WO2006085619A1 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
WO2006085619A1
WO2006085619A1 PCT/JP2006/302376 JP2006302376W WO2006085619A1 WO 2006085619 A1 WO2006085619 A1 WO 2006085619A1 JP 2006302376 W JP2006302376 W JP 2006302376W WO 2006085619 A1 WO2006085619 A1 WO 2006085619A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
force sword
fuel cell
fuel
methanol
Prior art date
Application number
PCT/JP2006/302376
Other languages
English (en)
French (fr)
Inventor
Hirofumi Kan
Asako Satoh
Akira Yajima
Yumiko Takizawa
Hiroyuki Shiroki
Original Assignee
Kabushiki Kaisha Toshiba
Toshiba Electronic Engineering Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba, Toshiba Electronic Engineering Corporation filed Critical Kabushiki Kaisha Toshiba
Priority to CA002597534A priority Critical patent/CA2597534A1/en
Priority to JP2007502661A priority patent/JPWO2006085619A1/ja
Priority to EP06713519A priority patent/EP1865568A4/en
Publication of WO2006085619A1 publication Critical patent/WO2006085619A1/ja
Priority to US11/836,821 priority patent/US7638223B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell that supplies liquid fuel or vaporized fuel obtained by vaporizing liquid fuel to an anode catalyst layer.
  • Fuel cells have the advantage of being able to generate electricity simply by supplying fuel and oxidant, and can generate electricity continuously if only the fuel is replaced. This is a very advantageous system.
  • direct methanol fuel cells use methanol with high energy density as the fuel, and since direct current can be taken out from the methanol-powered electrocatalyst, a reformer is not required. It is promising as a power source for small equipment because it can be downsized and the handling of fuel is easier than hydrogen gas fuel.
  • DMFC fuel supply methods include gas supply type DMFC that vaporizes liquid fuel and feeds it into the fuel cell with a force blower, etc., and liquid supply type DMFC that sends liquid fuel directly into the fuel cell with a pump or the like, Furthermore, an internal vaporization type DMFC as shown in Japanese Patent Publication No. 3413111 is known.
  • An internal vaporization type DMFC shown in Japanese Patent Publication No. 3413111 includes a fuel permeation layer for holding liquid fuel, and a fuel vaporization layer for diffusing a vaporized component of the liquid fuel held in the fuel permeation layer. Thus, the vaporized liquid fuel is supplied from the fuel vaporization layer to the fuel electrode.
  • the present invention provides a chemical safety of a perfluoro conductive binder contained in an anode catalyst layer. It is to provide a fuel cell having improved durability by improving qualitative properties.
  • An anode catalyst layer comprising a perfluoro conductive binder having an aggregate structure formed with a hydrophobic (lipophilic) group and a hydrophilic group facing inward;
  • a fuel cell comprising: a proton conducting membrane disposed between the force sword catalyst layer and the anode catalyst layer.
  • FIG. 1 is a schematic cross-sectional view showing a direct methanol fuel cell according to an embodiment of the present invention.
  • Fig. 2 is a characteristic diagram showing the change in output over time for the direct methanol fuel cells of Examples 1 and 2 and the comparative example.
  • anode catalyst layer containing a perfluoro-based conductive binder having a reverse micelle structure adhesion between the anode catalyst layer and the proton conductive film is maintained even when the methanol concentration of the fuel is increased. Therefore, it is possible to increase the stability over time of the output voltage, and it is possible to obtain excellent durability even when the methanol concentration of the fuel is increased.
  • an anode catalyst for example, a single metal of a platinum group element (Pt, Ru, Rh, Ir, Os, Pd, etc.), a platinum group element is used. Examples include alloys.
  • the anode catalyst is resistant to methanol and carbon monoxide. Although it is desirable to use strong Pt—Ru, it is not limited to this. Further, a supported catalyst using a conductive support such as a carbon material may be used, or an unsupported catalyst may be used.
  • perfluoro conductive binder examples include a fluorinated resin having a sulfonic acid group (for example, a perfluoro sulfonic acid polymer).
  • a perfluoro sulfonic acid polymer for example, a perfluoro sulfonic acid polymer.
  • An example of perfluorosulfonic acid polymer is shown in the following chemical formula 1.
  • x, y, m, and n are integers satisfying x> 0, y> 0, m ⁇ 0, and n> 0.
  • F)] is a hydrophobic (lipophilic) group
  • ⁇ (CF) SO_ ⁇ is a hydrophilic group
  • a perfluoro-based conductive binder such as a perfluorosulfonic acid polymer has an aggregate structure (hereinafter referred to as an aggregate structure) formed in a solution state with a hydrophilic group and a hydrophobic (lipophilic) group facing inward. (Hereinafter referred to as the micelle structure) is stable, and when heated at a temperature of 120 ° C or higher after drying, the transition to the reverse micelle structure begins, and the reverse micelle structure becomes stable at temperatures exceeding 135 ° C. Decrease In the pressure atmosphere, the transition to the reverse micelle structure can be caused at a lower temperature.
  • an aggregate structure formed in a solution state with a hydrophilic group and a hydrophobic (lipophilic) group facing inward.
  • the micelle structure is stable, and when heated at a temperature of 120 ° C or higher after drying, the transition to the reverse micelle structure begins, and the reverse micelle structure becomes stable at temperatures exceeding 135 ° C. Decrease In the pressure atmosphere, the transition to the reverse mic
  • the anode catalyst layer containing a perfluoro-based conductive binder having a reverse micelle structure is produced, for example, by the method described below. First, a perfluorinated conductive binder solution, water, and an organic solvent such as methoxypropanol are added to the anode catalyst, and these are mixed to prepare a paste. The obtained paste is applied to a porous carbon paper as an anode gas diffusion layer, dried, and subjected to heat treatment to form an anode catalyst layer in the anode gas diffusion layer.
  • the concentration of the perfluoro-based conductive binder solution is preferably 10 wt% or more and 70 wt% or less, more preferably 30 wt% or more and 50 wt% or less. This is for the reason explained below. Concentration less than 10% by weight of the binder solution or exceeds 7 0 weight 0/0, coatability difficulties instrument paste control paste viscosity may be lowered.
  • the compounding amount of the anode catalyst and the perfluoro-based conductive binder solution is such that the content of the anode catalyst in the anode catalyst layer is 5 wt% or more and 50 wt% or less, more preferably 10 wt% or more, It is desirable to set the content so that it is 30% by weight or less and the content of the perfluoro conductive binder is 1% by weight or more and 20% by weight or less, more preferably 5% by weight or more and 15% by weight or less. This is due to the reason explained below. If the anode catalyst content is high or the binder content is low, the bond strength between the anode catalyst layer and the proton conductive membrane may be lowered. Further, when the anode catalyst content is low or the binder content is high, the reaction resistance in the internal reforming reaction of methanol may be increased.
  • the anode catalyst layer containing the perfluoro conductive binder having a micelle structure is obtained. can get.
  • the anode catalyst layer is transformed into a reverse micelle structure by subjecting the anode catalyst layer to a heat treatment at a temperature exceeding 135 ° C and not exceeding 240 ° C, more preferably not less than 180 ° C and not more than 200 ° C.
  • a heat treatment at a temperature exceeding 135 ° C and not exceeding 240 ° C, more preferably not less than 180 ° C and not more than 200 ° C.
  • a perfluoro conductive binder having a reverse micelle structure has low solubility in methanol. For this reason, when the anode catalyst layer has a weight loss of 10% or less when immersed in a 100 wt% methanol solution maintained at 25 ° C. for 24 hours, the anode catalyst layer has a perfluoro-type conductivity having a reverse micelle structure. It is possible to confirm that a binder is contained.
  • the conductive support of the anode catalyst layer is made of a granular carbon material, a fiber-like carbon material, or a composite material of a carbon material and a fiber-like carbon material as disclosed in JP-A-2005-310714. It is desirable to use it. As a result, the weight loss of the anode catalyst layer when immersed in methanol under the above conditions can be increased moderately within a range of 10% or less, so that the chemical stability to methanol fuel is ensured while ensuring proton conductivity. You can improve.
  • the fibrous carbon material of the composite material described in JP-A-2005-310714 include carbon nanofibers having a herringbone or platelet structure.
  • examples of the carbon material include carbon black particles.
  • the force sword catalyst layer contains a force sword catalyst and a proton conductive binder.
  • Examples of the force sword catalyst include a platinum group element simple metal (Pt, Ru, Rh, Ir, Os, Pd, etc.), an alloy containing the platinum group element, and the like. Although it is desirable to use platinum as a force sword catalyst, it is not limited to this. Further, a supported catalyst using a conductive support such as a carbon material may be used, or an unsupported catalyst may be used.
  • Examples of the proton conductive binder include a perfluoro conductive binder (for example, a fluorinated resin having a sulfonic acid group such as a perfluorosulfonic acid polymer), and a hydrate group having a sulfonic acid group. Forces including carbon-based resin, inorganic substances such as tungstic acid and phosphotungstic acid are not limited to these. Above all, full The electro conductive binder is preferred.
  • the perfluorinated conductive binder may have a micelle structure or a reverse micelle structure.
  • a force sword catalyst layer containing a perfluorinated conductive binder having a reverse micelle structure can improve chemical stability.
  • the association structure of the perfluorinated conductive binder in the force sword catalyst layer is such that the weight reduction of the force sword catalyst layer when immersed in a 100 wt% methanol solution maintained at 25 ° C for 24 hours is 10% or less. It can be confirmed that some have a reverse micelle structure and those whose weight loss exceeds 10% have a micelle structure.
  • the force sword catalyst layer is produced, for example, by the method described below.
  • a perfluorinated conductive binder solution, water, and an organic solvent such as methoxypropanol are added to the force sword catalyst, and these are mixed to prepare a paste.
  • the obtained paste is applied to a porous carbon paper as a force sword gas diffusion layer and dried to form a force sword catalyst layer in the force sword gas diffusion layer.
  • the concentration of the perfluoro conductive binder solution be 10 wt% or more and 70 wt% or less. This is due to the reason explained below. If the concentration of the Norder solution is less than 10% by weight or more than 70% by weight, it is difficult to control the paste viscosity and the coatability of the paste may decrease.
  • the compounding amount of the force sword catalyst and the perfluoro-based conductive binder solution is such that the content of the force sword catalyst in the force sword catalyst layer is 5 wt% or more, 50 wt% or less, more preferably 10 wt% or more. 30% by weight or less, and the content of the perfluoro conductive binder is preferably 1% by weight or more and 20% by weight or less, more preferably 5% by weight or more and 15% by weight or less. This is due to the reason explained below. If the content of the cathode catalyst is high or the content of the binder is low, the bond strength between the force sword catalyst layer and the proton conductive membrane may be lowered. In addition, when the content of the force sword catalyst is low or the content of the binder is high, the reaction resistance of the power generation reaction is high. There is a possibility.
  • a reverse micelle structure By applying heat treatment to the force sword catalyst layer in a normal pressure atmosphere over 135 ° C and 240 ° C or less, more preferably 180 ° C or more and 200 ° C or less, a reverse micelle structure is obtained.
  • a force sword catalyst layer containing a perfluorinated conductive binder having a reverse micelle structure can be obtained.
  • the transition to the reverse micelle structure is more likely to occur at a high temperature.
  • the binder is thermally decomposed when the heat treatment temperature is high, so the heat treatment temperature is preferably within the above range. ,.
  • the conductive support of the force sword catalyst layer it is desirable to use a granular carbon material, a fiber-like carbon material, or a composite material similar to that described for the anode catalyst layer.
  • a granular carbon material, a fiber-like carbon material, or a composite material similar to that described for the anode catalyst layer As a result, the structural stability of the force sword catalyst layer is increased, so that the weight loss when the force sword electrode after the heat treatment is immersed in methanol under the above-described conditions can be reduced, and the chemical stability of the force sword electrode can be reduced. Can be improved.
  • the present invention is suitable for a fuel cell including a fuel containing methanol.
  • the vaporized component may be supplied to the anode catalyst layer, or may be supplied to the anode catalyst layer in a liquid state.
  • Examples of the fuel containing methanol include an aqueous methanol solution and pure methanol.
  • the concentration of the aqueous methanol solution should be higher than 50 mol%.
  • the purity of pure methanol is desirably 95% by weight or more and 100% by weight or less.
  • FIG. 1 is a schematic sectional view showing a direct methanol fuel cell according to an embodiment of the present invention.
  • a membrane electrode assembly (MEA) 1 is composed of a force sword electrode composed of a force sword catalyst layer 2 and a force sword gas diffusion layer 4, and an anode catalyst layer 3 and an anode gas diffusion layer 5. And a proton conductive electrolyte membrane 6 disposed between the force sword catalyst layer 2 and the anode catalyst layer 3.
  • Proton conductive materials constituting the proton conductive electrolyte membrane 6 include, for example, a fluorine-based resin having a sulfonic acid group (for example, perfluorosulfonic acid polymer) and a hydrate having a sulfonic acid group.
  • the force sword catalyst layer 2 is laminated on the force sword gas diffusion layer 4, and the anode catalyst layer 3 is laminated on the anode gas diffusion layer 5.
  • the force sword gas diffusion layer 4 plays a role of uniformly supplying the oxidizing agent to the force sword catalyst layer 2, but also serves as a current collector for the force sword catalyst layer 2.
  • the anode gas diffusion layer 5 serves to uniformly supply fuel to the anode catalyst layer 3 and also serves as a current collector for the anode catalyst layer 3.
  • the force sword conductive layer 7a and the anode conductive layer 7b are in contact with the force sword gas diffusion layer 4 and the anode gas diffusion layer 5, respectively.
  • porous layers for example, meshes
  • the rectangular frame-shaped force sword seal material 8a is located between the force sword conductive layer 7a and the proton conductive electrolyte membrane 6 and surrounds the force sword catalyst layer 2 and the force sword gas diffusion layer 4. Yes.
  • the rectangular frame-shaped anode sealing material 8b is located between the anode conductive layer 7b and the proton conductive electrolyte membrane 6, and surrounds the anode catalyst layer 3 and the anode gas diffusion layer 5.
  • the force sword seal material 8a and the anode seal material 8b are O-rings for preventing fuel leakage and oxidant leakage from the membrane electrode assembly 1.
  • a liquid fuel tank 9 is disposed below the membrane electrode assembly 1.
  • liquid methanol or aqueous methanol solution is accommodated.
  • the fuel vaporization layer 10 only the vaporized component of the liquid fuel is allowed to permeate through the opening end of the liquid fuel tank 9 and the liquid fuel cannot permeate.
  • the gas-liquid separation membrane 10 covers the opening of the liquid fuel tank 9.
  • the vaporized component of the liquid fuel means a liquid measurable liquid fuel.
  • methanol when methanol is used, it means vaporized methanol, and when a methanol aqueous solution is used as the liquid fuel, it means a mixed gas consisting of a vaporized component of methanol and a vaporized component of water.
  • a frame 11 made of resin is laminated between the gas-liquid separation membrane 10 and the anode conductive layer 7b.
  • the space surrounded by the frame 11 functions as a vaporized fuel storage chamber 12 (so-called vapor reservoir) that temporarily stores the vaporized fuel that has diffused through the gas-liquid separation membrane 10. Due to the effect of suppressing the amount of permeated methanol in the vaporized fuel storage chamber 12 and the gas-liquid separation membrane 10, it is possible to prevent a large amount of vaporized fuel from being supplied to the anode catalyst layer 3 at a time, thereby preventing the occurrence of methanol crossover. It is possible to suppress.
  • the frame 11 is a rectangular frame, and is formed of a thermoplastic polyester resin such as PET.
  • a moisturizing plate 13 is laminated on the force sword conductive layer 7 a laminated on the upper part of the membrane electrode assembly 1.
  • a surface layer 15 in which a plurality of air inlets 14 for taking in air as an oxidant is formed is laminated on a moisture retaining plate 13. Since the surface layer 15 also plays a role of pressurizing the stack including the membrane electrode assembly 1 to enhance its adhesion, it is made of a metal such as SUS304, for example.
  • the moisturizing plate 13 serves to suppress the transpiration of water generated in the force sword catalyst layer 2 and uniformly introduces an oxidant into the force sword gas diffusion layer 4 to uniformly distribute the oxidant to the force sword catalyst layer 2. It also serves as an auxiliary diffusion layer that promotes diffusion.
  • the liquid fuel for example, aqueous methanol solution
  • the liquid fuel tank 9 is vaporized, and the vaporized methanol and water diffuse through the gas-liquid separation membrane 10, Once stored in the vaporized fuel storage chamber 12, the force gradually diffuses through the anode gas diffusion layer 5 and is supplied to the anode catalyst layer 3 to cause an internal reforming reaction of methanol shown in the following reaction formula (1).
  • the water generated in the force sword catalyst layer 2 by the reaction of the above-described equation (2) diffuses in the force sword gas diffusion layer 4 to reach the moisture retention plate 13, and the moisture retention plate 13 Transpiration is inhibited, and the amount of water stored in the power sword catalyst layer 2 is increased. Therefore, it is possible to create a state in which the water retention amount of the force sword catalyst layer 2 is larger than the moisture retention amount of the anode catalyst layer 3 as the power generation reaction proceeds. As a result, the reaction of water generated in the cathode catalyst layer 2 through the proton conductive electrolyte membrane 6 and moving to the anode catalyst layer 3 is promoted by the osmotic pressure phenomenon, so that the water supply rate to the anode catalyst layer is increased.
  • the anode catalyst layer 3 contains the above-described perfluoro conductive binder having a reverse micelle structure
  • a methanol aqueous solution having a concentration exceeding 50 mol% or pure methanol is used as a liquid fuel.
  • a paste was prepared by dispersing the catalyst-supporting carbon black. The obtained paste was applied to porous carbon paper as a force sword gas diffusion layer to form a force sword catalyst layer, and a force sword electrode having a thickness of 400 m was obtained.
  • a force sword electrode having a force sword catalyst layer laminated on a force sword gas diffusion layer was immersed in a 100 wt% methanol solution maintained at 25 ° C for 24 hours, and the weight reduction rate of the force sword catalyst layer was measured. As a result, it was 40%, and it was confirmed that perfluorocarbonsulfonic acid had a micelle structure.
  • a perfluorocarbon sulfonic acid membrane (a nafion membrane, having a thickness of 60 ⁇ m and a water content of 10 to 20% by weight as a proton conductive electrolyte membrane).
  • MEA membrane electrode assemblies
  • the frame 11 is made of PET and has a thickness of 25 ⁇ m.
  • a silicone rubber sheet having a thickness of 200 ⁇ m was prepared as a gas-liquid separation membrane.
  • the power sword electrode was heat-treated in a 180 ° C N atmosphere for 30 minutes. Then this Caso
  • the electrode electrode was immersed in a 100% by weight methanol solution maintained at 25 ° C for 24 hours, and the weight reduction rate of the force sword catalyst layer was measured to be 6%. Perfluorocarbon sulfonic acid was reversed. It was confirmed that it had a micelle structure.
  • An internal vaporization type direct methanol fuel cell having the structure shown in FIG. 1 was assembled in the same manner as described in Example 1 except that this force sword electrode was used.
  • An internal vaporization type direct methanol fuel cell having the structure shown in FIG. 1 was assembled in the same manner as described in Example 1 except that the anode electrode was not heated.
  • the anode electrode was immersed in a 100 wt% methanol solution maintained at 25 ° C. for 24 hours, and the weight reduction rate of the anode catalyst layer was measured to be 70%.
  • Perfluorocarbon sulfonic acid has a micellar structure. It was confirmed that the [0067]
  • power was generated at a constant load at room temperature, the time-dependent change in the battery output at that time was measured, and the results are shown in FIG.
  • the horizontal axis in Fig. 2 is the elapsed time
  • the vertical axis is the output (Power).
  • the maximum output (initial output) of the comparative example is represented as 100. Elapsed time is displayed in relative time.
  • the fuel cells of Examples 1 and 2 having an anode catalyst layer containing a perfluoro-based conductive binder having a reverse micelle structure are both the anode catalyst layer and the cathode catalyst layer.
  • the output decrease width was reduced.
  • Example 1 in which the anode of the anode catalyst layer has a reverse micelle structure and the binder force of the force sword catalyst layer S micelle structure, the binder of both the anode catalyst layer and the force sword catalyst layer is reverse micelle.
  • the maximum output (initial output) could be improved compared to the structure of Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

 カソード触媒層(2)と、疎水(親油)基を外に親水基を内に向けて形成される会合体構造を有するパーフルオロ系導電性バインダーを含むアノード触媒層(3)と、前記カソード触媒層(2)と前記アノード触媒層(3)の間に配置されるプロトン伝導性膜(6)とを具備する燃料電池。

Description

明 細 書
燃料電池
技術分野
[0001] 本発明は、液体燃料か、液体燃料を気化させた気化燃料をアノード触媒層に供給 する燃料電池に関するものである。
背景技術
[0002] 近年、パーソナルコンピュータ、携帯電話等の各種電子機器は、半導体技術の発 達と共に小型化されている。燃料電池をこれらの小型機器用の電源に用いることが 試みられている。燃料電池は、燃料と酸化剤を供給するだけで発電することができ、 燃料のみを交換すれば連続して発電できるという利点を有しているため、小型化が 出来れば携帯電子機器の作動に極めて有利なシステムといえる。特に、直接メタノー ル型燃料電池(DMFC ; direct methanol fiiel cell)は、エネルギー密度の高いメタノ ールを燃料に用い、メタノール力 電極触媒上で直接電流を取り出せるため、改質 器も不要なことから小型化が可能であり、燃料の取り扱いも水素ガス燃料に比べて容 易なことから小型機器用電源として有望である。
[0003] DMFCの燃料の供給方法としては、液体燃料を気化して力 ブロア等で燃料電池 内に送り込む気体供給型 DMFCと、液体燃料をそのままポンプ等で燃料電池内に 送り込む液体供給型 DMFC、更に、特許公報第 3413111号に示すような内部気化 型 DMFC等が知られて ヽる。特許公報第 3413111号に示す内部気化型 DMFCは 、液体燃料を保持する燃料浸透層と、燃料浸透層中に保持された液体燃料のうち気 化成分を拡散させるための燃料気化層とを備えるもので、気化した液体燃料が燃料 気化層から燃料極に供給される。
[0004] し力しながら、 DMFCでは、アノード触媒層に含まれるパーフルォロ系導電性バイ ンダ一がメタノール燃料によって膨潤し、構造変化を引き起こすため、水素ガス燃料 を使用する燃料電池と比較して著しく耐久性に問題がある。
発明の開示
[0005] 本発明は、アノード触媒層に含まれるパーフルォロ系導電性バインダーの化学安 定性を向上させることにより耐久性が向上された燃料電池を提供することである。
[0006] 本発明に係る態様によれば、
力ソード触媒層と、
疎水 (親油)基を外に親水基を内に向けて形成される会合体構造を有するパーフル ォロ系導電性バインダーを含むアノード触媒層と、
前記力ソード触媒層と前記アノード触媒層の間に配置されるプロトン伝導性膜と を具備する燃料電池が提供される。
図面の簡単な説明
[0007] [図 1]図 1は、本発明の一実施形態に係る直接メタノール型燃料電池を示す模式的 な断面図である。
[図 2]図 2は、実施例 1〜2及び比較例の直接メタノール型燃料電池についての出力 の経時変化を示す特性図である。
発明を実施するための最良の形態
[0008] 上述した課題を解決するために本発明者らが鋭意研究を重ねた結果、パーフルォ 口系導電性バインダーのメタノール燃料に対する化学安定性力 このバインダーの会 合体構造と関係していることを究明し、疎水 (親油)基を外に親水基を内に向けて形 成される会合体構造 (以下、逆ミセル構造と称す)を有するパーフルォロ系導電性バ インダ一によると、メタノール燃料に対する化学安定性が向上され、燃料のメタノール 濃度が高くてもバインダーの溶出が抑えられるという知見を得た。
[0009] すなわち、逆ミセル構造を有するパーフルォロ系導電性バインダーを含むアノード 触媒層を備えることによって、燃料のメタノール濃度を高くしてもアノード触媒層とプロ トン伝導性膜との密着性を維持することができるため、出力電圧の経時安定性を高く することができ、燃料のメタノール濃度を高くした際にも優れた耐久性を得ることがで きる。
[0010] まず、アノード触媒層につ 、て説明する。
[0011] アノード触媒層に含有される触媒 (以下、アノード触媒と称す)としては、例えば、白 金族元素の単体金属(Pt、 Ru、 Rh、 Ir、 Os、 Pd等)、白金族元素を含有する合金な どを挙げることができる。アノード触媒には、メタノールや一酸化炭素に対する耐性の 強い Pt— Ruを用いることが望ましいが、これに限定されるものでは無い。また、炭素 材料のような導電性担持体を使用する担持触媒を使用しても、あるいは無担持触媒 を使用しても良い。
パーフルォロ系導電性バインダーとしては、例えば、スルホン酸基を有するフッ素 系榭脂(例えば、パーフルォロスルホン酸重合体)などを挙げることができる。パーフ ルォロスルホン酸重合体の一例を下記化 1に示す。
[化 1]
Figure imgf000005_0001
[0013] 但し、ィ匕 1において、 x、 y、 mおよび nは、 x>0、 y>0、 m≥0、 n>0を満たす整数 である。
[0014] 化 1に示す構造式を有する場合、パーフルォロアルキル基 [ (CF CF ) 一(CF C
2 2 2
F) ]が疎水 (親油)基であり、 { (CF ) SO _}が親水基である。
2 n 3
[0015] パーフルォロスルホン酸重合体のようなパーフルォロ系導電性バインダーは、溶液 の状態では、親水基を外に疎水 (親油)基を内に向けて形成される会合体構造 (以 下、ミセル構造と称す)が安定で、乾燥後に 120°C以上の温度で加熱すると逆ミセル 構造への転移が始まり、 135°Cを超える温度で逆ミセル構造が安定となる。なお、減 圧雰囲気であると、より低温で逆ミセル構造への転移を生じさせることが可能である。
[0016] 逆ミセル構造を有するパーフルォロ系導電性バインダーを含むアノード触媒層は、 例えば、以下に説明する方法で作製される。まず、アノード触媒に、パーフルォロ系 導電性バインダー溶液と、水と、メトキシプロパノールのような有機溶媒とを添加し、こ れらを混合することによりペーストを調製する。得られたペーストをアノードガス拡散層 としての多孔質カーボンぺーパに塗布し、乾燥させ、加熱処理を加えることで、ァノ ードガス拡散層にアノード触媒層を形成する。
[0017] パーフルォロ系導電性バインダー溶液の濃度を 10重量%以上、 70重量%以下に ,より好ましくは 30重量%以上, 50重量%以下にすることが望ましい。これは以下に 説明する理由によるものである。バインダー溶液の濃度を 10重量%未満あるいは、 7 0重量0 /0を超えると、ペースト粘度のコントロールが難しぐペーストの塗工性が低下 する恐れがある。
[0018] また、アノード触媒とパーフルォロ系導電性バインダー溶液との配合量は、アノード 触媒層中のアノード触媒の含有量が 5重量%以上、 50重量%以下でより好ましくは 1 0重量%以上、 30重量%以下、かつパーフルォロ系導電性バインダーの含有量が 1 重量%以上、 20重量%以下で,より好ましくは 5重量%以上、 15重量%以下となるよ うに設定することが望ましい。これは以下に説明する理由によるものである。アノード 触媒の含有量が多いか、あるいはバインダーの含有量が少ないと、アノード触媒層と プロトン伝導性膜との結合強度が低下する恐れがある。また、アノード触媒の含有量 が少ないか、あるいはバインダーの含有量が多いと、メタノールの内部改質反応にお ける反応抵抗が高くなる可能性がある。
[0019] パーフルォロ系導電性バインダー溶液の濃度、アノード触媒とパーフルォロ系導電 性バインダーの含有量を上述した範囲に設定することにより、ミセル構造を有するパ 一フルォロ系導電性バインダーを含むアノード触媒層が得られる。
[0020] このアノード触媒層に常圧雰囲気で 135°Cを超え、かつ 240°C以下より好ましくは 1 80°C以上、 200°C以下の加熱処理を施すことによって、逆ミセル構造への転移を生 じさせることができ、逆ミセル構造を有するパーフルォロ系導電性バインダーを含む アノード触媒層を得る。前述したように逆ミセル構造への転移は、高温の方がより生じ やすいものの、加熱処理温度が高くなると、バインダーが熱分解してしまうため、加熱 処理温度は上記範囲内にすることが望ましい。
[0021] 逆ミセル構造を有するパーフルォロ系導電性バインダーは、メタノールへの溶解性 が低い。このため、 25°Cに保持された 100重量%メタノール溶液に 24時間浸漬した 際のアノード触媒層の重量減少が 10%以下であることによって、アノード触媒層に逆 ミセル構造を有するパーフルォロ系導電性バインダーが含有されていることを確認す ることがでさる。
[0022] アノード触媒層の導電性担持体には、粒状の炭素材料、ファイバー状の炭素材料 、あるいは特開 2005-310714号公報に示される様な炭素材料とファイバー状の炭素 材料の複合材料を使用することが望ましい。これにより、上記条件でメタノールに浸 漬した際のアノード触媒層の重量減少を 10%以下の範囲で適度に大きくすることが できるため、プロトン伝導性を確保しつつ、メタノール燃料に対する化学安定性を向 上することができる。特開 2005-310714号公報に記載の複合材料のファイバー状の 炭素材料としては、例えば、ヘリングボーン (Herringbone)またはプレートレット (Platele t)構造を持つカーボンナノファイバーを挙げることができる。一方、炭素材料としては 、例えば、カーボンブラック粒子を挙げることができる。
[0023] 次 、で、力ソード触媒層につ 、て説明する。
[0024] 力ソード触媒層は、力ソード触媒及びプロトン伝導性バインダーを含有するものであ る。
[0025] 力ソード触媒としては、例えば、白金族元素の単体金属(Pt、 Ru、 Rh、 Ir、 Os、 Pd 等)、白金族元素を含有する合金などを挙げることができる。力ソード触媒には、白金 を用いることが望ましいが、これに限定されるものでは無い。また、炭素材料のような 導電性担持体を使用する担持触媒を使用しても、あるいは無担持触媒を使用しても 良い。
[0026] プロトン伝導性バインダーとしては、例えば、パーフルォロ系導電性バインダー(例 えば、パーフルォロスルホン酸重合体のようなスルホン酸基を有するフッ素系榭脂)、 スルホン酸基を有するハイド口カーボン系榭脂、タングステン酸やリンタングステン酸 などの無機物等が挙げられる力 これらに限定される物ではない。中でも、パーフル ォロ系導電性バインダーが好まし 、。
[0027] パーフルォロ系導電性バインダーとしては、ミセル構造を有するものでも、逆ミセル 構造を有するものでも良い。
[0028] ミセル構造を有するものを使用することによって、力ソードのプロトン伝導度を向上 することができるため、長期安定性に加えて最大出力も向上することができる。また、 逆ミセル構造を有するパーフルォロ系導電性バインダーを含む力ソード触媒層は、 化学安定性を向上することができる。
[0029] 力ソード触媒層中のパーフルォロ系導電性バインダーの会合構造は、 25°Cに保持 された 100重量%メタノール溶液に 24時間浸漬した際の力ソード触媒層の重量減少 が 10%以下であるものが逆ミセル構造を有し、重量減少が 10%を超えるものがミセ ル構造を有すると確認することができる。
[0030] 力ソード触媒層は、例えば、以下に説明する方法で作製される。
[0031] 力ソード触媒に、パーフルォロ系導電性バインダー溶液と、水と、メトキシプロパノー ルのような有機溶媒とを添加し、これらを混合することによりペーストを調製する。得ら れたペーストを力ソードガス拡散層としての多孔質カーボンぺーパに塗布し、乾燥さ せ、力ソードガス拡散層に力ソード触媒層を形成する。
[0032] パーフルォロ系導電性バインダー溶液の濃度を 10重量%以上、 70重量%以下に することが望ましい。これは以下に説明する理由によるものである。ノインダー溶液の 濃度を 10重量%未満あるいは 70重量%を超えると、ペースト粘度のコントロールが 難しくペーストの塗工性が低下する恐れがある。
[0033] また、力ソード触媒とパーフルォロ系導電性バインダー溶液との配合量は、力ソード 触媒層中の力ソード触媒の含有量が 5重量%以上、 50重量%以下より好ましくは 10 重量%以上、 30重量%以下で、かつパーフルォロ系導電性バインダーの含有量が 1重量%以上、 20重量%以下で、より好ましくは 5重量%以上、 15重量%以下となる ように設定することが望ましい。これは以下に説明する理由によるものである。カソー ド触媒の含有量が多いか、あるいはバインダーの含有量が少ないと、力ソード触媒層 とプロトン伝導性膜との結合強度が低下する恐れがある。また、力ソード触媒の含有 量が少ないか、あるいはバインダーの含有量が多いと、発電反応の反応抵抗が高く なる可能性がある。
[0034] パーフルォロ系導電性バインダー溶液の濃度、力ソード触媒とパーフルォロ系導電 性バインダーの含有量を上述した範囲に設定することにより、ミセル構造を有するパ 一フルォロ系導電性バインダーを含む力ソード触媒層が得られる。
[0035] この力ソード触媒層を常圧雰囲気で 135°Cを超え、かつ 240°C以下、より好ましくは 180°C以上、 200°C以下の加熱処理を施すことによって、逆ミセル構造への転移を 生じさせることができ、逆ミセル構造を有するパーフルォロ系導電性バインダーを含 む力ソード触媒層が得られる。前述したように逆ミセル構造への転移は、高温の方が より生じやすいものの、加熱処理温度が高くなると、バインダーが熱分解してしまうた め、加熱処理温度は上記範囲内にすることが望ま 、。
[0036] 力ソード触媒層の導電性担持体には、粒状の炭素材料やファイバー状の炭素材料 、あるいは前述のアノード触媒層で説明したのと同様な複合材料を使用することが望 ましい。これにより、力ソード触媒層の構造安定性が高くなるため、上記加熱処理後 の力ソード極を前述した条件でメタノールに浸漬した際の重量減少を小さくすることが でき、力ソード極の化学安定性を向上することができる。
[0037] 本発明によると、メタノール燃料に対する化学的安定性が向上されるため、本発明 は、メタノールを含有する燃料を備えた燃料電池に好適なものである。メタノールを含 有する燃料は、その気化成分がアノード触媒層に供給されても良いし、また、液体の ままアノード触媒層に供給することも可能である。特に、燃料のメタノール濃度が高い 場合の出力の経時安定性を著しく向上することが可能である。
[0038] メタノールを含有する燃料としては、メタノール水溶液、純メタノールなどを挙げるこ とができる。メタノール水溶液の濃度は 50モル%を超える高濃度にすることが望まし い。また、純メタノールの純度は、 95重量%以上 100重量%以下にすることが望まし い。これにより、エネルギー密度が高ぐかつ出力の経時安定性に優れた燃料電池 を実現することができる。
[0039] 以下、本発明に係る燃料電池の一実施形態である直接メタノール型燃料電池を図 面を参照して説明する。
[0040] 図 1は、本発明の一実施形態に係る直接メタノール型燃料電池を示す模式的な断 面図である。
[0041] 図 1に示すように、膜電極接合体 (MEA) 1は、力ソード触媒層 2及び力ソードガス 拡散層 4からなる力ソード極と、アノード触媒層 3及びアノードガス拡散層 5からなるァ ノード極と、力ソード触媒層 2とアノード触媒層 3の間に配置されるプロトン伝導性の電 解質膜 6とを備えるものである。
[0042] プロトン伝導性電解質膜 6を構成するプロトン伝導性材料としては、例えば、スルホ ン酸基を有するフッ素系榭脂(例えば、パーフルォロスルホン酸重合体)、スルホン酸 基を有するハイド口カーボン系榭脂、タングステン酸やリンタングステン酸などの無機 物等が挙げられる力 これらに限定される物ではない。
[0043] 力ソード触媒層 2は力ソードガス拡散層 4上に積層され、かつアノード触媒層 3はァ ノードガス拡散層 5上に積層されている。力ソードガス拡散層 4は力ソード触媒層 2に 酸化剤を均一に供給する役割を担うものであるが、力ソード触媒層 2の集電体も兼ね ている。一方、アノードガス拡散層 5はアノード触媒層 3に燃料を均一に供給する役 割を果たすと同時に、アノード触媒層 3の集電体も兼ねている。力ソード導電層 7a及 びアノード導電層 7bは、それぞれ、力ソードガス拡散層 4及びアノードガス拡散層 5と 接している。力ソード導電層 7a及びアノード導電層 7bには、例えば、金などの金属材 料からなる多孔質層(例えばメッシュ)をそれぞれ使用することが出来る。
[0044] 矩形枠状の力ソードシール材 8aは、力ソード導電層 7aとプロトン伝導性電解質膜 6 との間に位置すると共に、力ソード触媒層 2及び力ソードガス拡散層 4の周囲を囲ん でいる。一方、矩形枠状のアノードシール材 8bは、アノード導電層 7bとプロトン伝導 性電解質膜 6との間に位置すると共に、アノード触媒層 3及びアノードガス拡散層 5の 周囲を囲んでいる。力ソードシール材 8a及びアノードシール材 8bは、膜電極接合体 1からの燃料漏れ及び酸化剤漏れを防止するためのオーリングである。
[0045] 膜電極接合体 1の下方には、液体燃料タンク 9が配置されて ヽる。液体燃料タンク 9 内には、液体のメタノールあるいはメタノール水溶液が収容されている。液体燃料タ ンク 9の開口端には、燃料気化層 10として例えば、液体燃料の気化成分のみを透過 させて、液体燃料は透過できない、気液分離膜 10が液体燃料タンク 9の開口部を覆 うように配置されている。ここで、液体燃料の気化成分とは、液体燃料として液体のメ タノールを使用した場合、気化したメタノールを意味し、液体燃料としてメタノール水 溶液を使用した場合にはメタノールの気化成分と水の気化成分カゝらなる混合ガスを 意味する。
[0046] 気液分離膜 10とアノード導電層 7bの間には、榭脂製のフレーム 11が積層されてい る。フレーム 11で囲まれた空間は、気液分離膜 10を拡散してきた気化燃料を一時的 に収容しておく気化燃料収容室 12 (いわゆる蒸気溜り)として機能する。この気化燃 料収容室 12及び気液分離膜 10の透過メタノール量抑制効果により、一度に多量の 気化燃料がアノード触媒層 3に供給されるのを回避することができ、メタノールクロス オーバーの発生を抑えることが可能である。なお、フレーム 11は、矩形のフレームで 、例えば PETのような熱可塑性ポリエステル榭脂から形成される。
[0047] 一方、膜電極接合体 1の上部に積層された力ソード導電層 7a上には、保湿板 13が 積層されている。酸化剤である空気を取り入れるための空気導入口 14が複数個形成 された表面層 15は、保湿板 13の上に積層されている。表面層 15は、膜電極接合体 1を含むスタックを加圧してその密着性を高める役割も果たしているため、例えば、 S US304のような金属から形成される。保湿板 13は、力ソード触媒層 2において生成 した水の蒸散を抑止する役割をなすと共に、力ソードガス拡散層 4に酸化剤を均一に 導入することにより力ソード触媒層 2への酸化剤の均一拡散を促す補助拡散層として の役割も果たしている。
[0048] 上述したような構成の直接メタノール型燃料電池によれば、液体燃料タンク 9内の 液体燃料 (例えばメタノール水溶液)が気化し、気化したメタノールと水が気液分離膜 10を拡散し、気化燃料収容室 12に一旦収容され、そこ力も徐々にアノードガス拡散 層 5を拡散してアノード触媒層 3に供給され、以下の反応式(1)に示すメタノールの 内部改質反応を生じる。
[0049] CH OH+H O → CO +6H+ + 6e" (1)
3 2 2
また、液体燃料として純メタノールを使用した場合には、燃料気化層からの水の供 給がない。このため、力ソード触媒層 2に混入したメタノールの酸ィ匕反応により生成し た水やプロトン伝導性電解質膜 6中の水分等力 タノールと反応して前述した(1)式 の内部改質反応が生じるか、あるいは前述した(1)式によらな 、水不使用の反応機 構で内部改質反応が生じる。
[0050] これら内部改質反応で生成したプロトン (H+)はプロトン伝導性電解質膜 6を拡散し て力ソード触媒層 3に到達する。一方、表面層 15の空気導入口 14から取り入れられ た空気は、保湿板 13と力ソードガス拡散層 4を拡散して力ソード触媒層 2に供給され る。力ソード触媒層 2では、下記(2)式に示す反応によって水が生成する、つまり発電 反応が生じる。
[0051] (3/2) 0 +6H+ + 6e" → 3H O (2)
2 2
発電反応が進行すると、前述した (2)式の反応などによって力ソード触媒層 2中に 生成した水が、力ソードガス拡散層 4内を拡散して保湿板 13に到達し、保湿板 13に よって蒸散を阻害され、力ソード触媒層 2中の水分貯蔵量が増加する。このため、発 電反応の進行に伴って力ソード触媒層 2の水分保持量がアノード触媒層 3の水分保 持量よりも多い状態を作り出すことができる。その結果、浸透圧現象によって、カソー ド触媒層 2に生成した水がプロトン伝導性電解質膜 6を通過してアノード触媒層 3に 移動する反応が促進されるため、アノード触媒層への水供給速度を燃料気化層のみ に頼っていた場合に比べて向上することができ、前述した(1)式に示すメタノールの 内部改質反応を促すことができる。このため、出力密度を高くすることができると共に 、その高い出力密度を長期間に亘り維持することが可能となる。
[0052] また、液体燃料として濃度が 50モル%を超えるメタノール水溶液カゝ、純メタノールを 使用することによって、内部改質反応に、力ソード触媒層 2からアノード触媒層 3に拡 散してきた水がもっぱら使用されるようになり、アノード触媒層 3への水供給が安定し て行なわれるようになるため、メタノールの内部改質反応の反応抵抗をさらに低くする ことができ、長期出力特性と負荷電流特性をより向上することができる。さらに、液体 燃料タンクの小型化を図ることも可能である。なお、純メタノールの純度は、 95重量 %以上 100重量%以下にすることが望ましい。
[0053] 上記アノード触媒層 3に、前述した逆ミセル構造を有するパーフルォロ系導電性バ インダーを含有させることによって、濃度が 50モル%を超えるメタノール水溶液か、 純メタノールを液体燃料として使用した際にも、メタノール燃料へのノインダ一の溶 出を抑えることができ、アノード触媒層 3とプロトン伝導性膜 6との密着性を長期間に 亘り維持することができる。従って、出力密度が高ぐかつ出力の経時安定性に優れ た直接メタノール型燃料電池を提供することができる。
[0054] また、液体燃料をアノード触媒層に供給する場合、前述した図 1で説明したのと同 様な構成の膜電極接合体 1の力ソードガス拡散層 4に酸化剤流路が形成されたセパ レータを配置し、かつ膜電極接合体 1のアノードガス拡散層 5に液体燃料流路が形 成されたセパレータを配置すると良!、。
[0055] 以下、本発明の実施例を図面を参照して詳細に説明する。
[0056] (実施例 1)
<アノード極の作製 >
アノード用触媒 (Pt :Ru= l : l)担持粒状カーボンブラック 17重量%に、濃度が 20 重量%のパーフルォロカーボンスルホン酸溶液を固形分換算で 8. 5重量%と、水と 、メトキシプロパノールとを添加し、前記触媒担持カーボンブラックを分散させてぺー ストを調製した。得られたペーストをアノードガス拡散層としての多孔質カーボンベー パに塗布することによりアノード触媒層を形成し、厚さが 450 mのアノード極を得た
[0057] アノードガス拡散層にアノード触媒層が積層されたアノード極に 180°Cの N雰囲気
2 中で 30分間加熱処理を施した。次いで、このアノード極を 25°Cに保持された 100重 量%メタノール溶液に 24時間浸漬し、アノード触媒層の重量減少率を測定したところ 、 10%であり、パーフルォロカーボンスルホン酸が逆ミセル構造を有することを確認 することができた。
[0058] <力ソード極の作製 >
力ソード用触媒 (Pt)担持繊維状カーボンブラック 17重量%に、濃度が 20重量%の パーフルォロカーボンスルホン酸溶液を固形分換算で 8. 5重量%と、水と、メトキシ プロパノールとを加え、前記触媒担持カーボンブラックを分散させてペーストを調製し た。得られたペーストを力ソードガス拡散層としての多孔質カーボンぺーパに塗布す ることにより力ソード触媒層を形成し、厚さが 400 mの力ソード極を得た。
[0059] 力ソードガス拡散層に力ソード触媒層が積層された力ソード極を 25°Cに保持された 100重量%メタノール溶液に 24時間浸漬し、力ソード触媒層の重量減少率を測定し たところ、 40%であり、パーフルォロカーボンスルホン酸がミセル構造を有することを 確認することができた。
[0060] アノード触媒層と力ソード触媒層の間に、プロトン伝導性電解質膜として厚さが 60 μ mで、含水率が 10〜20重量%のパーフルォロカーボンスルホン酸膜 (nafion膜、 デュポン社製)を配置し、これらに膜近傍の温度を 115°Cでホットプレスを施すことに より、膜電極接合体 (MEA)を得た。
[0061] 保湿板として厚さが 500 μ mで、透気度が 2秒 Zl00cm3 (jIS P— 8117)で、透 湿度力 S4000gZm224h (jIS L— 1099 A— 1法)のポリエチレン製多孔質フィルム を用意した。
[0062] フレーム 11は、 PET製で、厚さは 25 μ mである。また、気液分離膜として、厚さが 2 00 μ mのシリコーンゴムシートを用意した。
[0063] 得られた膜電極接合体 1、保湿板 13、フレーム 11、気液分離膜 10を用いて前述し た図 1に示す構造を有する内部気化型の直接メタノール型燃料電池を組み立てた。 この際、燃料タンクには、純度が 99. 9重量%の純メタノールを 10mL収容した。
[0064] (実施例 2)
力ソード極に 180°Cの N雰囲気中で 30分間加熱処理を施した。次いで、このカソ
2
ード極を、 25°Cに保持された 100重量%メタノール溶液に 24時間浸漬し、力ソード 触媒層の重量減少率を測定したところ、 6%であり、パーフルォロカーボンスルホン酸 が逆ミセル構造を有することを確認することができた。
[0065] この力ソード極を使用すること以外は、前述した実施例 1で説明したのと同様にして 前述した図 1に示す構造を有する内部気化型の直接メタノール型燃料電池を組み立 てた。
[0066] (比較例)
アノード極に加熱処理を施さないこと以外は、前述した実施例 1で説明したのと同 様にして前述した図 1に示す構造を有する内部気化型の直接メタノール型燃料電池 を組み立てた。なお、アノード極を 25°Cに保持された 100重量%メタノール溶液に 2 4時間浸漬し、アノード触媒層の重量減少率を測定したところ、 70%であり、パーフ ルォロカーボンスルホン酸がミセル構造を有することを確認することができた。 [0067] 得られた実施例 1〜2及び比較例の燃料電池について、室温にて一定負荷で発電 を行い、その際の電池出力の経時変化を測定し、その結果を図 2に示す。図 2の横 軸が経過時間(Elapsed time)で、縦軸が出力(Power)である。出力については、 比較例の最高出力(初期の出力)を 100として表わしている。また、経過時間につい ては、相対時間で表示している。
[0068] 図 2から明らかなように、逆ミセル構造を有するパーフルォロ系導電性バインダーを 含むアノード触媒層を備えた実施例 1〜2の燃料電池は、アノード触媒層及びカソー ド触媒層の双方のバインダーがミセル構造である比較例の燃料電池に比較して出力 低下幅を小さくできた。
[0069] 特に、アノード触媒層のノインダ一が逆ミセル構造で、力ソード触媒層のバインダー 力 Sミセル構造の実施例 1によると、アノード触媒層と力ソード触媒層の双方のバインダ 一が逆ミセル構造である実施例 2に比較して最大出力(初期出力)を向上することが できた。

Claims

請求の範囲
[1] 力ソード触媒層と、
疎水 (親油)基を外に親水基を内に向けて形成される会合体構造を有するパーフル ォロ系導電性バインダーを含むアノード触媒層と、
前記力ソード触媒層と前記アノード触媒層の間に配置されるプロトン伝導性膜と を具備する燃料電池。
[2] 前記力ソード触媒層は、親水基を外に疎水 (親油)基を内に向けて形成される会合 体構造を有するパーフルォロ系導電性バインダーを含む請求項 1記載の燃料電池。
[3] 前記力ソード触媒層は、 25°Cに保持された 100重量%メタノール溶液に 24時間浸 漬した際の重量減少が 10%を超える請求項 2記載の燃料電池。
[4] 前記力ソード触媒層は、疎水 (親油)基を外に親水基を内に向けて形成される会合 体構造を有するパーフルォロ系導電性バインダーを含む請求項 1記載の燃料電池。
[5] 前記力ソード触媒層は、 25°Cに保持された 100重量%メタノール溶液に 24時間浸 漬した際の重量減少が 10%以下である請求項 4記載の燃料電池。
[6] 前記アノード触媒層は、 25°Cに保持された 100重量%メタノール溶液に 24時間浸 漬した際の重量減少が 10%以下である請求項 1記載の燃料電池。
[7] 前記パーフルォロ系導電性バインダーは、スルホン酸基を有するフッ素系榭脂であ る請求項 1, 2または 4 、ずれか 1項記載の燃料電池。
[8] 前記アノード触媒層に供給され、メタノールを含有する燃料をさらに具備する請求 項 1記載の燃料電池。
[9] 前記燃料中のメタノール濃度は、 50mol%より大きぐかつ 100mol%以下である 請求項 8記載の燃料電池。
PCT/JP2006/302376 2005-02-10 2006-02-10 燃料電池 WO2006085619A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002597534A CA2597534A1 (en) 2005-02-10 2006-02-10 Fuel cell
JP2007502661A JPWO2006085619A1 (ja) 2005-02-10 2006-02-10 燃料電池
EP06713519A EP1865568A4 (en) 2005-02-10 2006-02-10 FUEL CELL
US11/836,821 US7638223B2 (en) 2005-02-10 2007-08-10 Fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-034610 2005-02-10
JP2005034610 2005-02-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/836,821 Continuation US7638223B2 (en) 2005-02-10 2007-08-10 Fuel cell

Publications (1)

Publication Number Publication Date
WO2006085619A1 true WO2006085619A1 (ja) 2006-08-17

Family

ID=36793188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302376 WO2006085619A1 (ja) 2005-02-10 2006-02-10 燃料電池

Country Status (7)

Country Link
US (1) US7638223B2 (ja)
EP (1) EP1865568A4 (ja)
JP (1) JPWO2006085619A1 (ja)
KR (1) KR100900130B1 (ja)
CN (1) CN100568593C (ja)
CA (1) CA2597534A1 (ja)
WO (1) WO2006085619A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218098A (ja) * 2007-03-01 2008-09-18 Sharp Corp 燃料電池および電子機器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505235B (zh) * 2016-11-14 2019-04-16 中国科学院上海高等研究院 阳极保湿结构及采用其的被动式直接甲醇燃料电池
FR3078463A1 (fr) 2018-02-26 2019-08-30 Stmicroelectronics (Rousset) Sas Procede et dispositif de realisation d'operations en table de substitution
US11218291B2 (en) 2018-02-26 2022-01-04 Stmicroelectronics (Rousset) Sas Method and circuit for performing a substitution operation
CN111362365B (zh) * 2020-01-17 2021-03-26 华中科技大学 一种无动力脱氮除磷原电池及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652871A (ja) * 1992-06-02 1994-02-25 Hitachi Ltd 固体高分子型燃料電池
JP2002025565A (ja) * 2000-07-06 2002-01-25 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池用電極とその製造法
JP2002063912A (ja) * 2000-08-21 2002-02-28 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池の製造方法
JP2002373677A (ja) * 2001-06-15 2002-12-26 Toshiba Corp 燃料電池
JP2004006335A (ja) * 2003-04-25 2004-01-08 Toshiba Corp 燃料電池用の燃料組成物
JP2004006266A (ja) * 2002-03-26 2004-01-08 Matsushita Electric Ind Co Ltd 燃料電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3413111B2 (ja) 1998-09-30 2003-06-03 株式会社東芝 燃料電池
KR100468102B1 (ko) * 2000-07-03 2005-01-26 마쯔시다덴기산교 가부시키가이샤 고분자 전해질형 연료전지
US7201993B2 (en) 2000-08-04 2007-04-10 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
WO2002015303A1 (fr) * 2000-08-16 2002-02-21 Matsushita Electric Industrial Co., Ltd. Pile a combustible
US20020192537A1 (en) * 2001-06-15 2002-12-19 Xiaoming Ren Metallic layer component for use in a direct oxidation fuel cell
US7638228B2 (en) * 2002-11-27 2009-12-29 Saint Louis University Enzyme immobilization for use in biofuel cells and sensors
JP4031463B2 (ja) 2004-04-26 2008-01-09 株式会社東芝 液体燃料型固体高分子燃料電池用アノード電極、液体燃料型固体高分子燃料電池用膜電極複合体及び液体燃料型固体高分子燃料電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652871A (ja) * 1992-06-02 1994-02-25 Hitachi Ltd 固体高分子型燃料電池
JP2002025565A (ja) * 2000-07-06 2002-01-25 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池用電極とその製造法
JP2002063912A (ja) * 2000-08-21 2002-02-28 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池の製造方法
JP2002373677A (ja) * 2001-06-15 2002-12-26 Toshiba Corp 燃料電池
JP2004006266A (ja) * 2002-03-26 2004-01-08 Matsushita Electric Ind Co Ltd 燃料電池
JP2004006335A (ja) * 2003-04-25 2004-01-08 Toshiba Corp 燃料電池用の燃料組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1865568A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218098A (ja) * 2007-03-01 2008-09-18 Sharp Corp 燃料電池および電子機器

Also Published As

Publication number Publication date
EP1865568A4 (en) 2009-03-04
KR100900130B1 (ko) 2009-06-01
CA2597534A1 (en) 2006-08-17
US20090011321A1 (en) 2009-01-08
CN100568593C (zh) 2009-12-09
JPWO2006085619A1 (ja) 2008-06-26
KR20070094839A (ko) 2007-09-21
CN101116202A (zh) 2008-01-30
EP1865568A1 (en) 2007-12-12
US7638223B2 (en) 2009-12-29

Similar Documents

Publication Publication Date Title
JP4565644B2 (ja) 燃料電池用高分子電解質膜,膜−電極アセンブリー,燃料電池システム及び膜−電極アセンブリーの製造方法
JPWO2005112172A1 (ja) 燃料電池
JPWO2006101132A1 (ja) 燃料電池
PatiL et al. A review on the fuel cells development
JPWO2007086432A1 (ja) 燃料電池
JP4823583B2 (ja) 燃料電池用高分子膜/電極接合体及びこれを含む燃料電池
WO2006085619A1 (ja) 燃料電池
KR100909521B1 (ko) 연료 전지
JP2008210581A (ja) 燃料電池
WO2010084753A1 (ja) 燃料電池
TWI328899B (ja)
JP2009076451A (ja) 燃料電池用電極膜接合体およびそれを用いた燃料電池
JP2010536151A (ja) 直接酸化型燃料電池の炭化水素系膜電極接合体用電極
US20110200914A1 (en) High power direct oxidation fuel cell
TWI326932B (ja)
KR20060096610A (ko) 연료전지용 막/전극 어셈블리, 및 이를 포함하는 연료전지용 스택 및 연료전지 시스템
JP2008186799A (ja) 燃料電池
JP2008276990A (ja) 燃料電池用電極および燃料電池
WO2006104128A1 (ja) 燃料電池
KR100909299B1 (ko) 연료 전지
JP2008210580A (ja) 燃料電池
JP2006313689A (ja) 燃料電池
JP2009032688A (ja) 燃料電池用電極膜接合体およびそれを用いた燃料電池
JP5057995B2 (ja) 燃料電池
JP2010536150A (ja) 直接酸化型燃料電池用表面処理された炭化水素系高分子電解質膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007502661

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006713519

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077018216

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680004420.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2597534

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006713519

Country of ref document: EP