WO2007077687A1 - ヒートポンプ式給湯機 - Google Patents

ヒートポンプ式給湯機 Download PDF

Info

Publication number
WO2007077687A1
WO2007077687A1 PCT/JP2006/323099 JP2006323099W WO2007077687A1 WO 2007077687 A1 WO2007077687 A1 WO 2007077687A1 JP 2006323099 W JP2006323099 W JP 2006323099W WO 2007077687 A1 WO2007077687 A1 WO 2007077687A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
hot water
cycle
heat pump
water supply
Prior art date
Application number
PCT/JP2006/323099
Other languages
English (en)
French (fr)
Inventor
Atsushi Kakiuchi
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to EP06832949.9A priority Critical patent/EP1972862B1/en
Priority to CN200680049376.5A priority patent/CN101346592B/zh
Publication of WO2007077687A1 publication Critical patent/WO2007077687A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • F25B2313/0213Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit the auxiliary heat exchanger being only used during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel

Definitions

  • the present invention relates to a heat pump water heater that heats and supplies water by heat exchange with a refrigerant circulating in a heat pump cycle provided with a compressor, an expander, and the like, and in particular, heat exchange efficiency and energy.
  • the present invention relates to a heat pump water heater having two heat pump cycles using refrigerants having different characteristics such as consumption efficiency.
  • a heat pump type hot water heater that supplies hot water by heating water by heat exchange with a refrigerant circulating in a heat pump cycle provided with a compressor, an expander, and the like is well known.
  • the refrigerant include carbon dioxide refrigerant and HFC refrigerant.
  • the carbon dioxide refrigerant can heat water to a high temperature (eg, about 90 ° C.) as a characteristic of the refrigerant.
  • the HFC refrigerant can only heat water to a relatively low temperature (eg, about 65 ° C) due to the characteristics of the refrigerant.
  • the energy consumption efficiency (COP) is superior to using the HFC refrigerant rather than using the carbon dioxide refrigerant.
  • Patent Document 1 discloses a heat pump using a CO refrigerant (an example of a carbon dioxide refrigerant).
  • CO cycle (hereinafter referred to as “CO cycle”) and R410A refrigerant (an example of HFC refrigerant).
  • a heat pump hot water supply system that has both the heat pump cycle (hereinafter referred to as “R410A cycle” and! Is shown.
  • the CO cycle is used when high temperature hot water is required
  • the R410A cycle is used when low temperature hot water is sufficient.
  • Patent Document 1 Furthermore, in the invention of Patent Document 1, it has been proposed that a closed circuit for hot water heating is connected to the R410A cycle, and the R410A cycle is shared by hot water supply and hot water heating.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-83585
  • the heat pump hot water supply system has the CO cycle and the R41 OA support.
  • the heating efficiency of water in the heat pump hot water system is the CO cycle and R41.
  • Water heating efficiency by individual OA cycle is the limit. For this reason, if the R410A refrigerant is distributed in the R410A cycle and hot water supply and hot water heating are performed simultaneously, the water heating efficiency will decrease, and sufficient hot water supply temperature and amount will not be obtained! The problem arises. Of course, it is conceivable to configure the R410A site so that a sufficient hot water temperature can be obtained at this time as well, but in order to obtain a sufficient hot water temperature and amount of water in the R410A cycle, the expansion of equipment and cost The problem of!
  • a first object of the present invention is to provide a heat pump type water heater that can use a heat pump cycle for hot water supply for air conditioning.
  • a second object of the present invention is to obtain a sufficient hot water supply temperature and amount when hot water is supplied simultaneously with heating in the heat pump water heater.
  • the present invention provides a first heat pump cycle in which a first refrigerant is circulated through at least a compressor and an expander, and a second heat pump having characteristics different from those of the first refrigerant.
  • a second heat pump cycle in which the refrigerant is circulated through at least a compressor and an expander, a water heat exchanger that exchanges heat between the first refrigerant and Z or the second refrigerant and water, A chamber in which the second heat pump cycle exchanges heat between the first circulation path passing through the water heat exchanger and the second refrigerant and room air.
  • a heat pump system comprising: a second circulation path passing through the internal air heat exchanger; and a circulation direction switching means for switching a circulation direction of the second refrigerant in the second heat pump cycle.
  • the first refrigerant is a carbon dioxide refrigerant and the second refrigerant is an FC refrigerant.
  • the circulation direction of the second refrigerant in the second heat pump cycle can be switched, it is possible to perform cooling / heating (air conditioning) using the second heat pump cycle.
  • the second circulation is added to the first circulation path.
  • the second refrigerant By distributing and circulating the second refrigerant in the path, it is possible to obtain a sufficient hot water supply temperature and amount of hot water supply.
  • the present invention it is possible to perform air conditioning (air conditioning) using the second heat pump cycle.
  • air conditioning air conditioning
  • sufficient hot water supply temperature and hot water supply can be obtained when heating and hot water supply are performed simultaneously.
  • FIG. 1 is a schematic configuration diagram of a heat pump hot water supply apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a heat pump type water heater according to an embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of the heat pump type hot water heater X according to the embodiment of the present invention.
  • the heat pump type water heater X has two heat pump cycles 1 (an example of the first heat pump cycle), 2 (an example of the second heat pump cycle), and a flowing water path.
  • 30a to 30d, a storage tank 31, a water heat exchanger 32, a circulation pump 34, and switching valves 41 to 45 are schematically configured.
  • the heat pump type water heater X includes a control unit (not shown) having a CPU, RAM, ROM and the like.
  • the hydrothermal exchange is performed by the refrigerant flowing in the pipe 14 connected to the heat pump cycle 1, the refrigerant flowing in the pipe 25 connected to the heat pump cycle 2, and the flowing water path 30b from the water supply port to the hot water supply port, or Heat exchange is performed with water flowing on the flowing water path 30a returning to the storage tank 31.
  • the water flow path 30a is a water flow path in which the storage tank 31, the circulation pump 34, the switching valve 45, the water heat exchanger 32, the switching valve 43, and the storage tank 31 are connected in order from the water supply port. is there.
  • the flowing water path 30b is a flowing water path in which the switching valve 45, the hydrothermal exchange 32, the switching valve 43, and the hot water supply port are connected in order.
  • the flowing water path 30c is a flow path of hot water from the storage tank 31 through the switching valve 44 to the hot water supply port, and the flow path 30d is from the water supply port to the hot water supply port through the switching valve 44. It is a distribution channel for water.
  • the control valves 43 and 45 are controlled by the control unit, so that the water supplied to the water supply loci flows along the flowing water path 30b in the direction of the broken line arrow. Become.
  • a sufficient amount of heating by the water heat exchanger 32 cannot be obtained for a certain time after the start of the instantaneous hot water supply operation. Therefore, for a certain period of time after the start of instantaneous operation, the hot water stored in the storage tank 31 is mixed with the water supplied from the water supply port through the water flow path 30d through the water flow path 30c and the switching valve 44. After the temperature is adjusted, the hot water supply port is supplied.
  • hot water can be instantaneously supplied from the hot water supply port.
  • the water supply to the storage tank 31 is stopped, and thereafter the water heat is supplied from the water inlet.
  • Instantaneous hot water supply is performed using a flowing water path 30b that passes through the exchanger 32 and continues to the hot water supply port. It is also possible to supply hot water as it is without mixing the hot hot water stored in the storage tank 31 with the water supplied to the water supply locus.
  • the heat pump cycle 1 (hereinafter referred to as the “CO cycle”) is connected to the compressor 11, the water heat
  • the circulation path 10 is connected to the exchanger 32, the expander 12, and the outdoor air heat exchanger 13 in this order.
  • the compressor 11 is driven by the control unit (not shown), whereby a CO refrigerant (an example of a first refrigerant), which is an example of a carbon dioxide refrigerant, is illustrated by an arrow.
  • a CO refrigerant an example of a first refrigerant
  • a carbon dioxide refrigerant an example of a carbon dioxide refrigerant
  • the CO refrigerant has different characteristics from the R410A refrigerant described later.
  • the CO cycle 1 is mainly used for the hot water storage operation.
  • the two mediums are expanded in the expander 12 after being cooled in the water heat exchanger 32 through heat exchange with water flowing on the flowing water path 30a or 30b. Thereafter, the low-temperature and low-pressure CO refrigerant expanded in the expander 12 is transferred to the outdoor air heat exchanger 13 in the outdoor.
  • the CO refrigerant is circulated through the circulation path 10 as described above.
  • the switching valve 45 is controlled by the control unit (not shown) so as to pass through the flowing water path 30b, and the switching valve 43 is controlled by the control unit (not shown).
  • the hot water heated in the hydrothermal exchange is supplied to the hot water supply port.
  • the switching valve 45 is controlled by the control unit (not shown) so as to pass through the flowing water path 30a, and the switching valve 43 is controlled by the control unit (not shown).
  • the hot water heated in the hydrothermal exchange is switched to be stored in the storage tank 31.
  • an R410A refrigerant (an example of a second refrigerant), which is an example of an HFC refrigerant, is circulated through a circulation path 20 (an example of a first circulation path) and Have a circulation path 40 (an example of a second circulation path)!
  • the R410A refrigerant has different characteristics from the CO refrigerant, and water is lower than the CO refrigerant.
  • R410A cycle 2 is mainly used for heating water in the instantaneous hot water supply operation.
  • R410A refrigerant include R407CZE, R404A, R507A, and R134a.
  • two different refrigerants used in the heat pump type water heater X are carbon dioxide refrigerant and It is not limited to HFC refrigerant, but two refrigerants with different characteristics such as heat exchange efficiency and energy consumption efficiency should be used.
  • the circulation path 20 includes a compressor 21, a four-way valve 24, a switching valve 41, a water heat exchanger 32, a switching valve 42, an expander (for example, an expansion valve) 22, an outdoor air heat exchanger 23, and the four-way valve. Valves 24 are connected in order.
  • the R410A refrigerant is circulated in the direction of the solid arrow shown in the figure by being driven by the compressor 21 under the control of the controller (not shown). Specifically, the high-temperature and high-pressure R410A refrigerant compressed and discharged by the compressor 21 reaches the water heat exchanger 32 via the four-way valve 24 and the switching valve 41. The R410A refrigerant is cooled by exchanging heat with the water flowing on the flowing water path 30a or 30b in the hydrothermal exchange 32. Thereafter, the R410A refrigerant is expanded in the expander 22 via the switching valve 42.
  • the low-temperature and low-pressure R410A refrigerant expanded in the expander 22 is heat-exchanged with the outdoor air in the outdoor air heat exchanger 23 to absorb heat and vaporize, and then passes through the four-way valve 24 and again to the compressor.
  • the R410A cycle 2 as described above, the R410A refrigerant is circulated in the direction indicated by the solid arrow in the circulation path 20, so that the water flowing in the arrow direction on the flowing water path 30 a or 30 b is It is heated to about 65 ° C by heat exchange with the R410A refrigerant in the heat exchanger 32. Since the flow direction of the R410A refrigerant and water in the water heat exchanger 32 is opposite, heat exchange between the R410A refrigerant and water is performed efficiently.
  • the water heat exchanger 32 is shared with the CO cycle 1 and the R410A cycle 2.
  • the water heat exchanger 32 includes the CO refrigerant pipe 14 provided in the water heat exchanger 32 and the pipes 33, R4 provided on the flowing water paths 30a, 30b.
  • the 10A refrigerant pipe 25 and the pipe 33 are configured to come into contact with each other.
  • the circulation path 40 includes the compressor 21, the four-way valve 24, the switching valve 41, the indoor air heat exchanger 4, the switching valve 42, the expander 22, and the outdoor air heat exchanger 23.
  • the four-way valve 24 is connected in order.
  • the indoor air heat exchanger 4 is provided in an air conditioner (not shown) that performs indoor heating and cooling, and exchanges heat between the R410A refrigerant circulated in the circulation path 40 and room air. By doing so, the indoor air is heated or cooled.
  • the R410A cycle 2 is performed by the air conditioner (not shown). It cannot be used for air conditioning. Specifically, in the configuration in which the circulation direction of the R410A refrigerant is only the same direction as the circulation path 20 (the solid arrow direction in FIG. 1), only heating is possible and cooling cannot be performed. Yes.
  • the four-way valve 24 is controlled by the control unit (not shown), and the circulation direction of the R410 A refrigerant in the circulation path 40 is shown in the solid line. It can be switched to the arrow direction or the broken arrow direction.
  • the control unit and the four-way valve 24 when switching the circulation direction of the R410A refrigerant correspond to the circulation direction switching means.
  • the compressor causes the compressor. 21 and the four-way valve 24 are controlled, and the circulation of the R410A refrigerant in the direction of the solid arrow is started in the circulation path 40 of the R410A cycle 2. At this time, the solid line path shown in the figure is established inside the four-way valve 24 described above.
  • the R410A refrigerant flows in the direction of the solid arrow shown in the figure. Circulated. Specifically, the high-temperature and high-pressure R41 OA refrigerant compressed and discharged by the compressor 21 reaches the indoor air heat exchanger 4 via the four-way valve 24 and the switching valve 41. The R410A refrigerant is cooled by exchanging heat with the indoor air in the indoor air heat exchanger 4. Thereafter, the R410A refrigerant is expanded in the expander 22 via the switching valve 42.
  • the low-temperature and low-pressure R410A refrigerant expanded in the expander 22 is heat-exchanged with the outdoor air in the outdoor air heat exchanger 23 to absorb heat and vaporize, and then passes through the four-way valve 24 and again to the compressor. Into 21.
  • the R410A refrigerant is circulated in the direction of the solid arrow in the circulation path 40 as described above, so that indoor air is exchanged with the R410A refrigerant in the indoor air heat exchanger 4. Heated by heat exchange. In other words, heating is realized by the heat pump type water heater X.
  • both the R410A refrigerant and the CO refrigerant are used.
  • the heat pump type hot water heater X when the user requests the heat pump type hot water heater X to start a cooling operation from an operation unit (not shown), the heat pump type hot water heater X has the control unit (not shown).
  • the compressor 21 and the four-way valve 24 are controlled, and the circulation of the R410A refrigerant in the direction of the broken line arrow is started in the circulation path 40 of the R410A cycle 2. At this time, the broken line path shown in the figure is established inside the four-way valve 24.
  • the R410A refrigerant is circulated in the circulation path 40 in the direction of the broken arrow shown in the figure. Specifically, the high-temperature and high-pressure R410A refrigerant compressed and discharged by the compressor 21 reaches the outdoor air heat exchanger 23 via the four-way valve 24. The R410A refrigerant is cooled by exchanging heat with outdoor air in the outdoor air heat exchange. Thereafter, the R410A refrigerant is expanded in the expander 22.
  • the low-temperature and low-pressure R410A refrigerant expanded in the expander 22 is subjected to heat exchange with the indoor air in the indoor air heat exchanger 4 via the switching valve 42 and absorbs and vaporizes, and then the switching valve 41 and the In the R410A cycle 2 that flows into the compressor 21 again through the four-way valve 24, the R410A refrigerant is circulated in the direction of the broken line arrow in the circulation path 40 as described above, so that the indoor air is The indoor air heat exchanger 4 is cooled by heat exchange with the R410A refrigerant. That is, the heatbon Cooling is realized by the hot water heater X.
  • the switching valves 41 and 42 are controlled by the control unit (not shown), whereby the circulation of the R410A refrigerant in the circulation path 20 is prevented. The Therefore, even when cooling is performed by the R410A cycle 2, the hot water storage operation by the CO cycle 1 is not hindered.
  • the circulation direction of the R410A refrigerant in the circulation paths 20 and 40 is switched by the four-way valve 24. For this reason, the heat pump type water heater X cannot simultaneously perform cooling and instantaneous hot water supply. However, if the R410A cycle 2 is configured as in the examples described later, simultaneous operation of cooling and instantaneous hot water supply is possible.
  • FIG. 2 is a schematic configuration diagram of the heat pump type water heater XI according to the embodiment of the present invention. Note that the same components as those of the heat pump type hot water heater X described in the embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the heat pump type hot water heater XI has an R41 OA cycle 5 instead of the R41 OA cycle 2 of the heat pump type hot water heater X! /.
  • the R41 OA cycle 5 is provided with switching valves 51 to 56 controlled by the control unit (not shown) and two expanders 22a and 22b.
  • the circulation direction of the R41 OA refrigerant in the circulation path 20 and the circulation direction of the R41 OA refrigerant in the circulation path 40 can be controlled independently. . Therefore, in the R41 OA cycle 5, cooling or heating and instantaneous hot water supply can be performed simultaneously. This will be specifically described below.
  • the R410A refrigerant flows into the compressor 21, the four-way valve 24, the switching valve 51, the switching valve 52, the water heat exchanger 32, the expander 22a, the switching valve 53, the switching valve 54, Outdoor
  • the air heat exchanger 23, the switching valve 56, the four-way valve 24, and the compressor 21 are circulated in this order.
  • the water flowing on the flowing water path 30a or 30b is heated in the water heat exchanger 32.
  • the R410A refrigerant is supplied from the compressor 21, the four-way valve 24, the switching valve 51, the indoor air heat exchanger 4, the switching valve 55, the expander 22b, the switching valve 54, and the outdoor air heat exchanger 23.
  • the switching valve 56, the four-way valve 24, and the compressor 21 are circulated in this order.
  • the indoor air heat exchanger 4 heats the room air and heats it.
  • heating and instantaneous hot water supply can be performed simultaneously by distributing the R410A refrigerant by the switching valve 51.
  • the decrease in the heating efficiency of the water in the hydrothermal exchange due to the distribution of the R410A refrigerant can be compensated by the CO cycle 1.
  • the R410A cycle 5 controls the compressor 21, the four-way valve 24, and the switching valves 51 to 56 by the control unit (not shown).
  • R41 OA refrigerant is circulated in the direction of the broken arrow shown in FIG.
  • the R410A refrigerant flows into the compressor 21, the four-way valve 24, the switching valve 56, the switching valve 52, the water heat exchanger 32, the expander 22a, the switching valve 53, the switching valve 55,
  • the indoor air heat exchanger 4, the switching valve 51, the four-way valve 24, and the compressor 21 are circulated in this order.
  • the water flowing on the flowing water path 30a or 30b is heated in the water heat exchanger 32.
  • the R410A refrigerant flows into the compressor 21, the four-way valve 24, the switching valve 56, the outdoor air heat exchanger 23, the switching valve 54, the expander 22b, the switching valve 55, the indoor air heat exchange ⁇ 4
  • the switching valve 51, the four-way valve 24, and the compressor 21 are circulated in this order.
  • the indoor air heat exchanger 4 cools the indoor air.
  • the R41OA refrigerant is distributed by the switching valve 56, so that cooling and instantaneous hot water supply can be performed simultaneously.
  • the CO cycle 1 can compensate for the decrease in water heating efficiency in the hydrothermal exchange due to the distribution of the R410A refrigerant.
  • the switching valve is used in the present embodiment and the above embodiment, it is possible to obtain the same effect by reducing the function without using it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Details Of Fluid Heaters (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

給湯用のヒートポンプサイクルを冷暖房(空調)に用いることのできるヒートポンプ式給湯機を提供すること。また,前記ヒートポンプ式給湯機において暖房と同時に給湯を行う際に十分な給湯温度や給湯量を得ること。  CO2冷媒が循環されるCO2サイクル1と,R410A冷媒が循環されるR410Aサイクル2と,前記CO2冷媒及び/又は前記R410A冷媒と水との間で熱交換を行う水熱交換器32と,を備えてなり,前記R410Aサイクル2に,前記水熱交換器32を通過する循環経路20と,前記R410A冷媒と室内空気との間で熱交換を行う室内空気熱交換器4を通過する循環経路40と,当該R410Aサイクル2における前記R410A冷媒の循環方向を切り替える四方弁24とが設けられている。

Description

明 細 書
ヒートポンプ式給湯機
技術分野
[0001] 本発明は,圧縮機や膨張器などが設けられたヒートポンプサイクル内に循環する冷 媒との熱交換によって水を加熱して給湯するヒートポンプ式給湯機に関し,特に,熱 交換効率やエネルギ消費効率などの特性の異なる冷媒を用いた二つのヒートポンプ サイクルを具備するヒートポンプ式給湯機に関するものである。
背景技術
[0002] 従来から,圧縮機や膨張器などが設けられたヒートポンプサイクル内に循環する冷 媒との熱交換によって水を加熱して給湯するヒートポンプ式給湯機が周知である。前 記冷媒は,例えば炭酸ガス冷媒ゃ HFC冷媒などである。
ここに,前記炭酸ガス冷媒は,その冷媒の特性として水を高温 (例えば 90°C程度) まで加熱することができる。一方,前記 HFC冷媒は,冷媒の特性上比較的低温 (例 えば 65°C程度)までしか水を加熱することができない。しかし,空調用機器に用いた 場合,エネルギ消費効率 (COP)は,前記炭酸ガス冷媒を用いるよりも前記 HFC冷 媒を用いる方が優れている。
[0003] 一方,特許文献 1には, CO冷媒 (炭酸ガス冷媒の一例)が用いられたヒートポンプ
2
サイクル(以下, 「COサイクル」という)と, R410A冷媒 (HFC冷媒の一例)が用いら
2
れたヒートポンプサイクル(以下, 「R410Aサイクル」と!、う)とを併せ持つヒートポンプ 式給湯システムが示されている。前記ヒートポンプ式給湯システムでは,高温の温水 が必要な場合に COサイクルが用いられ,低温の温水でよい場合には R410Aサイク
2
ルが用いられる。
さらに,前記特許文献 1の発明では,前記 R410Aサイクルに温水暖房用の閉回路 を接続し,前記 R410Aサイクルを給湯及び温水暖房で共用することが提案されて ヽ る。
特許文献 1 :特開 2005— 83585号公報
発明の開示 発明が解決しょうとする課題
[0004] し力しながら,前記特許文献 1に示された前記ヒートポンプ式給湯システムでは,前 記 R410Aサイクル内における前記 R410A冷媒の循環方向が一定である。そのため ,前記 R410Aサイクルを給湯や温水暖房に用いることはできても,該 R410Aサイク ルを冷房に用いることはできな力つた。
[0005] また,前記特許文献 1に示された前記ヒートポンプ式給湯システムでは,前記 R410 Aサイクルが,給湯及び温水暖房のいずれか一方に選択的に用いられ,給湯及び 温水暖房を同時に行うことはできな力つた。
し力も,前記ヒートポンプ式給湯システムは,前記 COサイクル及び前記 R41 OAサ
2
イタルのいずれか一方だけが選択的に用いられる構成である。したがって,前記ヒー トポンプ式給湯システムにおける水の加熱効率は,前記 COサイクル及び前記 R41
2
OAサイクルの個々による水の加熱効率が限界である。そのため,仮に前記 R410A サイクルで R410A冷媒を分配して給湯及び温水暖房を同時に行った場合には,水 の加熱効率が低下するため十分な給湯温度や給湯量を得ることができな!/ヽと ヽぅ問 題が生じる。もちろん,このときにも十分な給湯温度が得られるように前記 R410Aサ イタルを構成することも考えられるが,前記 R410Aサイクルで十分な給湯温度や給 湯量を得るためには,装置の拡大やコストの増大と!/、う問題が生じる。
従って,本発明は上記事情に鑑みてなされたものであり,第一の目的は,給湯用の ヒートポンプサイクルを冷暖房 (空調)に用いることのできるヒートポンプ式給湯機を提 供すること〖こある。そして,本発明の第二の目的は,前記ヒートポンプ式給湯機にお いて暖房と同時に給湯を行う際に十分な給湯温度や給湯量を得ることにある。
課題を解決するための手段
[0006] 上記目的を達成するために本発明は,第一の冷媒が少なくとも圧縮機及び膨張器 を経て循環される第一のヒートポンプサイクルと,前記第一の冷媒と異なる特性を持 つ第二の冷媒が少なくとも圧縮機及び膨張器を経て循環される第二のヒートポンプ サイクルと,前記第一の冷媒及び Z又は前記第二の冷媒と水との間で熱交換を行う 水熱交換器と,を備えてなり,前記第二のヒートポンプサイクルが,前記水熱交換器 を通過する第一の循環経路と,前記第二の冷媒と室内空気との間で熱交換を行う室 内空気熱交換器を通過する第二の循環経路と,当該第二のヒートポンプサイクルに おける前記第二の冷媒の循環方向を切り替える循環方向切替手段と,を含んでなる ことを特徴とするヒートポンプ式給湯機として構成される。具体的には,前記第一の冷 媒が炭酸ガス冷媒であって,前記第二の冷媒カ ¾FC冷媒であることが考えられる。 本発明によれば,前記第二のヒートポンプサイクルにおける前記第二の冷媒の循 環方向を切り替えることができるため,該第二のヒートポンプサイクルを用いて冷暖房 (空調)を行うことが可能となる。
また,水を前記水熱交換器において前記第一の冷媒及び前記第二の冷媒と同時 に熱交換させることも可能な構成であるため,前記第一の循環経路に加えて前記第 二の循環経路に前記第二の冷媒を分配して循環させることにより,十分な給湯温度 や給湯量を得ることができる。
発明の効果
[0007] 本発明によれば,前記第二のヒートポンプサイクルを用いて冷暖房 (空調)を行うこ とが可能となる。また,暖房及び給湯を同時に行う際に十分な給湯温度や給湯量を 得ることができる。
図面の簡単な説明
[0008] [図 1]本発明の実施の形態に係るヒートポンプ式給湯機の概略構成図。
[図 2]本発明の実施例に係るヒートポンプ式給湯機の概略構成図。
符号の説明
[0009] 1· ··ヒートポンプサイクル(第一のヒートポンプサイクルの一例)
2, 5…ヒートポンプサイクル(第二のヒートポンプサイクルの一例)
4…室内空気熱交換器
11, 21…圧縮機
12, 22, 22a, 22b…膨張器
13, 23· ··室外空気熱交換器
14, 25, 33· ··配管
20· · '循環経路 (第一の循環経路の一例)
40· · '循環経路 (第二の循環経路の一例) 24· ··四方弁
30a〜30d…流水経路
31 · ··貯留タンク
41〜45, 51〜56· ··切換弁
発明を実施するための最良の形態
[0010] 以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理 解に供する。尚,以下の実施の形態は,本発明を具体ィ匕した一例であって,本発明 の技術的範囲を限定する性格のものではな 、。
ここに,図 1は本発明の実施の形態に係るヒートポンプ式給湯機 Xの概略構成図で ある。
図 1に示すように,前記ヒートポンプ式給湯機 Xは,冷媒が循環される二つのヒート ポンプサイクル 1 (第一のヒートポンプサイクルの一例) , 2 (第二のヒートポンプサイク ルの一例),流水経路 30a〜30d,貯留タンク 31,水熱交換器 32,循環ポンプ 34及 び切換弁 41〜45を備えて概略構成されている。また,前記ヒートポンプ式給湯機 X は, CPUや RAM, ROMなどを有する不図示の制御部を備えている。
前記水熱交 は,前記ヒートポンプサイクル 1に接続された配管 14に流れる 冷媒や,前記ヒートポンプサイクル 2に接続された配管 25に流れる冷媒と,給水口か ら給湯口への流水経路 30b,又は前記貯留タンク 31に戻る流水経路 30a上を流れる 水との間で熱交換を行うものである。ここに,前記流水経路 30aは,前記給水口から 前記貯留タンク 31,循環ポンプ 34,切換弁 45,水熱交換器 32,切換弁 43,貯留タ ンク 31が順に接続された水の流水経路である。また,前記流水経路 30bは,前記給 水口カゝら切換弁 45,水熱交 32,切換弁 43,前記給湯口が順に接続された水の 流水経路である。なお,前記流水経路 30cは,前記貯留タンク 31から前記切換弁 44 を経て前記給湯口に続く温水の流通経路,前記流通経路 30dは,前記給水口から 前記切換弁 44を経て前記給湯口に続く水の流通経路である。
[0011] 前記貯留タンク 31の上層には前記水熱交 において前記冷媒との熱交換に よって加熱された温水が,前記貯留タンク 31の下層には給水ロカも供給される水が 貯留される。 当該ヒートポンプ式給湯機 Xでは,前記制御部 (不図示)によって前記各構成要素 が制御されることにより,給水口から供給された水を前記流水経路 30b上で前記水熱 交 によって加熱して給湯口から直接給湯する瞬間給湯運転や,給水口から 供給された水を前記流水経路 30a上で前記水熱交換器 32によって加熱して前記貯 留タンク 31に貯留する貯湯運転などが行われる。
ここで,前記瞬間給湯運転では,前記切換弁 43及び 45が前記制御部によって制 御されることにより,前記給水ロカ 供給された水が前記流水経路 30bに沿って破線 矢印方向に流通することとなる。但し,前記瞬間給湯運転が開始してからの一定時 間は,前記水熱交換器 32による加熱量が十分得られない。そのため,瞬間運転開 始後の一定時間は,前記貯留タンク 31に貯留された温水が,前記流水経路 30cを 経て切換弁 44において,前記給水口から前記流水経路 30dを経て供給される水と 混合されて温度調節された後,前記給湯口に供給される。これにより,前記給湯口か ら瞬時に温水を給湯することが可能である。そして,前記水熱交翻32によって給 水口力も供給された水を十分に加熱することが可能となった時点で,前記貯留タンク 31の給水は停止され,その後は,前記給水口から前記水熱交換器 32を経て前記給 湯口に続く流水経路 30bを用いて瞬間給湯が行われる。なお,前記貯留タンク 31に 貯留された高温の温水を前記給水ロカ 供給される水と混合することなく,そのまま 給湯することも可能である。
また,前記貯湯運転では,前記循環ポンプ 34が駆動されることにより,前記流水経 路 30aに沿って実線矢印方向に水が流通することにより,貯留タンク 31に温水が貯 留される。
前記ヒートポンプサイクル 1 (以下, 「COサイクル」という)は,圧縮機 11,前記水熱
2
交換器 32,膨張器 12及び室外空気熱交換器 13が順に接続された循環経路 10を 有している。
前記循環経路 10では,前記制御部 (不図示)によって前記圧縮機 11が駆動される ことにより,炭酸ガス冷媒の一例である CO冷媒 (第一の冷媒の一例)が図示する矢
2
印方向に循環される。ここに,前記 CO冷媒は,後述する R410A冷媒と異なる特性
2
を持ち,冷媒の特性として水を高温(90°C程度)まで加熱することができるが,ェネル ギ消費効率が比較的低い。そのため,前記 COサイクル 1は,主に前記貯湯運転に
2
おける水の加熱に用いられる。
具体的には,前記圧縮機 11において圧縮して吐出された高温高圧の前記 CO冷
2 媒が,前記水熱交換器 32にお 、て前記流水経路 30aまたは 30b上を流れる水と熱 交換されて冷却された後,前記膨張器 12において膨張する。その後,前記膨張器 1 2で膨張した低温低圧の前記 CO冷媒は,前記室外空気熱交換器 13において室外
2
の空気と熱交換されて吸熱し気化した後,再度前記圧縮機 11に流入する。
前記 COサイクル 1では,前記のように前記 CO冷媒が前記循環経路 10に循環さ
2 2
れることにより,前記流水経路 30aまたは 30b上を矢印方向に流れる水が,前記水熱 交 32における前記 CO冷媒との熱交換によって 90°C程度まで加熱される。な
2
お,前記水熱交翻32における前記 CO冷媒と水との流通方向が反対であるため,
2
該 CO冷媒と水との熱交換は効率的に行われる。
2
このとき,前記瞬間給湯運転においては,前記流水経路 30bを通るよう前記制御部 (不図示)によって前記切換弁 45が制御され,前記制御部(不図示)によって前記切 換弁 43が制御されることにより前記水熱交 において加熱された温水が前記 給湯口に供給される。また,前記貯湯運転においては,前記流水経路 30aを通るよう 前記制御部 (不図示)によって前記切換弁 45が制御され,前記制御部 (不図示)によ つて前記切換弁 43が制御されることにより,前記水熱交 において加熱された 温水が前記貯留タンク 31に貯留されるように切り替えられる。
一方,前記ヒートポンプサイクル 2 (以下, 「R410Aサイクル」という)は, HFC冷媒 の一例である R410A冷媒 (第二の冷媒の一例)が循環される循環経路 20 (第一の 循環経路の一例)及び循環経路 40 (第二の循環経路の一例)を有して!/、る。ここに, 前記 R410A冷媒は,前記 CO冷媒と異なる特性を持ち, CO冷媒に比べて水を低
2 2
温(65°C程度)までし力加熱することができな 、が,エネルギ消費効率 (COP)は高 いので,比較的低い沸上げ温度に適している。そのため,前記 R410Aサイクル 2は ,主に前記瞬間給湯運転における水の加熱に用いられる。なお,前記 R410A冷媒 の他の例としては,例えば R407CZE, R404A, R507A, R134a等がある。また, 前記ヒートポンプ式給湯機 Xに用いられる二つの異なる冷媒は,炭酸ガス冷媒及び HFC冷媒に限られるものではなく,熱交換効率やエネルギ消費効率などの特性が 異なる二つの冷媒を用いればよ 、。
[0014] 前記循環経路 20は,圧縮機 21,四方弁 24,切換弁 41,水熱交換器 32,切換弁 4 2,膨張器 (例えば膨張弁) 22,室外空気熱交換器 23及び前記四方弁 24が順に接 続されて構成されている。
前記循環経路 20では,前記制御部 (不図示)によって制御されて前記圧縮機 21が 駆動されることにより,前記 R410A冷媒が図示する実線矢印方向に循環される。具 体的には,前記圧縮機 21において圧縮して吐出された高温高圧の前記 R410A冷 媒が,前記四方弁 24及び前記切換弁 41を経て前記水熱交換器 32に達する。そし て,前記 R410A冷媒は,前記水熱交^^ 32において前記流水経路 30aまたは 30b 上を流れる水と熱交換されて冷却される。その後,前記 R410A冷媒は,前記切換弁 42を経て前記膨張器 22において膨張される。そして,前記膨張器 22で膨張した低 温低圧の前記 R410A冷媒は,前記室外空気熱交換器 23において室外空気と熱交 換されて吸熱し気化した後,前記四方弁 24を経て再度前記圧縮機 21に流入する。 前記 R410Aサイクル 2では,前記のように前記 R410A冷媒が前記循環経路 20〖こ おいて実線矢印方向に循環されることにより,前記流水経路 30aまたは 30b上を矢 印方向に流れる水が,前記水熱交換器 32における前記 R410A冷媒との熱交換に よって 65°C程度まで加熱される。なお,前記水熱交換器 32における前記 R410A冷 媒と水との流通方向が反対であるため,該 R410A冷媒と水との熱交換は効率的に 行われる。
[0015] また,前記水熱交換器 32は,前記 COサイクル 1及び前記 R410Aサイクル 2に共
2
通するものであって,これらに循環される前記 CO冷媒及び前記 R410A冷媒と,前
2
記流水経路 30a又は前記流水経路 30b上を流れる水とを同時に熱交換させることが 可能である。具体的には,前記水熱交換器 32が,該水熱交換器 32内に設けられた 前記 CO冷媒の配管 14と前記流水経路 30a, 30b上に設けられた配管 33,前記 R4
2
10A冷媒の配管 25と前記配管 33が共に接触するように構成されて 、る。
したがって,前記ヒートポンプ式給湯機 Xでは,前記 COサイクル 1及び前記 R410
2
Aサイクル 2を同時に用いることにより,個々の熱交換効率以上の熱交換効率で水を 加熱することができる。これにより,前記瞬間給湯運転時における給湯量を増加させ ることがでさる。
[0016] 他方,前記循環経路 40は,前記圧縮機 21,前記四方弁 24,前記切換弁 41,室内 空気熱交換器 4,前記切換弁 42,前記膨張器 22,前記室外空気熱交換器 23及び 前記四方弁 24が順に接続されて構成されている。
ここに,前記室内空気熱交換器 4は,室内の冷暖房を行う空気調和機 (不図示)に 設けられ,前記循環経路 40内に循環される前記 R410A冷媒と室内空気との間で熱 交換を行うことにより室内空気を加熱或 、は冷却するものである。
ところで,前記のように構成されたヒートポンプ式給湯機 Xでは,前記 R410Aサイク ル 2における前記 R410A冷媒の循環方向が一定であれば,該 R410Aサイクル 2を 前記空気調和機 (不図示)で行われる冷暖房 (空調)に用いることはできな 、。具体 的には,前記 R410A冷媒の循環方向が,前記循環経路 20と同様の方向(図 1の実 線矢印方向)だけである構成では,暖房のみが可能であって冷房を行うことはできな い。
しかし,本発明の実施の形態に係る前記ヒートポンプ式給湯機 Xでは,前記四方弁 24が前記制御部(不図示)によって制御され,前記循環経路 40における前記 R410 A冷媒の循環方向が図示する実線矢印方向又は破線矢印方向に切り替えられる。こ こに,前記 R410A冷媒の循環方向を切り替えるときの前記制御部及び前記四方弁 2 4が循環方向切替手段に相当する。
[0017] 以下,前記ヒートポンプ式給湯機 Xの前記 R410Aサイクル 2において実現される暖 房運転及び冷房運転にっ ヽて説明する。
(1)暖房運転について
ユーザにより前記ヒートポンプ式給湯機 Xに対して,不図示の操作部から暖房運転 の開始が要求されると,該ヒートポンプ式給湯機 Xでは,前記制御部(不図示)によつ て前記圧縮機 21及び前記四方弁 24が制御され,前記 R410Aサイクル 2の循環経 路 40において前記 R410A冷媒の実線矢印方向の循環が開始される。このとき,前 記四方弁 24内部では図示する実線経路が確立されている。
これにより,前記循環経路 40では,図示する実線矢印方向に前記 R410A冷媒が 循環される。具体的には,前記圧縮機 21において圧縮して吐出された高温高圧の 前記 R41 OA冷媒が,前記四方弁 24及び前記切換弁 41を経て前記室内空気熱交 4に達する。そして,前記 R410A冷媒は,前記室内空気熱交 4において室 内の空気と熱交換されて冷却される。その後,前記 R410A冷媒は,前記切換弁 42 を経て前記膨張器 22において膨張される。そして,前記膨張器 22において膨張し た低温低圧の前記 R410A冷媒は,前記室外空気熱交換器 23において室外の空気 と熱交換されて吸熱し気化した後,前記四方弁 24を経て再度前記圧縮機 21に流入 する。
前記 R410Aサイクル 2では,前記のように前記 R410A冷媒が前記循環経路 40〖こ おいて実線矢印方向に循環されることにより,室内の空気が,前記室内空気熱交換 器 4における前記 R410A冷媒との熱交換によって加熱される。即ち,前記ヒートボン プ式給湯機 Xによって暖房が実現される。
[0018] ところで,前述したように,従来装置 (例えば,特許文献 1参照)では前記 R410Aサ イタル 2を用いて,瞬間給湯と暖房とを同時に行うことはできな力つた。また,前記 R4 10A冷媒を分配して瞬間給湯と暖房とを同時に行うことも考えられるが,この場合に は十分な給湯温度や給湯量が得ることができな 、と 、う課題が伴う。
しかし,前記ヒートポンプ式給湯機 Xでは,瞬間給湯と暖房とを同時に行う際,前記 水熱交換器 32において,前記 COサイクル 1に循環する前記 CO冷媒と,前記 R41
2 2
OAサイクル 2に循環する R410A冷媒とで同時に水が加熱される。これにより,瞬間 給湯と暖房とを同時に行う際に,十分な給湯温度や給湯量を得ることができる。以下 ,この点について詳説する。
[0019] まず,前記ヒートポンプ式給湯機 Xにおいて前記 R410Aサイクル 2によって暖房運 転が行われているときに,ユーザによって不図示の操作部に対して瞬間給湯の要求 が行われると,該ヒートポンプ式給湯機 Xでは,前記切換弁 41, 42が前記制御部(不 図示)によって制御され,前記 R410Aサイクル 2の循環経路 20における前記 R410 A冷媒の実線矢印方向の循環が開始される。このとき,前記 R410A冷媒は,前記 R 41 OAサイクル 2にお ヽて前記循環経路 20及び 40に分配して循環される。そのため ,前記水熱交換器 32における前記循環経路 20を循環する前記 R410A冷媒による 水の加熱が十分に行われな!/、おそれがある。
そこで,前記ヒートポンプ式給湯機 Xでは,前記 R410Aサイクル 2によって暖房運 転が行われているときに,ユーザによって不図示の操作部に対して瞬間給湯の要求 が行われると,前記制御部(不図示)によって前記 COサイクル 1の圧縮機 11の駆動
2
が制御されて,前記 COサイクル 1における前記 CO冷媒の循環が開始される。
2 2
これにより,前記水熱交換器 32では,前記 R410A冷媒と前記 CO冷媒との両方で
2
水が加熱されることとなる。即ち,前記 R410Aサイクル 1における瞬間給湯と暖房の 同時運転時の水の加熱効率の低下は,前記 COサイクル 1を循環する前記 CO冷
2 2 媒と水との熱交換によって補われる。したがって,前記 R410Aサイクル 2において瞬 間給湯と暖房とを同時に行う際に,十分な給湯温度や給湯量を得ることができる。 (2)冷房運転について
一方,ユーザにより前記ヒートポンプ式給湯機 Xに対して,不図示の操作部から冷 房運転の開始が要求されると,該ヒートポンプ式給湯機 Xでは,前記制御部(不図示
)によって前記圧縮機 21及び前記四方弁 24が制御され,前記 R410Aサイクル 2の 循環経路 40において前記 R410A冷媒の破線矢印方向の循環が開始される。このと き,前記四方弁 24内部では図示する破線経路が確立されている。
これにより,前記循環経路 40では,図示する破線矢印方向に前記 R410A冷媒が 循環される。具体的には,前記圧縮機 21において圧縮して吐出された高温高圧の 前記 R410A冷媒が,前記四方弁 24を経て前記室外空気熱交換器 23に達する。そ して,前記 R410A冷媒は,前記室外空気熱交 において室外空気と熱交換さ れて冷却される。その後,前記 R410A冷媒は,前記膨張器 22において膨張される。 そして,前記膨張器 22において膨張した低温低圧の前記 R410A冷媒は,前記切 換弁 42を経て前記室内空気熱交 4において室内空気と熱交換されて吸熱し気 化した後,前記切換弁 41及び前記四方弁 24を経て再度前記圧縮機 21に流入する 前記 R410Aサイクル 2では,前記のように前記 R410A冷媒が前記循環経路 40〖こ おいて破線矢印方向に循環されることにより,室内の空気が,前記室内空気熱交換 器 4における前記 R410A冷媒との熱交換によって冷却される。即ち,前記ヒートボン プ式給湯機 Xによって冷房が実現される。
[0021] なお,このとき前記ヒートポンプ式給湯機 Xでは,前記切換弁 41及び 42が前記制 御部(不図示)によって制御されることにより,前記循環経路 20における前記 R410A 冷媒の循環は阻止される。したがって,前記 R410Aサイクル 2によって冷房が行わ れている場合であっても,前記 COサイクル 1による前記貯湯運転に支障はない。
2
また,前記ヒートポンプ式給湯機 Xの R410Aサイクル 2では,前記四方弁 24によつ て前記循環経路 20及び 40における前記 R410A冷媒の循環方向が共に切り替えら れる。そのため,前記ヒートポンプ式給湯機 Xでは,冷房及び瞬間給湯を同時に行う ことはできない。しかし,後述する実施例のように前記 R410Aサイクル 2を構成すれ ば,冷房及び瞬間給湯の同時運転も可能となる。
実施例
[0022] ここに,図 2は,本発明の実施例に係るヒートポンプ式給湯機 XIの概略構成図であ る。なお,前記実施の形態で説明した前記ヒートポンプ式給湯機 Xと同様の構成要素 については,同じ符号を付してその説明を省略する。
図 2に示すように,前記ヒートポンプ式給湯機 XIは,前記ヒートポンプ式給湯機 Xの R41 OAサイクル 2に換えて R41 OAサイクル 5を有して!/、る。前記 R41 OAサイクル 5 には,前記制御部(不図示)によって制御される切換弁 51〜56,二つの膨張器 22a 及び 22bが設けられて!/、る。
このように構成された前記 R410Aサイクル 5では,前記循環経路 20における前記 R41 OA冷媒の循環方向と,前記循環経路 40における前記 R41 OA冷媒の循環方向 とを独立して制御することが可能である。したがって,前記 R41 OAサイクル 5では,冷 房又は暖房と瞬間給湯とを同時に行うことが可能である。以下,具体的に説明する。
[0023] (1)暖房と瞬間給湯との同時運転について
暖房と瞬間給湯との同時運転時,前記 R410Aサイクル 5では,前記制御部(不図 示)によって前記圧縮機 21,前記四方弁 24及び前記切換弁 51〜56が制御されるこ とにより,前記 R41 OA冷媒が図 2に示す実線矢印方向に循環される。
具体的には,前記循環経路 20では,前記 R410A冷媒が,圧縮機 21,四方弁 24, 切換弁 51,切換弁 52,水熱交換器 32,膨張器 22a,切換弁 53,切換弁 54,室外 空気熱交換器 23,切換弁 56,四方弁 24,圧縮機 21の順に循環される。これにより, 前記水熱交換器 32において前記流水経路 30aまたは 30b上を流れる水が加熱され る。
一方,前記循環経路 40では,前記 R410A冷媒は,圧縮機 21,四方弁 24,切換 弁 51,室内空気熱交換器 4,切換弁 55,膨張器 22b,切換弁 54,室外空気熱交換 器 23,切換弁 56,四方弁 24,圧縮機 21の順に循環される。これにより,前記室内空 気熱交換器 4において室内空気が加熱されて暖房が行われる。
このように,前記 R410Aサイクル 5では,前記切換弁 51で前記 R410A冷媒を分配 することによって暖房と瞬間給湯とを同時に行うことができる。なお,前述したように, 前記 R410A冷媒の分配による前記水熱交 における水の加熱効率の低下は ,前記 COサイクル 1によって補うことができる。
2
(2)冷房と瞬間給湯の同時運転について
冷房と瞬間給湯との同時運転時,前記 R410Aサイクル 5では,前記制御部(不図 示)によって前記圧縮機 21,前記四方弁 24及び前記切換弁 51〜56が制御されるこ とにより,前記 R41 OA冷媒が図 2に示す破線矢印方向に循環される。
具体的には,前記循環経路 20では,前記 R410A冷媒が,圧縮機 21,四方弁 24, 切換弁 56,切換弁 52,水熱交換器 32,膨張器 22a,切換弁 53,切換弁 55,室内 空気熱交換器 4,切換弁 51,四方弁 24,圧縮機 21の順に循環される。これにより, 前記水熱交換器 32において前記流水経路 30aまたは 30b上を流れる水が加熱され る。
一方,前記循環経路 40では,前記 R410A冷媒は,圧縮機 21,四方弁 24,切換 弁 56,室外空気熱交換器 23,切換弁 54,膨張器 22b,切換弁 55,室内空気熱交 ^ 4,切換弁 51,四方弁 24,圧縮機 21の順に循環される。これにより,前記室内 空気熱交換器 4において室内空気が冷却されて冷房が行われる。
このように,前記 R410Aサイクル 5では,前記切換弁 56で前記 R41 OA冷媒を分配 することによって冷房と瞬間給湯とを同時に行うことができる。なお,前述したように, 前記 R410A冷媒の分配による前記水熱交 における水の加熱効率の低下は ,前記 COサイクル 1によって補うことができる。 なお,本実施例及び前記実施の形態では切換弁を用いているが,用いないで機能 を縮小して同様の効果を得ることも可能である。

Claims

請求の範囲
[1] 第一の冷媒が少なくとも圧縮機及び膨張器を経て循環される第一のヒートポンプサ イタルと,前記第一の冷媒と異なる特性を持つ第二の冷媒が少なくとも圧縮機及び 膨張器を経て循環される第二のヒートポンプサイクルと,前記第一の冷媒及び Z又は 前記第二の冷媒と水との間で熱交換を行う水熱交換器と,を備えてなり,
前記第二のヒートポンプサイクルが,前記水熱交 を通過する第一の循環経路と ,前記第二の冷媒と室内空気との間で熱交換を行う室内空気熱交 を通過する 第二の循環経路と,当該第二のヒートポンプサイクルにおける前記第二の冷媒の循 環方向を切り替える循環方向切替手段と,を含んでなることを特徴とするヒートポンプ 式給湯機。
[2] 前記第一の冷媒が炭酸ガス冷媒であって,前記第二の冷媒が HFC冷媒である請 求項 1に記載のヒートポンプ式給湯機。
PCT/JP2006/323099 2005-12-28 2006-11-20 ヒートポンプ式給湯機 WO2007077687A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06832949.9A EP1972862B1 (en) 2005-12-28 2006-11-20 Heat pump hot water supply device
CN200680049376.5A CN101346592B (zh) 2005-12-28 2006-11-20 热泵式热水供给机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-378539 2005-12-28
JP2005378539A JP3966889B2 (ja) 2005-12-28 2005-12-28 ヒートポンプ式給湯機

Publications (1)

Publication Number Publication Date
WO2007077687A1 true WO2007077687A1 (ja) 2007-07-12

Family

ID=38228045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323099 WO2007077687A1 (ja) 2005-12-28 2006-11-20 ヒートポンプ式給湯機

Country Status (4)

Country Link
EP (1) EP1972862B1 (ja)
JP (1) JP3966889B2 (ja)
CN (1) CN101346592B (ja)
WO (1) WO2007077687A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120280052A1 (en) * 2010-03-05 2012-11-08 Mitsubishi Heavy Industries, Ltd. Hot-water heat pump and method of controlling the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5551882B2 (ja) * 2009-02-24 2014-07-16 ダイキン工業株式会社 ヒートポンプシステム
KR20120136854A (ko) * 2011-06-10 2012-12-20 삼성전자주식회사 급수장치
KR101873594B1 (ko) 2011-12-14 2018-07-02 엘지전자 주식회사 캐스케이드 히트펌프 장치
CN102759220B (zh) * 2012-07-30 2014-10-15 广东麦科尔新能源科技有限公司 基于二氧化碳压缩机并可用于恶劣环境的三联供系统
CN103939999B (zh) * 2014-04-16 2017-01-11 广东美的制冷设备有限公司 双冷媒空调系统及其控制方法
CN111795423B (zh) * 2020-03-26 2021-09-03 同济大学 一种基于三流体换热器的二氧化碳热泵供暖系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083585A (ja) * 2003-09-04 2005-03-31 Mitsubishi Electric Corp ヒートポンプ式給湯システム
JP2005147409A (ja) * 2003-11-11 2005-06-09 Tokyo Electric Power Co Inc:The ヒートポンプ式冷暖房装置
JP2005180742A (ja) * 2003-12-17 2005-07-07 Hitachi Ltd ヒートポンプ式給湯機およびその運転方法
AU2005258416A1 (en) 2004-07-01 2006-01-12 Daikin Industries, Ltd. Hot water supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083585A (ja) * 2003-09-04 2005-03-31 Mitsubishi Electric Corp ヒートポンプ式給湯システム
JP2005147409A (ja) * 2003-11-11 2005-06-09 Tokyo Electric Power Co Inc:The ヒートポンプ式冷暖房装置
JP2005180742A (ja) * 2003-12-17 2005-07-07 Hitachi Ltd ヒートポンプ式給湯機およびその運転方法
AU2005258416A1 (en) 2004-07-01 2006-01-12 Daikin Industries, Ltd. Hot water supply system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1972862A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120280052A1 (en) * 2010-03-05 2012-11-08 Mitsubishi Heavy Industries, Ltd. Hot-water heat pump and method of controlling the same
US9664415B2 (en) * 2010-03-05 2017-05-30 Mitsubishi Heavy Industries, Ltd. Hot-water heat pump and method of controlling the same

Also Published As

Publication number Publication date
CN101346592B (zh) 2011-08-03
CN101346592A (zh) 2009-01-14
JP3966889B2 (ja) 2007-08-29
JP2007178088A (ja) 2007-07-12
EP1972862A4 (en) 2013-09-11
EP1972862B1 (en) 2015-10-21
EP1972862A1 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP5460701B2 (ja) 空気調和装置
WO2006004046A1 (ja) 給湯装置
JP5183804B2 (ja) 冷凍サイクル装置、空気調和装置
WO2007077687A1 (ja) ヒートポンプ式給湯機
JP2007232282A (ja) ヒートポンプ式給湯機
JP4746077B2 (ja) ヒートポンプ空調システム
JP2020159663A (ja) 冷暖房装置
JP2007178091A (ja) ヒートポンプ式給湯機
JP4182494B2 (ja) 大温度差空調システム
JP2004003801A (ja) 二酸化炭素を冷媒として用いた冷凍装置
JP2004226015A (ja) 冷温水供給システム
JP4890320B2 (ja) ヒートポンプ式給湯システム
JP4413188B2 (ja) ヒートポンプ式給湯機
JP2007183045A (ja) ヒートポンプ式冷暖房装置
JP2015215117A (ja) ヒートポンプ式冷房装置
CN105823269A (zh) 热泵系统
JP4753791B2 (ja) ヒートポンプ式給湯機
JP4749228B2 (ja) ヒートポンプ式給湯機
JP2004156806A (ja) 温冷熱システム
KR100877056B1 (ko) 하이브리드 히트펌프 시스템
JP2004251557A (ja) 二酸化炭素を冷媒として用いた冷凍装置
KR20210046302A (ko) 통합 냉난방 장치
JP4344044B2 (ja) 温水式冷暖房装置
JP2006162086A (ja) ヒートポンプ給湯機
JP2008014520A (ja) ヒートポンプ式給湯機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680049376.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006832949

Country of ref document: EP