JP2008310995A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2008310995A
JP2008310995A JP2007155611A JP2007155611A JP2008310995A JP 2008310995 A JP2008310995 A JP 2008310995A JP 2007155611 A JP2007155611 A JP 2007155611A JP 2007155611 A JP2007155611 A JP 2007155611A JP 2008310995 A JP2008310995 A JP 2008310995A
Authority
JP
Japan
Prior art keywords
fuel
gas
liquid separation
separation membrane
electromotive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007155611A
Other languages
English (en)
Inventor
Jun Monma
旬 門馬
Nobuyasu Negishi
信保 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007155611A priority Critical patent/JP2008310995A/ja
Publication of JP2008310995A publication Critical patent/JP2008310995A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】温度が上昇した場合であっても発電部分に供給するメタノール量を抑制しながら供給することができ、温度が低下した際には、従来の出力を発現できる小型の燃料電池を提供する。
【解決手段】空気極と燃料極との間に電解質膜を配置した膜電極接合体を備える起電部と、前記起電部の燃料極側に配置された燃料収容室と、前記起電部と前記燃料収容室の間に配置された燃料の気化成分を起電部側に透過させる気液分離膜と、を具備する燃料電池であって、前記起電部と前記気液分離膜との間に、前記気液分離膜と間隙を有した状態で配置された複数の燃料供給口を有する開口部材と、前記気液分離膜に配置され、前記燃料供給口に近接して向き合い、前記気液分離膜が前記液体燃料収容室から圧力を受けて前記起電部側に変位したときに燃料の気化成分が前記燃料供給口を通流するのを妨げる通流抑制部材と、を有する。
【選択図】 図1

Description

本発明は、携帯機器の動作に有効な平面配置の燃料電池に係り、特に小型の内部気化型直接メタノール燃料電池に関する。
近年、電子技術の進歩により、電子機器の小型化、高性能化、ポータブル化が進んでおり、携帯電話、携帯オーディオ、携帯ゲーム機、ノートパソコンなどのコードレス携帯機器においては、使用される電池の高エネルギ密度化の要求が強まっている。このため、軽量で小型でありながら高容量の二次電池が要求されている。
このような二次電池への要求に対して、例えば、リチウムイオン二次電池が開発されてきた。また、携帯電子機器のオペレーション時間は、さらに増加する傾向にあり、リチウムイオン二次電池では、材料の観点からも構造の観点からもエネルギ密度の向上はほぼ限界にきており、更なる要求に対応できなくなりつつある。
このような状況のもと、リチウムイオン二次電池に代わって、小型の燃料電池が注目を集めている。特に、メタノールを燃料として用いた直接メタノール型燃料電池(DMFC)は、水素ガスを使用する燃料電池に比べ、水素ガスの取り扱いの困難さや、有機燃料を改質して水素を作り出す装置等が必要なく、小型化に優れていると考えられる。
DMFCでは、燃料極においてメタノールが酸化分解され、二酸化炭素、プロトンおよび電子が生成される。一方、空気極では、空気から得られる酸素と、電解質膜を経て燃料極から供給されるプロトン、および燃料極から外部回路を通じて供給される電子によって水が生成される。また、この外部回路を通る電子によって、電力が供給されることになる。
DMFCにおいては、このような構成で発電を進めるために、メタノールを供給するポンプや空気を送り込むブロワが補器として備えられ、システムとして複雑な形態をもつDMFCが開発されてきている。そのため、この構造のDMFCでは、小型化を図ることは難しかった。
そこで、メタノールをポンプで供給するのではなく、メタノールタンクと発電素子との間にメタノールの分子を通す膜を設け、メタノールを透過させる代わりに、メタノールタンクを発電素子の近傍まで近づけることで小型化が進められた。また、空気の取り入れについては、ブロワを用いず、発電素子に直接取り付けた吸気口を設置することで、小型DMFCが構築された。
しかし、このように小型のDMFCでは、機構が簡略化された代わりに、温度などの外部環境要因の影響を受けたときに、発電素子に一定量のメタノールを送ることが難しくなっている。このため、出力を安定して高く発現することが困難となっていた。
このようなメタノールの供給量を制御するために、例えば特許文献1に記載された燃料では、燃料タンク部分と負極との間に多孔体を挿入して、多孔体による流動抵抗によりメタノール供給量を絞るようにしている。
特開2004−171844号公報
しかしながら、上記特許文献1の燃料電池の構成では、機構が簡略化された代わりに温度などの状態量を制御することが難しくなってきている。例えば特許文献1の燃料電池では、メタノール供給量を絞る技術は示されているが、このような構造では環境温度の上昇や燃料電池自身の駆動による温度上昇が生じると、燃料であるメタノールの蒸発量が増加し、結果としてメタノール供給量が増加してしまう。そうなるとクロスオーバー現象も増加し、ますます過大な発熱を生じ、結果として出力低下を招いてしまう欠点を有していた。さらに、温度上昇した場合に合わせてメタノール供給量を絞ってしまうと、今度は常温での運転時にメタノールの供給量が不足し、DMFCとしての出力が低く抑えられてしまう。
本発明は上記課題を解決するためになされたものであり、温度が上昇した場合であっても発電部分に供給するメタノール量を抑制しながら供給することができ、温度が低下した際には、従来の出力を発現できる小型の燃料電池を提供することを目的とする。
本発明に係る燃料電池は、空気極と燃料極との間に電解質膜を配置した膜電極接合体を備える起電部と、前記起電部の燃料極側に配置された燃料収容室と、前記起電部と前記燃料収容室の間に配置された燃料の気化成分を透過させる気液分離膜と、を具備する燃料電池であって、
前記起電部と前記気液分離膜との間に、前記気液分離膜と間隙を有した状態で配置された複数の燃料供給口を有する開口部材と、
前記気液分離膜に取り付けられ、前記燃料供給口に近接して向き合い、前記気液分離膜が前記液体燃料収容室から圧力を受けて前記起電部側に変位したときに燃料の気化成分が前記燃料供給口を通流するのを妨げる通流抑制部材と、を有することを特徴とする。
本発明の燃料電池によれば、環境温度あるいは自己発熱による温度上昇が生じた際に、気液分離膜が燃料の蒸発圧力を主要因として開口部材に押し付けられる。例えば、燃料として用いられるメタノールの蒸気圧は、図7に示すように温度が上昇するに従って指数級数的に増加する。ちなみにメタノールの沸点(約62℃)における蒸気圧は約0.1MPaであり、80℃あたりの温度では約0.2MPaである。このようにメタノール蒸気圧の上昇により気液分離膜が開口部材に押し付けられた際に、開口部材の燃料供給口に対応する形状の通流抑制部材が気液分離膜の表面において開口部材の燃料供給口に相当する位置に配置されているので、これによりメタノール気化成分の通流が妨げられ、燃料極への燃料供給量が抑制される。
なお、通流抑制部材は、水道のパッキンや蛸の吸盤のような形状とすることが望ましいが、その他に種々の形状とすることができる。また、通流抑制部材を、気液分離膜の表面ではなく開口部材の開口部のほうに配置するようにしてもよい、また、通流抑制部材を、気液分離膜の表面および開口部材の開口部の両方に配置するようにしてもよい。
気液分離膜が開口部材の燃料供給口に密着した際に、気化した燃料の通流を妨げる通流抑制部材によって、発電部の温度が上がり、メタノール蒸気圧が上昇した場合には発電部へのメタノール供給量が抑制される。一方、発電部の温度が下がれば、メタノール蒸気圧が下がるので、通流抑制部材が燃料供給口から離れ、メタノール供給量が元の状態に復帰する。
本発明によれば、周囲温度あるいはDMFC温度が上昇し、メタノールの蒸気圧が増加したとしても、発電部分に供給するメタノール量を抑制することができ、メタノールのクロスオーバー現象を抑制して、出力が低下しにくい小型の燃料電池が提供される。このような本発明の燃料電池は、携帯電話、携帯オーディオ、携帯ゲーム機、ノートパソコンなどのコードレス携帯機器用として好適な電源となる。
以下、添付の図面を参照して本発明を実施するための種々の形態を説明する。
図1、図5および図6は、気液分離膜25および開口部材23の燃料供給口27のそれぞれに通流抑制部材31,32を配置した燃料電池1Aを示し、図2、図3および図4は気液分離膜25に通流抑制部材31を配置した他の実施形態の燃料電池1Bを示す。両実施形態において同様の作用を示す場合には併せて説明する。
図1に示すように、燃料電池1Aは、アノード触媒層3とアノードガス拡散層5からなる燃料極と、カソード触媒層2とカソードガス拡散層4からなる空気極と、アノード触媒層3とカソード触媒層2との間に挟持されたプロトン(水素イオン)伝導性の電解質膜6とを有する膜電極接合体(MEA:Membrane Electrode Assembly )10を備えている。このMEA10に集電体となるアノード導電層7bおよびカソード導電層7aを貼り合わせると、起電部20を得ることができる。
アノード触媒層3およびカソード触媒層2に含有される触媒としては、例えば、白金族元素である、Pt、Ru、Rh、Ir、Os、Pd等の単体金属、白金族元素を含有する合金などを挙げることができる。具体的には、アノード触媒層3として、メタノールや一酸化炭素に対して強い耐性を有するPt−RuやPt−Moなど、カソード触媒層2として、白金やPt−Niなどを用いることが好ましいが、これらに限られるわけではない。また、炭素材料のような導電性担持体を使用する担持触媒、あるいは無担持触媒を使用してもよい。
電解質膜6を構成するプロトン伝導性材料としては、例えば、スルホン酸基を有する、例えば、パーフルオロスルホン酸重合体等のフッ素系樹脂(ナフィオン(商品名、デュポン社製)、フレミオン(商品名、旭硝子社製)等)、スルホン酸基を有する炭化水素系樹脂、タングステン酸やリンタングステン酸などの無機物等が挙げられるが、これらに限定されるものではない。
アノード触媒層3に積層されるアノードガス拡散層5は、アノード触媒層3に燃料を均一に供給する役割を果たすと同時に、アノード触媒層3の集電体の機能も兼ね備えている。一方、カソード触媒層2に積層されるカソードガス拡散層4は、カソード触媒層2に酸化剤を均一に供給する役割を果たすと同時に、カソード触媒層2の集電体の機能も兼ね備えている。さらに、アノードガス拡散層5には、アノード導電層7bが積層され、カソードガス拡散層4にはカソード導電層7aが積層されている。アノード導電層7bおよびカソード導電層7aは、例えば、金(Au)などの導電金属材料からなるメッシュなどの多孔質層で構成される。
電解質膜6とアノード導電層7bとの間、および電解質膜6とカソード導電層7aとの間には、シール部材としてゴム製のOリング8a,8bがそれぞれ設けられ、MEA10からの燃料の漏れ出しや酸化剤の漏れ出しを防止している。なお、アノード導電層7bには、疎水性の多孔膜26が積層されていてもよい。
燃料電池1Aの外縁形に対応した形状を有する1対のフレーム23,24によって、カソード導電層7bを含むその間の積層体が挟持されている。一方のフレーム23が開口部材を兼ねており、これが気液分離膜25に近接配置され、複数の燃料供給口27を有している。開口部材23と気液分離膜25との間には流量制御スペース36が形成されている。この流量制御スペース36は例えば幅が約1〜3mmの狭い間隙である。
開口部材23は、メタノールが通過する複数の燃料供給口27を有し、この燃料供給口27からMEA10にメタノールの気化成分を供給するとともに、MEA10自体を支える構造となっている。一方、フレーム24は、空気を取り込むための複数の開口24aを有するとともに、MEA10に所定の押圧力を印加するようになっている。これらのフレーム23,24は、例えば、ポリエーテルエーテルケトン(PEEK:ヴィクトレックス社商標)あるいはポリエチレンテレフタレート(PET)のような樹脂で形成される。
また、起電部20の下部には、気液分離膜25を介して燃料供給手段として機能する燃料収容室39が配置されている。燃料収容室39から、気液分離膜25直下まで液体燃料を移送するために、毛細管現象を利用しても構わない。具体的には図示していないが、メタノール吸収性の良い不織布や繊維を固めた材料、紙系材料などが使用できる。また、このような毛細管現象による液体燃料移送材料を用いた場合に、燃料収容室39に蓋を被せ、この液体燃料移送材料のみが燃料収容室39の蓋から出る形で、液体燃料を気液分離膜25の直下まで運ぶという形態を取るようにしても良い。なお、燃料収容室39には、外部より燃料を導入するための燃料導入口12が設けられている。
気液分離膜25は、液体燃料収容室39内の燃料の気化成分を導出するために設けられた開口を塞ぐように配設されている。気液分離膜25は、燃料の気化成分と液体成分とを分離し、さらに液体燃料を気化させるもので、具体的には、例えば、シリコーンゴムなどの材料で構成することができる。
通流抑制部材31は、図2および図3に示すように、開口部材23に形成された複数の燃料供給口27にそれぞれ対応する位置に、すなわち燃料供給口27と1対1に向き合うところに位置するように気液分離膜25の表面に接着されていてもよい。なお、通流抑制部材31は、開口部材23の燃料供給口27に対応するすべての部分に対して必ずしも設置する必要はない。通流抑制部材31は、燃料供給口27を部分的に塞ぐものであってもよく、また複数の燃料供給口27のうちの一部を塞ぐものであってよい。
通流抑制部材31は、例えば図4に示すように燃料供給口27に対応した形状を有し、メタノール液と接触しても膨潤しにくい耐メタノール性の高いゴム系の樹脂からなり、バルブ機能を有するパッキングとして燃料供給口27を塞ぐように開口部材23密着するものである。起電部20の温度が上昇せず液体燃料収容室39の温度が上昇せず液体燃料収容室39内のメタノール蒸気圧が増加していない場合には、図2の(a)および図3の(a)に示すように燃料供給口27と気液分離膜25(さらには通流抑制部材31)は離間している。そして、起電部20の温度が上昇して液体燃料収容室39内のメタノール蒸気圧が増加すると、図2の(b)および図3の(b)に示すように、気液分離膜25が蒸気圧で押されて開口部材23に当接し、通流抑制部材31が燃料供給口27を塞ぐ。この場合に、通流抑制部材31は、全ての燃料供給口27を完全に塞ぐのではなく、開口面積比率で燃料供給口27の50〜90%を塞ぐようにすることが望ましい。燃料供給口27を100%塞いでしまうと、発電部20への燃料の供給がなくなり、反応が突然停止して出力がゼロになるシャットダウン現象を生じるおそれがあるため、面積比率で90%を上限として通流抑制部材31により燃料供給口27を塞ぐ。このように発電部20ではある程度の反応を続けながら、通流抑制部材31により発電部20への燃料の供給を適正量に絞って抑制する必要がある。一方、通流抑制部材31で塞がれる燃料供給口27が面積比率で50%を下回ると、発電部20の温度を迅速に下げる効果が低下する。
通流抑制部材31に用いる耐メタノール性の高いゴム系樹脂として、エチレンプロピレン系ゴム(EPM、EPDM)、ビニルメチルシリコーンゴム(VMQ、FVMQ)、フッ素ゴム(FKM、FEPM、FFKM)などを挙げることができるが、このうち特にエチレンプロピレン系ゴムであるEPDMを用いることが好ましい。但し、他の耐メタノール性の高いゴム材料を用いても、本発明の主旨を損ねるものではない。この耐メタノール性の高いゴムを用いて、例えば弁構造を作製し、開口部材23の燃料供給口27に設置することで、気液分離膜25が開口部材23に密着したときに弁が押され、メタノール燃料の透過を制限することができる。
また、図1、図5、図6に示すように、開口部材23の燃料供給口27を囲うように耐メタノール性の高いゴムを用いてパッキン受け32の構造を形成する一方で、気液分離膜25の表面に、同様の耐メタノール性の高いゴムを用いて、開口部材23の燃料供給口27に形成されたパッキン受け32に嵌合するパッキン31を設けることができる。パッキン31とパッキン受け32とは狭い流量制御スペース36内で向き合っている。このようにパッキングのような嵌め込み構造31,32とすることにより、気液分離膜25が開口部材23に密着したときに、メタノール気化成分の通流をさらに適正に制限することができる。
ここで、液体燃料収容室39に貯留される液体燃料49は、濃度が50モル%を超えるメタノール水溶液、または純メタノールが好ましい。また、純メタノールの純度は、95質量%以上100質量%以下にすることが好ましい。また、液体燃料の気化成分とは、液体燃料として液体のメタノールを使用した場合には、気化したメタノールを意味し、液体燃料としてメタノール水溶液を使用した場合には、メタノールの気化成分と水の気化成分からなる混合気体を意味する。
アノードガス拡散層5は多孔質の板状カーボンからなるが、気化したメタノールがこのガス拡散層5を透過してアノード触媒層3に至る。アノード触媒層3ではカソード側から電解質膜6を透過してきた水とメタノールとが反応する。その際、一部のメタノールは電解質膜6を透過してカソード側へ移動する。
一方、カソードガス拡散層4は、酸化物質である酸素を空気中から多く取り込む必要がある。カソード触媒層2内でも酸素を反応に使用するために、気孔率を高く保つ必要がある。
カソード側のフレーム24の上には保湿板28が積層され、保湿板28のさらに上にはカバープレート21が設けられている。カバープレート21は、酸化剤である空気を取り入れるための多数の通気孔22が開口する表面層である。カバープレート21は、MEA10を含む積層体を加圧して、その密着性を高める役割も果たしているため、例えばステンレス鋼(SUS304)のような金属材料でつくられている。保湿板28は、カソード触媒層2において生成した水の一部を含浸して、水の蒸散を抑制する役割をなすとともに、カソードガス拡散層4に酸化剤(空気)を均一に導入することにより、カソード触媒層2への酸化剤の均一拡散を促す補助拡散層としての機能も有している。
保湿板28は、例えば、ポリエチレン多孔質膜などの材料で構成され、その最大の孔径が20〜50μm程度の膜が使用される。最大の孔径をこの範囲とするのは、孔径が20μmより小さい場合には空気透過量が低下するためであり、50μmより大きい場合には水分蒸発が過多となるからである。なお、保湿板28は、任意の構成部材であり、保湿板28を用いることなく燃料電池1Aを作製することもできる。その場合は、カソード側のフレーム24上にカバープレート21を設けて、カソード触媒層2の水分貯蔵量や水の蒸散量を調整することが好ましい。
液体燃料収容室構造体39およびカバープレート21に用いる樹脂材料として、例えばポリエーテルエーテルケトン(PEEK:ヴィクトレックス社の商標)、ポリフェニレンサルファイド(PPS)、ポリテトラフルオロエチレン(PTFE)などの液体燃料で膨潤等を生じにくい硬質の樹脂を用いることが望ましい。また、加熱溶着される樹脂材料として、例えばポリエチレンテレフタレート(PET)、ポリエーテルナフタレート(PEN)、ポリエーテルエーテルケトン(PEEK)を用いることが望ましい。
なお、図2においては、開口部材とMEA20との間にはフレーム29により気化室37を設けており、気液分離膜25を透過した気化燃料のMEAへの濃度分布を均一にしている。
また、図2において、42は気化室27に残留した二酸化炭素などを排出するためのガス抜き孔、44は、燃料収容室39へ燃料を導入するための燃料導入口12に設けられたカプラーである。
次に、上記燃料電池1Aの作用について説明する。
液体燃料収容室39内の液体燃料(例えば、メタノール水溶液)が気化し気液分離膜25を透過し、流量制御スペース36(および図2の構成においては気化室37も)に一旦収容され、濃度分布が均一にされる。流量制御スペース36(および気化室37)に一旦収容された燃料は、多孔膜26、アノード導電層7bを通過し、さらにアノードガス拡散層5で拡散され、アノード触媒層3に供給される。アノード触媒層3に供給された燃料は、次の式(1)に示すメタノールの内部改質反応を生じる。
CHOH+HO → CO+6H+6e …式(1)
なお、液体燃料として、純メタノールを使用した場合には、燃料収容部39からの水蒸気の供給がないため、カソード触媒層2で生成した水や電解質膜6中の水等がメタノールと上記した式(1)の内部改質反応を生じるか、または上記した式(1)の内部改質反応によらず、水を必要としない他の反応機構により内部改質反応を生じる。
内部改質反応で生成されたプロトン(H)は、電解質膜6を伝導し、カソード触媒層2に到達する。カバープレート21の通気孔22から取り入れられた空気は、保湿板28、カソード導電層7a、カソードガス拡散層4を拡散して、カソード触媒層2に供給される。カソード触媒層2に供給された空気は、次の式(2)に示す反応を生じる。この反応によって、水が生成され、発電反応が生じる。
(3/2)O+6H+6e → 3HO …式(2)
この反応によってカソード触媒層2中に生成した水は、カソードガス拡散層4を拡散して保湿板28に到達し、一部の水は、保湿板28上に設けられたカバープレート21の通気孔22から蒸散されるが、残りの水はカバープレート21によって蒸散が阻害される。特に、式(2)の反応が進行すると、カバープレート21によって蒸散が阻害される水量が増し、カソード触媒層2中の水分貯蔵量が増加する。この場合には、式(2)の反応の進行に伴って、カソード触媒層2の水分貯蔵量が、アノード触媒層3の水分貯蔵量よりも多い状態となる。その結果、浸透圧現象によって、カソード触媒層2に生成した水が、電解質膜6を通過してアノード触媒層3に移動する反応が促進される。そのため、前述した式(1)におけるメタノールの内部改質反応を促進させることができる。これによって、出力密度を高くすることができるとともに、その高い出力密度を長期間に亘り維持することが可能となる。
また、液体燃料として、メタノールの濃度が50モル%を超えるメタノール水溶液、または純メタノールを使用する場合でも、カソード触媒層2からアノード触媒層3に移動してきた水を内部改質反応に使用することができるので、アノード触媒層3への水の供給を安定して行うことが可能となる。これによって、メタノールの内部改質反応の反応抵抗をさらに低下することができ、長期出力特性と負荷電流特性をより向上させることができる。さらに、燃料収容室39の小型化を図ることも可能である。
上記したように、本実施形態の直接メタノール型の燃料電池1A,1Bによれば、気孔率の低いアノードガス拡散層5を用いて起電部20を構成することで、カソードで生成された水をアノードに留めおき、燃料収容室39に至ることを抑制することが可能となる。その結果、燃料であるメタノールの濃度低下を防止し、メタノール供給不足になることを回避することで、連続運転しても燃料電池の出力低下を抑えることができる。またアノードガス拡散層5のかわりに、アノード触媒層3の気孔率を低減させても同様の効果を得ることができる。さらに、アノードガス拡散層5とアノード触媒層3との両方について気孔率を低減しても、効果を得ることができる。
なお、上記した各実施の形態では、液体燃料に、メタノール水溶液、または純メタノールを使用した直接メタノール型の燃料電池について説明したが、液体燃料は、これらに限られるものではない。例えば、例えばエタノール水溶液や純エタノール等のエタノール燃料、プロパノール水溶液や純プロパノール等のプロパノール燃料、グリコール水溶液や純グリコール等のグリコール燃料、ジメチルエーテル、ギ酸、もしくはその他の液体燃料であってもよい。いずれにしても、燃料電池に応じた液体燃料を用いた液体燃料直接供給型の燃料電池にも応用することができる。
次に、温度上昇等によって燃料の蒸気圧が上昇することにより、気液分離膜25が開口部材23に密着した際に、気化した燃料の通流を妨げる構造部材を気液分離膜の表面、あるいは開口部材の開口部(燃料供給口)、あるいはその両方に配置することで、メタノール燃料の過度な供給を妨げ、優れた特性が得られることを以下の実施例で説明する。
(実施例1)
実施例1として図1に示す(但し、通流抑制部材32を配置せず)燃料電池を次のように作製した。
まず、白金担持グラファイト粒子とDE2020(デュポン社製)とをホモジナイザで混合してスラリを作製し、これをカソードガス拡散層4である圧縮加工されたカーボンペーパー(東レ(株)製TGP−H−90)の一方の面に塗布した。そして、これを常温で乾燥してカソード触媒層2を形成し、空気極(カソード)を作製した。次に、白金ルテニウム合金微粒子を担持したカーボン粒子とDE2020(デュポン社製)とをホモジナイザで混合してスラリを作製し、これをアノードガス拡散層5であるカーボンペーパー(東レ(株)製TGP−H−120)の一方の面に塗布した。そして、これを常温乾燥してアノード触媒層3を形成し、燃料極(アノード)を作製した。
電解質膜6として、固定電解質膜ナフィオン112(デュポン社製)を用い、この電解質膜6を、空気極および燃料極で挟持し、温度が120℃、圧力が30kgf/cmの条件でプレスし、膜電極接合体(MEA)10を作製した。なお、電極面積は、空気極、燃料極ともに12cmとした。
次いで、この膜電極接合体10の空気極側および燃料極側に、空気および気化したメタノールを取り入れるための複数の開孔を有するアノード導電層7bおよびカソード導電層7aを配置した。
上記した膜電極接合体(MEA)10、アノード導電層7b、カソード導電層7aが積層された積層体を樹脂製の2つのフレーム23,24で挟み込んだ。なお、MEA10の空気極側と一方のフレーム24との間、MEAの燃料極側と他方のフレーム23との間には、それぞれゴム製のOリング8a、8bを挟持してシールを施した。空気極側、燃料極側のフレームともに、口径4mm、口数64個の孔が形成されたポリエーテルエーテルケトンからなる樹脂板を用いた。
燃料極側のフレームは開口部材23であり、気液分離膜25を介して、燃料収容室39にネジ止めまたはカシメによって固定した。気液分離膜25には、厚さ0.2mmのシリコーンシートを使用し、その燃料極側の開口部材23に接する表面に、直径4.2mmのエチレンプロピレンゴム(EPDM)からなる図4に示す円盤状の厚さ0.2mmの通流抑制部材(蓋材)31を、燃料極側フレーム(開口部材)23の燃料供給口27の半分に一致するよう、一つおきになる配列に接着した。これらの通流抑制部材31によって、気液分離膜25が燃料極側フレーム(開口部材)23に密着した際に、燃料極側フレーム(開口部材)23の燃料供給口27の半分を塞いでメタノール気化成分の通流を抑制することを確認した。
一方、空気極側のフレーム24の上には、気孔率が28%の多孔質の板を配置し、保湿板28とした。この保湿板28上には、空気取り入れのための空気導入口(通気孔)22(口径4mm、口数64個)が形成された厚さが2mmのステンレス板(SUS304)を配置して表面カバー層となるカバープレート21を形成し、ネジ止めによって固定した。
上記のように形成された燃料電池を、温度25℃、35℃、40℃、45℃の各温度の恒温槽にそれぞれ1時間入れ、その後、燃料電池の液体燃料収容室に、純メタノール液を5ml注入した。そのまま恒温槽内で発電を行い、電流値と電圧値を測定して、それらの値から最大出力値を算出した。
測定結果から得られた燃料電池のピーク出力(最大出力;mW/cm2)を、恒温槽の温度に対しプロットした結果を図8に示す。図中にて特性線Aが本実施例1の燃料電池の出力特性の結果を示す。実施例1では、温度上昇とともに最大出力値も上昇し、45℃の条件でも18.2mW/cm2の出力を発現することができた。
(実施例2)
実施例2として図1に示す(但し、通流抑制部材31を配置せず)の燃料電池を次のように作製した。
燃料極側のフレーム(開口部材)23の気液分離膜25側の面に対し、開口部材23に開けた孔の半数32個に対して、中央孔32aと凹所32bと有する直径4.5mmで全体の厚さが0.5mmのドーナツ状のエチレンプロピレンゴム(EPDM)からなる通流抑制部材(受蓋)32を設置した。この通流抑制部材(受蓋)32の一部に円盤状のエチレンプロピレンゴムからなる厚さ0.1mmのシート32cが固定され開閉可能な構造となっている。そして、このシート32cの突起(図示せず)が通流抑制部材(受蓋)32の凹所32bに嵌合され、密閉される構成となっている。なお、シート32cを通流抑制部材(受蓋)32に押し付けないと、シート32cの突起が通流抑制部材(受蓋)の凹所32bに嵌まり込まず、密閉が不十分となる構造になっている。一方で、気液分離膜25の表面には何も設置せず、ただのシリコーンシートとした。それ以外は実施例1と同様にして、実施例2の燃料電池を作製した。
上記したように形成された燃料電池を、温度25℃、35℃、40℃、45℃の各温度の恒温槽にそれぞれ1時間入れ、その後、燃料電池の液体燃料タンクに、純メタノールを5ml注入した。そのまま恒温槽内で発電を行い、電流値と電圧値を測定して、それらの値から最大出力値を算出した。
測定結果から得られた最大出力を、恒温槽の温度に対しプロットした結果を図8に示す。図中にて特性線Cが本実施例2の燃料電池の出力特性の結果を示す。実施例2では、温度上昇とともに最大出力値も上昇し、45℃の条件でも17.7mW/cm2の出力を発現することができた。
(実施例3)
実施例3として図1に示す燃料電池を次のように作製した。
燃料極側のフレーム(開口部材)23の気液分離25側の面に対し、開口部材23に開けた孔の半数32個に対して、エチレンプロピレンゴム(EPDM)からなる通流抑制部材(受蓋)32を設置した。一方、気液分離膜25であるシリコーンシートに、前記通流抑制部材(受蓋)32に対応する箇所にエチレンプロピレンゴム(EPDM)から成る通流抑制部材(蓋材)31をそれぞれ設置した。エチレンプロピレンゴムからなる通流抑制部材(受蓋)32は、図6に示すように直径4.5mmで全体の厚さが0.2mm、中央孔32aを有するドーナツ形状の部材である。一方、気液分離膜25であるシリコーンシートの表面に、通流抑制部材(受蓋)32に相対するように設置された通流抑制部材(蓋材)31は、図4に示すものと同様の円盤シートであり、直径4.5mm厚さ0.2mmのエチレンプロピレンゴムからなる。燃料極側のフレーム(開口部材)23の気液分離膜側の面の燃料供給口27に設置したドーナツ状の通流抑制部材(受蓋)32と、気液分離膜であるシリコーンシート上に設置した通流抑制部材(蓋材)31は、密着すると燃料供給口27を塞ぐことが可能な構造となっている。それ以外は実施例1と同様にして、実施例3の燃料電池を作製した。
上記したように形成された燃料電池を、温度25℃、35℃、40℃、45℃の各温度の恒温槽にそれぞれ1時間入れ、その後、燃料電池の液体燃料タンクに、純メタノールを5ml注入した。そのまま恒温槽内で発電を行い、電流値と電圧値を測定して、それらの値から最大出力値を算出した。
測定結果から得られた最大出力を、恒温槽の温度に対しプロットした結果を図8に示す。図中にて特性線Bが本実施例3の燃料電池の出力特性の結果を示す。実施例3では、温度上昇とともに最大出力値も上昇し、45℃の条件でも18.0mW/cm2の出力を発現することができた。
(比較例1)
比較例1の燃料電池を次のように作製した。
通流抑制部材を何も設置せず、そのまま組み込んだ以外は、実施例1と同様にして、比較例1の燃料電池を作製した。このようにして形成された燃料電池を、温度25℃、35℃、40℃、45℃の各温度の恒温槽にそれぞれ1時間入れ、その後、燃料電池の液体燃料収容室に、純メタノールを5ml注入した。そのまま恒温槽内で発電を行い、電流値と電圧値を測定して、それらの値から最大出力値を算出した。
測定結果から得られた最大出力を、恒温槽の温度に対しプロットした結果を図8に示した。図中にて特性線Dが比較例の燃料電池の出力特性の結果を示す。図から明らかなように、比較例では、25℃、35℃では最大出力値も16mW/cm2前後の値が観測されたが、40℃にしても出力が上昇せず、逆にメタノール蒸気が絞られることなくMEAに送られるためクロスオーバー反応によって燃料電池自体が発熱してしまい、出力が出なくなる状態を示した。さらに45℃の条件では、クロスオーバーによる発熱反応が支配的となり、出力が急激に低下した。
以上、種々の実施の形態を挙げて説明したが、本発明は上記各実施の形態のみに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
本発明の実施形態の燃料電池を模式的に示す内部透視断面図。 (a)は液体燃料収容室と気化室との間に圧力差が無いときの燃料電池の内部構造を示す断面模式図、(b)は液体燃料収容室と気化室との間に圧力差が有るときの燃料電池の内部構造を示す断面模式図。 (a)は液体燃料収容室と気化室との間に圧力差が無いときの気化膜および流路板を示す拡大断面図、(b)は液体燃料収容室と気化室との間に圧力差が有るときの気化膜および流路板を示す拡大断面図。 実施例1の通流抑制部材を示す斜視図。 実施例2の通流抑制部材を示す斜視図。 実施例3の通流抑制部材を示す斜視図。 メタノール蒸気圧と温度との関係を示す特性線図。 燃料電池の出力と温度との関係を示す特性線図。
符号の説明
1A,1B…燃料電池、2…カソード触媒層、3…アノード触媒層、
4…カソードガス拡散層、5…アノードガス拡散層、
6…電解質膜(プロトン伝導膜)、
7a…カソード導電層(正極集電体)、7b…アノード導電層(負極集電体)、
8a,8b…Oリング、10…膜電極接合体(MEA)、
12…燃料導入口、20…起電部、
21…カバープレート、22…通気孔(空気導入口)、
23…開口部材(フレーム)、24…フレーム、
25…気液分離膜、26…多孔膜、
27,27a…燃料供給口(開口部)、
28…保湿板、
31…通流抑制部材(蓋材、パッキン)、32…通流抑制部材(受蓋、パッキン受け)、
36…流量制御スペース、37…気化室、
39…燃料収容室、
42…ガス抜き穴、44…カプラー。

Claims (6)

  1. 空気極と燃料極との間に電解質膜を配置した膜電極接合体を備える起電部と、前記起電部の燃料極側に配置された燃料収容室と、前記起電部と前記燃料収容室の間に配置された燃料の気化成分を前記起電部側に透過させる気液分離膜と、を具備する燃料電池であって、
    前記起電部と前記気液分離膜との間に、前記気液分離膜と間隙を有した状態で配置された複数の燃料供給口を有する開口部材と、
    前記気液分離膜に配置され、前記燃料供給口に近接して向き合い、前記気液分離膜が前記液体燃料収容室から圧力を受けて前記起電部側に変位したときに燃料の気化成分が前記燃料供給口を通流するのを妨げる通流抑制部材と、
    を有することを特徴とする燃料電池。
  2. 空気極と燃料極との間に電解質膜を配置した膜電極接合体を備える起電部と、前記起電部の燃料極側に配置された燃料収容室と、前記起電部と前記燃料収容室の間に配置された燃料の気化成分を前記起電部側に透過させる気液分離膜と、を具備する燃料電池であって、
    前記起電部と前記気液分離膜との間に、前記気液分離膜と間隙を有した状態で配置された複数の燃料供給口を有する開口部材と、
    前記開口部材に配置され、前記燃料供給口を取り囲み、前記気液分離膜が前記液体燃料収容室から圧力を受けて前記起電部側に変位したときに燃料の気化成分が前記燃料供給口を通流するのを妨げる通流抑制部材と、
    を有することを特徴とする燃料電池。
  3. 空気極と燃料極との間に電解質膜を配置した膜電極接合体を備える起電部と、前記起電部の燃料極側に配置された燃料収容室と、前記起電部と前記燃料収容室の間に配置された燃料の気化成分を前記起電部側に透過させる気液分離膜と、を具備する燃料電池であって、
    前記起電部と前記気液分離膜との間に、前記気液分離膜と間隙を有した状態で配置された複数の燃料供給口を有する開口部材と、
    前記気液分離膜に配置され、前記燃料供給口に近接して向き合い、前記気液分離膜が前記液体燃料収容室から圧力を受けて前記起電部側に変位したときに燃料の気化成分が前記燃料供給口を通流するのを妨げる第1の通流抑制部材と、
    前記開口部材に配置され、前記燃料供給口を取り囲み、前記気液分離膜が前記液体燃料収容室から圧力を受けて起電部側に変位したときに燃料の気化成分が前記燃料供給口を通流するのを妨げる第2の通流抑制部材と、
    を有することを特徴とする燃料電池。
  4. 前記燃料は、濃度が50モル%を超える高濃度メタノール水溶液であるか、または純メタノール液であることを特徴とする請求項1乃至3のいずれか1項記載の燃料電池。
  5. 前記発電部の空気極側に、前記空気極で生成された水を含浸する保湿板を有することを特徴とする請求項1乃至4のいずれか1項記載の燃料電池。
  6. 前記保湿板を間に挟んで前記起電部の空気極側と向き合い、前記発電部の空気極に空気を供給するための複数の通気孔を有するカバープレートを有することを特徴とする請求項1乃至5のいずれか1項記載の燃料電池。
JP2007155611A 2007-06-12 2007-06-12 燃料電池 Pending JP2008310995A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007155611A JP2008310995A (ja) 2007-06-12 2007-06-12 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007155611A JP2008310995A (ja) 2007-06-12 2007-06-12 燃料電池

Publications (1)

Publication Number Publication Date
JP2008310995A true JP2008310995A (ja) 2008-12-25

Family

ID=40238442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007155611A Pending JP2008310995A (ja) 2007-06-12 2007-06-12 燃料電池

Country Status (1)

Country Link
JP (1) JP2008310995A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024224A1 (ja) * 2009-08-27 2011-03-03 株式会社 東芝 燃料電池
JP2013519509A (ja) * 2010-02-13 2013-05-30 マクアリスター テクノロジーズ エルエルシー 水素ベースの燃料および構造要素を生成する透過面を有する反応容器、ならびに関連するシステムおよび方法
US9103548B2 (en) 2010-02-13 2015-08-11 Mcalister Technologies, Llc Reactors for conducting thermochemical processes with solar heat input, and associated systems and methods
US9302681B2 (en) 2011-08-12 2016-04-05 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials, and associated systems and methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024224A1 (ja) * 2009-08-27 2011-03-03 株式会社 東芝 燃料電池
JP2013519509A (ja) * 2010-02-13 2013-05-30 マクアリスター テクノロジーズ エルエルシー 水素ベースの燃料および構造要素を生成する透過面を有する反応容器、ならびに関連するシステムおよび方法
US9103548B2 (en) 2010-02-13 2015-08-11 Mcalister Technologies, Llc Reactors for conducting thermochemical processes with solar heat input, and associated systems and methods
US9206045B2 (en) 2010-02-13 2015-12-08 Mcalister Technologies, Llc Reactor vessels with transmissive surfaces for producing hydrogen-based fuels and structural elements, and associated systems and methods
US9541284B2 (en) 2010-02-13 2017-01-10 Mcalister Technologies, Llc Chemical reactors with annularly positioned delivery and removal devices, and associated systems and methods
US9302681B2 (en) 2011-08-12 2016-04-05 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials, and associated systems and methods

Similar Documents

Publication Publication Date Title
JP2006318712A (ja) 燃料電池
WO2006040961A1 (ja) 燃料電池
JP5579311B2 (ja) 燃料電池
TWI332726B (ja)
JP2008243800A (ja) 燃料電池
US20110275003A1 (en) Fuel cell
JP2008310995A (ja) 燃料電池
JP2008293856A (ja) 燃料電池
JP2008091291A (ja) パッシブ型燃料電池
JP5127267B2 (ja) 燃料電池および燃料電池システム
JP2008293705A (ja) 膜電極接合体および燃料電池
WO2007139059A1 (ja) 燃料電池
JPWO2008068887A1 (ja) 燃料電池
JPWO2008068886A1 (ja) 燃料電池
JP2009181861A (ja) 燃料電池
WO2007049518A1 (ja) 燃料電池
JP2009146864A (ja) 燃料電池
WO2011052650A1 (ja) 燃料電池
JP2011096468A (ja) 燃料電池
JP2007080628A (ja) 燃料電池の収容構造
JPWO2007116692A1 (ja) 燃料電池収納容器、燃料電池搭載電子機器収納容器及び容器付燃料電池
JP2007157593A (ja) 燃料電池
JP2006313689A (ja) 燃料電池
JP2008218030A (ja) 燃料電池
JP2009158421A (ja) 燃料電池