WO2007088584A1 - 光モジュールおよびその製造方法 - Google Patents

光モジュールおよびその製造方法 Download PDF

Info

Publication number
WO2007088584A1
WO2007088584A1 PCT/JP2006/301535 JP2006301535W WO2007088584A1 WO 2007088584 A1 WO2007088584 A1 WO 2007088584A1 JP 2006301535 W JP2006301535 W JP 2006301535W WO 2007088584 A1 WO2007088584 A1 WO 2007088584A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
heat sink
optical
wiring board
electric wiring
Prior art date
Application number
PCT/JP2006/301535
Other languages
English (en)
French (fr)
Inventor
Jun Matsui
Koji Terada
Hiroyuki Nobuhara
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2007556724A priority Critical patent/JP4829902B2/ja
Priority to PCT/JP2006/301535 priority patent/WO2007088584A1/ja
Publication of WO2007088584A1 publication Critical patent/WO2007088584A1/ja
Priority to US12/182,717 priority patent/US7674017B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4269Cooling with heat sinks or radiation fins
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • G02B6/4281Electrical aspects containing printed circuit boards [PCB] the printed circuit boards being flexible
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/4283Electrical aspects with electrical insulation means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0209External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/189Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/066Heatsink mounted on the surface of the PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09072Hole or recess under component or special relationship between hole and component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09781Dummy conductors, i.e. not used for normal transport of current; Dummy electrodes of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10121Optical component, e.g. opto-electronic component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2009Reinforced areas, e.g. for a specific part of a flexible printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2018Presence of a frame in a printed circuit or printed circuit assembly
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates

Definitions

  • the present invention relates to an optical module, and particularly to an optical module suitable for use in a data transfer system in a next generation server system or the like.
  • the optical module is a device for connecting and optically coupling a photoelectric conversion element and an optical element for propagating an optical signal, for example, an optical fiber.
  • a photoelectric conversion element that converts an electrical signal into an optical signal and an optical fiber are connected to form a transmission module that transmits the optical signal converted by the photoelectric conversion element through the optical fiber.
  • a photoelectric conversion element that converts an optical signal into an electrical signal and an optical fiber By connecting a photoelectric conversion element that converts an optical signal into an electrical signal and an optical fiber, a receiving module that receives the optical signal transmitted through the optical fiber with the photoelectric conversion element and converts it into an electrical signal is provided. Can be configured.
  • An optical module 100 shown in FIG. 17 includes a semiconductor optical device 101 and two lenses 102 and 103, a ferrule 104, a cap 105 with a window, a stem 106, a flexible wiring board 107, and a heat sink 108. That is, in order to connect and fix the semiconductor optical device 101 and the ferrule 104, two lenses 102, 103, a cap 105 with a window, a stem 106, and a flexible wiring board 107 are provided to generate heat in the semiconductor optical device 101. A heat sink 108 is provided to dissipate heat.
  • the heat sink 108 is made of a material having a relatively high thermal conductivity, and is installed on the back surface of the semiconductor optical device 101.
  • the heat generation component of the semiconductor optical device 101 is exhausted through the heat sink 108 to the stem 106 and the flexible wiring board 107 on which the semiconductor optical device 101 is mounted.
  • Patent Document 1 US Patent No. 6739760
  • Patent Document 2 US Pat. No. 6,863,444
  • Patent Document 3 JP-A-2005-116990
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-324233
  • Patent Documents 1 to 4 describe a technique for improving the heat dissipation efficiency in such an optical module.
  • the present invention was devised in view of such problems, and improves the heat dissipation efficiency of the optical module.
  • the purpose is to raise.
  • the optical module of the present invention includes an electrical wiring board, a first optical element mounted so that a heat generating portion is relatively close to the substrate surface of the electrical wiring board, and the electrical wiring A heat sink mounted on the same surface of the substrate as the mounting surface of the first optical element, and the heat sink is connected to the electric wiring so that a region of the electric wiring on the electric wiring substrate overlaps the heat sink. It is characterized by being mounted on the board.
  • an electrical wiring portion overlapping the heat sink is connected to a reference potential electrode of the first optical element.
  • the portion electrically connected to the electrode portion of the first optical element continuously to the electric wiring portion overlapping the heat sink is larger than the area of the electrode portion of the first optical element.
  • the shape is wide and has an area.
  • the first optical element is a surface-emitting optical element, and the light-emitting portion of the surface-emitting optical element is relatively close to the substrate surface side as the heat generating portion.
  • a second optical element mounted on the surface of the electrical wiring board opposite to the mounting surface of the first optical element, and mounted on the electrical wiring board, and A light transmission path through which light emitted from the surface-emitting optical element propagates to the electrical wiring board and is guided to the second optical element can be provided.
  • the first optical element is mounted on the electric wiring board so that the heat generating portion is relatively close to the board surface side of the electric wiring board.
  • the circuit board is mounted on the same side of the electrical wiring board as the mounting surface of the first optical element so that the area of the electrical wiring on the electrical wiring board and the heat sink overlap.
  • a heat sink mounted on the same surface as the mounting surface of the first optical element, and the heat sink is such that a part of the electrical wiring on the electrical wiring board and a part of the main body of the heat sink overlap. Since the surface output type optical element 1 generates the highest amount of heat and heat can be exhausted from the light emitting side of the optical element, the surface output type light with low thermal conductivity is mounted on the electrical wiring board. Since there is no need to use a heat dissipation path to the back surface of element 1, there is an advantage that the efficiency of heat dissipation to the outside of the optical element can be increased.
  • FIG. 1 is a diagram showing an optical module that works on the first embodiment of the present invention.
  • FIG. 2 is a diagram showing an optical module that works on the first embodiment of the present invention.
  • FIG. 3 is a diagram showing an optical module that works on the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a surface-emitting optical device in the first embodiment.
  • FIG. 5 is a diagram showing an electrical wiring board in the first embodiment.
  • FIG. 6 is a diagram showing an arrangement relationship when a surface-emitting optical element heat sink is mounted on the electric wiring board in the first embodiment.
  • FIG. 7] (a) to (d) are diagrams for explaining the manufacturing process of the optical transmitter module in the first embodiment.
  • FIG. 8] (a) to (c) are diagrams for explaining the manufacturing process of the optical transmitter module in the first embodiment.
  • FIG. 9 is a diagram showing a second embodiment of the present invention.
  • FIG. 10 is a diagram showing a second embodiment of the present invention.
  • FIG. 11 is a diagram showing a third embodiment of the present invention.
  • FIG. 12 is a diagram showing a third embodiment of the present invention.
  • FIG. 13 is a view showing a modification of the second embodiment of the present invention.
  • FIG. 14 is a view showing a modification of the third embodiment of the present invention.
  • FIG. 15 is a diagram for explaining a modification shown in FIGS. 13 and 14.
  • FIG. 16 is a diagram for explaining a modification shown in FIGS. 13 and 14.
  • FIG. 17 is a diagram showing a prior art.
  • Fiber block (second optical element)
  • FIG. 1 to 3 are diagrams showing an optical module that works according to the first embodiment of the present invention
  • FIG. 1 is a schematic perspective view showing an optical module 10 that works according to the first embodiment
  • FIG. FIG. 3 is an exploded view of the optical module 10 shown in FIG. 1 with respect to each component
  • FIG. 3 is a cross-sectional view of the optical module 10 shown in FIG.
  • the optical module 10 includes a surface-emitting optical element 1 as a first optical element, a heat sink 2, an electrical wiring board 3, and a second optical element. It has a fiber block 4 and so on. That is, as shown in FIG. 1, the surface output type optical element 1 and the heat sink 2 are on one surface of the electric wiring board 3, and the fiber block 4 is on the other surface of the electric wiring board 3, respectively. It is mounted so that 3 is sandwiched between each other!
  • the electrical wiring substrate 3 has electrical wiring patterns 311 and 312 for electrically connecting the surface-emitting optical element 2 on the substrate 32.
  • the electrical wiring pattern 311 is a signal line for supplying an electrical signal to the surface emitting optical element 1
  • the electrical wiring pattern 312 has a relatively wide area to which a reference voltage such as a power supply or a ground voltage is applied. It is.
  • the substrate 32 constituting the electrical wiring board 3 can be formed of a thin flexible wiring film. From this, the shape of the electrical wiring board 3 is changed as shown in FIG. Freely deform to give flexibility when mounting the optical module 10 on other devices Be able to Note that reference numeral 33 in FIG. 3 denotes a substrate holding material that is appropriately provided to reinforce the substrate 32 and hold the shape, and constitutes a part of the electrical wiring substrate 3.
  • 34 is a through-hole formed as an optical propagation path for guiding the light emitted from the surface-emitting optical element 2 to the fiber block 4 side, formed on the electric wiring board 3.
  • a Bessel Thompson type light emitting element is applied to the surface light emitting optical element 1 so that the light emitting portion 11 as a heat generating portion is relatively close to the substrate surface side of the electrical wiring board 3. And mounted on the electric wiring board 3. That is, the surface-emitting optical element 1 is flip-chip mounted so that it is electrically connected to the electric wiring patterns 311 and 312 of the electric wiring board 3 and the light emitting part 11 faces the electric wiring board 3 side.
  • the surface-emitting optical element 1 has a reference potential electrode 121 and a signal electrode 122 on the same surface side as the light emitting surface from the light emitting unit 11.
  • the reference potential electrode 121 is connected to the electric wiring pattern 312 (for supplying a reference potential such as a power supply voltage and a ground voltage)
  • the signal electrode 122 is connected to the electric wiring pattern 311 (as a signal line). ing.
  • the surface-emitting optical element 1 can be mounted on the electric wiring board 3.
  • the area of the electric wiring pattern 312 of the electric wiring board 3 is larger than that of the electrodes 121 and 122 of the surface-emitting optical element 1. In this way, the heat generation component generated by light emission from the light emitting section 11 can be efficiently conducted by the electric wiring pattern 312.
  • the through hole 34 of the electric wiring board 3 is formed at a position that matches the position of the light emitting portion 11 of the surface-emitting light emitting element 1 to be mounted.
  • the surface-emitting optical element 1 is mechanically held by the electric wiring board 3 and when an electric signal is supplied to the surface-emitting optical element 1 by the electric wiring board 3, The light emitted from the element 1 can be guided to the fiber block 4 side described later through the through hole 34.
  • the fiber block 4 is mounted on the surface (back surface) opposite to the mounting surface of the surface-emitting optical element 1 on the electrical wiring board 3, and the fiber block 4 is connected to the surface-emitting optical element 1 through the through hole 34. Light is input and the input light is propagated.
  • Fiber block 4 is shown in Fig. 2 and Fig. 3.
  • the optical fiber 42 that propagates the light from the surface-emitting optical element 1 and the ferrule 41 that incorporates and fixes the optical fiber 41 are included, and the end surface of the optical fiber 42 is connected to the surface-emitting type through the through hole 34. They are connected by a butt joint so as to face the light emitting portion 11 of the optical element 1.
  • the surface emitting optical element 1 and the optical fiber 42 are stably fixed while the interval between them is narrowed. Further, by using the above-mentioned electrical wiring board 3 as a spacer between the surface-emitting optical element 1 and the optical fiber 42, the surface-emitting light can be obtained by a small number of parts that only interpose the electrical wiring board 3. Achieves high efficiency and stabilization of optical coupling between element 1 and fiber block 4.
  • the heat sink 2 is mounted on the same side of the electrical wiring board 3 as the mounting surface of the surface-emitting light-emitting element 1, and the light-emitting portion 11 that is the heat generating part of the surface-emitting light-emitting element 1 Heat generated by a peripheral electric circuit such as an integrated circuit for driving the light-emitting optical element 1 is radiated to the outside, and is composed of a member having high thermal conductivity. For this reason, the heat sink 2 is mounted on the electric wiring board 3 so that a part of the electric wiring pattern 312 and a part of the main body of the heat sink 2 overlap with each other via the adhesive layer 3 31 (see FIG. 3). As a result, the heat generated from the light emitting portion 11 which is the heat generating portion in the surface-emitting optical element 1 can be released to the outside!
  • heat generation of the surface-emitting optical element 1 is mainly caused by light emission from the light emitting unit 11 adjacent to the electrical wiring board 3.
  • the electrical wiring pattern 312 for supplying the reference potential is provided in the vicinity of the light emitting unit 11 as shown in FIGS. 1 and 2, so that heat generation components in the light emitting unit 11 are conducted to the heat sink 2 with relatively high efficiency. Can be made. Since the heat sink 2 is superimposed on the electric wiring pattern 312 so that the heat generation component conducted in the electric wiring pattern 312 can be efficiently transmitted, the heat generation component from the electric wiring pattern 312 is dissipated through the heat sink 2. To be able to let
  • the heat sink 2 is integrated with the first heat sink portion 21 on the upper side of the first heat sink portion 21 and a frame-shaped first heat sink portion 21 that surrounds the four sides of the surface-emitting optical element 1.
  • a second heat sink portion 22 is provided.
  • Reference numeral 211 denotes an opening of the first heat sink 21.
  • the opening 211 is preferably configured to be small as long as the surface-emitting optical element 1 can be accommodated inside in order to increase the heat dissipation effect.
  • the shape of the second heat sink portion 22, in FIG. 1 to FIG. 3 it has a shape that covers the mounting of the surface emitting optical element 1, and may have other shapes. In addition, the configuration may be omitted.
  • the surface-emitting optical element 1 for example, as shown in FIG. 4, an element in which four light emitting portions 11 are arranged in parallel can be used.
  • light is emitted from the light emitting section 11 at the corresponding reference potential electrode 121 by an electric signal supplied through a pair of reference potential electrode 121 and signal electrode 122 arranged vertically in FIG. It has become possible to do.
  • FIG. 5 is a diagram showing an example of the pattern shape of the electric wiring patterns 311 and 312 on the electric wiring board 3 for supplying an electric signal to the surface-emitting optical device 1 shown in FIG. 6 is a diagram showing the arrangement relationship when the first heat sink portion 21 forming the heat sink 2 is mounted on the electric wiring board 3 having the electric wiring patterns 311 and 312 shown in FIG. 5 together with the surface emitting optical element 1 shown in FIG. It is.
  • the electrical wiring pattern 311 shown in FIG. 5 has four signal lines 311a corresponding to the four signal electrodes 122 in the surface-emitting optical device 1 described above, and each signal line 31 la. At the end of each, a contact portion 31 la ′ corresponding to the arrangement of each signal electrode 122 is provided.
  • the electrical wiring pattern 312 shown in FIG. 5 has four projecting regions 312a corresponding to the four reference potential electrodes 121 in the surface-emitting optical element 1 described above, and at the end of each projecting region 312a.
  • contact points 312a ′ corresponding to the arrangement of the reference potential electrodes 121 are provided.
  • Reference numeral 34a denotes a through hole as a light propagation path formed corresponding to the arrangement of the four light emitting portions 11 described above.
  • the first heat sink portion 21 and the electric wiring pattern 312 forming the heat sink 2 are positioned and each shape is determined so that the overlapping area becomes large.
  • the cross-sectional area of the heat conduction is increased, and the efficiency with which the heat generation component from the light emitting portion 1 transmitted to the electric wiring pattern 312 is radiated through the heat sink 2 can be increased.
  • the electrical wiring pattern 312 wider than the reference potential electrode 121 of the surface output type optical element 1, the cross-sectional area of heat conduction can be increased. The heat dissipation efficiency can be increased.
  • the optical module 10 of the first embodiment configured as described above includes the optical module shown in FIG. 8 (c) together with the process of mounting on the module substrate on which the integrated circuit or the like for driving the surface output type optical element 1 is mounted. It can be configured as a transmitter module 10A.
  • This optical transmitter module 10A can be manufactured by the steps shown in FIGS. 7 (a) to 7 (d) and FIGS. 8 (a) to 8 (c).
  • an electric circuit element 52 such as a chip capacitor, a chip resistor, and a signal processing processor is provided on a module substrate 51.
  • an IC (Integrated Circuit) chip 53 for driving the surface-emitting light-emitting element 1 is mounted on the module substrate 51, whereby the module substrate circuit 5 Configure.
  • an electric wiring board 3 (this electric wiring board 3 has a flexible wiring film force as shown in FIG. 3 described above).
  • the surface output type optical device 1 is mounted on the substrate 32 having the electrical wiring patterns 311, 312 and the through-hole 34 as an optical propagation path formed in advance, and electrical connection with the electrical wiring patterns 311 and 312 is performed.
  • the light emitting unit 11 as a heat generating unit is mounted so as to be relatively close to the substrate surface side of the electric wiring board 3 (that is, facing the substrate surface).
  • the first heat sink portion 21 constituting the heat sink 2 is fixed on the electrical wiring board 3.
  • the opening 211 of the first heat sink 21 may be filled with a chip coat resin and cured.
  • FIG. 8 (a) shows a shape that also serves as a module housing as the second heat sink portion 22.
  • the portion of the electrical wiring board 3 that does not cover the heat sink 2 is shown in FIG.
  • the module board circuit 5 configured as follows Bend appropriately.
  • FIG. 8 (b) On the module substrate circuit 5 assembled by the steps shown in FIGS. 7 (a) and 7 (b), FIG. 8 (a) The optical subassembly 10 0 ′ configured as shown in FIG. 5 is mounted, and the drive IC chip 53 and the electrical wiring patterns 311 and 312 on the electrical wiring board 3 are electrically connected. At this time, each electric circuit element on the module substrate circuit 5 may be covered with a chip coat resin.
  • FIG. 8 (b) after the optical subassembly 1 (is mounted on the module substrate circuit 5, the surface output type in the electric wiring board 3 is shown in FIG. 8 (c).
  • the fiber block 4 is connected to the surface opposite to the side on which the optical element 1 is mounted to complete the optical transmitter module 10A.
  • the electric signal supplied from the driving IC chip 53 is transmitted through the electric wiring pattern 311 of the electric wiring board 3 shown in FIGS. 1 is supplied to one signal electrode 122.
  • the surface output type optical element 1 is driven, and the light emitting unit 11 can output the signal light.
  • the signal light output from the light emitting unit 11 is optically coupled to the optical fiber 42 forming the fiber block 4 through the through hole 34 with high efficiency. Thereby, the signal light can be stably propagated through the optical fiber 42.
  • the heat generated by the light emission is also generated.
  • the heat generation is a circuit in the module substrate circuit 5 shown in Figs. 7 (b) and 8 (c). Together with the heat generated by the operation, heat can be dissipated through the heat sink 2.
  • the heat-generating component in the light-emitting unit 11 can dissipate heat through the heat sink 2 through the electrical wiring pattern 312 in the vicinity of the position where the light-emitting unit 11 is disposed. The rise can be suppressed, and the decrease in output light power can be efficiently suppressed.
  • the heat sink 108 is disposed on the back side of the light emitting surface of the semiconductor optical device 101, whereas the configuration of the present invention is a light emitting unit.
  • the heat is dissipated through the heat conductive high electrical wiring pattern 312 formed at a position close to 11. Therefore, the distance between the light emitting unit 11 in the first embodiment and the electrical wiring pattern 312 that conducts heat generated by the light emitting unit 11 is the same as that shown in FIG.
  • the distance between the light emitting portion of the element 101 and the heat sink 108 can be made closer.
  • the temperature rise in the configuration of the prior art is about 27.4 ° C
  • the temperature rise due to the configuration of this embodiment can be limited to about 8.2 ° C, and the efficiency of heat dissipation is improved. It can be increased.
  • the light emitting unit 11 as the heat generating unit is mounted on the electric wiring board 3 so as to be relatively close to the board surface side of the electric wiring board 3.
  • the surface output type optical element 1 and the heat sink 2 mounted on the same side of the electric circuit board 3 as the surface output type optical element 1 are mounted. Is mounted on the electrical wiring board 3 so that a part of the electrical wiring to be overlapped with a part of the main body of the heat sink 2, the surface output type optical element 1 generates the highest amount of heat from the optical element light emitting surface side. Since heat can be exhausted, there is no need to use a heat dissipation path to the back surface of the surface output type optical element 1 with low thermal conductivity, so that the efficiency of heat radiation to the outside of the optical element can be improved. is there.
  • the electrical wiring pattern 312 having a larger area than the reference potential electrode 121 of the optical element, the cross-sectional area of heat conduction can be increased, and the heat dissipation efficiency can be further increased.
  • the cross-sectional area of heat conduction can be increased.
  • FIG. 9 and FIG. 10 are views showing a second embodiment of the present invention
  • FIG. 9 is a schematic top view showing an electric wiring board 3-1 in the second embodiment
  • FIG. 10 is an electric wiring board
  • FIG. 3 is a schematic top view showing the optical module 10-1 in which the heat output 2 is mounted together with the surface output type optical element 1 in 3-1.
  • the optical module 10-1 that is effective in the second embodiment is different from the optical module 10 according to the first embodiment in the pattern of the electric wiring pattern 312-1 that forms the electric wiring board 3-1.
  • the turn shape is different, and the rest is basically the same as in the first embodiment.
  • 9 and 10 the same reference numerals as those in FIGS. 5 and 6 denote almost the same parts.
  • the electrical wiring pattern 312-1 is different from those shown in FIGS. 5 and 6 described above, and has four overhanging regions 312 corresponding to the four reference potential electrodes 121.
  • a difference is that the region that becomes the contact point with the four reference potential electrodes 121 without forming a also has a uniform pattern corresponding to the uniform pattern shape of the outer periphery of the U-shape.
  • FIGS. 11 and 12 are views showing a third embodiment of the present invention
  • FIG. 11 is a schematic top view showing an electric wiring board 3-2 in the second embodiment
  • FIG. FIG. 3 is a schematic top view showing an optical module 10-2 in which a heat sink 2 is mounted together with a surface output type optical element 1 on a wiring board 3-2.
  • the optical module 10-2 according to the third embodiment can output optical signals of independent channels from the four light emitting sections 11 in the surface output type optical element 1 having the configuration shown in FIG. Therefore, the electrical wiring pattern 312-2 that supplies the reference voltage is also divided into four regions, which is different from the case of the first and second embodiments described above. 11 and 12, the same reference numerals as those in FIGS. 5 and 6 denote almost the same parts.
  • the electrical wiring pattern 312-2 is different from that shown in FIG. 9 and FIG. 10 described above, and is an area that becomes a contact point with the four reference potential electrodes 121.
  • Each wiring pattern is independent.
  • different voltages can be applied from the driving IC chip 53 to the four pairs of the reference potential electrode 121 and the signal electrode 122 of the surface output type optical element 1, and the four light emitting units 11 This makes it possible to output different signal lights.
  • the electrical wiring pattern 312-2 The heat sink 2 can provide the same advantages as in the first embodiment. [D] Other
  • the first heat sink portion 21 forming the heat sink 2 mounted so as to overlap the regions of the electrical wiring patterns 312, 312-1 and 312-2.
  • a U-shape that does not include the formation region 311 can be obtained.
  • a similar heat sink portion 21A can be applied to the electrical wiring board 3 shown in FIG.
  • the first heat sink portion 21 also overlaps on the electrical wiring pattern 311 serving as a signal line.
  • the adhesive layer 331 is interposed therebetween as shown in FIG. Insulation with respect to the wiring pattern 311 is maintained.
  • the capacitor C 1 is substantially formed by sandwiching the adhesive layer 331 between the electric wiring pattern 311 and the first heat sink portion 21. This is the same even if the sandwiched area is an air layer. For example, as shown in FIG. 15, the same applies to the case where the electric wiring board 3, 3-1, 3, 2 is bent and the electric wiring pattern 311 and the first heat sink portion 2 1 are close to each other.
  • the capacitor C2 is formed. When a high-speed signal is conducted through the electrical wiring pattern 311, it is considered that the capacitance formed in this way affects the transmission characteristics.
  • the shape of the overlapping surface of the heat sink 2 mounted on the electric wiring boards 3-1, 3-2 is defined as the electric wiring pattern 311 as a signal line.
  • an optical fiber block is applied as the second optical element.
  • other known light such as a single optical fiber or a light receiving element is used.
  • An element may be applied.
  • the apparatus of the present invention can be manufactured based on the disclosure of the above-described embodiment.

Abstract

 放熱効率を向上させるため、本発明の光モジュールは、電気配線基板(3)と、電気配線基板(3)の基板面に発熱部が相対的に近接されるように搭載される第1の光素子(1)と、電気配線基板(3)における第1の光素子(1)の搭載面と同一面に搭載されるヒートシンク(2)と、をそなえ、かつ、ヒートシンク(2)は、電気配線基板(3)における電気配線の領域(312)がヒートシンク(2)に重なるように電気配線基板(3)に搭載される。

Description

明 細 書
光モジュールおよびその製造方法
技術分野
[0001] 本発明は、光モジュールに関し、特に次世代サーバシステム等におけるデータ転 送システムにおいて用いて好適の、光モジュールに関するものである。
背景技術
[0002] 今日のデータ転送システム、例えばサーバシステムにおいては、電気信号によって データ処理を行な 、ながら、光信号を用いてデータ転送が行なわれるようになってき ている。このようなサーバシステムにおける光信号を用いたデータ転送においては、 光モジュールが用いられている。光モジュールは、光電変換素子と、光信号を伝搬さ せるための光素子、例えば光ファイバと、を接続し、光学的に結合させるための装置 である。
[0003] 具体的には、電気信号を光信号に変換する光電変換素子と光ファイバとを接続す ることにより、光電変換素子で変換された光信号を光ファイバを通じて伝送する送信 モジュールを構成することができ、光信号を電気信号に変換する光電変換素子と光 ファイバとを接続することにより、光ファイバを通じて伝送されてきた光信号を光電変 換素子で受光し電気信号に変換する受信モジュールを構成することができる。
[0004] また、今日開発が進んで 、るサーバシステムにお 、ては、大規模な光信号の並列 伝送を行なうために、多数の光モジュールを並列実装することが前提とされている。 このため、個々の光モジュールには低消費電力であることが求められる。
しかし、データスループットの増加にともない光素子の高速応答が要求される力 周 辺回路素子の高速動作による発熱、および光素子自身の動作による発熱により、光 素子の内部温度が上昇すると、光パワーが低下してしまう。このような状況において、 光モジュールから出力する必要な光パワーを確保するためには、更なる電力消費を 余儀なくされる。
[0005] これまで開発されてきた通信用途の光モジュールにおいては、長距離伝送の必要 力も光素子と光ファイバをいかに効率よく結合させる力を念頭に設計されており、結 合効率が比較的良好なレンズ結合が多く用いられている。
上述のレンズ結合を用いた光モジュールとしては、例えば図 17に示すカンパッケ ージ型の光モジュール 100がある。この図 17に示す光モジュール 100は、半導体光 素子 101をそなえるとともに、 2枚のレンズ 102, 103,フエルール 104,窓付キャップ 105,ステム 106,フレキシブル配線基板 107およびヒートシンク 108をそなえている 。即ち、半導体光素子 101とフェルール 104とを接続固定するために、 2枚のレンズ 1 02, 103,窓付キャップ 105,ステム 106,フレキシブル配線基板 107がそなえられ、 半導体光素子 101での発熱を放熱するためにヒートシンク 108がそなえられている。
[0006] 上述の図 17のごとき従来の光モジュール 100において、ヒートシンク 108は、熱伝 導性の比較的高い材質により構成されて、半導体光素子 101の裏面に設置されたも のである。半導体光素子 101の発熱成分は、このヒートシンク 108を介して半導体光 素子 101を搭載するステム 106やフレキシブル配線基板 107などへ排熱されるように なっている。
[0007] その他、本願発明に関連する公知技術として、以下の特許文献 1〜4に記載された ものもある。
特許文献 1:米国特許第 6739760号
特許文献 2:米国特許第 6863444号
特許文献 3:特開 2005— 116990号
特許文献 4:特開 2003— 324233号
発明の開示
発明が解決しょうとする課題
[0008] しかしながら、表面発光型光素子の場合、発熱量の多い箇所は発光面側に配置さ れる活性層であるため、チップ裏面への排熱を行なう上述の図 17のごとき従来の光 モジュールにおいては、熱伝導率の低い半導体基板を経由することで排熱の効果が 比較的小さ 、と 、う課題がある。
特許文献 1〜4に記載された技術においても、このような光モジュールにおける放 熱効率を向上させる技術について記載されたものはない。
[0009] 本発明は、このような課題に鑑み創案されたもので、光モジュールの放熱効率を向 上させることを目的とする。
課題を解決するための手段
[0010] このため、本発明の光モジュールは、電気配線基板と、該電気配線基板の基板面 に発熱部が相対的に近接されるように搭載される第 1の光素子と、該電気配線基板 における該第 1の光素子の搭載面と同一面に搭載されるヒートシンクと、をそなえ、か つ、該ヒートシンクは、該電気配線基板における電気配線の領域が該ヒートシンクに 重なるように該電気配線基板に搭載されたことを特徴として 、る。
[0011] また、好ましくは、該ヒートシンクに重なる電気配線部分が、該第 1の光素子の基準 電位電極に接続される。
さらに、好ましくは、該ヒートシンクに重なる電気配線部分に連続して、該第 1の光素 子の電極部と電気的に接続される箇所は、該第 1の光素子の電極部の面積にくらべ て広、面積をもった形状である。
[0012] さらに、好ましくは、該第 1の光素子が表面発光型光素子であり、かつ、該表面発光 型光素子の発光部が、上記発熱部として上記基板面側に相対的に近接されるように 該電気配線基板に搭載される一方、該電気配線基板における該第 1の光素子の搭 載面とは反対側の面に搭載された第 2の光素子がそなえられ、かつ、該電気配線基 板に、該表面発光型光素子で発光された光が伝搬して、該第 2の光素子に導く光伝 搬路をそなえることができる。
[0013] さらに、本発明の光モジュールの製造方法は、電気配線基板に、該電気配線基板 の基板面側に発熱部が相対的に近接されるように第 1の光素子を搭載し、ヒートシン クを、該電気配線基板における該第 1の光素子の搭載面と同一面側に、該電気配線 基板における電気配線の領域と該ヒートシンクとが重なるように搭載することを特徴と している。
発明の効果
[0014] このように、本発明によれば、電気配線基板の基板面側に発熱部が相対的に近接 されるように電気配線基板に搭載される第 1の光素子と、電気配線基板における第 1 の光素子の搭載面と同一面側に搭載されるヒートシンクと、をそなえ、かつ、ヒートシ ンクは、電気配線基板における電気配線の一部とヒートシンクの本体の一部とが重な るように電気配線基板に搭載されているので、表面出力型光素子 1の発熱量が最も 高い、光素子発光面側から排熱を行うことができるため、熱伝導性の低い表面出力 型光素子 1の裏面への放熱経路を用いる必要がないため、光素子外部への放熱の 効率を高めることができると 、う利点がある。
図面の簡単な説明
[0015] [図 1]本発明の第 1実施形態に力かる光モジュールを示す図である。
[図 2]本発明の第 1実施形態に力かる光モジュールを示す図である。
[図 3]本発明の第 1実施形態に力かる光モジュールを示す図である。
[図 4]第 1実施形態における表面発光型光素子を示す図である。
[図 5]第 1実施形態における電気配線基板を示す図である。
[図 6]第 1実施形態における電気配線基板に表面発光型光素子ヒートシンクを搭載し た場合の配置関係について示す図である。
[図 7] (a)〜 (d)は 、ずれも第 1実施形態における光送信機モジュールの製造工程に ついて説明するための図である。
[図 8] (a)〜 (c)は 、ずれも第 1実施形態における光送信機モジュールの製造工程に ついて説明するための図である。
[図 9]本発明の第 2実施形態を示す図である。
[図 10]本発明の第 2実施形態を示す図である。
[図 11]本発明の第 3実施形態を示す図である。
[図 12]本発明の第 3実施形態を示す図である。
[図 13]本発明の第 2実施形態の変形例を示す図である。
[図 14]本発明の第 3実施形態の変形例を示す図である。
[図 15]図 13,図 14に示す変形例を説明するための図である。
[図 16]図 13,図 14に示す変形例を説明するための図である。
[図 17]従来技術を示す図である。
符号の説明
[0016] 1 表面発光型光素子 (第 1の光素子)
10, 10- 1, 10- 2 光モジュール A 光送信機モジュール
, 光サブアセンブリ
発光部
1 基準電位電極
2 信号電極
ヒートシンク
, 21A 第 1ヒートシンク部
第 2ヒートシンク部
1 開口部
電気配線基板
基板
基板保持材
, 34a 貫通穴(光伝搬路)
1, 312, 312 - 1, 312— 2 電気配線ノ ターン1a 信号ライン
1a, , 312a' 接点部
2a 張り出し部
1 接着層
ファイバブロック(第 2の光素子)
フエノレ一ノレ
光ファイバ
モジュール基板回路
モジュール基板
電気回路素子
駆動 ICチップ
0 光モジユーノレ
1 半導体光素子
2, 103 レンズ 104 フエノレ一ノレ
105 窓付キャップ
106 ステム
107 フレキシブル配線基板
108 ヒートシンク
発明を実施するための最良の形態
[0017] 以下、図面を参照することにより、本発明の実施の形態について説明する。なお、 実施の形態は以下に示す実施例の形態に限るものではない。又、上述の本願発明 の目的のほか、他の技術的課題,その技術的課題を解決する手段及び作用効果に ついても、以下の実施の形態による開示によって明らかとなる。
〔A〕第 1実施形態の説明
図 1〜図 3は本発明の第 1実施形態に力かる光モジュールを示す図であり、図 1は 第 1実施形態に力かる光モジュール 10を示す模式的斜視図であり、図 2は図 1に示 す光モジュール 10を構成要素ごとに配置関係をそのままに分解して示す図であり、 図 3は図 1に示す光モジュール 10の AA 矢視断面図である。
[0018] ここで、第 1実施形態に力かる光モジュール 10は、第 1の光素子としての表面発光 型光素子 1と、ヒートシンク 2と、電気配線基板 3と、第 2の光素子としてのファイバプロ ック 4と、をそなえている。即ち、この図 1に示すように、表面出力型光素子 1およびヒ ートシンク 2は電気配線基板 3の一方の面に、ファイバブロック 4は電気配線基板 3の 他方の面に、それぞれ当該電気配線基板 3を互いに挟むように搭載されて!ヽる。
[0019] 電気配線基板 3は、図 2に示すように、基板 32上に表面発光型光素子 2を電気的 に接続するための電気配線パターン 311, 312が形成されている。ここで、電気配線 パターン 311は表面発光型光素子 1に電気信号が供給される信号ラインであり、電 気配線パターン 312は電源もしくは接地電圧等の基準電圧が与えられる比較的広い 面積を有するものである。
[0020] そして、この電気配線基板 3を構成する基板 32としては、薄 ヽフレキシブル配線フ イルムにより構成することができ、これ〖こより、図 3に示すように、電気配線基板 3の形 状を自在に変形させて光モジュール 10の他の装置への実装の際の自由度を持たせ ることができるようになる。尚、図 3中の 33は、基板 32を補強して形状を保持するため に適宜設けられる基板保持材であり、電気配線基板 3の一部を構成する。又、図 2, 図 3中の 34は、電気配線基板 3に形成された、表面発光型光素子 2で発光する光を ファイバブロック 4側へ導く光伝搬路としての貫通穴である。
[0021] また、表面発光型光素子 1には、例えばベッセルトムソン型の発光素子が適用され て、電気配線基板 3の基板面側に発熱部分である発光部 11が相対的に近接される ように、電気配線基板 3に搭載される。即ち、表面発光型光素子 1は、電気配線基板 3の電気配線パターン 311, 312に電気的に接続されるように、そして発光部 11が電 気配線基板 3側を向くようにフリップチップ実装される。
[0022] すなわち、表面発光型光素子 1は、図 3又は後述の図 4に示すように、発光部 11か らの発光面と同一面側に基準電位電極 121および信号電極 122をそなえているが、 この基準電位電極 121が(電源電圧や接地電圧等の基準電位を与えるための)電気 配線パターン 312に接続され、信号電極 122が (信号ラインとしての)電気配線パタ ーン 311に接続されている。これにより、表面発光型光素子 1の電気配線基板 3への 実装が実現される。
[0023] このとき、図 2および後述の図 5,図 6に示すように、電気配線基板 3の電気配線パ ターン 312は、表面発光型光素子 1の電極 121, 122よりも面積が大きくなるように形 成して、発光部 11での発光により生じる発熱成分を電気配線パターン 312で効率良 く伝導させることができるようにして ヽる。
また、図 3に示すように、電気配線基板 3の貫通穴 34は、実装される表面発光型発 光素子 1の発光部 11の位置に合致するような位置に形成しておく。これにより、電気 配線基板 3によって表面発光型光素子 1は機械的に保持されるとともに、電気配線基 板 3により表面発光型光素子 1に対して電気信号が供給されると、表面発光型光素 子 1で発光した光を貫通穴 34を通じて後述のファイバブロック 4側に導くことができる ようになる。
[0024] ファイバブロック 4は、電気配線基板 3における表面発光型光素子 1の搭載面とは 反対側の面 (裏面)に搭載されるとともに、貫通穴 34を通じて表面発光型光素子 1か らの光を入力され、入力された光を伝搬させる。ファイバブロック 4は、図 2,図 3に示 すように、表面発光型光素子 1からの光を伝搬させる光ファイバ 42および光ファイバ 41を内蔵して固定するフエルール 41により構成され、光ファイバ 42の端面が貫通穴 34を介して表面発光型光素子 1の発光部 11に対向するように、バットジョイント (butt joint)により接続される。
[0025] これにより、表面発光型光素子 1および光ファイバ 42を、その間隔を狭くしながら安 定的に固定させる。更に、上述の電気配線基板 3自身を表面発光型光素子 1および 光ファイバ 42間のスぺーサとすることにより、電気配線基板 3を介装させるのみの少 ない部品点数によって、表面発光型光素子 1およびファイバブロック 4間の光結合の 高効率化および安定化を実現する。
[0026] ヒートシンク 2は、電気配線基板 3における表面発光型光素子 1の搭載面と同一面 側に搭載されて、表面発光型光素子 1の発熱部分である発光部 11その他図示しな い表面発光型光素子 1を駆動するための集積回路等の周辺電気回路による発熱を 外部に放熱するものであり、熱伝導性の高い部材により構成される。このため、ヒート シンク 2は、電気配線パターン 312の一部とヒートシンク 2の本体の一部とが接着層 3 31 (図 3参照)を介して重なるように電気配線基板 3に搭載されている。これにより、表 面発光型光素子 1における発熱部分である発光部 11からの発熱を外部に放出する ことができるようになって!/、る。
[0027] 上述したように、表面発光型光素子 1の発熱は、主として、電気配線基板 3に近接し た発光部 11での発光によって生じるものである。基準電位を供給する電気配線バタ ーン 312は、図 1,図 2に示すように発光部 11の近傍にそなえられているので、発光 部 11における発熱成分を比較的高い効率でヒートシンク 2に伝導させることができる 。ヒートシンク 2は、この電気配線パターン 312で伝導される発熱成分が効率的に伝 わるよう当該電気配線パターン 312に重ねられているので、この電気配線パターン 3 12からの発熱成分を、ヒートシンク 2を通じて放熱させることができるようになつている
[0028] ヒートシンク 2は、図 2に示すように、表面発光型光素子 1の四方を囲む枠型の第 1ヒ ートシンク部 21と、第 1ヒートシンク部 21の上部に第 1ヒートシンク部 21と一体ィ匕され る第 2ヒートシンク部 22とをそなえる。尚、 211は、第 1ヒートシンク部 21の開口部であ る。この開口部 211は、好ましくは、放熱効果を上げるため、表面発光型光素子 1が 内側に収まる限りにおいて小さく構成する。又、第 2ヒートシンク部 22の形状としては 、図 1〜図 3中にお 、ては表面発光型光素子 1の実装を覆うような形状を有して 、る 力 これ以外の形状としてもよいし、また省略する構成としてもよい。
[0029] ところで、表面発光型光素子 1としては、例えば図 4に示すように 4つの発光部 11が 並列配置されたものを用いることができる。この場合においては、図 4中上下配置さ れた一対の基準電位電極 121および信号電極 122を通じて供給される電気信号に より、対応する基準電位電極 121の箇所における発光部 11で光を発光させることが できるようになつている。
[0030] 図 5は図 4に示す表面発光型光素子 1に対して電気信号を供給するための、電気 配線基板 3における電気配線パターン 311, 312のパターン形状の一例を示す図で あり、図 6は図 5に示す電気配線パターン 311, 312を有する電気配線基板 3に、図 4 に示す表面発光型光素子 1とともにヒートシンク 2をなす第 1ヒートシンク部 21を搭載 した場合の配置関係について示す図である。
[0031] ここで、図 5に示す電気配線パターン 311は、上述の表面発光型光素子 1における 4つの信号電極 122に対応して、 4本の信号ライン 311aをそなえるとともに、各信号 ライン 31 laの端部に、各信号電極 122の配置に対応した接点部 31 la' をそなえて いる。又、図 5に示す電気配線パターン 312においては、上述の表面発光型光素子 1における 4つの基準電位電極 121に対応して、 4つの張り出し領域 312aをそなえる とともに、各張り出し領域 312aの端部に、各基準電位電極 121の配置に対応した接 点部 312a' をそなえている。尚、 34aは、上述の 4つの発光部 11の配置に対応して 形成された光伝搬路としての貫通穴である。
[0032] ここで、図 6に示すように、ヒートシンク 2をなす第 1ヒートシンク部 21および電気配線 パターン 312は、その重なっている面積が大きくなるように位置決めおよび各形状が 定められており、これにより、熱伝導の断面積を大きくして、電気配線パターン 312に 伝わる発光部 1からの発熱成分がヒートシンク 2を通じて放熱される効率を高めること ができるようになつている。又、電気配線パターン 312を、表面出力型光素子 1の基 準電位電極 121よりも広い面積とすることで、熱伝導の断面積を大きくすることができ 、放熱効率を高めることができるようになる。
[0033] なお、電気配線基板 3における表面出力型光素子 1の搭載面の裏面に搭載される ファイバブロック 4にお 、ても、上述の表面出力型光素子 1における 4つの発光部 11 に対応して、 4本の光ファイバ 42をフェルール 41に固定しておくことが可能である。 上述のごとく構成される第 1実施形態の光モジュール 10は、表面出力型光素子 1を 駆動する集積回路等が搭載されたモジュール基板に実装する工程とあわせて、図 8 (c)に示す光送信機モジュール 10Aとして構成することができる。この光送信機モジ ユール 10Aは、図 7 (a)〜図 7 (d)および図 8 (a)〜図 8 (c)に示すような工程によって 製造することができる。
[0034] まず、図 7 (a)に示すように、光モジュール 10を駆動する電気回路構成として、モジ ユール基板 51上にチップコンデンサ、チップ抵抗、信号処理用のプロセッサなどの 電気回路素子 52を実装し、ついで、図 7 (b)に示すように、モジュール基板 51上に、 表面発光型光素子 1を駆動するための IC (Integrated Circuit)チップ 53を実装し、こ れによりモジュール基板回路 5を構成する。
[0035] 一方、光モジュール 10を製造する工程としては、図 7 (c)に示すように、電気配線 基板 3 (この電気配線基板 3は、前述の図 3に示すように、フレキシブル配線フィルム 力もなる基板 32に予め電気配線パターン 311, 312および光伝搬路としての貫通穴 34を形成したものである)に、表面出力型光素子 1を実装し、電気配線パターン 311 , 312との電気接続を行なう。このとき、電気配線基板 3の基板面側に発熱部である 発光部 11が相対的に近接される(即ち基板面に対向する)ように搭載する。
[0036] つづいて、図 7 (d)に示すように、ヒートシンク 2をなす第 1ヒートシンク部 21を電気配 線基板 3上に固定する。このとき、第 1ヒートシンク 21の開口部 211にチップコート榭 脂を充填し、硬化しても良い。
さらに、図 8 (a)に示すように、第 2ヒートシンク部 22を第 1ヒートシンク部 21に接着す ることにより一体として、光サブアセンブリ 1( を完成する。尚、図 8 (a)〜図 8 (c)中 においては、第 2ヒートシンク部 22として、モジュール筐体を兼用した形状のものを示 している。又、電気配線基板 3におけるヒートシンク 2にかからない部分については、 図 7 (b)のように構成されたモジュール基板回路 5との次工程での電気的接続のため 適宜折り曲げておく。
[0037] つづ!/、て、図 8 (b)に示すように、図 7 (a) ,図 7 (b)に示す工程によって組み立てら れたモジュール基板回路 5上に、図 8 (a)に示すように構成された光サブアセンブリ 1 0' を実装し、駆動 ICチップ 53と電気配線基板 3における電気配線パターン 311, 3 12とを電気接続する。このとき、モジュール基板回路 5上の各電気回路素子はチップ コート榭脂を被せてもよい。
[0038] そして、図 8 (b)に示すように、モジュール基板回路 5上に光サブアセンブリ 1( を 実装してから、図 8 (c)に示すように、電気配線基板 3における表面出力型光素子 1 が搭載される側とは反対側の面に、ファイバブロック 4を接続し、光送信機モジュール 10 Aを完成する。
上述のごとく構成された光送信機モジュール 10Aにおいては、駆動 ICチップ 53か ら供給される電気信号が、図 2,図 3に示す電気配線基板 3の電気配線パターン 311 を通じて、表面出力型光素子 1の信号電極 122に供給される。これにより、表面出力 型光素子 1が駆動されて、発光部 11において信号光を出力することができる。発光 部 11から出力された信号光は、貫通穴 34を介し、ファイバブロック 4をなす光フアイ バ 42に高効率で光学的に結合される。これにより、信号光は光ファイバ 42を通じて 安定して伝搬させることができる。
[0039] 表面出力型光素子 1の発光部 11においては、発光によって発熱も生じている力 こ の発熱については、図 7 (b) ,図 8 (c)に示すモジュール基板回路 5での回路動作に よる発熱とあわせ、ヒートシンク 2を通じて放熱させることができる。特に、発光部 11で の発熱成分にっ 、ては、発光部 11の配置位置に近接して 、る電気配線パターン 31 2を介し、ヒートシンク 2を通じて放熱することができるので、発光部 11の温度上昇を 抑制し、出力光パワーの低下を効率的に抑制することができる。
[0040] たとえば、前述の図 17に示す従来技術の構成においては、ヒートシンク 108は半導 体光素子 101の発光面の裏側に配置されているのに対し、本願発明の構成は、発 光部 11に近接した位置に形成される熱伝導性の高 ヽ電気配線パターン 312を通じ て放熱している。従って、第 1実施形態における発光部 11と、発光部 11の発熱を伝 導する電気配線パターン 312との間の距離については、図 17に示すものにおける光 素子 101の発光部とヒートシンク 108との間の距離に比べて近づけることができるよう になる。このため、例えば従来技術の構成では温度上昇が 27. 4°C程度となるのに 対して、本実施形態の構成による温度上昇は 8. 2°C程度にとどめることができ、放熱 の効率を高めることができるのである。
[0041] このように、本発明の第 1実施形態によれば、電気配線基板 3の基板面側に発熱部 である発光部 11が相対的に近接されるように電気配線基板 3に搭載される表面出力 型光素子 1と、電気配線基板 3における表面出力型光素子 1の搭載面と同一面側に 搭載されるヒートシンク 2と、をそなえ、かつ、ヒートシンク 2は、電気配線基板 3におけ る電気配線の一部とヒートシンク 2の本体の一部とが重なるように電気配線基板 3に 搭載されているので、表面出力型光素子 1の発熱量が最も高い、光素子発光面側か ら排熱を行うことができるため、熱伝導性の低い表面出力型光素子 1の裏面への放 熱経路を用いる必要がないため、光素子外部への放熱の効率を高めることができる という利点がある。
[0042] また、光素子の基準電位電極 121よりも広い面積の電気配線パターン 312を設け ることにより、熱伝導の断面積を大きくすることができ、放熱効率をより高めることがで きる。
さらに、光素子近傍にて配線パターン 312の領域力ヒートシンク 2に重なるようにな つて 、るので、熱伝導の断面積を大きくすることができる。
[0043] この結果、表面出力型光素子 1を駆動した時の発熱を、効率よくモジュール外部へ 排熱することができるため、光出力パワーの低下を抑制でき、光送信モジュールの低 消費電力化に大きく寄与する。
〔B〕第 2実施形態の説明
図 9,図 10は本発明の第 2実施形態を示す図であり、図 9は第 2実施形態における 電気配線基板 3—1を示す模式的上視図であり、図 10は、電気配線基板 3—1に表 面出力型光素子 1とともにヒートシンク 2が搭載された光モジュール 10— 1を示す模 式的上視図である。
[0044] この第 2実施形態に力かる光モジュール 10— 1は、前述の第 1実施形態にかかる光 モジュール 10に比して、電気配線基板 3— 1をなす電気配線パターン 312— 1のパ ターン形状が異なっており、それ以外については前述の第 1実施形態におけるものと 基本的に同様である。尚、図 9,図 10中において、図 5,図 6と同一の符号は、ほぼ 同様の部分を示している。
[0045] すなわち、図 9,図 10に示すように、電気配線パターン 312—1は、前述の図 5, 6 に示すものとは異なり、 4つの基準電位電極 121に対応した 4つの張り出し領域 312 aを形成せずに、 4つの基準電位電極 121との接点となる領域についても、コの字形 の外周部の一様なパターン形状に対応して一様なパターンとしている点が異なって いる。
このように構成された光モジュール 10 - 1にお!/ヽても、電気配線パターン 312- 1 およびヒートシンク 2により、第 1実施形態の場合と同様の利点を得ることができる。
[0046] 〔C〕第 3実施形態の説明
図 11,図 12は本発明の第 3実施形態を示す図であり、図 11は第 2実施形態にお ける電気配線基板 3— 2を示す模式的上視図であり、図 12は、電気配線基板 3— 2 に表面出力型光素子 1とともにヒートシンク 2が搭載された光モジュール 10— 2を示 す模式的上視図である。
[0047] この第 3実施形態に力かる光モジュール 10— 2は、図 4に示す構成の表面出力型 光素子 1において、 4つの発光部 11からそれぞれ独立したチャンネルの光信号を出 力できるようにするため、基準電圧を供給する電気配線パターン 312— 2につ ヽても 4つの領域に分かれて形成されている点が、前述の第 1,第 2実施形態の場合と異な つている。尚、図 11,図 12中において、図 5,図 6と同一の符号は、ほぼ同様の部分 を示している。
[0048] すなわち、図 11,図 12に示すように、電気配線パターン 312— 2は、前述の図 9, 図 10,に示すものとは異なり、 4つの基準電位電極 121との接点となる領域ごとに独 立した配線パターンとなっている。これにより、駆動 ICチップ 53から、表面出力型光 素子 1の 4対の基準電位電極 121および信号電極 122に、それぞれ異なる電圧を印 加することができるようになり、 4つの発光部 11からは、それぞれ異なる信号光を出力 することがでさるよう〖こなる。
[0049] このように構成された光モジュール 10— 2においても、電気配線パターン 312— 2 およびヒートシンク 2により、第 1実施形態の場合と同様の利点を得ることができる。 〔D〕その他
上述した実施形態にかかわらず、本発明の趣旨を逸脱しない範囲において種々変 形して実施することが可能である。
[0050] 具体的には、上述の第 1〜第 3実施形態においては、電気配線パターン 312, 312 —1, 312— 2の領域に重なるように搭載されるヒートシンク 2をなす第 1ヒートシンク部 21は、開口部 211を有する枠形の形状を有しているが、本発明によれば、例えば図 13,図 14に示す第 1ヒートシンク部 21Aのように、信号ラインとしての電気配線パタ ーン 311の形成領域を含まないコの字形の形状とすることができる。図 5に示す電気 配線基板 3についても同様のヒートシンク部 21Aを適用することができる。
[0051] 前述の第 1〜第 3実施形態の場合においては(図 5,図 10,図 12参照)、信号ライ ンとなる電気配線パターン 311上にも第 1ヒートシンク部 21が重なっている。ここで、 第 1ヒートシンク部 21が導電性を有する部材により構成する場合においても、例えば 図 15に示すように接着層 331が間に介装されて 、るため、第 1ヒートシンク部 21の電 気配線パターン 311に対する絶縁は保たれて 、る。
[0052] し力しながら、この場合には、電気配線パターン 311と第 1ヒートシンク部 21とで接 着層 331を挟むことで実質的にコンデンサ C1が形成されることにもなる。これは挟ま れる領域が空気層であっても同様である。例えば、この図 15に示すように、電気配線 基板 3, 3- 1, 3— 2が折り曲げられて、電気配線パターン 311と第 1ヒートシンク部 2 1とが近接することとなる場合においても、同様のコンデンサ C2が形成されることにな る。高速信号が電気配線パターン 311を導通する場合においては、このように形成さ れる容量が伝送特性に影響を及ぼすことが考えられる。
[0053] これに対し、図 13,図 14に例示するように、電気配線基板 3— 1, 3— 2に搭載され るヒートシンク 2の重なり面の形状を、信号ラインとしての電気配線パターン 311の形 成領域を含まない形状とすることで、図 16に示すように、容量成分は発生することが なくなり、伝送特性劣化を抑制することが期待できる。
また、上述の各実施形態においては、第 2の光素子として光ファイバブロックを適用 しているが、本発明によれば、光ファイバ単体、あるいは受光素子等の他の公知の光 素子を適用することとしてもよい。
その他、上述した実施形態の開示により、本発明の装置を製造することは可能であ る。

Claims

請求の範囲
[1] 電気配線基板と、
該電気配線基板の基板面に発熱部が相対的に近接されるように搭載される第 1の 光素子と、
該電気配線基板における該第 1の光素子の搭載面と同一面に搭載されるヒートシ ンクと、をそなえ、
かつ、該ヒートシンクは、該電気配線基板における電気配線の領域が該ヒートシン ク〖こ重なるように該電気配線基板に搭載されたことを特徴とする、光モジュール。
[2] 該ヒートシンクに重なる電気配線部分が、該第 1の光素子の基準電位電極に接続さ れたことを特徴とする、請求項 1記載の光モジュール。
[3] 該ヒートシンクに重なる電気配線部分に連続して、該第 1の光素子の電極部と電気 的に接続される箇所は、該第 1の光素子の電極部の面積にくらべて広い面積をもつ た形状であることを特徴とする、請求項 1記載の光モジュール。
[4] 該ヒートシンクが、該第 1の光素子を囲む形状であることを特徴とする、請求項 1記 載の光モジュール。
[5] 該ヒートシンクの形状は、当該ヒートシンクが該電気配線基板に重なる領域に該電 気配線をなす信号ラインの形成領域が除かれる形状であることを特徴とする、請求項 1記載の光モジュール。
[6] 該ヒートシンクに接続されるモジュール筐体をそなえたことを特徴とする、請求項 1 記載の光モジュール。
[7] 該ヒートシンクがモジュール筐体の一部として構成されたことを特徴とする、請求項 1記載の光モジュール。
[8] 該電気配線基板がフレキシブル配線基板であることを特徴とする、請求項 1記載の 光モジユーノレ。
[9] 該第 1の光素子が表面発光型光素子であり、かつ、該表面発光型光素子の発光部 力 上記発熱部として上記基板面側に相対的に近接されるように該電気配線基板に 搭載される一方、
該電気配線基板における該第 1の光素子の搭載面とは反対側の面に搭載された 第 2の光素子がそなえられ、
かつ、該電気配線基板に、該表面発光型光素子で発光された光が伝搬して、該第 2の光素子に導く光伝搬路をそなえたことを特徴とする、請求項 1記載の光モジユー ル。
[10] 該第 2の光素子が、光ファイバ又は光ファイバを内蔵したフエルールであることを特 徴とする、請求項 9記載の光モジュール。
[11] 電気配線基板に、該電気配線基板の基板面側に発熱部が相対的に近接されるよ うに第 1の光素子を搭載し、
ヒートシンクを、該電気配線基板における該第 1の光素子の搭載面と同一面側に、 該電気配線基板における電気配線の領域と該ヒートシンクとが重なるように搭載する ことを特徴とする、光モジュールの製造方法。
PCT/JP2006/301535 2006-01-31 2006-01-31 光モジュールおよびその製造方法 WO2007088584A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007556724A JP4829902B2 (ja) 2006-01-31 2006-01-31 光モジュールおよびその製造方法
PCT/JP2006/301535 WO2007088584A1 (ja) 2006-01-31 2006-01-31 光モジュールおよびその製造方法
US12/182,717 US7674017B2 (en) 2006-01-31 2008-07-30 Optical module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/301535 WO2007088584A1 (ja) 2006-01-31 2006-01-31 光モジュールおよびその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/182,717 Continuation US7674017B2 (en) 2006-01-31 2008-07-30 Optical module and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2007088584A1 true WO2007088584A1 (ja) 2007-08-09

Family

ID=38327171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301535 WO2007088584A1 (ja) 2006-01-31 2006-01-31 光モジュールおよびその製造方法

Country Status (3)

Country Link
US (1) US7674017B2 (ja)
JP (1) JP4829902B2 (ja)
WO (1) WO2007088584A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010030558A1 (de) * 2010-06-25 2011-12-29 BSH Bosch und Siemens Hausgeräte GmbH Dunstabzugshaube mit Beleuchtungsvorrichtung
CN110865440A (zh) * 2018-08-27 2020-03-06 苏州旭创科技有限公司 Osfp光模块及其制作方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI382565B (zh) * 2008-10-15 2013-01-11 Young Optics Inc 發光二極體裝置及應用該裝置的光學引擎
US20110091168A1 (en) * 2009-10-19 2011-04-21 Zarlink Semiconductor Ab Opto-electrical assemblies and associated apparatus and methods
JP5809866B2 (ja) * 2011-07-21 2015-11-11 オリンパス株式会社 光素子モジュール、光伝送モジュール、および光伝送モジュールの製造方法
JP2015504243A (ja) 2011-12-14 2015-02-05 フィニサー コーポレイション チップオンフレックス光学サブアセンブリ
US9052476B2 (en) * 2012-07-04 2015-06-09 Sae Magnetics (H.K.) Ltd. Wafer-level packaged optical subassembly and transceiver module having same
US9249966B1 (en) 2012-11-09 2016-02-02 OptoElectronix, Inc. High efficiency SSL thermal designs for traditional lighting housings
JP6411088B2 (ja) * 2013-09-26 2018-10-24 オリンパス株式会社 光伝送モジュールおよび内視鏡
US10775028B2 (en) * 2014-12-11 2020-09-15 Datalogic Ip Tech S.R.L. Printed circuit board aperture based illumination system for pattern projection
US9939596B2 (en) * 2015-10-29 2018-04-10 Samsung Electronics Co., Ltd. Optical integrated circuit package
US9678289B1 (en) * 2015-12-02 2017-06-13 International Business Machines Corporation Thermal management of optical coupling systems
US10194526B1 (en) * 2018-08-27 2019-01-29 Tactotek Oy Electrical node, method for manufacturing an electrical node, electrical node strip or sheet, and multilayer structure comprising the node

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250846A (ja) * 2001-02-26 2002-09-06 Seiko Epson Corp 光モジュール及びその製造方法並びに光伝達装置
JP2005208107A (ja) * 2004-01-20 2005-08-04 Seiko Epson Corp 光モジュールの製造方法、光通信装置、電子機器
JP2005321655A (ja) * 2004-05-10 2005-11-17 Seiko Epson Corp 光部品、光通信モジュール、電子機器、並びに、光部品の製造方法、及び光通信モジュールの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184889A (ja) * 1985-02-12 1986-08-18 Toshiba Corp 半導体発光装置
US6863444B2 (en) * 2000-12-26 2005-03-08 Emcore Corporation Housing and mounting structure
US6565239B2 (en) * 2001-02-27 2003-05-20 Farlight, L.L.C. Flush luminaire with optical element for angular intensity redistribution
US6739760B2 (en) * 2001-09-17 2004-05-25 Stratos International, Inc. Parallel fiber optics communications module
JP3966067B2 (ja) 2002-04-26 2007-08-29 富士ゼロックス株式会社 表面発光型半導体レーザ素子およびその製造方法
JP2003324214A (ja) * 2002-04-30 2003-11-14 Omron Corp 発光モジュール
US7264378B2 (en) * 2002-09-04 2007-09-04 Cree, Inc. Power surface mount light emitting die package
US6828590B2 (en) * 2003-05-07 2004-12-07 Bear Hsiung Light emitting diode module device
US6920046B2 (en) * 2003-06-25 2005-07-19 Eaton Corporation Dissipating heat in an array of circuit components
JP4254470B2 (ja) 2003-10-10 2009-04-15 豊田合成株式会社 発光装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250846A (ja) * 2001-02-26 2002-09-06 Seiko Epson Corp 光モジュール及びその製造方法並びに光伝達装置
JP2005208107A (ja) * 2004-01-20 2005-08-04 Seiko Epson Corp 光モジュールの製造方法、光通信装置、電子機器
JP2005321655A (ja) * 2004-05-10 2005-11-17 Seiko Epson Corp 光部品、光通信モジュール、電子機器、並びに、光部品の製造方法、及び光通信モジュールの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010030558A1 (de) * 2010-06-25 2011-12-29 BSH Bosch und Siemens Hausgeräte GmbH Dunstabzugshaube mit Beleuchtungsvorrichtung
DE102010030558B4 (de) * 2010-06-25 2021-02-11 BSH Hausgeräte GmbH Dunstabzugshaube mit Beleuchtungsvorrichtung
CN110865440A (zh) * 2018-08-27 2020-03-06 苏州旭创科技有限公司 Osfp光模块及其制作方法

Also Published As

Publication number Publication date
US7674017B2 (en) 2010-03-09
US20080285303A1 (en) 2008-11-20
JPWO2007088584A1 (ja) 2009-06-25
JP4829902B2 (ja) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4829902B2 (ja) 光モジュールおよびその製造方法
JP5708816B2 (ja) 光モジュール
JP5428256B2 (ja) 光モジュール及び光伝送方法
US6976795B2 (en) Optical device and optical module
US7583867B2 (en) Optical module
US9470861B2 (en) Optical module
US9104000B2 (en) Optical module
TWI437300B (zh) 光電傳輸連接器、光電傳輸裝置及電子裝置
JP2009003253A (ja) 光電気混載基板と光電気パッケージとの構造体
JPWO2008023508A1 (ja) 光コネクタ及び光結合構造
JP2015088641A (ja) 光モジュール
JP2011013587A (ja) 光電気複合配線モジュールおよびその製造方法
JP2004354532A (ja) 光モジュール及びその製造方法、光通信装置、電子機器
JP2009260227A (ja) 光電気変換装置
JP2010176010A (ja) 光通信装置
US7171066B1 (en) Optical module and optical transmission device
JP4600246B2 (ja) 光送受信モジュール及び光通信装置
CN114815093A (zh) 光模块
TWI227078B (en) Optical transmitter module
JP2012069882A (ja) 光モジュール
JP6260167B2 (ja) 光電融合モジュール
JP2002261372A (ja) 搭載基板及び光モジュール
JP2015084040A (ja) 光通信モジュール
JP7484230B2 (ja) 光モジュール
JP2004309925A (ja) 光モジュール及びその製造方法、光通信装置、電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007556724

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712678

Country of ref document: EP

Kind code of ref document: A1