4 , 3 ⁇ (c + d) ⁇ 4.
  • Examples of the electron donor include alcohols, phenols, ketones, aldehydes, carboxylic acids, esters of organic or inorganic acids, ethers, acid amides, acid anhydrides, alkoxysilanes.
  • Oxygen-containing electron donors such as ammonia, nitrogen-containing electron donors such as ammonia, amine, nitrile and isocyanate.
  • organoaluminum compound as the cocatalyst at least one selected from those having at least one aluminum-carbon bond or aluminum-hydrogen bond is used.
  • the ratio of the vanadium compound to the organoaluminum compound is such that the ratio of aluminum atom to vanadium atom (A1 / V) is 2 or more, preferably 2 to 50, particularly preferably It is in the range of 3-20.
  • the solvent for the polymerization reaction used for the addition polymerization the same solvent as that used for the ring-opening polymerization reaction can be used.
  • the molecular weight of the obtained (5) saturated copolymer is usually adjusted using hydrogen.
  • cyclic olefin-based resin used in the present invention (6) one or more kinds selected from the above-mentioned specific monomer and a vinyl-based cyclic hydrocarbon monomer or a cyclopentagen-based monomer. Monomer addition copolymers and their hydrogenated copolymers can also be used.
  • vinyl cyclic hydrocarbon monomers examples include 4-vinylcyclopentene, 2-methyl _4_isopropenylcyclopentene, and other such cyclocyclopentene monomers, 4-bulecyclopentane, and 4_isopropenylcyclopentane.
  • Butylcyclopentane monomers such as butylated 5-membered hydrocarbon monomers, 4-Buylcyclohexene, 4 —Isopropenolecyclohexene, 1—Methinore _4_Isopropeninorecyclohexene, 2 —Methylole _4—Binolenecyclohexene, 2-Methanole
  • 4-Bucyclohexene monomers such as 4_Isopropenenorecyclohexene, 4-Buylcyclohexane, 2_Methyl _4_Bulcyclohexanes such as isopropenylcyclohexane Monomer, Styrene, Polymethylstyrene, 2-Methylstyrene, 3-Methyl Styrene monomers such as Tylene, 4-Methylstyrene, 1-Binylnaphthalene, 2-Burnaphthalene,
  • cyclopentagen monomer used as the addition type copolymer monomer examples include cyclopentagen, 1-methylcyclopentagen, 2-methylcyclopentadiene, 2-e Examples include tilcyclopentagen, 5-methylcyclopentagen, and 5,5-methylcyclopentagen. Cyclopentagen is preferable. These can be used alone or in combination of two or more.
  • the addition type (co) polymer of one or more monomers selected from the specific monomer, the bull cyclic hydrocarbon monomer and the cyclopentagen monomer is the above (5) It can be obtained by the same addition polymerization method as a saturated copolymer of a specific monomer and an unsaturated double bond-containing compound.
  • the hydrogenated (co) polymer of the addition type (co) polymer is obtained by the same hydrogenation method as the hydrogenation (co) polymer of the above (3) ring-opening (co) polymer. be able to.
  • cyclic olefin-based resin used in the present invention (7) an alternating copolymer of the specific monomer and acrylate may be used.
  • Examples of the ate reate used for the production of the alternating copolymer of the specific monomer and the allylate include carbon acrylates such as methyl acrylate, 2-ethyl hexyl acrylate, and cyclohexyl acrylate. C2-C20 heterocyclic group-containing acrylate, benzyl acrylate, linear, branched or cyclic alkyl acrylate, glycidyl acrylate, 2-tetrahydrofurfuryl acrylate, etc. Examples thereof include acrylate having a polycyclic structure having 7 to 30 carbon atoms such as aromatic ring group-containing acrylate having 6 to 20 carbon atoms, isobornyl acrylate, dicyclopentanyl acrylate and the like.
  • the total of the specific monomer and acrylate is 100 mol in the presence of Lewis acid.
  • the above-mentioned specific monomer is 30 to 70 moles and the acrylate is 70 to 30 moles, preferably the above-mentioned specific monomer power 40 to 60 moles, and the acrylate power 0 to 40 moles.
  • radical polymerization is performed at a ratio of 45 to 55 moles of the specific monomer and 55 to 45 moles of acrylate.
  • the amount of the Lewis acid used to obtain the alternating copolymer of the specific monomer and attalylate is 0.001 to :! Is done.
  • known organic peroxides or azobis-based radical polymerization initiators that generate free radicals can be used, and the polymerization reaction temperature is usually from -20 ° C to 80 ° C, preferably from 5 ° C to 60 ° C.
  • the same solvent used for the ring-opening polymerization reaction can be used as the solvent for the polymerization reaction.
  • the preferred molecular weight of the cyclic olefin-based resin used in the present invention is 0.2 to 5 dl / g, more preferably 0.3 to 3 dl / g, particularly preferably 0.4 to the intrinsic viscosity [ ⁇ ]: 1. 5d inh
  • the number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography (GPC) is 8,000 to 100,000, more preferably 10,000 to 80,000, particularly preferably ⁇ is 12,000 to
  • the weight average molecular weight (Mw) is preferably 50,000 to 300,000, more preferably 30,000 to 250,000, and particularly preferably 40,000 to 200,000.
  • the intrinsic viscosity [], the number average molecular weight and the weight average molecular weight are within the above ranges.
  • the balance between the heat resistance, water resistance, chemical resistance and mechanical properties of the cyclic olefin-based resin and the stability of the optical properties when used as the antiglare film of the present invention is improved.
  • the glass transition temperature (Tg) of the cyclic olefin-based resin used in the present invention is usually 120 ° C or higher, preferably 120 to 350. C, more preferably 130 to 250 ° C, particularly preferably 140 to 200 ° C. Stabilizes the optical properties of the resulting cyclic olefin-based resin film and prevents thermal degradation of the resin when heated to near Tg, such as stretching. This is to prevent it.
  • the saturated water absorption at 23 ° C of the cyclic olefin-based resin used in the present invention is preferably 2% by weight or less, more preferably 0.01 to 2% by weight, particularly preferably 0.:! To 1% by weight. % Range.
  • the saturated water absorption is within this range, the optical characteristics are uniform, the adhesion between the obtained cyclic olefin-based resin film and other optical members and adhesives is excellent, and peeling occurs during use. In addition, it has excellent compatibility with antioxidants, and can be added in large amounts.
  • Saturated water absorption is a value obtained by measuring the weight increase after immersion for 1 week in 23 ° C water according to ASTM D570.
  • Power ⁇ ⁇ 100 (X 10- 12 are Pa-, and stress optical coefficient (C) mosquito 1,500 ⁇ 4,000 (X 10- 12
  • the large photoelastic coefficient (C 2) means that the cyclic olefin-based resin film can be used for other optical members.
  • a large stress optical coefficient (C) means that, for example, a cyclic olefin-based resin film
  • the photoelastic coefficient (C) is preferably 0 to: 100 (X 10— “Pa—,
  • 0 to 80 (X 10 12 Pa-, particularly preferably 0 to 50 (X 10 12 Pa-, more preferably 0 to 30 10 12 & to -? 1), most preferably 0 to 20 ( 10— 1 & — 1 ) Stress generated when a protective layer is laminated, stress generated when an antiglare film is fixed to another optical member, change in phase difference caused by environmental changes during use, etc. This is to minimize unnecessary phase difference due to the above.
  • the cyclic olefin-based resin used in the present invention includes (1) to (2) a ring-opening (co) polymer, (3) to (4) a hydrogenated (co) polymer, (5) ) Saturated copolymer, (6) addition type (co) polymer, or hydrogenated (co) polymer thereof, or (7) alternating copolymer, which is composed of known antioxidants, ultraviolet rays It can be further stabilized by adding an absorbent or the like. In order to improve processability, additives used in conventional resin processing such as a lubricant can also be added.
  • the cyclic olefin-based resin used in the present invention is a known antioxidant, such as 2,6 tert-butyl-4-methylphenol, 2,2 'dioxy-3,3' tert-butyl-5,5'-dimethyl.
  • additives such as a lubricant may be added.
  • the above-mentioned cyclic olefin-based resin film used for the antiglare film of the present invention is formed into a film or sheet by a known method such as a melt molding method or a solution casting method (solvent casting method). What was shape
  • the thickness of the transparent film used in the present invention ie, the cyclic olefin-based resin film
  • the thickness of the transparent film used in the present invention is usually:! -500 xm, preferably:!-300 xm, more preferably 10-250 xm, and particularly preferably 50. ⁇ 200 xm. This is to ensure good handling and facilitate roll-up.
  • the thickness distribution of the transparent film (cyclic olefin-based resin film) used in the present invention is usually within ⁇ 20%, preferably within ⁇ 10%, more preferably within ⁇ 5% with respect to the average value. Particularly preferably, it is within ⁇ 3%.
  • the thickness variation per 1 cm is usually 10% or less, preferably 5% or less, more preferably 1% or less, and particularly preferably 0.5% or less.
  • the transparent film used in the conductive transparent film of the present invention a film stretched as necessary is suitably used. Specifically, it can be produced by a known uniaxial stretching method or biaxial stretching method. That is, the horizontal uniaxial stretching method using the tenter method, the compression stretching method between rolls, the longitudinal uniaxial stretching method using rolls with different circumferences, the biaxial stretching method combining horizontal uniaxial and longitudinal uniaxial, and the stretching method using the inflation method.
  • a known uniaxial stretching method or biaxial stretching method That is, the horizontal uniaxial stretching method using the tenter method, the compression stretching method between rolls, the longitudinal uniaxial stretching method using rolls with different circumferences, the biaxial stretching method combining horizontal uniaxial and longitudinal uniaxial, and the stretching method using the inflation method.
  • the stretching speed is usually :! to 5,000% / min, preferably 50 to 1,000% / min, more preferably 100 to 1,000% / min. Particularly preferably, it is 100 to 500% / min.
  • stretching may be performed in two directions at the same time, or in a direction different from the first stretching direction after uniaxial stretching.
  • the angle of intersection of the two stretching axes is usually in the range of 120-60 degrees.
  • the stretching speed may be the same in each stretching direction, and may be different. Usually, it is from :! to 5,000% / min, preferably from 50 to: 1,000% / min, and more preferably. Is from 100 to 1,000% Z, particularly preferably from 100 to 500%.
  • the stretching temperature is not particularly limited, but is usually Tg ⁇ 30 ° C, preferably Tg ⁇ 10, based on the glass transition temperature (Tg) of the cyclic olefin-based resin of the present invention. C, more preferably in the range of Tg_5 to Tg + 10 ° C.
  • the draw ratio is not particularly limited because it is determined by the desired properties, but is usually 1 01 ⁇ : 10 times, preferably 1.:! ⁇ 5 times, more preferably 1.:! ⁇ 3.5 times. When the draw ratio exceeds 10 times, it may be difficult to control the phase difference.
  • the stretched film may be cooled as it is, but in a temperature atmosphere of Tg_20 ° C to Tg for at least 10 seconds, preferably 30 seconds to 60 minutes, more preferably 1 minute to 60 minutes. It is preferable to stand still. As a result, a retardation film comprising a stable cyclic polyolefin resin film with little change in retardation characteristics with time can be obtained.
  • the linear expansion coefficient of the cyclic Orefin resin film used in the present invention in the range of 100 ° C from the temperature 20 ° C, preferably not more than 1 X 10- 4 (1 / ° C), preferably the further and the 9 X 10- 5 (1 / ° C) or less, particularly preferably Ri der 8 X 10- 5 (1 / ° C) or less, and most preferably 7 X 10- 5 (1 / ° C)
  • 1 X 10- 4 (1 / ° C
  • 9 X 10- 5 1 / ° C
  • Ri der 8 X 10- 5 (1 / ° C) or less particularly preferably Ri der 8 X 10- 5 (1 / ° C) or less
  • 7 X 10- 5 (1 / ° C) The following.
  • the phase difference film is preferably rolled Shin direction and the linear expansion coefficient difference in the vertical direction it is a 5 X 10- 5 (1 / ° C) or less, more preferably 3 X 10- 5 (1 / ° C) or less, particularly preferably not more 1 X 10- 5 (1 / ° C) or less.
  • the film stretched as described above is oriented in the molecules by stretching and gives a retardation to transmitted light. This retardation is determined by the retardation value, stretching ratio, stretching temperature of the film before stretching.
  • the thickness of the film after stretching orientation can be controlled.
  • the phase difference is defined by the product (And) of the refractive index difference (An) of birefringent light and the thickness (d).
  • the particle-containing protective layer according to the present invention (hereinafter also simply referred to as a protective layer) is a photo-curing composition for forming a protective layer comprising an active energy ray-curable resin composition and particles having an average particle diameter of 50 to 600 nm. It is a layer obtained.
  • the active energy ray-curable resin composition preferably comprises (A) a polyfunctional monomer having 3 or more attalyloyl groups (hereinafter referred to as (A) component), and (B) glycidinole (meth) acrylate polymerization.
  • a polymer obtained by addition reaction of acrylic acid to the product (hereinafter referred to as component (B)), and (C) optionally other acrylic oligomer (hereinafter referred to as component (C)) is blended in a specific amount.
  • the component (A) is a component that can impart the hardness of the protective layer obtained from the active energy ray-curable resin composition, adhesion to a transparent film, and the like.
  • Component (B) is a component that can impart further improvement in the hardness of the protective layer, curability, reduction of curling during curing, and the like.
  • the component (B) has a high molecular weight and has many hydroxyl groups in the molecule, resulting in high hydrophobicity and compatibility with the component (A). This is considered to be due to a decrease in the surface protection film that can be obtained from the component (B).
  • Component (C) is an optional component that can impart toughness and the like.
  • the surface tension of the component (A) is suitably in the range of 37 mN / m or less, and more preferably 30 mN / m or more. .
  • the surface tension is measured by the wilhemy method using a Kyowa CBVP surface tension meter.
  • component (A) include trimethylolpropane tritalylate, ditrimethylololepropanetetratalylate, tritalylate of glycerin propylene glycol adduct, and tritalylate of trimethylolpropane propylene glycol adduct. Forces such as rates Trimethylolpropane tritalylate and ditrimethylolpropane tetraatalylate are preferred because the cured film has high hardness.
  • the amount of component (A) in the active energy ray-curable resin composition is 40 to 60% by weight (provided that the sum of components (A), (B), and (C) is 100% by weight) )) Is suitable, preferably 50-60% by weight.
  • the component (B) is a polymer acrylate which is obtained by adding acrylic acid to a glycidinole (meth) acrylate polymer as described above.
  • the amount of acrylic acid attached to the epoxy group should be about 1: 1 to 1: 0.8 because unreacted epoxy has an adverse effect on the stability of the composition, and 1: 1 to: 1. : About 0.9 is preferable.
  • the glycidyl (meth) acrylate polymer includes a glycidinole (meth) acrylate homopolymer, glycidyl (meth) acrylate, and various kinds of unsaturated monomers that do not contain a carboxyl group.
  • a copolymer etc. are mentioned.
  • Examples of the .beta.-unsaturated monomer that does not contain the carboxyleno group include various (meth) acrylic acid esters, styrene, butyl acetate, and acrylonitrile.
  • Glycidyl (meth) acrylate and carboxyl When a ⁇ -unsaturated monomer that does not contain a group is copolymerized to obtain a glycidyl (meth) acrylate polymer, the viscosity or gelation does not occur during the reaction. Can be effectively prevented.
  • the molecular weight of the glycidyl (meth) acrylate polymer is about 5,000 to 100,000 in terms of weight average molecular weight from the viewpoint of curling reduction during curing and prevention of gelich during the acrylic addition reaction. I like about 50,000. In consideration of the hardness of the protective layer and the migration of the polymer, 70% by weight or more is suitable, and 75% by weight or more is preferred as the proportion of glycidyl (meth) acrylate in the component (ii).
  • a known copolymerization method can be applied to the production of the component (ii).
  • the glycidyl (meth) acrylate polymer is produced by charging this monomer, polymerization initiator, and, if necessary, a chain transfer agent and a solvent into the reaction vessel, and in a nitrogen stream at 80 to 90 ° C for 3 to 6 hours. It is appropriate to carry out under the condition of the degree.
  • the thus obtained glycidyl (meth) acrylate polymer and acrylic acid can be subjected to a ring-opening esterification reaction to obtain component (B).
  • an oxygen stream is used to prevent polymerization of acrylic acid itself. It is appropriate to carry out the reaction below 100 to 120 ° C and the reaction time is 5 to 8 hours.
  • the blending amount of the component (B) in the active energy ray-curable resin composition is 10 to 60% by weight (however, the sum of the components (A), (B) and (C) is 100% by weight) )), And is preferably 20 to 50% by weight.
  • component (C) examples include polyfunctional polyester acrylate, polyfunctional urethane acrylate, and epoxy acrylate.
  • polyfunctional urethane acrylate is preferable from the viewpoint of scratch resistance and toughness of the cured coating film.
  • Examples include a reaction product obtained by reacting a sulfonate compound with a polyol, polyester, or polyamide-based diol to synthesize an adduct, and then adding a (meth) phthalate having a hydroxyl group to the remaining isocyanate group (for example, Japanese Patent Laid-Open No. 2002-275392).
  • a polyfunctional urethane acrylate is a urethane reaction product comprising a (meth) acrylate having a hydroxyl group and a polyvalent isocyanate compound having two or more isocyanate groups. It is. Preferred examples of the (meth) acrylate having a hydroxyl group include pentaerythritol tri (meth) acrylate and dipentaerythritol penta (meth) acrylate.
  • the blending amount of the component (C) in the active energy ray-curable resin composition is 0 to 50% by weight (however, the sum of the components (A), (B) and (C) is 100% by weight) .) Is suitable.
  • the active energy ray-curable resin composition can be blended with an organic solvent in order to adjust the viscosity according to the individual application.
  • organic solvents are those that do not dissolve the transparent olefin-based resin film, which is a transparent film, and for example, ester solvents, alcohol solvents, and ketone solvents are preferable.
  • the active energy ray used for curing the active energy ray-curable resin composition may be, for example, ultraviolet rays or electron beams.
  • a photopolymerization initiator is not required, but when cured with ultraviolet rays, the photopolymerization initiator 1 to 15 is usually used with respect to 100 parts by weight of the resin composition. About parts by weight can be included.
  • the photopolymerization initiator various known ones such as Darocur 1173, Irgacure 1651, Irgacure 1184, Irgacure 1907, Irgacure 1754 (all manufactured by Ciba Specialty Chemicals) and benzophenone can be used. .
  • various additives other than the above for example, polymerization inhibitors, antioxidants, ultraviolet absorbers, antistatic agents, light stabilizers, solvents, antifoaming agents, leveling agents, etc. may be added. Moyo.
  • the particles contained in the protective layer are not particularly limited.
  • carbon black, copper, nickel, silver, iron, or a composite of these may be any of those usually used as fillers.
  • Powder Zinc oxide, tin oxide, titanium oxide, tin monoxide, calcium oxide, magnesium oxide, beryllium oxide, aluminum oxide, silica (fumed silica, fused silica, precipitated silica, ultra fine powder amorphous silica, crystalline silica, Metal oxides such as calcium carbonate, potassium carbonate, sodium carbonate, magnesium carbonate, barium carbonate; metal nitrides such as boron nitride, silicon nitride, aluminum nitride, SiC, etc.
  • Metal carbide such as aluminum hydroxide and magnesium hydroxide; aluminum borate, barium titanate, calcium phosphate , Calcium silicate, clay, gypsum, sulfuric Bariu arm, My power, Keisou earth, white clay, talc, Zeoraito, pigments, and the like. Above all, Portugal is preferred.
  • the particles added to and mixed with the active energy ray-curable resin composition described above as a raw material are not particularly limited. It is appropriate that the (primary average particle diameter) is, for example, about 1 nm to 100 nm, 1 nm to 50 nm, and further about 1 nm to 25 nm.
  • a protective layer is formed by using particles of a group having a different particle size from the particles added as the main component, such as those having an average particle size of about 50 nm to 800 nm or about 100 nm to 3 ⁇ m. It is also preferable to prepare a composition for use.
  • a composition for forming a protective layer is prepared by adding a small amount of particles having an average particle size of about 1 nm to 100 nm and a particle size of 1300 nm or more, preferably about 1300 nm to 3 ⁇ m. Can be suitably prepared.
  • the particle component may be added after the preparation of the active energy ray-curable resin composition, and may be mixed simultaneously or sequentially with each component of the active energy ray-curable resin composition. May be.
  • the primary particles added at the time of preparation may be aggregated, even if the primary particles added at the time of preparation of the composition for forming the protective layer are dispersed as they are.
  • the primary particles and the secondary particles or more may be mixed and dispersed as a tertiary or higher aggregated particle.
  • the average particle size of the particles in the formed protective layer is preferably about 50 to 600 nm, more preferably about 50 to 400 nm, and more preferably about 50 to 200 nm. .
  • the transparency of the resin composition can be secured and the haze value can be adjusted to an appropriate value.
  • the protective layer is usually mixed with the above-mentioned active energy ray-curable resin composition in liquid or suspension form, and stirred and mixed so that the particles are uniformly dispersed.
  • the stirring method, stirring speed, stirring force, stirring time, etc. the distribution and agglomeration state of the particles can be controlled, and the primary particles used as the raw material are almost completely dispersed as primary particles.
  • agglomerated particles such as secondary particles having a predetermined particle size different from the primary particles used as a raw material are formed, and a part of the agglomerated particles are partially broken or agglomerated. And can be formed into tertiary particles or the like.
  • the average particle size is in the above-described range in the state where the protective layer is completed, regardless of the particle size of the particles before and during the formation of the protective layer.
  • the average particle diameter in the active energy ray-curable resin composition is regarded as the average particle diameter in a state where the protective layer is completed.
  • the average particle diameter (d: hydrodynamic diameter) means a value obtained by a cumulant method from an autocorrelation function obtained by a photon correlation method.
  • the autocorrelation function can be obtained directly from the time variation of the scattering intensity, and the second-order autocorrelation function G ( ⁇ ) is expressed by the following equation.
  • G (te) becomes a single exponential decay curve
  • is expressed as follows using the diffusion coefficient D.
  • the average particle diameter d can be obtained from the diffusion coefficient D using the Einstein's stoichiometric formula. Togashi.
  • This average particle diameter can be measured by, for example, FPAR-1000 manufactured by Otsuka Electronics.
  • any method known in the art can be used to disperse and stir the particles. However, depending on the strength of the dispersion and the stirring power, the length of the dispersion / stirring time, etc. It is suitable to select the primary particle size of the particles to be appropriately selected. In particular, in order to obtain particles in a form in which primary particles and agglomerated particles of secondary particles or more are mixed, the particles are referred to as so-called nanoparticles because they are stirred and stirred so that the particles do not aggregate. On the other hand, in order to disperse / stir the particles, it is preferable to select a so-called microparticle having a relatively large particle size and mix them.
  • the particles in the protective layer after formation can ensure transparency in the protective layer, while Newtons are dispersed by dispersing relatively large particles in some places. Glare can be minimized while effectively preventing the ring.
  • a display device such as a touch panel and a film or the like is further laminated on the surface of the transparent conductive film of the present invention, it is possible to more effectively prevent Newton rings generated by contact with the film. it can.
  • the particles are contained in the protective layer in an amount of about 10 to 30% with respect to the total weight of the protective layer, and more preferably 17 to 22%.
  • unevenness such as white blurring and black floating can be prevented, and the background image can be displayed clearly.
  • the anti-Newton ring property and glare can be prevented, and the balance between the three types can be adjusted appropriately.
  • the protective layer preferably has a maximum height roughness Ry (zm) of about 1.8 to 3.2, particularly 2.0 to 3.2. About 2.0 to 2.6 is more preferable. By adjusting to such a maximum height roughness, the anti-Newton ring property can be effectively exhibited in combination with the above average particle diameter and / or the content ratio of relatively large particles.
  • the surface height roughness Ry is within the standard length specified in JIS B0601 '94. It is the sum of the maximum value of the peak height of the contour curve and the maximum value of the valley depth.
  • the maximum height roughness Ry can be measured with a surface roughness profile measuring machine, Handy Surf E-35A (manufactured by Tokyo Seimitsu Co., Ltd.).
  • the maximum particle size Rm is usually about 30 zm or less, preferably about 20 ⁇ m or less. Especially, it is preferable to be less than about 10 m. From another point of view, it is preferable that the particles having a particle size of 1300 nm or more are 1.5 to 7% by weight of the total particles, and 1.5 to 5% by weight, particularly 2. It is preferably 0 to 5% by weight. In particular, the particles having a particle size of 2000 nm or more are preferably 1.5 to 6% by weight and 1.5 to 5.5% by weight in the total particles.
  • the protective layer preferably has an image clarity of about 5% or more, more preferably about 20% or more, and further preferably about 40%.
  • the image clarity is a so-called glare, that is, an index indicating the degree of discomfort caused to the observer by light scattering, etc., and when this value is large, the image clarity is good. This means that glare is not likely to occur.
  • it indicates the ratio of light that passes through a slit in an optical comb having a slit (interval) of a predetermined width. For example, it is measured using an image clarity measuring instrument ICM-1T (manufactured by Suga Test Instruments). can do.
  • ICM-1T manufactured by Suga Test Instruments
  • the protective layer preferably has a haze value of about 12% or less, more preferably about 10% or less, more preferably 5% or less.
  • the haze value is also called haze value and represents the degree of haze and the degree of diffusion. By setting this value within the above range, so-called white blur can be prevented.
  • the haze value is related to the average particle size, particle size distribution, etc. of the particles contained in the protective layer. Therefore, the background image can be displayed more clearly in combination with the average particle diameter and the content ratio of Z or relatively large particles.
  • the protective layer according to the present invention is prepared by mixing particles with a resin composition, and using a suitable organic solvent or the like to prepare a liquid or suspension, which is transparent. It can be preferably formed by applying / drying the film and irradiating with active energy rays.
  • the coating method of the active energy ray curable resin composition includes bar coater coating, air varnish coating, gravure coating, gravure reverse coating, reverse roll coating, lip coating, and die coating. Various methods such as dip coating, offset printing, flexographic printing, and screen printing can be employed.
  • Irradiation of the active energy ray is not particularly limited, and is appropriately adjusted by a known method in the field depending on the composition of the resin composition to be used, the type of active energy ray, the thickness of the resin composition, and the like. be able to.
  • the film thickness of the protective layer is not particularly limited, but it is usually preferably about 1 to 20 zm, 1 to about lO xm, more preferably about 1 to 5 ⁇ m. is there.
  • the conductive transparent film of the present invention further includes the above-mentioned active energy ray-curable resin composition (optionally containing the filler described above) on the surface opposite to the surface on which the particle-containing protective layer of the transparent film is formed. It is preferable that a back surface protective layer made of In this case, the film thickness of the back surface protective layer is not particularly limited, and examples thereof include the same film thickness as the protective layer described above. Thus, by providing a protective layer on both sides, the film can be prevented from warping.
  • the surface of the protective layer has a pencil hardness of HB or higher, preferably F or higher, particularly preferably H or higher, the surface hardness required for the protective layer can be maintained. Furthermore, the scratches that occur when the surface of the protective layer is rubbed 10 times with steel wool at a load of 450 g It is particularly preferable in terms of surface hardness that no flaws that are preferably 10 or less occur.
  • the conductive transparent film of the present invention is obtained by further laminating a transparent conductive layer on a film in which a particle-containing protective layer is laminated on the surface of the transparent film described above.
  • the transparent conductive layer according to the present invention is a layer having transparency in the visible light region and having conductivity.
  • the transparent conductive layer As a method for forming the transparent conductive layer, conventionally known techniques such as vacuum deposition, sputtering, and ion plating can be used. However, the uniformity of the film and the thin film on the transparent substrate can be used. From the viewpoint of adhesiveness, it is preferable to form a thin film by sputtering.
  • the thin film materials used are not particularly limited, for example, metal oxides such as indium oxide containing tin oxide and tin oxide containing antimony, gold, silver, platinum, palladium, copper Aluminum, nickel, chromium, titanium, cobalt, tin, or alloys thereof are preferably used.
  • the thickness of the conductive thin film must be 30 angstroms or more, and if it is thinner than this, it is difficult to form a continuous film having good conductivity with a surface resistance of 1000 ⁇ / mouth or less. On the other hand, if it is too thick, the transparency is lowered, and the preferred thickness is about 50 to 2000 years old.
  • the conductive transparent film of the present invention preferably has an antireflection layer between the transparent conductive layer and the protective layer for the purpose of improving the transmittance in the visible light region.
  • the antireflection layer usually comprises a single layer or a laminate structure of two or more layers of a low refractive index layer such as oxide silicon and magnesium fluoride and a high refractive index layer such as titanium oxide, niobium oxide and tantalum oxide.
  • Low / high refractive index layers made of these inorganic oxides can be formed by vacuum deposition, sputtering, ion plating (dry process), or metal alkoxides.
  • a known method such as a coating method (wet process) of a coating solution containing ultrafine particles can be employed.
  • the conductive transparent film of the present invention may be one in which a polarizing plate is further laminated in addition to the above-described transparent film, particle-containing protective layer, and transparent conductive layer.
  • any polarizing plate that is used in optical applications and has a polarizing action can be used.
  • Examples of such a polarizing plate include a single-layer polarizing film, a polarizing film with a protective layer formed on both sides of the polarizing film, and a polarizing film with a protective layer formed on one side.
  • the polarizing plate used in the present invention is not particularly limited, but functions as a polarizing film, that is, the incident light is divided into two polarization components orthogonal to each other, and only one of them is allowed to pass through. Any polarizing film can be used as long as it has a function of absorbing or dispersing the above components.
  • Examples of the polarizing film that can be used in the present invention include polybulal alcohol (hereinafter abbreviated as "PVA") 'iodine polarizing film; PVA with dichroic dye adsorbed and oriented on PVA film' Dye-based polarizing film; Polyene polarizing film formed by polyhydration by dehydration reaction of PVA film or polychlorinated bure film; PVA film made of modified PVA containing cationic group in the molecule Examples thereof include a polarizing film having a dichroic dye on the surface and / or inside thereof. Of these, PVA'iodine polarizing films are preferred.
  • the method for producing the polarizing film used in the present invention is not particularly limited, and a conventionally known method can be applied.
  • adsorb iodine ions after dyeing a PVA film with a dichroic dye, stretch it, after stretching a PVA film, dye it with a dichroic dye, two colors
  • Examples include a method of stretching a sexual dye after printing on a PVA film, and a method of printing a dichroic dye after stretching a PVA film.
  • iodine is dissolved in a potassium iodide solution to form higher-order iodine ions, which are adsorbed on a PVA film and stretched, and then bathed in an aqueous solution of! -5 wt% boric acid.
  • the thickness of the polarizing film used in the present invention is not particularly limited, but is 10 to 50 ⁇ m, preferably 15 to 45 zm.
  • These polarizing films may be used as they are in the production of the polarizing plate according to the present invention, but can also be used after the corona discharge treatment and the plasma treatment are performed on the surface in contact with the adhesive layer.
  • such a polarizing plate is attached to the surface opposite to the transparent conductive layer of the laminate in which the transparent film, the particle-containing protective layer and the transparent conductive layer are laminated, with a pressure-sensitive adhesive. It is preferable to make a conductive transparent film.
  • an acrylic pressure-sensitive adhesive a rubber-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, or the like can be suitably used.
  • the conductive transparent film of the present invention can be suitably used as a transparent electrode for a display such as a liquid crystal display touch panel, and is particularly preferably used for a touch panel application, particularly a touch panel application for a display device. it can.
  • the touch panel of the present invention is characterized by having the above-described conductive transparent film of the present invention as a transparent electrode.
  • the display device of the present invention has the touch panel on the display surface side.
  • the conductive transparent film of the present invention can be suitably used as an upper electrode and / or a lower electrode of a 4-wire resistive film type or 5-wire resistive film type touch panel.
  • a display device having a touch panel function can be obtained.
  • GMA glycidyl methacrylate
  • AIBN zobisisobutyronitrile
  • the amount of monomer used in the initial charge in the above-described production examples was 175 parts of GMA, 75 parts of methyl metatalylate (hereinafter referred to as MMA), and the monomer used in the post-charge.
  • the reaction was performed in the same manner as in the above production example except that the dosage was changed to 525 parts for GMA and 225 parts for MMA and the amount of AA used was changed to 355 parts to obtain varnish B2 having a non-volatile content of 50%.
  • the weight average molecular weight of the acrylic polymer before the AA reaction was 20,000.
  • the initial charge of monomer used was GM A 125 parts, methyl metatalylate MMA 125 parts, and the post-charge monomer usage of GMA 3 75 parts.
  • the reaction was carried out in the same manner as in the above-mentioned production example except that the amount of AA used was changed to 254 parts instead of MMA 375 to obtain varnish B3 having a non-volatile content of 50%.
  • the weight average molecular weight of the phthalyl polymer before the AA reaction was 23,000.
  • the blending amount of component (B) is in terms of solid content.
  • the surface tension of component (A) was measured by a vertical plate method (wilhemy method) using a Kyowa CBVP surface tension meter.
  • C Component polyfunctional urethane acrylate is manufactured by Arakawa Chemical Industries, Ltd. Set 557 ”.
  • UV curable composition (adjusted to 80% solids with ethyl acetate, and adjusted to 70% solids with ME K) 65. 1 part
  • Methyl ethyl ketone (hereinafter referred to as MEK and Les) 10.0 parts
  • Silica (Aerosil (average particle size: about 12 nm), manufactured by Nippon Aerosil Co., Ltd.) 9. 17 parts The above ingredients were passed through a roll mill disperser three times. Thereafter, it was diluted with MEK to obtain a paint A for a protective layer having a solid content of 48%.
  • UV curable composition (adjusted to 80% solids with ethyl acetate and adjusted to 70% solids with MEK) 57. 1 part
  • Acrylic particles (MX—180 (average particle size: about 1 ⁇ 8 ⁇ m), manufactured by Soken Chemical) 1.25 parts Acrylic particles (MA—1002 (average particle size: about 2.5 ⁇ m), manufactured by Nippon Shokubai Co., Ltd. 0.25 parts
  • the above ingredients were mixed in an open drum for stirring (inner diameter: about 40 cm, inner height: 58 cm) and stirred with a sperm for 150 minutes with a feather of about 11 cm in diameter. Thereafter, it was diluted with MEK to obtain a paint B for a protective layer having a solid content of 48%.
  • a protective layer On the surface opposite to the surface of the protective layer of the obtained film having the protective layer, a protective layer was similarly formed, and a film having a protective layer having a thickness of 1.7 x m on both sides was formed.
  • a protective layer On the surface opposite to the surface of the protective layer of the obtained film having the protective layer, a protective layer was similarly formed, and a film having a protective layer having a thickness of 1.7 x m on both sides was formed.
  • Example 2 After the plasma treatment in Example 1, a titanium oxide layer having a thickness of 600 A and a silicon oxide having a thickness of 600 A were sequentially laminated by sputtering, and then the conductive transparent film 2 was formed in the same manner as in Example 1 except that ITO was sputtered. Obtained.
  • Example 2 When the conductive transparent film obtained in Example 1 was prepared at 50 mm x 70 mm square, and this conductive transparent film was used as the upper and lower electrodes, a 4-wire resistive film type touch panel was manufactured using conductive paste. However, both the upper and lower electrodes showed a good linear response of 0.5%.
  • Example 3 When the touch panel obtained in Example 3 was bonded to a display having a resolution of 1280 dots in a horizontal direction and 1024 lines in a vertical direction using a pressure-sensitive adhesive, and the glare of the image was visually observed, there was almost no glare.
  • UV curable composition (adjusted to 80% solids with ethyl acetate and adjusted to 70% solids with ME K) 50. 0 parts
  • a protective layer On the surface opposite to the surface of the protective layer of the obtained film having the protective layer, a protective layer was similarly formed, and a film having a protective layer with a thickness of 3 ⁇ m on both surfaces was formed.
  • Transparent conductive material made of ITO by sputtering using an alloy of / Sn ⁇ 90/10 (weight ratio)
  • the conductive layer was laminated with a thickness of 200 angstroms to obtain a conductive transparent film 3.
  • UV curable composition (adjusted to 80% solids with ethyl acetate) 65. 1 part MEK 25. 83 ⁇ 4
  • Silica (Aerosil (average particle size: approx. 12 nm), manufactured by Nippon Aerosil Co., Ltd.) 9. 17 parts The above ingredients are mixed in an open drum for stirring (inner diameter: approx. 40 cm, inner height: 58 cm), and feathers with a diameter of approx. 11 cm Then, the spar was stirred for 150 minutes. Thereafter, it was diluted with MEK to obtain a coating material for a protective layer having a solid content of 40%.
  • the obtained paint was applied by a gravure reverse method to a transparent film made of cyclic olefin-based resin, Arton (registered trademark) manufactured by CJSR Corporation, film thickness 100 / m).
  • the film was dried at 80 ° C for 60 seconds, irradiated with ultraviolet rays of 150 mJ 2 and cured to obtain a film having a protective layer with a thickness of 4 ⁇ .
  • a protective layer On the surface opposite to the surface of the protective layer of the obtained film having the protective layer, a protective layer was similarly formed, and a film having a protective layer with a thickness of 4 ⁇ m on both sides was formed.
  • a transparent conductive layer 4 was laminated with a thickness of 200 ⁇ to obtain a conductive transparent film 4
  • a conductive transparent film was obtained in the same manner as described above except that the protective layer was not formed on the surface opposite to the surface having the protective layer. This conductive transparent film was used only for the measurement of haze, total light transmittance, and image clarity shown in Table 1.
  • Example 6 After the plasma treatment of Example 6, a titanium oxide layer having a thickness of 600 mm and a silicon oxide layer having a thickness of 600 mm were sequentially laminated by sputtering, and then the conductive transparent film 5 was formed in the same manner as in Example 6 except that the mask was sputtered. Obtained.
  • the conductive transparent film 4 obtained in Example 6 was prepared at 50 mm x 70 mm square, and this conductive film Using a conductive transparent film as the upper and lower electrodes and using a conductive paste to produce a four-wire resistive touch panel, the linearity of both the upper and lower electrodes was 0.5%, indicating a good linear response.
  • Example 8 When the touch panel obtained in Example 8 was bonded to a display having a resolution of 1280 dots in a horizontal direction and 1024 lines in a vertical direction using a pressure-sensitive adhesive, and the glare of the image was visually observed, there was almost no glare.
  • a conductive transparent material having a protective layer with a film thickness of 4 ⁇ on both sides of a transparent film was obtained in the same manner as in Example 6 except that the ingredients of Example 6 were stirred with a sperper for 30 to 45 minutes. A film was formed.
  • a conductive transparent material having a protective layer with a thickness of 4 ⁇ m on both sides of a transparent film was obtained in the same manner as in Example 6, except that the ingredients of Example 6 were stirred with a sperper for 210 minutes. A film was formed.
  • the average particle size was calculated by cumulant analysis using an Otsuka Electronics FPAR-1000.
  • JIS-K7361-1 (IS013468-1), it measured using the hedometer of NDH2000 by Nippon Denshoku Industries Co., Ltd., and computed with the following formula
  • Haze value (%) Diffuse transmittance (%) Z Total light transmittance (%)
  • Black tape is attached to the back of the protective layer, and visually observed with a three-wavelength fluorescent lamp. “A” indicates that the surface is almost white, and “B” indicates that the surface is slightly white. Nare, “C” was rated as having a clear white surface.
  • the maximum height roughness shape measuring machine (HA NDYSURF E-35A manufactured by Tokyo Seimitsu Co., Ltd.) was used for measurement.
  • An optical comb having an interval of 0.5 mm was applied to an image clarity measuring device ICM-1T (manufactured by Suga Test Instruments Co., Ltd.), and light (%) transmitted from the optical comb interval was measured.
  • the glare evaluation was performed by visually observing the glare of the image using a display with a resolution of 1280 dots flat and 1024 lines vertical, and “A” was almost no glare, and “B” was less glare.
  • a low resistivity meter “Lorestar GP” manufactured by Mitsubishi Chemical Corporation was used to measure the surface resistance of the transparent conductive layer.
  • the present invention relates to a conductive transparent film used in various optical devices, specifically, a word processor, a computer, a television, a display panel, various displays such as a mobile phone, a liquid crystal display device and the like in combination with a touch panel.
  • a word processor a computer
  • a television a display panel
  • various displays such as a mobile phone, a liquid crystal display device and the like in combination with a touch panel.

Abstract

 本発明の透明導電性フィルムは、環状オレフィン系樹脂からなる透明フィルム表面に順に、活性エネルギー線硬化性樹脂組成物および粒子を含む保護層形成用組成物を光硬化させて得られる粒子含有保護層、透明導電層が積層されて構成され、前記活性エネルギー線硬化性樹脂組成物が、多官能モノマーと、グリシジル(メタ)アクリレート系重合物にアクリル酸を付加反応させてなるポリマーとを含有する。  本発明によれば、低複屈折、低吸湿、高透明性、高耐熱性等を有する透明フィルムと、透明性を有し、表示むらを防止しながら、ニュートンリングを防止し、しかも写像性に優れた粒子含有保護層と、透明導電層とを積層することにより、これらの特性を満足し、特にタッチパネル用透明電極として用いた場合に、鮮明な画像が得られる導電性透明フィルムを提供できる。

Description

明 細 書
導電性透明フィルムおよびその用途
技術分野
[0001] 本発明は、導電性透明フィルムおよびその用途に関する。詳しくは、本発明は、環 状ォレフイン系樹脂からなる透明フィルムに、順に、粒子含有保護層、透明導電層が 積層された導電性透明フィルム、およびこれを用いたタツチパネル、ならびにこのタツ チパネルを用いた表示装置に関する。 背景技術
[0002] 従来から、光学用途の成形材料として、ポリカーボネート(PC)、ポリメチルメタクリレ ート(PMMA)などが広く使用されている力 PCは複屈折が大きぐ PMMAは吸水 性が高ぐ耐熱性も不十分であるため、これら性能を改善した新規な成形材料の開 発が求められている。
[0003] そこで、近年、環状ォレフィン系樹脂が注目され、広く用途展開が進められている。
[0004] しかし、環状ォレフィン系樹脂フィルムは、低複屈折、低吸湿、高透明性、高耐熱性 を有している反面、表面がやや脆ぐ傷が付きやすいという課題がある。
[0005] 一般に、各種プラスチック材料にハードコート性を付与するために、そのプラスチッ ク材料表面に、活性エネルギー線硬化樹脂が被覆される。
[0006] 従って、環状ォレフィン系樹脂フィルムの表面にも、活性エネルギー線硬化樹脂を 適用することが考えられるが、汎用の樹脂は、環状ォレフィン系樹脂フィルムへの接 着性が不十分であるという問題がある。
[0007] これに対して、活性エネルギー線硬化性コート剤中に非反応成分であるポリマーを 含有させる方法 (例えば、特許文献 1)、重合性化合物として脂環系 (メタ)アクリルィ匕 合物を配合する方法 (例えば、特許文献 2)、特定の光重合開始剤を用いる方法 (例 えば、特許文献 3)などが提案されており、これらの方法によって、接着性を改善する こと力 Sできる。
[0008] しかし、これらの方法では、これらポリマー等の添カ卩により、活性エネルギー線硬化 性コート剤の架橋密度が低下したり、得られる硬化皮膜の耐擦傷性が低下したり、力 ールが発生したり、さらには、環状ォレフィン系樹脂フィルム上での硬化皮膜の硬度 が不十分であるなどの問題がある。
[0009] また、光学用途の成形材料は、特に、プラズマ表示装置や、携帯電話、 PDA (携帯 情報端末)、ビデオカメラ等の液晶表示装置などの各種ディスプレイへの適用におい て、より鮮明な画像を映し出すとともに、画面に入射又は画面から出射した光の反射 、散乱などによって表示画像に生じるギラツキを抑制し、さらに、表示画像による光の 干渉作用に起因して発生する、いわゆるニュートンリングと呼ばれる虹色のモアレ等 を生じなレ、など、さらなる高性能化が厳しく求められてレ、る。
[0010] また、表示装置の前面に配置され、入力端末として使用されるタツチパネルについ ても、表示画像の光学特性を損なわないために、上記の高性能化が必須である。ま た、タツチパネルの高性能化に関しては、導電性透明フィルムの光学特性に負うとこ ろが大きい。
そして、このような高性能化に対して、種々の反射防止処置及び防眩処置等が採ら れているが、それらの全ての要求を満足させるものは未だ得られていないのが現状 である。
[0011] このような状況において、本発明者は、いわゆる反射防止フィルム及び防眩フィル ム等の光学用途の成形材料の特性について鋭意研究を行ったところ、低複屈折、低 吸湿、高透明性、高耐熱性等の基本的な特性を確保することに加えて、いわゆる白 ぼけ及び/又は黒浮きというような部分的な表示むら又は背景画像の不鮮明な表示
、ギラツキ及び Z又はグレア等の不均一な表示、ニュートンリングという光の干渉作用 という主に 3種の不具合があり、それらをバランスよく解消することが必要であることを 見出した。そして、硬化性、耐擦傷性、硬度、接着性、透明性等の特性を有する環状 ォレフィン系樹脂からなる透明フィルムの表面に、優れた防眩効果を発揮し得る粒子 含有保護層が形成され、さらに透明導電層を積層した導電性透明フィルムが、これら の不具合をバランスよく解消しうることを見出し、本発明を完成するに至った。
特許文献 1 :特開平 8— 12787号公報
特許文献 2 :特開平 5— 306378号公報
特許文献 3:特開 2002— 275392号公幸艮 発明の開示
発明が解決しょうとする課題
[0012] 本発明は、低複屈折、低吸湿、高透明性、高耐熱性等の基本的な特性を確保する ことに加えて、いわゆる白ぼけ及び/又は黒浮きというような部分的な表示むら又は 背景画像の不鮮明な表示、ギラツキ及び/又はグレア等の不均一な表示、二ユート ンリングという光の干渉作用という 3種の不具合をバランスよく解消した、導電性透明 フイノレム、およびこの導電性透明フィルムを用いたタツチパネル、ならびにこのタツチ パネルを有する表示装置を提供することを課題としている。すなわち、本発明は、硬 化性、耐擦傷性、硬度、接着性、透明性等の特性を有する環状ォレフィン系樹脂か らなる透明フィルムの表面に、優れた防眩効果を発揮し得る粒子含有保護層が形成 され、さらに透明導電層を積層した導電性透明フィルム、およびこの導電性透明フィ ルムを用いたタツチパネル、ならびにこのタツチパネルを有する表示装置を提供する ことを課題としている。
課題を解決するための手段
[0013] 本発明の導電性透明フィルムは、透明フィルム表面に順に、粒子含有保護層、透 明導電層が積層されて構成される導電性透明フィルムであって、
透明フィルム力 環状ォレフィン系樹脂からなり、
粒子含有保護層力 活性エネルギー線硬化性樹脂組成物および 50〜600nmの 平均粒径を有する粒子を含む保護層形成用組成物を光硬化させて得られる層であ つて、
前記活性エネルギー線硬化性樹脂組成物が、(A)アタリロイル基を 3以上有する多 官能モノマー 40〜60重量0 /0と、(B)グリシジル(メタ)アタリレート系重合物にアタリノレ 酸を付加反応させてなるポリマー 10〜60重量%と、(C)任意にその他のアクリルオリ ゴマー 050重量% (但し、成分 (A)、(B)および(C)の合計が 100重量%である)と を含有することを特徴としてレ、る。
[0014] 本発明においては、環状ォレフィン系樹脂が、下記式 (I)で表される少なくとも 1種 の化合物を含む単量体を (共)重合して得られた樹脂からなることが好ましレ、。
[0015] [化 1]
Figure imgf000005_0001
[0016] (式 (I)中、 I^〜R4は、それぞれ独立に、水素原子、ハロゲン原子、炭素数:!〜 30の 炭化水素基、極性基、又はその他の 1価の有機基であり、 R1と R2、又は、 R3と R4は、 一体化して 2価の炭化水素基を形成してもよ R1又は R2と、 R3又は R4とは、互いに 結合して、単環又は多環構造を形成してもよい。 mは 0又は正の整数であり、 pは 0又 は正の整数である。 )
本発明の導電性透明フィルムは、粒子含有保護層が、一層あたり 12%以下のヘイ ズ値を示すことが好ましい。
[0017] 本発明の導電性透明フィルムは、透明フィルムの両表面に前記粒子含有保護層が 積層されてなることが好ましレ、。
[0018] 本発明の導電性透明フィルムにおいては、保護層力 1300nm以上の粒径を有す る粒子を全粒子中の 1. 5〜7重量%含有することが好ましぐさらに、 1300nm以上 の粒径を有する粒子が、一次粒子を含むことが好ましい。
[0019] 本発明の導電性透明フィルムは、さらに偏光板が積層されて構成され、該偏光板 が感圧性接着剤により貼り合わされてなることが好ましい。
[0020] 本発明のタツチパネルは、上記本発明の導電性透明フィルムを少なくとも一方の透 明電極として有することを特徴としている。また、本発明の表示装置は、前記本発明 のタツチパネルを表示面側に有することを特徴としている。
発明の効果
[0021] 本発明によれば、環状ォレフィン系樹脂からなる透明フィルムを用いることにより、 低複屈折、低吸湿、高透明性、高耐熱性等の基本的な特性を確保した透明性導電 フィルムを提供することができる。そして本発明によれば、特定の粒子を特定の樹脂 組成物と組み合わせて用いた粒子含有保護層を形成することにより、上述した透明 フィルムに対して、密着性を良好にして、ハードコート機能を付与した透明性導電フィ ルムを提供することができる。また本発明によれば、特定の平均粒径を有する粒子を 用いることによって透明性を確保し、いわゆる白ぼけ、黒浮きというような部分的な表 示むらを防止しながら、透明性が高くなると発生しやすくなる光の干渉による二ユート ンリングを有効に防止し、かつ、画像のちらつき、ギラツキという現象を防止した良好 な写像性を十分に発揮させるという、互いにトレードオフの関係となる特性の全てを ノ ランスよく満足させた粒子含有保護層を有する透明性導電フィルムを提供すること ができる。
[0022] 本発明によれば、前記保護層の上に透明導電層を積層することにより、上記特性 の全てを満足し、特にタツチパネル用透明電極として用いた場合に、鮮明な画像が 得られる導電性透明フィルムを提供することができる。
[0023] さらに本発明によれば、低複屈折、低吸湿、高透明性、高耐熱性等に優れ、かつ、 透明性を確保し、いわゆる白ぼけ、黒浮きというような部分的な表示むらを防止しな 力 ニュートンリングを有効に防止し、かつ、画像のちらつき、ギラツキという現象を防 止した良好な写像性を十分に発揮して鮮明な画像が得られるタツチパネルおよび表 示装置を提供することができる。
発明を実施するための最良の形態
[0024] 以下、本発明について具体的に説明する。
[0025] 本発明の導電性透明フィルムは、主として、透明フィルム、粒子含有保護層、透明 導電層がこの順に積層されて構成されるものであり、防眩フィルム、反射防止フィル ムなどとして好適に使用できる。
[0026] 诱明フィルム
本発明に係る透明フィルムは、環状ォレフィン系樹脂から主として構成される。環状 ォレフィン系樹脂としては次のような(共)重合体が挙げられる。
(1)下記式 (I)で表される環状ォレフィン (以下、「特定単量体」という。)の開環重合 体。
(2)前記特定単量体と共重合性単量体との開環共重合体。
(3)上記(1)又は(2)の開環(共)重合体の水素添加(共)重合体。
(4)上記(1)又は(2)の開環(共)重合体をフリーデルクラフト反応により環化したのち 、水素添加した (共)重合体。
(5)特定単量体と不飽和二重結合含有化合物との飽和共重合体。
(6)特定単量体、ビニル系環状炭化水素系単量体及びシクロペンタジェン系単量体 から選ばれる 1種以上の単量体の付加型(共)重合体及びその水素添加(共)重合体
(7)特定単量体とアタリレートとの交互共重合体。
[0027] [化 2]
Figure imgf000007_0001
[0028] (式 (I)中、 R^R4は、それぞれ独立に、水素原子、ハロゲン原子、炭素数:!〜 30の 炭化水素基、極性基、又はその他の 1価の有機基であり、 R1と R2、又は、 R3と R4は、 一体化して 2価の炭化水素基を形成してもよ R1又は R2と、 R3又は R4とは、互いに 結合して、単環又は多環構造を形成してもよい。 mは 0又は正の整数であり、 pは 0又 は正の整数である。 )
<特定単量体 >
環状ォレフィン系樹脂の原料として用いられる特定単量体の具体例としては、次の ような化合物が挙げられるが、本発明はこれらの具体例に限定されるものではなレ、。
[0029] ビシクロ [2.2.1]ヘプト _ 2_ェン、
トリシクロ [4.3.0.12'5]— 8—デセン、
トリシクロ [4.4.0.12'5]— 3 ゥンデセン、
テトラシクロ [4.4.0.12'5.17'1Q] - 3 -ドデセン、
ペンタシクロ [6·5.1.13'6·02'7·09'13]— 4—ペンタデセン、
5 メチルビシクロ [2.2.1 ]ヘプト 2 ェン、
5 ェチルビシクロ [2.2· 1 ]ヘプト 2 ェン、
5 メトキシカルボ二ルビシクロ [2.2.1 ]ヘプト 2 ェン、 5_メチル _5 メトキシカルボ二ルビシクロ [2.2.1]ヘプト _2_ェン、
5 -シァノビシクロ [2.2.1]ヘプト _ 2 _ェン、
8 メトキシカルボ二ルテトラシクロ [4.4.0.12'5.17'1(>]_3—ドデセン、
8 _エトキシカルボ二ルテトラシクロ [4.4.0.12'5. l7'10] _ 3—ドデセン、
8 _n—プロポキシカルボ二ルテトラシクロ [4.4.0.12'5.17'1Q] _ 3—ドデセン
8-イソプロボ: シカノレボニノレテトラシクロ [4.4.0. 12'5.17'1Q]— 3—ドデセン、
8- ■n_ブトキミ /カノレボニノレテトラシクロ [4 AO.l^. '^— S—ドデセン
8-メチノレー 8ーメトキシカルボニルテトラ-シクロ [4 :.4·0·12'5.17Ί。]— 3—ドデセン、
8-メチノレー 8 エトキシ力/レポニノレテトラ ;シクロ HO.l2'5.:!7'^— 3—ドデセン、
8-メチノレー 8 n—プロポキシカノレボニノレテトラ、: /クロ [4.4·0·12'5.17Ί。]— 3—ドデ セン、
8-メチノレー 8 イソプロポキシカノレポニノレテトラ クロ [4.4.0.12'5.17,1。]— 3—ドデ セン、
8-メチノレー 8 n—ブトキシカノレボニノレラ ^トラシク '口 WAO.l^.f'^— S—ドデセ ン、
5-ェチリデンビシクロ [2.2.1]ヘプト— 2 ェン、
8-ェチリデンテトラシクロ [4·4·0.12'5.17'1[>] _3_ドデセン、
5-フエニノレビシクロ [2.2.1]ヘプト _2_ェン、
8-フエニルテトラシクロ [4·4·0.12'5.17'1[>] _ 3—ドデセン、
5_フルォロビシクロ [2.2.1]ヘプト _2_ェン、
5_フルォロメチルビシクロ [2.2.1]ヘプト _2_ェン、
5_トリフルォロメチルビシクロ [2.2.1]ヘプト _2_ェン、
5 _ペンタフルォロェチルビシクロ [2.2.1 ]ヘプト _ 2 _ェン、
5.5 ジフルォロビシクロ [2.2.1]ヘプト _2_ェン、
5.6 ジフルォロビシクロ [2.2.1]ヘプト _2_ェン、
5.5 ビス(トリフルォロメチル)ビシクロ [2.2.1]ヘプト一 2—ェン
5.6 ビス(トリフルォロメチル)ビシクロ [ 2.2.1 ]ヘプト 2 ェン 5—メチノレ一 5 -トリフルォロメチルビシクロ [2.2.1]ヘプト一 2 _ェン、
5, 5,6—トリフルォロビシクロ [2.2.1]ヘプト一 2—ェン、
5, 5,6—トリス(フルォロメチル)ビシクロ [2.2.1]ヘプト一 2—ェン、
5, 5,6,6 _テトラフルォロビシクロ[2.2.1]へプト_ 2 _ェン、
5, 5,6,6—テトラキス(トリフルォロメチル)ビシクロ [2.2.1]ヘプト _ 2 _ェン、
5.5 -ジフルォロ一 6,6—ビス(トリフルォロメチル)ビシクロ [2.2.1 ]ヘプト一 2—ェン
5,6 ジフルオロー 5,6 ビス(トリフルォロメチル)ビシクロ [2.2.1 ]ヘプトー 2 ェン
5, 5,6 -トリフルォロ 5 トリフルォロメチルビシクロ [2.2· 1]ヘプトー 2 ェン、 5 -フルォロ 5—ペンタフルォロェチル 6 , 6—ビス(トリフルォロメチル)ビシク口 [ 2.2.1]ヘプトー 2—ェン、
5.6 -ジフルォロ 5—ヘプタフルオロー iso プロピル 6—トリフルォロメチルビ シクロ [2.2.1]ヘプトー 2—ェン、
5 クロ口一 5,6,6 トリフルォロビシクロ [2.2.1]ヘプト一 2 ェン、
5,6 ジクロロ一 5,6 ビス(トリフルォロメチル)ビシクロ [2.2.1]ヘプト一 2 ェン、 5, 5,6 トリフルォロ一 6 トリフルォロメトキシビシクロ [2.2.1]ヘプト一 2 ェン、 5, 5,6 -トリフノレオ口 - 6 -ヘプタフルォロプロポキシビシクロ [2.2.1 ]ヘプト _ 2 _ ェン、
8—フルォロテトラシクロ [4.4.0.12'5.17'10]— 3—ドデセン、
8—フルォロメチルテトラシクロ [4.4.0.12'5.17'10]— 3—ドデセン、
8—ジフルォロメチルテトラシクロ [4.4.0.12'5.17'10]— 3—ドデセン、
8 -トリフルォロメチルテトラシクロ [4.4.0.12'5.17'1Q] - 3 -ドデセン、
8 _ペンタフルォロェチルテトラシクロ [4.4.0.12'5.1"°] - 3 -ドデセン、
8.8—ジフルォロテトラシクロ [4.4.0.12,5.17,1°]— 3—ドデセン、
8.9—ジフルォロテトラシクロ [4.4.0.12,5.17,1°]— 3—ドデセン、
8.8—ビス(トリフルォロメチル)テトラシクロ [ 。.:!2'5.:!7'1。]— 3—ドデセン、
8.9—ビス(トリフルォロメチル)テトラシクロ [4.4.0· l2'5. :!7'10]— 3—ドデセン、 8—メチノレ一 8 -トリフルォロメチルテトラシクロ [4.4.0.12'5. l7'10]— 3—ドデセン、 8, 8,9—トリフルォロテトラシクロ [ 。.:!2'5.:! 7'1。]— 3—ドデセン、
8,8,9—トリス(トリフルォロメチル)テトラシクロ [4.4.0.12'5.17'1Q]— 3—ドデセン、 8,8,9,9—テトラフルォロテトラシクロ [4.4.0.12'5.17'1[>]— 3—ドデセン、
8,8,9,9 _テトラキス(トリフルォロメチル)テトラシクロ[4.4.0.12'5.17'1°] _ 3_ドデセ ン、
8.8—ジフルォロ一 9,9—ビス(トリフルォロメチル)テトラシクロ [4.4.0.12'5.1"°] - 3 ードデセン、
8.9—ジフルォロ一 8,9—ビス(トリフルォロメチル)テトラシクロ W^.O. l2'5. :!7'10]— 3 ードデセン、
8,8,9-トリフルォロ 9 トリフルォロメチルテトラシクロ [4.4.0.12'5.17'10]— 3 ド デセン、
8,8,9—トリフルォロ一 9—トリフルォロメトキシテトラシクロ [4.4.0.12'5.17'1Q]— 3—ド デセン、
8,8,9-トリフノレオ口 9 ペンタフルォロプロポキシテトラシクロ [4.4.0.12'5.17'1Q] —3—ドデセン、
8—フルォロ 8—ペンタフルォロェチル 9,9—ビス(トリフルォロメチル)テトラシ クロ [4.4.0.12'5.17'1C)]— 3—ドデセン、
8,9-ジフルォロ _ 8 _ヘプタフルォロ iso _プロピル一 9 -トリフルォロメチルテトラ シクロ [4.4.0.12'5.1"。] - 3 -ドデセン、
8—クロ口一 8,9,9—トリフルォロテトラシクロ AO. l2'5. :!7'"1]— 3—ドデセン、
8,9—ジクロロ一 8,9—ビス(トリフルォロメチル)テトラシクロ [4.4.0.12'5.17'1(>]— 3— ドデセン、
8 - (2,2,2—トリフルォロエトキシカルボニル)テトラシクロ [4.4.0.12'5.17'1(>]— 3—ド デセン、
8—メチル一8— (2,2,2—トリフルォロエトキシカルボニル)テトラシクロ [4.4.0.12'5.
I7'10]— 3—ドデセン
などを挙げることができる。これらは、単独で又は 2種以上を併用することができる。 [0033] 特定単量体のうち好ましいのは、上記式 (I)中、 R1及び R3が水素原子又は炭素数 :!〜 10、さらに好ましくは 1〜4、特に好ましくは 1〜2の炭化水素基であり、 R2及び R4 が水素原子又は一価の有機基であって、 R2及び R4の少なくとも一つは水素原子及 び炭化水素基以外の極性を有する極性基を示し、 mは 0〜3の整数、 pは 0〜3の整 数であり、より好ましくは m + p = 0〜4、さらに好ましくは 0〜2、特に好ましくは m= l 、 p = 0であるものである。 m= l、 p = 0である特定単量体は、得られる環状ォレフィン 系樹脂のガラス転移温度が高ぐかつ機械的強度も優れたものとなる点で好ましい。
[0034] 特定単量体の極性基としては、カルボキシル基、水酸基、アルコキシカルボニル基 、ァリロキシカルボニル基、アミノ基、アミド基、シァノ基などが挙げられ、これら極性基 はメチレン基などの連結基を介して結合していてもよい。また、カルボニル基、エーテ ル基、シリルエーテル基、チォエーテル基、イミノ基など極性を有する 2価の有機基 が連結基となって結合している炭化水素基なども極性基として挙げられる。これらの 中では、カルボキシル基、水酸基、アルコキシカルボニル基又はァリロキシカルボ二 ル基が好ましぐ特にアルコキシカルボニル基又はァリロキシカルボニル基が好まし い。
[0035] さらに、 R2及び R4の少なくとも一つが式一(CH ) COORで表される極性基である
2 n
単量体は、得られる環状ォレフィン系樹脂が高いガラス転移温度と低い吸湿性、各 種材料との優れた密着性を有するものとなる点で好ましい。上記の特定の極性基に 力かる式において、 Rは炭素原子数 1〜12、さらに好ましくは:!〜 4、特に好ましくは 1 〜2の炭化水素基、好ましくはアルキル基である。また、 nは、通常、 0〜5である力 n の値が小さいものほど、得られる環状ォレフィン系樹脂のガラス転移温度が高くなる ので好ましぐさらに nが 0である特定単量体はその合成が容易である点で好ましい。
[0036] また、上記式 (I)において R1又は R3がアルキル基であることが好ましぐ炭素数:!〜 4のァノレキノレ基、さらに好ましくは 1〜2のアルキル基、特にメチル基であることが好ま しぐ特に、このアルキル基が上記の式—(CH ) COORで表される特定の極性基が
2 n
結合した炭素原子と同一の炭素原子に結合されていることが、得られる環状ォレフィ ン系樹脂の吸湿性を低くできる点で好ましい。
[0037] <共重合性単量体 > 共重合性単量体の具体例としては、シクロブテン、シクロペンテン、シクロヘプテン 、シクロオタテン、ジシクロペンタジェンなどのシクロォレフインを挙げることができる。 シクロォレフインの炭素数としては、 4〜20力好ましく、さらに好ましいのは 5〜: 12であ る。これらは、単独で又は 2種以上を併用することができる。
[0038] 特定単量体 Z共重合性単量体の好ましい使用範囲は、重量比で 100Z0〜50Z
50であり、さらに好ましくは 100/0〜60/40である。
[0039] <開環重合触媒 >
本発明において、(1)特定単量体の開環重合体、及び (2)特定単量体と共重合性 単量体との開環共重合体を得るための開環重合反応は、メタセシス触媒の存在下に 行われる。
[0040] このメタセシス触媒は、 (a) W、 Mo及び Reの化合物力 選ばれた少なくとも 1種と、
(b)デミングの周期律表 IA族元素(例えば Li、 Na、 Kなど)、 ΠΑ族元素(例えば、 Mg 、 Caなど)、 IIB族元素(例えば、 Zn、 Cd、 Hgなど)、 ΠΙΑ族元素(例えば、 B、 A1など) 、 IVA族元素(例えば、 Si、 Sn、 Pbなど)、あるいは IVB族元素(例えば、 Ti、 Zrなど) の化合物であって、少なくとも 1つの該元素 炭素結合あるいは該元素一水素結合 を有するものから選ばれた少なくとも 1種との組合せからなる触媒である。また、この 場合に触媒の活性を高めるために、後述の(c)添加剤が添加されたものであってもよ レ、。
[0041] (a)成分として適当な W、 Moあるいは Reの化合物の代表例としては、 WC1、 MoC
6
1 、Re〇Cl などの特開平 1— 132626号公報第 8頁左下欄第 6行〜第 8頁右上欄
6 3
第 17行に記載の化合物を挙げることができる。
[0042] (b)成分の具体例としては、 n-C H Li、 (C H ) Al、(C H ) A1C1、 (C H ) A1C1
4 9 2 5 3 2 5 2 2 5 1.5 1.
、 (C H )A1C1、メチルアルモキサン、 LiHなど特開平 1—132626号公報第 8頁右
5 2 5 2
上欄第 18行〜第 8頁右下欄第 3行に記載の化合物を挙げることができる。添加剤で ある(c)成分の代表例としては、アルコール類、アルデヒド類、ケトン類、アミン類など が好適に用レ、ることができるが、さらに特開平 1— 132626号公報第 8頁右下欄第 16 行〜第 9頁左上欄第 17行に示される化合物を使用することができる。
[0043] メタセシス触媒の使用量としては、上記(a)成分と特定単量体とのモル比で「(a)成 分:特定単量体」が、通常、 1 : 500〜: 1 : 50,000となる範囲、好ましくは 1 : 1 ,000〜1 : 10,000となる範囲とされる。 (a)成分と(b)成分との割合は、金属原子比で(a): (b) 力 Si::!〜 1: 50、好ましくは 1: 2〜: 1: 30の範囲とされる。 (a)成分と(c)成分との割合 は、モル比で(c): (a)が 0. 005 ::!〜 15 : 1、好ましくは 0. 05::!〜 7: 1の範囲とされ る。
[0044] <重合反応用溶媒 >
開環重合反応において用いられる溶媒 (分子量調節剤溶液を構成する溶媒、特定 単量体及び/又はメタセシス触媒の溶媒)としては、例えば、ペンタン、へキサン、へ プタン、オクタン、ノナン、デカンなどのァノレカン類、シクロへキサン、シクロヘプタン、 シクロオクタン、デカリン、ノルボルナンなどのシクロアルカン類;ベンゼン、トルエン、 キシレン、ェチルベンゼン、クメンなどの芳香族炭化水素;クロロブタン、ブロモへキサ ン、塩化メチレン、ジクロロェタン、へキサメチレンジブ口ミド、クロ口ベンゼン、クロロホ ルム、テトラクロロエチレンなどのハロゲン化アルカン、ハロゲン化ァリール;酢酸ェチ ル、酢酸 n—ブチル、酢酸 iso—ブチル、プロピオン酸メチル、ジメトキシェタンなどの 飽和カルボン酸エステル類;ジブチルエーテル、テトラヒドロフラン、ジメトキシェタン などのエーテル類などを挙げることができ、これらは単独であるいは混合して用いるこ とができる。これらのうち、芳香族炭化水素が好ましい。
[0045] 溶媒の使用量としては、「溶媒:特定単量体 (重量比)」が、通常、 1 ::!〜 10 : 1となる 量とされ、好ましくは 1 ::!〜 5 : 1となる量とされる。
[0046] <分子量調節剤 >
得られる開環 (共)重合体の分子量の調節は、重合温度、触媒の種類、溶媒の種 類によっても行うことができるが、本発明においては、分子量調節剤を反応系に共存 させることにより調節する。
[0047] ここに、好適な分子量調節剤としては、例えばエチレン、プロペン、 1—ブテン、 1 - ペンテン、 1—へキセン、 1 _ヘプテン、 1—オタテン、 1 _ノネン、 1—デセンなどのひ —ォレフイン類及びスチレンを挙げることができ、これらのうち、 1—ブテン、 1—へキ センが特に好ましい。これらの分子量調節剤は、単独で又は 2種以上を混合して用 レ、ることができる。 [0048] 分子量調節剤の使用量としては、開環重合反応に供される特定単量体 1モルに対 して 0. 005〜0. 6モノレ、好ましくは 0. 02〜0. 5モノレとされる。
[0049] (2)開環共重合体を得るには、開環重合工程において、特定単量体と共重合性単 量体とを開環共重合させてもよいが、さらに、ポリブタジエン、ポリイソプレンなどの共 役ジェン化合物、スチレン—ブタジエン共重合体、エチレン—非共役ジェン共重合 体、ポリノルボルネンなどの主鎖に炭素一炭素間二重結合を 2つ以上含む不飽和炭 化水素系ポリマーなどの存在下に特定単量体を開環重合させてもよい。
[0050] 以上のようにして得られる開環(共)重合体は、そのままでも用いることができるが、 この(共)重合体の分子中のォレフィン性不飽和結合を水素添加して得られた(3)水 素添加(共)重合体は耐熱着色性ゃ耐光性に優れ、位相差フィルムの耐久性を向上 させることができるので好ましレ、。
[0051] <水素添加触媒 >
水素添加反応は、通常のォレフィン性不飽和結合を水素添加する方法が適用でき る。すなわち、開環重合体の溶液に水素添加触媒を添加し、これに常圧〜 300気圧
、好ましくは 3〜200気圧の水素ガスを 0〜200°C、好ましくは 20〜: 180°Cで作用さ せることによって行われる。
[0052] 水素添加触媒としては、通常のォレフィン性化合物の水素添加反応に用いられるも のを使用することができる。この水素添加触媒としては、不均一系触媒及び均一系触 媒が挙げられる。
[0053] 不均一系触媒としては、ノ ラジウム、白金、ニッケノレ、ロジウム、ルテニウムなどの貴 金属触媒物質を、カーボン、シリカ、アルミナ、チタニアなどの担体に担持させた固体 触媒を挙げることができる。また、均一系触媒としては、ナフテン酸二ッケノレ/トリェチ ノレアノレミニゥム、ニッケルァセチルァセトナート/トリェチルアルミニウム、オタテン酸 コバルト /n_ブチルリチウム、チタノセンジクロリド/ジェチルアルミニウムモノクロリ ド、酢酸ロジウム、クロロトリス(トリフエニルホスフィン)ロジウム、ジクロロトリス(トリフエ ニルホスフィン)ルテニウム、クロロヒドロカルボニルトリス(トリフエニルホスフィン)ルテ 二ゥム、ジクロロカルボニルトリス(トリフエニルホスフィン)ノレテニゥムなどを挙げること ができる。触媒の形態は、粉末でも粒状でもよい。 [0054] これらの水素添加触媒は、開環(共)重合体:水素添加触媒 (重量比)が、 1: 1 X 10 一6〜 1: 2となる割合で使用される。
[0055] 水素添加(共)重合体の水素添加率は、 500MHz, ^— NMRで測定した値が 50 %以上、好ましくは 90%以上、さらに好ましくは 98%以上、最も好ましくは 99%以上 である。水素添カ卩率が高いほど、熱や光に対する安定性が優れたものとなり、本発明 の透明フィルムとして使用した場合に長期にわたって安定した特性を得ることができ る。
[0056] なお、開環 (共)重合体分子中に芳香族基を有する場合、係る芳香族基は耐熱着 色性、耐光性を低下させることが少なぐ逆に光学特性、例えば、屈折率、波長分散 性等の光学的特性あるいは耐熱性に関して有利な効果をもたらすこともあり、必ずし も水素添加される必要はない。
[0057] 上記のようにして得られた開環(共)重合体には、公知の酸化防止剤、例えば 2,6— ジー tーブチルー 4 メチルフエノール、 2, 2' ジォキシー 3, 3' ジー tーブチルー 5, 5'—ジメチルジフエニルメタン、テトラキス [メチレン 3—(3,5—ジ tーブチルー 4 ーヒドロキシフエニル)プロピオネート]メタン;紫外線吸収斉 IJ、例えば 2,4 ジヒドロキ シベンゾフエノン、 2—ヒドロキシー4ーメトキシベンゾフエノンなどを添加することによ つて安定化することができる。また、加工性を向上させる目的で、滑剤などの添加剤 を添カロすることもできる。
[0058] なお、本発明において用いられる環状ォレフィン系樹脂として使用される水素添カロ
(共)重合体は、当該水素添加(共)重合体中に含まれるゲル含有量力 重量%以下 であることが好ましぐさらに 1重量%以下であることが特に好ましい。
[0059] また、本発明において用いられる環状ォレフィン系樹脂として、 (4)上記(1)の開環
(共)重合体をフリーデルクラフト反応により環化したのち、水素添加した (共)重合体 使用でさる。
[0060] <フリーデルクラフト反応による環化 >
上記(1)又は(2)の開環(共)重合体をフリーデルクラフト反応により環化する方法 は特に限定されるものではないが、特開昭 50— 154399号公報に記載の酸性化合 物を用いた公知の方法が採用できる。酸性化合物としては、具体的には、 A1C1 、 BF 、 FeCl、 Al〇、 HC1、 CH ClCO〇H、ゼォライト、活性白土等のルイス酸、ブレン ステッド酸が用いられる。
[0061] 環化された開環 (共)重合体は、上記(1)又は (2)の開環 (共)重合体と同様に水素 添カ卩できる。
[0062] さらに、本発明において用いられる環状ォレフィン系樹脂として、(5)上記特定単量 体と不飽和二重結合含有化合物との飽和共重合体も使用できる。
[0063] <不飽和二重結合含有化合物 >
不飽和二重結合含有化合物としては、例えばエチレン、プロピレン、ブテンなど、好 ましくは炭素数 2〜12、さらに好ましくは炭素数 2〜8のォレフイン系化合物を挙げる こと力 Sできる。
[0064] 特定単量体/不飽和二重結合含有化合物の好ましい使用範囲は、重量比で 90 /10〜40/60であり、さらに好ましくは 85/15〜50/50である。
[0065] 本発明において、(5)特定単量体と不飽和二重結合含有化合物との飽和共重合 体を得るには、通常の付加重合法を使用できる。
[0066] <付加重合触媒 >
上記(5)飽和共重合体を合成するための触媒としては、チタン化合物、ジルコユウ ム化合物及びバナジウム化合物から選ばれた少なくとも一種と、助触媒としての有機 アルミニウム化合物とが用いられる。
[0067] ここで、チタン化合物としては、四塩化チタン、三塩化チタンなどを、またジルコユウ ム化合物としてはビス(シクロペンタジェニル)ジルコニウムクロリド、ビス(シクロペンタ ジェニル)ジルコニウムジクロリドなどを挙げること力できる。
[0068] さらに、バナジウム化合物としては、一般式
VO (OR) X、又は V (OR) X
a b c d
〔ただし、 Rは炭化水素基、 Xはハロゲン原子であって、 0≤a≤3、 0≤b≤3、 2≤(a + b)≤3、 0≤c≤4, 0≤d≤4, 3≤ (c + d)≤4である。〕
で表されるバナジウム化合物、あるいはこれらの電子供与付加物が用いられる。
[0069] 上記電子供与体としては、アルコール、フヱノール類、ケトン、ァノレデヒド、カルボン 酸、有機酸又は無機酸のエステル、エーテル、酸アミド、酸無水物、アルコキシシラン などの含酸素電子供与体、アンモニア、ァミン、二トリル、イソシアナートなどの含窒素 電子供与体などが挙げられる。
[0070] さらに、助触媒としての有機アルミニウム化合物としては、少なくとも 1つのアルミユウ ム—炭素結合あるいはアルミニウム—水素結合を有するものから選ばれた少なくとも 一種が用いられる。
[0071] 上記において、例えばバナジウム化合物を用いる場合におけるバナジウム化合物 と有機アルミニウム化合物の比率は、バナジウム原子に対するアルミニウム原子の比 (A1/V)が 2以上であり、好ましくは 2〜50、特に好ましくは 3〜20の範囲である。
[0072] 付加重合に使用される重合反応用溶媒は、開環重合反応に用いられる溶媒と同じ ものを使用することができる。また、得られる(5)飽和共重合体の分子量の調節は、 通常、水素を用いて行われる。
[0073] さらに、本発明において用いられる環状ォレフィン系樹脂として、(6)上記特定単量 体、及びビニル系環状炭化水素系単量体又はシクロペンタジェン系単量体から選ば れる 1種以上の単量体の付加型共重合体及びその水素添加共重合体も使用できる
[0074] <ビニル系環状炭化水素系単量体 >
ビニル系環状炭化水素系単量体としては、例えば、 4ービニルシクロペンテン、 2— メチル _4_イソプロぺニルシクロペンテンなどのビュルシクロペンテン系単量体、 4 —ビュルシクロペンタン、 4_イソプロぺニルシクロペンタンなどのビュルシクロペンタ ン系単量体などのビュル化 5員環炭化水素系単量体、 4—ビュルシクロへキセン、 4 —イソプロぺニノレシクロへキセン、 1—メチノレ _4_イソプロぺニノレシクロへキセン、 2 —メチノレ _4—ビニノレシクロへキセン、 2—メチノレ一 4_イソプロぺニノレシクロへキセン などのビュルシクロへキセン系単量体、 4—ビュルシクロへキサン、 2_メチル _4_ イソプロぺニルシクロへキサンなどのビュルシクロへキサン系単量体、スチレン、 ひ - メチルスチレン、 2—メチルスチレン、 3—メチルスチレン、 4—メチルスチレン、 1—ビ 二ルナフタレン、 2—ビュルナフタレン、 4_フエニルスチレン、 p—メトキシスチレンな どのスチレン系単量体、 d—テルペン、 1—テルペン、ジテルペン、 d—リモネン、 1 - リモネン、ジペンテンなどのテルペン系単量体、 4—ビエルシクロヘプテン、 4—イソプ ロぺニルシクロヘプテンなどのビュルシクロヘプテン系単量体、 4—ビュルシクロヘプ タン、 4_イソプロぺニルシクロヘプタンなどのビュルシクロヘプタン系単量体など力 S 挙げられる。好ましくは、スチレン、 ひ一メチルスチレンである。これらは、単独で又は 2種以上を併用することができる。
[0075] <シクロペンタジェン系単量体 >
(6)付加型共重合体の単量体に使用されるシクロペンタジェン系単量体としては、 例えばシクロペンタジェン、 1—メチルシクロペンタジェン、 2—メチルシクロペンタジ ェン、 2—ェチルシクロペンタジェン、 5—メチルシクロペンタジェン、 5,5—メチルシク 口ペンタジェンなどが挙げられる。好ましくはシクロペンタジェンである。これらは、単 独で又は 2種以上を併用することができる。
[0076] 上記特定単量体、ビュル系環状炭化水素系単量体及びシクロペンタジェン系単量 体から選ばれる 1種以上の単量体の付加型 (共)重合体は、上記(5)特定単量体と 不飽和二重結合含有化合物との飽和共重合体と同様の付加重合法で得ることがで きる。
[0077] また、上記付加型 (共)重合体の水素添加(共)重合体は、上記(3)開環 (共)重合 体の水素添加(共)重合体と同様の水添法で得ることができる。
[0078] さらに、本発明において用いられる環状ォレフィン系樹脂として、(7)上記特定単量 体とアタリレートとの交互共重合体も使用できる。
[0079] <アタリレート >
(7)上記特定単量体とアタリレートとの交互共重合体の製造に用いられるアタリレー トとしては、例えば、メチルアタリレート、 2_ェチルへキシルアタリレート、シクロへキシ ルアタリレートなどの炭素原子数 1〜20の直鎖状、分岐状又は環状アルキルアタリレ ート、グリシジルアタリレート、 2—テトラヒドロフルフリルアタリレートなどの炭素原子数 2〜20の複素環基含有アタリレート、ベンジルアタリレートなどの炭素原子数 6〜20 の芳香族環基含有アタリレート、イソボロニルアタリレート、ジシクロペンタニルアタリレ ートなどの炭素数 7〜30の多環構造を有するアタリレートが挙げられる。
[0080] 本発明において、(7)上記特定単量体とアタリレートとの交互共重合体を得るため には、ルイス酸存在下、上記特定単量体とアタリレートとの合計を 100モルとしたとき 、通常、上記特定単量体が 30〜70モル、アタリレートが 70〜30モルの割合で、好ま しくは上記特定単量体力 40〜60モル、アタリレート力 0〜40モノレ割合で、特に好ま しくは上記特定単量体が 45〜55モル、アタリレートが 55〜45モルの割合でラジカル 重合する。
[0081] (7)上記特定単量体とアタリレートとの交互共重合体を得るために使用するルイス 酸の量は、アタリレート 100モノレに対して 0. 001〜:!モノレとなる量とされる。また、公 知のフリーラジカルを発生する有機過酸化物又はァゾビス系のラジカル重合開始剤 を用いることができ、重合反応温度は、通常、— 20°C〜80°C、好ましくは 5°C〜60°C である。また、重合反応用溶媒には、開環重合反応に用いられる溶媒と同じものを使 用すること力 Sできる。
[0082] なお、本発明でいう「交互共重合体」とは、上記特定単量体に由来する構造単位が 隣接しない、すなわち、上記特定単量体に由来する構造単位の隣は必ずアタリレー トに由来する構造単位である構造を有する共重合体のことを意味しており、アタリレー ト由来の構造単位同士が隣接して存在する構造を否定するものではない。
[0083] 本発明において用いられる環状ォレフィン系樹脂の好ましい分子量は、固有粘度〔 η〕 で 0. 2〜5dl/g、さらに好ましくは 0. 3〜3dl/g、特に好ましくは 0. 4〜: 1. 5d inh
1/gであり、ゲルパーミエーシヨンクロマトグラフ(GPC)で測定したポリスチレン換算 の数平均分子量(Mn)は8,000〜100,000、さらに好ましくは10,000〜80,000、 特に好まし <は 12,000〜50,000であり、重量平均分子量(Mw)は 20,000〜300, 000、さらに好ましくは30,000〜250,000、特に好ましくは40,000〜200,000の範 囲のものが好適である。
[0084] 固有粘度〔 〕 、数平均分子量及び重量平均分子量が上記範囲にあることによつ
inh
て、環状ォレフィン系樹脂の耐熱性、耐水性、耐薬品性、機械的特性と、本発明の 防眩フィルムとして使用したときの光学特性の安定性とのバランスが良好となる。
[0085] 本発明において用いられる環状ォレフィン系樹脂のガラス転移温度 (Tg)としては、 通常、 120°C以上、好ましくは 120〜350。C、さらに好ましくは 130〜250°C、特に好 ましくは 140〜200°Cである。得られる環状ォレフィン系樹脂フィルムの光学特性変 化を安定にし、延伸加工など、 Tg近辺まで加熱して加工する場合の樹脂の熱劣化を 防止するためである。
[0086] 本発明において用いられる環状ォレフィン系樹脂の 23°Cにおける飽和吸水率は、 好ましくは 2重量%以下、更に好ましくは 0. 01〜2重量%、特に好ましくは 0. :!〜 1 重量%の範囲にある。飽和吸水率がこの範囲内であると、光学特性が均一であり、得 られる環状ォレフィン系樹脂フィルムと他の光学部材ゃ接着剤などとの密着性が優 れ、使用途中で剥離などが発生せず、また、酸化防止剤などとの相溶性にも優れ、 多量に添加することも可能となる。飽和吸水率は ASTM D570に従レ、、 23°C水中 で 1週間浸漬して増加重量を測定することにより得られる値である。
[0087] 本発明において用いられる環状ォレフィン系樹脂としては、その光弾性係数 (C )
P
力^〜 100 ( X 10— 12Pa— であり、かつ応力光学係数(C )カ 1,500〜4,000 ( X 10— 12
R
Pa— を満たすようなものが好適に使用される。ここで、光弾性係数(C )及び応力光
P
学係数(C )については、種々の文献(Polvmer Journal, Vol.27, No,9pp 943-950(199
R
5),日本レオロジ一学会誌, Vol.l9,No.2, p93-97(1991),光弾性実験法, 日刊工業新 聞社,昭和 50年第 7版に記載されている。前者がポリマーのガラス状態での応力に よる位相差の発生程度を表すのに対し、後者は流動状態での応力による位相差の 発生程度を表す。
[0088] 光弾性係数(C )が大きいことは、環状ォレフィン系樹脂フィルムを他の光学部材ゃ
P
接着剤と貼り合わせて用いた場合に外的因子又は自らの凍結した歪みから発生した 歪みから発生する応力などにおいて敏感に光学特性が変化してしまうことを表し、例 えば、本発明のように保護層を積層する場合、及び他の光学部材に固定して用いる 場合には、貼り合わせ時の残留歪みや、温度変化や湿度変化などにともなう材料の 収縮により発生する微小な応力によって不必要な位相差を発生しやすいことを意味 する。このことから、できるだけ光弾性係数 (C )は小さい程よい。
P
[0089] 一方、応力光学係数 (C )が大きいことは、例えば、環状ォレフィン系樹脂フィルム
R
に位相差の発現性を付与する際に少ない延伸倍率で所望の位相差を得られるよう になったり、大きな位相差を付与しうるフィルムを得やすくなつたり、同じ位相差を所 望の場合には応力光学係数(C )が小さいものと比べてフィルムを薄肉化できるとレ、う
R
大きなメリットがある。 [0090] 以上のような見地から、光弾性係数 (C )が好ましくは 0〜: 100 ( X 10— "Pa— 、さら
P
に好ましくは 0〜80 ( X 10— 12Pa— 、特に好ましくは 0〜50 ( X 10— 12Pa— 、より好ましく は0〜30 10—12?&1)、最も好ましくは0〜20 ( 10—1 &—1)でぁる。保護層を積層 した時に発生する応力、防眩フィルムを他の光学部材に固定した時に発生する応力 、使用する際の環境変化などによって発生する位相差変化などによる不必要な位相 差を最小限に止めるためである。
[0091] 本発明において用いられる環状ォレフィン系樹脂は、上記のような(1)〜(2)開環( 共)重合体、(3)〜 (4)水素添加(共)重合体、 (5)飽和共重合体、(6)付加型 (共) 重合体、もしくはその水素添加(共)重合体、又は(7)交互共重合体より構成されるが 、これに公知の酸化防止剤、紫外線吸収剤などを添加してさらに安定化することがで きる。また、加工性を向上させるために、滑剤などの従来の樹脂加工において用いら れる添加剤を添加することもできる。
[0092] 本発明において用いられる環状ォレフィン系樹脂は、公知の酸化防止剤、例えば 2 ,6 ジー tーブチルー 4 メチルフエノール、 2,2' ジォキシー 3,3' ジー t ブチル — 5,5'—ジメチルジフエニルメタン、テトラキス [メチレン一 3— (3,5—ジ一 t ブチノレ 4ーヒドロキシフエニル)プロピオネート]メタン、紫外線吸収剤、例えば 2,4—ジヒド ロキシベンゾフエノン、 2 ヒドロキシー4ーメトキシベンゾフエノンなどを添加すること によって安定化されていてもよい。また、加工性を向上させる目的で、滑剤などの添 加剤が添加されていてもよい。
[0093] 本発明の防眩フィルムに用いられる環状ォレフィン系樹脂フィルムとしては、上記の 環状ォレフィン系樹脂を溶融成形法あるいは溶液流延法 (溶剤キャスト法)など、公 知の方法によりフィルムもしくはシート状に成形したものを用いることができる。このう ち、膜厚の均一性及び表面平滑性が良好になる点から溶剤キャスト法が好ましい。ま た、製造コスト面からは溶融成形法が好ましい。
[0094] 本発明において用いられる透明フィルム、すなわち環状ォレフィン系樹脂フィルム の厚さは、通常は:!〜 500 x m、好ましくは:!〜 300 x m、さらに好ましくは 10〜250 x m、特に好ましくは 50〜200 x mである。良好なハンドリングを確保するとともに、 ロール状への卷き取りを容易にするためである。 [0095] 本発明において用いられる透明フィルム(環状ォレフィン系樹脂フィルム)の厚み分 布は、通常は平均値に対して ± 20%以内、好ましくは ± 10%以内、さらに好ましくは ± 5%以内、特に好ましくは ± 3%以内である。また、 1cmあたりの厚みの変動は、通 常は 10%以下、好ましくは 5%以下、さらに好ましくは 1 %以下、特に好ましくは 0. 5 %以下であることが望ましい。力かる厚み制御を実施することにより、防眩フィルムな どの導電性透明フィルム面内におけるムラを防ぐことができる。
[0096] 具体的には、 JSR (株)製、商品名「アートン」等が挙げられる。
[0097] 本発明の導電性透明フィルムに使用される透明フィルムとしては、必要に応じて延 伸加工したものが好適に使用される。具体的には、公知の一軸延伸法あるいは二軸 延伸法により製造することができる。すなわち、テンター法による横一軸延伸法、ロー ル間圧縮延伸法、周遠の異なるロールを利用する縦一軸延伸法などあるいは横一 軸と縦一軸を組み合わせた二軸延伸法、インフレーション法による延伸法などを用い ること力 Sできる。
[0098] 一軸延伸法の場合、延伸速度は、通常は:!〜 5, 000%/分であり、好ましくは 50〜 1,000%/分であり、さらに好ましくは 100〜: 1,000%/分であり、特に好ましくは 10 0〜500%/分である。
[0099] 二軸延伸法の場合、同時 2方向に延伸を行う場合や一軸延伸後に最初の延伸方 向と異なる方向に延伸処理する場合がある。これらの場合、 2つの延伸軸の交わり角 度は、通常は 120〜60度の範囲である。また、延伸速度は各延伸方向で同じであつ てもよく、異なっていてもよぐ通常は:!〜 5, 000%/分であり、好ましくは 50〜: 1,000 %/分であり、さらに好ましくは 100〜: 1,000%Z分であり、特に好ましくは 100〜50 0%ノ分である。
[0100] 延伸加工温度は、特に限定されるものではないが、本発明の環状ォレフィン系樹脂 のガラス転移温度 (Tg)を基準として、通常は Tg± 30°C、好ましくは Tg± 10。C、さら に好ましくは Tg_ 5〜Tg + 10°Cの範囲である。上記範囲内とすることで、位相差ム ラの発生を抑えることが可能となり、また屈折率楕円体の制御が容易になることから 好ましい。
[0101] 延伸倍率は、所望する特性により決定されるため特に限定はされないが、通常は 1 . 01〜: 10倍、好ましくは 1.:!〜 5倍、さらに好ましくは 1. :!〜 3. 5倍である。延伸倍 率が 10倍を超える場合、位相差の制御が困難になる場合がある。
[0102] 延伸したフィルムは、そのまま冷却してもよレ、が、 Tg_ 20°C〜Tgの温度雰囲気下 に少なくとも 10秒以上、好ましくは 30秒〜 60分、さらに好ましくは 1分〜 60分静置さ れることが好ましい。これにより、位相差特性の経時変化が少なく安定した環状ォレフ イン系樹脂フィルムからなる位相差フィルムが得られる。
[0103] また、本発明において用いられる環状ォレフィン系樹脂フィルムの線膨張係数は、 温度 20°Cから 100°Cの範囲において、好ましくは 1 X 10— 4 (1/°C)以下であり、さら に好ましくは 9 X 10— 5 (1/°C)以下であり、特に好ましくは 8 X 10— 5 (1/°C)以下であ り、最も好ましくは 7 X 10— 5 (1/°C)以下である。また、位相差フィルムの場合には、延 伸方向とそれに垂直方向の線膨張係数差が好ましくは 5 X 10— 5 (1/°C)以下であり、 さらに好ましくは 3 X 10— 5 (1/°C)以下であり、特に好ましくは 1 X 10— 5 (1/°C)以下 である。線膨張係数を上記範囲内とすることで、上記環状ォレフィン系樹脂フィルム 力 なる位相差フィルムを本発明の防眩フィルムとしたときに、使用時の温度及び湿 度などの影響力、らなる応力変化が及ぼす位相差の変化や防眩性の変化が抑えられ 、本発明の防眩フィルムとして使用したときに長期の特性の安定が得ることができる。
[0104] 上記のようにして延伸したフィルムは、延伸により分子が配向し透過光に位相差を 与えるようになるが、この位相差は、延伸前のフィルムの位相差値と延伸倍率、延伸 温度、延伸配向後のフィルムの厚さにより制御することができる。ここで、位相差は複 屈折光の屈折率差 (An)と厚さ(d)の積 (And)で定義される。
[0105] 粒子含有保讒層
本発明に係る粒子含有保護層(以下、単に保護層ともいう)は、活性エネルギー線 硬化性樹脂組成物および 50〜600nmの平均粒径を有する粒子を含む保護層形成 用組成物を光硬化させて得られる層である。
[0106] 上記活性エネルギー線硬化性樹脂組成物は、好ましくは (A)アタリロイル基を 3以 上有する多官能モノマー(以下、(A)成分という)、(B)グリシジノレ (メタ)アタリレート系 重合物にアクリル酸を付加反応させてなるポリマー(以下、(B)成分という)、及び (C) 任意にその他のアクリルオリゴマー(以下、(C)成分という)を特定量で配合してなる。 特に、(A)成分は、活性エネルギー線硬化性樹脂組成物から得られる保護層の硬 度、透明フィルムへの密着性等を付与し得る成分である。 (B)成分は、保護層の硬 度のさらなる向上、硬化性及び硬化時のカール発生の低減などを付与し得る成分で ある。 (B)成分を配合することにより、(B)成分が高分子量であり、かつ分子中に水酸 基を多く有することに起因して、疎水性の高レ、 (A)成分との相溶性が低下し、(B)成 分が得られる表面保護膜の表面に移行するためであると考えられる。 (C)成分は、強 靭性等を付与し得る任意成分である。
[0107] (A)成分の表面張力は、十分な硬度及び密着性を得ることができるという観点から 、 37mN/m以下の範囲が適当であり、さらに 30mN/m以上のものが好ましレ、。表 面張力の測定は、協和 CBVP式表面張力計を用いる垂直板法 (wilhemy method)に よる。
[0108] (A)成分の具体例としては、トリメチロールプロパントリアタリレート、ジトリメチローノレ プロパンテトラアタリレート、グリセリンプロピレングリコール付加物のトリアタリレート、ト リメチロールプロパンプロピレングリコール付加物のトリアタリレートなどが挙げられる 力 硬化塗膜が高硬度となることから、トリメチロールプロパントリアタリレート、ジトリメ チロールプロパンテトラアタリレートが好ましレ、。
[0109] 活性エネルギー線硬化性樹脂組成物中の (A)成分の配合量は、 40〜60重量% ( 但し、(A)、 (B)、(C)成分の合計が 100重量%である。)であることが適当であり、 5 0〜60重量%が好ましい。
[0110] (B)成分は、前記のように、グリシジノレ (メタ)アタリレート系重合物にアクリル酸を付 加反応させてなるポリマーアタリレートである。エポキシ基に対するアクリル酸の付カロ 量は、未反応のエポキシが組成物の安定性に悪影響を与えるため、 1 : 1〜: 1 : 0. 8程 度が適当であり、 1 : 1〜: 1 : 0. 9程度が好ましい。
[0111] グリシジル (メタ)アタリレート系重合物としては、グリシジノレ (メタ)アタリレートの単独 重合体、グリシジル (メタ)アタリレートとカルボキシル基を含有しない各種ひ, j3—不 飽和単量体との共重合体等が挙げられる。当該カルボキシノレ基を含有しないひ, β —不飽和単量体としては、各種の(メタ)アクリル酸エステル、スチレン、酢酸ビュル、 アクリロニトリルなどが例示できる。なお、グリシジル (メタ)アタリレートとカルボキシル 基を含有しないひ, β—不飽和単量体とを共重合させてグリシジル (メタ)アタリレート 系重合物を得ようとする場合には、反応時に架橋が生じることなぐ高粘度化やゲル 化を有効に防止することができる。グリシジル (メタ)アタリレート系重合物の分子量は 、硬化時のカール性の低減及びアクリル付加反応時のゲルィヒ防止の観点より重量平 均分子量 5, 000〜100, 000程度であり、 10, 000〜50, 000程度カ好ましレヽ。 (Β )成分中のグリシジル (メタ)アタリレートの使用割合は、保護層の硬度及びポリマーの 移行性などを考慮して 70重量%以上が適しており、 75重量%以上が好ましい。
[0112] (Β)成分の製造は、公知の共重合方法を適用できる。グリシジル (メタ)アタリレート 系重合体の製造は、この単量体、重合開始剤、必要により連鎖移動剤及び溶剤を反 応容器に仕込み、窒素気流下に 80〜90°C、 3〜6時間程度の条件にて行うことが適 切である。こうして得られたグリシジル (メタ)アタリレート系重合体とアクリル酸とを開環 エステル化反応させて、(B)成分を収得できるが、通常は、アクリル酸自体の重合を 防止するために酸素気流下に行うのがよぐまた反応温度は 100〜: 120°C、反応時 間は 5〜8時間程度が適切である。
[0113] 活性エネルギー線硬化性樹脂組成物中の(B)成分の配合量は、 10〜60重量% ( 但し、(A)、 (B)、(C)成分の合計が 100重量%である。)であることが適しており、 20 〜50重量%が好ましい。
[0114] (C)成分の具体例としては、多官能ポリエステルアタリレート、多官能ウレタンアタリ レート、エポキシアタリレートが挙げられる。なかでも、硬化塗膜の耐擦傷性、強靭性 等の観点から、多官能ウレタンアタリレートが好ましい。例えば (a)ヒドロキシル基を有 する (メタ)アタリレートと分子内に 2個以上のイソシァネート基を有するイソシァネート 化合物とのウレタン反応生成物、(b)分子内に 2個以上のイソシァネート基を有するィ ソシァネート化合物にポリオール、ポリエステル又はポリアミド系のジオールを反応さ せて付加体を合成した後、残ったイソシァネート基にヒドロキシル基を有する(メタ)ァ タリレートを付加させる反応生成物等が挙げられる(例えば、特開 2002— 275392号 参照)。
[0115] 多官能ウレタンアタリレートは、ヒドロキシル基を有する(メタ)アタリレートと 2個以上 のイソシァネート基を有する多価イソシァネートイ匕合物とからなるウレタン反応生成物 である。ヒドロキシノレ基を有する(メタ)アタリレートとしては、ペンタエリスリトールトリ(メ タ)アタリレート、ジペンタエリスリトールペンタ(メタ)アタリレートなどが好ましレ、。
[0116] 活性エネルギー線硬化性樹脂組成物中の(C)成分の配合量は、 0〜50重量% ( 但し、(A)、 (B)、(C)成分の合計が 100重量%である。)が適している。
[0117] 活性エネルギー線硬化性樹脂組成物は、個別用途に応じて、その粘度を調整する ために有機溶剤を配合できる。有機溶剤は、透明フィルムである環状ォレフィン系樹 脂フィルムを溶解しないものが適当であり、例えば、エステル系溶剤、アルコール溶 剤、ケトン系溶剤が好ましい。
[0118] 活性エネルギー線硬化性樹脂組成物を硬化させるために用いる活性エネルギー 線としては、例えば紫外線、電子線等のいずれでもよい。電子線等により樹脂組成物 を硬化させる場合には光重合開始剤は不要であるが、紫外線により硬化させる場合 には、樹脂組成物 100重量部に対し、通常、光重合開始剤 1〜: 15重量部程度を含 有させることができる。光重合開始剤としては、ダロキュア一 1173、ィルガキュア一 6 51、ィルガキュア一 184、ィルガキュア一 907、ィルガキュア一 754 (いずれもチバ' スペシャルティ.ケミカルズ社製)、ベンゾフヱノン等の各種の公知のものを使用できる 。必要に応じて、上記以外の各種添加剤、例えば、重合禁止剤、酸化防止剤、紫外 線吸収剤、帯電防止剤、光安定剤、溶剤、消泡剤、レべリング剤などを配合してもよ レ、。
[0119] 保護層に含まれる粒子は、特に限定されるものではないが、例えば、通常フィラーと して用いられるもののいずれでもよぐカーボンブラック、銅、ニッケル、銀、鉄又はこ れらの複合粉;酸化亜鉛、酸化錫、酸化チタン、一酸化錫、酸化カルシウム、酸化マ グネシゥム、酸化ベリリウム、酸化アルミニウム、シリカ(ヒュームドシリカ、溶融シリカ、 沈降性シリカ、超微粉無定形シリカ、結晶シリカ、無水珪酸等)等の金属酸化物;炭 酸カルシウム、炭酸カリウム、炭酸ナトリウム、炭酸マグネシウム、炭酸バリウム等の金 属炭酸塩;窒化硼素、窒化ケィ素、窒化アルミニウム等の金属窒化物、 SiC等の金属 炭化物;水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物;ほう酸アルミ二 ゥム、チタン酸バリウム、リン酸カルシウム、珪酸カルシウム、クレー、石膏、硫酸バリゥ ム、マイ力、ケイソゥ土、白土、タルク、ゼォライト、顔料等が挙げられる。なかでも、シ リカが好ましい。
[0120] 具体的には、保護層形成用組成物を調製する際に用いる粒子として、 日本ァエロ ジノレ株式会社製のァエロジノレ 50、 90G、 130、 200、 200V、 200CF、 300、 380、 R972、 R972V, R974、 RX200、 R202、 R805、 R812S、 0X50、 日本触媒社製 のェポスター MX020W、 MX030W、 MX050W、 MX100W、 MX— 150、 MX— 1 80、 MX— 300、ェポスター MA1002、シーポスター KE— E10、 KE— E30、 KE— E40、 KE_E50、 KE_E70、綜研化学社製の MXシリーズ、 MRシリーズ、 MPシリ ーズ等が挙げられる。
[0121] 保護層形成用組成物を調製する際に、原料として上述した活性エネルギー線硬化 性樹脂組成物に添加'混合する粒子としては、特に限定されるものではなレ、が、平均 粒径(一次平均粒径)が、たとえば、 lnm〜100nm程度、 lnm〜50nm程度、さらに lnm〜25nm程度のものを主成分とするのが適当である。また、これに加えて、平均 粒径が 50nm〜800nm程度のもの、 100nm〜3 μ m程度のものなど、主成分として 添加する粒子とは粒径の異なる群の粒子を併用して保護層形成用組成物を調製す ることも好ましい。具体的には、たとえば、平均粒径が lnm〜100nm程度の粒子とと もに、粒径が 1300nm以上、好ましくは 1300nm〜3 μ m程度の粒子を少量添加し て、保護層形成用組成物を好適に調製することができる。保護層形成用組成物の調 製において、粒子成分は、活性エネルギー線硬化性樹脂組成物の調製後に添加し てもよく、活性エネルギー線硬化性樹脂組成物の各成分と同時あるいは逐次に混合 してもよい。
[0122] 形成後の保護層中においては、保護層形成用組成物の調製時に添加した一次粒 子がそのまま分散した形態であってもよぐ調製時に添加した一次粒子が凝集して、 二次、三次以上の凝集粒子として分散した形態であってもよぐ一次粒子と二次粒子 以上の凝集粒子が混在して分散した形態であってもよい。いずれの場合においても 、形成された保護層中における粒子の平均粒径は、 50〜600nm程度であることが 好ましく、特に 50〜400nm程度、さらに 50〜200nm程度であることカより好ましレ、。 このような平均粒径を有することにより、樹脂組成物の透明性を確保して、ヘイズ値を 適切な値に調節することができる。これにより、いわゆる白ぼけ、黒浮きなど、黒の背 景画像の表面に本発明の防眩フィルムを配置した場合に、黒の背景画像にぼやけ た白っぽい部分が生じることを有効に防止することができ、背景画像を鮮明に映し出 すこと力 Sできる。
[0123] 保護層は、通常、液状又は懸濁状の上述した活性エネルギー線硬化性樹脂組成 物中に、粒子を混合し、均一に粒子が分散するように攪拌'混合される。この際、攪 拌方法、攪拌速度、攪拌力、攪拌時間等を調整することにより、粒子の分布や凝集 状態をコントロールすることができ、原料として用いた一次粒子をほぼ完全に一次粒 子として分散させることができるとともに、原料として用いた一次粒子とは異なる所定 の粒径を有する二次粒子等の凝集粒子を形成させ、さらにその一部を、二次粒子が 部分的に崩れて又は凝集して、三次粒子等に形成することができる。本発明におい ては、保護層を形成する前及び形成工程中における粒子の粒径にかかわらず、保 護層が完成された状態において、平均粒径が上述した範囲であることが好ましい。但 し、ここでは、活性エネルギー線硬化性樹脂組成物中の平均粒径を、保護層が完成 された状態における平均粒径とみなす。この時、平均粒径 (d :流体力学的直径)とは 、光子相関法で求めた自己相関関数よりキュムラント法で求めた値を意味する。 自己 相関関数は、散乱強度の時間変化から直接求めることができ、二次の自己相関関数 G ( τ )は次式で表される。
Figure imgf000028_0001
(式中、 G ( τ )は一次の自己相関関数、 βは定数である)
1
粒子が単分散の場合、 G (て )は単一指数減衰曲線となり、 減衰定数 Γを用いて次
1
のように表される。
Figure imgf000028_0002
ln(G ( τ )) = - Γ τ
1
また、 Γは、拡散係数 Dを用いて次のように表される。
Figure imgf000028_0003
(式中、 qは散乱ベクトル、 nは溶媒の屈折率、 λ はレーザー光の波長である)
0 0
平均粒径 dは、アインシユタイン'スト一タスの式を用いて、拡散係数 Dから求めるこ とがでさる。
Figure imgf000029_0001
(式中、 dは平均粒径、 kはボルツマン定数、 Τは絶対温度、 η は溶媒の粘度である)
0
この平均粒径は、例えば、大塚電子製の FPAR— 1000によって測定することがで きる。
[0128] なお、粒子の分散 Ζ攪拌は、当該分野で知られている方法のいずれをも使用する ことができるが、分散 Ζ攪拌力の強弱、分散/攪拌時間の長短等によって、分散 Ζ 攪拌する粒子の一次粒径を適宜選択することが適している。特に、一次粒子と二次 粒子以上の凝集粒子とが混合された形態の粒子とするためには、一方で、粒子が凝 集しないように粉碎しながら攪拌させるために、いわゆるナノ粒子と称される粒径の小 さいものを選択し、他方で、粒子を分散/攪拌させるために、いわゆるマイクロ粒子と 称される粒径の比較的大きいものを選択し、両者を混合することが好ましい。
[0129] また、粒子は、形成後の保護層において、平均粒径が小さいことにより、保護層に おける透明性を確保することができる一方、ところどころに比較的大きな粒子を分散 させることによって、ニュートンリングを有効に防止しながら、ギラツキを最小限に止め ることができる。特に、タツチパネル等の表示装置に適用され、本発明の透明導電フ イルムの表面にさらにフィルム等が積層される場合において、そのフィルムとの接触 によって発生するニュートンリングをより効果的に防止することができる。
[0130] 粒子は、保護層において、保護層の全重量に対して 10〜30%程度含まれることが 好ましぐ 17〜22%であることがより好ましい。これにより、白ぼけ、黒浮き等のむらを 防止することができ、背景画像を鮮明に表示することができる。カロえて、アンチニュー トンリング性と、ギラツキをも防止し、 3種のバランスを適切に調整することが可能とな る。
[0131] 保護層は、その表面の最大高さ粗さ Ry ( z m)が、通常、 1. 8〜3. 2程度に設定さ れていることが好ましぐ特に 2. 0〜3. 2程度、 2. 0〜2. 6程度がより好ましい。この ような最大高さ粗さに調整することにより、上述した粒子の平均粒径及び/又は比較 的大きな粒子の含有割合等と相まって、アンチニュートンリング性を有効に発揮させ ることができる。表面高さ粗さ Ryは、 JIS B0601 ' 94に規定されている基準長さにお ける輪郭曲線の山高さの最大値と谷深さの最大値との和である。最大高さ粗さ Ryは 、例えば、表面粗さ形状測定機、ハンディサーフ E— 35A (東京精密社製)を用いて 測定すること力 Sできる。
[0132] 上述した表面高さ粗さ(Ry)を実現するためには、たとえば、形成後の保護膜にお いて、最大粒径 Rmが、通常 30 z m程度以下、好ましくは 20 μ m程度以下、特に 10 m程度以下であることが好ましレ、。また、別の観点から、粒子は、 1300nm以上の 粒径を有する粒子が、全粒子中の 1. 5〜7重量%であることが好ましぐさらに 1. 5 〜5重量%、特に 2. 0〜5重量%であることが好ましい。特に 2000nm以上の粒径を 有する粒子は、全粒子中の 1. 5〜6重量%、 1. 5〜5. 5重量%であることが好ましい 。このように、特定の比較的大きな粒径のものがこの範囲内で含有されることにより、 上述したニュートンリング発生をより確実に防止することができる。さらに、比較的大き な粒径の粒子は、後述するギラツキ防止にも有効となるが、あまり大きな粒子が多く 含まれる場合には、力えってギラツキを顕在化させることがあるため、上述した粒子の 範囲内で、アンチニュートンリングとギラツキ防止との効果を最大限に発揮させるよう にバランスすることができる。
[0133] また、保護層は、写像性が 5%程度以上であることが好ましぐより好ましくは 20% 程度以上、さらに好ましくは 40%程度であることが望ましい。ここで写像性とは、いわ ゆるギラツキ、つまり、光散乱等によって、観測者に生ずる不快感の程度を表わす指 標となるものであり、この値が大きい場合に、写像性が良好であり、ギラツキ等が発生 しにくいことを意味する。具体的には、所定幅のスリット(間隔)を有する光学くしにお けるスリットを通過する光の割合を示すものであり、例えば、写像性測定機 ICM—1T (スガ試験機製)を用いて測定することができる。本発明においては、光学くしの間隔 は 0. 5mmに設定されたものが用いられている。なお、このギラツキは、通常、均一な 粒径を有する粒子の中に比較的大きな粒径の粒子を点在させて保護層を形成する 場合に出現し易い。よって、これを防止するために、比較的大きな粒径の粒子を含ま ず、小さな粒径の粒子を均一に分散させることが考えられる。しかし、この場合には、 ニュートンリングが生じやすくなる。従って、両者の発生を最小限に止めるようなパラメ ータのバランスが必要となり、本発明では、粒子の平均粒径、保護層における最大高 さ粗さ Ryとともに、この写像性を調節することにより、これら互いにトレードオフとなる 要因のすべてを満足させることができる。
[0134] また、保護層は、ヘイズ値が 12%程度以下であることが好ましぐさらに、 10%程度 以下がより好ましぐ 5%以下とすることが特に好ましい。ヘイズ値は、曇価ともよばれ 、曇り具合、拡散度合いを表す。この値を上述した範囲に設定することにより、いわゆ る白ボケを防止することが可能となる。なお、ヘイズ値は、保護層に含有される粒子 の平均粒径、粒度分布等と関連する。よって、上述した平均粒径及び Z又は比較的 大きな粒子の含有割合と相まって、背景画像をより鮮明に映し出すことができる。
[0135] 本発明に係るの保護層は、上述したように、樹脂組成物に粒子を混合し、任意に適 当な有機溶媒等を用いて、液状又は懸濁液状に調製し、これを透明フィルムに塗布 /乾燥し、活性エネルギー線を照射することにより、好ましく形成することができる。活 性エネルギー線硬化性樹脂組成物の塗工方法としては、バーコ一ター塗工、ェアナ ィフ塗工、グラビア塗工、グラビアリバース塗工、リバースロール塗工、リップ塗工、ダ ィ塗工、ディップ塗工、オフセット印刷、フレキソ印刷、スクリーン印刷など種々の方法 を採用することができる。活性エネルギー線の照射は、特に限定されず、用いる樹脂 組成物の組成、活性エネルギー線の種対、樹脂組成物の厚み等に応じて、当該分 野で公知の方法によって、適宜調整して行うことができる。保護層の膜厚は特に限定 されないが、通常、 l〜20 z m程度であることが好ましぐ 1〜: lO x m程度であること 力 り好ましぐさらに好ましくは:!〜 5 μ m程度である。
[0136] 本発明の導電性透明フィルムは、透明フィルムの粒子含有保護層が形成されてい る面と反対面に、さらに上述した活性エネルギー線硬化性樹脂組成物 (任意に上述 したフィラーを含有してもよい)からなる裏面保護層が形成されていることが好ましい。 この場合に裏面保護層の膜厚は、特に限定されるものではな 上述した保護層と同 様の膜厚が挙げられる。このように両面に保護層を設けることにより、フィルムの反りを 防止すること力できる。
[0137] カロえて、保護層の表面は、鉛筆硬度を HB以上、好ましくは F以上、特に好ましくは H以上とすることで、保護層として必要な表面硬度を維持することができる。さらに、 保護層の表面を 450g荷重にてスチールウールで 10往復擦りつけた際に生じる傷が 10本以下であることが好ましぐ傷が全く生じないことが表面硬度の点で特に好まし レ、。
[0138] 诱明導電層
本発明の導電性透明フィルムは、前述した透明フィルムの表面に粒子含有保護層 が積層されたフィルムに、さらに透明導電層が積層されてなる。
[0139] 本発明に係る透明導電層は、可視光領域において透過度を有し、かつ導電性を有 する層である。
[0140] 透明導電層の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティ ング法などの従来公知の技術をレ、ずれも使用できるが、膜の均一性や透明基材へ の薄膜の密着性の観点から、スパッタリング法での薄膜形成が好ましい。また、用い る薄膜材料も特に制限されるものではなぐ例えば、酸化錫を含有する酸化インジゥ ム、アンチモンを含有する酸化錫などの金属酸化物のほ力、金、銀、白金、パラジゥ ム、銅、アルミニウム、ニッケル、クロム、チタン、コバルト、錫またはこれらの合金など が好ましく用いられる。この導電性薄膜の厚さは、 30オングストローム以上とすること が必要で、これより薄いと表面抵抗が、 1000 Ω /口以下となる良好な導電性を有す る連続被膜となり難い。一方、厚くしすぎると透明性の低下などをきたすために、好適 な厚さとしては、 50〜2000才ングストローム程度である。
[0141] 反射防止層
本発明の導電性透明フィルムは、可視光領域の透過度を向上させる目的で、透明 導電層と保護層の間に反射防止層を有することも好ましい。反射防止層は通常、酸 化ケィ素、フッ化マグネシウム等の低屈折率層と酸化チタン、酸化ニオブ、および酸 化タンタル等の高屈折率層の単層または 2層以上の積層構造からなる。
[0142] これらの無機酸化物からなる低 ·高屈折率層の形成方法としては、真空蒸着法、ス ノ ッタリング法、イオンプレーティング法(ドライプロセス)、または各金属アルコキサイ ドゃ各無機酸化物超微粒子を含む塗布液の塗工法(ウエットプロセス)など公知の方 法を採用することができる。
[0143] また低屈折層としてフッ素ポリマーを主成分とする有機材料を塗工することも好まし い。 [0144] 偏光板
本発明の導電性透明フィルムは、上述した透明フィルム、粒子含有保護層、透明 導電層に加え、さらに偏光板が積層されたものであってもよい。
[0145] 本発明の導電性透明フィルムを構成しうる偏光板としては、光学用途に用いられ偏 光作用を有する偏光板をいずれも用いることができる。このような偏光板としては、単 層の偏光膜、偏光膜の両側に保護層が形成されたもの、偏光膜の片面に保護層が 形成されたものなどが挙げられる。
[0146] 本発明で用いる偏光板としては、特に限定されるものではないが、偏光膜としての 機能、すなわち、入射光を互いに直行する 2つの偏光成分に分け、その一方のみを 通過させ、他の成分を吸収または分散させる働きを有する膜であれば特に限定され ず、いずれの偏光膜も用いることができる。
[0147] 本発明で用いることのできる偏光膜としては、たとえば、ポリビュルアルコール (以下 、「PVA」と略す) 'ヨウ素系偏光膜; PVA系フィルムに二色性染料を吸着配向させた PVA'染料系偏光膜; PVA系フィルムの脱水反応やポリ塩化ビュルフィルムの脱塩 酸反応により、ポリェンを形成させたポリェン系偏光膜;分子内にカチオン性基を含 有する変性 PVAからなる PVA系フィルムの表面および/または内部に二色性染料 を有する偏光膜などが挙げられる。これらのうち、 PVA'ヨウ素系偏光膜が好ましい。
[0148] 本発明で用いられる偏光膜の製造方法は特に限定されず、従来公知の方法を適 用することができる。たとえば、 PVA系フィルムを延伸後、ヨウ素イオンを吸着させる 方法、 PVA系フィルムを二色性染料による染色後、延伸する方法、 PVA系フィルム を延伸後、二色性染料で染色する方法、二色性染料を PVA系フィルムに印刷後、 延伸する方法、 PVA系フィルムを延伸後、二色性染料を印刷する方法などが挙げら れる。より具体的には、ヨウ素をヨウ化カリウム溶液に溶解して、高次のヨウ素イオンを 作り、このイオンを PVAフィルムに吸着させて延伸し、次いで:!〜 5重量%ホウ酸水溶 液に浴温度 30〜40°Cで浸漬して偏光膜を製造する方法;あるいは、 PVAフィルムを 上記と同様にホウ酸処理して一軸方向に 3〜7倍程度延伸した後、 0. 05〜5重量% の二色性染料水溶液に浴温度 30〜40°Cで浸漬して染料を吸着し、次いで 80〜: 10 0°Cで乾燥して熱固定して偏光膜を製造する方法などが挙げられる。 [0149] 本発明で用いられる偏光膜の厚さは、特に限定されるものではなレ、が、 10〜50 μ m、好ましくは 15〜45 z mであることが望ましい。
[0150] これらの偏光膜は、そのまま本発明に係る偏光板の製造に用いてもよいが、接着剤 層と接する面に、コロナ放電処理、プラズマ処理を施して用いることもできる。
[0151] 本発明において、このような偏光板は、透明フィルム、粒子含有保護層および透明 導電層が積層された積層体の透明導電層と反対側の面に、感圧性接着剤により接 着されて、導電性透明フィルムを構成するのが好ましレ、。
[0152] 感圧性接着剤としては、アクリル系感圧性接着剤、ゴム系感圧性接着剤、シリコー ン系感圧性接着剤などを好適に用いることができる。
[0153] 本発明の導電性透明フィルムは、液晶ディスプレーゃタツチパネルなどのディスプ レーの透明電極として好適に用いることができ、タツチパネル用途、なかでも表示装 置用のタツチパネル用途に特に好適に用いることができる。
[0154] 本発明のタツチパネルは、上述した本発明の導電性透明フィルムを透明電極として 有することを特徴とする。本発明の表示装置は、当該タツチパネルを表示面側に有 することを特徴とする。
[0155] 具体的には、本発明の導電性透明フィルムを 4線式抵抗膜方式や 5線式抵抗膜方 式のタツチパネルの上部電極および/または下部電極として好適に用いることができ る。そして、このタツチパネルを液晶ディスプレーの前面に配置することでタツチパネ ル機能を有する表示装置が得られることとなる。
実施例
[0156] 以下に、実施例をあげて本発明をより具体的に説明するが、本発明はこれら実施 例に限定されるものではなレ、。なお、以下「部」はいずれも重量基準である。
[0157] (B)成分の製造
撹拌装置、冷却管、滴下ロート及び窒素導入管を備えた反応装置に、グリシジルメ タアタリレート(以下、 GMAという) 250部、ラウリルメルカプタン 1. 3部、酢酸ブチル 1 , 000部及び 2, 2, 一ァゾビスイソブチロニトリル(以下、 AIBNという) 7. 5部を仕込 んだ後、窒素気流下に約 1時間かけて系内温度が約 90°Cになるまで昇温し、 1時間 保温した。次いで、あら力じめ GMA750部、ラウリルメルカプタン 3. 7部及び AIBN2 2. 5部からなる混合液を仕込んだ滴下ロートより、窒素気流下に該混合液を約 2時間 を要して系内に滴下し、同温度で 3時間保温した後、 AIBN10部を仕込み、 1時間保 温した。その後、 120°Cに昇温し、 2時間保温した。得られたアクリルポリマーの重量 平均分子量は 19, 000 (GPCによるスチレン換算)であった。 60°Cまで冷却後、窒素 導入管を空気導入管につけ替え、アクリル酸(以下、 AAとレ、う) 507部、メトキノン 2. 0部及びトリフエニルフォスフィン 5. 4部を仕込み混合した後、空気パブリング下にて 、 110°Cまで昇温した。同温度にて 8時間保温した後、メトキノン 1. 4部を仕込み、冷 却して、不揮発分が 50%となるよう酢酸ェチルを加え、ワニス B1を得た。
[0158] なお、 (B)成分として、上述した製造例において初期仕込みの単量体使用量を G MA175部、メチルメタタリレート(以下、 MMAという) 75部、後仕込みでの単量体使 用量を GMA525部、 MMA225部に変え、 AAの使用量を 355部に変化させた他 は、上述した製造例と同様に反応を行い、不揮発分が 50%であるワニス B2を得た。
AA反応前のアクリルポリマーの重量平均分子量は 20, 000であった。
[0159] また、(B)成分として、上述した製造例において初期仕込みの単量体使用量を GM A125部、メチルメタタリレート MMA125部、後仕込みでの単量体使用量を GMA3 75部、 MMA375部に変え、 AAの使用量を 254部に変化させた他は、上述した製 造例と同様に反応を行い、不揮発分が 50%であるワニス B3を得た。 AA反応前のァ タリルポリマーの重量平均分子量は 23, 000であった。
[0160] 活性エネルギー線硬化樹脂組成物の調製
(A)トリメチロールプロパントリアタリレート(表面張力 36. 2mNZm)を 50部、(B) 上述のワニス B1を 25部、および、 (C)多官能ウレタンアタリレートを 25部を混合して 、酢酸ェチルにより固形分を 50%になるよう調整し、これに、光重合開始剤として 1 _ ヒドロキシ-シクロへキシルフェニルケトン(チバ.スペシャルティ.ケミカルズ社製、商品 名「ィルガキュア一 184」)を配合物の固形分に対し 5%添カ卩し、溶解させることにより 、紫外線硬化性組成物を調製した。
[0161] なお、 (B)成分の配合量はいずれも固形分換算である。 (A)成分の表面張力は、 協和 CBVP式表面張力計を用いた垂直板法 (wilhemy method)により測定した。 (C) 成分の多官能ウレタンアタリレートは、荒川化学社工業株式会社製、商品名「ビーム セット 557」とした。
[0162] [実施例 1]
紫外線硬化性組成物(酢酸ェチルにより固形分を 80%になるよう調整、さらに ME Kにより固形分が 70%になるよう調整) 65. 1部
メチルェチルケトン(以下、 MEKとレ、う) 10. 0部
シリカ(ァエロジル(平均粒径:約 12nm)、 日本ァエロジル社製) 9. 17部 上記の成分を、ロールミル分散機に 3回通した。その後、 MEKで希釈し、固形分 4 8 %の保護層用の塗料 Aを得た。
[0163] また、紫外線硬化性組成物(酢酸ェチルにより固形分を 80%になるよう調整、さら に MEKにより固形分が 70%になるよう調整) 57. 1部
アクリル粒子 (MX— 180 (平均粒径:約 1 · 8 μ m)、綜研化学社製) 1. 25部 アクリル粒子(MA— 1002 (平均粒径:約 2· 5 x m)、 日本触媒社製) 0. 25部 上記の成分を、攪拌用オープンドラム(内側直径約 40cm、内側高さ 58cm)に配合 し、直径約 11cmの羽で、 150分間、デイスパー攪拌した。その後、 MEKで希釈し、 固形分 48%の保護層用の塗料 Bを得た。
[0164] 得られた塗料 Aを 95部、塗料 Bを 25部混合し、グラビアリバース法にて、環状ォレ フィン系樹脂からなる透明フィルム、アートン (登録商標)(ジエイエスアール株式会社 製、膜厚 100 x m)に塗布した。 70°Cで 40秒間乾燥し、 300mJ/cm2の紫外線を照 射し、硬化させて、膜厚 1. 7 x mの保護層を有するフィルムを得た。
[0165] 得られた保護層を有するフィルムの保護層の面とは反対面に、同様に保護層を形 成し、膜厚 1. 7 x mの保護層を両面に有するフィルムを形成した。
[0166] 得られた保護層を有するフィルムの保護層の面とは反対面に、同様に保護層を形 成し、膜厚 1. 7 x mの保護層を両面に有するフィルムを形成した。
[0167] 後力 形成した保護層の表面に Ar流量 200sccm、出力 1040VZ0. 02Aにてプ ラズマ処理を施した後、アルゴンガスおよび酸素ガス流入下でターゲットとして In O
/SnO =90ZlO (重量比)の合金を用いたスパッタリングにより ITOからなる透明導 電層を厚さ 200オングストロームで積層し、導電性透明フィルム 1を得た。
[0168] [実施例 2] 実施例 1のプラズマ処理後に、順に厚さ 600Aの酸化チタン層、厚さ 600Aの酸化 珪素をスパッタリングにより積層した後に、 ITOをスパッタリングした以外は実施例 1と 同様にして、導電性透明フィルム 2を得た。
[0169] [実施例 3]
実施例 1で得られた導電性透明フィルムを 50mm X 70mm角で準備し、この導電 性透明フィルムを上下電極とし、導電ペーストを用いて 4線式抵抗膜方式のタツチパ ネルを製造したところ、リニアリティが上下電極ともに 0. 5%と良好な直線応答性を示 した。
[0170] [実施例 4]
実施例 3で得られたタツチパネルを解像度、水平 1280ドット、垂直 1024ラインのデ イスプレイに感圧接着剤を用いて貼り合わせ、 目視により画像のギラツキ性を観察し たところギラツキが殆どなかった。
[0171] [実施例 5]
紫外線硬化性組成物(酢酸ェチルにより固形分を 80%になるよう調整、さらに ME Kにより固形分が 70%になるよう調整) 50. 0部
MEK 10部
シリカ(K— 500 (平均粒径:約 2· 0 μ m)、東ソーシリカ(株)社製) 10部 上記の成分を、ロールミル分散機に 3回通した。その後、 MEKで希釈し、固形分 4 8 %の保護層用の塗料 Cを得た。
[0172] 実施例 1で得られた塗料 Aを 95部、塗料 Cを 5部混合し、グラビアリバース法にて、 環状ォレフィン系樹脂からなる透明フィルム、アートン (登録商標)(ジヱイエスアール 株式会社製、膜厚 100 x m)に塗布した。 70°Cで 40秒間乾燥し、 300mJ/cm2の紫 外線を照射し、硬化させて、膜厚 3. O x mの保護層を有するフィルムを得た。
[0173] 得られた保護層を有するフィルムの保護層の面とは反対面に、同様に保護層を形 成し、膜厚 3 μ mの保護層を両面に有するフィルムを形成した。
[0174] 後力 形成した保護層の表面に Ar流量 200sccm、出力 1040VZ0. 02Aにてプ ラズマ処理を施した後、アルゴンガスおよび酸素ガス流入下でターゲットとして In O
/Sn〇 = 90/10 (重量比)の合金を用いたスパッタリングにより ITOからなる透明導 電層を厚さ 200オングストロームで積層し、導電性透明フィルム 3を得た。
[0175] [実施例 6]
紫外線硬化性組成物(酢酸ェチルにより固形分を 80%になるよう調整) 65. 1部 MEK 25. 8¾
シリカ(ァエロジル(平均粒径:約 12nm)、 日本ァエロジル社製) 9. 17部 上記の成分を、攪拌用オープンドラム(内側直径約 40cm、内側高さ 58cm)に配合 し、直径約 11cmの羽で、 150分間、デイスパー攪拌した。その後、 MEKで希釈し、 固形分 40%の保護層用の塗料を得た。
[0176] 得られた塗料をグラビアリバース法にて、環状ォレフィン系樹脂からなる透明フィル ム、アートン (登録商標) CJSR株式会社製、膜厚 100 / m)に塗布した。 80°Cで 60秒 間乾燥し、 150mJん m2の紫外線を照射し、硬化させて、膜厚 4 μ ΐηの保護層を有す るフィルムを得た。
[0177] 得られた保護層を有するフィルムの保護層の面とは反対面に、同様に保護層を形 成し、膜厚 4 μ mの保護層を両面に有するフィルムを形成した。
[0178] 後力 形成した保護層の表面に Ar流量 200sccm、出力 1040V/0. 02Aにてプ ラズマ処理を施した後、アルゴンガスおよび酸素ガス流入下でターゲットとして In O
/Sn〇 = 90/10 (重量比)の合金を用いたスパッタリングにより ITOか
らなる透明導電層を厚さ 200オングストロームで積層し、導電性透明フィルム 4を得た
[0179] また、保護層を有する面とは反対面に、保護層を形成しなかった以外は前記と同様 にしてそれぞれ導電性透明フィルムを得た。尚、この導電性透明フィルムは表 1で結 果を示したヘイズ、全光線透過率、および写像性の測定にのみ用いた。
[0180] [実施例 7]
実施例 6のプラズマ処理後に、順に厚さ 600Αの酸化チタン層、厚さ 600Αの酸化 珪素をスパッタリングにより積層した後に、 ΙΤΟをスパッタリングした以外は実施例 6と 同様にして、導電性透明フィルム 5を得た。
[0181] [実施例 8]
実施例 6で得られた導電性透明フィルム 4を 50mm X 70mm角で準備し、この導電 性透明フィルムを上下電極とし、導電ペーストを用いて 4線式抵抗膜方式のタツチパ ネルを製造したところ、リニアリティが上下電極ともに 0. 5%と良好な直線応答性を示 した。
[0182] [実施例 9]
実施例 8で得られたタツチパネルを解像度、水平 1280ドット、垂直 1024ラインのデ イスプレイに感圧接着剤を用いて貼り合わせ、 目視により画像のギラツキ性を観察し たところギラツキが殆どなかった。
[0183] [比較例 1]
実施例 6の配合成分を 30〜45分間デイスパー攪拌した以外は、実施例 6と同様に 、塗料を得、これを用いて透明フィルムの両面に膜厚 4 μ ηの保護層を有する導電 性透明フィルムを形成した。
[0184] [比較例 2]
実施例 6の配合成分を 210分間デイスパー攪拌した以外は、実施例 6と同様に、塗 料を得、これを用いて透明フィルムの両面に膜厚 4 μ mの保護層を有する導電性透 明フィルムを形成した。
[0185] 上記各実施例および比較例で得られた導電性透明フィルムにつレ、て、以下の評価 を行った。その結果を表 1にそれぞれ示す。
[0186] (平均粒径)
大塚電子製 FPAR— 1000を用いて測定し、キュムラント解析により平均粒径を算 出した。
[0187] (最大粒径)
大塚電子製 FPAR— 1000を用いて測定し、キュムラント解析により最大粒径を算 出した。
[0188] (全光線透過率およびヘイズ値の測定)
JIS -K7361 - 1 (IS013468—1)に準拠して、 日本電色工業(株)製 NDH2000 のヘイズメータを用いて測定し、以下の式で算出した。
[0189] ヘイズ値 (%) =拡散透過率(%) Z全光線透過率(%)
(白ぼけ評価) 保護層の裏面に黒テープを貼り、 3波長蛍光灯で、 目視により観察し、「A」は表面 の白さは殆どなレ、、「B」は表面の白さは少しある力 実用上問題なレ、、「C」は表面が 明らかに白いとして評価した。
[0190] (最大高さ粗さ Ryの測定)
JIS B0601 ' 94に準拠して、最大高さ粗さ形状測定機 (東京精密株式会社製 HA NDYSURF E— 35A)を用いて測定した。
[0191] (アンチニュートンリング性の評価)
3波長の蛍光灯の下、黒い台紙の上にガラス板を乗せ、コーティング面を指で押し 当てた時の干渉ムラを目視により観察し、「A」は干渉ムラが全く見られない、「B」は 干渉ムラが少し見える、「C」は干渉ムラが見えるとして評価した。
[0192] (写像性の評価)
光学くしとして、 0. 5mmの間隔を有するものを、写像性測定機 ICM— 1T (スガ試 験機製)に適用して、光学くしの間隔から透過する光(%)を測定した。
[0193] (ギラツキ評価)
ギラツキ評価は、解像度、 平 1280ドット、垂直 1024ラインのディスプレイを用い て、画像のギラツキ性を目視で観察し、「A」ギラツキが殆どなレ、、「B」はギラツキが少
[0194] (密着性評価)
JIS碁盤目テープ法(25碁盤目)に準じて、カッターを用いて透明導電層を有する 保護層に 2mm角の碁盤目 25個を形成し、その領域をセロファンテープ剥離し、残つ た碁盤目の数で評価した。「良」は 25/25、「不良」は 23/25以下とした。
[0195] (表面抵抗)
三菱化学 (株)製の低抵抗率計「ロレスター GP」を用レ、、透明導電層の表面抵抗を 測定した。
[0196] [表 1] 【表 1】
Figure imgf000041_0001
産業上の利用の可能性
本発明は、種々の光学装置において、具体的には、ワープロ、コンピュータ、テレビ 、ディスプレイパネル、携帯電話等の各種のディスプレイ、液晶表示装置等にタツチ パネルを組み合わせて使用する際の導電性透明フィルムとして用いることができる。

Claims

請求の範囲
[1] 透明フィルム表面に順に、粒子含有保護層、透明導電層が積層されて構成される 導電†生透明フイノレムであって、
透明フィルム力 s、環状ォレフィン系樹脂からなり、
粒子含有保護層が、活性エネルギー線硬化性樹脂組成物および 50〜600nmの 平均粒径を有する粒子を含む保護層形成用組成物を光硬化させて得られる層であ つて、
前記活性エネルギー線硬化性樹脂組成物が、(A)アタリロイル基を 3以上有する多 官能モノマー 40〜60重量0 /0と、(B)グリシジノレ (メタ)アタリレート系重合物にアタリノレ 酸を付加反応させてなるポリマー 10〜60重量%と、(C)任意にその他のアクリルオリ ゴマー 050重量% (但し、成分 (A)、(B)および(C)の合計が 100重量%である)と を含有することを特徴とする導電性透明フィルム。
[2] 環状ォレフィン系樹脂が、下記式 (I)で表される少なくとも 1種の化合物を含む単量 体を (共)重合して得られた樹脂からなることを特徴とする請求項 1に記載の導電性透 明フイノレム。
[化 1]
Figure imgf000042_0001
(式 (I)中、 I^〜R4は、それぞれ独立に、水素原子、ハロゲン原子、炭素数 1〜30の 炭化水素基、極性基、又はその他の 1価の有機基であり、 R1と R2、又は、 R3と R4は、 一体化して 2価の炭化水素基を形成してもよ R1又は R2と、 R3又は R4とは、互いに 結合して、単環又は多環構造を形成してもよい。 mは 0又は正の整数であり、 pは 0又 は正の整数である。 )
[3] 粒子含有保護層が、一層あたり 12%以下のヘイズ値を示すことを特徴とする請求 項 1または 2に記載の導電性透明フィルム。
[4] 透明フィルムの両表面に前記粒子含有保護層が積層されてなることを特徴とする 請求項 1〜3のいずれかに記載の導電性透明フィルム。
[5] 保護層が、 1300nm以上の粒径を有する粒子を全粒子中の 1. 5〜7重量%含有 することを特徴とする請求項 1〜4のいずれか 1つに記載の導電性透明フィルム。
[6] 1300nm以上の粒径を有する粒子力 一次粒子を含むことを特徴とする請求項 5 に記載の導電性透明フィルム。
[7] さらに偏光板が積層されて構成され、該偏光板が感圧性接着剤により貼り合わされ てなる請求項 1〜6のいずれかに記載の導電性透明フィルム。
[8] 請求項 1〜7のいずれかに記載の導電性透明フィルムを少なくとも一方の透明電極 として有することを特徴とするタツチパネル。
[9] 請求項 8に記載のタツチパネルを表示面側に有することを特徴とする表示装置。
PCT/JP2007/051683 2006-02-03 2007-02-01 導電性透明フィルムおよびその用途 WO2007088922A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020087021489A KR101340103B1 (ko) 2006-02-03 2007-02-01 도전성 투명 필름 및 그의 용도

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-026956 2006-02-03
JP2006026956 2006-02-03
JP2006244188A JP4840037B2 (ja) 2006-02-03 2006-09-08 導電性透明フィルムおよびその用途
JP2006-244188 2006-09-08

Publications (1)

Publication Number Publication Date
WO2007088922A1 true WO2007088922A1 (ja) 2007-08-09

Family

ID=38327493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051683 WO2007088922A1 (ja) 2006-02-03 2007-02-01 導電性透明フィルムおよびその用途

Country Status (4)

Country Link
JP (1) JP4840037B2 (ja)
KR (1) KR101340103B1 (ja)
TW (1) TWI408704B (ja)
WO (1) WO2007088922A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100892105B1 (ko) 2008-05-28 2009-04-08 유수용 내열보호성 코팅제의 제조방법
TWI706001B (zh) * 2019-01-14 2020-10-01 韓國商曉星化學股份有限公司 壓克力膜

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062539A (ja) * 2006-09-08 2008-03-21 Nakajima Kogyo Kk 防眩フィルム
WO2009044885A1 (ja) * 2007-10-05 2009-04-09 Toagosei Co., Ltd. 光硬化性樹脂組成物及びその製造方法
JP2009226932A (ja) * 2008-02-27 2009-10-08 Jsr Corp 導電性積層フィルム、偏光板およびタッチパネル
JP2009202538A (ja) * 2008-02-29 2009-09-10 Jsr Corp 導電性積層フィルム、偏光板およびタッチパネル
JP5262549B2 (ja) * 2008-10-10 2013-08-14 Jsr株式会社 無機蒸着層を有する積層フィルムおよびその製造方法
JP2010162746A (ja) * 2009-01-14 2010-07-29 Jsr Corp 透明導電性積層フィルム及びそれを用いたタッチパネル
JP5134700B2 (ja) * 2011-04-12 2013-01-30 株式会社ダイセル 透明導電性積層フィルム及びタッチパネル
KR101479811B1 (ko) * 2011-12-02 2015-01-08 광 석 서 투명 전극 필름 제조용 기재 필름
JP6004874B2 (ja) 2011-12-16 2016-10-12 日東電工株式会社 透明導電性フィルム
JP6118499B2 (ja) * 2012-02-20 2017-04-19 リンテック株式会社 ニュートンリング防止シート
KR101836788B1 (ko) 2014-12-22 2018-03-08 제이엑스티지 에네루기 가부시키가이샤 시트상 투명 성형체, 그것을 구비한 투명 스크린, 및 그것을 구비한 화상 투영 장치
KR102375891B1 (ko) 2014-12-24 2022-03-16 삼성전자주식회사 투명전극 및 이를 포함하는 전자 소자
JP2017087604A (ja) * 2015-11-12 2017-05-25 東洋インキScホールディングス株式会社 導電性積層体及び金属酸化物組成物
KR101938882B1 (ko) * 2016-01-08 2019-01-16 동우 화인켐 주식회사 필름 터치 센서 및 이의 제조 방법
JP6118939B2 (ja) * 2016-04-28 2017-04-19 リンテック株式会社 ニュートンリング防止シート及びその製造方法
JP2021088666A (ja) * 2019-12-04 2021-06-10 三菱ケミカル株式会社 硬化性組成物、偏光子保護フィルム及び偏光板
JP7376848B2 (ja) 2020-03-19 2023-11-09 荒川化学工業株式会社 銅薄膜付基材用アンダーコート剤、銅薄膜付基材、導電性フィルム及び電極フィルム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000141556A (ja) * 1998-09-01 2000-05-23 Toray Ind Inc プラスチック積層体および画像表示保護フイルム
JP2003036143A (ja) * 2001-07-25 2003-02-07 Sumitomo Chem Co Ltd インナータッチパネル
JP2003296031A (ja) * 2002-03-29 2003-10-17 Sumitomo Bakelite Co Ltd タッチパネル用透明導電性フィルム
JP2004149631A (ja) * 2002-10-29 2004-05-27 Lintec Corp ハードコートフィルム
JP2004182765A (ja) * 2002-11-29 2004-07-02 Lintec Corp ハードコートフィルム
JP2004212619A (ja) * 2002-12-27 2004-07-29 Nakajima Kogyo Kk 反射防止フィルム、その製造方法及び基体
JP2005085541A (ja) * 2003-09-05 2005-03-31 Jsr Corp 透明導電性積層体の製造方法およびタッチパネル

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003026881A1 (fr) * 2001-09-25 2003-04-03 Fuji Photo Film Co., Ltd. Film de revetement dur, base sur laquelle ce film est forme, et affichage d'image comportant ceux-ci
JP2005015598A (ja) * 2003-06-25 2005-01-20 Jsr Corp 環状オレフィン系樹脂フィルムまたはシートの製造方法
JP2005031577A (ja) * 2003-07-11 2005-02-03 Fuji Photo Film Co Ltd 偏光膜、偏光板および液晶表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000141556A (ja) * 1998-09-01 2000-05-23 Toray Ind Inc プラスチック積層体および画像表示保護フイルム
JP2003036143A (ja) * 2001-07-25 2003-02-07 Sumitomo Chem Co Ltd インナータッチパネル
JP2003296031A (ja) * 2002-03-29 2003-10-17 Sumitomo Bakelite Co Ltd タッチパネル用透明導電性フィルム
JP2004149631A (ja) * 2002-10-29 2004-05-27 Lintec Corp ハードコートフィルム
JP2004182765A (ja) * 2002-11-29 2004-07-02 Lintec Corp ハードコートフィルム
JP2004212619A (ja) * 2002-12-27 2004-07-29 Nakajima Kogyo Kk 反射防止フィルム、その製造方法及び基体
JP2005085541A (ja) * 2003-09-05 2005-03-31 Jsr Corp 透明導電性積層体の製造方法およびタッチパネル

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100892105B1 (ko) 2008-05-28 2009-04-08 유수용 내열보호성 코팅제의 제조방법
TWI706001B (zh) * 2019-01-14 2020-10-01 韓國商曉星化學股份有限公司 壓克力膜

Also Published As

Publication number Publication date
JP4840037B2 (ja) 2011-12-21
KR20080093145A (ko) 2008-10-20
KR101340103B1 (ko) 2013-12-10
JP2007230208A (ja) 2007-09-13
TW200746179A (en) 2007-12-16
TWI408704B (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
JP4840037B2 (ja) 導電性透明フィルムおよびその用途
TWI430886B (zh) Conductive laminated film, polarizing plate and touch panel
TWI392589B (zh) 防眩膜
JP5060729B2 (ja) 防眩フィルム
JP2010085978A (ja) 液晶ディスプレイ保護板
JP2008062539A (ja) 防眩フィルム
CN105102490B (zh) 偏光器保护膜用树脂组合物、偏光器保护膜、含有该保护膜的偏光板及偏光板的制备方法
CN104718472A (zh) 包含硬涂膜的偏光板
JP2010055944A (ja) 導電性積層フィルムおよびそれを用いたタッチパネル
JP5540477B2 (ja) 近赤外線カットフィルターの製造方法および該方法により得られる近赤外線カットフィルター
WO2011108494A1 (ja) 導電性積層フィルムおよびそれを用いたタッチパネル
JP2008292982A (ja) 偏光板およびタッチパネル
JP2007233320A (ja) 防眩フィルム
JP4679809B2 (ja) 位相差膜形成用組成物
JP6364719B2 (ja) 硬化性樹脂組成物、硬化物、積層体、ハードコートフィルム及びフィルム積層体
JP2005156998A (ja) 位相差膜形成用組成物、位相差膜、位相差素子、偏光板、およびこれらを使用した液晶表示素子
JP4679808B2 (ja) 位相差膜形成用組成物
JP4701715B2 (ja) 光学フィルムの製造方法および光学フィルム
JP2007223242A (ja) 位相差フィルムの製造方法、位相差フィルムおよびその用途
JP2008062538A (ja) 防眩フィルム
JP2009202538A (ja) 導電性積層フィルム、偏光板およびタッチパネル
JP2004284232A (ja) 積層体及び光学部材
JP4748213B2 (ja) 位相差膜、位相差素子、偏光板、およびこれらを使用した液晶表示素子
JP4748214B2 (ja) 位相差膜、位相差素子、偏光板、およびこれらを使用した液晶表示素子
JP2005084254A (ja) 位相差膜形成用組成物、位相差膜、位相差素子、偏光板、およびこれらを使用した液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087021489

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07707869

Country of ref document: EP

Kind code of ref document: A1