CN101346592A - 热泵式热水供给机 - Google Patents

热泵式热水供给机 Download PDF

Info

Publication number
CN101346592A
CN101346592A CN200680049376.5A CN200680049376A CN101346592A CN 101346592 A CN101346592 A CN 101346592A CN 200680049376 A CN200680049376 A CN 200680049376A CN 101346592 A CN101346592 A CN 101346592A
Authority
CN
China
Prior art keywords
mentioned
cooling medium
water supply
water
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200680049376.5A
Other languages
English (en)
Other versions
CN101346592B (zh
Inventor
柿内敦史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of CN101346592A publication Critical patent/CN101346592A/zh
Application granted granted Critical
Publication of CN101346592B publication Critical patent/CN101346592B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • F25B2313/0213Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit the auxiliary heat exchanger being only used during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

一种热泵式热水供给机,能够将热水供给用的热泵循环用于制冷和采暖(空气调节)。此外,在上述热泵式热水供给机中同时地进行采暖和热水供给时,能够得到充分的热水供给温度及热水供给量。具有:令CO2冷却介质循环的CO2循环(1)、令R410A冷却介质循环的R410A循环(2)、在上述CO2冷却介质以及/或者R410A冷却介质和水之间进行热交换的水热交换器(32),在上述R410A循环(2)中设置有:通过上述水热交换器(32)的循环路径(20)、通过在上述R410A冷却介质和室内空气之间进行热交换的室内空气热交换器(4)的循环路径(40)、切换在该R410A循环(2)中的上述R410A冷却介质的循环方向的四通阀(24)。

Description

热泵式热水供给机
技术领域
本发明涉及一种热泵式热水供给机,通过与循环于设置有压缩机或膨胀器等的热泵循环内的冷却介质的热交换来加热水而供给热水,特别是涉及一种具有两个的热泵循环的热泵式热水供给机,所述两个的热泵循环中使用热交换效率及能量消耗效率等的特性不同的冷却介质。
背景技术
以往以来,公知有一种热泵式热水供给机,通过与循环于设置有压缩机或膨胀器等的热泵循环内的冷却介质的热交换来加热水而供给热水。上述冷却介质,例如是碳酸气体冷却介质或HFC冷却介质等。
在此,上述碳酸气体冷却介质,作为其冷却介质的特性可将水加热到高温(例如90℃左右)。另一方面,上述HFC冷却介质,由于冷却介质的特性只能将水加热到比较低的温度(例如65℃左右)。但是,在用于空气调节用设备时,使用上述HFC冷却介质在能量消耗效率(COP)方面比使用上述碳酸气体冷却介质更加优异。
另一方面,专利文献1中展示了一种热泵式热水供给系统,兼有使用CO2冷却介质(碳酸气体冷却介质的一例)的热泵循环(以下称为“CO2循环”)和使用R410A冷却介质(HFC冷却介质的一例)的热泵循环(以下称为“R410A循环”)。在上述热泵式热水供给系统中,在需要高温的温水的时候使用CO2循环,在使用低温的温水也可以的时候使用R410A循环。
进而,在上述专利文献1的发明中,提出在上述R410A循环上连接温水采暧用的封闭回路,而在热水供给以及温水采暖中共用上述R410A循环。
专利文献1:特开2005-83585号公报
但是,在上述专利文献1中展示的上述热泵式热水供给系统中,在上述R410A循环中的上述R410A冷却介质的循环方向是一定的。因此,即便上述R410A循环能用于热水供给及温水采暖,该R410A循环也不能用于制冷。
此外,在上述专利文献1中展示的上述热泵式热水供给系统中,上述R410A循环,选择地用于热水供给以及温水采暖的某一个,不能同时地进行热水供给以及温水采暖。
而且,上述热泵式热水供给系统构成为只选择地用于上述CO2循环以及上述R410A循环的某一个。因此,上述热泵式热水供给系统中的水的加热效率,分别基于上述CO2循环以及上述R410A循环的水的加热效率是界限。因此,即使在上述R410A循环中分配R410A冷却介质而同时地进行热水供给以及温水采暖时,也会产生因为水的加热效率的降低而不能得到充分的热水供给温度及热水供给量的问题。当然,此时也可考虑将上述R410A循环构成为能够得到充分的热水供给温度,但是,产生为了利用上述R410A循环得到充分的热水供给温度及热水供给量而扩大装置及增加成本的问题。
发明内容
因此,本发明是鉴于上述情况而提出的,第一目的是提供一种能够将热水供给用的热泵循环用于制冷和采暖(空气调节)的热泵式热水供给机。而且,本发明的第二目的为,在上述热泵式热水供给机中,在与采暖同时地进行热水供给时能够得到充分的热水供给温度及热水供给量。
为了达成上述目的,本发明构成为一种热泵式热水供给机,其特征在于,具有:使第一冷却介质至少经由压缩机以及膨胀器而循环的第一热泵循环、使具有与上述第一冷却介质不同的特性的第二冷却介质至少经由压缩机以及膨胀器而循环的第二热泵循环、和在上述第一冷却介质以及/或者上述第二冷却介质和水之间进行热交换的水热交换器,上述第二热泵循环含有:通过上述水热交换器的第一循环路径、通过在上述第二冷却介质和室内空气之间进行热交换的室内空气热交换器的第二循环路径、和切换在该第二热泵循环中的上述第二冷却介质的循环方向的循环方向切换机构。具体而言,考虑上述第一冷却介质为碳酸气体冷却介质,上述第二冷却介质为HFC冷却介质。
根据本发明,因为可以切换在上述第二热泵循环中的上述第二冷却介质的循环方向,所以可以使用该第二热泵循环而进行制冷和采暖(空气调节)。
此外,因为构成为能够在上述水热交换器中使水和上述第一冷却介质以及第二冷却介质同时地热交换,所以通过除了向上述第一循环路径还向上述第二循环路径分配上述第二冷却介质而令其循环,可得到充分的热水供给温度及热水供给量。
根据本发明,可使用上述第二热泵循环而进行制冷和采暖(空气调节)。此外,在同时地进行采暖以及热水供给时,能够得到充分的热水供给温度及热水供给量。
附图说明
图1是本发明的实施方式的热泵式热水供给机的概略构成图。
图2是本发明的实施例的热泵式热水供给机的概略构成图。
附图标记说明
1  热泵循环(第一热泵循环的一例)
2、5  热泵循环(第二热泵循环的一例)
4  室内空气热交换器
11、21  压缩机
12、22、22a、22b  膨胀器
13、23  室外空气热交换器
14、25、33  配管
20  循环路径(第一循环路径的一例)
40  循环路径(第二循环路径的一例)
24  四通阀
30a~30d  流水路径
31  蓄留容器
41~45、51~56  切换阀
具体实施方式
参照以下附图说明本发明的实施方式,以供本发明的理解。另外,以下的实施方式是具体化本发明的一例,不限定本发明的技术范围。
在此,图1是本发明的实施方式中所述的热泵式热水供给机X的概略构成图。
如图1所示,上述热泵式热水供给机X概略构成为具有:使冷却介质循环的两个热泵循环1(第一热泵循环的一例)、2(第二热泵循环的一例);流水路径30a~30d;蓄留容器31;水热交换器32;循环泵34以及切换阀41~45。此外,上述热泵式热水供给机X具备具有CPU及RAM、ROM等未图示的控制部。
上述水热交换器32,在流向连接在上述热泵循环1上的配管14的冷却介质及流向连接在上述热泵循环2上的配管25的冷却介质、与在从供水口到热水供给口的流水路径30b或返回到上述蓄留容器31的流水路径30a中流动的水之间进行热交换。在此,上述流水路径30a,是从上述供水口开始依次连接上述蓄留容器31、循环泵34、切换阀45、水热交换器32、切换阀43、蓄留容器31的水的流水路径。此外,上述流水路径30b,是从上述供水口开始依次连接切换阀45、水热交换器32、切换阀43、上述热水供给口的水的流水路径。此外,上述流水路径30c,是从上述蓄留容器31开始经由上述切换阀44而连接在上述热水供给口上的温水的流通路径,上述流通路径30d,是从上述供水口开始经由上述切换阀44而连接在上述热水供给口上的水的流通路径。
在上述蓄留容器31的上层蓄留借助在上述水热交换器32中与上述冷却介质的热交换而被加热的热水,而在上述蓄留容器31的下层蓄留从供水口供给的水。
在该热泵式热水供给机X中,借助上述控制部(未图示)控制上述各构成元件,从而进行以下运转:在上述流水路径30b中借助上述水热交换器32加热从供水口供给的水而从热水供给口直接供给热水的瞬间热水供给运转、在上述流水路径30a中借助上述水热交换器32加热从供水口供给的水而蓄留在上述蓄留容器31中的热水蓄留运转等。
在此,在上述瞬间热水供给运转中,借助上述控制部控制上述切换阀43以及45,从而使从上述供水口供给的水沿着上述流水路径30b而向虚线箭头方向流通。但是,在上述瞬间热水供给运转开始之后的一定时间中,基于上述水热交换器32的加热量不充分。因此,在瞬间运转开始后的一定时间中,蓄留在上述蓄留容器31中的温水经由上述流水路径30c而在切换阀44中与从上述供水口经由上述流水路径30d而供给的水混合而调节温度之后,供给到上述热水供给口。由此,能够从上述热水供给口瞬时地供给热水。并且,在借助上述水热交换器32能够充分地加热从供水口供给的水的时刻,停止上述蓄留容器31的供水,之后,使用从上述供水口经由上述水热交换器32而连接在上述热水供给口上的流水路径30b而进行瞬间热水供给。此外,也可不讲蓄留在上述蓄留容器31中的高温的温水与从上述供水口供给的水混合而直接供给热水。
此外,在上述热水蓄留运转中,通过驱动上述循环泵34,水沿着上述流水路径30a而向实线箭头方向流通,从而温水被蓄留在蓄留容器31中。
上述热泵循环1(以下称为“CO2循环”),具有循环路径10,该循环路径10依次连接压缩机11、上述水热交换器32、膨胀器12以及室外空气热交换器13。
在上述循环路径10中,借助上述控制部(未图示)驱动上述压缩机11,从而作为碳酸气体冷却介质的一例的CO2冷却介质(第一的冷却介质的一例)向图示的箭头方向循环。在此,上述CO2冷却介质,具有和后述的R410A冷却介质不同的特性,作为冷却介质的特性可将水加热到高温(90℃左右),但能量消耗效率比较低。因此,上述CO2循环1,主要是用于在上述热水蓄留运转中的水的加热。
具体而言,在上述压缩机11中被压缩而排出的高温高压的上述CO2冷却介质,在上述水热交换器32中与在上述流水路径30a或者30b中流动的水热交换而被冷却之后,在上述膨胀器12中膨胀。然后,在上述膨胀器12中膨胀的低温低压的上述CO2冷却介质,在上述室外空气热交换器13中与室外的空气热交换而吸热并气化之后,再次流入到上述压缩机11中。
在上述CO2循环1中,如上所述地令上述CO2冷却介质在上述循环路径10中循环,从而以箭头方向在上述流水路径30a或30b中流动的水,借助与上述水热交换器32中的上述CO2冷却介质的热交换而被加热到90℃左右。此外,在上述水热交换器32中的上述CO2冷却介质和水的流通方向为反方向,所以该CO2冷却介质和水的热交换高效率地进行。
此时,在上述瞬间热水供给运转中,借助上述控制部(未图示)控制上述切换阀45以使上述流水路径30b接通,通过由上述控制部(未图示)控制上述切换阀43,在上述水热交换器32中被加热的热水被供给到上述热水供给口。此外,进行切换以使在上述热水蓄留运转中,由上述控制部(未图示)控制上述切换阀45以使上述流水路径30a接通,且通过由上述控制部(未图示)控制上述切换阀43,将在上述水热交换器32中被加热的热水蓄留到上述蓄留容器31中。
另一方面,上述热泵循环2(以下称为“R410A循环”),具有令作为HFC冷却介质的一例的R410A冷却介质(第二的冷却介质的一例)循环的循环路径20(第一的循环路径的一例)以及循环路径40(第二的循环路径的一例)。在此,上述R410A冷却介质,具有和上述CO2冷却介质不同的特性,与CO2冷却介质相比,只能将水加热到低温(65℃左右),但能量消耗效率(COP)高,所以适用于比较低的沸腾温度。因此,上述R410A循环2,主要用于在上述瞬间热水供给运转中的水的加热。此外,作为上述R410A冷却介质的其他例,例如有R407C/E、R404A、R507A、R134a等。此外,用于上述热泵式热水供给机X的两个不同的冷却介质,不限定于碳酸气体冷却介质及HFC冷却介质,只要是热交换效率及能量消耗效率等的特性不同的两种冷却介质即可。
上述循环路径20构成为,依次连接压缩机21、四通阀24、切换阀41、水热交换器32、切换阀42、膨胀器(例如膨胀阀)22、室外空气热交换器23以及上述四通阀24。
在上述循环路径20中,通过由上述控制部(未图示)控制而驱动上述压缩机21,上述R410A冷却介质向图示的实线箭头方向循环。具体而言,在上述压缩机21中被压缩而排出的高温高压的上述R410A冷却介质,经由上述四通阀24以及上述切换阀41而到达上述水热交换器32。并且,上述R410A冷却介质,在上述水热交换器32中与在上述流水路径30a或30b中流动的水热交换而被冷却。之后,上述R410A冷却介质,经由上述切换阀42而在上述膨胀器22中被膨胀。并且,在上述膨胀器22中膨胀的低温低压的上述R410A冷却介质,在上述室外空气热交换器23中与室外空气热交换而吸热并气化后,经由上述四通阀24而再次流入到上述压缩机21。
在上述R410A循环2中,通过如上所述地使上述R410A冷却介质在上述循环路径20中沿实线箭头方向循环,沿箭头方向在上述流水路径30a或30b中流动的水,借助与在上述水热交换器32中的上述R410A冷却介质的热交换而被加热到65℃左右。此外,在上述水热交换器32中的上述R410A冷却介质和水的流通方向为反方向,所以该R410A冷却介质和水的热交换高效率地进行。
此外,上述水热交换器32,在上述CO2循环1以及上述R410A循环2中通用,能够使在其中循环的上述CO2冷却介质以及上述R410A冷却介质与在上述流水路径30a或者上述流水路径30b中流动的水同时地热交换。具体而言,上述水热交换器32构成为,设置在该水热交换器32内的上述CO2冷却介质的配管14和设置在上述流水路径30a、30b上的配管33、上述R410A冷却介质的配管25与上述配管33都接触。
因此,在上述热泵式热水供给机X中,通过同时地使用上述CO2循环1以及R410A循环2,能够以大于各自的热交换效率的热交换效率加热水。由此,可使在上述瞬间热水供给运转中的热水供给量增加。
另一方面,上述循环路径40构成为,依次连接上述压缩机21、上述四通阀24、上述切换阀41、室内空气热交换器4、上述切换阀42、上述膨胀器22、上述室外空气热交换器23以及上述四通阀24。
在此,上述室内空气热交换器4,设置为进行室内的制冷和采暖的空气调节机(未图示),通过在循环于上述循环路径40内的上述R410A冷却介质和室内空气之间进行热交换而加热或者冷却室内空气。
在如上述那样构成的热泵式热水供给机X中,如果在上述R410A循环2中的上述R410A冷却介质的循环方向为一定,则无法将该R410A循环2用于由上述空气调节机(未图示)进行的制冷和采暖(空气调节)。具体而言,在上述R410A冷却介质的循环方向构成为仅为与上述循环路径20的方向(图1的实线箭头方向)相同时,仅仅能进行采暖而不能进行制冷。
但是,在本发明实施方式的上述热泵式热水供给机X中,借助上述控制部(未图示)控制上述四通阀24,可将在上述循环路径40中的上述R410A冷却介质的循环方向切换为图示的实线箭头方向或者虚线箭头方向。在此,切换上述R410A冷却介质的循环方向时的上述控制部以及上述四通阀24相当于循环方向切换机构。
以下,说明在上述热泵式热水供给机X的上述R410A循环2中实现的采暖运转以及制冷运转。
(1)采暖运转
若由用户对上述热泵式热水供给机X从未图示的操作部提出了开始采暖运转的要求,则在该热泵式热水供给机X中,借助上述控制部(未图示)控制上述压缩机21以及上述四通阀24,在上述R410A循环2的循环路径40中令上述R410A冷却介质的实线箭头方向的循环开始。此时,在上述四通阀24内部确定图示的实线路径。
由此,在上述循环路径40中,令上述R410A冷却介质向图示的实线箭头方向循环。具体而言,在上述压缩机21中被压缩而排出的高温高压的上述R410A冷却介质,经由上述四通阀24以及上述切换阀41而到达上述室内空气热交换器4。并且,上述R410A冷却介质,在上述室内空气热交换器4中与室内的空气热交换而被冷却。之后,上述R410A冷却介质,经由上述切换阀42而在上述膨胀器22中膨胀。并且,在上述膨胀器22中膨胀的低温低压的上述R410A冷却介质,在上述室外空气热交换器23中与室外的空气热交换而吸热并气化之后,经由上述四通阀24而再次流入到上述压缩机21。
在上述R410A循环2中,如上述那样地令上述R410A冷却介质在上述循环路径40中向实线箭头方向循环,从而室内的空气借助与上述室内空气热交换器4中的上述R410A冷却介质的热交换而被加热。即,借助上述热泵式热水供给机实现采暖。
因此,如上所述,在以往的装置(例如参照专利文献1)中使用上述R410A循环2,无法同时地进行瞬间热水供给和采暖。此外,考虑分配上述R410A冷却介质而同时地进行瞬间热水供给和采暖,但此时随之产生不能得到充分的热水供给温度或热水供给量的问题。
但是,在上述热泵式热水供给机X中,在同时地进行瞬间热水供给和采暖时,在上述水热交换器32中,利用循环于上述CO2循环1的上述CO2冷却介质和循环于上述R410A循环2的R410A冷却介质同时地加热水。由此,在同时地进行瞬间热水供给和采暖时,能得到充分的热水供给温度及热水供给量。以下,对这一点进行详细说明。
首先,在上述热泵式热水供给机X中,在借助上述R410A循环2而进行采暖运转时,若由用户对未图示的操作部提出了瞬间热水供给的要求,则在该热泵式热水供给机X中,借助上述控制部(未图示)控制上述切换阀41、42,令在上述R410A循环2的循环路径20中的上述R410A冷却介质的实线箭头方向的循环开始。此时,在上述R410A循环2中令上述R410A冷却介质分配到上述循环路径20以及40而循环。因此,有可能基于循环于上述水热交换器32的上述循环路径20中的上述R410A冷却介质的水的加热不能充分地进行。
因此,在上述热泵式热水供给机X中,在由上述R410A循环2而进行采暖运转时,若由用户对未图示的操作部提出瞬间热水供给的要求,则借助上述控制部(未图示)控制上述CO2循环1的压缩机11的驱动,令在上述CO2循环1中的上述CO2冷却介质的循环开始。
由此,在上述水热交换器32中,利用上述R410A冷却介质和上述CO2冷却介质双方来使水加热。即,上述R410A循环1中的瞬间热水供给和采暖的同时运转时的水的加热效率的降低能够由循环于上述CO2循环1的上述CO2冷却介质和水的热交换来弥补。因此,在上述R410A循环2中同时地进行瞬间热水供给和采暖时,能够得到充分的热水供给温度或热水供给量。
(2)制冷运转
另一方面,若由用户对上述热泵式热水供给机X从未图示的操作部提出开始制冷运转的要求,则在该热泵式热水供给机X中,借助上述控制部(未图示)控制上述压缩机21以及上述四通阀24,在上述R410A循环2的循环路径40中令上述R410A冷却介质的虚线箭头方向的循环开始。此时,在上述四通阀24内部中确定图示的虚线路径。
由此,在上述循环路径40中,令上述R410A冷却介质沿图示的虚线箭头方向循环。具体而言,在上述压缩机21中被压缩而排出的高温高压的上述R410A冷却介质,经由上述四通阀24而到达上述室外空气热交换器23。并且,上述R410A冷却介质,在上述室外空气热交换器23中与室外空气热交换而被冷却。之后,上述R410A冷却介质,在上述膨胀器22中膨胀。并且,在上述膨胀器22中膨胀的低温低压的上述R410A冷却介质,经由上述切换阀42而在上述室内空气热交换器4中与室内空气热交换而吸热并气化之后,经由上述切换阀41以及上述四通阀24而再次流入到上述压缩机21。
在上述R410A循环2中,如上述那样地令上述R410A冷却介质在上述循环路径40中沿虚线箭头方向循环,从而室内的空气借助与上述室内空气热交换器4中的上述R410A冷却介质的热交换而被冷却。即,借助上述热泵式热水供给机实现制冷。
此外,此时,在上述热泵式热水供给机X中,借助上述控制部(未图示)控制上述切换阀41以及42,从而阻止在上述循环路径20中的上述R410A冷却介质的循环。因此,即使在借助上述R410A循环2进行制冷时,也不会对基于CO2循环1的上述热水蓄留运转产生影响。
此外,在上述热泵式热水供给机X的R410A循环2中,借助上述四通阀24同时切换上述循环路径20以及40中的上述R410A冷却介质的循环方向。因此,在上述热泵式热水供给机X中,不能同时地进行制冷以及瞬间热水供给。但是,如果如后述的实施例那样地构成上述R410A循环2,就能够同时地进行制冷以及瞬间热水供给。
实施例
在此,图2是本发明的实施例的热泵式热水供给机X1的概略构成图。此外,对于与在上述实施方式中说明的上述热泵式热水供给机X相同的构成元件,标注相同的附图标记而省略说明。
如图2所示,上述热泵式热水供给机X1,替代上述热泵式热水供给机X的R410A循环2而具有R410A循环5。在上述R410A循环5中,设置有由上述控制部(未图示)控制的切换阀51~56、两个膨胀器22a以及22b。
在这样的构成的上述R410A循环5中,能够独立地控制在上述循环路径20中的上述R410A冷却介质的循环方向和在上述循环路径40中的上述R410A冷却介质的循环方向。因此,在上述R410A循环5中,能够同时地进行制冷或者采暖和瞬间热水供给。以下,具体地进行说明。
(1)同时运转采暖和瞬间热水供给
在同时运转采暖和瞬间热水供给时,在上述R410A循环5中,借助上述控制部(未图示)控制上述压缩机21、上述四通阀24以及上述切换阀51~56,从而令上述R410A冷却介质沿图2所示的实线箭头方向循环。
具体而言,在上述循环路径20中,令上述R410A冷却介质以压缩机21、四通阀24、切换阀51、切换阀52、水热交换器32、膨胀器22a、切换阀53、切换阀54、室外空气热交换器23、切换阀56、四通阀24、压缩机21的顺序循环。由此,在上述水热交换器32中加热在上述流水路径30a或者30b中流动的水。
另一方面,在上述循环路径40中,令上述R410A冷却介质以压缩机21、四通阀24、切换阀51、室内空气热交换器4、切换阀55、膨胀器22b、切换阀54、室外空气热交换器23、切换阀56、四通阀24、压缩机21的顺序循环。由此,在上述室内空气热交换器4中加热室内空气而进行采暖。
这样,在上述R410A循环5中,利用上述切换阀51分配上述R410A冷却介质,从而可同时地进行采暖和瞬间热水供给。此外,如上所述,由于上述R410A冷却介质的分配而导致的上述水热交换器32中的水的加热效率的降低能够由上述CO2循环1来弥补。
(2)同时地进行制冷和瞬间热水供给
在同时地进行制冷和瞬间热水供给时,在上述R410A循环5中,借助上述控制部(未图示)控制上述压缩机21、上述四通阀24以及上述切换阀51~56,从而令上述R410A冷却介质沿图2所示的虚线箭头方向循环。
具体而言,在上述循环路径20中,令上述R410A冷却介质以压缩机21、四通阀24、切换阀56、切换阀52、水热交换器32、膨胀器22a、切换阀53、切换阀55、室内空气热交换器4、切换阀51、四通阀24、压缩机21的顺序循环。由此,在上述水热交换器32中加热在上述流水路径30a或者30b中流动的水。
另一方面,在上述循环路径40中,令上述R410A冷却介质以压缩机21、四通阀24、切换阀56、室外空气热交换器23、切换阀54、膨胀器22b、切换阀55、室内空气热交换器4、切换阀51、四通阀24、压缩机21的顺序循环。由此,在上述室内空气热交换器4中冷却室内空气而进行制冷。
这样,在上述R410A循环5中,利用上述切换阀56分配上述R410A冷却介质,从而可同时地进行制冷和瞬间热水供给。此外,如上所述,由于上述R410A冷却介质的分配导致的上述水热交换器32中的水的加热效率的降低可由上述CO2循环1来弥补。
此外,在本实施例以及上述实施方式中使用切换阀,但不使用切换阀能够缩小功能而得到同样的效果。

Claims (2)

1.一种热泵式热水供给机,其特征在于,
具备:第一热泵循环,令第一冷却介质至少经由压缩机以及膨胀器而循环;第二热泵循环,令具有不同于上述第一冷却介质的特性的第二冷却介质至少经由压缩机以及膨胀器而循环;水热交换器,在上述第一冷却介质以及/或者上述第二冷却介质和水之间进行热交换,
上述第二热泵循环含有:
第一循环路径,通过上述水热交换器;第二循环路径,通过在上述第二冷却介质和室内空气之间进行热交换的室内空气热交换器;循环方向切换机构,切换该第二热泵循环中的上述第二冷却介质的循环方向。
2.如权利要求1所述的热泵式热水供给机,上述第一的冷却介质为碳酸气体冷却介质,上述第二冷却介质为HFC冷却介质。
CN200680049376.5A 2005-12-28 2006-11-20 热泵式热水供给机 Expired - Fee Related CN101346592B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005378539A JP3966889B2 (ja) 2005-12-28 2005-12-28 ヒートポンプ式給湯機
JP378539/2005 2005-12-28
PCT/JP2006/323099 WO2007077687A1 (ja) 2005-12-28 2006-11-20 ヒートポンプ式給湯機

Publications (2)

Publication Number Publication Date
CN101346592A true CN101346592A (zh) 2009-01-14
CN101346592B CN101346592B (zh) 2011-08-03

Family

ID=38228045

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680049376.5A Expired - Fee Related CN101346592B (zh) 2005-12-28 2006-11-20 热泵式热水供给机

Country Status (4)

Country Link
EP (1) EP1972862B1 (zh)
JP (1) JP3966889B2 (zh)
CN (1) CN101346592B (zh)
WO (1) WO2007077687A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102326035A (zh) * 2009-02-24 2012-01-18 大金工业株式会社 热泵系统
CN102759220A (zh) * 2012-07-30 2012-10-31 广东麦科尔新能源科技有限公司 基于二氧化碳压缩机并可用于恶劣环境的三联供系统
CN103939999A (zh) * 2014-04-16 2014-07-23 广东美的制冷设备有限公司 双冷媒空调系统及其控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5729910B2 (ja) * 2010-03-05 2015-06-03 三菱重工業株式会社 温水ヒートポンプおよびその制御方法
KR20120136854A (ko) * 2011-06-10 2012-12-20 삼성전자주식회사 급수장치
KR101873594B1 (ko) 2011-12-14 2018-07-02 엘지전자 주식회사 캐스케이드 히트펌프 장치
CN111795423B (zh) * 2020-03-26 2021-09-03 同济大学 一种基于三流体换热器的二氧化碳热泵供暖系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083585A (ja) * 2003-09-04 2005-03-31 Mitsubishi Electric Corp ヒートポンプ式給湯システム
JP2005147409A (ja) * 2003-11-11 2005-06-09 Tokyo Electric Power Co Inc:The ヒートポンプ式冷暖房装置
JP4088790B2 (ja) * 2003-12-17 2008-05-21 日立アプライアンス株式会社 ヒートポンプ式給湯機およびその運転方法
JP4599910B2 (ja) 2004-07-01 2010-12-15 ダイキン工業株式会社 給湯装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102326035A (zh) * 2009-02-24 2012-01-18 大金工业株式会社 热泵系统
CN102326035B (zh) * 2009-02-24 2013-08-07 大金工业株式会社 热泵系统
CN102759220A (zh) * 2012-07-30 2012-10-31 广东麦科尔新能源科技有限公司 基于二氧化碳压缩机并可用于恶劣环境的三联供系统
CN102759220B (zh) * 2012-07-30 2014-10-15 广东麦科尔新能源科技有限公司 基于二氧化碳压缩机并可用于恶劣环境的三联供系统
CN103939999A (zh) * 2014-04-16 2014-07-23 广东美的制冷设备有限公司 双冷媒空调系统及其控制方法
CN103939999B (zh) * 2014-04-16 2017-01-11 广东美的制冷设备有限公司 双冷媒空调系统及其控制方法

Also Published As

Publication number Publication date
EP1972862A1 (en) 2008-09-24
CN101346592B (zh) 2011-08-03
EP1972862B1 (en) 2015-10-21
JP2007178088A (ja) 2007-07-12
EP1972862A4 (en) 2013-09-11
WO2007077687A1 (ja) 2007-07-12
JP3966889B2 (ja) 2007-08-29

Similar Documents

Publication Publication Date Title
KR100810870B1 (ko) 급탕장치
RU2472078C2 (ru) Холодильные системы и способы производства холода
CN101346592B (zh) 热泵式热水供给机
CN102575860B (zh) 空气调节装置
CN103562648B (zh) 空气调节装置
CN102449411B (zh) 冷冻循环装置、空调装置
KR100758902B1 (ko) 멀티 공기조화 시스템 및 그 제어방법
CN102597658A (zh) 热泵
CN101365917A (zh) 除霜系统
JP2004226015A (ja) 冷温水供給システム
JP2004003801A (ja) 二酸化炭素を冷媒として用いた冷凍装置
JP2007178091A (ja) ヒートポンプ式給湯機
JP6832939B2 (ja) 冷凍サイクル装置
US9261297B2 (en) Cooling device
JP5314487B2 (ja) 給湯機能付ヒートポンプ式空気調和機
JP4753791B2 (ja) ヒートポンプ式給湯機
KR101852797B1 (ko) 캐스케이드 히트펌프 장치
JP2004156805A (ja) ヒートポンプシステム
KR100926808B1 (ko) 바닥 난방과 동시 급탕이 가능한 히트펌프식 냉난방 시스템
KR100448542B1 (ko) 냉난방시스템
KR20060065874A (ko) 히트 펌프식 공기조화기
JP2009250580A (ja) ヒートポンプ装置
JP2006162086A (ja) ヒートポンプ給湯機
JP3785796B2 (ja) 熱搬送装置
CN113883599A (zh) 空调器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110803

Termination date: 20181120

CF01 Termination of patent right due to non-payment of annual fee