WO2007077685A1 - バイオマスガス化装置 - Google Patents

バイオマスガス化装置 Download PDF

Info

Publication number
WO2007077685A1
WO2007077685A1 PCT/JP2006/322816 JP2006322816W WO2007077685A1 WO 2007077685 A1 WO2007077685 A1 WO 2007077685A1 JP 2006322816 W JP2006322816 W JP 2006322816W WO 2007077685 A1 WO2007077685 A1 WO 2007077685A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pyrolysis
tar
gasification
biomass
Prior art date
Application number
PCT/JP2006/322816
Other languages
English (en)
French (fr)
Inventor
Kenichi Sasauchi
Miki Taniguchi
Takumi Kato
Original Assignee
Chugai Ro Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co., Ltd. filed Critical Chugai Ro Co., Ltd.
Priority to CN200680049102.6A priority Critical patent/CN101346455B/zh
Priority to US12/097,905 priority patent/US8100991B2/en
Publication of WO2007077685A1 publication Critical patent/WO2007077685A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • C10J3/24Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/09Mechanical details of gasifiers not otherwise provided for, e.g. sealing means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/156Sluices, e.g. mechanical sluices for preventing escape of gas through the feed inlet
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1215Heating the gasifier using synthesis gas as fuel

Definitions

  • the present invention can handle a wide variety of raw material biomass regardless of type, size, and water content, and can ensure a high tar removal performance and equipment.
  • the present invention relates to a biomass gasifier capable of compactness.
  • Patent Document 1 and Patent Document 2 are known as systems for generating raw pyrolysis gas from raw material biomass.
  • Patent document 1 “Biomass gasification system and its operation method” describes a method for pyrolyzing tar content in fuel gas into a supply system that supplies fuel gas from a gasification furnace that generates fuel gas from a biomass to a utilization system.
  • a gas reforming tower that is heated to a processing temperature that can be used is provided.
  • a gas cooling tower for cooling the fuel gas is provided at the rear stage of the gas reforming tower.
  • the carbide residue generated in the gasifier is used as fuel for the hot air generator, which is the heat source of the gasifier.
  • the “modeling method of biomass fixed-bed gasification furnace” in Patent Document 2 uses a downdraft type fixed-bed gasification furnace to gasify biomass.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-247992
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-250574
  • the present invention was devised in view of the above-described conventional problems, and can handle a wide variety of raw biomass regardless of the type, size, and moisture content, and remove the amount of tar. It is an object of the present invention to provide a biomass gasifier capable of ensuring high performance and capable of compacting equipment.
  • a biomass gasification apparatus useful for the present invention includes an externally heated rotary kiln type thermal decomposition unit that indirectly heats and thermally decomposes raw material biomass to generate a pyrolysis gas containing tar and chia, and A pyrolysis gas containing a tar content extracted from the pyrolysis section and a chit, and a gasification section for introducing the acid and soot gas to thermally decompose the tar content and gasify the Corp It is characterized by that.
  • the gasification section includes a tar decomposition region for thermally decomposing tar components, and a chemist gasification region for gasifying the chew and discharging it as ash.
  • the gasification section is a shaft furnace type.
  • the biomass gasification apparatus can handle a wide variety of raw material biomass regardless of the type, size, and moisture content, and can ensure a high tar removal performance. In addition, the compactness of the equipment can be achieved.
  • the biomass gasification apparatus 1 basically heats raw material biomass indirectly to thermally decompose, thereby generating pyrolysis gas and tar containing tar content.
  • Thermal decomposition part of external heat type rotary kiln type 2 The gasification unit 3 introduces an acid gas into the pyrolysis gas and the tar containing the tar extracted from the pyrolysis unit 2 to thermally decompose the tar and gasify the chia 3 And is configured.
  • the gasification section 3 includes a tar decomposition zone A for thermally decomposing tar components, and a coal gasification zone B for gasifying the coal and discharging it as ash.
  • the gasification unit 3 is composed of a shaft furnace.
  • the thermal decomposition unit 2 is configured in an externally heated rotary kiln type.
  • the externally heated rotary kiln mainly includes a hollow cylinder-like reaction cylinder 4 arranged horizontally and a hollow cylinder-like chamber 5 arranged around the outside of the reaction cylinder 4 and arranged horizontally.
  • the reaction cylinder 4 is arranged with the inlet side 4a force slightly inclined toward the outlet side 4b.
  • the reaction tube 4 is configured to be able to be sealed from the outside so as to obtain an oxygen-free state.
  • the chamber 15 is supplied with a heat medium therein, and the chamber 15 indirectly heats the reaction tube 4 from the outside by the heat medium.
  • the raw material biomass is cut out from the raw material hopper 6 by the feeder 7, is opened into the pusher 9 by opening the damper 8 that is opened and closed, and then sent into the reaction tube 4 by the pusher 9 sending operation. It is.
  • the raw material biomass introduced from the inlet side 4a is indirectly heated, dried and pyrolyzed to generate pyrolysis gas and chia containing tar, and these pyrolysis gas and The chia is discharged from the outlet 4b.
  • the pyrolysis unit 2 that is, the discharge port side 4 b of the external heating type rotary kiln is connected to the gasification unit 3 in communication.
  • the gasification unit 3 is configured in the form of a roughly vertical shaft furnace, and is connected to the discharge side 4b of the pyrolysis unit 2 in order mainly toward the top force and bottom of the pyrolysis gas and coal containing tar.
  • a flow passage 12 that is formed in an annular shape directly below the first retention portion 11 and communicates with the first retention portion 11 inside thereof, and an oxidizing gas such as air is introduced into the flow passage 12.
  • the second oxidant gas supply unit 16 that introduces oxygen gas such as air into the second staying part 14 and a section formed immediately below the second staying part 14 It is provided with a collecting unit 18 that is communicated through a retention unit 14 and a grate 17 and collects ash as a final residue.
  • the collection unit 18 collects the ash that is the final residue, and the collected ash is cut out from the collection unit 18 by the screen feeder 19 and the damper 20 that is opened and closed is opened. Is discharged into the ash tray 21.
  • the pyrolysis gas and the chia are fed into the gasification unit 3 from the pyrolysis unit 2 through the inlet 10 thereof.
  • the pyrolysis gas is sucked from a gas supply system 22 to be described later, and passes from the first staying portion 11 through the downflow passage 12 surrounded by the first soot gas supply portion 13 to the second staying portion 14. It circulates to the gas extraction port 15 by force.
  • the chew flows down from the first staying part 11 to the second staying part 14 through the flow-down passage 12 while staying in the first staying part 11.
  • the chia stays in the second staying part 14, it passes through the second oxidizing gas supply part 16 and flows down to the collecting part 18 through the grate 17.
  • the first oxidant gas supply part 13 for supplying the oxidant gas into the downflow passage 12 becomes a tar decomposition zone A for thermal decomposition and gasification of tar, and the oxidant gas in the second retention part 14
  • the area around the second oxygen gas supply section 16 that supplies gas is a gasification zone B for gasifying the gas and discharging it as ash.
  • a gas supply system 22 that supplies the generated fuel gas to the gas engine generator 23 is connected to the gas extraction port 15 of the gasification unit 3 that constitutes the biomass gasifier 1.
  • the fuel gas is used not only as a fuel for the gas engine generator 23 but also as a heat source for various heat source facilities.
  • the heat source equipment includes an air preheater 24 that preheats air, a heat exchanger 25 that produces hot water, and a boiler 26 that generates steam.
  • the fuel gas is also used as a heat source for the pyrolysis unit 2.
  • the gas supply system 22 is provided with a suction fan 27 for sucking and extracting the fuel gas from the gasification unit 3. Between the suction fan 27 and the gas extraction port 15, there is an air preheater 24 that preheats air with the extracted fuel gas in order, and a filter 28 that removes dust from the fuel gas force. Provided.
  • the air preheater 24 is provided with an air fan 29 on the inlet side. In both cases, the outlet side is connected to the first and second oxygen gas supply units 13 and 16 and the air inlet 30a of the panner 30 provided in the chamber 15 of the externally heated rotary kiln.
  • the air introduced by the air fan 29 is heated by the fuel gas in the air preheater 24, and the heated air is supplied to the first and second oxygen gas supply units 13, 16 and the parner 30, respectively.
  • the outlet side of the suction fan 27 is connected to the inlet side of the heat exchanger 25 and the fuel inlet 30b of the burner 30.
  • the fuel gas supplied to the PANA 30 is burned using the air supplied from the air preheater 24, and heats the heat medium in the chamber 15.
  • the fuel gas supplied to the heat exchanger heats water with the heat to produce hot water.
  • the outlet side of the heat exchanger 25 is connected to the fuel introduction part of the gas engine generator 23, and the gas engine generator 23 is operated using fuel gas as fuel to generate power. Fuel gas is consumed by the gas generator 23.
  • the exhaust system 31 of the gas engine generator 23 is connected to the heat medium inlet of the chamber 5 of the externally heated rotary kiln, and the exhaust gas of the gas engine generator 23 is supplied to the chamber 5 as the heat medium of the externally heated rotary kiln. Is done.
  • This exhaust gas is heated by the PANA 30.
  • the outlet of the heat medium in chamber 1 is connected to the boiler 26 through the discharge system 32, and the exhaust gas from the gas generator generator 23 as the heat medium is discharged from the chamber 5 and supplied to the boiler 26.
  • An exhaust pipe 33 is connected to the boiler 26, and the exhaust gas after generating steam in the boiler 26 is exhausted in the exhaust pipe 33.
  • An open / close valve 34 is provided between the exhaust system 31 of the gas engine generator 23 and the exhaust system 32 from the chamber 5 so as to be freely opened and closed so that they can communicate with each other.
  • the exhaust gas from the generator 23 bypasses the chamber 5 and is supplied directly to the boiler 26.
  • the raw material biomass fed from the raw material hopper 6 is charged into the reaction cylinder 4 via the charging port side 4a,
  • the raw material biomass is indirectly heated by the heat medium supplied into the chamber 15 while being moved in the inclined reaction tube 4 while being stirred by the rotation of the reaction tube 4, and the raw material biomass is dried by this indirect heating.
  • Treated and flammable pyrolysis Gas and residue are generated.
  • the pyrolysis gas contains tar content. Pyrolysis gas and coal containing tar are introduced into the gasification section 3 from the outlet side 4b of the pyrolysis section 2 at a temperature of about 600 ° C.
  • the chirp introduced into the gasification unit 3 is temporarily retained in the first retention unit 11, and then sequentially flows down to the second retention unit 14 via the flow-down passage 12. Further, the pyrolysis gas containing the tar content is sucked into the suction fan 27 of the gas supply system 22 and circulates toward the gas extraction port 15.
  • the air supplied from the first oxidizing gas supply part 13 becomes part of the chia and part of the pyrolysis gas.
  • a combustion reaction occurs, and the downstream passage 12 around the first soot gas supply unit 13 is heated to a temperature of about 1100 to 1200 ° C. As a result, the tar content in the pyrolysis gas is pyrolyzed and gas is released. It becomes.
  • Carbon dioxide and water vapor generated by the calcination reaction are reduced by the carbon content in the chia and become combustible fuel gas such as carbon monoxide and hydrogen.
  • the combustion that has flowed down to the second staying portion 14 undergoes a combustion reaction by the air supplied from the second oxidizing gas supply portion 16, and combustion gas mainly composed of carbon dioxide and water vapor is generated.
  • combustion gas mainly composed of carbon dioxide and water vapor is generated.
  • the reduction zone C is between the first and second oxygen gas supply units 13 and 16 where the combustion reaction occurs (between the tar decomposition zone A and the first gasification zone B).
  • the pyrolysis gas generated in the pyrolysis section 2 and the tar content removed through the first acid gas supply section 13 and the first gasification by the second acid gas supply section 16 are derived.
  • the generated gas force is extracted from the gas extraction port 15 as a fuel gas having a temperature of about 800 ° C.
  • the ash produced by gasification of the chia in the second retention part 14 is collected in the collection part 18 and discharged to the ash receiver 21.
  • the biomass gasifier 1 which is useful in the present embodiment is for drying raw material biomass.
  • An externally heated rotary kiln type pyrolyzer 2 that performs pyrolysis, and a gas that is supplied with pyrolyzed gas and a coolant of approximately 600 ° C after the pyrolyzer 2 has already completed the pyrolysis process. It consists of three parts.
  • the externally heated rotary kiln itself that constitutes the thermal decomposition section 2 is provided with a hollow cylindrical reaction cylinder 4 that is rotationally driven, and is indirectly moved while stirring the raw biomass. It is a process that generates pyrolysis gas and chia by heating, and presupposes the generation of water vapor in the reaction cylinder 4 and the adjustment of the generated gas by introducing water vapor into the reaction cylinder 4.
  • the raw material type can be introduced into the reaction tube 4 even if there are few restrictions on the type of raw material, including fiber type, the size may be non-uniform.
  • steam may be added to the processing operation for the water content, a wide variety of raw material biomass with various types, various sizes, and various water content conditions are widely accepted.
  • Gasification treatment Door can be.
  • the externally heated rotary kiln since the externally heated rotary kiln is in contact heat transfer, it can efficiently gasify the raw material biomass having a high heat transfer coefficient, as well as temperature control in the chamber 15 and in the reaction cylinder 4. It is possible to easily control the gasification temperature and the production amount of pyrolysis gas and chia by controlling the residence time of the raw material biomass, and to optimize the linkage with the operation of the gasification unit 3. it can.
  • the gasification unit 3 into which the pyrolysis gas containing the tar content generated by the treatment in the pyrolysis unit 2 and the chia are charged is used to generate a high-temperature region by the supplied oxygen gas to generate the tar content. Therefore, unlike conventional downdraft furnaces where raw biomass is directly charged and processed, it has a similar structure to that of downdraft furnaces. Basically, simply by providing the tar decomposition zone A and the chi-gasification zone B, it is possible to generate fuel gas from raw material biomass with a simple structure.
  • the pyrolysis gas can be circulated through the gasification unit 3, and a high temperature region can be created by a combustion reaction with air supplied from the first oxidizing gas supply unit 13 to appropriately pyrolyze the tar component. High removal performance can be secured. As a result, it is not necessary to install a gas reforming tower or a gas cooling facility attached to the latter in the facility equipped with a rotary kiln. It can be done.
  • an externally heated rotary kiln having high flexibility with respect to the acceptance of raw material biomass is adopted in the first stage pyrolysis section 2, while on the other hand, the acceptance of raw material biomass is limited. Therefore, the gasification part 3 according to the downdraft method, which has a relatively good tar removal performance and is suitable for gasification of the steam, is simplified by the amount that does not require the drying and pyrolysis part.
  • the gasification section 3 includes at least the tar decomposition zone A and the chimerization zone B, it is possible to appropriately achieve tar decomposition and the best gasification in each zone.
  • the thermal decomposition section 2 of the external heating type rotary kiln type is provided as the first stage, the gasification section 3 of the next stage does not require drying and thermal decomposition functions! Since the shaft furnace type can be applied, and the gasification section 3 can be made into a simple and small shaft furnace type in this way, the structure of the nitrogen gasifier 1 can be further simplified.
  • the heat source necessary for the operation of the thermal decomposition unit 2 can be covered by burning the generated fuel gas with the burner 30 or supplying facility exhaust heat, and requires an external heat source.
  • the device can be operated reasonably.
  • Another advantage is that the steam generated can be used as a gasifying agent in the gasification unit 3 because the pyrolysis unit 2 is composed of an externally heated rotary kiln and the moisture content of the raw material biomass does not become a problem. is there.
  • the pyrolysis gas generated in the pyrolysis section 2 is converted to 1100 ° C in the gasification section 3 and the residence time 3
  • the tar concentration of the fuel gas extracted from the gas extraction port 15 can be reduced from 34 g / m 3 (standard state) to 0.006 gZm 3 (standard state). It was found that a decomposition rate of about 99% can be achieved.
  • FIG. 1 is a schematic diagram showing a conceptual configuration of a biomass gasification apparatus according to the present invention.
  • FIG. 2 is a configuration diagram showing a preferred embodiment of a biomass gasifier according to the present invention including a gas supply system.

Abstract

【課題】種別やサイズ、含水状態を問わずに多種多様な原料バイオマスを取り扱うことが可能であるとともに、タール分の除去性能を高く確保することが可能であって、かつ設備のコンパクト化が可能なバイオマスガス化装置を提供する。 【解決手段】原料バイオマスを間接加熱して熱分解し、タール分を含む熱分解ガスとチャーを発生させる外熱式ロータリーキルン形式の熱分解部2と、熱分解部2から抽出されるタール分を含む熱分解ガスおよびチャーに対し、酸化ガスが導入されて、タール分を熱分解させるとともに、チャーをガス化させるガス化部3とを備えた。

Description

明 細 書
バイオマスガス化装置
技術分野
[0001] 本発明は、種別やサイズ、含水状態を問わずに多種多様な原料バイオマスを取り 扱うことが可能であるとともに、タール分の除去性能を高く確保することが可能であつ て、かつ設備のコンパクトィ匕が可能なノィォマスガス化装置に関する。
背景技術
[0002] 原料バイオマスカも熱分解ガスを生成するシステムとして、特許文献 1や特許文献 2が知られている。特許文献 1の「バイオマスガス化システムおよびその運転方法」は 、 ノィォマスから燃料ガスを生成するガス化炉より利用システムへ燃料ガスを供給す る供給系に、燃料ガス中のタール分を熱分解処理することが可能な処理温度に昇温 されるガス改質塔を設けている。このガス改質塔の後段には、燃料ガスを冷却するガ ス冷却塔が設けられている。また、ガス化炉で発生した炭化物残さは、ガス化炉の熱 源である熱風発生炉の燃料として用いられる。
[0003] 他方、特許文献 2の「バイオマス用固定床ガス化炉のモデルィヒ方法」は、ダウンドラ フト型固定床ガス化炉を用いて、バイオマスをガス化するようにして 、る。
特許文献 1:特開 2005 - 247992号公報
特許文献 2:特開 2004 - 250574号公報
発明の開示
発明が解決しょうとする課題
[0004] 特許文献 2に開示されて ヽる、 V、わゆるダウンドラフト炉では、原料種類として竹材 ゃ榭皮と ヽつた繊維質の原料バイオマスの使用は望ましくなく、また原料サイズを均 一化することが必要で、さらに含水量も低いものを使用しなければならないという制限 もあって、投入原料に対する制約'要求が多ぐさまざまな種類、多様なサイズ、種々 の含水状態の原料バイオマスを幅広く受け入れてガス化処理することができな 、と ヽ う課題があった。また炉内制御も成り行きになり、ガス化温度の制御にも難点があると いう課題があった。 [0005] また、特許文献 1に開示されて!ヽる、間接加熱により原料バイオマス力ゝら熱分解ガス を生成するロータリーキルンでは、生成される熱分解ガス中にタール分が多量に含ま れるため、ロータリーキルンの後段に、タール分を除去するためのガス改質塔を設け る必要があった。また、このガス改質塔力も抽出される熱分解ガスが 1100°C程度に 達する高温であるため、ガス冷却設備を併設する必要があり、これら設備の設置に伴 つて、装置が大型化するという課題があった。
[0006] 本発明は上記従来の課題に鑑みて創案されたものであって、種別やサイズ、含水 状態を問わずに多種多様な原料バイオマスを取り扱うことが可能であるとともに、ター ル分の除去性能を高く確保することが可能であって、かつ設備のコンパクトィ匕が可能 なノィォマスガス化装置を提供することを目的とする。
課題を解決するための手段
[0007] 本発明に力かるバイオマスガス化装置は、原料バイオマスを間接加熱して熱分解し 、タール分を含む熱分解ガスとチヤ一を発生させる外熱式ロータリーキルン形式の熱 分解部と、該熱分解部から抽出されるタール分を含む熱分解ガスおよびチヤ一に対 し、酸ィ匕ガスが導入されて、タール分を熱分解させるとともに、チヤ一をガス化させる ガス化部とを備えたことを特徴とする。
[0008] 前記ガス化部は、タール分を熱分解させるためのタール分解域と、チヤ一をガス化 させて灰として排出するためのチヤ一ガス化域とを備えることを特徴とする。
[0009] 前記ガス化部はシャフト炉形式であることを特徴とする。
発明の効果
[0010] 本発明にかかるバイオマスガス化装置にあっては、種別やサイズ、含水状態を問わ ずに多種多様な原料バイオマスを取り扱うことができるとともに、タール分の除去性能 を高く確保することができ、かつ設備のコンパクトィ匕を達成することができる。
発明を実施するための最良の形態
[0011] 以下に、本発明にかかるバイオマスガス化装置の好適な一実施形態を、添付図面 を参照して詳細に説明する。本実施形態にかかるバイオマスガス化装置 1は基本的 には、図 1および図 2に示すように、原料バイオマスを間接加熱して熱分解し、タール 分を含む熱分解ガスとチヤ一を発生させる外熱式ロータリーキルン形式の熱分解部 2 と、熱分解部 2から抽出されるタール分を含む熱分解ガスおよびチヤ一に対し、酸ィ匕 ガスが導入されて、タール分を熱分解させるとともに、チヤ一をガス化させるガス化部 3とを備えて構成される。ガス化部 3は、タール分を熱分解させるためのタール分解域 Aと、チヤ一をガス化させて灰として排出するためのチヤ一ガス化域 Bとを備える。ガ ス化部 3はシャフト炉形式で構成される。
[0012] 熱分解部 2は、外熱式ロータリーキルン形式で構成される。外熱式ロータリーキルン は主に、横置きに配置された中空筒体状の反応筒 4と、反応筒 4の外側を取り囲んで 横置きに配置された中空筒体状のチャンバ一 5とを備える。反応筒 4は、投入口側 4a 力も排出口側 4bに向力つて僅かに傾斜させて配置される。反応筒 4は、無酸素状態 が得られるように、外部に対し密閉可能に構成される。チャンバ一 5には、内部に熱 媒が供給され、チャンバ一 5はこの熱媒によって反応筒 4を外側から間接的に加熱す る。原料バイオマスは、原料ホッパ 6内からフィーダ一 7によって切り出され、開閉動 作されるダンパー 8が開放されることでプッシヤー 9へと投入され、その後、プッシヤー 9の送り出し動作で反応筒 4内に送り込まれる。
[0013] 熱分解部 2では、投入口側 4aから投入された原料バイオマスが間接加熱され、乾 燥され熱分解されてタール分を含む熱分解ガスとチヤ一が発生し、これら熱分解ガス とチヤ一は排出口側 4bから排出される。
[0014] 熱分解部 2、すなわち外熱式ロータリーキルンの排出口側 4bは、ガス化部 3に連通 接続される。ガス化部 3はおおよそ縦型のシャフト炉形式で構成され、主にその頂部 力 底部に向かって順次、熱分解部 2の排出口側 4bが接続されて、タール分を含む 熱分解ガスおよびチヤ一が送り込まれる投入口 10と、投入口 10下方に位置させてホ ツバ状に区画形成され、投入口 10から流下するチヤ一を一時的に滞留させつつ下 方へ向かって案内する第 1滞留部 11と、第 1滞留部 11の直下に環状に形成されて、 その内方に第 1滞留部 11と連通する流下通路 12を区画形成し、当該流下通路 12内 に空気などの酸化ガスを導入する第 1酸化ガス供給部 13と、流下通路 12に連通させ てその下方に区画形成され、第 1滞留部 11から流下通路 12を介して流下するチヤ 一を一時的に滞留させる第 2滞留部 14と、第 1酸ィ匕ガス供給部 13直下となる第 2滞 留部 14上端に形成され、熱分解部 2およびガス化部 3で生成されるいずれも可燃分 である燃料ガスを抽出するガス抽出口 15と、第 2滞留部 14下部にその内方へ迫り出 して環状に形成され、当該第 2滞留部 14下部をホッパ状に区画形成してチヤ一を下 方へ向かって案内するとともに、第 2滞留部 14内に空気などの酸ィ匕ガスを導入する 第 2酸化ガス供給部 16と、第 2滞留部 14直下に区画形成され、当該第 2滞留部 14と 火格子 17を介して連通されて、最終残さである灰を捕集する捕集部 18とを備える。
[0015] 捕集部 18は、最終残さである灰を捕集し、捕集された灰は、捕集部 18内からスクリ ユーフィーダ一 19によって切り出され、開閉動作されるダンパー 20が開放されること で灰受け 21へと排出される。
[0016] ガス化部 3内には、その投入口 10を介して、熱分解部 2から熱分解ガスとチヤ一と が送り込まれる。熱分解ガスは、後述するガス供給系 22からの吸引作用で、第 1滞留 部 11から、第 1酸ィ匕ガス供給部 13に取り囲まれた流下通路 12を経過して第 2滞留部 14のガス抽出口 15へ向力つて流通する。他方、チヤ一は、第 1滞留部 11に滞留し つつ、第 1滞留部 11から流下通路 12を経過して第 2滞留部 14へと流動降下する。 チヤ一は、第 2滞留部 14に滞留しつつ、第 2酸化ガス供給部 16を経過し、火格子 17 を介して捕集部 18へと流動降下する。流下通路 12内に酸ィ匕ガスを供給する第 1酸 化ガス供給部 13周辺がタールを熱分解してガス化するためのタール分解域 Aとなり 、第 2滞留部 14内に酸ィ匕ガスを供給する第 2酸ィ匕ガス供給部 16周辺がチヤ一をガス 化させ灰として排出するためのチヤ一ガス化域 Bとなる。
[0017] バイオマスガス化装置 1を構成するガス化部 3のガス抽出口 15には、生成された燃 料ガスをガスエンジン発電機 23に供給するガス供給系 22が接続される。本実施形 態にあっては、燃料ガスはガスエンジン発電機 23の燃料として利用されるだけでなく 、各種熱源設備の熱源としても利用される。熱源設備としては、空気を予熱する空気 予熱器 24、温水を製造する熱交換器 25、蒸気を生成するボイラ 26が備えられる。ま た燃料ガスは、熱分解部 2の熱源としても利用される。
[0018] ガス供給系 22には、ガス化部 3から燃料ガスを吸引して抽出するための吸引ファン 27力設けられる。吸引ファン 27とガス抽出口 15との間には、ガス抽出口 15側力も順 次、抽出される燃料ガスで空気を予熱する空気予熱器 24と、燃料ガス力ゝら除塵する フィルタ 28とが設けられる。空気予熱器 24は、入口側に空気ファン 29が設けられると ともに、出口側が第 1および第 2酸ィ匕ガス供給部 13, 16、並びに外熱式ロータリーキ ルンのチャンバ一 5に設けられたパーナ 30の空気導入口 30aに接続される。空気フ アン 29で導入された空気は、空気予熱器 24で燃料ガスによって加熱され、加熱され た空気はそれぞれ第 1および第 2酸ィ匕ガス供給部 13, 16、並びにパーナ 30に供給 される。吸引ファン 27の出口側は、熱交換器 25の入口側およびパーナ 30の燃料導 入口 30bと接続される。
[0019] フィルタ 28で除塵されて吸引ファン 27に達した燃料ガスは、一部が熱交 25へ と供給され、残部がパーナ 30へと供給される。パーナ 30に供給された燃料ガスは、 空気予熱器 24から供給される空気を用いて燃焼され、チャンバ一 5内の熱媒を加熱 する。熱交 に供給された燃料ガスはその熱で水を加熱して温水を製造する。 熱交翻 25の出口側は、ガスエンジン発電機 23の燃料導入部と接続され、ガスェ ンジン発電機 23は燃料ガスを燃料として運転されて発電を行う。燃料ガスはガスェン ジン発電機 23で消費される。
[0020] ガスエンジン発電機 23の排気系 31は外熱式ロータリーキルンのチャンバ一 5の熱 媒入口に接続され、ガスエンジン発電機 23の排ガスが外熱式ロータリーキルンの熱 媒としてチャンバ一 5に供給される。この排ガスは、パーナ 30で加熱される。チャンバ 一 5の熱媒出口は排出系 32を介してボイラ 26に接続され、熱媒としてのガスェンジ ン発電機 23の排ガスは、チャンバ一 5から排出されてボイラ 26へと供給され、ボイラ 2 6で蒸気を生成する。ボイラ 26には排気筒 33が接続され、ボイラ 26で蒸気を生成し た後の排ガスは排気筒 33で排気処理される。なお、ガスエンジン発電機 23の排気 系 31とチャンバ一 5からの排出系 32との間には、開閉自在に開放されてこれらを連 通させる開閉弁 34が設けられ、必要に応じてガスエンジン発電機 23の排ガスがチヤ ンバー 5をバイパスして、直接ボイラ 26に供給される。
[0021] 本実施形態にかかるバイオマスガス化装置 1の作用について説明すると、熱分解 部 2では、原料ホッパ 6から送り出された原料バイオマスが投入口側 4aを介して反応 筒 4内に投入され、原料バイオマスは傾斜された反応筒 4内を、当該反応筒 4の回転 で撹拌されながら移動しつつ、チャンバ一 5内に供給される熱媒によって間接加熱さ れ、この間接加熱によって原料バイオマスは乾燥処理されるとともに可燃性の熱分解 ガスと残さであるチヤ一が発生する。熱分解ガスにはタール分が含まれている。ター ル分を含む熱分解ガスとチヤ一は 600°C程度の温度で、熱分解部 2の排出口側 4b からガス化部 3へと投入される。
[0022] ガス化部 3に投入されたチヤ一は、第 1滞留部 11に一時的に滞留されつつ、流下 通路 12を介して順次第 2滞留部 14へと流下していく。また、タール分を含む熱分解 ガスは、ガス供給系 22の吸引ファン 27に吸引されて、ガス抽出口 15へ向かって流通 する。この第 1滞留部 11からガス抽出口 15に到る間のタール分解域 Aにて、第 1酸 化ガス供給部 13から供給される空気によってチヤ一の一部や熱分解ガスの一部に 燃焼反応が生じ、第 1酸ィ匕ガス供給部 13周辺の流下通路 12が 1100〜1200°C程 度の温度に昇温されて、これにより熱分解ガス中のタール分が熱分解されてガス化さ れる。
[0023] タール分が熱分解された後の熱分解ガスは吸引ファン 27の吸引作用により、ガス 抽出口 15に向力つて流通する間に、周辺のチヤ一との間で炭素酸ィ匕反応(C + CO
2
→2CO)や水性ガス化反応 (C+H 0→CO+H )などの気固反応を生じて、ー且燃
2 2
焼反応によって生成した二酸化炭素や水蒸気がチヤ一中の炭素分により還元されて 、一酸ィ匕炭素や水素といった可燃性の燃料ガスとなる。
[0024] 他方、第 2滞留部 14に流下したチヤ一は、第 2酸化ガス供給部 16から供給される 空気によって燃焼反応が生じ、二酸ィ匕炭素や水蒸気を主成分とする燃焼ガスが生じ る力 第 2滞留部 14を介してガス抽出口 15に向かって上昇する間にチヤ一との間で 上記と同様の反応が起こり、一酸ィ匕炭素や水素を生じる。すなわち、燃焼反応が生じ る第 1および第 2酸ィ匕ガス供給部 13, 16の間(タール分解域 Aとチヤ一ガス化域 Bの 間)が還元域 Cとなる。
[0025] そして熱分解部 2で生成され第 1酸ィ匕ガス供給部 13を経てタール分が除去された 熱分解ガスおよび第 2酸ィ匕ガス供給部 16によるチヤ一のガス化に由来する生成ガス 力 800°C程度の温度を有する燃料ガスとして、ガス抽出口 15から抽出される。第 2 滞留部 14でチヤ一がガス化されて生じた灰は、捕集部 18で捕集されて、灰受け 21 へ排出される。
[0026] ところで、本実施形態に力かるノ ィォマスガス化装置 1は、原料バイオマスの乾燥と 熱分解を行う外熱式ロータリーキルン形式の熱分解部 2と、この熱分解部 2で既に熱 分解処理までが完了した後の 600°C程度の熱分解ガスおよびチヤ一が投入されるガ ス化部 3とで構成されて 、る。
[0027] 熱分解部 2を構成する外熱式ロータリーキルン自体はよく知られて ヽるように、回転 駆動される中空筒体状の反応筒 4を備えて、原料バイオマスを撹拌移動させつつ間 接加熱で熱分解ガスとチヤ一とを生成処理するもので、反応筒 4内での水蒸気の発 生や水蒸気の反応筒 4内への投入による発生ガス調整をも前提とするものであって、 その構造上の特性として、原料種別としては繊維質のものも含めて制限が少なぐま た原料サイズも反応筒 4に投入可能であれば、その大きさは不均一であってもよぐ 原料の含水状態についても、処理操作に水蒸気を投入する場合もあることからしても 明らかなように、制限はほとんどなぐ様々な種類、多様なサイズ、種々の含水状態の 多種多様な原料バイオマスを幅広く受け入れて、ガス化処理することができる。
[0028] また、外熱式ロータリーキルンは、接触伝熱となるので熱伝達係数が高ぐ原料バイ ォマスを効率よくガス化することができるとともに、チャンバ一 5内の温度制御や反応 筒 4内での原料バイオマスの滞留時間制御などによりガス化温度や、熱分解ガスお よびチヤ一の生成量の調整も容易に制御することができ、ガス化部 3の運転との連係 を最適化することができる。
[0029] 熱分解部 2での処理により生成されたタール分を含む熱分解ガスおよびチヤ一が 投入されるガス化部 3は、供給される酸ィ匕ガスによって高温領域を生成してタール分 の除去とチヤ一のガス化を行うもので、従って、ダウンドラフト炉と類似した構成 '作用 を備えて ヽるけれども、原料バイオマスが直接投入されてそれを処理する従来のダウ ンドラフト炉とは異なり、基本的にタール分解域 Aとチヤ一ガス化域 Bとを備えるだけ でよぐ簡単な構造で効率よぐ原料バイオマスから燃料ガスを生成することができる 。すなわち、熱分解ガスをガス化部 3に流通させ、第 1酸化ガス供給部 13から供給す る空気による燃焼反応で高温領域を作り出してタール分を適切に熱分解させることが でき、タール分の除去性能を高く確保することができる。これにより、従来ロータリーキ ルンを備えた設備において、当該ロータリーキルンの後段に設備されていたガス改 質塔やそれに併設されるガス冷却設備を設ける必要がなくて、小型な設備に構成す ることがでさる。
[0030] 要するに、本実施形態にあっては、原料バイオマスの受け入れに対しフレキシビリ ティの高い外熱式ロータリーキルンを初段の熱分解部 2に採用し、他方、原料バイオ マスの受け入れに制限のある一方で、タール分の除去性能が比較的良好で、またチ ヤーのガス化に好適なダウンドラフト方式に則ったガス化部 3を、乾燥'熱分解部が不 要な分だけ単純ィ匕して次段に採用することによってバイオマスガス化装置 1を構成し たので、各種の原料バイオマスを対象としたガス化処理を実現しつつ、高いタール除 去性能と設備のコンパクトィ匕を達成することができる。
[0031] ガス化部 3が、少なくともタール分解域 Aとチヤ一ガス化域 Bとを備えているので、各 領域で適切にタール分解とチヤ一力ものガス化を達成することができる。また、初段と して外熱式ロータリーキルン形式の熱分解部 2を備えたので、次段のガス化部 3とし て、乾燥や熱分解機能を必要としな!、単純な形態であって小型のシャフト炉形式を 適用でき、このようにガス化部 3を単純で小型なシャフト炉形式にできるため、ノィォ マスガス化装置 1の構造をさらに単純ィ匕することができる。
[0032] また、熱分解部 2の運転に必要な熱源は、生成された燃料ガスをパーナ 30で燃焼 させたり、設備排熱を供給することによって賄うことができて、外部熱源を必要とする ことなぐ合理的に装置を稼働することができる。また、熱分解部 2が外熱式ロータリ 一キルンで構成されて原料バイオマスの含水状態が問題にならないこととの連係で、 発生した水蒸気をガス化部 3でのガス化剤として利用できる利点もある。
[0033] 上記実施形態にあっては、第 1および第 2酸ィ匕ガス供給部 13, 16への酸ィ匕ガスと して空気を例示して説明したが、その他の酸ィ匕ガスを用いてもよぐまた酸化ガスに は、水蒸気を混入してもよい。水蒸気を混入することによりガス生成反応を制御するこ とができて、生成ガスを好ましく調整することができる。また、上記実施形態のガスェ ンジン発電機 23に代えて、スターリングエンジンを用 ヽても良 、。
[0034] 本実施形態に力かるバイオマスガス化装置 1につ 、て試算したところによれば、熱 分解部 2で生成される熱分解ガスを、ガス化部 3において 1100°C、滞留時間 3秒で 高温処理したところ、ガス抽出口 15から抽出される燃料ガスのタール濃度を、 34g/ m3 (標準状態)から 0. 006gZm3 (標準状態)に減少させることができ、すなわちター ル分の分解率約 99%を達成できることが判った。
図面の簡単な説明
[0035] [図 1]本発明にかかるバイオマスガス化装置の概念構成を示す概略図である。
[図 2]本発明にかかるバイオマスガス化装置の好適な一実施形態を、ガス供給系統を 含めて示した構成図である。
符号の説明
[0036] 1 バイオマスガス化装置
2 熱分解部
3 ガス化部
A タール分解域
B チヤ一ガス化域
C 斑兀域

Claims

請求の範囲
[1] 原料バイオマスを間接加熱して熱分解し、タール分を含む熱分解ガスとチヤ一を発 生させる外熱式ロータリーキルン形式の熱分解部と、
該熱分解部から抽出されるタール分を含む熱分解ガスおよびチヤ一に対し、酸ィ匕 ガスが導入されて、タール分を熱分解させるとともに、チヤ一をガス化させるガス化部 とを備えたことを特徴とするバイオマスガス化装置。
[2] 前記ガス化部は、タール分を熱分解させるためのタール分解域と、チヤ一をガスィ匕 させて灰として排出するためのチヤ一ガス化域とを備えることを特徴とする請求項 1に 記載のバイオマスガス化装置。
[3] 前記ガス化部はシャフト炉形式であることを特徴とする請求項 1または 2に記載のバ ィォマスガス化装置。
PCT/JP2006/322816 2005-12-28 2006-11-16 バイオマスガス化装置 WO2007077685A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200680049102.6A CN101346455B (zh) 2005-12-28 2006-11-16 生物质气化装置
US12/097,905 US8100991B2 (en) 2005-12-28 2006-11-16 Biomass gasification apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005378083A JP4790412B2 (ja) 2005-12-28 2005-12-28 バイオマスガス化装置
JP2005-378083 2005-12-28

Publications (1)

Publication Number Publication Date
WO2007077685A1 true WO2007077685A1 (ja) 2007-07-12

Family

ID=38228043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322816 WO2007077685A1 (ja) 2005-12-28 2006-11-16 バイオマスガス化装置

Country Status (4)

Country Link
US (1) US8100991B2 (ja)
JP (1) JP4790412B2 (ja)
CN (1) CN101346455B (ja)
WO (1) WO2007077685A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174654A (ja) * 2007-01-19 2008-07-31 Tsukishima Kikai Co Ltd 有機物のガス化方法及びガス化設備
EP2045311A1 (en) 2007-10-02 2009-04-08 IN.SER. S.p.A. System and process for the pyrolsation and gasification of organic substances
JP2010121049A (ja) * 2008-11-20 2010-06-03 Jfe Engineering Corp 有機物原料のガス化装置及び方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE531101C2 (sv) * 2006-12-14 2008-12-16 Rolf Ljunggren Förfarande och anläggning för framställning av syntesgas från biomassa
BRPI0818094A2 (pt) * 2007-10-09 2015-07-14 Rentech Inc Método para remover alcatrão de um gás, e, sistema e método de gaseificação de biomassa
US9121606B2 (en) * 2008-02-19 2015-09-01 Srivats Srinivasachar Method of manufacturing carbon-rich product and co-products
CN101696360B (zh) * 2009-10-23 2010-11-03 王保林 可连续生产的秸秆燃气免除焦的工业气化机组
CN102844409B (zh) 2010-02-16 2014-12-03 大荷兰人国际有限公司 气化装置和气化方法
IT1399655B1 (it) * 2010-04-26 2013-04-26 Bertei Processo ed apparato per la gassificazione di materiali organici
SE535222C2 (sv) 2010-10-11 2012-05-29 Cortus Ab Produktion av kol vid indirekt värmd förgasning
FI126564B (fi) * 2011-02-28 2017-02-15 Andritz Oy Menetelmä ja laitteisto meesan polttamiseksi
DE202011004328U1 (de) 2011-03-22 2012-06-25 Big Dutchman International Gmbh Schachtvergaser zum Betrieb bei einer unterstöchiometrischen Oxidation
US9028571B2 (en) * 2011-04-06 2015-05-12 Ineos Bio Sa Syngas cooler system and method of operation
GB2499404B (en) * 2012-02-14 2019-08-14 Anergy Ltd Fuel processing using pyrolyser
JP6008082B2 (ja) * 2012-03-02 2016-10-19 株式会社Ihi ガス化装置及びガス化方法
CN104736674B (zh) 2012-08-30 2017-03-08 澳思咨询私人有限公司 含碳材料的有效干燥和热解
JP5998778B2 (ja) * 2012-09-13 2016-09-28 株式会社Ihi チャー固定床改質装置
DE102013111145A1 (de) * 2013-10-09 2015-04-09 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Verfahren zur Erzeugung eines Synthesegases aus kohlenstoffhaltigem Brennstoff mit niedrigem fixem Kohlenstoffgehalt
CN104211011A (zh) * 2014-08-26 2014-12-17 常州大学 一种利用生物质产气过程中提高氢气产率的装置
JP6551745B2 (ja) * 2016-01-18 2019-07-31 株式会社Gpe バイオマスのガス化装置
CN107869910B (zh) * 2016-09-23 2019-06-21 中国科学院上海应用物理研究所 高温回转炉及含其的高温制氢系统
EP3309240A1 (de) * 2016-10-12 2018-04-18 WS-Wärmeprozesstechnik GmbH Verfahren und vorrichtung zum vergasen von biomasse
IT201700018877A1 (it) * 2017-02-20 2018-08-20 Pyro&Tech Srls Forno pirolitico a camere separate e apparecchio per la produzione combinata di energia elettrica e acqua calda domestica comprendente detto forno pirolitico
JP6696929B2 (ja) * 2017-03-31 2020-05-20 日立造船株式会社 ガス改質炉
WO2018189846A1 (ja) * 2017-04-12 2018-10-18 株式会社▲高▼和 バイオマス熱電供給システム
JP6899102B2 (ja) * 2017-09-29 2021-07-07 株式会社ジャパンブルーエナジー バイオマスのガス化装置
JP6996991B2 (ja) * 2018-01-25 2022-01-17 日立造船株式会社 ガス化システム
CN112368236B (zh) * 2018-07-06 2023-03-28 株式会社翼工程服务 以生物质作为原料的氢气制造方法
CN108841402B (zh) * 2018-09-09 2023-08-11 甘肃华瑞农业股份有限公司 一种活性炭回转窑用于分离气及焦油木醋酸的装置
CN109609159B (zh) * 2019-02-12 2020-06-16 西北民族大学 一种生物质连续分段催化热解反应的装置
IT202000025321A1 (it) * 2020-10-26 2022-04-26 Ers Eng S R L Processo di gassificazione di materiale organico e impianto per attuare un tale processo
CN114479953B (zh) * 2022-01-27 2023-03-21 华中科技大学 一种利用生物质制备合成气的装置
JP2024042722A (ja) 2022-09-16 2024-03-29 新東工業株式会社 バイオマスガス化炉

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112956A (ja) * 2003-10-06 2005-04-28 Nippon Steel Corp バイオマスのガス化方法
JP2005272530A (ja) * 2004-03-23 2005-10-06 Central Res Inst Of Electric Power Ind バイオマス発電システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3146891C2 (de) * 1981-11-26 1985-03-14 BKMI Industrieanlagen GmbH, 8000 München Verfahren zum Kalzinieren heizwerthaltiger Mineralstoffe
US5136808A (en) * 1988-05-26 1992-08-11 Albert Calderon Slagging gasification apparatus
US5063732A (en) * 1988-05-26 1991-11-12 Calderon Automation, Inc. Method for repowering existing electric power plant
US6409790B1 (en) * 2001-03-16 2002-06-25 Calderon Energy Company Of Bowling Green, Inc. Method and apparatus for practicing carbonaceous-based metallurgy
US6911058B2 (en) * 2001-07-09 2005-06-28 Calderon Syngas Company Method for producing clean energy from coal
JP2004250574A (ja) 2003-02-20 2004-09-09 Kawasaki Heavy Ind Ltd バイオマス用固定床ガス化炉のモデル化方法
JP4312632B2 (ja) 2004-03-03 2009-08-12 中外炉工業株式会社 バイオマスガス化システムおよびその運転方法
US20050247553A1 (en) 2004-03-23 2005-11-10 Central Research Institute Of Electric Power Industry Carbonization and gasification of biomass and power generation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112956A (ja) * 2003-10-06 2005-04-28 Nippon Steel Corp バイオマスのガス化方法
JP2005272530A (ja) * 2004-03-23 2005-10-06 Central Res Inst Of Electric Power Ind バイオマス発電システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174654A (ja) * 2007-01-19 2008-07-31 Tsukishima Kikai Co Ltd 有機物のガス化方法及びガス化設備
EP2045311A1 (en) 2007-10-02 2009-04-08 IN.SER. S.p.A. System and process for the pyrolsation and gasification of organic substances
JP2010121049A (ja) * 2008-11-20 2010-06-03 Jfe Engineering Corp 有機物原料のガス化装置及び方法

Also Published As

Publication number Publication date
US20090260286A1 (en) 2009-10-22
JP2007177106A (ja) 2007-07-12
US8100991B2 (en) 2012-01-24
CN101346455B (zh) 2013-01-30
CN101346455A (zh) 2009-01-14
JP4790412B2 (ja) 2011-10-12

Similar Documents

Publication Publication Date Title
WO2007077685A1 (ja) バイオマスガス化装置
JP4713036B2 (ja) 有機物質又は有機物質混合物の熱分解ガス化方法及び装置
CN1213129C (zh) 一种用来气化有机物料和物料混合物的方法
JP4502331B2 (ja) 炭化炉による熱併給発電方法及びシステム
JP4746585B2 (ja) ガス化装置
WO2017138157A1 (ja) 改質炉及びそれを用いたガス化システム
CN104789270A (zh) 生物质两段式干馏气化工艺及装置
CN110747010A (zh) 一种自产燃气燃烧联动式热解气化装置
JP6006467B1 (ja) 改質炉及びそれを用いたガス化システム
JP4155365B2 (ja) 廃棄物熱分解ガス化溶融装置
JP5945929B2 (ja) 廃棄物ガス化溶融装置
JP2009102594A (ja) ガス化炉システム
JP4074521B2 (ja) Cdqにおけるバイオマス処理時の可燃ガス回収方法
JP2003213269A (ja) 高温炭化装置および高温炭化方法
JP5605576B2 (ja) 廃棄物ガス化溶融装置
CN101962578B (zh) 再生能源发电系统
JP2017014474A (ja) 連続式熱化学型バイオマス原料ガス化装置
CN216337461U (zh) 一种内热式直立炉气化系统
KR102250690B1 (ko) 바이오매스를 이용한 백탄 제조장치 및 이를 갖는 바이오매스 처리설비
JP7291677B2 (ja) 水性ガス生成システム、バイオマス発電システム及びバイオマス水素供給システム
WO2005028595A1 (en) Apparatus and method for producing combustible gasses from an organic material
CN210945518U (zh) 具有预热回收功能的生物质气化炉
JP2005211719A (ja) 有機物処理方法及びそのシステム
CN210945517U (zh) 一种自产燃气燃烧联动式热解气化装置
CN210974536U (zh) 一种侧吸式无氧中温热解炉

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680049102.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12097905

Country of ref document: US

Ref document number: 5254/DELNP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06832705

Country of ref document: EP

Kind code of ref document: A1