WO2007086500A1 - 入力回路及び該入力回路を備える半導体集積回路 - Google Patents

入力回路及び該入力回路を備える半導体集積回路 Download PDF

Info

Publication number
WO2007086500A1
WO2007086500A1 PCT/JP2007/051252 JP2007051252W WO2007086500A1 WO 2007086500 A1 WO2007086500 A1 WO 2007086500A1 JP 2007051252 W JP2007051252 W JP 2007051252W WO 2007086500 A1 WO2007086500 A1 WO 2007086500A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
input
output
control signal
signal
Prior art date
Application number
PCT/JP2007/051252
Other languages
English (en)
French (fr)
Inventor
Koichi Nose
Masayuki Mizuno
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2007556010A priority Critical patent/JPWO2007086500A1/ja
Priority to US12/162,236 priority patent/US7847595B2/en
Publication of WO2007086500A1 publication Critical patent/WO2007086500A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/135Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals by the use of time reference signals, e.g. clock signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/06Arrangements for interconnecting storage elements electrically, e.g. by wiring
    • G11C5/066Means for reducing external access-lines for a semiconductor memory clip, e.g. by multiplexing at least address and data signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • G11C7/1087Data input latches
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • G11C7/1093Input synchronization
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M9/00Parallel/series conversion or vice versa
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/00019Variable delay
    • H03K2005/00058Variable delay controlled by a digital setting
    • H03K2005/00071Variable delay controlled by a digital setting by adding capacitance as a load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/00078Fixed delay
    • H03K2005/00084Fixed delay by trimming or adjusting the delay

Definitions

  • Input circuit and semiconductor integrated circuit including the input circuit
  • the present invention relates to an input circuit provided in a semiconductor integrated circuit to which an external force signal is supplied, and in particular, the formation area in the semiconductor integrated circuit can be reduced and control is easy.
  • the present invention relates to an input circuit capable of receiving a high-speed signal and a semiconductor integrated circuit provided with such an input circuit.
  • a serial input circuit is used as a control signal input circuit so that a large amount of control signals can be input through a limited number of input terminals.
  • This serial input circuit is a circuit that can output N control signals even though it does not have two input terminals. is there.
  • the serial input circuit is configured such that M flip-flops FF1 to FFM are cascaded, that is, the output of the preceding flip-flop is connected to the input of the subsequent flip-flop.
  • the two input terminals are an input terminal to which the signal DS is input and a clock input terminal to which the clock signal CLKS is input.
  • the outputs of cascaded flip-flops are represented by DIN [1], DIN [2], ..., DIN [M], respectively.
  • the clock signal CLKS is commonly supplied to the clock terminals of the flip-flops.
  • this serial input circuit in an input device provided outside the integrated circuit, first, the desired M bit signals D11 to D1M are arranged in time series with DIM, ..., D12, D11. This is a serial signal, and the leading DIM of this bit string is input to the serial input circuit as signal DS, that is, supplied to the input terminal of the first stage flip-flop FF1.
  • the signal DS is shifted by 1 bit in the serial input circuit.
  • the signal DS is switched to the second bit of the bit string in the external input device, and a pulse is input once to the clock input terminal CLKS.
  • bit D11 appears at output DIN [1]
  • bit D12 appears at output DIN [2], and so on. Appears in parallel at the output of FF 1 to FFM.
  • the serial input circuits can be connected in cascade to each other.
  • N serial input circuits for M bits described above are cascaded and adjacent to each other.
  • DIN [M] in the final stage of the serial input circuit on the front stage may be connected to the input section of signal DS in the serial input circuit on the rear stage.
  • Each of the control signals 101 to 10N is a multi-bit control signal.
  • NXM flip-flops are required as data holding circuits, and a large amount of external control signals are required.
  • the area occupied by the serial input circuit in the semiconductor integrated circuit is increased.
  • regenerate the NXM bit serial signal and re-input the signal to all the flip-flops in the serial input circuit There is a need.
  • Japanese Patent Application Laid-Open No. 2002-41356 discloses a semiconductor device that includes a controlled circuit, and can supply a control signal to the controlled circuit at high speed.
  • a semiconductor device is disclosed.
  • Japanese Laid-Open Patent Publication No. 2003-108516 discloses a high-speed bus interface used in a semiconductor test apparatus, which can reduce the number of signal lines of a node and can arbitrarily set the order of signal lines. Yes. In this bus interface, a serial Z parallel conversion circuit is provided between the interface part to the internal circuit and the input stage.
  • JP-A-61-99993 when the trigger signal is at the first level, the input data is output as it is, and when the trigger signal is at the second level different from the first level, it is already output.
  • a latch circuit for holding output data is disclosed.
  • Japanese Patent Laid-Open No. 8-314410 discloses an enable circuit used in a driving circuit of a liquid crystal display device. When an enable signal is at a first level, input data is output as it is, and an enable signal is output as a second signal. An enable circuit is disclosed in which the output level is the second level when the level is.
  • Japanese Patent Application Laid-Open No. 9-152470 discloses a circuit for converting a high-speed serial signal into a low-speed parallel signal, which is used in an integrated circuit test apparatus.
  • Japanese Patent Application Laid-Open No. 10-222418 discloses a configuration in which the writing time to a nonvolatile memory provided in a microprocessor can be made the same as the machine cycle of the microprocessor.
  • Patent Document 1 JP 2002-41356 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-108516
  • Patent Document 3 JP-A 61-99993
  • Patent Document 4 JP-A-8-314410
  • Patent Document 5 Japanese Patent Laid-Open No. 9-152470
  • Patent Document 6 JP-A-10-222418
  • An object of the present invention is to improve the switching speed, reduce the number of control signals that need to be stored and generated externally for input, and occupy the semiconductor integrated circuit.
  • An object of the present invention is to provide an input circuit capable of reducing the area.
  • Another object of the present invention is to reduce the area occupied by the input circuit, improve the switching speed of the control signal, and reduce the number of control signals that need to be stored and generated externally for input.
  • An object of the present invention is to provide a semiconductor integrated circuit capable of achieving the above.
  • An object of the present invention is an input circuit that outputs N multi-bit signals each composed of a multi-bit signal based on input data, corresponding to each multi-bit signal. If the trigger signal is at the first level, the input data is output as it is, and if the trigger signal is at the second level different from the first level, the output data that has already been output is retained.
  • Control circuit selection circuit that sets the trigger signal for the output circuit to the second level, N control signal storage and output circuit corresponding to input data In contrast, a group of input signals This is achieved by a commonly supplied input circuit.
  • the input circuit of the present invention may further include a serial input circuit that receives input data as serial data, converts the input data into parallel data, and generates a group of input signals.
  • Another object of the present invention is a semiconductor comprising the above-described input circuit of the present invention and a controlled circuit, and the controlled circuit changes in characteristics in accordance with a control signal supplied to the controlled circuit. Achieved by integrated circuit.
  • the trigger signal for any one of the control signal storage / output circuits is set to the first level, and the control signals for the controlled circuits corresponding to the control signal storage / output circuits are grouped. Change the input signal and observe the characteristics of the controlled circuit to determine the optimal control signal for the controlled circuit. It is preferable that an optimal control signal is supplied to each of the N controlled circuits by sequentially repeating the process of setting the level to N control signal storage 'output circuits.
  • control signals other than the control signal do not change even if the data input signal is switched.
  • the other control signals do not change, so that it is not necessary to regenerate or re-input all of the control signals.
  • the only signal that needs to be regenerated and re-input every time the control signal is changed is the control signal.
  • MXN data input signals every time one of the control signals is changed.
  • the number of data input signals can be reduced to M. Therefore, it is possible to input control signals at a higher speed than conventional ones.
  • the input circuit of the present invention a structure is used in which the control signals of the controlled circuits other than the kth are not switched when the control signal of the kth controlled circuit is selected.
  • this input circuit improves the switching speed and supplies it to the input circuit.
  • the number of signals to be externally stored and generated as signals to be reduced can be reduced, and control can be easily performed.
  • this input circuit can reduce the circuit scale, the area occupied in the semiconductor integrated circuit can be reduced.
  • the number of terminals for input signals can be reduced to two. .
  • FIG. 1 is a block diagram showing an example of a configuration of a conventional control signal input circuit.
  • FIG. 2 is a block diagram showing an example in which the control signal input circuits shown in FIG. 1 are connected in series.
  • FIG. 3 is a block diagram showing a configuration of a control signal input circuit according to the first embodiment of the present invention.
  • FIG. 4 is a block diagram showing details of the configuration of the control signal input circuit shown in FIG. 3.
  • FIG. 5 is a circuit diagram showing an example of a configuration of a latch circuit used in a control signal input circuit.
  • FIG. 6 is a timing chart showing the basic operation of the control signal input circuit shown in FIG.
  • FIG. 7 is a block diagram showing another example of the configuration of the control signal input circuit of the first exemplary embodiment.
  • FIG. 8 is a circuit diagram showing an example of the configuration of a delay measuring instrument used in the control signal input circuit shown in FIG.
  • FIG. 9 is a circuit diagram showing an example of a configuration of a delay element used in the control signal input circuit shown in FIG.
  • FIG. 10 is a block diagram showing a configuration of a control signal input circuit according to a second embodiment of the present invention.
  • FIG. 11 is a block diagram showing details of the configuration of the control signal input circuit shown in FIG.
  • FIG. 12 is a timing chart showing a basic operation of the control signal input circuit shown in FIG.
  • FIG. 13 is a block diagram showing a configuration of a control signal input circuit according to a third embodiment of the present invention.
  • FIG. 14 is a block diagram showing details of the configuration of the control signal input circuit shown in FIG.
  • FIG. 15 is a timing chart showing the basic operation of the control signal input circuit shown in FIG.
  • FIG. 16 is a block diagram showing a configuration of a control signal input circuit according to a fourth embodiment of the present invention.
  • FIG. 17 is a timing chart showing a basic operation of the control signal input circuit shown in FIG.
  • TRIG trigger signal operation start signal for controlled circuit selection circuit
  • FIG. 3 is a block diagram showing the configuration of the input circuit according to the first embodiment of the present invention. In the first embodiment, a control signal input method will be described.
  • This input circuit is provided in a semiconductor integrated circuit such as an LSI, where N is an integer of 2 or more, and a control signal for N controlled circuits 201 to 20N in the semiconductor integrated circuit. Is used to input. Control signal storage and output circuits 11 to 1N are provided for each controlled circuit 201 to 20N. Control signal storage and output circuits 11 to 1N have multiple bits for the corresponding controlled circuits 201 to 20N. Signal is controlled Signals 101 to 10N are output. Control signal storage ⁇ The input signals DIN [1] to DIN [M] are commonly supplied to the output circuits 11 to 1N! Then, in order to select the control signal storage / output circuit 11 to 1N, in other words, to select the controlled circuit 201 to 20N that is the output destination of the control signal, the controlled circuit selection circuit 2 is provided. Yes.
  • the control signal storage / output circuit to be controlled first is selected, and the selected control signal is stored and output.
  • the control signal storage / output circuit that has not been selected maintains the same output regardless of the value of the input signal DIN.
  • the trigger signal is set to the first level to select the control signal storage / output circuit to be controlled next. The control signal storage and output circuit output is determined. Thereafter, such control is repeated, and finally the control signals to the N controlled circuits 201 to 20N are optimized.
  • FIG. 4 shows details of the configuration shown in FIG. The details of the input circuit of the first embodiment will be described below with reference to FIG.
  • the controlled circuit selection circuit 2 is configured by cascading N flip-flops F1 to FN, and all of the clock input terminals F1 to FN of these N flip-flops are connected. The same clock signal CLK is supplied. With l ⁇ k ⁇ N, the input of the kth flip-flop is connected to the output of the k-1st flip-flop. The trigger signal TRIG is supplied to the input of the first flip-flop F1.
  • the signals output from the flip-flops F1 to FN are represented by T1 to TN, respectively. Signals T1 to TN are used as trigger signals for control signal storage and output circuits 11 to 1N, respectively.
  • Control signal storage ⁇ Output circuit 11 ⁇ : LN is the M latch circuits L11 ⁇ L1M, L21 ⁇ that input signals DIN [1], DIN [2], ..., DIN [M] respectively input L2M, ⁇ ⁇ ⁇ , LN1 ⁇ : LN
  • latch circuits consist of one normal inverter as shown in Figure 5.
  • Data circuit and two inverter circuits whose outputs are controlled by a clock signal CLK, and have a general configuration.
  • Clock signal CLK supplied to each latch circuit Lkl to LkM in output circuit lk is the kth flip-flop Fk in controlled circuit selection circuit 2 This is the output signal Tk.
  • the clock signal CLK is high, the output signal of the latch circuit is the same as the input signal to the latch circuit.
  • the clock signal CLK is low, the output of the latch circuit is the same.
  • the signal maintains the value when the clock signal CLK was at the high level before that.
  • the kth control signal is stored.
  • the output of each of the latch circuits Lkl to LkM of the output circuit lk is given to the kth controlled circuit 20k as the control signal 10k.
  • a trigger signal TRIG that is high only for a period of one cycle of the clock signal CLK is input to the first flip-flop F1.
  • the signal T1 becomes high level and the signals T2 to TN become low level.
  • the output 101 of the first control signal storage / output circuit 11 is the same as the input signals DIN [1], DIN [2],..., DIN [M]. Therefore, DIN [l], DIN [2], ..., DIN [M] values are switched to Dl, D2, ..., DM to change the characteristics of the controlled circuit 201 and change the characteristics.
  • the CLK signal is output for one pulse.
  • the signal T1 becomes low level and the signal T2 becomes high level.
  • the second control signal is stored.
  • the output 102 of the output circuit 12 is the same as the input signals DIN [1], DIN [2],..., DIN [M].
  • the control signal D5 can be searched.
  • the optimal control signal D3 previously determined is continuously supplied to the controlled circuit 201. By performing such control N times, it is possible to search for a control signal that optimizes the Nth controlled circuit 20N.
  • the input signals DIN [1], DIN [2], ..., DIN [M] The given signal is always only the control signal for one controlled circuit selected by the controlled circuit selection circuit 2. Therefore, when this input circuit is used, it is not necessary to re-input the control signal for the controlled circuit that is not selected each time the input signal DIN is changed. Further, when the latch circuit is provided in the semiconductor integrated circuit, its size is about half of the size of the flip-flop. Therefore, according to this embodiment, the serial circuit using the conventional NXM flip-flops is used. Compared with the input circuit, the area power occupied in the semiconductor integrated circuit and the small input circuit can be realized.
  • the input circuit according to the first embodiment is particularly effective when the optimum control signal for each controlled circuit can be determined independently of each other. That is, in this input circuit, the control of the first controlled circuit 201 is realized only by the control signal 101, and the control of the second controlled circuit 202 is realized by the state of the controlled circuit 201 and the control signal 102.
  • the control of the controlled circuit 20N is particularly effective when it is determined by the state of the controlled circuits 201 to 20 (N-1) and the control signal 10N.
  • the equal interval delay generation circuit 30 assumes that T is a fixed value, and that the delay in the output signal 3 lk of the k-th delay element 30k is time k XT with respect to the delay circuit input signal 310. This circuit outputs N output signals 311 to 31N.
  • the equally-spaced delay generation circuit 30 includes N delay elements 301 to 30N connected in cascade. Further, a delay measuring device 320 for measuring a delay difference between the output of each delay element and the delay circuit input signal 310 is provided.
  • the delay measuring device 320 is configured by a delay difference measuring circuit as shown in FIG. 8, for example.
  • the delay measuring device 320 In order to measure the time difference between the delay circuit input signal 310 and the signal under measurement using the output 311 of the delay element 301 as the signal under measurement, the delay measuring device 320 is connected in cascade with a delay time T. A plurality of delay elements 710, 711, 712,. Then, in the delay measuring instrument 320, the rising signal of the delay circuit input signal 310 is used as the delay elements 710, 711, By sequentially passing 712, the timing of the rising signals differs from each other by T. s
  • Signals 720, 721, 722, ... generate force.
  • the timing of these signals 720, 721, 722, ... and the timing of the signal under measurement 311 are compared by the phase comparison circuit CO, CI, C2, ..., and the phase comparison is determined that the timing of the signal under measurement is later
  • the time difference between the delay circuit input signal 310 and the signal to be measured 311 can be expressed as P XT.
  • the delay measuring device 320 can be realized by taking a signal out of the chip and observing the waveform with an oscilloscope.
  • the delay element (delay circuit) used in the delay measuring instrument 320 is configured by a circuit as shown in FIG. 9, for example.
  • the output of the MOS inverter 831 for input and the input of the MOS inverter 832 for output are connected, and the delay variation correction signal 511 ⁇ which is M-bit binary data is connected to the line connecting the inverters 831 and 832.
  • Capacitors controlled by 51M are connected. The capacity of M pieces increases sequentially according to the power of 2, such as C, 2C, ..., 2 M_1 C
  • the delay variation correction signal which is the initial data
  • the delay increases monotonously with ⁇ .
  • the delay correction completion signal FIX provided from the delay measuring device 320 is used as a clock signal to each of the flip-flops F1 to FN of the controlled circuit selection circuit 2. It is used. First, by setting the trigger signal TRIG to the noise level and the delay correction completion signal FIX to the noise level, the signal T1 is set to the noise level, and the signals T2 to T are set to the low level. After that, set both the trigger signal TRIG and the delay correction completion signal FIX to low level. At this time, the delay by the delay element 301 is determined by the values of the control signals DIN [1] to DIN [M].
  • the delay measuring device 320 measures the delay time difference between the delay circuit input signal 310 and the first output signal 311. If the delay is greater than the ideal value T, the delay meter outputs a DOWN signal of 321 times. In response to the DOWN signal, the M-bit up / down counter 321 decreases the value of the input signal DIN by one. Then, the value of the control signal 101 to the delay element 301 decreases, and the delay is reduced. Decrease by ⁇ and approach the desired delay value ⁇ . Conversely, when the delay is smaller than the ideal value ⁇ , the delay measuring instrument 320 outputs an UP (up) signal. In response to the UP signal, up / down counter 321 increases the value of DIN by one. Then, the value of the control signal 101 for the delay element 301 increases, the delay increases by ⁇ , and approaches the desired delay value T.
  • the UP signal and DOWN signal are also called delay correction signals.
  • the delay measuring device 320 sets the delay correction completion signal FIX to the high level. Then, since the signal T1 becomes the low level and the signal T2 becomes the high level, the input signals DIN [1] to DIN [M] are supplied to the control terminal 102 of the second delay element 302, and the delay element 30 2 delay correction is possible. While the delay correction of the delay element 302 is being performed, the value of the control signal 101 is held, so that it is not necessary to input the delay correction signal signal again for the delay element 301. By performing this for each delay element, it is possible to set a desired delay value for all delay elements.
  • FIG. 11 shows details of the input circuit of the second embodiment. Hereinafter, the details of the input circuit of the second embodiment will be described with reference to FIG.
  • the serial input circuit 21 is composed of M flip-flops FF1 to FFM connected in cascade so that the output of the previous stage is connected to the input of the subsequent stage, and the input signal for the serial circuit is provided to the input of the first stage. DS is supplied. Further, the clock signal CLKS for the serial input circuit is supplied to the clock inputs of the M flip-flops.
  • the trigger signal TRIG and the clock signal CLK are respectively set to a high level, and thereby the signal T1 is set to a noise level.
  • the DIN input signal is generated by the serial input circuit 21.
  • a desired combination of M bit signals D1 that is, a bit string of DIM,..., D12, D11
  • D1 bit string of DIM,..., D12, D11
  • the clock signal CLKS By inputting one pulse as the clock signal CLKS, the signal DS is shifted in the serial input circuit 21 bit by bit.
  • the desired M-bit signal combination D1 becomes DIN [1] to DIN [M] Is output as After that, as in the first embodiment, the control signal 101 for the controlled circuit 201 is set to an appropriate value.
  • the input circuit of the first embodiment a total of (M + 2) input terminals including the signal input terminal for the controlled circuit selection circuit 2 are required.
  • the input circuit can be configured with four input terminals. According to this embodiment, the number of terminals of the input circuit can be further reduced.
  • the control signal input circuit of the third embodiment shown in FIG. 13 is the same as that of the input circuit of the first embodiment, between the controlled circuit selection circuit 2 and the control signal storage / output circuits 11 to 1N.
  • a single circuit 51 is provided.
  • the controlled circuit selection circuit 2 includes N flip-flops F1 to FN, and the same clock signal CLK is supplied to all the clock terminals of the flip-flops.
  • the input of the kth flip-flop is connected to the output of the k-1st flip-flop. Further, the outputs TS1 to TSN of the flip-flops F1 to FN are input to an AND (logical sum) circuit in the enable circuit 51, respectively.
  • the output of the AND circuit is T1 to TN, and these outputs are determined by the enable signal EN input from the outside to the AND circuit. Output of AND circuit T1 to TN force Each control signal is stored as a trigger signal and supplied to output circuits 11 to 1N.
  • the value D 1 of the first control signal 101 is continuously held.
  • the signal TS1 becomes low level and the signal TS2 becomes high level.
  • the output 202 of the second control signal storage output circuit 12 becomes the input signal DIN [1], DIN [2], ..., DIN [M] Therefore, it is possible to search for the control signal D2 that optimizes the controlled circuit 202.
  • the optimal control signal D1 previously determined is input to the controlled circuit 201. It will continue.
  • the first trigger signal T1 is always turned on before the second trigger signal T2 is set to the noise level. Therefore, the first control signal D1 that has been preliminarily set is forcibly switched to the control signal D2.
  • the input circuit of the third embodiment is In addition, only the desired control signal can be rewritten without destroying the previously optimized first control signal.
  • control signal storage / output circuit to which a decoding circuit is added will be described as a control signal input circuit according to a fourth embodiment of the present invention.
  • FIG. 16 shows a configuration of a control signal storage 'output circuit in the control signal input circuit of the fourth embodiment. This circuit is obtained by adding a decoding circuit to the control signal storage 'output circuit used in the input circuit of each of the embodiments described above.
  • the control signal storage 'output circuit 11 includes a selector circuit 901 that sets only one bit of the output signals 921 to 924 to a noise level according to the value of the input decode signal DINSEL, and outputs of the selector circuit 901.
  • the gating circuit 902 to be supplied and the latch circuit divided into a plurality of groups 911 to 914 are configured.
  • the gating circuit 902 is provided for each of the latch circuit sets 911 to 914, and includes an AND circuit 903 to which a trigger signal T1 is supplied.
  • Each AND circuit 903 outputs the corresponding output of the selector circuit 901 as it is when the trigger signal T1 supplied to the control signal storage / output circuit 11 is at a high level, and the output is low when it is at a low level.
  • the clock signals for the latch circuits in each set are the same, and the input terminals of the clock signals in each set are connected to different outputs 921 to 924 of the gating circuit, respectively.
  • the data input terminals of each latch circuit are connected to a group of input signals DIN1 and DIN2, respectively.
  • the outputs 921 to 924 of the selector circuit 901 are ones that always become “1" according to the decode signal DINSEL (DINSEL [1], DI NSEL [2]). Therefore, when the control signal storage / output circuit 11 is selected, that is, only when the signal T1 is at high level, only one of the outputs T11 to T14 of the gating circuit 902 is at high level. For example, if only the output signal T11 of the AND circuit 903 corresponding to the output 921 is at the high level and the input signal DIN is set to D1, the outputs of the latch circuits Ll l and L12 in the first set 911 will also be D1. . Next, switch the decode signal and set only the output T12 to the noise level.
  • Control signal storage / output circuit configured with 8-bit latch circuit Eight input signal lines are required to supply 8-bit input signals DIN [1] to DIN [8]
  • the number of signal lines for the control signal storage / output circuit can be reduced.
  • the number of input terminals required for the control signal input circuit can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

 複数の被制御回路に対して制御信号を供給するための制御信号入力回路は、複数ビット信号のそれぞれに対応して設けられ、トリガ信号が第1のレベルにあるときには入力データをそのまま出力し、第2のレベルにあるときは、既に出力した出力データを保持するN個の制御信号保存・出力回路と、S個の制御信号保存・出力回路に対するトリガ信号を第1のレベルに設定し、残りの制御信号保存・出力回路に対するトリガ信号を第2のレベルに設定する被制御回路選択回路と、を有する。

Description

明 細 書
入力回路及び該入力回路を備える半導体集積回路
技術分野
[0001] 本発明は、半導体集積回路内に設けられて外部力 信号が供給される入力回路に 関し、特に、半導体集積回路内における形成面積を小さくすることができ、制御が容 易であって、高速信号を受け入れることが可能な入力回路と、そのような入力回路を 備えた半導体集積回路とに関する。 背景技術
[0002] 近年の大規模半導体集積回路 (LSI)の設計においては、 LSIを構成するトランジ スタにおける特性のばらつきなどの影響により、製造されたその LSIの特性が所望の 特性からずれてしまう、いわゆる「ばらつき問題」が顕著になってきている。ばらつき問 題への対策として、 LSIの設計時において、所望の値からずれた分だけを設計'製造 後に外部制御信号によって補正ができるような補正技術を含んだ回路を設けることが 多く提案されている。そのようなばらつき補正のための回路は、ばらつきの影響の大 きいアナログ回路や遅延回路などに広く用いられている。さらに、その外部制御信号 にもデジタル信号が多く用いられるようになつてきており、より容易にばらつき補正を 可能としている。
[0003] しかしながら、ばらつき問題が顕著になり、さらに LSI自体の設計が複雑になるにつ れ、ばらつき補正のための外部制御信号が大量に必要になる場合が増えている。こ のとき、外部制御信号は、 LSIチップの外部から制御入力端子を介して LSIチップに 入力されることになる力 LSIチップにおける IZO (入出力)端子の数の制限により、 外部から 1つ 1つの外部制御信号を LSIチップに対して個別に直接入力することは困 難となってきている。
[0004] そこで、半導体集積回路においては、限られた数の入力端子を介して大量の制御 信号を入力できるように、制御信号入力回路として、シリアル入力回路と呼ばれる図 1 に示すような回路が一般的に広く用いられている。このシリアル入力回路は、 2つの 入力端子し力備えていないのにもかかわらず、 N個の制御信号を出力できる回路で ある。シリアル入力回路は、 M個のフリップフロップ FF1〜FFMを縦続接続して、す なわち前段のフリップフロップの出力を後段のフリップフロップの入力に接続するよう にして構成されている。ここで 2つの入力端子は、信号 DSが入力される入力端子とク ロック信号 CLKSが入力されるクロック入力端子である。縦続接続されたフリップフロ ップの出力をそれぞれ DIN [1] , DIN [2] , · ··, DIN [M]で表わす。
[0005] 各フリップフロップのクロック端子には、クロック信号 CLKSが共通に供給されるよう になっている。このシリアル入力回路を用いる場合には、集積回路の外部に設けられ た入力装置において、まず、所望の Mビット信号 D11〜D1Mを、 DIM, · ··, D12, D11と時系列に並べることによってシリアル信号とし、このビット列の先頭 DIMを信 号 DSとしてシリアル入力回路に入力する、すなわち初段のフリップフロップ FF1の入 力端子に供給する。クロック信号 CLKSとしてパルスを 1回入力することにより、シリア ル入力回路内で信号 DSが 1ビットシフトする。次に、外部入力装置にあるビット列の 2 ビット目に、信号 DSを切り替え、クロック入力端子 CLKSにパルスを 1回入力する。こ のような操作を M回繰り返すことで、出力 DIN[1]にビット D11が現れ、出力 DIN [2] にビット D12が現れる、というように、所望の Mビット信号が、 M個のフリップフロップ F F 1〜FFMの出力に並列に現れる。
[0006] このシリアル入力回路は、相互に何段にも縦続接続することが可能である。例えば 図 2に示すように、 N個の被制御回路 201〜20Nに対してそれぞれ制御信号 101〜 IONを与えるためには、上述した Mビット用のシリアル入力回路を N個縦続接続し、 隣接するシリアル入力回路のうち前段側のシリアル入力回路の最終段の DIN [M]と 後段側のシリアル入力回路の信号 DSの入力部とを接続すればよい。制御信号 101 〜10Nは、それぞれ、複数ビットの制御信号である。このような多段縦続接続を構成 することにより、制御信号の総数が増大し、被制御回路の数が増えた場合であっても 、少な 、入力端子によって制御信号の入力を行えるようになる。
[0007] しかしながら、このようなシリアル入力回路を用いることの問題点として、 N X M個の 制御信号を入力するためには、データ保持回路として N X M個のフリップフロップが 必要となり、大量の外部制御信号の入力が必要な場合に、半導体集積回路中にお いてシリアル入力回路が占める面積が大きくなつてしまうということが挙げられる。また 、多数の外部制御信号のうちの一部の外部制御信号を変化させる場合であっても、 N X Mビットのシリアル信号を再生成してシリアル入力回路内すベてのフリップフロッ プに信号を再入力する必要がある。このとき、シリアル信号を再入力することによる時 間オーバーヘッドが生じ、 N X Mビットの制御信号を記憶しかつ制御信号の変更時 にすベての制御信号力 N X Mビットのシリアル信号を再生成する外部入力装置が 必要となり、また、制御アルゴリズムの複雑なものとなる、といった問題が発生する。
[0008] 本発明に関連する技術として、特開 2002— 41356号公報には、被制御回路を内 蔵する半導体装置であって、被制御回路に対して高速に制御信号を供給できるよう にした半導体装置が開示されている。特開 2003— 108516号公報〖こは、半導体試 験装置に用いられる高速バスインタフェースであって、ノ スの信号線の本数を削減し 、信号線の順番を任意に設定できるものが開示されている。このバスインタフェース では、内部回路へのインタフェース部と入力段との間に、シリアル Zパラレル変換回 路が設けられている。特開昭 61— 99993号公報には、トリガ信号が第 1のレベルに あるときには入力データをそのまま出力し、トリガ信号が第 1のレベルとは異なる第 2 のレベルにあるときは、既に出力した出力データを保持するラッチ回路が開示されて いる。特開平 8— 314410号公報には、液晶表示装置の駆動回路で用いられるイネ 一ブル回路であって、ィネーブル信号が第 1のレベルの時には入力データをそのま ま出力し、ィネーブル信号が第 2のレベルのときは出力のレベルが第 2のレベルとな るィネーブル回路が開示されている。特開平 9— 152470号公報には、集積回路の 試験装置にお!ヽて用いられる、高速シリアル信号を低速パラレル信号に変換するた めの回路が開示されている。特開平 10— 222418号公報には、マイクロプロセッサ 内に設けられる不揮発性メモリへの書き込み時間を、そのマイクロプロセッサのマシ ンサイクルと同一にすることができる構成が開示されて 、る。
[0009] 本明細書中で引用した文献を以下に列挙する。
特許文献 1 :特開 2002— 41356号公報
特許文献 2 :特開 2003— 108516号公報
特許文献 3:特開昭 61— 99993号公報
特許文献 4:特開平 8 - 314410号公報 特許文献 5:特開平 9 - 152470号公報
特許文献 6:特開平 10— 222418号公報
発明の開示
発明が解決しょうとする課題
[0010] 上述したように従来のシリアル入力回路では、大量の外部制御信号が入力される 場合には回路規模が大きくなるとともに、多数の外部制御信号のうちの一部の外部 制御信号を変化させる場合であっても、外部制御信号の全体を再入力させなければ ならない、という問題点がある。
[0011] 本発明の目的は、切り替え速度を向上させることできるとともに、入力のために外部 にお 、て記憶し生成する必要がある制御信号数を削減することができ、半導体集積 回路内における占有面積を縮小することができる入力回路を提供することにある。
[0012] 本発明の別の目的は、入力回路の占有面積が縮小され、制御信号の切り替え速 度が向上し、入力のために外部において記憶し生成する必要がある制御信号数を 削減することができる半導体集積回路を提供することにある。
課題を解決するための手段
[0013] 本発明の目的は、入力データに基づいて、それぞれが複数ビットの信号で構成さ れている N個の複数ビット信号を出力する入力回路であって、複数ビット信号ごとに 対応して設けられ、トリガ信号が第 1のレベルにあるときには入力データをそのまま出 力し、トリガ信号が第 1のレベルとは異なる第 2のレベルにあるときは、既に出力した 出力データを保持することにより、複数ビット信号の切り替えおよび保存を可能とする N個の制御信号保存'出力回路と、 S個の制御信号保存'出力回路に対するトリガ信 号を第 1のレベルに設定し、残りの (N— S)個の制御信号保存 ·出力回路に対するト リガ信号を第 2のレベルに設定する被制御回路選択回路と、を有し、入力データに対 応して N個の制御信号保存 ·出力回路に対して一群の入力信号が共通に供給され る、入力回路によって達成される。
[0014] 本発明の入力回路において、さらに、シリアルデータとして入力データを受け取つ て、入力データをパラレルデータに変換して一群の入力信号とするシリアル入力回 路を設けてもよい。 [0015] 本発明の別の目的は、上述した本発明の入力回路と、被制御回路とを備え、被制 御回路はその被制御回路に供給される制御信号に応じて特性が変化する半導体集 積回路によって達成される。
[0016] この半導体集積回路では、いずれか 1つの制御信号保存 ·出力回路に対するトリガ 信号を第 1のレベルにし、その制御信号保存 ·出力回路に対応する被制御回路に対 する制御信号を一群の入力信号を切り替えることで変化させつつその被制御回路の 特性を観測してその当該被制御回路に最適な制御信号を決定し、決定の後、その 制御信号保存'出力回路に対するトリガ信号を第 2のレベルにする処理を、 N個の制 御信号保存'出力回路に関して順次繰り返すことによって、 N個の被制御回路に対し てそれぞれ最適な制御信号が供給されるようにすることが、好ましい。
[0017] 本発明の構成では、特定の被制御回路に対する制御信号の調整を行うときに、デ ータ入力信号を切り替えてもその制御信号以外の制御信号が変化しないことを保障 できるため、ある被制御回路に対する制御信号のみを変化させる場合にその他の制 御信号が変化しな 、ので、制御信号のすべてを再生成したり再入力したりしなくても 済むようになる。これにより、制御信号を変化させるごとに再生成 ·再入力する必要の ある信号は、その制御信号だけとなる。従来は、いずれかの制御信号を変化させるご とに、 M X N個のデータ入力信号を入力させる必要があつたが、本発明の構成によ れば、データ入力信号の個数を M個に削減できるため、従来のものに比べて高速な 制御信号入力が可能である。
[0018] 従来の構成では、被制御回路に対する制御信号を調整する場合に、 M X N個す ベての情報を記憶し、再入力し直す必要があるため、 M X Nビットメモリをチップ上に 別途設ける必要があり、特にチップ内で被制御回路の状態を制御するときには、その ようなメモリが占める面積の増大が問題となる。し力しながら本発明によれば、 k番目 の被制御回路への制御信号の調整を行うとき、その制御信号以外の状態を記憶する 必要がないため、入力回路の占める面積を小さくすることが可能となる。
[0019] すなわち本発明の入力回路では、第 k番目の被制御回路の制御信号の選定時に は第 k番目以外の被制御回路の制御信号が切り替わらないような構造を用いている 。その結果、この入力回路では、切り替え速度が向上するとともに、入力回路に供給 すべき信号として外部で記憶 ·生成すべき信号数を低減することができ、制御を容易 に行うことができるようになる。さらにこの入力回路は、回路規模を小さくすることがで きるので、半導体集積回路内における占有面積を小さくすることができる。
[0020] 本発明の入力回路では、一群の入力信号のためのシリアル Zパラレル変換回路で あるシリアル入力回路を設けることにより、入力信号のための端子数を 2個にまで低 減させることができる。
[0021] 本発明の入力回路を用いる場合、特定の被制御回路の制御信号の調整を行って いる間、被制御回路の応答に応じ、制御信号をより適した値に入れ替える際には、デ ータ入力信号をその値に切り替えるだけでそのことが制御信号に反映され、被制御 回路の応答を確認することができる。これを任意の回数繰り返すことにより、特定の被 制御回路の制御信号の最適値を決定することができる。このとき、その特定の被制御 回路のための制御信号以外の制御信号を再生成および再入力する必要はない。 図面の簡単な説明
[0022] [図 1]図 1は、従来の制御信号入力回路の構成の一例を示すブロック図である。
[図 2]図 2は、図 1に示す制御信号入力回路を直列に接続した例を示すブロック図で ある。
[図 3]図 3は、本発明の第 1の実施形態の制御信号入力回路の構成を示すブロック図 である。
[図 4]図 4は、図 3に示した制御信号入力回路の構成の詳細を示すブロック図である。
[図 5]図 5は、制御信号入力回路で用いられるラッチ回路の構成の一例を示す回路 図である。
[図 6]図 6は、図 4に示した制御信号入力回路の基本動作を示すタイミング図である。
[図 7]図 7は、第 1の実施形態の制御信号入力回路の構成の別の例を示すブロック図 である。
[図 8]図 8は、図 7に示す制御信号入力回路で用いられる遅延計測器の構成の一例 を示す回路図である。
[図 9]図 9は、図 7に示す制御信号入力回路で用いられる遅延素子の構成の一例を 示す回路図である。 [図 10]図 10は、本発明の第 2の実施形態の制御信号入力回路の構成を示すブロッ ク図である。
[図 11]図 11は、図 10に示した制御信号入力回路の構成の詳細を示すブロック図で める。
[図 12]図 12は、図 10に示した制御信号入力回路の基本動作を示すタイミング図であ る。
[図 13]図 13は、本発明の第 3の実施形態の制御信号入力回路の構成を示すブロッ ク図である。
[図 14]図 14は、図 13に示した制御信号入力回路の構成の詳細を示すブロック図で める。
鬧 15]図 15は、図 14に示した制御信号入力回路の基本動作を示すタイミング図であ る。
[図 16]図 16は、本発明の第 4の実施形態の制御信号入力回路の構成を示すブロッ ク図である。
[図 17]図 17は、図 16に示した制御信号入力回路の基本動作を示すタイミング図であ る。
符号の説明
11〜: LN 制御信号保存 ·出力回路
2 被制御回路選択信号
101〜10N 制御信号
201〜20N 被制御回路
21 シリアル入力回路
301〜30N 遅延素子
51 イネーブノレ回路
511〜51M 遅延ばらつき補正信号
811〜81M 容量素子
821〜82M NMOSトランジスタ
310 遅延回路入力信号 321 アップダウンカウンタ
710, 711, 712 遅延素子
720, 721, 722 遅延素子出力端子
831, 832 MOSインノ ータ
901 セレクタ回路
902 ゲーティング回路
903 AND回路
911〜914 ラッチ回路の組
CO, CI, C2 位相比較回路
CLK クロック信号 (被制御回路選択回路用クロック信号)
CLSK シリアル入力回路用クロック信号
D1〜D5 制御信号
DIN[1]〜DIN[M] 入力信号
DS シリアル入力回路用入力信号
F1〜FN, FF1〜FFM フリップフロップ
FIX 遅延補正完了信号
L11〜: LNM ラッチ回路
TRIG トリガ信号 (被制御回路選択回路用動作開始信号)
発明を実施するための最良の形態
[0024] 次に、本発明の好ましい実施の形態について、図面を参照して説明する。
[0025] 第 1の実施形態:
図 3は、本発明の第 1の実施形態の入力回路の構成を示すブロック図である。第 1 の実施形態では、制御信号の入力手法について説明する。
[0026] この入力回路は、 Nは 2以上の整数であるとして、 LSIなどの半導体集積回路内に 設けられてその半導体集積回路内の N個の被制御回路 201〜 20Nに対して制御信 号を入力するにために用いられるものである。各被制御回路 201〜20Nごとに制御 信号保存 ·出力回路 11〜1Nが設けられており、制御信号保存 ·出力回路 11〜1N からは対応する被制御回路 201〜20Nに対し、それぞれ、複数ビットの信号が制御 信号 101〜10Nとして出力されるようになっている。制御信号保存 ·出力回路 11〜1 Nに対しては、共通に入力信号 DIN [ 1]〜DIN [M]が与えられるようになって!/、る。 そして、制御信号保存 ·出力回路 11〜1Nを選択するために、言い換えれば、制御 信号の出力先となる被制御回路 201〜20Nを選択するために、被制御回路選択回 路 2が設けられている。
[0027] 入力回路では、被制御回路選択回路 2により、トリガ信号を第 1のレベルにすること によって、第 1に制御したい制御信号保存 ·出力回路を選択し、選択された制御信号 保存'出力回路の出力を入力信号 DIN [1] , DIN [2] , · · ·, DIN [M]により切り替え ていくことで、対応する被制御回路に対して出力すべき適切な制御信号を決定する 。この際、選択されな力つた制御信号保存 ·出力回路は、入力信号 DINの値によら ず同じ出力を維持する。その後、第 1に制御したい制御信号保存 ·出力回路の出力 が所望の値に定まった後、トリガ信号を第 1のレベルにすることで、次に制御したい制 御信号保存'出力回路を選択し、その制御信号保存,出力回路の出力を決定する。 以下、このような制御を繰り返し、最終的に、 N個の被制御回路 201〜20Nへの制御 信号を最適にする。
[0028] 図 4は、図 3に示した構成の細部を示している。以下、図 4を用いて、第 1の実施形 態の入力回路の詳細を説明する。
[0029] 被制御回路選択回路 2は、 N個のフリップフロップ F1〜FNを縦続接続して構成さ れたものであり、これら N個のフリップフロップのクロック入力端子 F1〜FNには、すべ て同一のクロック信号 CLKが供給されている。 l < k≤Nとして、第 k番目のフリップフ 口ップの入力は第 k— 1番目のフリップフロップの出力に接続する。 1番目のフリップフ ロップ F1の入力には、トリガ信号 TRIGが供給されている。フリップフロップ F1〜FN が出力する信号をそれぞれ T1〜TNで表わすこととする。信号 T1〜TNは、それぞ れ、制御信号保存 ·出力回路 11〜1Nに対するトリガ信号として使用されることになる
[0030] 制御信号保存 ·出力回路 11〜: LNは、それぞれ入力信号 DIN [1] , DIN [2] , · · ·, DIN [M]が入力する M個のラッチ回路 L11〜L1M, L21〜L2M, · · ·, LN1〜: LN
Mを備えたものである。これらのラッチ回路は、図 5に示すように、 1個の通常のインバ ータ回路とクロック信号 CLKで出力が制御される 2個のインバータ回路とを備えたも のであり、一般的な構成のものである。 k番目(l≤k≤N)の制御信号保存 ·出力回路 lk内の各ラッチ回路 Lkl〜LkMに供給されるクロック信号 CLKは、被制御回路選 択回路 2内の k番目のフリップフロップ Fkの出力する信号 Tkである。このようなクロッ ク信号 CLKがハイ (High)レベルの時には、ラッチ回路の出力信号はラッチ回路へ の入力信号と同一になり、クロック信号 CLKがロー(Low)レベルの時には、ラッチ回 路の出力信号は、ラッチ回路への入力信号に関わらず、それ以前にクロック信号 CL Kがハイレベルであった時の値をそのまま維持する。そして、 k番目の制御信号保存 •出力回路 lkの各ラッチ回路 Lkl〜LkMの出力は、制御信号 10kとして、第 k番目 の被制御回路 20kに与えられており、制御信号 10kを変化させることにより、被制御 回路 20kの特性を変化させることができる。
[0031] 次に、この入力回路の動作について、図 6を用いて説明する。
[0032] まず、入力開始信号として、クロック信号 CLKの 1周期分の期間のみハイレベルに なるトリガ信号 TRIGを 1番目のフリップフロップ F1に入力する。その後、クロック信号 CLKの立ち上がりによって、信号 T1はハイレベルになり、信号 T2〜TNはローレべ ルになる。このとき、 1番目の制御信号保存 ·出力回路 11の出力 101は、入力信号 D IN[1] , DIN [2] , · ··, DIN[M]と同一になる。したがって、 DIN[l] , DIN [2] , · ··, DIN[M]の値を Dl, D2, · ··, DMと切り替えて被制御回路 201の特性を変え、特性 を変化させたことの影響を見ることによって、被制御回路 201にとつて適切な制御信 号 D3を探索できる。最適な制御信号 101を決定した後、 CLK信号を 1パルス分だけ 出す。これにより、信号 T1がローレベルになり、信号 T2がハイレベルになる。この後 、 2番目の制御信号保存 ·出力回路 12の出力 102は入力信号 DIN[1] , DIN[2] , · ··, DIN[M]と同一になるため、被制御回路 202が最適になるような制御信号 D5を 探索できる。その一方で、第 1の制御信号保存 ·出力回路 11の出力は、入力信号に よらず一定のため、被制御回路 201には、以前に決定した最適な制御信号 D3が供 給され続ける。このような制御を N回行うことで、第 N番目の被制御回路 20Nが最適 になるような制御信号まで探索することが可能となる。
[0033] 第 1の実施形態の入力回路では、入力信号 DIN[1] , DIN [2] , · ··, DIN[M]とし て与えられる信号は、常に、被制御回路選択回路 2によって選択された 1つの被制御 回路に対する制御信号のみである。したがつてこの入力回路を用いた場合には、入 力信号 DINを変化させるごとに、選択されていない被制御回路に対する制御信号を 再入力する必要がない。また、ラッチ回路は、半導体集積回路内に設けた場合、そ の大きさはフリップフロップの大きさの約半分であるため、本実施形態によれば、従来 の N X M個のフリップフロップを用いたシリアル入力回路よりも、半導体集積回路内 で占める面積力 、さな入力回路を実現できる。
[0034] 第 1の実施形態の入力回路は、各被制御回路に対する最適制御信号を互いに独 立して決めることができる場合に特に有効である。すなわちこの入力回路は、 1番目 の被制御回路 201の制御は制御信号 101のみで実現され、 2番目の被制御回路 20 2の制御は、被制御回路 201の状態と制御信号 102で実現され、被制御回路 20Nの 制御は、被制御回路 201〜20 (N— 1)の状態と制御信号 10Nで決まる、という場合 に、特に有効である。
[0035] 実施例 1 :
以下、図 7を用いて、第 1の実施形態の応用例として、等間隔な遅延差を有する N 個の信号を発生させる等間隔遅延発生回路において、発生すべき N個の信号間の ばらつきを補正するために用いられる入力回路に第 1の実施形態を適用した場合を 説明する。
[0036] 等間隔遅延発生回路 30は、 Tが固定値であるとして、遅延回路入力信号 310に対 し、第 k番目の遅延素子 30kの出力信号 3 lkにおける遅延が時間 k XTとなるような N個の出力信号 311〜31Nを出力する回路である。等間隔遅延発生回路 30は、縦 続接続された N個の遅延素子 301〜30Nで構成されている。また、各遅延素子の出 力と遅延回路入力信号 310との遅延差を計測する遅延計測器 320が設けられてい る。遅延計測器 320は、例えば図 8に示すような遅延差測定回路で構成されている。 遅延素子 301の出力 311を被測定信号として、遅延回路入力信号 310と被測定信 号との時間差を測定するために、遅延計測器 320は、それぞれ遅延時間が Tであつ s て縦続接続された複数の遅延素子 710, 711, 712,…を備えている。そして、遅延 計測器 320では、遅延回路入力信号 310の立ち上がり信号を遅延素子 710, 711, 712を順次通していくことにより、立ち上がり信号のタイミングが相互に Tだけ異なる s
信号 720, 721, 722,…力発生する。これらの信号 720, 721, 722,…のタイミング と被測定信号 311のタイミングとを位相比較回路 CO, CI, C2,…で比較し、被測定 信号の方がタイミングが遅 、と判断した位相比較回路の個数を Pとしたとき、遅延回 路入力信号 310と被測定信号 311との時間差は、 P XTと表わすことができる。
s
[0037] 遅延計測器 320は、前述したもの以外にも、チップ外に信号を取り出し、オシロスコ ープで波形を観測することでも実現できる。遅延計測器 320で用いられる遅延素子( 遅延回路)は、例えば図 9に示すような回路で構成される。すなわち入力用の MOS インバータ 831の出力と出力用の MOSインバータ 832の入力とが接続しており、イン バータ 831, 832を接続する線に対して、 Mビットバイナリデータである遅延ばらつき 補正信号 511〜51Mによってそれぞれ制御される容量が接続されている。 M個の容 量は、その値が C , 2C , · ··, 2M_1Cというように 2のべきにしたがって順次大きくな
0 0 0
つており、補正信号 511〜51Mによって、それぞれ NMOSトランジスタ 821〜82M 力もなるスィッチを制御することによって、 C刻みで全体としての容量値を 0から(2M
0
- i) cまで変化させることができる。このような構成を採用することにより、 Mビットバ
0
イナリデータである遅延ばらつき補正信号の値が大きくなるにつれ、遅延が ΔΤごと 単調増加する。
[0038] 図 7を再び参照すると、この等間隔遅延発生回路では、被制御回路選択回路 2の 各フリップフロップ F1〜FNへのクロック信号として、遅延計測器 320から与えられる 遅延補正完了信号 FIXが用いられている。まず、トリガ信号 TRIGをノヽィレベル、遅 延補正完了信号 FIXをノヽィレベルにすることで、信号 T1をノヽィレベル、信号 T2〜T Νをローレベルに設定する。その後、トリガ信号 TRIG、遅延補正完了信号 FIXともに ローレベルにする。このとき、遅延素子 301による遅延は、制御信号 DIN[1]〜DIN [M]の値で決定される。またこのとき、遅延回路入力信号 310と第 1番目の出力信号 311との遅延時間差を遅延計測器 320で計測する。もし、理想値 Tよりも遅延が大き い場合、遅延計測器は、 DOWN (ダウン)信号をアップダウンカウンタ 321〖こ出力す る。 Mビットのアップダウンカウンタ 321は、 DOWN信号を受けて、入力信号 DINの 値を 1だけ小さくする。すると遅延素子 301への制御信号 101の値が減少し、遅延が ΔΤだけ減少し、所望の遅延値 Τに近づく。逆に理想値 Τより遅延が小さい場合、遅 延計測器 320は、 UP (アップ)信号を出力する。アップダウンカウンタ 321は UP信号 を受けて、 DINの値を 1だけ増やす。すると遅延素子 301に対する制御信号 101の 値が増加し、遅延が ΔΤだけ増加し、所望の遅延値 Tに近づく。 UP信号、 DOWN信 号は、遅延補正信号とも呼ばれる。
[0039] このようにして、遅延素子 301を所望の遅延値 Tにできたと遅延計測器 230が判定 したとき、遅延計測器 320は、遅延補正完了信号 FIXをハイレベルにする。すると、 信号 T1がローレベル、信号 T2がハイレベルになるため、今度は 2番目の遅延素子 3 02の制御端子 102に対して入力信号 DIN[1]〜DIN[M]が供給され、遅延素子 30 2の遅延補正が可能となる。遅延素子 302の遅延補正を行っている間、制御信号 10 1の値は保持されるため、遅延素子 301のために遅延補正信号信号を再度入れる必 要はない。これを各遅延素子ごとに行うことで、すべての遅延素子に所望の遅延値を 設定することが可能となる。
[0040] 従来の N X M個のフリップフロップを用いたシリアル入力回路を用いて等間隔遅延 発生回路のばらつきの補正を行う場合、外部力 シリアル入力回路に供給されるべき 全 N X Mビットの入力信号を常に再生成する必要があり、シリアル入力回路の外部 に M X Nビットの入力信号発生回路が必要であった。これに対し、ここで説明した等 間隔遅延発生回路の場合では、 N X M個のラッチ回路と、該当する遅延素子の制御 信号のみを制御する Mビットアップダウンカウンタ 1個で全ての遅延素子の補正が可 能であり、入力回路の面積の大幅な削減と、等間隔遅延発生回路の短時間での補 正とが可能になる。
[0041] 第 2の実施形態:
次に、本発明の第 2の実施形態として、シリアル入力が付加された制御信号入力回 路を説明する。
[0042] 上述の第 1の実施形態の入力回路では、入力信号 DIN[1]〜DIN[M]のために M個の入力端子が必要である力 図 10に示すように、 1ビット幅のシリアル信号から Mビット並列の入力信号 DIN [ 1]〜DIN [M]をシリアル Zパラレル(SZP)変換によ り生成するシリアル入力回路 21を設けることにより、入力信号のための端子数を M個 力も 2個に削減することができる。この場合、入力信号 DIN[1]〜DIN[M]は外部の 回路によってあら力じめシリアル信号に変換されているものとする。図 11は、第 2の実 施形態の入力回路の詳細を示している。以下、図 11を用いて、第 2の実施形態の入 力回路の詳細を説明する。
[0043] シリアル入力回路 21は、前段の出力が後段の入力に接続するように縦続接続され た M個のフリップフロップ FF1〜FFMで構成されており、初段の入力にはシリアル回 路用入力信号 DSが供給される。また、 M個のフリップフロップのクロック入力には、シ リアル入力回路用クロック信号 CLKSが供給されている。
[0044] 次に、この入力回路の動作について、図 12を用いて説明する。
[0045] 第 1の実施形態の場合と同様に、まず、トリガ信号 TRIGとクロック信号 CLKをそれ ぞれハイレベルにし、それにより信号 T1をノヽィレベルにする。この後、 DIN入力信号 をシリアル入力回路 21で生成する。まず、所望の Mビット信号の組み合わせ D1 (す なわち DIM, · ··, D12, D11のビット列)をシリアル信号とし、シリアル回路用入力信 号 DSとする。クロック信号 CLKSとして 1個パルスを入力することにより、信号 DSをシ リアル入力回路 21内で 1ビットずつシフトさせる。これを M回繰り返すと、出力 DIN [1 ]に D11が現れ、出力 DIN[2]に D12が現れる、というように、所望の Mビット信号組 み合わせ D1が DIN[1]〜DIN[M]として出力される。その後、第 1の実施形態と同 様に被制御回路 201に対する制御信号 101を適切な値に設定する。
[0046] 第 1の実施形態の入力回路では、被制御回路選択回路 2に対する信号の入力端 子も含めて、全部で (M + 2)本の入力端子を必要とするが、第 2の実施形態の入力 回路は 4本の入力端子で構成可能であり、本実施形態によれば、入力回路の端子数 をより削減できる。
[0047] 第 3の実施形態:
次に、本発明の第 3の実施形態として、ィネーブル回路が付加された制御信号入 力回路を説明する。
[0048] 図 13に示す第 3の実施形態の制御信号入力回路は、第 1の実施形態の入力回路 において、被制御回路選択回路 2と制御信号保存 ·出力回路 11〜1Nとの間にイネ 一ブル回路 51を設けたものである。 [0049] 被制御回路選択回路 2は、 N個のフリップフロップ F1〜FNで構成されており、各フ リップフロップのクロック端子には、すべて同一のクロック信号 CLKが供給されている 。第 k番目のフリップフロップの入力は第 k— 1番目のフリップフロップの出力に接続し ている。さらにフリップフロップ F1〜FNの出力 TS1〜TSNは、それぞれ、イネーブ ル回路 51内の AND (論理和)回路に入力されている。 AND回路の出力が T1〜TN であって、これらの出力は、外部より AND回路に入力されるィネーブル信号 ENによ つて決定されるようになっている。 AND回路の出力 T1〜TN力 それぞれ、トリガ信 号として制御信号保存 ·出力回路 11〜 1Nに供給されて 、る。
[0050] 第 3の実施形態の入力回路を用いることにより、第 1の制御信号〜第 k 1番目の 制御信号を変えることなぐ第 k番目の制御信号を制御することができる。例えば、第 2番目の制御信号のみを変化させたいときの動作を、図 14を用いて説明する。まず、 入力開始信号として、クロック信号 CLKの 1周期分の期間のみハイレベルになるトリ ガ信号 TRIGを第 1のフリップフロップ F1に入力する。その後、クロック信号 CLKの立 ち上がりによって、信号 TS1がハイレベルになり、信号 TS2〜TSNはローレベルに なる。このとき、ィネーブル信号 ENをローレベルにしておけば、ィネーブル回路の第 1の出力 T1はローレベルになり、第 1の制御信号保存 ·出力回路 11は、あら力じめ設 定されて!/、た第 1の制御信号 101の値 D 1を保持し続ける。次にクロック信号 CLKを 1パルス分だけ出すと、信号 TS1がローレベルになり、信号 TS2がハイレベルになる 。この後、ィネーブル信号 ENをノヽィレベルにすることにより、第 2の制御信号保存'出 力回路 12の出力 202は、入力信号 DIN[1] , DIN [2] , · ··, DIN[M]と同一になる ため、被制御回路 202が最適になるような制御信号 D2を探索できる。その一方で、 第 1の制御信号保存,出力回路 11から出力される制御信号は、入力信号によらず一 定のため、被制御回路 201には、以前に決定した最適な制御信号 D1が入力され続 けることになる。
[0051] ところで、ィネーブル信号 ENを用いない第 1の実施形態の場合には、図 15に示す ように、第 2のトリガ信号 T2をノヽィレベルにする前に必ず第 1のトリガ信号 T1をノヽィレ ベルにする期間が必要となり、あら力じめ設定しておいた第 1の制御信号 D1が強制 的に制御信号 D2に切り替えられてしまう。これに対し第 3の実施形態の入力回路は 、あらかじめ最適化していた第 1の制御信号を破壊することなぐ所望の制御信号の みを書き換えられるという特徴を有する。
[0052] 第 4の実施形態:
次に、本発明の第 4の実施形態の制御信号入力回路として、デコード回路を付加し た制御信号保存'出力回路について説明する。
[0053] 図 16は、第 4の実施形態の制御信号入力回路における制御信号保存'出力回路 の構成を示している。この回路は、上述した各実施形態の入力回路において用いら れる制御信号保存'出力回路に対し、デコード回路を付加したものである。
[0054] 制御信号保存'出力回路 11は、入力されるデコード信号 DINSELの値に応じて出 力信号 921〜924のうち 1ビットのみをノヽィレベルにするセレクタ回路 901と、セレクタ 回路 901の出力が供給されるゲーティング回路 902と、複数の組 911〜914に分割 されたラッチ回路と、によって構成されている。ゲーティング回路 902は、ラッチ回路 の組 911〜914ごとに設けられ、トリガ信号 T1が供給される AND回路 903を備えて いる。各 AND回路 903は、制御信号保存 ·出力回路 11に対して供給されるトリガ信 号 T1がハイレベルにあるときはセレクタ回路 901の対応する出力をそのまま出力し、 ローレベルにあるときには出力をローレベルにする回路である。ラッチ回路の組 911 〜914において、それぞれの組内のラッチ回路に対するクロック信号は共通のものと されており、各組のクロック信号の入力端子は、それぞれゲーティング回路の異なる 出力 921〜924に接続されている。各ラッチ回路のデータ入力端子は、それぞれ 1 群の入力信号 DIN 1, DIN2に接続している。
[0055] 次に、図 16に示した回路の動作について、図 17を用いて説明する。
[0056] セレクタ回路 901の出力 921〜924は、デコード信号 DINSEL (DINSEL[1] , DI NSEL[2])に応じてどれか 1つは必ず" 1"になる力 被制御回路選択回路 2によつ てその制御信号保存 ·出力回路 11が選択されたとき、つまり信号 T1がハイレベルの ときのみ、ゲーティング回路 902の出力 T11〜T14のうち 1つのみがハイレベルとな る。例えば、出力 921に対応する AND回路 903の出力信号 T11のみがハイレベル のときに入力信号 DINを D1に設定すれば、第 1の組 911内のラッチ回路 Ll l, L12 の出力も D1になる。次に、デコード信号を切り替え、出力 T12のみをノヽィレベルにし 、その後、入力信号 DINを D2にすれば、第 1の組 911内のラッチ回路 Ll l, L12の 出力を破壊することなぐ第 2の組 912内のラッチ回路 L13, L14のみを D2に設定す ることができる。同様の処理を第 3の組 913内のラッチ回路 L15, L16と第 4の組 914 内のラッチ回路 L17, L18に対して繰り返す。
[0057] 8ビットのラッチ回路で構成された制御信号保存 ·出力回路の場合、 8ビットの入力 信号 DIN [1]〜DIN [8]を供給するために 8本の入力信号線が必要となる力 第 4の 実施形態の場合、セレクタ信号 2ビットと入力信号 2ビットの 4本の信号線で十分であ るため、制御信号保存 ·出力回路に対する信号線の数を減少させることができ、ひい ては制御信号入力回路のために必要な入力端子の数を減らすことができる。
[0058] 以上、本発明の好ましい実施形態について説明した力 本発明が上記の各実施形 態に限定されず、本発明の技術思想の範囲内において、各実施形態は適宜変更さ れ得ることは明らかである。

Claims

請求の範囲
[1] 入力データに基づいて、それぞれが複数ビットの信号で構成されている N個の複数 ビット信号を出力する入力回路であって、
前記複数ビット信号ごとに対応して設けられ、トリガ信号が第 1のレベルにあるときに は前記入力データをそのまま出力し、前記トリガ信号が前記第 1のレベルとは異なる 第 2のレベルにあるときは、既に出力した前記出力データを保持することにより、前記 複数ビット信号の切り替えおよび保存を可能とする N個の制御信号保存 ·出力回路と
S個の前記制御信号保存'出力回路に対するトリガ信号を前記第 1のレベルに設定 し、残りの (N— S)個の前記制御信号保存'出力回路に対するトリガ信号を前記第 2 のレベルに設定する被制御回路選択回路と、
を有し、
前記入力データに対応して前記 N個の制御信号保存 ·出力回路に対して一群の入 力信号が共通に供給される、入力回路。
[2] シリアルデータとして前記入力データを受け取って、該入力データをパラレルデー タに変換して前記一群の入力信号とするシリアル入力回路をさらに有する、請求項 1 に記載の入力回路。
[3] 前記 N個の複数ビット信号は、制御信号として前記 N個の制御信号保存'出力回路 力 前記 N個の被制御回路にそれぞれ供給され、
前記 N個の被制御回路のうちそこへ供給されるべき制御信号を変化させたい S個 の被制御回路に対する制御信号は、前記一群の入力信号を制御することで変化さ せられ、
前記 S個の被制御回路以外の被制御回路に対する制御信号は、前記一群の入力 信号の値によらず保持される、請求項 1または 2に記載の入力回路。
[4] いずれ力 1つの被制御回路に対応する制御信号保存,出力回路に対するトリガ信 号を第 1のレベルにし当該被制御回路に対する制御信号を前記一群の入力信号を 切り替えることで変化させ、変化の後、当該制御信号保存,出力回路に対するトリガ 信号を第 2のレベルにする処理を前記 N個の被制御回路に関して順次繰り返すこと によって、前記 N個の被制御回路に対する制御信号を切り替え可能にする、請求項 3に記載の入力回路。
[5] 前記各制御信号保存'出力回路は、クロック信号が前記第 1のレベルにあるときに は入力データを出力し前記第 2のレベルにあるときは出力データを保持するラッチ回 路を、前記複数ビット信号のビット数だけ備え、
前記制御信号保存'出力回路ごとに当該制御信号保存,出力回路に含まれるラッ チ回路に対して共通のクロック信号が供給され、
前記ラッチ回路の入力端子に前記一群の入力信号が並列に供給される、請求項 1 乃至 4の 、ずれか 1項に記載の入力回路。
[6] 前記各制御信号保存'出力回路は、
入力されるデコード信号の値に応じて Sビットの出力信号のうち 1ビットのみを第 1の レベルにするセレクタ回路と、
前記セレクタ回路の出力が入力され、当該制御信号保存,出力回路に入力される クロック信号が第 1のレベルにあるときは前記セレクタ回路の出力をそのまま出力し、 第 2のレベルにあるときにはすべての出力を第 2のレベルにするゲーティング回路と、 前記クロック信号が第 1のレベルにあるときには入力データをそのまま出力し、第 2 のレベルにあるときは出力データを保持する、複数ビット信号のビット数だけ配置され たラッチ回路と、
を備え、前記ラッチ回路の入力端子に前記一群の入力信号が並列に供給される、 請求項 1乃至 4のいずれか 1項に記載の入力回路。
[7] 前記被制御回路選択回路は、 Nビットの出力を有する演算回路を有し、前記演算 回路の入力に応じて K個の出力が第 1のレベルに設定され、前記演算回路において 次に論理演算の入力が変化したときには、前記演算回路の異なる出力が第 1のレべ ルに設定される、請求項 1乃至 4のいずれか 1項に記載の集積回路。
[8] 前記被制御回路選択回路は、共通のクロック信号が供給されるとともに縦続接続さ れた N個のフリップフロップを有するシフト回路力も構成されている、請求項 1乃至 4 のいずれか 1項に記載の入力回路。
[9] 前記被制御回路選択回路の出力に、ィネーブル信号が第 1のレベルのときには入 力と出力が同一であり、第 2のレベルのときには出力が第 2のレベルになるイネーブ ル回路が設けられている、請求項 1乃至 4のいずれか 1項に記載の入力回路。
[10] 請求項 1乃至 9のいずれか 1項に記載の入力回路と、
前記被制御回路と、
を備え、前記被制御回路は当該被制御回路に供給される制御信号に応じて特性 が変化する半導体集積回路。
[11] いずれ力 1つの前記制御信号保存 ·出力回路に対するトリガ信号を第 1のレベルに し、当該制御信号保存'出力回路に対応する被制御回路に対する制御信号を前記 一群の入力信号を切り替えることで変化させつつ当該被制御回路の特性を観測して 当該被制御回路に最適な制御信号を決定し、前記決定の後、当該制御信号保存, 出力回路に対するトリガ信号を第 2のレベルにする処理を、前記 N個の制御信号保 存-出力回路に関して順次繰り返すことによって、前記 N個の被制御回路に対してそ れぞれ最適な制御信号が供給されるようにする請求項 10に記載の半導体集積回路
PCT/JP2007/051252 2006-01-26 2007-01-26 入力回路及び該入力回路を備える半導体集積回路 WO2007086500A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007556010A JPWO2007086500A1 (ja) 2006-01-26 2007-01-26 入力回路及び該入力回路を備える半導体集積回路
US12/162,236 US7847595B2 (en) 2006-01-26 2007-01-26 Input circuit and semiconductor integrated circuit comprising the input circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-017794 2006-01-26
JP2006017794 2006-01-26

Publications (1)

Publication Number Publication Date
WO2007086500A1 true WO2007086500A1 (ja) 2007-08-02

Family

ID=38309286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051252 WO2007086500A1 (ja) 2006-01-26 2007-01-26 入力回路及び該入力回路を備える半導体集積回路

Country Status (3)

Country Link
US (1) US7847595B2 (ja)
JP (1) JPWO2007086500A1 (ja)
WO (1) WO2007086500A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077574A1 (ja) * 2009-12-25 2011-06-30 富士通株式会社 信号復元回路、レイテンシ調整回路、メモリコントローラ、プロセッサ、コンピュータ、信号復元方法及びレイテンシ調整方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744124A (ja) * 1993-07-29 1995-02-14 Fuji Electric Co Ltd マトリクス型表示駆動装置及びマトリクス型表示装置
JPH11112483A (ja) * 1997-10-08 1999-04-23 Nec Eng Ltd データ転送システム
JP2000151423A (ja) * 1998-11-09 2000-05-30 Nec Corp パラレルシリアル変換装置およびパラレルシリアル変換方法
JP2001117865A (ja) * 1999-10-15 2001-04-27 Victor Co Of Japan Ltd データ転送方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199993A (ja) 1984-10-19 1986-05-19 Hitachi Ltd 半導体集積回路装置
JP3464074B2 (ja) 1995-05-19 2003-11-05 株式会社 沖マイクロデザイン 液晶駆動回路
JPH09152470A (ja) 1995-11-30 1997-06-10 Hitachi Electron Eng Co Ltd 高速データ取り込み装置及びic試験装置
JPH10222418A (ja) 1997-02-10 1998-08-21 Matsushita Electric Ind Co Ltd マイクロコンピュータ
JP3094973B2 (ja) * 1997-11-06 2000-10-03 日本電気株式会社 信号同期検出回路
US7088322B2 (en) * 2000-05-12 2006-08-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2002041356A (ja) 2000-07-26 2002-02-08 Toshiba Corp 半導体装置
JP2003108516A (ja) 2001-09-27 2003-04-11 Advantest Corp 高速バスインタフェース
JP2004205725A (ja) * 2002-12-25 2004-07-22 Semiconductor Energy Lab Co Ltd 表示装置および電子機器
US7317775B1 (en) * 2004-07-16 2008-01-08 National Semiconductor Corporation Switched deskew on arbitrary data
JP2006101269A (ja) * 2004-09-30 2006-04-13 Sanyo Electric Co Ltd ラッチクロック生成回路及びシリアル−パラレル変換回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744124A (ja) * 1993-07-29 1995-02-14 Fuji Electric Co Ltd マトリクス型表示駆動装置及びマトリクス型表示装置
JPH11112483A (ja) * 1997-10-08 1999-04-23 Nec Eng Ltd データ転送システム
JP2000151423A (ja) * 1998-11-09 2000-05-30 Nec Corp パラレルシリアル変換装置およびパラレルシリアル変換方法
JP2001117865A (ja) * 1999-10-15 2001-04-27 Victor Co Of Japan Ltd データ転送方法

Also Published As

Publication number Publication date
US7847595B2 (en) 2010-12-07
US20090201045A1 (en) 2009-08-13
JPWO2007086500A1 (ja) 2009-06-25

Similar Documents

Publication Publication Date Title
KR100278737B1 (ko) 반도체집적회로
US7368967B2 (en) Timing controller and controlled delay circuit for controlling timing or delay time of a signal by changing phase thereof
WO2001047123A1 (fr) Convertisseur n/a de haute precision
JP2003218687A5 (ja)
US20030137330A1 (en) Semiconductor device with delay correction function
WO2007086500A1 (ja) 入力回路及び該入力回路を備える半導体集積回路
US20120218840A1 (en) Integrated circuit
GB2495177A (en) A capacitor array ADC using alternate comparators in successive conversion steps
US7263009B2 (en) Semiconductor memory device with delay section
JP2004064143A (ja) クロック同期回路及び半導体装置
US8106798B2 (en) Circuit and method for parallel to serial conversion
JPH11500848A (ja) 第1および第2のロード可能なカウンタを具えたパラメータ化可能な制御モジュールと、複数のかかるパラメータ化可能な制御モジュールを具えた電子回路と、かかる回路を合成する方法
US7428184B2 (en) Circuit arrangement for generating an n-bit output pointer, semiconductor memory and method for adjusting a read latency
JP3601884B2 (ja) タイミング制御回路
US6466505B1 (en) Flexible input structure for an embedded memory
KR19990036836A (ko) 클럭 제어회로
TWI575384B (zh) 通道控制裝置
US5708802A (en) Semiconductor memory device
JP5447511B2 (ja) 通信回路および通信方法
US10395703B2 (en) Column decoder of memory device
JP4079974B2 (ja) 遅延回路
JP2022032287A (ja) タイミング検出回路、半導体装置及びメモリシステム
JP3973307B2 (ja) Ad変換器
KR100656433B1 (ko) 로우 어드레스 카운팅 장치
US20090138537A1 (en) Address generating circuit and semiconductor memory device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007556010

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707484

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12162236

Country of ref document: US