WO2007083403A1 - 四重極型質量分析装置 - Google Patents

四重極型質量分析装置 Download PDF

Info

Publication number
WO2007083403A1
WO2007083403A1 PCT/JP2006/312024 JP2006312024W WO2007083403A1 WO 2007083403 A1 WO2007083403 A1 WO 2007083403A1 JP 2006312024 W JP2006312024 W JP 2006312024W WO 2007083403 A1 WO2007083403 A1 WO 2007083403A1
Authority
WO
WIPO (PCT)
Prior art keywords
bias voltage
quadrupole mass
mass
voltage
ions
Prior art date
Application number
PCT/JP2006/312024
Other languages
English (en)
French (fr)
Inventor
Kazuo Mukaibatake
Shiro Mizutani
Shuichi Kawana
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to JP2007554804A priority Critical patent/JP4665970B2/ja
Priority to US12/160,963 priority patent/US8445844B2/en
Publication of WO2007083403A1 publication Critical patent/WO2007083403A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/421Mass filters, i.e. deviating unwanted ions without trapping
    • H01J49/4215Quadrupole mass filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/022Circuit arrangements, e.g. for generating deviation currents or voltages ; Components associated with high voltage supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/426Methods for controlling ions
    • H01J49/427Ejection and selection methods
    • H01J49/429Scanning an electric parameter, e.g. voltage amplitude or frequency

Definitions

  • the present invention relates to a quadrupole mass spectrometer using a quadrupole mass filter as a mass analyzer that separates ions according to a mass-to-charge ratio m / z.
  • FIG. 11 (a) is a schematic configuration diagram of a general quadrupole mass spectrometer.
  • an ion source 1 such as an electron impact ionization ion source
  • the generated ions are converged by an ion optical system 2 such as an ion lens (in some cases). It is introduced into the space in the long axis direction of the quadrupole mass filter 3 consisting of four rod electrode forces.
  • the four rod electrodes of the quadrupole mass filter 3 are each applied with a voltage in which a DC voltage and a high-frequency voltage are superimposed for ion selection, and only ions having a specific mass-to-charge ratio according to the voltage are applied. Through the space in the long axis direction selectively, other ions diverge on the way. Then, ions that have passed through the quadrupole mass filter 3 are introduced into the detector 4 and an electric signal corresponding to the amount of ions is taken out.
  • the mass-to-charge ratio of ions passing through the quadrupole mass filter 3 basically changes in accordance with the amplitude component of the high-frequency voltage applied to the filter 3 and the DC voltage. By striving so as to increase or decrease, the mass-to-charge ratio of ions reaching the detector 4 can be scanned over a predetermined mass range. This is the scan measurement in a quadrupole mass spectrometer. Further, each rod electrode of the quadrupole mass filter 3 is formed so that an appropriate DC electric field is formed in a space between the ion optical system 2 and the preceding ion optical system 2 so as to draw ions into the quadrupole mass filter 3. Is further superimposed on a common bias voltage (DC voltage) force for ion attraction.
  • DC voltage common bias voltage
  • the scanning speed of the mass-to-charge ratio in the scan measurement is based on the mass resolution in the mass spectrum and the mask mouth matogram or total ion chromatogram created by GC / MS or LC / MS. It affects the time resolution when creating. Therefore, in general, the scanning speed is one of the analysis condition parameters, and the operator can set it appropriately according to the purpose of analysis and the type of sample.
  • the bias voltage for ion attraction applied to each rod electrode of the quadrupole mass filter 3 is constant even when the scanning speed is changed. Therefore, there were the following problems. That is, as shown in Fig.
  • time t if the time force ⁇ required to pass through the space in the long axis direction (space length L) of the quadrupole mass filter 3 is the time t, at this time t It depends on the kinetic energy of each ion when it reaches the entrance of the pole mass filter 3.
  • the voltage for ion selection to the quadrupole mass filter 3 is scanned so as to change continuously, so that the applied voltage changes while the ions pass through the space in the long axis direction.
  • the voltage change amount AV within the time period t increases as the running speed increases.
  • an automatic adjustment (auto tuning) function is provided to find the optimum value of the voltage applied to each part such as the ion source 1 and the ion optical system 2 (see, for example, Patent Document 2).
  • a standard sample for mass calibration is used, and by performing mass analysis of the component in the standard sample, the mass-to-charge ratio corresponding to the component is determined at a predetermined position on the mass spectrum. Adjustment is performed so that the detection signal for the component becomes maximum, or the applied voltage of each part is adjusted so that the detection signal for the component becomes maximum, and the information at that time is stored in the storage device.
  • the automatic adjustment as described above is executed prior to the analysis of the unknown sample to be analyzed.
  • analysis condition parameters such as a mass range and a scanning speed
  • information stored in the storage device is stored. Based on this, an appropriate voltage application pattern and applied voltage to each part are set, and the analysis is performed under those conditions.
  • E is the bias voltage for ion attraction
  • m is the mass of the ion
  • e is the elementary charge (1.602 XI 0 49 ). Therefore,
  • the relationship between the scanning speed and the time required to measure one mass unit is as shown in FIG.
  • the measurement time per mass unit is 66.67 [ ⁇ sec], which means that the ions pass through the quadrupole mass filter 3 66. If a time longer than 67 [ ⁇ sec] is required, it means that the arrival of ions at the detector 4 is not in time for the data measurement period, causing a decrease in sensitivity.
  • the ion velocity V decreases as the mass m increases, so even if detection sensitivity is obtained for ions with a relatively small mass-to-charge ratio, the mass-to-charge ratio is relatively low. If the ions are large, the detection sensitivity is likely to decrease. If the ion transit time is shortened by increasing the ion pull-in bias voltage, the decrease in detection sensitivity as described above can be avoided, but the number of oscillations of ions in the quadrupole electric field by the rod electrode can be reduced. There is a risk that the mass resolution of the mass spectrum may deteriorate due to variations in kinetic energy.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-25498
  • Patent Document 2 Japanese Patent No. 3478169 (paragraph [0018])
  • the present invention has been made to solve the above-mentioned problems.
  • the first object of the present invention is to reliably achieve high detection sensitivity even when the scanning speed of the mass-to-charge ratio is increased. It is an object of the present invention to provide a quadrupole mass spectrometer that can be used.
  • the second object of the present invention is that, even when the scanning speed is increased, the ion detection sensitivity can be improved particularly in a region having a large mass-to-charge ratio, and high in a region having a small mass-to-charge ratio. It is an object of the present invention to provide a quadrupole mass spectrometer capable of ensuring mass resolution.
  • a first invention made to achieve the first object described above selects an ion source that ionizes sample molecules and an ion having a specific mass-to-charge ratio among ions generated from the ion source.
  • a quadrupole mass filter that selectively passes through, an ion optical system provided between the two to transport ions generated in the ion source to the quadrupole mass filter, and the quadrupole mass filter.
  • a quadrupole mass spectrometer having a detector for detecting generated ions
  • a DC bias voltage is applied to the quadrupole mass filter to form a DC electric field for drawing ions into the quadrupole mass filter between the quadrupole mass filter and the ion optical system.
  • the second invention made to achieve the second object is to selectively select an ion source that ionizes sample molecules and ions having a specific mass-to-charge ratio among ions generated from the ion source.
  • a quadrupole mass spectrometer equipped with a detector for detection
  • a DC buffer is applied to the quadrupole mass filter.
  • Voltage applying means for applying a bias voltage
  • Bias voltage information indicating the relationship between the mass-to-charge ratio scanning speed of the quadrupole mass filter, the mass-to-charge ratio of ions to be analyzed, and the appropriate DC bias voltage corresponding to them is stored in advance.
  • the bias voltage indicating the relationship between the scanning speed of the mass-to-charge ratio in the quadrupole mass filter and the appropriate DC bias voltage according to the stroking speed.
  • the information is stored in advance in the storage means in the form of a table, for example.
  • This bias voltage information may be set in advance by the manufacturer before the device is shipped from the manufacturer.
  • the DC bias that maximizes the signal intensity is obtained by monitoring the detection signal by the detector while changing the DC bias voltage applied to the quadrupole mass filter at each of the selectable scanning speeds.
  • a bias voltage information acquisition unit that obtains bias voltage information and stores it in the storage unit by repeating the operation of finding the voltage value may be provided.
  • the adjustment execution means uses the bias voltage information to perform the running speed to be executed. Find the corresponding DC bias voltage. Then, under the condition that the DC bias voltage is applied to the quadrupole mass filter by the voltage application means, a voltage condition is found that maximizes the signal strength of the detection signal obtained by the detector, and this is used as the automatic adjustment result. Record. At this time, preferably, an appropriate DC bias voltage is obtained corresponding to a plurality of selectable scanning speeds, and automatic adjustment is performed for each scanning speed while changing the DC bias voltage applied to the quadrupole mass filter. Well then, The operator sets the scanning speed as one of the analysis conditions when analyzing the target sample. Then, the analysis execution means obtains an appropriate DC bias voltage based on the bias voltage information stored in the storage means, sets the voltage condition found by the adjustment execution means, and executes the analysis on the target sample. To do.
  • the voltage conditions and the like of each part are automatically adjusted under the condition that the DC bias voltage that is optimal or close to the speed of the ion selection voltage is set. Automatic adjustment is performed to set the optimum or near condition. Also, when analyzing the target sample, an appropriate DC bias voltage corresponding to the speed set by the operator is automatically set. Therefore, the operator can perform analysis of the sample under an appropriate DC bias voltage without paying particular attention to the DC bias voltage setting during automatic adjustment. This makes it possible to maintain good detection sensitivity even when the running speed is increased.
  • the bias voltage information stored in the storage means is an appropriate DC bias voltage according to the scanning speed of the mass to charge ratio in the quadrupole mass filter.
  • the information can be used to set a DC bias voltage that varies (may be the same) depending on the mass-to-charge ratio even at the same scanning speed.
  • the format of the information can be, for example, a table format as in the first invention, and may be set in advance by the manufacturer at the adjustment stage before the device is shipped from the manufacturer. Or you may make it produce by the preliminary experiment (or automatic adjustment operation
  • the analysis execution means executes mass scanning over a predetermined mass range at the set scanning speed, but at that time, the memory is stored.
  • the DC bias voltage Based on the bias voltage information stored in the device, the DC bias voltage sequentially corresponds to the set speed and the mass-to-charge ratio changes (increases or decreases) due to the speed.
  • the voltage application means is controlled so as to change.
  • the detection sensitivity decreases as the scanning speed increases. However, in the region where the scanning speed is relatively high, the detection sensitivity decreases remarkably when the mass-to-charge ratio of the ions to be analyzed increases.
  • bias voltage information that corrects the decrease in detection sensitivity due to the magnitude of the speed and the mass-to-charge ratio is stored in the storage means, and the analysis execution means performs quadruple based on the bias voltage information. Adjust the DC bias voltage applied to the pole mass filter.
  • the storage means includes first bias voltage information for setting a DC bias voltage for correcting a decrease in detection sensitivity when the scanning speed is relatively high, and correction for reducing the detection sensitivity. It is desirable to have a configuration that also includes second bias voltage information for setting a DC bias voltage that suppresses the degree of correction or does not perform correction.
  • a mass spectrum with high detection sensitivity can be obtained by using the first bias voltage information, Use of the second bias voltage information to obtain a high mass resolution and mass spectrum when analysis is performed on components with relatively high concentrations, or when analysis with a particularly high mass resolution is required. Can do.
  • the analysis execution means is held in the storage means.
  • the mass analysis can be performed while switching the DC bias voltage set based on the first and second bias voltage information.
  • the DC bias voltage setting may be alternately switched between the one based on the first bias voltage information and the one based on the second bias voltage information every one or more mass strikes. it can. This makes it possible to acquire a mass spectrum with a high mass resolution, a high detection sensitivity, and a mass spectrum in parallel by performing one mass analysis. Less usage is required.
  • FIG. 1 is a configuration diagram of a main part of a quadrupole mass spectrometer according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing stored contents of a DC bias voltage table in the quadrupole mass spectrometer of the first embodiment.
  • FIG. 3 is a configuration diagram of a main part of a quadrupole mass spectrometer according to a second embodiment of the present invention.
  • FIG. 4 is a diagram showing stored contents of a DC bias voltage table in the quadrupole mass spectrometer of the second embodiment.
  • FIG. 5 is a graph showing the relationship between the scanning speed, the mass-to-charge ratio, and the DC bias voltage of the quadrupole mass filter under conditions that allow proper mass analysis.
  • FIG. 6 is a diagram showing the relationship between the mass-to-charge ratio and the DC bias voltage when the scanning speed is constant (10000 amu / sec) based on FIG.
  • FIG. 7 is a graph showing the relationship between the scanning speed and the DC bias voltage when the mass-to-charge ratio is constant (m / zl000) based on FIG.
  • FIG. 8 A diagram showing the results of actual measurement of changes in detection sensitivity under various DC charge voltages at various mass-to-charge ratios.
  • FIG. 9 is a diagram showing the relationship between the DC bias voltage and the scanning speed when the DC bias voltage is adjusted so as to eliminate the change in detection sensitivity shown in FIG.
  • FIG. 10 is a diagram showing an example of mode switching in scan measurement.
  • FIG. 11 is a principle configuration diagram of a quadrupole mass spectrometer (a), and a diagram (b) showing a relationship between an ion transit time and a change amount of a DC bias voltage of a quadrupole mass filter.
  • FIG. 12 is a diagram showing the relationship between the scanning speed and the time required to measure one mass unit.
  • FIG. 1 is a configuration diagram of a main part of the quadrupole mass spectrometer according to the first embodiment.
  • the ion source 1, the ion optical system 2, the quadrupole mass filter 3, and the detector 4 are arranged in a vacuum chamber (not shown).
  • the four rod electrodes 3a, 3b, 3c, 3d are arranged so as to be inscribed in a cylinder with a predetermined radius centered on the ion optical axis C, and the ion optical axis C is sandwiched between them.
  • the two rod electrodes facing each other are connected as a set, and different voltages are applied to the rod electrodes adjacent in the circumferential direction.
  • an ion selection voltage generator 12 In order to apply a voltage to the rod electrodes 3a to 3d, an ion selection voltage generator 12, an ion pull-in voltage generator 13, and two voltage adders 14, 15 are provided to generate an ion selection voltage.
  • the unit 12 and the ion pull-in voltage generation unit 13 generate a predetermined voltage under the control of the control unit 10.
  • An automatic adjustment data storage unit 20 and an analysis method storage unit 23 are connected to the control unit 10, and the automatic adjustment data storage unit 20 includes a DC bias voltage table 21 and automatic adjustment result data 22. Further, an input unit 11 operated by an operator is connected to the control unit 10.
  • the control unit 10 mainly functions as a computer including a CPU, a memory, and the like.
  • the automatic adjustment data storage unit 20 and the analysis method storage unit 23 are realized by a storage device such as a hard disk built in the computer.
  • a storage device such as a hard disk built in the computer.
  • the ion selection voltage generator 12 includes a DC power source that generates two systems of DC voltages, soils U having different polarities, and a high-frequency power source that generates AC voltages of soil V 'cosct, which are 180 ° out of phase with each other. These voltages are superimposed on each other to generate two systems of voltage (U + V 'cos cot).
  • the ion pull-in voltage generation unit 13 forms a DC electric field so that ions are efficiently introduced into the space in the long axis direction of the quadrupole mass filter 3.
  • a common DC bias voltage Vdc to be applied to each of the rod electrodes 3a to 3d is generated so that a voltage difference from the DC voltage applied to the ion optical system 2 is appropriate.
  • the voltage adder 14 is an ion selection voltage U + ⁇ ⁇ .
  • 03 Add the 0 ⁇ and DC bias voltage ⁇ (+ ⁇ + 11) + V 'cos cot to the rod electrodes 3a, 3c, and the voltage adder 15 is the ion selection voltage—U— V 'cos cot and the DC bias voltage Vdc are added, and a voltage of (Vdc—U) —V ′ cos cot is applied to the rod electrodes 3b and 3d.
  • K is a constant
  • r is the radius of the inscribed circle of each of the rod electrodes 3a to 3d. Therefore, it is possible to fluctuate the mass-to-charge ratio m / z by changing V, but in practice, taking into account the stability of ion flight,
  • Mass resolution can be achieved by reducing the scanning speed of the mass-to-charge ratio (lowering the speed) during scanning measurement
  • the time resolution decreases because the number of repeated scans per predetermined time is reduced. Therefore, in the case of a gas chromatograph or liquid chromatograph detector, there is a risk of overlooking components that elute for a short time. Therefore, it is preferable to set an appropriate speed according to the purpose of analysis and the type of sample to be analyzed. Therefore, in the mass spectrometer of this embodiment, the speed is 10 steps from SS :! to SS10. Either one can be selected.
  • FIG. 2 is a diagram showing the contents stored in the DC bias voltage table 21 in the quadrupole mass spectrometer of the first embodiment.
  • the DC bias voltage table 21 holds appropriate values of the DC bias voltage Vdc corresponding to each of the 10 steps of scribing speed that can be selected during the scan measurement.
  • the relationship between the running speed and the DC bias voltage can be stored in the DC bias voltage table 21 by the manufacturer of this device in the adjustment stage before shipment from the factory.
  • a mass spectrometer requires adjustment work prior to use. Therefore, the operator instructs the execution of automatic adjustment by the input unit 11.
  • the control unit 10 executes automatic adjustment work according to a predetermined program.
  • the controller 10 first sets the running speed to SS1, and refers to the DC bias voltage table 21 to obtain the DC bias voltage Vdcl corresponding to the scanning speed SS1.
  • the output voltage of the ion pull-in voltage generator 13 is fixed to Vdcl, and other voltage conditions such as the voltage applied to the ion optical system 2, the output voltage from the ion selection voltage generator 12 Change the applied voltage to detector 4 appropriately.
  • a standard sample (not shown) whose type and concentration of components are known is introduced into the ion source 1, and the ion source 1 ionizes components contained in the standard sample.
  • Ions generated in the ion source 1 are extracted from the ion source 1 by the electric field generated by the potential difference between the ion source 1 and the ion optical system 2 and accelerated toward the ion optical system 2. Then, after being converged (or further accelerated) by the ion optical system 2, it is introduced into the space in the long axis direction of the quadrupole mass filter 3. Then, the ions that can pass through the quadrupole mass filter 3 become the detector 4 The detector 4 outputs a detection signal corresponding to the amount of ions.
  • the signal processing unit 16 monitors the detection signal, and the control unit 10 regards the voltage condition when the detection signal is maximum as the optimum condition and stores it in the automatic adjustment result data 22.
  • the control unit 10 regards the voltage condition when the detection signal is maximum as the optimum condition and stores it in the automatic adjustment result data 22.
  • the output voltage of the ion pull-in voltage generator 13 is fixed at Vdc2, the applied voltage to the ion optical system 2, the output voltage from the ion selection voltage generator 12, and the detector 4 The applied voltage is changed appropriately.
  • the optimum condition for the running speed SS2 is obtained and stored in the automatic adjustment result data 22 as in the case of the running speed SS1.
  • the operator when performing scan measurement on the target sample, the operator inputs and sets a mass range, a scanning speed, and the like as parameters necessary for mass analysis from the input unit 11. As described above, one of SS1 to SS10 is selected for the scanning speed.
  • the analysis conditions set in this way are stored in a file format in the analysis method storage unit 23.
  • the control unit 10 refers to the DC bias voltage table 21 to obtain the corresponding DC bias voltage, and fixes the output voltage of the ion pull-in voltage generator 13 to this.
  • the optimum condition value corresponding to the scanning speed set by the automatic adjustment result data 22 is derived, and based on this, the voltage applied to the ion optical system 2 and the detector 4 is determined and the ion selection is selected.
  • the initial value of the voltage generated by the voltage generator 12 and the parameters for voltage drift (for example, constants a and b in the above equation (5)) are determined.
  • the automatic adjustment is performed with the optimum DC bias voltage set corresponding to each running speed, and the optimum condition is obtained.
  • the optimum DC bias voltage is set according to the speed specified by the operator and the optimum condition adjusted under that is set.Therefore, the target ion in the quadrupole mass filter 3 is set.
  • the passage will be very good.
  • one standard scanning speed may be determined during automatic adjustment, and a DC bias voltage corresponding to the scanning speed may be obtained and set to find the optimum condition.
  • the analysis can be performed with substantially no loss in detection sensitivity.
  • the DC bias voltage table is built in the automatic adjustment data storage unit in advance, and it was not assumed that the user would change or modify the DC bias voltage table. It may be possible to perform better analysis by changing the DC bias voltage table itself when the status of the equipment changes due to aging or parts replacement. Therefore, as part of automatic adjustment, or separately from automatic adjustment, a function to scan the DC bias voltage while monitoring the detection signal from the detector 4 is provided, and the DC bias voltage that maximizes the detection signal is provided. Create or update a DC bias voltage table by finding it.
  • FIG. 3 is a configuration diagram of a main part of the quadrupole mass spectrometer according to the second embodiment. Constituent elements that are the same as or correspond to those of the quadrupole mass spectrometer of the first embodiment shown in FIG.
  • the control unit 10 controls the ion drawing voltage generation unit 13 according to the parameter read from the DC bias voltage setting table 24 to generate the voltage for ion bow I penetration.
  • the unit 13 supplies a predetermined DC bias voltage Vdc to the voltage adders 14 and 15.
  • control is performed so that the DC bias voltage Vdc at this time is changed not only according to the running speed but also according to the mass-to-charge ratio that changes sequentially with the running speed. Increase detection sensitivity and mass resolution.
  • the velocity V of the mass m ion is determined by the following equation with respect to the DC bias voltage E and the elementary charge e for ion attraction.
  • Figure 12 shows the relationship between the scanning speed and the measurement time per mass unit. From these, the DC bias voltage, scan speed, and mass charge under conditions (appropriate mass analysis conditions) that the arrival of ions that passed through the quadrupole mass filter arrive at the detector in time for the data measurement period. The relationship with the ratio can be obtained by calculation.
  • Figure 5 shows the calculation results. As is clear from this figure, when the scanning speed is as low as 1000 or 2000, it is not necessary to change the DC bias voltage according to the mass-to-charge ratio. On the other hand, when the scanning speed is high, it is necessary to increase the DC bias voltage as the mass to charge ratio increases.
  • FIG. 6 and FIG. 7 are two-dimensional cutouts of FIG. 5.
  • FIG. 6 shows the relationship between the mass-to-charge ratio and the DC bias voltage when the running speed is constant (10000 a mu / sec).
  • FIG. Fig. 7 is a graph showing the relationship between the driving speed and the DC bias voltage when the mass-to-charge ratio is constant (m / zlOOO). From Fig. 7, it is necessary to increase the DC bias voltage approximately in proportion to the square of the increase in the striking speed in order to analyze ions with the same mass-to-charge ratio (here m / zlOOO). RU On the other hand, from Fig.
  • FIG. 8 is a diagram showing the results of actual measurement of changes in detection sensitivity under various DC to DC bias voltages at various mass-to-charge ratios.
  • the detection sensitivity decreases as the mass-to-charge ratio increases as shown in Fig. 8. Therefore, the relationship between the DC bias voltage, the running speed, and the mass-to-charge ratio when an attempt is made to adjust the DC bias voltage so that this decrease in detection sensitivity is corrected to maintain a substantially constant detection sensitivity is shown in the figure.
  • a table as shown in Fig. 4 can be created by measuring such a relationship in advance and finding an appropriate DC bias voltage for the speed and mass to charge ratio. This may be held as the DC bias voltage setting table 24 for the high-speed scanning mode 24a.
  • control unit 10 when performing scan measurement in which the same mass range is repeatedly scanned, as shown in Fig. 10, the control unit 10 performs each mass scanning (or multiple mass scanning). ) May be alternately switched between the high-speed running mode and the normal running mode so that a different DC bias voltage can be set. In this way, the data collected for the different modes is used to If a spectrum is created, a mass spectrum with relatively low sensitivity but high mass resolution and a mass spectrum with relatively low mass resolution but high sensitivity can be obtained simultaneously in one mass analysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

明 細 書
四重極型質量分析装置
技術分野
[0001] 本発明は、イオンを質量電荷比 m/zに応じて分離する質量分析器として四重極質 量フィルタを用いた四重極型質量分析装置に関する。
背景技術
[0002] 質量分析装置の 1つとして、イオンを質量電荷比に応じて分離する質量分析器に 四重極質量フィルタを用いた四重極型質量分析装置が知られている。図 11 (a)は一 般的な四重極型質量分析装置の概略構成図である。四重極型質量分析装置では、 例えば電子衝撃イオン化イオン源等のイオン源 1におレ、て試料分子をイオン化し、発 生したイオンをイオンレンズ等のイオン光学系 2により収束 (場合によっては加速)さ せて 4本のロッド電極力 成る四重極質量フィルタ 3の長軸方向の空間に導入する。 四重極質量フィルタ 3の 4本のロッド電極には、イオン選択のためにそれぞれ直流電 圧と高周波電圧とを重畳した電圧が印加され、その電圧に応じて特定の質量電荷比 を有するイオンのみがその長軸方向の空間を選択的に通り抜け、それ以外のイオン は途中で発散してしまう。そして、四重極質量フィルタ 3を通り抜けてきたイオンを検 出器 4に導入して、イオン量に応じた電気信号を取り出す。
[0003] 四重極質量フィルタ 3を通過するイオンの質量電荷比は、基本的に該フィルタ 3へ 印加する高周波電圧の振幅成分及び直流電圧に応じて変化するため、この電圧値 が時間経過に伴って増加又は減少するように走查することにより、検出器 4に到達す るイオンの質量電荷比を所定の質量範囲に亘つて走査することができる。これが、四 重極型質量分析装置におけるスキャン測定である。また、四重極質量フィルタ 3にィ オンを引き込むべくその前段のイオン光学系 2との間の空間に適宜の直流電場が形 成されるように、四重極質量フィルタ 3の各ロッド電極には共通のイオン引き込み用の バイアス電圧(直流電圧)力 上記イオン選択用の電圧にさらに重畳される。
[0004] スキャン測定における質量電荷比の走査速度は、マススペクトルにおける質量分解 能や GC/MSや LC/MSでマスク口マトグラム又はトータルイオンクロマトグラムを作 成する際の時間分解能を左右する。そのため一般に、走査速度は分析条件パラメ一 タの 1つとして、分析目的や試料の種類等に応じてオペレータが適宜設定できるよう になっている。従来の四重極型質量分析装置では、走査速度を変えた場合でも、四 重極質量フィルタ 3の各ロッド電極に印加されるイオン引き込み用のバイアス電圧は 一定であった。そのため、次のような問題があった。即ち、図 11 (b)に示すように、四 重極質量フィルタ 3の長軸方向の空間(空間長 L)を通り抜けるための所要時間力 ^で あるとすると、この時間 tはイオンが四重極質量フィルタ 3の入口に到達した時点で各 イオンが持つ運動エネルギーに依存する。上述したようにスキャン測定時には四重 極質量フィルタ 3へのイオン選択用電圧は連続的に変化するように走査されるため、 上記イオンが長軸方向の空間を通り抜ける間にも上記印加電圧は変化しており、走 查速度が大きいほど時間 t期間内での電圧変化量 A Vは大きくなる。
[0005] イオンの通過時間に比べて走查時間が十分に長ぐ電圧変化量 Δ νが無視できる 程度に小さい場合には実際上問題は発現しない。ところが、走査速度を大きく(走査 時間を短く)すると、四重極質量フィルタ 3内をイオンが通過する際の電圧変化量 Δν が大きくなる。そして、電圧変化量 Δνが無視できない程度に大きくなると、本来、四 重極質量フィルタ 3を通り抜けるべきイオンの一部が通り抜けられなくなり、検出器 4 に到達するイオン量が少なくなる。そのために走査速度を大きくすると検出感度が低 下するという問題があった。
[0006] こうした問題に対し、特許文献 1に記載の質量分析装置では、走査速度に応じて四 重極質量フィルタ 3の各ロッド電極に印加されるイオン引き込み用のバイアス電圧を 変化させることで、四重極質量フィルタ 3内をイオンが通過する際の走査電圧の変化 の影響を軽減するようにしている。即ち、スキャン測定の走查速度が大きい場合に四 重極質量フィルタ 3に導入されるイオンが持つ運動エネルギーが大きくなるように、ィ オン引き込み用のバイアス電圧を変化させる。これにより、走查速度を大きくした場合 でも検出感度が低下することを回避することが可能である。
[0007] ところで、四重極型質量分析装置では、四重極質量フィルタ 3に或るイオン選択用 電圧を印加する際の目的とするところのイオンの質量電荷比と実際に四重極質量フ ィルタ 3を通り抜けて検出器 4に到達したイオンの質量電荷比とのずれを修正したり、 或いは、イオン源 1、イオン光学系 2など各部に印加される電圧の最適値を見い出し たりするために自動調整 (オートチューニング)機能が備わっている(例えば特許文献 2など参照)。 自動調整を実行する自動調整モードでは、質量校正用の標準試料が 用いられ、その標準試料中の成分の質量分析を実行することで該成分に対応した質 量電荷比がマススペクトル上で所定位置に来るように調整を行ったり、或いは、その 成分に対する検出信号が最大になるように各部の印加電圧を調整したりして、そのと きの情報を記憶装置に格納する。
[0008] 上記のような自動調整は分析対象の未知試料の分析に先立って実行され、ォペレ ータが質量範囲や走査速度などの分析条件パラメータを設定すると、上記記憶装置 に格納されている情報に基づいて適切な電圧印加パターンや各部への印加電圧が 設定され、その条件の下で分析が実行されるようになっている。
[0009] ところが、上述した従来の四重極型質量分析装置においては、自動調整の実行時 には走査速度に応じた適切なイオン引き込み用バイアス電圧が考慮されていない。 そのため、実際の未知試料分析時に走査速度に応じてイオン引き込み用バイアス電 圧を変化させたとしても、 目的イオンの検出信号が最大になるようにするという観点に おいて、四重極質量フィルタ 3とイオン光学系 2との間の空間における直流電場が最 適な状態になっているとは限らない。したがって、質量電荷比の走査速度が大きな値 に設定されたときに検出感度が犠牲になるおそれがあった。
[0010] また、特許文献 1に記載のように走査速度に応じて四重極質量フィルタ 3の各ロッド 電極に印加されるイオン引き込み用バイアス電圧を変化させる構成としても、全質量 範囲において高い検出感度を確保することは困難である。その理由について説明す る。レ、まイオンの初期エネルギーを無視すると、四重極質量フィルタ 3を通過するィォ ンの飛行速度 Vは理論的に次の式で表される。
(l/2) mv2 = eE …ひ)
ここで Eはイオン引き込み用バイアス電圧、 mはイオンの質量、 eは素電荷(1.602 X I 049)である。したがって、
v= (2eE/m) 1/2 ·■·(
となり、イオンが空間長 Lの四重極質量フィルタ 3を通過するに要する時間 tは、 t = L/v=L/ (2eE/m) 1/2 =L X (m/2eE) 1/2 · ' ·(3)
となる。
[0011] ここで走査速度と 1質量単位 (ここでは lm/zとする)を測定するに要する時間との関 係は図 12に示すようになる。例えば走查速度が 15000[amu/sec]であるときには 1質 量単位当たりの測定時間は 66. 67[ μ sec]となり、これは、イオンが四重極質量フィル タ 3を通り抜けるのに 66. 67[ μ sec]よりも長い時間を要すると検出器 4へのイオンの 到達がデータの測定周期に間に合わずに感度低下を引き起こすことを意味している 。上記 (2)式で明ら力、なようにイオン速度 Vは質量 mが大きいほど遅くなるから、質量電 荷比が相対的に小さなイオンでは検出感度が得られても、質量電荷比が相対的に 大きなイオンでは検出感度が低下するおそれが高いことになる。イオン引き込み用バ ィァス電圧を高くすることでイオンの通過時間を短くすれば、上記のような検出感度 の低下は避けられるものの、ロッド電極による四重極電場内でのイオンの振動回数の 減少や運動エネルギーのばらつきによって質量スペクトルの質量分解能が悪化する おそれがある。
[0012] 特許文献 1 :特開 2002— 25498号公報
特許文献 2:特許第 3478169号公報 (段落 [0018] )
発明の開示
発明が解決しょうとする課題
[0013] 本発明は上記課題を解決するために成されたものであり、その第 1の目的とするとこ ろは、質量電荷比の走査速度を大きくした場合でも、確実に高い検出感度を達成す ることができる四重極型質量分析装置を提供することにある。
[0014] また本発明の第 2の目的とするところは、走査速度を大きくした場合でも特に質量 電荷比の大きな領域においてイオンの検出感度を向上させることができ、質量電荷 比の小さな領域では高い質量分解能を確保することができる四重極型質量分析装 置を提供することにある。
課題を解決するための手段
[0015] 上記第 1の目的を達成するために成された第 1発明は、試料分子をイオン化するィ オン源と、該イオン源で発生したイオンのうち特定の質量電荷比を有するイオンを選 択的に通過させる四重極質量フィルタと、前記イオン源で発生したイオンを前記四重 極質量フィルタに輸送するために両者の間に設けられるイオン光学系と、前記四重 極質量フィルタを通過したイオンを検出する検出器と、を具備する四重極型質量分 析装置において、
a)前記四重極質量フィルタへのイオンの引き込み用の直流電場を該四重極質量フ ィルタと前記イオン光学系との間に形成するために、該四重極質量フィルタに直流バ ィァス電圧を印加するための電圧印加手段と、
b)前記四重極質量フィルタでの質量電荷比の走查速度と該走查速度に応じた適切 な直流バイアス電圧との関係を示すバイアス電圧情報を予め記憶しておく記憶手段 と、
c)各部への印加電圧を自動調整する自動調整モードにおいて、或る 1つ又は複数 の走査速度を設定して前記記憶手段に記憶されている前記情報に基づいて直流バ ィァス電圧を求め、その直流バイアス電圧を前記電圧印加手段により四重極質量フ ィルタに印加する条件の下で前記検出器で得られる検出信号の信号強度が最大に なるような電圧条件を見出してこれを記録する調整実行手段と、
d)オペレータにより走査速度が分析条件の 1つとして設定されたときに、前記記憶 手段に記憶されている前記バイアス電圧情報に基づいて得られる直流バイアス電圧 と、前記調整実行手段により見い出された電圧条件とを設定して、 目的試料に対す る分析を実行する分析実行手段と、
を備えることを特 ί数としてレ、る。
また上記第 2の目的を達成するために成された第 2発明は、試料分子をイオン化す るイオン源と、該イオン源で発生したイオンのうち特定の質量電荷比を有するイオン を選択的に通過させる四重極質量フィルタと、前記イオン源で発生したイオンを前記 四重極質量フィルタに輸送するために両者の間に設けられるイオン光学系と、前記 四重極質量フィルタを通過したイオンを検出する検出器と、を具備する四重極型質 量分析装置において、
a)前記四重極質量フィルタへのイオンの引き込み用の直流電場を該四重極質量フ ィルタと前記イオン光学系との間に形成するために、該四重極質量フィルタに直流バ ィァス電圧を印加するための電圧印加手段と、
b)前記四重極質量フィルタでの質量電荷比の走査速度及び分析対象とするイオン の質量電荷比と、それらに応じた適切な直流バイアス電圧との関係を示すバイアス電 圧情報を予め記憶しておく記憶手段と、
c)走査速度が分析条件の 1つとして設定された下で、前記記憶手段に記憶されて レ、る前記バイアス電圧情報に従って設定された走査速度に対応して且つ質量走査 による質量電荷比の変化に応じて直流バイアス電圧を変化させるように前記電圧印 加手段を制御しつつ目的試料に対する質量分析を実行する分析実行手段と、 を備えることを特 ί敫としてレ、る。
発明の効果
[0017] 第 1発明に係る四重極型質量分析装置では、四重極質量フィルタでの質量電荷比 の走査速度と該走查速度に応じた適切な直流バイアス電圧との関係を示すバイアス 電圧情報が、例えばテーブル形式で予め記憶手段に記憶されている。このバイアス 電圧情報は、本装置がメーカーから出荷される前の調整段階にぉレ、て予めメーカー 側で設定しておくようにすればよい。また、選択可能な複数の走査速度のそれぞれ の走查速度において四重極質量フィルタに印加する直流バイアス電圧を変化させつ つ検出器による検出信号をモニタすることにより信号強度が最大となる直流バイアス 電圧値を見い出す操作を繰り返すことにより、バイアス電圧情報を求めて記憶手段に 記憶させるバイアス電圧情報取得手段を備える構成としてもよい。
[0018] いずれにしても自動調整の実行前には記憶手段にバイアス電圧情報が記憶されて いるので、 自動調整モードにおいて調整実行手段は上記バイアス電圧情報を用いて 実行しょうとする走查速度に対応した直流バイアス電圧を求める。そして、その直流 バイアス電圧を電圧印加手段により四重極質量フィルタに印加する条件の下で検出 器で得られる検出信号の信号強度が最大になるような電圧条件を見い出し、これを 自動調整結果として記録する。このとき、好ましくは、選択可能な複数の走査速度に 対応してそれぞれ適切な直流バイアス電圧を求め、四重極質量フィルタに印加する 直流バイアス電圧を変化させながら各走査速度毎の自動調整を実行するとよレ、。そ して、 目的試料の分析に際してオペレータが分析条件の 1つとして走査速度を設定 すると、分析実行手段は、記憶手段に記憶されているバイアス電圧情報に基づいて 適切な直流バイアス電圧を求めるとともに、調整実行手段により見い出された電圧条 件を設定して、 目的試料に対する分析を実行する。
[0019] これによれば、四重極質量フィルタにおいてイオン選択用電圧の走查速度に対応 した最適又はそれに近い直流バイアス電圧が設定された条件の下で、各部の電圧 条件などを自動的に最適又はそれに近い状態に設定するための自動調整が実行さ れる。また、 目的試料の分析の際にもオペレータが設定した走查速度に対応した適 切な直流バイアス電圧が自動的に設定される。したがって、オペレータは自動調整 の際の直流バイアス電圧設定について特に意識することなぐ適切な直流バイアス電 圧の下で試料の分析を実行することができる。これにより、走查速度を大きくした場合 にも検出感度を良好に維持することができる。
[0020] また特に自動調整時に、選択可能な複数の走查速度に対応してそれぞれ適切な 直流バイアス電圧を求め、その条件の下で各走査速度毎の自動調整を実行する構 成としておけば、オペレータがいずれの走査速度を選択した場合でも最適な状態と なるように四重極質量フィルタの直流バイアス電圧を設定して目的試料の分析を行う こと力 Sできる。
[0021] 第 2発明に係る四重極型質量分析装置では、記憶手段に格納されているバイアス 電圧情報は、四重極質量フィルタでの質量電荷比の走査速度に応じて適切な直流 バイアス電圧を設定可能な情報であるとともに、同じ走査速度であっても質量電荷比 に応じて異なる(同じ場合もあり得る)直流バイアス電圧を設定可能な情報となってい る。その情報の形式は第 1発明と同様に例えばテーブル形式等とすることができ、本 装置がメーカーから出荷される前の調整段階において予めメーカー側で設定してお くようにしてもよいし、或いは、後で各装置毎に実際に標準試料を用いた予備実験( 或いは自動調整動作)により作成されるようにしてもよい。
[0022] いずれにしても或る走査速度が設定された条件の下で分析実行手段は、所定の質 量範囲に亘る質量走査を設定された走査速度で以て実行するが、その際に記憶手 段に記憶されているバイアス電圧情報に基づいて、設定された走查速度に対応し且 っ走查による質量電荷比の変化(増加又は減少)に応じて直流バイアス電圧が順次 変化するように電圧印加手段を制御する。一般的な傾向としては、走査速度が大き いほど検出感度が低下するが、特に走査速度が相対的に大きな領域では分析対象 のイオンの質量電荷比が大きくなると検出感度の低下が顕著になる。そこで、こうした 走查速度の大小と質量電荷比の大小による検出感度の低下を補正するようなバイァ ス電圧情報を記憶手段に記憶させておき、分析実行手段はこれに基づレ、て四重極 質量フィルタに印加する直流バイアス電圧を調整する。このようにして第 2発明に係る 四重極型質量分析装置によれば、走査速度を大きくした場合に従来よりも確実に検 出感度を向上させることができる。
[0023] 但し、四重極質量フィルタへ印加する直流バイアス電圧を大きくしてイオンの通過 速度を速めると、マススペクトルの質量分解能は低下することになる。そこで、好ましく は、前記記憶手段は、走査速度が相対的に大きい場合の検出感度の低下を補正す るための直流バイアス電圧を設定するための第 1バイアス電圧情報と、検出感度低 下の補正の程度を抑えた又は補正を行わないような直流バイアス電圧を設定するた めの第 2バイアス電圧情報とを併せ持つ構成とするとよい。
[0024] この構成によれば、例えば比較的含有濃度の低い成分を分析対象とする場合には 第 1バイアス電圧情報を用いることにより検出感度の高いマススペクトルを取得するこ とができ、一方、比較的含有濃度が高い成分を分析対象とする場合や特に高い質量 分解能での分析が必要な場合に第 2バイアス電圧情報を用いることにより質量分解 能の高レ、マススぺ外ルを取得することができる。
[0025] さらにまた、第 2発明に係る四重極型質量分析装置の実施態様として、所定質量範 囲の質量走査を繰り返し行う場合に、前記分析実行手段は、前記記憶手段に保持さ れている第 1及び第 2のバイアス電圧情報に基づいて設定される直流バイアス電圧を 切り替えながら質量分析を実行する構成とすることができる。具体的には例えば、 1 回又は複数回の質量走查毎に直流バイアス電圧の設定を第 1バイアス電圧情報に 基づくものと第 2バイアス電圧情報に基づくものとで交互に切り替える構成とすること ができる。これにより、 1回の質量分析の実行によって質量分解能の高いマススぺタト ルと検出感度の高レ、マススペクトルとを並行して取得することができ、分析作業の効 率化が図れるとともに試料の使用量も少なくて済む。 図面の簡単な説明
[0026] [図 1]本発明の第 1実施例による四重極型質量分析装置の要部の構成図。
[図 2]第 1実施例の四重極型質量分析装置における直流バイアス電圧テーブルの記 憶内容を示す図。
[図 3]本発明の第 2実施例による四重極型質量分析装置の要部の構成図。
[図 4]第 2実施例の四重極型質量分析装置における直流バイアス電圧テーブルの記 憶内容を示す図。
[図 5]適切な質量分析が行える条件の下での走査速度と質量電荷比と四重極質量フ ィルタの直流バイアス電圧との関係を示す図。
[図 6]図 5に基づく走査速度一定(10000amu/sec)の場合の質量電荷比と直流バイァ ス電圧との関係を示す図。
[図 7]図 5に基づく質量電荷比一定 (m/zl000)の場合の走査速度と直流バイアス電 圧との関係を示す図。
[図 8]各種質量電荷比において直流バイアス電圧一定の下での検出感度の変化を 実測した結果を示す図。
[図 9]図 8に示した検出感度の変化をなくすように直流バイアス電圧を調整した場合 の直流バイアス電圧と走査速度との関係を示す図。
[図 10]スキャン測定におけるモード切り替えの一例を示す図。
[図 11]四重極型質量分析装置の原理構成図(a)、及びイオンの通過時間と四重極 質量フィルタの直流バイアス電圧の変化量との関係を示す図(b)。
[図 12]走査速度と 1質量単位を測定するに要する時間との関係を示す図。
符号の説明
[0027] 1 · · ·ィ才ン?原
2…イオン光学系
3…四重極質量フィルタ
3a、 3b、 3c、 3d…ロッド電極
4…検出器 11 · ' ' ·入力部
12· ' ' ·イオン選択用電圧発生部
13· ' ' 'イオン弓 [き込み用電圧発生部
14、 15…電圧加算器
16- · · ·信号処理部
20- · · ·自動調整データ記憶部
21 - · • -直流バイアス電圧テーブル
22- · · ·自動調整結果データ
23- · · ·分析メソッド記憶部
24- · ' -直流バイアス電圧設定用テーブル
発明を実施するための最良の形態
[0028] [第 1実施例]
以下、第 1発明に係る四重極質量分析装置の一実施例 (第 1実施例)を図面を参 照して説明する。図 1は第 1実施例による四重極型質量分析装置の要部の構成図で ある。
[0029] 図示しない真空室内部には、既に述べたように、イオン源 1、イオン光学系 2、四重 極質量フィルタ 3、及び検出器 4が配設されている。四重極質量フィルタ 3にあっては 、 4本のロッド電極 3a、 3b、 3c、 3dがイオン光軸 Cを中心とする所定半径の円筒に内 接するように配置され、イオン光軸 Cを挟んで対向する 2本を 1組とするロッド電極が 接続され、周方向に隣接するロッド電極には異なる電圧が印加されるようになってい る。ロッド電極 3a〜3dに電圧を印加するために、イオン選択用電圧発生部 12、ィォ ン引き込み用電圧発生部 13、及び 2つの電圧加算器 14、 15が設けられ、イオン選 択用電圧発生部 12及びイオン引き込み用電圧発生部 13は制御部 10の制御の下に 所定の電圧を発生する。制御部 10には自動調整データ記憶部 20と分析メソッド記 憶部 23とが接続され、 自動調整データ記憶部 20には直流バイアス電圧テーブル 21 と自動調整結果データ 22とを含む。さらに制御部 10にはオペレータが操作する入力 部 11も接続されている。
[0030] 制御部 10は、 CPU,メモリなどを含んで構成されるコンピュータを中心にその機能 が実現され、 自動調整データ記憶部 20や分析メソッド記憶部 23はコンピュータに内 蔵されるハードディスク等の記憶装置により具現化される。なお、図 1では記載を省略 しているが、イオン源 1、イオン光学系 2、検出器 4にもそれぞれ所定の電圧を印加す る必要があり、そのための電圧源が設けられ、制御部 10はこうした電圧源も制御する 機能を有する。
[0031] イオン選択用電圧発生部 12は、互いに極性の異なる土 Uなる 2系統の直流電圧を 発生する直流電源と、互いに位相が 180° 異なる土 V' cos c tなる交流電圧を発生 する高周波電源とを含み、これら電圧をそれぞれ重畳して土(U + V' cos co t)なる 2 系統の電圧を生成するものである。一方、イオン引き込み用電圧発生部 13は、四重 極質量フィルタ 3の長軸方向の空間に効率良くイオンが導入されるように直流電場を 形成するために、四重極質量フィルタ 3の前段のイオン光学系 2に印加される直流電 圧との間の電圧差が適切になるように各ロッド電極 3a〜3dに印加すべき共通の直流 バイアス電圧 Vdcを生成するものである。電圧加算器 14はイオン選択用電圧 U + ν· 。03 0^と直流バィァス電圧¥ とを加算して(¥^ + 11) + V' cos co tなる電圧をロッド 電極 3a、 3cに印カロし、電圧加算器 15はイオン選択用電圧— U— V' cos co tと直流バ ィァス電圧 Vdcとを加算し、 (Vdc— U)— V' cos co tなる電圧をロッド電極 3b、 3dに印 加する。
[0032] 上記のような電圧が各ロッド電極 3a〜3dに印加されたとき、四重極質量フィルタ 3 の長軸空間を通り抜け得るイオンの質量電荷比 m/zは理論的に次のようになる。
Figure imgf000013_0001
ここで Kは定数であり、 rは各ロッド電極 3a〜3dの内接円の半径である。したがつ て、 Vを変化させることにより質量電荷比 m/zを走查することが可能であるが、実際に はイオンの飛行の安定性を考慮して、スキャン測定時には、
U = a -V + b · ' ·(5)
ここで a、 bは所定の定数
の関係を維持しながら Vを変化させる(したがって、 Vの変化に伴い Uも変化させる ことになる)。
[0033] スキャン測定時に質量電荷比の走査速度を小さく(速度を遅く)すれば質量分解能 は向上するが、その反面、所定時間当たりの繰り返し走査回数が少なくなるため時間 分解能は低下する。そのため、ガスクロマトグラフや液体クロマトグラフの検出器とす る場合、短時間だけ溶出する成分を見逃すおそれがある。そこで、分析目的や分析 対象の試料の種類などによって適切な走查速度を設定することが好ましぐそのため に、この実施例の質量分析装置では走查速度は SS:!〜 SS10の 10段階のいずれか を選択できるようになつている。
[0034] 図 2は、第 1実施例の四重極質量分析装置における直流バイアス電圧テーブル 21 の記憶内容を示す図である。直流バイアス電圧テーブル 21には、上述したようにスキ ヤン測定時に選択可能な 10段階の走查速度にそれぞれ対応して適切な直流バイァ ス電圧 Vdcの値が保持されている。この走查速度と直流バイアス電圧との関係は本 装置の製造メーカーが工場出荷前の調整段階で調べて直流バイアス電圧テーブル 21に記憶させておくようにすることができる。
[0035] 次に上記構成を有する四重極型質量分析装置における特徴的な動作を説明する
[0036] 一般に質量分析装置では使用に先立って調整作業が必要になる。そこで、ォペレ ータは入力部 11により自動調整の実行を指示する。制御部 10はこの指示を受けると 所定のプログラムに従って自動調整作業を実行する。このとき、制御部 10はまず走 查速度を SS1に設定し、直流バイアス電圧テーブル 21を参照して走査速度 SS1に 対応した直流バイアス電圧 Vdclを求める。そして、調整実行条件として、イオン引き 込み用電圧発生部 13の出力電圧は Vdclに固定し、他の電圧条件、例えばイオン光 学系 2への印加電圧、イオン選択用電圧発生部 12による出力電圧、検出器 4への印 加電圧などを適当に変化させるようにする。
[0037] イオン源 1には含有成分の種類や濃度が既知である図示しない標準試料を導入し 、イオン源 1はこの標準試料に含まれる成分をイオン化する。イオン源 1で生成された イオンは、イオン源 1とイオン光学系 2との間の電位差により発生する電場によってィ オン源 1から引き出されてイオン光学系 2に向かって加速される。そして、イオン光学 系 2により収束(或いはさらに加速)されたあとに、四重極質量フィルタ 3の長軸方向 の空間に導入される。そして、四重極質量フィルタ 3を通り抜け得たイオンが検出器 4 に到達し、検出器 4はそのイオン量に応じた検出信号を出力する。
[0038] 分析対象のイオンの質量電荷比は一定であるから、上述したように各部の電圧条 件が変化されて検出器 4へのイオンの到達効率が変化すると検出信号も変化する。 そこで、信号処理部 16は検出信号を監視し、制御部 10は検出信号が最大となった ときの電圧条件を最適条件とみなして自動調整結果データ 22に格納する。走査速 度 SS1に対する最適条件が求まったならば、次に走查速度を SS2に変更し、直流バ ィァス電圧テーブル 21を参照して走查速度 SS 2に対応した直流バイアス電圧 Vdc2 を求める。そして、調整実行条件として、イオン引き込み用電圧発生部 13の出力電 圧は Vdc2に固定し、イオン光学系 2への印加電圧、イオン選択用電圧発生部 12に よる出力電圧、検出器 4への印加電圧などを適当に変化させるようにする。そして上 述したように走查速度 SS1の場合と同様にして、走查速度 SS2に対する最適条件を 求めて自動調整結果データ 22に格納する。
[0039] そして、これを走査速度 SS10まで繰り返し、各走査速度 SS1〜SS10に対応した 最適条件を求めてこれを自動調整結果データ 22に記録しておく。以上により、 自動 調整が終了する。
[0040] 次に、 目的試料に対するスキャン測定を行う際には、オペレータは入力部 11より質 量分析に必要なパラメータとして、質量範囲や走査速度などを入力設定する。走査 速度については上述したように SS1〜SS10のいずれかを選択することになる。この ように設定された分析条件は分析メソッド記憶部 23の中にファイル形式で保存される
[0041] 制御部 10は走査速度が設定されると、直流バイアス電圧テーブル 21を参照して対 応する直流バイアス電圧を求め、イオン引き込み用電圧発生部 13の出力電圧をこれ に固定する。また、 自動調整結果データ 22により設定された走査速度に対応した最 適条件の値を導出し、これに基づいてイオン光学系 2や検出器 4への印加電圧を決 めるとともに、イオン選択用電圧発生部 12により発生する電圧の初期値や電圧走查 のためのパラメータ(例えば上記 (5)式における定数 a、 bなど)を決定する。
[0042] 全般的には、走查速度が大きくなるほどイオン光学系 2と四重極質量フィルタ 3との 間の直流電位差が大きくなり、イオンが四重極質量フィルタ 3に導入される時点での 運動エネルギーが大きくなる。四重極質量フィルタ 3の入口でイオンが有する運動ェ ネルギ一が大きいほど飛行速度は大きいから、長軸方向の空間を通り抜ける所要時 間は短くなる。したがって、つまり、図 11 (b)でいうと電圧変化量 Δνの傾きはそのま までイオン通過時間 tが短くなるから、時間 t内での実質的な電圧変化量は小さくて済 み、その結果、イオンはこの電圧変化の影響を受けにくくなる。それによつて、本来通 過すべきイオンが通過し易くなり、検出器 4に到達するイオン量が増加し検出感度は 向上する。
[0043] 上記構成によれば、自動調整の際に各走查速度に対応して最適な直流バイアス電 圧が設定された状態で自動調整が実行されて最適条件が求まり、実際の目的試料 の分析時にもオペレータが指定した走查速度に応じた最適な直流バイアス電圧が設 定されるとともにその下で調整された最適条件が設定されるので、四重極質量フィル タ 3での目的イオンの通過が非常に良好に行われることになる。但し、自動調整時に 各走査速度に対応して最適条件を求める必要があるため、 自動調整に要する時間 が長くなる危惧がある。そこで、 自動調整時には標準的な走査速度を 1つ決めておき 、その走査速度に対応した直流バイアス電圧を求めてこれを設定して最適条件を見 い出すようにしてもよい。この場合には、必ずしもオペレータが指定した走査速度に 対応した直流バイアス電圧の下での自動調整ではないものの、実質的にはそれほど 検出感度を損なわなレ、分析が可能である。
[0044] また、上記第 1実施例では直流バイアス電圧テーブルは予め自動調整データ記憶 部に組み込まれており、ユーザーがこれを変更したり修正したりすることは想定してい なかったが、装置の経年変化や部品の交換などにより装置の状態が変化した場合に 直流バイアス電圧テーブル自体を変更したほうがより良好な分析が可能となることが 考えられる。そこで、自動調整の一環として、或いは自動調整とは別に、検出器 4によ る検出信号を監視しながら直流バイアス電圧を走査する機能を持たせ、検出信号が 最大になるような直流バイアス電圧を見い出すことで直流バイアス電圧テーブルを作 成する或いは更新するようにしてもょレ、。
[0045] [第 2実施例]
次に第 2発明に係る四重極質量分析装置の一実施例(第 2実施例)を図面を参照 して説明する。図 3は第 2実施例による四重極型質量分析装置の要部の構成図であ る。図 1に示した第 1実施例の四重極質量分析装置と同一又は相当する構成要素に は同一符号を付して詳細な説明を省略する。
[0046] 制御部 10は所定質量範囲のスキャン測定を実行する際に、直流バイアス電圧設定 用テーブル 24から読み出したパラメータに従ってイオン引き込み用電圧発生部 13を 制御し、イオン弓 Iき込み用電圧発生部 13は所定の直流バイアス電圧 Vdcを電圧加 算器 14、 15に与える。この第 2実施例の四重極質量分析装置では、このときの直流 バイアス電圧 Vdcを走查速度のみならず走查によって順次変化する質量電荷比に応 じても変化させるように制御を行うことで、検出感度を高めたり質量分解能を高めたり する。
[0047] ここで、適切な直流バイアス電圧の決め方について説明する。前述のように質量 m のイオンの速度 Vは、イオン引き込み用の直流バイアス電圧 E、素電荷 eに対して次 式で決まる。
(l/2) mv2 = eE …ひ)
また、走査速度と 1質量単位当たりの測定時間との関係は図 12に示すようになる。こ れらから、四重極質量フィルタを通り抜けたイオンの検出器への到達がデータの測定 周期に間に合うような条件 (適切な質量分析条件)の下での直流バイアス電圧と走査 速度と質量電荷比との関係を、計算により求めることができる。その計算結果を図 5に 示す。この図から明らかなように走査速度が 1000、 2000程度と小さい場合には、質 量電荷比に応じて直流バイアス電圧を変える必要はない。これに対し、走査速度が 大きい場合には、質量電荷比の増加に伴って直流バイアス電圧を増加させる必要が ある。
[0048] 図 6及び図 7は図 5を 2次元的に切り出した図であり、図 6は走查速度一定(10000a mu/sec)の場合の質量電荷比と直流バイアス電圧との関係を示す図である。また図 7 は質量電荷比一定 (m/zlOOO)の場合の走查速度と直流バイアス電圧との関係を示 す図である。図 7より、同一質量電荷比(ここでは m/zlOOO)のイオンを分析するため に走查速度の増加に対し直流バイアス電圧をほぼ 2乗に比例して増加させる必要が あること力 S分力、る。一方、図 6より、同一走查速度において、つまり或る走查速度(ここ では 10000amu/sec)で以て質量電荷比が増加するように変化させる(つまり質量走査 を行う)際には直流バイアス電圧をほぼ直線的に増加させる必要があることが分かる 。従来の四重極質量分析装置では図 7に示すような直流バイアス電圧の変化の必要 性は考慮されていたものの、図 6に示すような直流バイアス電圧の変化の必要性は 考慮されていなかった。
[0049] 図 8は各種質量電荷比において直流バイアス電圧一定の下での検出感度の変化 を実測した結果を示す図である。この図 8から分力、るように質量電荷比が増加すると 検出感度が低下する。そこで、この検出感度の低下を補正してほぼ一定の検出感度 を維持できるように直流バイアス電圧の調整を試みた場合の直流バイアス電圧と走 查速度及び質量電荷比との関係を示すのが図 9である。このような関係を予め実測し 、走查速度と質量電荷比とに対する適切な直流バイアス電圧を求めることにより、図 4 に示すようなテーブルを作成することができる。これを直流バイアス電圧設定用テー ブル 24の高速走査モード用 24aとして保持しておけばよい。
[0050] なお、第 1実施例で説明したように自動調整動作の実行によって上記のようなテー ブルを作成することも可能であるが、装置毎の差が小さくしかも装置の長期間の使用 による経時変化が殆どないものと考えられるので、通常、予め装置メーカー側で決め ておくようにすることができる。
[0051] 上記のように感度低下を補正した直流バイアス電圧を印加すると、感度低下は免れ るものの質量分解能が悪くなる。そこで、上記のような質量電荷比の増加による感度 低下を補正しないような直流バイアス電圧を算出するためのテーブルも別途作成し ておき、直流バイアス電圧設定用テーブル 24の通常走査モード用 24bとして設定し ておく。そして、分析を実行する際に分析目的や質量範囲に応じてオペレータがい ずれかのモードを選択するようにし、それによつて制御部 10は使用するテーブルを 切り替えるようにするとよレ、。
[0052] また、同一の質量範囲を繰り返し走查するスキャン測定を行う場合には、図 10に示 すように、制御部 10が 1回の質量走查毎 (又は複数回の質量走查毎)に高速走查モ ードと通常走查モードとを交互に切り替え、異なる直流バイアス電圧の設定を行える ようにしてもよい。こうして異なるモードに対応して収集されたデータによりそれぞれマ ススペクトルを作成するようにすれば、感度は比較的低いものの質量分解能の高い マススペクトルと質量分解能は比較的低いものの感度の高いマススペクトルとを 1回 の質量分析において同時に得ることができる。
なお、上記実施例は本発明の一例であり、本発明の趣旨の範囲で適宜に変形、追 カロ、修正を行っても本願請求の範囲に包含されることは明らかである。

Claims

請求の範囲
[1] 試料分子をイオン化するイオン源と、該イオン源で発生したイオンのうち特定の質 量電荷比を有するイオンを選択的に通過させる四重極質量フィルタと、前記イオン源 で発生したイオンを前記四重極質量フィルタに輸送するために両者の間に設けられ るイオン光学系と、前記四重極質量フィルタを通過したイオンを検出する検出器と、 を具備する四重極型質量分析装置において、
a)前記四重極質量フィルタへのイオンの引き込み用の直流電場を該四重極質量フ ィルタと前記イオン光学系との間に形成するために、該四重極質量フィルタに直流バ ィァス電圧を印加するための電圧印加手段と、
b)前記四重極質量フィルタでの質量電荷比の走査速度と該走査速度に応じた適切 な直流バイアス電圧との関係を示すバイアス電圧情報を予め記憶しておく記憶手段 と、
c)各部への印加電圧を自動調整する自動調整モードにおいて、或る 1つ又は複数 の走査速度を設定して前記記憶手段に記憶されている前記情報に基づいて直流バ ィァス電圧を求め、その直流バイアス電圧を前記電圧印加手段により四重極質量フ ィルタに印加する条件の下で前記検出器で得られる検出信号の信号強度が最大に なるような電圧条件を見出してこれを記録する調整実行手段と、
d)オペレータにより走查速度が分析条件の 1つとして設定されたときに、前記記憶 手段に記憶されている前記バイアス電圧情報に基づいて得られる直流バイアス電圧 と、前記調整実行手段により見い出された電圧条件とを設定して、 目的試料に対す る分析を実行する分析実行手段と、
を備えることを特徴とする四重極型質量分析装置。
[2] 前記自動調整モードにおいて、選択可能な複数の走查速度に対応してそれぞれ 前記記憶手段に記憶されている前記バイアス電圧情報を参照して適切な直流バイァ ス電圧を求め、前記四重極質量フィルタに印加する直流バイアス電圧を変化させつ つ各走査速度毎の自動調整を実行することを特徴とする請求項 1に記載の四重極型 質量分析装置。
[3] 選択可能な複数の走査速度のそれぞれの走査速度において前記四重極質量フィ ルタに印加する直流バイアス電圧を変化させつつ前記検出器による検出信号をモニ タすることにより信号強度が最大となる直流バイアス電圧値を見い出す操作を繰り返 すことにより、前記バイアス電圧情報を求めて前記記憶手段に記憶させるバイアス電 圧情報取得手段を備えることを特徴とする請求項 1又は 2に記載の四重極型質量分 析装置。
[4] 試料分子をイオン化するイオン源と、該イオン源で発生したイオンのうち特定の質 量電荷比を有するイオンを選択的に通過させる四重極質量フィルタと、前記イオン源 で発生したイオンを前記四重極質量フィルタに輸送するために両者の間に設けられ るイオン光学系と、前記四重極質量フィルタを通過したイオンを検出する検出器と、 を具備する四重極型質量分析装置において、
a)前記四重極質量フィルタへのイオンの引き込み用の直流電場を該四重極質量フ ィルタと前記イオン光学系との間に形成するために、該四重極質量フィルタに直流バ ィァス電圧を印加するための電圧印加手段と、
b)前記四重極質量フィルタでの質量電荷比の走査速度及び分析対象とするイオン の質量電荷比と、それらに応じた適切な直流バイアス電圧との関係を示すバイアス電 圧情報を予め記憶しておく記憶手段と、
c)走査速度が分析条件の 1つとして設定された下で、前記記憶手段に記憶されて レ、る前記バイアス電圧情報に従って設定された走査速度に対応して且つ質量走査 による質量電荷比の変化に応じて直流バイアス電圧を変化させるように前記電圧印 加手段を制御しつつ目的試料に対する質量分析を実行する分析実行手段と、 を備えることを特徴とする四重極型質量分析装置。
[5] 前記記憶手段は、走査速度が相対的に大きい場合の検出感度の低下を補正する ための直流バイアス電圧を設定するための第 1バイアス電圧情報と、検出感度低下 の補正の程度を抑えた又は補正を行わないような直流バイアス電圧を設定するため の第 2バイアス電圧情報とを併せ持つことを特徴とする請求項 4に記載の四重極型質 量分析装置。
[6] 所定質量範囲の質量走査を繰り返し行う場合に、前記分析実行手段は、前記記憶 手段に保持されている第 1及び第 2のバイアス電圧情報に基づいて設定される直流 バイアス電圧を切り替えながら質量分析を実行することを特徴とする請求項 5に記載 の四重極型質量分析装置。
PCT/JP2006/312024 2006-01-20 2006-06-15 四重極型質量分析装置 WO2007083403A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007554804A JP4665970B2 (ja) 2006-01-20 2006-06-15 四重極型質量分析装置
US12/160,963 US8445844B2 (en) 2006-01-20 2006-06-15 Quadrupole mass spectrometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006012600 2006-01-20
JP2006-012600 2006-01-20

Publications (1)

Publication Number Publication Date
WO2007083403A1 true WO2007083403A1 (ja) 2007-07-26

Family

ID=38287364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312024 WO2007083403A1 (ja) 2006-01-20 2006-06-15 四重極型質量分析装置

Country Status (3)

Country Link
US (1) US8445844B2 (ja)
JP (1) JP4665970B2 (ja)
WO (1) WO2007083403A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2290674A1 (en) * 2008-05-22 2011-03-02 Shimadzu Corporation Quadrupole mass analyzer
EP2299471A1 (en) * 2008-05-26 2011-03-23 Shimadzu Corporation Quadrupole mass analyzer
JP2011514642A (ja) * 2008-03-20 2011-05-06 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド 質量分析計を用いて物質を分析するシステムおよび方法
JP2011257333A (ja) * 2010-06-11 2011-12-22 Shimadzu Corp 質量分析装置
EP2315233A3 (en) * 2008-05-26 2012-01-04 Shimadzu Corporation Quadrupole mass spectrometer
JP2012104424A (ja) * 2010-11-12 2012-05-31 Hitachi High-Technologies Corp 質量分析装置
JP2012150015A (ja) * 2011-01-19 2012-08-09 Yamaha Motor Co Ltd X線画像処理装置並びにそれを用いたx線検査装置およびx線検査方法
US8410436B2 (en) 2008-05-26 2013-04-02 Shimadzu Corporation Quadrupole mass spectrometer
JP2013234860A (ja) * 2012-05-07 2013-11-21 Shimadzu Corp クロマトグラフ質量分析装置
WO2015029449A1 (ja) 2013-08-30 2015-03-05 アトナープ株式会社 分析装置
EP2602809A4 (en) * 2010-08-06 2015-07-08 Shimadzu Corp Quadrupole mass spectrometer
CN112730572A (zh) * 2019-10-11 2021-04-30 萨默费尼根有限公司 用于调谐质谱仪的方法和系统
US11437227B2 (en) 2018-09-06 2022-09-06 Shimadzu Corporation Quadrupole mass spectrometer

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2902066B1 (en) 2010-03-29 2021-03-10 Endoclear LLC Airway cleaning and visualization
WO2011125218A1 (ja) * 2010-04-09 2011-10-13 株式会社島津製作所 四重極型質量分析装置
WO2012090308A1 (ja) * 2010-12-28 2012-07-05 株式会社島津製作所 クロマトグラフ質量分析装置
JP5454484B2 (ja) * 2011-01-31 2014-03-26 株式会社島津製作所 三連四重極型質量分析装置
GB201103854D0 (en) * 2011-03-07 2011-04-20 Micromass Ltd Dynamic resolution correction of quadrupole mass analyser
US9490115B2 (en) * 2014-12-18 2016-11-08 Thermo Finnigan Llc Varying frequency during a quadrupole scan for improved resolution and mass range
JP6202214B2 (ja) * 2014-09-18 2017-09-27 株式会社島津製作所 飛行時間型質量分析装置
US20180286656A1 (en) * 2017-03-28 2018-10-04 Thermo Finnigan Llc Systems and methods for electron ionization ion sources
US10529547B2 (en) * 2018-05-30 2020-01-07 Thermo Finnigan Llc Mass analyzer dynamic tuning for plural optimization criteria

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025498A (ja) * 2000-07-13 2002-01-25 Shimadzu Corp 四重極質量分析装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3478169B2 (ja) 1999-05-06 2003-12-15 株式会社島津製作所 液体クロマトグラフ質量分析装置
JP2001343362A (ja) * 2000-05-31 2001-12-14 Shimadzu Corp 液体クロマトグラフ質量分析装置
US7323682B2 (en) * 2004-07-02 2008-01-29 Thermo Finnigan Llc Pulsed ion source for quadrupole mass spectrometer and method
US7078686B2 (en) * 2004-07-23 2006-07-18 Agilent Technologies, Inc. Apparatus and method for electronically driving a quadrupole mass spectrometer to improve signal performance at fast scan rates

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025498A (ja) * 2000-07-13 2002-01-25 Shimadzu Corp 四重極質量分析装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514642A (ja) * 2008-03-20 2011-05-06 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド 質量分析計を用いて物質を分析するシステムおよび方法
EP2290674A1 (en) * 2008-05-22 2011-03-02 Shimadzu Corporation Quadrupole mass analyzer
EP3147935A1 (en) * 2008-05-22 2017-03-29 Shimadzu Corporation Quadrupole mass spectrometer
US8188426B2 (en) 2008-05-22 2012-05-29 Shimadzu Corporation Quadropole mass spectrometer
EP2290674A4 (en) * 2008-05-22 2012-01-04 Shimadzu Corp Quadrupole mass analyzer
EP2315233A3 (en) * 2008-05-26 2012-01-04 Shimadzu Corporation Quadrupole mass spectrometer
EP2299471A4 (en) * 2008-05-26 2012-01-04 Shimadzu Corp Quadrupole mass analyzer
US8410436B2 (en) 2008-05-26 2013-04-02 Shimadzu Corporation Quadrupole mass spectrometer
EP2299471A1 (en) * 2008-05-26 2011-03-23 Shimadzu Corporation Quadrupole mass analyzer
US9548193B2 (en) 2008-05-26 2017-01-17 Shimadzu Corporation Quadrupole mass spectrometer with quadrupole mass filter as a mass separator
JP2011257333A (ja) * 2010-06-11 2011-12-22 Shimadzu Corp 質量分析装置
EP2602809A4 (en) * 2010-08-06 2015-07-08 Shimadzu Corp Quadrupole mass spectrometer
JP2012104424A (ja) * 2010-11-12 2012-05-31 Hitachi High-Technologies Corp 質量分析装置
JP2012150015A (ja) * 2011-01-19 2012-08-09 Yamaha Motor Co Ltd X線画像処理装置並びにそれを用いたx線検査装置およびx線検査方法
JP2013234860A (ja) * 2012-05-07 2013-11-21 Shimadzu Corp クロマトグラフ質量分析装置
WO2015029449A1 (ja) 2013-08-30 2015-03-05 アトナープ株式会社 分析装置
US9666422B2 (en) 2013-08-30 2017-05-30 Atonarp Inc. Analyzer
US10366871B2 (en) 2013-08-30 2019-07-30 Atonarp Inc. Analyzer
US11437227B2 (en) 2018-09-06 2022-09-06 Shimadzu Corporation Quadrupole mass spectrometer
CN112730572A (zh) * 2019-10-11 2021-04-30 萨默费尼根有限公司 用于调谐质谱仪的方法和系统
CN112730572B (zh) * 2019-10-11 2024-04-12 萨默费尼根有限公司 用于调谐质谱仪的方法和系统

Also Published As

Publication number Publication date
JP4665970B2 (ja) 2011-04-06
US8445844B2 (en) 2013-05-21
US20100193684A1 (en) 2010-08-05
JPWO2007083403A1 (ja) 2009-06-11

Similar Documents

Publication Publication Date Title
WO2007083403A1 (ja) 四重極型質量分析装置
JP4735775B2 (ja) 四重極型質量分析装置
JP5201220B2 (ja) Ms/ms型質量分析装置
EP2602809B1 (en) Quadrupole-type mass spectrometer apparatus
JP4730482B2 (ja) 四重極型質量分析装置
JP4941437B2 (ja) 四重極型質量分析装置
JP6202103B2 (ja) 質量分析装置及び質量分析方法
US6847037B2 (en) Ion trap mass spectrometer
US8410436B2 (en) Quadrupole mass spectrometer
JP4730439B2 (ja) 四重極型質量分析装置
JP5664368B2 (ja) 四重極型質量分析装置
JP4182906B2 (ja) 四重極質量分析装置
JP2005353428A (ja) イオントラップ/飛行時間型質量分析装置および質量分析方法
US10332736B2 (en) Mass spectrometer with ion frequency selection
JP6418337B2 (ja) 四重極マスフィルタ及び四重極型質量分析装置
JP4848657B2 (ja) Ms/ms型質量分析装置
JP3325426B2 (ja) 質量分析方法およびその装置
JP5012965B2 (ja) 四重極型質量分析装置
JP2012234632A (ja) 質量分析装置
WO2020166111A1 (ja) 質量分析装置
EP2315233B1 (en) Quadrupole mass spectrometer
CN112103169A (zh) 一种针对离子阱的调整方法和离子阱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007554804

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12160963

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06766758

Country of ref document: EP

Kind code of ref document: A1