WO2007086432A1 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
WO2007086432A1
WO2007086432A1 PCT/JP2007/051096 JP2007051096W WO2007086432A1 WO 2007086432 A1 WO2007086432 A1 WO 2007086432A1 JP 2007051096 W JP2007051096 W JP 2007051096W WO 2007086432 A1 WO2007086432 A1 WO 2007086432A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
fuel
force sword
fuel cell
heat insulating
Prior art date
Application number
PCT/JP2007/051096
Other languages
English (en)
French (fr)
Inventor
Yuichi Yoshida
Yuuichi Sato
Asako Satoh
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to EP07707343A priority Critical patent/EP1981111A4/en
Priority to JP2007555981A priority patent/JPWO2007086432A1/ja
Publication of WO2007086432A1 publication Critical patent/WO2007086432A1/ja
Priority to US12/180,804 priority patent/US20090017353A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell.
  • DMFCs are classified according to the fuel supply method, gas supply type DMFCs, in which liquid fuel is vaporized and then sent into the fuel cell with a blower, etc., liquid supply type DMFCs in which the liquid fuel is directly sent into the fuel cell with a pump or the like,
  • Examples include internal vaporization type DMFC that vaporizes liquid fuel in the cell and supplies it to the anode.
  • An example of an internal vaporization type DMFC is disclosed in Japanese Patent Publication No. 341 3111.
  • An internal vaporization type DMFC shown in Japanese Patent Publication No. 3413111 includes a fuel permeation layer for holding liquid fuel, and a fuel vaporization layer for diffusing a vaporization component of the liquid fuel held in the fuel permeation layer. It is to be prepared. With such a configuration, vaporized liquid fuel is supplied to the fuel electrode.
  • Japanese Patent Laid-Open No. 2001-283888 also relates to an internal vaporization type DMFC, and includes an outer periphery of an electromotive portion provided with a fuel leakage prevention film for preventing leakage of liquid fuel on a side surface of a fuel electrode,
  • an electromotive portion provided with a fuel leakage prevention film for preventing leakage of liquid fuel on a side surface of a fuel electrode
  • the fuel cell described in Japanese Patent Application Laid-Open No. 2001-283888 has a configuration in which the heat insulating material is in contact with the fuel permeation layer. There is a problem that the methanol permeation amount increases and high output cannot be obtained due to crossover.
  • An object of the present invention is to provide a fuel cell with improved output characteristics.
  • a fuel cell according to the present invention includes a membrane electrode assembly including an anode, a force sword, and an electrolyte membrane disposed between the anode and the force sword.
  • a fuel storage section for storing liquid fuel
  • a fuel vaporization section for supplying a vaporized component of the liquid fuel to the anode, a moisture retention plate for suppressing transpiration of water from the power sword,
  • a cover disposed outside the moisturizing plate and having an oxidant inlet
  • a first heat insulating member that is laminated on at least one of an outer surface and an inner surface of the cover and has an opening at a location facing the acid agent inlet;
  • a fuel cell according to the present invention includes a membrane electrode assembly including an anode, a force sword, and an electrolyte membrane disposed between the anode and the cathode;
  • a fuel storage section for storing liquid fuel
  • a fuel vaporization unit for supplying a vaporized component of the liquid fuel to the anode; an anode current collector disposed on the anode of the membrane electrode assembly;
  • a force sword current collector disposed on the force sword of the membrane electrode assembly
  • a fuel cell according to the present invention includes a membrane electrode assembly including an anode, a force sword, and an electrolyte membrane disposed between the anode and the cathode; A fuel storage section for storing liquid fuel;
  • a cover disposed outside the force sword and having an oxidant inlet
  • a first heat insulating member that is laminated on at least one of an outer surface and an inner surface of the cover and has an opening at a location facing the acid agent inlet;
  • a fuel cell according to the present invention includes a membrane electrode assembly including an anode, a force sword, and an electrolyte membrane disposed between the anode and the cathode;
  • a fuel storage section for storing liquid fuel
  • An anode current collector disposed on the anode of the membrane electrode assembly
  • a force sword current collector disposed on the force sword of the membrane electrode assembly
  • FIG. 1 is a schematic cross-sectional view showing a direct methanol fuel cell according to a first embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing the heat insulating member of FIG.
  • FIG. 3 is a schematic cross-sectional view showing a direct methanol fuel cell according to a second embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a direct methanol fuel cell according to a third embodiment of the present invention.
  • FIG. 5 is a characteristic diagram showing the relationship between the maximum output and the cell temperature of direct methanol fuel cells of Examples 1 to 3 and Comparative Example.
  • FIG. 6 is a schematic cross-sectional view showing another direct methanol fuel cell according to the first embodiment of the present invention.
  • the moisture retention plate can suppress the evaporation of moisture from the power sword, it can increase the amount of water retained in the power sword as the power generation reaction proceeds. Can create many states. As a result, the reaction in which water in the power sword diffuses to the anode through the electrolyte membrane can be promoted, so that the reaction resistance of the catalytic reaction at the anode can be lowered.
  • FIG. 1 is a schematic cross-sectional view showing a direct methanol fuel cell according to the first embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing the heat insulating member of FIG.
  • a membrane electrode assembly (MEA) 1 includes a force sword (oxidant electrode) 3 composed of a force sword catalyst layer 2a and a force sword gas diffusion layer 2b, an anode catalyst layer 4a and an anode gas. It comprises an anode (fuel electrode) 5 composed of a diffusion layer 4b, and a proton-conductive electrolyte membrane 6 disposed between the force sword catalyst layer 2a and the anode catalyst layer 4a.
  • the force sword catalyst layer 2a includes force sword catalyst particles and proton conductive resin.
  • the anode catalyst layer 4a preferably contains anode catalyst particles and proton conductive resin.
  • Examples of the force sword catalyst and the anode catalyst include platinum group element simple metals (Pt, Ru, Rh, Ir, Os, Pd, etc.), alloys containing platinum group elements, and the like. Although it is desirable to use platinum as the cathode catalyst, it is not limited to this. Ann As the catalyst, it is desirable to use Pt—Ru which has strong resistance to methanol and carbon monoxide, but it is not limited to this. Further, a supported catalyst using a conductive support such as a carbon material may be used, or an unsupported catalyst may be used.
  • the proton conductive resin contained in the force sword catalyst layer 2a, the anode catalyst layer 4a, and the proton conductive electrolyte membrane 6 has, for example, a sulfonic acid group such as perfluorocarbon sulfonic acid. It is also possible to use inorganic substances such as fluorine-based resin, hydrated carbon-based resin having a sulfonic acid group, and tungsten phosphotungstic acid.
  • the force sword catalyst layer 2a is laminated on the force sword gas diffusion layer 2b, and the anode catalyst layer 4a is laminated on the anode gas diffusion layer 4b.
  • the force sword gas diffusion layer 2b plays a role of uniformly supplying the oxidant gas to the force sword catalyst layer 2a.
  • the anode gas diffusion layer 4b plays a role of uniformly supplying fuel to the anode catalyst layer 4a.
  • porous carbon paper can be used for the force sword gas diffusion layer 2b and the anode gas diffusion layer 4b.
  • the anode conductive layer 7 as the anode current collector is laminated on the anode gas diffusion layer 4 b of the membrane electrode assembly 1.
  • the force sword conductive layer 8 as a force sword current collector is laminated on the force sword gas diffusion layer 2 b of the membrane electrode assembly 1.
  • the anode conductive layer 7 and the force sword conductive layer 8 are for improving the conductivity of the force sword and the anode.
  • the anode conductive layer 7 and the force sword conductive layer 8 are provided with gas permeation holes (not shown) through which the oxidant gas or vaporized fuel permeates.
  • a gold electrode in which an Au foil is supported on a PET base material can be used.
  • One of the rectangular frame-shaped sealing materials 9 is formed on the proton conductive electrolyte membrane 6 so as to surround the periphery of the force sword 3.
  • the other is formed on the opposite surface of the proton conductive electrolyte membrane 6 so as to surround the anode 5.
  • the sealing material 9 functions as an O-ring for preventing fuel leakage and oxidant gas leakage as much as possible.
  • a liquid fuel tank 10 as a fuel storage unit is disposed on the anode side of the membrane electrode assembly 1 (below the membrane electrode assembly 1 in FIG. 1).
  • the liquid fuel tank 10 contains liquid methanol 11 or liquid fuel 11 that is a methanol aqueous solution. It is desirable that the concentration of the methanol aqueous solution be higher than 50 mol%. In addition, pure methanol pure The degree is desirably 95% by weight or more and 100% by weight or less.
  • the liquid fuel stored in the liquid fuel tank 10 is not necessarily limited to methanol fuel.
  • ethanol fuel such as ethanol aqueous solution or pure ethanol
  • propanol fuel such as propanol aqueous solution or pure propanol
  • glycol aqueous solution etc.
  • Dalicol fuel such as pure glycol, dimethyl ether, formic acid, or other liquid fuel may be used.
  • liquid fuel corresponding to the fuel cell is accommodated.
  • a fuel vaporization unit for example, a gas-liquid separation membrane 12, for supplying a vaporized component of the liquid fuel to the anode is disposed.
  • the gas-liquid separation membrane 12 is a membrane that allows only the vaporized component of the liquid fuel to permeate and does not allow the liquid fuel to permeate. Only the vaporized component of the liquid fuel can pass through the gas-liquid separation membrane 12 and supply the vaporized fuel to the anode 5.
  • a water-repellent porous membrane can be used as the gas-liquid separation membrane 12.
  • a frame 13 is disposed between the gas-liquid separation membrane 12 and the anode conductive layer 7.
  • the space surrounded by the frame 13 functions as a vaporized fuel storage chamber 14 for adjusting the amount of vaporized fuel supplied to the anode.
  • the moisturizing plate 15 is preferably made of an insulating material that is inert to methanol and has dissolution resistance, oxygen permeability, and moisture permeability.
  • examples of such an insulating material include polyolefins such as polyethylene and polypropylene.
  • a cover 17 in which a plurality of inlets 16 for an oxidant gas (eg, air) is formed is laminated on the moisture retention plate 15. Since the cover 17 also plays a role of pressurizing the stack including the membrane electrode assembly 1 to enhance its adhesion, for example, a metal such as SUS304, carbon steel, stainless steel, alloy steel, titanium alloy, or nickel alloy. Formed from.
  • a metal such as SUS304, carbon steel, stainless steel, alloy steel, titanium alloy, or nickel alloy. Formed from.
  • the first heat insulating member 18 covers the outer surface of the cover 17. As shown in FIG. 2, the first heat insulating member 18 is formed of a heat insulating material sheet in which a gas permeation hole 19 is opened at a location facing the oxidant introduction port 16. It is desirable that the thermal conductivity of the heat insulating material be in the range of 0. OlWZ (m'K) or more and lWZ (m'K) or less.
  • PE polyethylene
  • PET polyethylene terephthalate
  • PEEK polyetheretherketone
  • PPS polyphenylene sulfide
  • PEI polyetherimide
  • PI Polyimide
  • relatively hard resin such as PTFE (polytetrafluoroethylene), and glass epoxy resin.
  • the vaporized component of the liquid fuel in the liquid fuel tank 10 is supplied to the anode (also referred to as fuel electrode) catalyst layer 4 a through the gas-liquid separation membrane 12.
  • the anode catalyst layer 4a protons (H +) and electrons (e_) are generated by an oxidation reaction of the fuel.
  • the following equation (1) shows the catalytic reaction that occurs in the anode catalyst layer 4a when methanol is used as the fuel.
  • Proton (H +) generated in the anode catalyst layer 4a diffuses to the force sword (also referred to as air electrode) catalyst layer 2a through the proton conductive membrane 6. At the same time, the electrons generated in the anode catalyst layer 4a flow through the external circuit connected to the fuel cell, work against the load (resistance, etc.) of the external circuit, and flow into the force sword catalyst layer 2a.
  • the force sword also referred to as air electrode
  • the oxidant gas such as air flows from the gas permeation hole 19 of the first heat insulating member 18 and the oxidant introduction port 16 of the cover 17 to the force sword catalyst layer 2a through the force sword conductive layer 8 and the force sword gas diffusion layer 2b.
  • Oxygen in the oxidant gas undergoes a reduction reaction together with protons (H +) diffused through the proton conductive membrane 6 and electrons (e_) flowing through the external circuit to generate reaction products.
  • H + protons
  • e_ electrons
  • the moisture retention plate 15 is disposed between the force sword 3 and the cover 17, the evaporation of moisture from the force sword 3 is suppressed, and moisture retention in the force sword catalyst layer 2a is maintained as the power generation reaction proceeds.
  • the amount increases. For this reason, it is possible to create a state in which the water retention amount of the force sword catalyst layer 2a is larger than the water retention amount of the anode catalyst layer 4a.
  • a reaction in which water generated in the force sword catalyst layer 2a moves to the anode catalyst layer 4a through the proton conductive membrane 6 can be promoted by the osmotic pressure phenomenon. Thereby, the reaction resistance of the catalytic reaction at the anode 5 can be lowered.
  • the first heat insulating member 18 can suppress the heat release from the cover 17 due to the heat generated by the catalytic reaction and the combustion reaction, the temperature difference between the cover 17 and the moisture retaining plate 15 can be reduced. Can do. As a result, moisture condensation (or moisture liquefaction) on the moisture retaining plate 15 can be suppressed, and water clogging with the force sword 3 due to flatting can be reduced. Thereby, the oxidant gas can be stably supplied to the force sword 3.
  • the first heat insulating member 18 may be laminated on the inner surface of the cover 17 by laminating the first heat insulating member 18 on the outer surface of the cover 17. An example of this is shown in Figure 6.
  • the membrane electrode assembly that does not volatilize the liquid fuel abnormally can be kept warm.
  • the fuel utilization efficiency increases, so the fuel port such as crossover decreases.
  • the potential drop due to crossover is reduced and the output characteristics can be improved.
  • the membrane / electrode assembly repeats volume expansion / contraction due to the power generation reaction, and the membrane / electrode assembly is sandwiched between heat insulating members. Decrease in wearability can be suppressed, and contact resistance can be reduced. This also improves the output characteristics of the fuel cell.
  • FIG. 3 is a schematic cross-sectional view showing a direct methanol fuel cell according to the second embodiment of the present invention.
  • the same members as those described in FIGS. 1 and 2 described above are denoted by the same reference numerals and description thereof is omitted.
  • the second heat insulating members 20a and 20b are used instead of the first heat insulating member.
  • the second heat insulating member 20 a is disposed between the force sword conductive layer 8 and the moisture retention plate 15.
  • the second heat insulating member 20b is disposed between the anode conductive layer 7 and the frame 13.
  • the second heat insulating members 20a and 20b are formed of a heat insulating material sheet in which a gas permeation hole 21 serving as a passage for oxidizing gas or vaporized fuel is opened.
  • the thermal conductivity of the heat insulating material is preferably in the range of 0. OlWZ (m'K) or more and lWZ (m'K).
  • Insulating materials with acid resistance and solvent resistance are preferred, for example, styrene butadiene rubber (SBR), NBR (acrylonitrile butadiene rubber), ethylene propylene rubber (EPDM), fluoro rubber, silicon rubber. And rubber materials such as acrylic rubber and urethane rubber, non-woven fabrics, fiber materials such as felt, foamed materials such as foamed polyethylene and foamed polystyrene, and vacuum heat insulating materials.
  • SBR styrene butadiene rubber
  • NBR acrylonitrile butadiene rubber
  • EPDM ethylene propylene rubber
  • fluoro rubber silicon rubber.
  • rubber materials such as acrylic rubber and urethane rubber, non-woven fabrics, fiber materials such as felt, foamed materials such as foamed polyethylene and foamed polystyrene, and vacuum heat insulating materials.
  • the second heat insulating members 20a and 20b have the same thermal conductivity, but have different thermal conductivity! /
  • the membrane electrode assembly 1 that does not volatilize liquid fuel abnormally can be kept warm. wear.
  • the fuel utilization efficiency increases, so that fuel loss such as crossover is reduced.
  • potential drop due to crossover is reduced, and output characteristics can be improved.
  • the membrane electrode assembly 1 repeats volume expansion / contraction in response to the power generation reaction, but since the membrane electrode assembly 1 is sandwiched between the second heat insulating members 20a and 20b, the volume expansion / contraction is reduced. It is possible to suppress a decrease in adhesion due to the contact, and to reduce the contact resistance. This also improves the output characteristics of the fuel cell.
  • the fuel cell according to the second embodiment may or may not include the moisture retention plate 15.
  • the membrane electrode assembly 1 has the second heat insulating property. Heat retention by the members 20a and 20b makes it possible to suppress clogging of the force sword 3 due to flatting. Become. As a result, output characteristics can be stabilized.
  • FIG. 4 is a schematic sectional view showing a direct methanol fuel cell according to the third embodiment of the present invention.
  • the same members as those described in FIGS. 1 to 3 described above are denoted by the same reference numerals and description thereof is omitted.
  • both the first heat insulating member 18 and the second heat insulating members 20a and 20b are used.
  • the first heat insulating member 18 may be disposed on the outer surface of the cover 17 as shown in FIG. 4 or may be disposed on the inner surface of the cover 17. Further, the cover 17 may be disposed on both the outer surface and the inner surface.
  • the fuel cell of the third embodiment it is possible to prevent water clogging with the force sword 3 due to flatting, keep the membrane electrode assembly 1 warm, and reduce contact resistance. Therefore, the output characteristics can be sufficiently improved.
  • the membrane electrode assembly 1 is sufficiently kept warm, the anode reaction rate is improved and the fuel utilization efficiency is increased, so that fuel loss such as crossover is reduced. As a result, the potential drop due to crossover is reduced and the output characteristics can be improved.
  • the thermal conductivity [WZ (m'K)] of the first heat insulating member is ⁇ , and the thermal conductivity of the second heat insulating member
  • the membrane electrode assembly 1 reacts with power generation.
  • the thermal conductivity 2 it can be kept warm with heat. Also, by setting the thermal conductivity 2 to 1 Zio or less, the reaction heat accompanying power generation can be transferred to the moisture retention plate via the second heat insulating member, so that the membrane electrode assembly and the moisture retention The temperature difference with the plate can be reduced. Therefore, by satisfying ⁇ Zio ⁇ ⁇ Zio, the output characteristics of the fuel cell can be further improved.
  • the obtained paste was applied to porous carbon paper as an anode gas diffusion layer to obtain an anode catalyst layer having a thickness of 100 m.
  • Perfluorocarbon sulfonic acid solution concentration of 20% by weight of perfluorocarbon sulfonic acid
  • water and water as a dispersion medium on carbon black carrying catalyst particles (Pt) for power sword Methoxypropanol
  • Pt catalyst particles
  • a perfluorocarbon sulfonic acid membrane having a thickness of 50 ⁇ m and a water content of 10 to 20% by weight (trade name) A nafion membrane (manufactured by DuPont) was placed and subjected to hot pressing to obtain a membrane electrode assembly (MEA) of 30 mm ⁇ 30 mm.
  • an anode current collector having a thickness of 100 ⁇ m, in which an Au foil was bonded to a PET substrate, was laminated.
  • a force sword current collector with a thickness of 100 ⁇ m, in which an Au foil was bonded to a PET substrate, was laminated on the force sword gas diffusion layer of the membrane electrode assembly.
  • a 200 ⁇ m-thick silicone rubber sheet was prepared as a gas-liquid separation membrane.
  • a gas permeation hole is provided at a position facing the oxidant inlet of the cover as shown in Fig. 2 described above, and the thermal conductivity is 0.25 [WZ (m ' K)], a 2 mm thick PEEK plate was prepared.
  • the obtained membrane electrode assembly is combined with the moisture retention plate, the gas-liquid separation membrane, and the first heat insulating member to have the structure shown in Figs.
  • Direct internal vaporization type A methanol fuel cell was built.
  • the fuel tank was supplied with pure methanol with a purity of 99.9% by weight.
  • Example 2 The same as described in Example 1 above, except that the second heat insulating member is laminated on the anode current collector and the force sword current collector on the membrane electrode assembly instead of the first heat insulating member.
  • an internal vaporization type direct methanol fuel cell according to the second embodiment having the structure shown in FIG. 3 was assembled.
  • the second heat insulating member has a thermal conductivity of 0.01 [WZ (m.K)], a thickness of lmm,
  • the second heat insulating member is laminated on the anode current collector and the force sword current collector on the membrane electrode assembly of the fuel cell of Example 1, and has the structure shown in FIG.
  • An internal vaporization type direct methanol fuel cell was assembled.
  • As the second heat insulating member the same type as described in Example 2 was used.
  • the relationship of ⁇ ⁇ ⁇ 25 holds between the thermal conductivity ⁇ of the first thermal insulating member and the thermal conductivity of the second thermal insulating member, and ⁇
  • An internal vaporization type direct methanol fuel cell is constructed in the same manner as described in Example 1 except that the first heat insulating member is installed on all surfaces including the fuel tank 10 to the cover 17. I made it.
  • Example 1 in which the first heat insulating member is disposed on the outer surface of the cover.
  • Example 2 in which the fuel cell output characteristics of Examples 1 and 3 are the second heat insulating member disposed in the anode current collector and the force sword current collector. Compared with the output characteristics of fuel cells
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the spirit of the invention in an implementation stage.
  • Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiments. For example, some components such as all the components shown in the embodiment may be deleted. Furthermore, constituent elements over different embodiments may be appropriately combined.
  • the fuel cell is configured to have a fuel storage section below the membrane electrode assembly (MEA).
  • MEA membrane electrode assembly
  • a flow path is disposed between the fuel storage section and the MEA, and the fuel cell is configured.
  • the liquid fuel in the fuel reservoir may be supplied to the MEA through the flow path.
  • a passive type fuel cell has been described as an example of the configuration of the fuel cell main body.
  • the present invention can also be applied to this. Even with these configurations, the same effects as described above can be obtained.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 アノード5とカソード3と電解質膜6とを含む膜電極接合体1と、液体燃料11を貯蔵する燃料貯蔵部10と、前記カソードの外側に配置され、酸化剤導入口16を有するカバー17と、前記カバー17の外面及び内面のうち少なくともいずれかに積層され、かつ前記酸化剤導入口と対向する箇所に開口部19を有する第1の断熱性部材18とを具備する燃料電池。

Description

明 細 書
燃料電池
技術分野
[0001] 本発明は、燃料電池に関するものである。
背景技術
[0002] 近年、パーソナルコンピュータ、携帯電話等の各種電子機器は、半導体技術の発 達と共に小型化され、燃料電池をこれらの小型機器用の電源に用いることが試みら れている。燃料電池は、燃料と酸化剤を供給するだけで発電することができ、燃料の みを補充 ·交換すれば連続して発電できると 、う利点を有して 、るため、小型化が出 来れば携帯電子機器の作動に極めて有利なシステムといえる。特に、直接メタノール 型燃料電池(DMFC ;direct methanol fuel cell)は、エネルギー密度の高いメ タノールを燃料に用い、メタノール力 電極触媒上で直接電流を取り出せるため、改 質器も不要なことから小型化が可能であり、燃料の取り扱いも水素ガス燃料に比べて 容易なことから小型機器用電源として有望である。
[0003] DMFCを燃料の供給方法で分類すると、液体燃料を気化してからブロワ等で燃料 電池内に送り込む気体供給型 DMFC、液体燃料をそのままポンプ等で燃料電池内 に送り込む液体供給型 DMFC、セル内で液体燃料を気化させてアノードに供給する 内部気化型 DMFC等が挙げられる。内部気化型 DMFCの一例が特許公報第 341 3111号に開示されている。
[0004] 特許公報第 3413111号に示す内部気化型 DMFCは、液体燃料を保持する燃料 浸透層と、燃料浸透層中に保持された液体燃料のうち気化成分を拡散させるための 燃料気化層とを備えるものである。このような構成によって、燃料極に気化した液体 燃料を供給している。
[0005] 特開 2001— 283888号公報にも内部気化型 DMFCに関するものであって、燃料 極の側面に液体燃料の漏洩を防止するための燃料漏洩防止膜が設けられた起電部 の外周、つまり容器と酸化剤ガス流路の間並びに容器と燃料浸透層の間それぞれに 保温材を設ける事によって、電池反応の反応熱を外部に放散させないようにし、長時 間安定した出力を取り出すことが開示されている。
[0006] し力しながら、特開 2001— 283888号公報に記載の燃料電池は、保温材が燃料 浸透層と接している構成を有するため、メタノールの気化量が増加して酸化剤極へ のメタノール透過量が多くなり、クロスオーバによって高出力を得られないという問題 点を有する。
発明の開示
[0007] 本発明は、出力特性が改善された燃料電池を提供することを目的とする。
[0008] [課題を解決するための手段]
本発明に係る燃料電池は、アノードと、力ソードと、前記アノード及び前記力ソード の間に配置される電解質膜とを含む膜電極接合体と、
液体燃料を貯蔵する燃料貯蔵部と、
前記液体燃料の気化成分を前記アノードに供給するための燃料気化部と、 前記力ソードからの水の蒸散を抑止する保湿板と、
前記保湿板の外側に配置され、酸化剤導入口を有するカバーと、
前記カバーの外面及び内面のうち少なくともいずれかに積層され、かつ前記酸ィ匕 剤導入口と対向する箇所に開口部を有する第 1の断熱性部材と
を具備する。
[0009] また、本発明に係る燃料電池は、アノードと、力ソードと、前記アノード及び前記カソ ードの間に配置される電解質膜とを含む膜電極接合体と、
液体燃料を貯蔵する燃料貯蔵部と、
前記液体燃料の気化成分を前記アノードに供給するための燃料気化部と、 前記膜電極接合体の前記アノード上に配置されたアノード集電部と、
前記膜電極接合体の前記力ソード上に配置された力ソード集電部と、
前記アノード集電部及び前記力ソード集電部に積層され、かつガス透過孔を有す る断熱性部材と
を具備する。
[0010] また、本発明に係る燃料電池は、アノードと、力ソードと、前記アノード及び前記カソ ードの間に配置される電解質膜とを含む膜電極接合体と、 液体燃料を貯蔵する燃料貯蔵部と、
前記力ソードの外側に配置され、酸化剤導入口を有するカバーと、
前記カバーの外面及び内面のうち少なくともいずれかに積層され、かつ前記酸ィ匕 剤導入口と対向する箇所に開口部を有する第 1の断熱性部材と
を具備する。
[0011] また、本発明に係る燃料電池は、アノードと、力ソードと、前記アノード及び前記カソ ードの間に配置される電解質膜とを含む膜電極接合体と、
液体燃料を貯蔵する燃料貯蔵部と、
前記膜電極接合体の前記アノード上に配置されたアノード集電部と、
前記膜電極接合体の前記力ソード上に配置された力ソード集電部と、
前記アノード集電部及び前記力ソード集電部に積層され、かつガス透過孔を有す る断熱性部材と
を具備する。
図面の簡単な説明
[0012] [図 1]図 1は、本発明の第 1実施形態に係る直接メタノール型燃料電池を示す模式的 な断面図である。
[図 2]図 2は、図 1の断熱性部材を示す模式的な平面図である。
[図 3]図 3は、本発明の第 2実施形態に係る直接メタノール型燃料電池を示す模式的 な断面図である。
[図 4]図 4は、本発明の第 3実施形態に係る直接メタノール型燃料電池を示す模式的 な断面図である。
[図 5]図 5は、実施例 1〜3及び比較例の直接メタノール型燃料電池の最大出力とセ ル温度との関係を示す特性図である。
[図 6]図 6は、本発明の第 1実施形態に係る別の直接メタノール型燃料電池を示す模 式的な断面図である。
発明を実施するための最良の形態
[0013] 以下、本発明に係る実施形態を図面を参照して説明する。
[0014] (第 1の実施形態) 保湿板は、力ソードからの水分の蒸発を抑制することができるため、発電反応の進 行に伴って力ソード中の水分保持量を増加させることができ、力ソードの水分保持量 がアノードよりも多い状態を作り出すことができる。その結果、力ソード中の水が電解 質膜を通してアノードに拡散する反応を促進することができるため、アノードにおける 触媒反応の反応抵抗を低くすることができる。
[0015] 第 1の断熱性部材によりカバーの外面を保温することによって、カバーで急激に温 度が降下するのを緩和することができ、保湿板とカバーとの温度差を小さくすることが できる。その結果、保湿板での水分凝縮 (あるいは水分液化)を抑えることができるた め、フラッティングによる力ソードでの水詰まりを少なくすることができる。このため、力 ソードへ酸化剤ガスを安定して供給することができる。これらの結果、燃料電池の出 力特性を向上することができる。
[0016] また、第 1の断熱性部材をカバーの内面に積層しても保湿板での水分凝縮 (あるい は水分液化)を抑えることができる。その結果、フラッティングによる力ソードでの水詰 まりを少なくすることができるため、力ソードへ酸化剤ガスを安定して供給することがで きる。これらの結果、燃料電池の出力特性を向上することができる。
[0017] 第 1の実施形態に係る燃料電池を図 1〜図 2を参照して説明する。図 1は、本発明 の第 1実施形態に係る直接メタノール型燃料電池を示す模式的な断面図である。図 2は図 1の断熱性部材を示す模式的な平面図である。
[0018] 図 1に示すように、膜電極接合体 (MEA) 1は、力ソード触媒層 2a及び力ソードガス 拡散層 2bからなる力ソード (酸化剤極) 3と、アノード触媒層 4a及びアノードガス拡散 層 4bからなるアノード (燃料極) 5と、力ソード触媒層 2aとアノード触媒層 4aの間に配 置されるプロトン伝導性の電解質膜 6とを備えるものである。
[0019] 力ソード触媒層 2aは、力ソード触媒粒子及びプロトン伝導性榭脂を含むことが望ま しい。一方、アノード触媒層 4aは、アノード触媒粒子及びプロトン伝導性榭脂を含む ことが好ましい。
[0020] 力ソード触媒及びアノード触媒としては、例えば、白金族元素の単体金属(Pt、 Ru 、 Rh、 Ir、 Os、 Pd等)、白金族元素を含有する合金などを挙げることができる。カソー ド触媒には、白金を用いることが望ましいが、これに限定されるものでは無い。ァノー ド触媒には、メタノールや一酸ィ匕炭素に対する耐性の強い Pt—Ruを用いることが望 ましいが、これに限定されるものでは無い。また、炭素材料のような導電性担持体を 使用する担持触媒を使用しても、あるいは無担持触媒を使用しても良い。
[0021] 力ソード触媒層 2a、アノード触媒層 4a及びプロトン伝導性の電解質膜 6に含まれる プロトン伝導性榭脂としては、例えば、パーフルォロカーボンスルホン酸のようなスル ホン酸基を有するフッ素系榭脂、スルホン酸基を有するハイド口カーボン系榭脂、タ ングステン酸ゃリンタングステン酸などの無機物等を使用しても良 、。
[0022] 力ソード触媒層 2aは力ソードガス拡散層 2bに積層され、かつアノード触媒層 4aは アノードガス拡散層 4bに積層されている。力ソードガス拡散層 2bは力ソード触媒層 2 aに酸化剤ガスを均一に供給する役割を担うものである。一方、アノードガス拡散層 4 bはアノード触媒層 4aに燃料を均一に供給する役割を果たす。力ソードガス拡散層 2 b及びアノードガス拡散層 4bには、例えば、多孔質カーボンぺーパを使用することが できる。
[0023] アノード集電部としてのアノード導電層 7は、膜電極接合体 1のアノードガス拡散層 4bに積層されている。一方、力ソード集電部としての力ソード導電層 8は、膜電極接 合体 1の力ソードガス拡散層 2bに積層されて 、る。アノード導電層 7及び力ソード導 電層 8は、力ソード及びアノードの導電性を向上させるためのものである。また、ァノ ード導電層 7及び力ソード導電層 8には、酸化剤ガスあるいは気化燃料が透過するた めのガス透過孔(図示しない)が開口されている。アノード導電層 7及び力ソード導電 層 8には、例えば、 PET基材に Au箔を担持させた金電極を使用することができる。
[0024] 矩形枠状のシール材 9の一方は、プロトン伝導性電解質膜 6上に力ソード 3の周囲 を囲むように形成されている。また、他方は、プロトン伝導性電解質膜 6の反対側の 面上にアノード 5の周囲を囲むように形成されている。シール材 9は、膜電極接合体 1 力もの燃料漏れ及び酸化剤ガス漏れを防止するためのオーリングとして機能する。
[0025] 膜電極接合体 1のアノード側(図 1では膜電極接合体 1の下方)には、燃料貯蔵部と しての液体燃料タンク 10が配置されている。液体燃料タンク 10には、液体のメタノー ルあるいはメタノール水溶液力 なる液体燃料 11が収容されて 、る。メタノール水溶 液の濃度は 50モル%を超える高濃度にすることが望ましい。また、純メタノールの純 度は、 95重量%以上 100重量%以下にすることが望ましい。なお、液体燃料タンク 1 0に収容する液体燃料は必ずしもメタノール燃料に限られるものではなく、例えばエタ ノール水溶液や純エタノール等のエタノール燃料、プロパノール水溶液や純プロパノ ール等のプロパノール燃料、グリコール水溶液ゃ純グリコール等のダリコール燃料、 ジメチルエーテル、ギ酸、もしくはその他の液体燃料であってもよい。いずれにしても 、燃料電池に応じた液体燃料が収容される。
[0026] 液体燃料タンク 10とアノード 5との間には、液体燃料の気化成分をアノードに供給 するための燃料気化部、例えば気液分離膜 12が配置されている。気液分離膜 12は 、液体燃料の気化成分のみを透過させて、液体燃料は透過できない膜である。液体 燃料のうち気化成分のみが気液分離膜 12を透過し、アノード 5に気化燃料を供給す ることが可能となる。気液分離膜 12には、例えば、撥水性の多孔質膜を使用すること ができる。
[0027] 気液分離膜 12とアノード導電層 7の間には、フレーム 13が配置されている。フレー ム 13で囲まれた空間は、アノードへの気化燃料の供給量を調整するための気化燃 料収容室 14として機能する。
[0028] 一方、膜電極接合体 1の力ソード導電層 8には、力ソード触媒層 2aにおいて生成し た水の蒸散を抑止する保湿板 15が積層されている。保湿板 15は、メタノールに対し て不活性で、耐溶解性、酸素透過性及び透湿性を有する絶縁材料から形成されて いることが望ましい。このような絶縁材料としては、例えば、ポリエチレンやポリプロピ レンなどのポリオレフインを挙げることができる。
[0029] 酸化剤ガス (例えば空気)の導入口 16が複数個形成されたカバー 17は、保湿板 1 5の上に積層されている。カバー 17は、膜電極接合体 1を含むスタックを加圧してそ の密着性を高める役割も果たしているため、例えば、 SUS304、炭素鋼、ステンレス 鋼、合金鋼、チタン合金、ニッケル合金のような金属から形成される。
[0030] 第 1の断熱性部材 18は、カバー 17の外側表面を被覆している。第 1の断熱性部材 18は、図 2に示すように、酸化剤導入口 16と対向する箇所にガス透過孔 19が開口さ れた断熱材シートから形成されている。断熱材の熱伝導率は、 0. OlWZ (m'K)以 上、 lWZ (m'K)以下の範囲にすることが望ましい。また、断熱材としては、耐酸性 および耐溶剤性を有するものが好ましぐ例えば、ポリエチレン (PE)、ポリエチレンテ レフタレート(PET)、ポリエーテルエーテルケトン(PEEK)、 PPS (ポリフエ-レンサ ルファイド)、 PEI (ポリエーテルイミド)、 PI (ポリイミド)、 PTFE (ポリ 4フッ化工チレン) などの比較的硬質系榭脂ゃガラスエポキシ榭脂などを挙げることができる。
[0031] このような構成の燃料電池にぉ 、て、電流 (電子の流れ)を生じる 、わゆる発電反 応が起きる様子を詳述すると、以下のようになる。
[0032] 液体燃料タンク 10内の液体燃料は、その気化成分が気液分離膜 12を通してァノ ード (燃料極ともいう)触媒層 4aに供給される。アノード触媒層 4aにおいては、燃料の 酸化反応によってプロトン (H+)と電子 (e_)を生成する。例えば、燃料としてメタノー ルを用いた場合に、アノード触媒層 4aで起こる触媒反応を下記(1)式に示す。
[0033] CH OH+H O → CO +6H+ + 6e" (1)
3 2 2
アノード触媒層 4aで生成したプロトン (H+)は、プロトン伝導性膜 6を通じて力ソード (空気極ともいう)触媒層 2aへ拡散する。また同時に、アノード触媒層 4aで生成した 電子は、燃料電池に接続された外部回路を流れ、外部回路の負荷 (抵抗等)に対し て仕事をし、力ソード触媒層 2aに流入する。
[0034] 空気などの酸化剤ガスは、第 1の断熱性部材 18のガス透過孔 19及びカバー 17の 酸化剤導入口 16から力ソード導電層 8及び力ソードガス拡散層 2bを通して力ソード 触媒層 2aに供給される。酸化剤ガス中の酸素は、プロトン伝導性膜 6を通じて拡散し てきたプロトン (H+)と、外部回路を流れてきた電子 (e_)と共に、還元反応を起こし、 反応生成物を生成する。例えば、酸化剤ガスとして空気を使用した場合、空気に含 まれる酸素が力ソード触媒層 2aで生じる反応は下記(2)式の通りで、この場合は反 応生成物は水 (H O)である。
2
[0035] 1. 50 +6H+ + 6e" → 3H O (2)
2 2
この(1)式と(2)式の反応とが同時に生じることにより、燃料電池としての発電反応 が完結する。トータルの燃焼反応を下記(3)式に示す。
[0036] CH OH+ 1. 50 → CO + 2H O (3)
3 2 2 2
力ソード 3とカバー 17との間には保湿板 15が配置されているため、力ソード 3からの 水分の蒸発が抑制され、発電反応の進行に伴って力ソード触媒層 2a中の水分保持 量が増加する。このため、力ソード触媒層 2aの水分保持量がアノード触媒層 4aの水 分保持量よりも多い状態を作り出すことができる。その結果、浸透圧現象によって、力 ソード触媒層 2aに生成した水がプロトン伝導性膜 6を通過してアノード触媒層 4aに移 動する反応を促進することができる。これにより、アノード 5における触媒反応の反応 抵抗を低くすることができる。
[0037] 第 1の断熱性部材 18は、触媒反応および燃焼反応によって発生した熱のカバー 1 7からの放熱を抑制することができるため、カバー 17と保湿板 15との温度差を小さく することができる。その結果、保湿板 15での水分凝縮 (あるいは水分液化)を抑えるこ とができるため、フラッティングによる力ソード 3での水詰まりを少なくすることができる 。これにより、力ソード 3に酸化剤ガスを安定して供給することができる。
[0038] これらの結果、燃料電池の出力特性を向上することができる。
[0039] さらに、燃料タンク 10から気化燃料収容室 14までには、断熱性部材が設けられて V、な 、ため、液体燃料の異常揮発を回避することができる。
[0040] 前述した図 1では、第 1の断熱性部材 18をカバー 17の外面に積層した力 カバー 17の内面に積層しても良い。この一例を図 6に示す。
[0041] 図 6に示すように、第 1の断熱性部材 18をカバー 17の内面に積層することによって 、保湿板 15での水分凝縮 (あるいは水分液化)を抑えることができるため、フラッティ ングによる力ソード 3での水詰まりを少なくすることができる。これにより、力ソード 3に 酸化剤ガスを安定して供給することができるため、燃料電池の出力特性を向上するこ とができる。また、第 1の断熱性部材 18をカバー 17の内面と外面の両方の面に積層 することも可會である。
[0042] (第 2の実施形態)
アノード集電部及び力ソード集電部に断熱性部材を積層することによって、液体燃 料を異常に揮発させることなぐ膜電極接合体を保温することができる。アノード反応 速度が向上する事により、燃料利用効率が上がるため、クロスオーバーなどの燃料口 スが減少する。その結果、クロスオーバーによる電位低下が減少し、出力特性を上げ る事ができる。また、膜電極接合体は、発電反応に伴って体積膨張'収縮を繰り返す 力 断熱性部材の間に膜電極接合体が挟まれているため、体積膨張収縮による密 着性の低下を抑制することができ、接触抵抗を低減することができる。これによつても 、燃料電池の出力特性を向上することができる。
[0043] 第 2の実施形態に係る燃料電池を図 3を参照して説明する。図 3は、本発明の第 2 実施形態に係る直接メタノール型燃料電池を示す模式的な断面図である。前述した 図 1〜図 2で説明したのと同様な部材については、同符号を付して説明を省略する。
[0044] 第 2の実施形態に係る燃料電池では、第 1の断熱性部材の代りに、第 2の断熱性部 材 20a, 20bを使用する。第 2の断熱性部材 20aは、力ソード導電層 8と保湿板 15と の間に配置される。また、第 2の断熱性部材 20bは、アノード導電層 7とフレーム 13と の間に配置される。第 2の断熱性部材 20a, 20bは、酸化剤ガスあるいは気化燃料の 通路となるガス透過孔 21が開口された断熱材シートから形成されている。断熱材の 熱伝導率は、 0. OlWZ (m'K)以上、 lWZ (m'K)の範囲にすることが望ましい。ま た、断熱材としては、耐酸性および耐溶剤性を有するものが好ましぐ例えば、スチレ ンブタジエンゴム(SBR)、 NBR (アクリロニトリルブタジエンゴム)、エチレンプロピレン ゴム(EPDM)、フッ素ゴム、シリコンゴム、アクリルゴム、ウレタンゴムなどのゴム材料、 不織布、フェルトなどの繊維材料、発泡ポリエチレン、発泡ポリスチレンなどの発泡系 材料、真空断熱材等を挙げることができる。第 2の断熱性部材 20a, 20bは、同じ熱 伝導率を有して 、ても、互いに異なる熱伝導率を有して!/、ても良 ヽ。
[0045] 第 2の断熱性部材 20a, 20bをアノード導電層 7及び力ソード導電層 8に配置するこ とにより、液体燃料を異常に揮発させることなぐ膜電極接合体 1を保温することがで きる。アノード反応速度が向上する事により、燃料利用効率が上がるため、クロスォー バーなどの燃料ロスが減少する。その結果、クロスオーバーによる電位低下が減少し 、出力特性を上げる事ができる。また、膜電極接合体 1は、発電反応に伴って体積膨 張 ·収縮を繰り返すが、第 2の断熱性部材 20a, 20bの間に膜電極接合体 1が挟まれ ているため、体積膨張収縮による密着性の低下を抑制することができ、接触抵抗を低 減することができる。これによつても、燃料電池の出力特性を向上することができる。
[0046] 第 2の実施形態に係る燃料電池は、保湿板 15を備えていても、備えていなくても良 いが、備えている場合には、膜電極接合体 1が第 2の断熱性部材 20a, 20bにより保 温されることで、フラッティングによる力ソード 3での水詰まりを抑制することが可能に なる。その結果、出力特性の安定ィ匕を図ることができる。
[0047] (第 3の実施形態)
第 3の実施形態に係る燃料電池を図 4を参照して説明する。図 4は、本発明の第 3 実施形態に係る直接メタノール型燃料電池を示す模式的な断面図である。前述した 図 1〜図 3で説明したのと同様な部材については、同符号を付して説明を省略する。
[0048] 第 3の実施形態に係る燃料電池では、第 1の断熱性部材 18と第 2の断熱性部材 20 a, 20bとの双方を使用する。第 1の断熱性部材 18は、図 4に示すようにカバー 17の 外面に配置しても、あるいはカバー 17の内面に配置しても良い。さらには、カバー 17 の外面および内面の両方の面に配置しても良い。
[0049] 第 3の実施形態に係る燃料電池によれば、フラッティングによる力ソード 3での水詰 まりの防止、膜電極接合体 1の保温、及び、接触抵抗の低減を達成することができる ため、出力特性を十分に向上することができる。膜電極接合体 1の保温が十分になさ れることによって、アノード反応速度が向上し、燃料利用効率が上がるため、クロスォ 一バーなどの燃料ロスが減少する。その結果、クロスオーバーによる電位低下が減少 し、出力特性を上げる事ができる。
[0050] 第 1の断熱性部材の熱伝導率 [WZ (m'K) ]を λ 、第 2の断熱性部材の熱伝導率
[WZ (m'K) ]をえ とした際に、 λ /100≤λ ≤λ ZlOを満たすことが望ましい。
2 1 2 1
熱伝導率え をえ Zioo以上にすることによって、膜電極接合体 1を発電に伴う反応
2 1
熱で十分に保温することができる。また、熱伝導率え 2をえ 1 Zio以下にすることによ つて、発電に伴う反応熱を第 2の断熱性部材を介して保湿板に伝達することができる ため、膜電極接合体と保湿板との温度差を小さくすることができる。従って、 λ Zio ο≤λ ≤λ Zioを満たすことによって、燃料電池の出力特性をさらに向上すること
2 1
ができる。
[0051] 以下、本発明の実施例を図面を参照して詳細に説明する。
[0052] (実施例 1)
<アノード触媒層の作製 >
アノード用触媒粒子 (Pt :Ru= 1: 1)を担持したカーボンブラックに、プロトン伝導性 榭脂としてパーフルォロカーボンスルホン酸溶液(パーフルォロカーボンスルホン酸 の濃度 20重量%)と、分散媒として水及びメトキシプロパノールを添加し、前記触媒 担持カーボンブラックを分散させてペーストを調製した。得られたペーストをアノード ガス拡散層としての多孔質カーボンペーパーに塗布することにより、厚さが 100 m のアノード触媒層を得た。
[0053] <力ソード触媒層の作製 >
力ソード用触媒粒子 (Pt)を担持したカーボンブラックに、プロトン伝導性榭脂として パーフルォロカーボンスルホン酸溶液(パーフルォロカーボンスルホン酸の濃度 20 重量%)と、分散媒として水及びメトキシプロパノールを添加し、前記触媒担持カーボ ンブラックを分散させてペーストを調製した。得られたペーストを力ソードガス拡散層と しての多孔質カーボンペーパーに塗布することにより、厚さが 100 μ mの力ソード触 媒層を得た。
[0054] <膜電極接合体 (MEA)の作製 >
上記のようにして作製したアノード触媒層と力ソード触媒層の間に、電解質膜として 厚さが 50 μ mで、含水率が 10〜20重量%のパーフルォロカーボンスルホン酸膜( 商品名 nafion膜、デュポン社製)を配置し、これらにホットプレスを施すことにより、 30 mm X 30mmの膜電極接合体(MEA)を得た。
[0055] 膜電極接合体のアノードガス拡散層に、 PET基材に Au箔を接着した厚さが 100 μ mのアノード集電部を積層した。また、膜電極接合体の力ソードガス拡散層に、 PET 基材に Au箔を接着した厚さが 100 μ mの力ソード集電部を積層した。
[0056] 保湿板として、厚さ力 00 μ mで、透気度が 2秒 Zl00cm3 (jIS P— 8117に規定 の測定方法による)で、透湿度力 000gZm224h (jIS L—1099 A— 1に規定の 測定方法による)のポリエチレン製多孔質フィルムを用意した。
[0057] また、気液分離膜として、厚さが 200 μ mのシリコーンゴムシートを用意した。
[0058] 第 1の断熱性部材として、前述した図 2に示すようにカバーの酸化剤導入口と対向 する位置にガス透過孔が設けられ、熱伝導率え が 0. 25 [WZ (m'K) ]で、厚さが 2 mmで、 PEEK製の板を用意した。
[0059] 得られた膜電極接合体を、保湿板、気液分離膜及び第 1の断熱性部材と組み合わ せて、前述した図 1, 2に示す構造を有し、第 1の実施形態に係る内部気化型の直接 メタノール型燃料電池を組みたてた。なお、燃料タンクには、純度 99. 9重量%の純 メタノールを供給した。
[0060] (実施例 2)
第 1の断熱性部材の代りに第 2の断熱性部材を、膜電極接合体上のアノード集電 部及び力ソード集電部に積層すること以外は前述した実施例 1で説明したのと同様 にし、前述した図 3に示す構造を有し、第 2の実施形態に係る内部気化型の直接メタ ノール型燃料電池を組みたてた。
[0061] 第 2の断熱性部材には、熱伝導率え が 0. 01 [WZ (m.K) ]で、厚さが lmmで、
2
酸化剤ガスもしくは気化燃料が通過するガス透過孔を有する真空断熱材を使用した
[0062] (実施例 3)
実施例 1の燃料電池の膜電極接合体上のアノード集電部及び力ソード集電部に第 2の断熱性部材を積層し、前述した図 4に示す構造を有し、第 3の実施形態に係る内 部気化型の直接メタノール型燃料電池を組みたてた。第 2の断熱性部材には、実施 例 2で説明したのと同様な種類のものを使用した。第 1の断熱性部材の熱伝導率 λ と第 2の断熱性部材の熱伝導率え との間には、 λ = λ Ζ25の関係が成立し、 λ
2 2 1 1
/100≤λ ≤λ
2 1 Ζΐοを満足している。
[0063] (比較例)
第 1の断熱性部材を燃料タンク 10からカバー 17までを含む全ての面に設置するこ と以外は、前述した実施例 1で説明したのと同様にし、内部気化型の直接メタノール 型燃料電池を組みたてた。
[0064] これらの燃料電池について、セル中心温度及び最大出力を測定し、その結果を実 施例 3の最大出力及びセル温度を 100として表示し、図 5に示した。
[0065] 図 5から明らかなように、実施例 1〜3の燃料電池は、比較例の燃料電池に比して 最大出力が高力つた。カバーの外表面に第 1の断熱性部材を配置する実施例 1, 3 の燃料電池の出力特性が、アノード集電部及び力ソード集電部に第 2の断熱性部材 を配置する実施例 2の燃料電池の出力特性に比して優れて!/ヽた。
[0066] 比較例の燃料電池では、前述した特開 2001— 283888号公報に示すように起電 部の外周部に断熱性部材を配置したため、液体燃料であるメタノールの揮発量が多 ぐメタノールクロスオーバにより出力が低下した。
[0067] なお、本発明は上記実施形態そのままに限定されるものではなぐ実施段階ではそ の要旨を逸脱しない範囲で構成要素を変形して具体ィ匕できる。また、上記実施形態 に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成で きる。例えば、実施形態に示される全構成要素カゝら幾つかの構成要素を削除しても よい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
[0068] 例えば、上記した説明では、燃料電池の構成として膜電極接合体 (MEA)の下部 に燃料貯蔵部を有する構造にしたが、燃料貯蔵部と MEAの間に流路を配置し、燃 料貯蔵部内の液体燃料を流路を通して MEAに供給してもよい。また、燃料電池本 体の構成としてパッシブ型の燃料電池を例に挙げて説明したが、アクティブ型の燃料 電池、さらには燃料供給などの一部にポンプ等を用いたセミパッシブ型の燃料電池 に対しても本発明を適用することができる。これら構成であっても、上記した説明と同 様の作用効果が得られる。
産業上の利用可能性
[0069] 本発明によれば、出力特性が改善された燃料電池を提供することができる。

Claims

請求の範囲
[1] アノードと、力ソードと、前記アノード及び前記力ソードの間に配置される電解質膜と を含む膜電極接合体と、
液体燃料を貯蔵する燃料貯蔵部と、
前記力ソードの外側に配置され、酸化剤導入口を有するカバーと、
前記カバーの外面及び内面のうち少なくともいずれかに積層され、かつ前記酸ィ匕 剤導入口と対向する箇所に開口部を有する第 1の断熱性部材と
を具備する燃料電池。
[2] 前記膜電極接合体の前記力ソード上に配置された力ソード集電部と、前記膜電極 接合体の前記アノード上に配置されたアノード集電部と、前記力ソード集電部及び前 記アノード集電部に積層され、ガス透過孔を有する第 2の断熱性部材とを具備する請 求項 1記載の燃料電池。
[3] 前記第 1の断熱性部材の熱伝導率 [WZ (m'K) ]を λ 、前記第 2の断熱性部材の 熱伝導率 [WZ (m'K) ]をえ とした際に、 λ /100≤λ ≤λ ZlOを満たす請求
2 1 2 1
項 2記載の燃料電池。
[4] 前記液体燃料の気化成分を前記アノードに供給するための燃料気化部と、前記力 ソードからの水の蒸散を抑止する保湿板とをさらに具備し、前記カバーは前記カソー ド及び前記保湿板の外側に配置される請求項 1記載の燃料電池。
[5] アノードと、力ソードと、前記アノード及び前記力ソードの間に配置される電解質膜と を含む膜電極接合体と、
液体燃料を貯蔵する燃料貯蔵部と、
前記膜電極接合体の前記アノード上に配置されたアノード集電部と、
前記膜電極接合体の前記力ソード上に配置された力ソード集電部と、
前記アノード集電部及び前記力ソード集電部に積層され、かつガス透過孔を有す る断熱性部材と
を具備する燃料電池。
[6] 前記液体燃料の気化成分を前記アノードに供給するための燃料気化部をさらに具 備する請求項 5記載の燃料電池。
PCT/JP2007/051096 2006-01-30 2007-01-24 燃料電池 WO2007086432A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07707343A EP1981111A4 (en) 2006-01-30 2007-01-24 FUEL CELL
JP2007555981A JPWO2007086432A1 (ja) 2006-01-30 2007-01-24 燃料電池
US12/180,804 US20090017353A1 (en) 2006-01-30 2008-07-28 Fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006021295 2006-01-30
JP2006-021295 2006-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/180,804 Continuation US20090017353A1 (en) 2006-01-30 2008-07-28 Fuel cell

Publications (1)

Publication Number Publication Date
WO2007086432A1 true WO2007086432A1 (ja) 2007-08-02

Family

ID=38309221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051096 WO2007086432A1 (ja) 2006-01-30 2007-01-24 燃料電池

Country Status (5)

Country Link
US (1) US20090017353A1 (ja)
EP (1) EP1981111A4 (ja)
JP (1) JPWO2007086432A1 (ja)
TW (1) TW200746524A (ja)
WO (1) WO2007086432A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311102A (ja) * 2006-05-17 2007-11-29 Sony Corp 燃料電池
WO2008096669A1 (ja) * 2007-02-05 2008-08-14 Sony Corporation 燃料電池およびこれを備えた電子機器
WO2010005002A1 (ja) * 2008-07-10 2010-01-14 株式会社 東芝 燃料電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170406A (ja) * 2007-12-17 2009-07-30 Toshiba Corp 燃料電池
US9029033B2 (en) * 2010-10-08 2015-05-12 GM Global Technology Operations LLC Composite end cell thermal barrier with an electrically conducting layer
US20150268682A1 (en) * 2014-03-24 2015-09-24 Elwha Llc Systems and methods for managing power supply systems
CN108630971A (zh) * 2017-03-22 2018-10-09 株式会社东芝 膜电极接合体、电化学单电池、电池堆、燃料电池及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268836A (ja) * 1999-03-15 2000-09-29 Sony Corp 発電デバイス
JP2001283888A (ja) 2000-03-29 2001-10-12 Toshiba Corp 燃料電池
JP3413111B2 (ja) 1998-09-30 2003-06-03 株式会社東芝 燃料電池
JP2003323902A (ja) * 2002-05-07 2003-11-14 Hitachi Ltd 燃料電池発電装置及びこれを用いた携帯機器
JP2004296348A (ja) * 2003-03-27 2004-10-21 Kyocera Corp 燃料電池用容器および燃料電池
WO2005112172A1 (ja) * 2004-05-14 2005-11-24 Kabushiki Kaisha Toshiba 燃料電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040146772A1 (en) * 2002-10-21 2004-07-29 Kyocera Corporation Fuel cell casing, fuel cell and electronic apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3413111B2 (ja) 1998-09-30 2003-06-03 株式会社東芝 燃料電池
JP2000268836A (ja) * 1999-03-15 2000-09-29 Sony Corp 発電デバイス
JP2001283888A (ja) 2000-03-29 2001-10-12 Toshiba Corp 燃料電池
JP2003323902A (ja) * 2002-05-07 2003-11-14 Hitachi Ltd 燃料電池発電装置及びこれを用いた携帯機器
JP2004296348A (ja) * 2003-03-27 2004-10-21 Kyocera Corp 燃料電池用容器および燃料電池
WO2005112172A1 (ja) * 2004-05-14 2005-11-24 Kabushiki Kaisha Toshiba 燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1981111A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311102A (ja) * 2006-05-17 2007-11-29 Sony Corp 燃料電池
WO2008096669A1 (ja) * 2007-02-05 2008-08-14 Sony Corporation 燃料電池およびこれを備えた電子機器
JP2008192461A (ja) * 2007-02-05 2008-08-21 Sony Corp 燃料電池およびこれを備えた電子機器
WO2010005002A1 (ja) * 2008-07-10 2010-01-14 株式会社 東芝 燃料電池

Also Published As

Publication number Publication date
JPWO2007086432A1 (ja) 2009-06-18
EP1981111A1 (en) 2008-10-15
US20090017353A1 (en) 2009-01-15
TW200746524A (en) 2007-12-16
EP1981111A4 (en) 2012-04-04
TWI332726B (ja) 2010-11-01

Similar Documents

Publication Publication Date Title
WO2006057283A1 (ja) 燃料電池
KR100877273B1 (ko) 연료 전지
TWI332726B (ja)
JP2007080776A (ja) 固体高分子型燃料電池、固体高分子型燃料電池スタック及び携帯用電子機器
JP2008192506A (ja) 燃料電池
US20110275003A1 (en) Fuel cell
KR100909521B1 (ko) 연료 전지
WO2006101033A1 (ja) 燃料電池
WO2006085619A1 (ja) 燃料電池
JP2008310995A (ja) 燃料電池
JP2008293705A (ja) 膜電極接合体および燃料電池
WO2010013425A1 (ja) 燃料電池
JP2009123441A (ja) 燃料電池
JP2009021113A (ja) 燃料電池
JP2008186799A (ja) 燃料電池
JP2007026873A (ja) 燃料電池
WO2011052650A1 (ja) 燃料電池
JP2006313689A (ja) 燃料電池
JP2009266676A (ja) 膜電極接合体及び燃料電池
JP2011096468A (ja) 燃料電池
JP2007080628A (ja) 燃料電池の収容構造
JP2009140830A (ja) 燃料電池
JP2009129830A (ja) 燃料電池
JP2008153133A (ja) 燃料電池
JP2009032688A (ja) 燃料電池用電極膜接合体およびそれを用いた燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007555981

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007707343

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE