WO2007072662A1 - 燃料電池システムとその運転方法 - Google Patents

燃料電池システムとその運転方法 Download PDF

Info

Publication number
WO2007072662A1
WO2007072662A1 PCT/JP2006/323866 JP2006323866W WO2007072662A1 WO 2007072662 A1 WO2007072662 A1 WO 2007072662A1 JP 2006323866 W JP2006323866 W JP 2006323866W WO 2007072662 A1 WO2007072662 A1 WO 2007072662A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
injector
cell system
pressure
state
Prior art date
Application number
PCT/JP2006/323866
Other languages
English (en)
French (fr)
Inventor
Norio Yamagishi
Akihisa Hotta
Norimasa Ishikawa
Koji Katano
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN2006800480498A priority Critical patent/CN101341619B/zh
Priority to EP06833669.2A priority patent/EP1970986B1/en
Priority to US12/086,770 priority patent/US20090029226A1/en
Publication of WO2007072662A1 publication Critical patent/WO2007072662A1/ja
Priority to US12/837,774 priority patent/US7846597B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system in which an injector is provided in a gas supply channel of the fuel cell and an operation method thereof.
  • a fuel cell system equipped with a fuel cell that generates power by receiving supply of reaction gas has been proposed and put into practical use.
  • a fuel cell system is provided with a fuel supply channel for flowing fuel gas supplied from a fuel supply source such as a hydrogen tank to the fuel cell.
  • the supply pressure of the fuel gas is fixed due to its structure, so that it is difficult to change the supply pressure of the fuel gas quickly according to the operating situation.
  • the responsiveness is low, and high-precision pressure regulation that changes the target pressure in multiple stages is impossible.
  • the noise level of the entire fuel cell system is relatively low even under operating conditions, when operating noise is generated in each operating device, the noise may become annoying noise in some cases. There was a possibility. Therefore, the fuel gas supply pressure can be changed appropriately according to the operating state of the fuel cell. However, a system that can suppress the perception of noise is required.
  • the present invention has been made in view of such circumstances, and is a highly responsive system capable of appropriately changing the supply pressure of the fuel gas in accordance with the operating state of the fuel cell, and is operated. It is an object of the present invention to provide a fuel cell system and a method for operating the same.
  • a fuel cell system includes a fuel cell that receives a gas supply and generates power, and a gas supply channel of the fuel cell that adjusts a gas state on the upstream side thereof
  • a fuel cell system comprising an injector supplied to the downstream side and a control means for driving and controlling the injector, wherein the control and means correspond to the drive state of the related device including the fuel cell system. It controls the operation of the injector.
  • the injector depends on the operating state of the fuel cell (the amount of power generated by the fuel cell (power, current, voltage), the temperature of the fuel cell, the abnormal state of the fuel cell system, the abnormal state of the fuel cell body, etc.).
  • the operating state of the injector opening of the valve body of the injector (gas filtration area), opening time of the valve body of the injector (gas injection time) ', etc.) can be set. Accordingly, the gas state (supply pressure) of the fuel gas can be appropriately changed according to the operating state of the fuel cell, and the responsiveness can be improved. '
  • gas state means a gas state (flow rate, pressure, temperature, molar concentration, etc.), and particularly includes at least one of a gas flow rate and a gas pressure.
  • the control means controls the operation of the injector according to the driving state of related devices including the fuel cell system, for example, the injector can be operated under a condition in which the operation sound of the injector is less likely to be annoying. It can suppress that a sound becomes harsh.
  • Related equipment including the fuel cell system includes, for example, surrounding electronic devices including the fuel cell system.
  • the electronic devices include pumps, motors, If the fuel cell system is mounted on a moving body, it can be interpreted as a power device such as a traction motor, inverter, or converter.
  • Controlling the operation of the injector means, for example, permitting or restricting (prohibiting) the operation of the injector or changing the drive cycle of the injector.
  • the noise frequency due to the pulsation of the related device matches the drive frequency of the injector.
  • the injector is activated only at the peak of the sound emitted from the related device. If it is less than the value, the injector operation is restricted (prohibited).
  • control means may control the operation of the indicator in accordance with a radiated sound generated as the related device is driven.
  • a pump for supplying fluid to the fuel cell can be applied.
  • an air compressor that pumps an oxidizing gas to the fuel cell can be applied.
  • a fan used for cooling the fuel cell or a motor, or an air blower of an air conditioner in a passenger compartment when mounted on a moving body, as a driving state of the related device, a fan used for cooling the fuel cell or a motor, or an air blower of an air conditioner in a passenger compartment.
  • the operating condition of the blower used can be applied.
  • a moving state of the moving body for example, a moving speed or an acceleration state can be applied as the driving state of the related device.
  • the operating sound of the injector may be hidden or inconspicuous by the traveling sound of the moving body (for example, tire road noise or wind noise). Yes, it is possible to prevent this motion noise from becoming harsh. '
  • the injector by operating the injector in an acceleration state, that is, in an acceleration environment where it is difficult to notice wind noise and braking noise that accompany the movement (acceleration) of a moving object.
  • the operating noise can be prevented from becoming harsh.
  • the acceleration state of the moving body is correlated with the power generation current of the fuel cell, the required load (required power generation amount) from the electrical load (for example, motor) connected to the fuel cell, or the accelerator opening.
  • the operation of the injector may be controlled according to at least one of them.
  • control means may control the driving frequency of the indicator according to the frequency of the radiated sound of the related device.
  • the drive frequency of the injector is matched with the frequency of the sound emitted from the related device, or if the frequency of the sound emitted from the related device is an integer multiple of the drive frequency of the injector,
  • the operating sound of the injector can be hidden or made inconspicuous with the radiated sound from the related device, and it can be suppressed that the operating sound of the injector becomes annoying.
  • the control unit may change a pressure adjustment target accuracy of the injector according to a driving state of related devices including the fuel cell system.
  • the adjustment of the pressure regulation target accuracy is, for example, from the control state of the first ⁇ ⁇ that performs feedback control of the opening / closing operation of the injector based on the deviation between the detected value of the secondary side pressure of the injector and the control target value.
  • the execution of the feedback control may be prohibited, and the control may be changed to a second control state in which the secondary pressure of the injector is increased to a predetermined target when the secondary pressure is decreased to a predetermined lower limit pressure.
  • the change in the pressure regulation target accuracy is regarded as “0” while the deviation is predetermined. If the value is greater than or equal to the value, the second control value is set to be larger than the first control state from the first control state in which feedback control of the opening / closing operation of the engine engine is performed based on the deviation. It may be changed to a state.
  • control means changes the pressure adjustment target accuracy of the indicator only during idle operation of the moving body.
  • the control means prohibits the operation of the injector until the secondary pressure of the injector drops to a predetermined lower limit pressure when it is desired to reduce the radiated sound generated by driving the related device. May be.
  • control means may permit the operation of the injector and increase the secondary pressure to a predetermined pressure.
  • a fuel cell system is a fuel cell system mounted on a mobile body, which is a fuel cell that generates power upon receiving a gas supply, and a gas upstream of the fuel cell provided in the gas supply channel of the fuel cell.
  • An injector that adjusts the state and supplies it to the downstream side, and a control unit that controls the operation of the injector according to the moving state of the moving body may be provided.
  • the injector is provided with an internal flow path that communicates the upstream side and the downstream side thereof, and is movably disposed in the internal flow path, and the opening area of the internal flow path can be changed according to the movement position.
  • a valve body drive unit that drives the valve body by electromagnetic driving force.
  • the fuel cell system operating method includes a fuel cell that generates power upon receiving gas supply, and' is provided in the gas supply flow path of the fuel cell to adjust the upstream gas state to the downstream side.
  • An operation method of a fuel cell system comprising: an injector to be supplied, wherein the operation of the injector is controlled in accordance with a driving state of a related device including the fuel cell system.
  • the present invention is a highly responsive system capable of appropriately changing the supply pressure of the fuel gas according to the operation state of the fuel cell, and the operation sound of the injector is concerned by the operator. Difficult fuel cell system and its operation method Can be provided.
  • FIG. 1 is a configuration diagram of a fuel cell system according to an embodiment of the present invention.
  • FIG. 2 is a control block diagram for explaining a control mode of the control device of the fuel cell system shown in FIG. '
  • FIG. 3 is a cross-sectional view of the indicator of the fuel cell system shown in Fig. 1.
  • FIG. 4 is a time chart for explaining the control mode of the control device of the fuel cell system shown in FIG.
  • Fig. 5 is shown in Fig. 1; it is a time chart for explaining the control mode of the control device of the battery system.
  • FIG. 6 is a flowchart for explaining an operation method of the fuel cell system shown in FIG. '
  • FIG. 7 is a configuration diagram showing a modification of the fuel cell system shown in FIG.
  • FIG. 8 is a configuration diagram showing a modification of the fuel cell system shown in FIG.
  • the fuel cell system 1 includes a fuel cell 10 that generates electric power upon receiving supply of reaction gases (oxidized gas and fuel gas), and includes a fuel cell 10.
  • Oxidizing gas piping system 2 for supplying air as oxidizing gas 2
  • Hydrogen gas piping system 3 for supplying hydrogen gas as fuel gas to fuel cell 10 It is equipped with a control device (control means) 4 etc. for integrated control of the entire system.
  • the fuel cell 10 has a stack structure in which a required number of single cells that generate power upon receiving a reaction gas are stacked.
  • the electric power generated by the fuel cell 10 is supplied to a PCU (Power Control Unit) 11.
  • the P C U 1 1 is provided with an inverter D C -D c converter or the like disposed between the fuel cell 5 10 and the traction motor 1 2.
  • the fuel cell 10 is provided with a current sensor 13 for detecting a current during power generation. '
  • the oxidizing gas piping system 2 includes an air supply passage 21 for supplying the oxidizing gas (air) humidified by the humidifier 20 to the fuel cell 10, and an oxygen off-gas discharged from the fuel cell 10.
  • An air discharge passage 22 that guides the gas to the humidifier 20 and an exhaust passage 23 that guides the oxidant off-gas from the humidifier 20 to the outside.
  • the air supply passage 21 is provided with an air conditioner 24 that takes in the oxidizing gas in the atmosphere and pumps it to the humidifier 20.
  • the hydrogen gas piping system 3 is used to supply a hydrogen tank 30 as a fuel supply source storing hydrogen gas at a high pressure (eg, 70 MPa) and to supply the hydrogen gas from the hydrogen tank 30 to the fuel cell 10.
  • the hydrogen gas piping system 3 is an embodiment of the fuel supply system in the present invention.
  • a reformer that generates hydrogen-rich reformed gas from a hydrocarbon-based fuel, and a high-pressure gas tank that stores the reformed gas generated by the reformer in a high-pressure state. And can also be used as a fuel supply source. In addition, a tank having a hydrogen storage alloy may be employed as a fuel supply source.
  • shutoff valve 3 3 that shuts off or allows the supply of hydrogen gas from the hydrogen tank 30, a regulator 3 4 that adjusts the pressure of the hydrogen gas, and an injector 3 5.
  • injector 3 5 Is provided.
  • Also on the upstream side of the injector 3 5 are provided with a primary pressure capacitor 41 and a temperature sensor 42 for detecting the pressure and temperature of the hydrogen gas in the hydrogen supply flow path 31.
  • a secondary that detects the pressure of the hydrogen gas in the hydrogen supply flow path 3 1 is provided.
  • Side pressure sensor 4 3 is provided.
  • the regulator 34 is a device that regulates the upstream pressure (primary pressure) to a preset secondary pressure.
  • a mechanical pressure reducing valve that reduces the primary pressure is adopted as the regulator 34.
  • the mechanical pressure reducing valve has a structure in which a back pressure chamber and a pressure regulating chamber are formed with a diaphragm therebetween, and the primary pressure is set to a predetermined pressure in the pressure regulating chamber by the back pressure in the back pressure chamber. It is possible to adopt a known configuration in which the pressure is reduced to a secondary pressure.
  • the upstream pressure of the injector 35 can be effectively reduced by arranging two reguillere ⁇ 3.4 on the upstream side of the injector 35. For this reason, it is possible to increase the degree of freedom in designing the mechanical structure of the injector 35 (valve, casing, flow path, 'drive device, etc.).
  • the injector 35 is an electromagnetically driven type capable of adjusting the gas state such as gas flow rate and gas pressure by driving the valve body directly with a predetermined driving cycle with electromagnetic driving force and separating it from the valve seat. Open / close valve.
  • the injector 35 includes a valve seat having an injection hole for injecting gaseous fuel such as hydrogen gas, a nozzle body that supplies and guides the gaseous fuel to the injection hole, and a shaft with respect to the nozzle body. And a valve body that is accommodated and held so as to be movable in the linear direction (gas flow direction) and opens and closes the injection hole. .
  • valve body of the injector 35 is driven by a solenoid that is an electromagnetic drive device, and the opening area of the injection hole is increased in two stages by turning on and off the pulsed excitation current supplied to the solenoid.
  • Multi-stage, continuous (stepless), or linear can be switched. .
  • the injector 35 is a valve that directly opens and closes the valve (valve body and valve seat) with an electromagnetic drive force, and has a high responsiveness because its drive cycle can be controlled up to a highly responsive region.
  • the injector 35 changes at least one of the opening area (opening) and the opening time of the valve body provided in the gas flow path of the injector '3.5 in order to supply the required gas flow rate downstream thereof. As a result, the gas flow rate (or hydrogen molar concentration) supplied to the downstream side (fuel cell 10 side) is adjusted.
  • Injector 3 5 can also be interpreted as a pressure regulating valve (pressure reducing valve, regulator). Further, in the present embodiment, it is possible to change the pressure adjustment amount (decompression amount) of the upstream gas pressure of the engineer 35 so as to match the required pressure within a predetermined pressure range according to the gas requirement. It can also be interpreted as a modulatable pressure valve.
  • an injector 35 is disposed upstream of the junction A 1 between the hydrogen supply channel 31 and the circulation channel 32.
  • the injector 35 is arranged downstream of the part (hydrogen gas merging section A 2).
  • An exhaust flow path 3 8 is connected to the circulation flow path 3 2 via a gas-liquid separator 3 6 and an exhaust drain valve 3 7.
  • the gas-liquid separator 36 recovers moisture from the hydrogen off gas.
  • the exhaust / drain valve 3 7 is operated by a command from the control device 4, so that the water recovered by the gas-liquid separator 36 and the hydrogen off-gas containing impurities in the circulation flow path 3 2 are externally supplied. It is to be discharged (purged).
  • the circulation channel 3 2 is provided with a hydrogen pump 39 that pressurizes the hydrogen off-gas in the circulation channel 3 2 and sends it to the hydrogen supply channel 31 side.
  • the gas in the discharge flow path 38 is diluted by the diluter 4 and is joined with the gas in the exhaust flow path 23.
  • the hydrogen off-gas discharged through the exhaust / drain valve 37 and the discharge passage 38 is diluted by the diluter 40 and joined with the oxidizing off-gas in the exhaust passage 23.
  • the control device 4 detects the amount of operation of an acceleration operation device (accelerator, etc.) provided in the vehicle, and controls information such as an acceleration request value (eg, a required power generation amount from a load device such as the traction motor 12). In response, the operation of various devices in the system is controlled.
  • an acceleration operation device acceleration, etc.
  • an acceleration request value eg, a required power generation amount from a load device such as the traction motor 12
  • the negative device is an auxiliary device (for example, compressor 24, hydrogen pump 39, cooling pump motor, etc.) required to operate the fuel cell 10, Electric power consumption equipment including air conditioners (air conditioners), lighting, audio, etc. used in various devices (transmissions, wheel control devices, steering devices, suspension devices, etc.) involved in traveling It is a generic term.
  • auxiliary device for example, compressor 24, hydrogen pump 39, cooling pump motor, etc.
  • Electric power consumption equipment including air conditioners (air conditioners), lighting, audio, etc. used in various devices (transmissions, wheel control devices, steering devices, suspension devices, etc.) involved in traveling It is a generic term.
  • those that generate radiated sound when driven correspond to the related devices of the present invention, but are not limited to those exemplified.
  • the control device 4 is configured by a computer system (not shown). Yes.
  • a computer system includes a CPU, ROM, RAM, HDD, input / output interface, display, and the like.
  • Various control programs recorded in the ROM are read and executed by the CPU, and various controls are performed. Operation is realized.
  • the control device 4 based on the operating state of the fuel cell 10 (current value during power generation of the fuel cell 1 detected by the current sensor 13), The amount of hydrogen gas consumed by the fuel cell 10 (hereinafter referred to as “hydrogen consumption”) is calculated (fuel consumption calculation function: B 1).
  • hydrogen consumption is calculated and updated for each calculation cycle of the control device 4 using a specific calculation formula representing the W relation between the current value of the fuel cell 10 and the water consumption. It is said.
  • control device 4 determines the target pressure of water ⁇ gas at the downstream position of the injector 3 5 based on the operating state of the fuel cell 10 (current value during power generation of the fuel cell 10 detected by the current sensor 1 3). Calculate the value (target gas supply pressure to the fuel cell 10) (target pressure value calculation function: B2).
  • target pressure value calculation function: B2 target pressure value calculation function
  • the secondary side pressure sensor 4 3 is arranged for each calculation cycle of the control device 4 using a specific map representing the relationship between the current value of the fuel cell 10 and the target pressure value. The target pressure value at that position (pressure adjustment position where pressure adjustment is required) is calculated and updated. '
  • the control device 4 provides feedback correction flow rate based on the calculated target pressure value, the detected pressure value at the downstream position (pressure adjustment position) detected by the secondary pressure sensor 43, and the deviation of (Feedback correction flow rate calculation function: B 3).
  • the feedback correction flow rate is a hydrogen gas flow rate (pressure difference reduction correction flow rate) that is added to the hydrogen consumption to reduce the deviation between the target pressure value and the detected pressure value.
  • the feedback correction flow rate is calculated and updated every calculation cycle of the control device 4 using a target tracking control law such as PI control. Further, the control device 4 calculates a feedforward corrected flow rate corresponding to the deviation between the previously calculated target pressure value and the currently calculated target pressure value (feed forward corrected flow rate calculation function: B 4).
  • the feedforward correction flow rate is the fluctuation of the hydrogen gas flow rate due to the fluctuation of the target pressure value (correction flow corresponding to the pressure difference).
  • the feedforward correction flow rate is calculated and updated every calculation cycle of the control device 4 using a specific calculation formula that expresses the relationship between the deviation of the target pressure value and the feedforward correction flow rate.
  • control device 4 controls the injector 3 based on the gas state upstream of the injector 35 (the pressure of the hydrogen gas detected by the primary pressure capacitor 41 and the temperature of the hydrogen gas detected by the temperature sensor 42). Calculate the static flow upstream of 5 (static flow calculation function: B 5).
  • static flow calculation function: B 5 static flow calculation function
  • a static flow rate is calculated for each calculation cycle of the control device 4 using a specific calculation formula representing the relationship between the pressure and temperature of the hydrogen gas upstream of the injector 35 and the static flow rate. Is calculated and updated.
  • control device 4 calculates the invalid injection time of the injector 35 based on the gas state (hydrogen gas pressure and temperature) upstream of the indicator 35 and the applied voltage (invalid injection time calculation function: B 6).
  • the invalid injection time means the time required from when the injector 35 receives the control signal from the control device 4 until the actual injection is started.
  • the invalid injection time is calculated for each calculation cycle of the control device 4 using a specific map representing the relationship between the pressure and temperature of the hydrogen gas upstream of the injector 35, the applied voltage, and the invalid injection time. Calculate and update.
  • the control device 4 calculates the injection flow rate of the injector 35 by adding the hydrogen consumption amount, the feedback correction flow rate, and the feed forward correction flow rate (injection flow rate calculation function: B 7). Then, the control device 4 calculates the basic injection time of the indicator 35 by multiplying the value obtained by dividing the injection flow rate of the indicator 35 by the static flow rate by the drive cycle of the indicator 35, and The basic injection time and the invalid injection time are added to calculate the total injection time of the injector 35 (total injection time calculation function: B 8).
  • the drive cycle means a stepped (on / off) waveform cycle representing the open / closed state of the injection hole of the injector 35. In the present embodiment, the drive period is set to a constant value by the control device 4.
  • the control device 4 controls the gas injection time and the gas injection timing of the injector 35 by outputting a control signal for realizing the total injection time of the injector 35 calculated through the above procedure.
  • the flow rate and pressure of the hydrogen gas supplied to the fuel cell 10 are adjusted.
  • the injector 35 described above has the structure shown in FIG. 3 and constitutes a part of the hydrogen supply flow path (gas supply flow path) 3 1, and the hydrogen supply flow path 3 at one of the ports 51.
  • Hydrogen tank 30 Located on the 0 side and the other mouth 52 2 Hydrogen supply flow path 3 1
  • Fuel cell 10 1 Internal metal path 5 3 disposed on the 0 side Metal cylinder 5 4
  • the cylinder 54 has a first passage portion 56 connected to the mouth portion 51 and a mouth portion 51 of the first passage portion 56 connected to the opposite side.
  • 3 passage part 58 and the third passage part 58 are connected to the opposite side of the second passage part 57, A second passage portion 57 and a fourth passage portion 59 having a diameter smaller than that of the third passage portion 58 are formed, and an internal passage 53 is formed by these.
  • the injector 35 is moved to the valve seat 61, which is a sealing member provided so as to surround the opening on the third passage portion 58 side of the fourth passage portion 59, and the second passage portion 57.
  • the cylindrical portion 6 2 and the third passage portion 5 8 that can be inserted are arranged in the third passage portion 5 8 and the second passage portion 5 7 has an umbrella portion 6 3 having a diameter larger than that of the second passage portion 5 7.
  • One end side is inserted into the cylindrical valve body 62 of the valve body 65, and the other end side is locked to the stopper 66 formed in the first passage portion 56.
  • the spring 6 7 against the urging force of the spring 6 7 and the third passage section against the urging force of the spring 6 7.
  • Solenoid that connects the internal flow path 5 3 through the communication hole 6 4 by moving the valve body 6 5 away from the valve seat 6 1 by moving it until it contacts the step 6 on the 7 side 6 8 Id (Electromagnetic drive device, valve drive unit) 6 9 , The they have.
  • the indicator 35 is moved by the metal valve body 65 in the metal cylinder 5 4 and abutted against the step portion 6'8 of the cylinder 5 4 at the time of driving to communicate the internal flow path 53. Therefore, an operating noise is generated. In some cases, such operating noise can be annoying to operators such as drivers and passengers.
  • the injector 35 of the present embodiment is an electromagnetically driven gas state variable supply device that is driven at a high frequency, so that its operating sound becomes noticeable as noise.
  • the control device 4 performs drive control of the injector 35 as follows according to the drive state of the related device while satisfying the control conditions described above.
  • drive control of the injector 35 is performed in accordance with the operating state of an air compressor (related device, pump) 24, which is one of the accessory devices. That is, the air compressor 24 generates pulsation of suction and discharge, and generates an operation sound (radiation sound) corresponding to the pulsation.
  • the 8th operating noise is at a frequency of 4 OHz when rotating at 1600 rpm, at a frequency of 8 Hz when rotating at 12.0 rpm, and at 1800 rpm when rotating at 1800 rpm.
  • the primary operating noise is 1 0 Hz when rotating at 1 6 0 0 rotation, and at 1 2 0 0 rotation. Occurs at a frequency of 20 Hz when rotating at 1800 rpm, and at a frequency of 30 Hz when rotating at 1800 rpm, and is a screw-type air that uses a 4-tooth rotor and a 6-tooth rotor.
  • the rotation 6th order operating sound is at a frequency of 60 Hz when rotating at 1600 rotations, and at a frequency of 12.0 Hz when rotating at 12,000 rotations,
  • the indicator 3 5 is set according to the frequency of the operating sound of such an air compressor 2 4, for example 10 0 O It is driven at a frequency of about Hz or less.
  • the driving frequency of the injector 3 5 When controlling the driving frequency of the injector 3 5 according to the frequency of the operating sound accompanying the pulsation of the air compressor 2 4 indicating the operating state of the air conditioner 2 4, for example, the frequency of the operating sound of the air compressor 2 4 (pump Match the 'noise frequency due to pulsation) and the drive frequency of the injector 35, including the phase.
  • the valve of the injector 35 can be opened while the sound of the air compressor 24 is being emitted.
  • the operation sound of the air conditioner press 2 24 that makes a loud operating noise is drowned out and the operating noise of the indicator 3 5 can be prevented from being heard by the passenger.
  • the startup sound of the air compressor 2 4 When the injector 35 is driven at the timing of biting, it is possible to more effectively wipe out the noise during the driving of the injector 35 with the loudest sound.
  • the frequency of the operating sound of the air compressor 24 is an integer multiple of the driving frequency of the injector 35.
  • the engineer 3 5 is driven at the timing t 1 when the operating sound of the air compressor 2 4 rises.
  • the control to stop the drive of the injector 3 5 at the timing t 3 when the operating sound of the compressor 2 4 is lowered is performed every other time when the operating sound of the air compressor 2 4 is generated.
  • the injection amount is increased by maintaining the injector 35 open.
  • the indicator 35 is driven so that the frequency of the operating sound of the air compressor 24 is equal to an integral multiple of the drive frequency of the indicator 35 (twice in FIG. 4 (c)).
  • the operation of the injector 35 can be concealed or made inconspicuous by the operation sound of the air compressor 24, and it is possible to suppress the operation sound of the injector 35 from becoming annoying. .
  • the number of times the injector 35 is driven can be reduced, and it is possible to further prevent the operating sound of the injector 35 from becoming annoying.
  • the frequency of the operating sound of the air compressor 24 and the drive frequency of the injector 35 are the same. Shift as appropriate.
  • the phase of the driving frequency of the injector 35 is set to the middle of the peak interval of the operating noise of the air compressor 24 (t 4 ⁇ t 5) Shift so that the operating noise is generated.
  • the injector 3 5 is operated so that the operation sound is generated periodically and stably with the operation sound of the air compressor 2 4, that is, the injector 3 5 is operated in an environment in which generation of noise is less likely to occur.
  • the operation sound of the injector 35 is not bothered, and the operation sound of the injector 35 can be prevented from becoming annoying. .
  • the fuel cell 10 when the operating noise of the air compressor 24 is low, for example, during idle operation, when the vehicle speed is less than the predetermined value and the soot or the generated current of the fuel cell 10 is less than the predetermined value, the fuel cell 10
  • the load demand (power generation demand) on the air compressor is small, and even if the pressure of hydrogen gas and air changes slightly, the power generation stability is not affected. It is also possible to prohibit (restrict) the operation of the sensor 35.
  • the pressure of the hydrogen gas in the hydrogen supply flow path 3 1 is detected when the operating noise of the air compressor 2 4 is below a predetermined value.
  • the secondary pressure sensor 4 3 is monitored, and when the hydrogen gas pressure in the hydrogen supply flow path 3 1 detected by the secondary pressure sensor 4 3 falls below a predetermined pressure, the indicator 3 5 is driven. In control, the hydrogen pressure adjustment target of hydrogen gas in the hydrogen supply flow path 3 1 detected by the secondary pressure sensor 4 3 Loosen as much accuracy as possible.
  • the secondary control pressure may be changed to a second control state in which the secondary pressure is increased to a predetermined target pressure.
  • the deviation is set to “0”.
  • the predetermined value is compared with the first control state from the first control state in which the opening / closing operation of the injector 35 is feedback controlled based on the deviation.
  • the opening / closing operation of the injector 35 is controlled so that the drive cycle (basic cycle) of the injector 35 is constant, one drive is performed compared to the first control state.
  • the injection amount of the injector 35 per cycle is forcibly increased (or the injection time is lengthened) and the control state is changed to the second control state.
  • the control period is changed to the second control state in which one driving cycle (basic cycle) is forcibly increased as compared with the first control state.
  • the injector 35 is driven (injected) between time 1 l and t 12 based on the pressure deviation between the current value and the target value.
  • the hydrogen gas pressure in the channel 31 increases as shown in the figure, in the first example shown in Fig. 5 (b), the hydrogen gas pressure in the hydrogen supply channel 31 is until time t 1 3 to be lowered to a predetermined lower limit value, but Rukoto not to drive the Injiwekuta 3 5 as a result of the feedback control based on the pressure deviation, 'reduced the hydrogen gas pressure to the lower limit value P L
  • the injector 3 5 is driven between time t 1 3 and time t 1 4.
  • the operating sound of the air compressor 2 4 exceeds the predetermined value, the operating sound of the injector 3 5 can be canceled out by the operating sound of the air compressor 2 4 if the injector 3 5 is driven normally. Can do.
  • step S 1 when the operating noise of the air compressor 24 is low, that is, as shown in FIG. 6, when the operating noise of the air compressor 24 is smaller than the predetermined lower limit (step S 1), the pressure regulation target accuracy is reduced. Loosen as much as possible (step S2), and reduce the number of times the injector 35 is driven. If the accelerator opening per unit time increases beyond the upper limit, S3: YES), the pressure adjustment target accuracy may be returned to the normal setting (step S4), and the injector 35 may be injected normally.
  • step S 2 for setting the pressure adjustment target accuracy to a large value according to the accelerator opening may be canceled.
  • the control in step S 2 for setting the pressure adjustment target accuracy to a large value according to the accelerator opening may be canceled.
  • the vehicle accelerates The gas pressure drop can be prevented, and the acceleration response and thus the merchantability can be improved.
  • the prohibition can be canceled by the accelerator opening.
  • the dead zone in which the pressure deviation is regarded as ⁇ 0 '' is increased, and pressure control is performed compared to normal control.
  • This example corresponds to the second example in which the pressure adjustment target accuracy is relaxed to increase.
  • the vehicle speed is applied instead of the operating noise of the air compressor 24, and the injector 35 is operated according to this vehicle speed. It is also possible to control.
  • the operating noise of the air compressor 24 increases and the driving noise such as tire road noise and wind noise increases. Therefore, even if the injector 3 5 is driven as usual when the vehicle speed exceeds the predetermined value, the operating noise of the injector 3 5 can be extinguished by the operating noise and traveling noise of the air compressor 2 4. Can do. Therefore, it can suppress that this operation sound becomes annoying.
  • the vehicle speed is roughly proportional to the number of injections of the injector 35 and the rotation speed of the air compressor 24, the cooperative control is very advantageous. Note that either the running noise or the operating noise of the air compressor 24 is different depending on the vehicle. It is also possible to select whether to turn off the operation sound of 5.
  • an air conditioner air conditioner
  • an air conditioner is installed in the vehicle auxiliary machine to generate a relatively loud operating sound that can drown out the driving sound of the injector 3 5.
  • Equipment air blowers that blow off the air for the fuel cell 10 outside the passenger compartment, etc.
  • the operation of the injector 35 may be controlled in the same manner as described above according to the operation sound (blower sound) of the blower of the conditioner or the operation sound of the Rajta fan.
  • the operating noise of the air compressor 2 4 is usually the highest, it is better to control the operating status of the air compressor 24.
  • the magnitude of the operating noise of the air compressor 24 is roughly proportional to the power generation current of the fuel cell 10 and is also roughly proportional to the required load of the motor, that is, the accelerator opening (acceleration / deceleration state). It is also possible to apply the accelerator opening instead of the operation sound of the air compressor 24 and control the operation of the injector 35 according to this accelerator opening.
  • the accelerator opening is small, the operating noise of the air compressor 24 is also low, so if the accelerator opening is less than the specified value, the injector 3 5 will inject fuel. It is prohibited, or it is loosened to increase the pressure regulation target accuracy as much as possible, and the number of injections of the injector 35 is reduced.
  • the injector 35 should be driven normally when the accelerator opening exceeds a predetermined value.
  • the operating sound of the air compressor 2 4 can be eliminated.
  • the accelerator opening is roughly proportional to the number of injections of the injector 35 and the rotation speed of the air compressor 24, there is a merit of cooperative control.
  • the generated current of the fuel cell 10 and the required load of the motor, that is, the accelerator opening may not be in a proportional relationship.
  • the opening is large, in other words, by operating the indicator 3 5. in an acceleration environment where it is difficult to be concerned about the generation of noise, it is possible to suppress this audible operation noise.
  • the control described above is performed after the fuel cell 10 is completely warmed up (after the output restriction is released). This is because the fuel cell 10 does not have power generation robustness against pressure before warm-up, making it difficult to apply.
  • the operating state (injection time) of the injector 35 can be set according to the operating state (current value during power generation) of the fuel cell 10. Therefore, the supply pressure of hydrogen gas can be changed appropriately according to the operating state of the fuel cell 10, and the responsiveness can be improved.
  • the injector 35 is used as the hydrogen gas flow rate adjustment valve and the adjustable pressure control valve, high-precision pressure adjustment (adjustment of the hydrogen gas supply pressure to the fuel cell 10) becomes possible.
  • the injector 35 receives the control signal from the control device 4 according to the operating state of the fuel cell 10, and adjusts the hydrogen gas injection time and injection timing. Therefore, the pressure can be adjusted more quickly and accurately than the conventional mechanically adjustable pressure valve. In addition, since the injector 35 is smaller, lighter, and less expensive than the conventional mechanically adjustable pressure control valve, the entire system can be reduced in size and cost.
  • the control device 4 controls the operation of the injector 35 according to the driving state of the related device, and therefore, for example, the operation sound of the injector 35 is unlikely to be annoying. In this state, the injector 35 can be operated, and the operating noise of the injector 35 can be prevented from becoming harsh.
  • control device 4 controls the operation of the injector 3 5 according to the operating state of the air compressor 24, for example, if the operating sound of the injector 35 is superimposed on the operating sound of the air compressor 24, the injector 3 5
  • the operation sound of the air co-pressor 24 can be hidden or made inconspicuous, and the operation sound of the injector 24 can be prevented from becoming harsh.
  • the control device 4 may control the operation of the indicator 3 5 ′ in accordance with the operating state of the air conditioner. In this case, for example, if the operating sound of the indicator 3 5 is superimposed on the operating sound of the air conditioner, the indicator 3 The operation sound of 5 can be hidden or conspicuous by the operation sound of the soil conditioner, and the operation sound of the injector 35 can be prevented from becoming obstructive.
  • control device 4 may control the operation of the injector 35 according to the operating state of the radiator toughener.
  • the operating sound of the injector 35 is superimposed on the operating sound of the radiator toughener.
  • the operation sound of the injector 35 can be hidden or made inconspicuous by the operation sound of the radiator fan, and the operation sound of the injector 35 can be prevented from becoming annoying.
  • the control device 4 when mounted on a moving body, the control device 4 operates the injector 35 according to the vehicle speed. For example, when the vehicle speed is high
  • the operating sound of the indicator 35 can be concealed or inconspicuous by the traveling sound of the moving body, and it can be suppressed that this operating sound becomes annoying.
  • the control device 4 controls the operation of the injector 3 5.
  • the accelerator opening acceleration / deceleration state. Therefore, for example, when the accelerator opening is large, that is, when the injector 35 is operated in an acceleration environment where the generation of noise is less likely to be anxious, this operating noise can be annoying. Can be suppressed. .
  • the control device 4 may control the drive frequency of the injector 2 4 ′ according to the frequency of the operating sound of the air compressor 24 that is an auxiliary device.
  • the drive frequency of the injector 35 can be matched with the frequency of the operating sound of the air compressor 24, or the operating sound frequency of the air compressor 2 • 4 can be an integer multiple of the drive frequency of the injector 35
  • the operating sound of the injector 35 can be hidden or made inconspicuous by the operating sound of the air compressor 24, and it can be suppressed that the operating sound of the injector 35 becomes annoying.
  • the injector has been described by taking the injector provided in the hydrogen supply flow path 31 in the fuel cell system as an example. However, if the injector is provided in the gas supply flow path of the fuel cell system, , other It can be applied to various injectors.
  • the humidifying water supply injector 7 1 provided in place of the humidifier 20 described above in the air supply channel 21 for supplying the oxidizing gas (air) to the fuel cell 10, FIG.
  • a regulator 7 2 is provided when the hydrogen supply flow path 31 for supplying hydrogen gas to the fuel cell 10 is replaced with an injector. It is applicable to cathode air supply indicator 73, etc., which controls hydrogen pressure with air pressure.
  • the example in which the fuel cell system according to the present invention is mounted on the fuel cell vehicle has been shown.
  • various mobile bodies other than the fuel cell vehicle robot, ship, aircraft, etc.
  • the fuel cell system according to the present invention can also be mounted.
  • the fuel cell system according to the present invention may be applied to a stationary power generation system used as a power generation facility for a building (a house, a building, etc.).
  • a highly responsive fuel cell system capable of appropriately changing the fuel gas supply pressure in accordance with the operating state of the fuel cell, and a method for operating the fuel cell system. It can be widely used in fuel cell systems where the sound is not easily noticed by the operator and the operation method. '

Abstract

 本発明は、燃料電池10と、燃料電池10のガス供給流路31に設けられてその上流側のガス状態を調整して下流側に供給するインジェクタ35と、インジェクタ35を駆動制御する制御手段4とを備えた燃料電池システム1である。制御手段4は、当該燃料電池システム1を含む関連装置の駆動状態に応じて、前記インジェクタ35の作動を制御する。

Description

明細書 燃料電池システムとそ 運転方法
技術分野
本発明は、 燃料電池のガス供給流路.にィ'ンジェクタが設けられた燃料電池 システムとその運転方法に関する。 背景技術
現在、 反応ガス (燃料ガス及び酸化ガス) の供給を受けて発電を行う燃料 電池を備えた燃料電池システムが提案され、 実用化されている。 かかる燃料 電池システムには、 水素タンク等の燃料供給源から供給される燃料ガスを燃 料電池へと流すための燃料供給流路が設けられている。
そして、 一般的には、 燃料供給源からの燃料ガスの供給圧力がぎわめて高 い場合に、 この供給圧力を一定の値まで低減させる調圧弁 (レギユレータ) が燃料供給流路に設けられている (例えば、 特開 2 0 0 4— 3 4 2 3 8 6号 公報参照)。 明の開示
しかし、前記特許文献 1に記載されているような調圧弁では、その構造上、 燃料ガスの供給圧が固定されるため、 運転状況に応じて燃料ガスの供給圧力 を迅速に変化させることが困難である (すなわち応答性が低い) 上に、 目標 圧力を多段階にわたって変化させるような高精度な調圧が不可能であった。 また、 燃料電池システムは、 運転状況下にあってもシステム全体の騒音レ ベルが比較的低いため、 各作動機器に作動音が生じると、 その音が場合によ つては耳障りな騒音になってしまう可能性があった。 このため、 燃料電池の 運転状態に応じて燃料ガスの供給圧力を適切に変化させることができ、 しか も、 騒音の感得を抑制できるシステムが要求されている。
本発明は、 かかる事情に鑑みてなされたものであり、.燃料電池の運転状態 に応じて燃料ガスの供給圧力を適切に変化させることが可能な応答性が高 いシステムであって、 しかも作動音が操作者に気になり難レ、燃料電池システ ムとその運転方法を提供することを目的とする。
前記目的を達成するため、 本発明に係る燃料電池システムは、 ガス供給を '受けて発電する燃料電池と、 該燃料電池のガス供給流路に設けられてその上 流側のガス状態を調整して下流側に供給するインジェクタと、 該インジェク タを駆動制御する制御手段とを備えた燃料電池システムであって、 記制御 , 手段は、 当該燃料電池システムを含む関連装置の駆動状態に応じて前記イン ジェクタの作動を制御するものである。
かかる構成によれば、 燃料電池の運転状態 (燃料電池の発電量 (電力、 電 流、 電圧)、 燃料電池の温度、 燃料電池システムの異常状態、 燃料電池本体 の異常状態等) に応じてインジェクタの作動状態 (インジェクタの弁体の開 度 (ガスの逋過面積)、 インジェクタの弁体の開放時間 (ガスの噴射時間) '等) を設定することができる。 従って、 燃料電池の運転状態に応じて燃料ガ スのガス状態 (供給圧力) を適切に変化させることができ、 応答性 向上さ せることが可能となる。 '
なお、 「ガス状態」 とほ、 ガスの状態 (流量、 圧力、 温度、 モル濃度等)' を意味し、 特にガス流量及びガス圧力の少なくとも一方を含む。 '
また、 制御手段は、 燃料電池システムを含む関連装置の駆動状態に応じて インジェクタの作動を制御するため、 例えばインジェクタの作動音が耳障り となり難い状態下でィンジェクタを作動させることができ、 インジェクタの 作動音が耳障りとなってしまうことを抑制できる。
燃料電池システムを含む関連装置とは、 例えば当該燃料電池システムを含 む周囲の電子機器が該当し、 この場合の電子機器とは、 ポンプ, モータ, フ アンであったり、 当該燃料電池システムを移動体に搭載した場合には、 トラ クシヨンモータ, インバータ, コンバータ等の電力機器と解釈することもで きる。
インジェクタの作動を制御するとは、 例えばインジェクタの作動を許可ま たは制限 (禁止) することや、 インジェクタの駆動周期を変更すること等を いう。 例えば、 関連装置 (例えば、 ポンプ) め脈動による騒音周波数とイン ジェクタの駆動周彼数を一致させる、 関連装置からの放 音のピーク時のみ インジ クタを作動させる、 関連装置からの放射音が所定値以下の場合には インジェクタの作動を制限 (禁止) する等である。
前記燃料電池システムにおいて、 前記制御手段は、 前記関連装置の駆動に 伴って発生する放射音に応じて前記インジヱクタの作動を制御してもよレ、。 かかる構成を採用すると、 例えばインジ.ェクタの作動音を関連装置からの 放射音と重ね合わせれば、 インジヱグタの作動音を関連装置からの放射音で 隠す又は目立たなくすることができ、 インジェクタの作動音が耳障りとなつ てしまうことを抑制できる。
前記関連装置としては、 例えば前記燃料電池に流体を供給するポンプを適 用できる。 また、 前記ポンプとしては、 前記燃料電池に酸化ガスを圧送する エアコンプレッサを適用できる。
また、 前記燃料電池システムにおいて、 移動体に搭載される場合には、 前 記関連装置の駆動状態として、 前記燃料電池やモータの冷却に使用されるフ アン、 又は乗員室内の空調装置の送風に使用されるブロアの作動状態を適用 できる。
かかる構成を採用すると、 例えばインジ工クタの作動音をこれらファンか らの放射音と重ね合わせれば、 ィンジェクタの作動音をこれらからの放射音 で隠す又は目立たなくすることができ、 インジヱクタの作動音が耳障りとな つてしまうことを抑制できる。 また、 前記燃料電池システムにおいて、 移動体に搭載される場合には、 前 記関連装置の駆動状態として、 前記移動体の移動状態、 例えば移動速度や加 速状態を適用できる。
かかる構成を採用すると、 例えば移動速度が速いときにィンジェクタを作 動させることで、 移動体の走行音 (例えば、 タイヤのロードノイズや風切り 音) でインジェクタの作動音を隠す又は目立たなくすることができ、 この作 ' 動音が耳障りとなってしまうことを抑制できる。 '
また、 加速状態、 すなわち、 移動体の移動 (加速) に伴って発生する風切 り音、.制動時の騒音などの発生が気になり難い加速時の環境下でインジェク タを作動させることで、 この作動音が耳障りとなってしまうことを抑制でき る。 なお、 移動体の加速状態は、 燃料電池の発電電流、 燃料電池に接続され た電気負荷 (例えば、 モータ) からの要求負荷 (要求発電量)、 あるいはァ クセル開度ども相関があるため、 これらのうち少なくとも 1つに応じてイン ジェクタの作動を制御してもよい。
また、 前記燃料電池システムにおいて、 前記制御手段は、 前記関連装置か • の放射音の周波数に応じて前記インジヱクタの駆動周波数を制御しても 良い。
かかる構成を採用すると、 例えばインジェクタの駆動周波数を関連装置か らの放射音の周波数と一致させ、 または、 インジヱクタの駆動周波数の整数 倍に関連装置からの放射音の周波数がなるようにすれば、 インジェクタの作 動音を関連装置からの放射音で隠す又は目立たなくすることができ、 インジ ェクタの作動音が耳障りとなってしまうことを抑制できる。
また、 例えばィンジェクタの駆動周波数の位相を関連装置からの放射音の 位相に対し適宜ずらすこと、 つまり、 騒音の発生が気になり難い環境下でィ ンジェクタを作動させることで、 インジェクタの作動音が気にならなくなり、 インジェクタの作動音が耳障りとなってしまうことを抑制できる。 前記燃料電池システムにおいて、 前記制御手段は、 当該燃料電池システム を含む関連装置の駆動状態に応じて、 前記ィンジェクタの調圧目標精度を変 更してもよい。
前記調圧目標精度の変更は、 例えば、 前記インジェクタの二次側圧力の検 出値と制御目標値との偏差に基づき当該ィンジ クタの.開閉動作をフィー ドバック制御する第 Ίの制御状態から、 前記フィードバック制御の実行を禁 ' 止して、 前記ィンジェクタの二次側圧力が所定の下限圧まで低下したときに 所定の目標庄まで上昇させる第 2の制御状態に変更するものでもよい。 また、 前記調圧目標精度の変更は、 前記インジェクタの二次側圧力の検出 値と制御目標値との偏差が所定値未満の場合には当該偏差を 「0」 と見なす 一方で前記偏差が所定値以上の場合には当該偏差に基づき前記ィンジ工ク タの開閉動作をフィードバック制御する第.1の制御状態から、 前記第 1の制 御状態と比べて前記所定値を大きぐする第 2の状態に変更するものでもよ い。
以上のごとく調圧目標精度を変更した場合には、 インジ クタの作動回数 ' が減る結果、 耳障りな作動音の発生を抑制することができる。
さらに、 前記燃料電池システムが移動体に搭載されるものである場合にお いて、 前記制御手段は、 前記移動体のアイ ドル運転^にのみ、 前記インジ工 クタの調圧目標精度を変吏してもよレ、。
力かる構成を採用すると、 他の運転状態と比較して静粛性の高いアイ ドル 運転中におけるインジェクタの作動回数を減らすことができる。
前記制御手段は、 前記関連装置の駆動に伴って発生する放射音を低減させ たい場合には、 前記インジェクタの二次側圧力が所定の下限圧に低下するま で、 当該インジェクタの作動を禁止してもよい。
かかる構成を採用すると、 より高い静粛性を要求された状況下におけるィ ンジヱクタの作動回数を減らすことができる。 また、 前記制御手段は、 前記インジェクタの二次側圧力が前記下限圧に低 下したら、 当該ィンジェクタの作動を許可して前記二次側圧力を所定圧に上 昇させてもよい。
かかる構成を採用すると、 インジェクタの二次側圧力が当該所定圧に上昇 してから次に当該下限圧にまで低下するまでの時間を稼ぐことができる結 果、 インジェクタの作動回数を減らすことができる。
. 本発明の燃料電池システムは、 移動体に搭載される燃料電池システムであ つて、 ガス供給を受けて発電する燃料電池と、 該燃料電池のガス供給流路に 設けられてその上流側のガス状態を調整して下流側に供給するインジェク タと、 前記移動体の移動状態に応じて前記インジ'ェクタの作動を制御する制 御手段と、 を備えるものでもよい。
また、前記ィンジェクタは、その上流側と下流側とを連通する内部流路と、 該内部流路内に移動可能に配設されその移動位置に応じて前記内部流路の開 口面積を変更可能な弁体と、 電磁駆動力により前記弁体を駆動する弁体駆動 部と、 を備えてなるものでもよい。
' 本発明に係る燃料電池システムの運転方法は、 ガス供給を受けて発電する 燃料電池と'、 該燃料電池のガス供給流路に設けられてその上流側のガス状態 を調整して下流側に供給するインジェクタと、 を備えた燃料電池システムの 運転方法であつて、 前記燃料電池システムを含む関連装置の駆動状態に応じ て前記インジェクタの作動を制御するものである。
かかる構成によれば、 例えばインジェクタの作動音が耳障りとなり難い状 態下でインジェクタを作動させることにより、 インジェクタの作動音が耳障 りとなってしまうことを抑制できる。
本発明によれば、 燃料電池の運転状態に応じて燃料ガスの供給圧力を適切 に変化させることが可能な応答性が高いシステムであって、 しかもインジェ クタの作動音が操作者に気になり難い燃料電池システムとその運転方法を 提供することができる。
図面の簡単な説明 図 1は、 本発明の実施形態に係る燃料電池システムの構成図である。
図 は、 図 1に示した燃料電池システムの制御装置の制御態様を説明する ための制御ブロック図である。 '
' 図 3は、 図 1に示した燃料電池システムのインジヱクタの断面図である。
図 4は、 図 1に示した燃料電池システムの制御装置の制御態様を説明する ためのタイムチャートである。
図 5は > 図 1に示した;^料電池システムの制御装置の制御態様を説明する ためのタイムチャートである。
図 6は、 図 1に示した燃料電池システムの運転方法を説明するためのフロ —チャートである。 '
図 7は、 図 1に示した燃料電池システムの変形例を示す構成図である。 図 8は、 図 1に示した燃料電池システムの変形例を示す構成図である。
発明を実施するための最良の形態
以下、 図面を参照して、 本発明の実施形態に係る燃料電池システム 1につ いて説明する。 本実施形 においては、 本発明を燃料電池車両 (移動体) の 車載発電システムに適用した例について説明することとする。 '
まず、 図 1を用いて、 本発明の実施形態に係る燃料電池システム 1の構成 について説明する。
本実施形態に係る燃料電池システム 1は、図 1に示すように、反応ガス(酸 化ガス及び燃料ガス) の供給を受けて電力を発生する燃料電池 1 0を備える とともに、 燃料電池 1 0に酸化ガスとしての空気を供給する酸化ガス配管系 2、 燃料電池 1 0に燃料ガスとしての水素ガスを供給する水素ガス配管系 3、 システム全体を統合制御する制御装置 (制御手段) 4等を備えている。
燃料電池 1 0は、 反応ガスの供給を受けて.発電する単電池を所要数積層し て構成したスタック構造を有している。 燃料電池 1 0により発生した電力は、 P C U (Power Control Unit) 1 1に供給ざれる。 P C U 1 1は、 燃料電池 5 1 0と トラクシヨンモータ 1 2との間に配置されるィンバータゃ D C - D cコンバータ等を備えている。 また、 燃料電池 1 0には、 発電中の電流を検 ' 出する電流センサ 1 3が取り付けられている。 '
酸化ガス配管系 2は、 加湿器.2 0により加湿さ た酸化ガス (空気) を燃 料電池 1 0に供給する空気供給流路 2 1と、 燃料電池 1 0から排出された酸 ひ 化オフガスを加湿器 2 0に導く空気排出流路 2 2と、 加湿器 2 0から外部に 酸化オフガスを導くための排気流路 2 3と、 を備えている。 空気供給流路 2 1には、 大気中の酸化ガスを取り込んで加湿器 2 0に圧送するエアコンプレ ッサ 2 4が設けちれている。
水素ガス配管系 3は、 高圧 (例えば 7 0 M P a ) の水素ガスを貯留した燃5 料供給源としての水素タンク 3 0と、 水素タンク 3 0の水素ガスを燃料電池 1 0に供給するための燃料供給流路としての水素供給流路 3 1と、 燃料電池 1ひから排出された水素オフガスを水素供紿流路 3 1に戻すための循環流路 3 2と、 を備えている。 水素ガス配管系 3は、 .本発明における燃料供給系の 一実施形態である。
0 なお、 水素タンク 3 0に代えて、 炭化水素系の燃料から水素リッチな改質 ガスを生成する改質器と、 この改質器で生成した改質ガスを高圧状態にして 蓄圧する高圧ガスタンクと、 を燃料供給源として採用することもできる。 ま た、 水素吸蔵合金を有するタンクを燃料供給源として採用してもよい。
水素供給流路 3 1には、 水素タンク 3 0からの水素ガスの供給を遮断又は5 許容する遮断弁 3 3と、 水素ガスの圧力を調整するレギユレータ 3 4と、 ィ ンジェクタ 3 5と、 が設けられている。 また、 インジェクタ 3 5の上流側に は、 水素供給流路 3 1内の水素ガスの圧力及び温度を検出する一次側圧カセ ンサ 4 1及び温度センサ 4 2が設けられている。 また、 インジェクタ 3 5の 下流側であって水素供給流路 3 1と循環流路 3 2との合流部の上流側には、 水素供給流路 3 1内の水素ガスの圧力を検出する二次側圧力センサ 4 3が 設けられている。
レギユレータ 3 4は、 その上流側圧力 (一次圧) を、 予め設定した二次圧 に調圧する装置である。 本実施形態においてほ、 一次圧を減圧する機械式の 減圧弁をレギュレータ 3 4として採用している。 機械式の減圧弁の構成とし ては、 背圧室と調圧室とがダイアフラムを隔てて形成された筐体を有し、 背 圧室内の背圧により調圧室内で一次圧を所定の圧力に減圧して二次圧とする 公知の構成を採用することができる。
本実施形態においては、 図 1に示すように、 インジェクタ 3 5の上流側に レギユレ一 ^ 3.4を 2個配置することにより、 インジェクタ 3 5の上流側圧 力を効果的に低減させることができる。 このため、 インジェクタ 3 5の機械 的構造 (弁体、 筐体、 流路、' 駆動装置等) の設計自由度を高めることができ る。
また、 インジェクタ 3 5の上流側圧力を低減させる:;とができるので、 ィ ンジェクタ 3 5の上流側圧力ど下流側圧力との差圧の増大に起因してィンジ ェクタ 3 5の弁体が移動し難くなることを抑制することができる。 従って、 インジェクタ 3 5の下流側圧力の可変調圧幅を広げることができるとともに、 インジェクタ 3 5の応答性の低下を抑制することができる。
ィンジェクタ 3 5は、 弁体を電磁駆動力で直接的に所定の駆動周期で駆動 して弁座から離隔させることによりガス流量やガス圧等のガス状態を調整す ることが可能な電磁駆動式の開閉弁である。 インジェクタ 3 5は、 水素ガス 等の気体燃料を噴射する噴射孔を有する弁座を備えるとともに、 その気体燃 料を噴射孔まで供給案内するノズルボディと、 このノズルボディに対して軸 線方向(気体流れ方向)に移動可能に収容保持され噴射孔を開閉する弁体と、 を備えている。 .
本実施形態においては、 インジェクタ 3 5の弁体は電磁駆動装置であるソ レノィ ドにより駆動され、 このソレノィ ドに給電されるパルス状励磁電流の オン ·オフにより、 噴射孔の開口面積を 2段階、 多段階、 連続的 (無段階)、 又はリニアに切り替えることができるようになつている。 .
制御装置 4から出力される制御信号によってインジェクタ 3 5のガス噴射 時間及びガス噴射時期が制御されることにより、 水素ガスの流量及ぴ圧力が 高精度に制御される。 インジェクタ 3 5は、 弁 (弁体及び弁座) を電磁駆動 力で直接開閉駆動するものであり、 その駆動周期が高応答の領域まで制御可 能であるため、 高い応答性を有する。
インジェクタ 3 5は、 その下流に要求されるガス流量を供給するために、 インジェクタ' 3 .5のガス流路に設けられた弁体の開口面積 (開度) 及び開放 時間の少なくとも一方を変更することにより、 下流側 (燃料電池 1 0側) に 供給されるガス流量 (又は水素モル濃度) を調整する。
.なお、 インジェ'クタ 3 5の弁体の開閉によりガス流量が調整されるととも に、 .インジェクタ 3 5下流に供給されるガス圧力がインジェクタ 3 5上流の ガス圧力より減圧されるため、 'インジェクタ 3 5を調圧弁 (減圧弁、 レギュ レータ) と解釈することもできる。 また、 本実施形態では、 ガス要求に応じ て所定の圧力範囲の中で要求圧力に一致するようにィンジ工クタ 3 5の上流 ガス圧の調圧量 (減圧量) を変化させることが可能な可変調圧弁と解釈する こともできる。
なお、 本実施形態においては、 図 1に示すように、 水素供給流路 3 1と循 環流路 3 2との合流部 A 1より上流側にインジェクタ 3 5を配置している。 また、 図 1に破線で示すように、 燃料供給源として複数の水素タンク 3 0を 採用する場合には、 各水素タンク 3 0から供給される水素ガスが合流する部 分 (水素ガス合流部 A 2 ) よりも下流側にインジェクタ 3 5を配置するよう にする。
循環流路 3 2には、 気液分離器 3 6及び排気排水弁 3 7を介して、 排出流 路 3 8が接続されている。 気液分離器 3 6は、 水素オフガスから水分を回収 するものである。 排気排水弁 3 7は、 制御装置 4からの指令によって作動す ることにより、 気液分離器 3 6で回収した水分と、 循環流路 3 2内の不純物 ' を含む水素オフガスと、 を外部に排出 (パージ) するものである。
また、. 循環流路 3 2には、 循環流路 3 2内の水素オフガスを加圧して水素 供給流路 3 1側へ送り出す水素ポンプ 3 9が設けられている。 なお、 排出流 路 3 8内のガスは、 希釈器 4ひによって希釈されて排気流路 2 3内のガスと 合流するようになっている。 なお、.排気排水弁 3 7及び排出流路 3 8を介し て排出される水素オフガスは、 希釈器 4 0によって希釈されて排気流路 2 3 内の酸化オフガスと合流するようになっている。
制御装置 4は、 車両に設けられた加速操作装置 (アクセル等) の操作量を 検出し、 加速要求値 (例えばトラクシヨンモータ 1 2等の負荷装置からの要 '求発電量)等の制御情報を受けて、システム内の各種機器の動作を制御する。
なお、 負 装置とは、 トラクシヨンモータ 1 2のほかに、 燃料電池 1 0を 作動させるために必要な補機装置 (例えばコンプレッサ 2 4、 水素ポンプ 3 9、 冷却ポンプのモータ等)、 車両の走行に関与する各種装置 (変速機、 車 輪制御装置、 操舵装置、 懸架装置等) で使用されるァクチユエ一タ、 乗員空 間の空調装置 (エアコン)、 照明、 オーディオ等を含む電力消費装置を総称 したものである。
これら装置あるいはそれに付帯する装置のうち、 駆動に伴い放射音を発生 するものが、 本発明の関連装置に該当するが、 例示したものに限定されるも のではない。
制御装置 4は、 図示していないコンピュータシステムによって構成されて いる。 かかるコンピュータシステムは、 C P U、 R OM, R AM, H D D , 入出力インタフェース及びディスプレイ等を備えるものであり、 R OMに記 録された各種制御プログラムを C P Uが読み込んで実行することにより、 各 種制御動作が実現されるようになっている。
具^:的にば、 制御装置 4は、 図 2に示すように、 燃料電池 1 0の運転状態 (電流センサ 1 3で検出した燃料電池 1ひの発電時の電流値) に基づいて、 '燃料電池 1 0で消費される水素ガスの量 (以下 「水素消費量」 という) を算 出する (燃料消費量算出機能: B 1 )。 本実施形態においては、 燃料電池 1 0 の電流値と水率消費量との W係を表す特定の演算式を用いて、 制御装置 4の 演算周期毎に水素消費量を算出して更新することとしている。
また、 制御装置 4は、 燃料電池 1 0の運転状態 (電流センサ 1 3で検出し た燃料電池 1 0の発電時の電流値) に基づいて、 インジェクタ 3 5下流位置 における水 ^ガスの目標圧力値 (燃料電池 1 0への目標ガス供給圧) を算出 する (目標圧力値算出機能: B 2 )。 本実施形態においては、 燃料電池 1 0の 電流値と目標圧力値との関係を表す特定のマップを用いて、 制御装置 4の演 '算周期毎に、 二次側圧力センサ 4 3が配置された位置 (圧力調整が要求され る位置である圧力調整位置) における目標圧力値を算出して更新することと している。 '
また、 制御装置 4は、 算出した目標圧力値と、 二次側圧力センサ 4 3で検 出したインジ クタ 3 5下流位置 (圧力調整位置) の検出圧力値と、 の偏差 に基づいてフィードバック補正流量を算出する (フィードバック補正流量算 出機能: B 3 )。 フィードバック補正流量は、 目標圧力値と検出圧力値との偏 差を低減させるために水素消費量に加算される水素ガス流量 (圧力差低減補 正流量) である。 本実施形態においては、 P I制御等の目標追従型制御則を 用いて、 制御装置 4の演算周期毎にフィードバック補正流量を算出して更新 することとしている。 また、 制御装置 4は、 前回算出した目標圧力値と、 今回算出した目標圧力 値と、 の偏差に対応するフィードフォワード補正流量を算出する (フィード フォワード補正流量算出機能: B 4 )。 フィードフォワード補正流量は、 目標 圧力値の変動に起因する水素ガス流量の変動分 (圧力差対応補正流量) であ る。 本実施形態においては、 目標圧力値の偏差とフィードフォワード補正流 量との関係を表す特定の演算式を用いて、 制御装置 4の演算周期毎にフィ一 ' ドフォワード補正流量を算出して更新することとしてい 。 '
また、 制御装置 4は、 インジヱクタ 3 5の上流のガス状態 (一次側圧カセ ンサ 4 1で検出した水素ガスの圧力及ぴ温度センサ 4 2で検出した水素ガス の温度) に基づいてインジェ.クタ 3 5の上流の静的流量を算出する (静的流 量算出機能: B 5 )。 本実施形態においては、 ィンジ クタ 3 5の上流側の水 素ガスの圧力及び温度と静的流量との関係を表す特定の演算式を用いて、 制 御装置 4の演算周期毎に静的流量を算出して更新することとしている。 . また、 制御装置 4は、 インジヱクタ 3 5の上流のガス状態 (水素ガスの圧 力及び温度) 及び印加電圧に基づいてィンジェクタ 3 5の無効噴射時間を算 出する (無効噴射'時間算出機能: B 6 )。 ここで無効噴射時間とは、 インジェ クタ. 3 5が制御装置 4から制御信号を受けてから実際に噴射を開始するまで に要する時間を意味する。 本実施形態においては、 インジェクタ 3 5の上流 側の水素ガスの圧力及び温度と印加電圧と無効噴射時間との関係を表す特定 のマップを用いて、 制御装置 4の演算周期毎に無効噴射時間を算出して更新 することとしている。
また、 制御装置 4は、 水素消費量と、 フィードバック補正流量と、 フィー ドフォワード補正流量と、 を加算することにより、 インジェクタ 3 5の噴射 流量を算出する (噴射流量算出機能: B 7 )。 そして、 制御装置 4は、 インジ ヱクタ 3 5の噴射流量を静的流量で除した値にィンジヱクタ 3 5の駆動周期 を乗じることにより、インジヱクタ 3 5の基本噴射時間を算出するとともに、 この基本噴射時間と無効噴射時間とを加算してインジェクタ 3 5の総噴射時 間を算出する (総噴射時間算出機能: B 8 )。 ここで、 駆動周期とは、 インジ ェクタ 3 5の噴射孔の開閉状態を表す段状 (オン ·オフ) 波形の周期を意味 する。 本実施形態においては、 制御装置 4により駆動周期を一定の値に設定 している。
そして、 '制御装置 4は、 以上の手順を経て算出したインジェクタ 3 5の総 噴射時間を実現させるための制御信号を出力することにより、 ィンジヱクタ 3 5のガス噴射時間及ぴガス噴射時期を制御して、 燃料電池 1 0に供給され る水素ガスの流量及び圧力を調整する。
燃料電池システム 1の通常運転時においては、 水素タンク 3 0から水素ガ スが水素供給流路 3 1を介して燃料電池 1 0の燃料極に供給されるととも に、 加湿調整された空気が空気供給流路 2 1を介して燃料電池 1 0の酸化極' に供給される'ことにより、 発電が行われる。 この際、 燃料電池 1 0.から引き 出すべき電力 (要求電力) が制御装置 4で演算され、 その発電量に応じた量 の水素ガス及ぴ空気が燃料電池 1 0内に供給されるようになっている。 本実 施形態においては、 このような通常運転時において燃料電池 1 0に供給され る水素ガスの圧力を高精度に制御する。
上記したィンジェクタ 3 5は、 図 3に示す構造をなしており、 水素供給流 路 (ガス供給流路) 3 1の一部を構成するとともに、 一方の口部 5 1におい て水素供給流路 3 1の水素タンク 3 0側に配置され他方の口部 5 2におい て水素供給流路 3 1の燃料電池 1 0側に配置される内部流路 5 3が形成さ れた金属製のシリンダ 5 4を有しており、 このシリンダ 5 4には、 口部 5 1 に繋がる第 1通路部 5 6と、 この第 1通路部 5 6の口部 5 1とは反对側に繋 がる、 第 1通路部 5 6よりも大径の第 2通路部 5 7と、 この第 2通路部 5 7 の第 1通路部 5 6とは反対側に繋がる、 第 2通路部 5 7よりも大径の第 3通 路部 5 8と、 この第 3通路部 5 8の第 2通路部 5 7とは反対側に繋がる、 第 2通路部 5 7および第 3通路部 5 8よりも小径の第 4通路部 5 9とが形成 されており、 これらで内部流路 5 3が構成されている。
また、 インジェクタ 3 5は、 第 4通路部 5 9の第 3通路部 5 8側の開口部 を囲むように設けられたシール性部材からなる弁座 6 1と、 第 2通路部 5 7 に移 可能に挿入される円筒部 6 2および第 3通路部 5 8内に配置される 第 2通路部 5 7よりも大径の傘部 6 3を有し傘部 6 3に斜めに連通穴 6 4 が形成された金属製の弁体 6 5と、 弁体 6 5の円筒部 6 2に一端側が挿入さ れると共に他端側が第 1通路部 5 6内に形成されたストツパ 6 6に係止さ れることで弁体 6 5を弁座 6 1へ当接させて内部流路 5 3を遮断するスプ リング 6 7と、 弁体 6 5をスプリング 6 7の付勢力に抗して第 3通路部 5 8 の第 2通路部 5 7側の段部 6 8に当接するまで移動させることで弁体 6 5 を弁座 6 1から離間させて連通穴 6 4で内部流路 5 3を連通させるソレノ イ ド (電磁駆動装置、 弁体駆動部) 6 9と、 を有している。
このように、 インジヱクタ 3 5は、 内部流路 5 3を連通させる駆動時に金 属製の弁体 6 5が金属製のシリンダ 5 4内で移動しシリンダ 5 4の段部 6 ' 8に当接するため、 作動音が発生する。 このような作動音が場合によっては 運転者や乗員等の操作者にとって耳障りになってしまう.。 特に、 本実施形態 の ンジェクタ 3 5は、 高周波で駆動する電磁駆動方式のガス状態可変供給 装置であるため、 その作動音が騒音として顕著となる。
そこで、 本実施形態においては、 制御装置 4が、 上述する制御条件を満足 しつつ、 関連装置の駆動状態に応じてインジェクタ 3 5の駆動制御を以下の ように行う。 例えば、 前記補機装置の一つであるエアコンプレッサ (関連装 置、 ポンプ) 2 4の作動状態に応じてインジェクタ 3 5の駆動制御を行う。 つまり、 エアコンプレッサ 2 4は、 吸入および吐出の脈動を生じ、 脈動に応 じた作動音 (放射音) を発生させる。
具体的には、 ルーツ型のエアコンプレッサの場合には回転 4次あるいは回 転 8次の作動音が、 1 6 0 0回転での回転時には 4 O H zの周波数で、 1 2 0 0回転での回転時には 8 0 H zの周波数で、 1 8 0 0回転での回転時には 1 2 O H zの周波数で生じ、 スクロール型のエアコンプレッサの場合には、 回転 1次の作動音が、 1 6 0 0回転での回転時には 1 0 H zの周波数で、 1 2 0 0回転での回転時には 2 0 H zの周波数で、 1 8 0 0回転での回転時に は 3 0 H zの周波数で生じ、 4歯のロータと ' 6歯のロータとを利用したスク ' リュー型のエアコンプレッサの場合には、 回転 6次の作動音が、 1 6 0 0回 転での回転時には 6 0 H zの周波数で、 1 2 0 0回転での回転時には 1 2 0 H zの周波数で、 1 8 0 0回転での回転時には 1 8 0 H zの周波数で生じる 、 ことになるため、 このようなエアコンプレッサ 2 4の作動音の周波数に応じ てインジヱクタ 3 5を、 例えば 1 0 O H z以下程度の周波数で駆動するので ある。 '
エアコン レッサ 2 4の作動状態を示すエアコンプレッサ 2 4の脈動に 伴う作動音の周波数に応じてインジェクタ 3 5の駆動周波数を制御する場 合に、 例えば、 エアコンプレッサ 2 4の作動音の周波数 (ポンプ脈動による '騒音周波数) とインジェクタ 3 5の駆動周波数とを位相を含めて一致させる。
つまり、 図 4 ( a ) に示すような周波数でエアコンプレッサ 2 4の作動音 が宪生する場合に、 図 4 ( b ) に示すように、 エアコンプレッサ 2 4の作動 音のピーク時に、 エアコンプレッサ 2 4の作動音の立ち上がりのタイミング' t 1でインジェクタ 3 5を駆動し、 エアコンプレッサ 2 4の騒音の下降より も前のタイミング t 2でインジェクタ 3 5の駆動を停止する。
つまり、 インジェクタ 3 5の駆動周波数をエアコンプレッサ 2 4の作動音 の周波数と一致させることで、 エアコンプレッサ 2 4の音が出ている間にィ ンジュクタ 3 5の開弁を行うことができ、 より大きな作動音を出すエアコン プレッサ 2 4の作動音にかき消されてインジヱクタ 3 5の作動音を乗員に 聞こえないようにできる。 ここで、 エアコンプレッサ 2 4の作動音の立ち上 がりのタイミングでインジェクタ 3 5を駆動すると、 インジェクタ 3 5の最 も音が大きい駆動時の騒音を、 より効果的にかき消すことができる。
また、 エアコンプレッサ 2 4の作動音の周波数に応じてインジェクタ 3 5 の 1ΐ動周波数を制御する場合に、 例えば、 インジェクタ 3 5の駆動周波数に 対しエアコンプレッサ 2 4の作動音の周波数を整数倍の関係とし、 かつ位相 を合わせる。
つまり、 図 4 ( c ) に示すように、 エアコンプレッサ 2 4の作動音のピ一 ク時に、 エアコンプレッサ 2 4の作動音の立ち上がりのタイミング t 1でィ ンジ工クタ 3 5を駆動し、 エアコンプレッサ 2 4の作動音の下降のタイミン グ t 3でインジェクタ 3 5の駆動を停止する制御を、 エアコンプレッサ 2 4 の作動音の発生の一回おきに行う。 このとき、 エアコンプレッサ 2 4の音が 出ている間はインジェクタ 3 5の開弁を維持することで噴射量を多くする。 これにより'、 例えば、 インジ工クタ 3 5の駆動周波数の整数倍 (図 4 ( c ) においては二倍) にエアコンプレッサ 2 4の作動音の周波数がなるようにィ ンジヱクタ 3 5を駆動することができ、 上記と同様にインジヱクタ 3 5の作 ■動音をエアコンプレッサ 2 4の作動音で隠す又は目立たなくすることがで き、 インジェクタ 3 5の作動音が耳障りとなってしまうことを抑制できる。 しかも、 インジェクタ 3 5の駆動回数を減らすことができて、 インジェクタ 3 5の作動音が耳障りとなってしまうことをさらに抑制できる。
さらに、 エアコンプレッサ 2 4の作動音の周波数に応じてインジェクタ 3 5の駆動周波数を制御する場合に、 例えば、 エアコンプレッサ 2 4の作動音 の周波数とインジェクタ 3 5の駆動周波数とを同じとして位相を適宜ずら す。 例えば、 図 4 ( d ) に示すように、 例えばインジェクタ 3 5の駆動周波 数の位相をエアコンプレッサ 2 4の作動音の位相に対し、 エアコンプレッサ 2 4の作動音のピーク発生間隔の中間 (t 4〜t 5 ) に作動音が発生するよ うにずらす。 このように、 エアコンプレッサ 2 4の作動音とで周期的に安定して作動音 が発生するようにインジェクタ 3 5を作動させる、 つまり、 騒音の発生が気 になり難い環境下でィンジェクタ 3 5を作動させることができ、 ィンジェク タ 3 5の作動音が気にならなくなり、 インジェクタ 3 5の作動音が耳障りと なってしまうことを抑制できる。 .
なお、 エアコンプレッサ 2 4の作動音の発生間隔の中央に作動音が発生す ' るようにインジェクタ 3 5を駆動するのが良いが、 エアコンプレッサ 2 4の 作動音が消えた後であればほぼ中央であっても良い。
また、 エアコンプレッサ 2 4の作動音が小さいとき、 例えばアイ ドル運転 中のように、 車速が所定値未満及び Ζ又は燃料電池 1 0の発電電流が所定値 未満であるときは、 燃料電池 1 0への負荷要求 (発電要求) が小さい状態で あり、 水素ガスおよび空気の圧力が多少変化しても発電安定性に影響がない ことから、 このようなエアコンプレッサ 2 4の駆動状態下では、 インジェク タ 3 5の作動を禁止 (制限) することも可能である。
つまり、 エアコンプレッサ 2 4の作動音が所定値以下の場合には、 インジ ' ェクタ 3 5の噴射を禁止する一方、 エアコンプレッサ 2 4の作動音が所定値 を超えている場合にインジェクタを通常通り駆動するようにすれば、 ェアコ ンプレッサ 2 4の作動音でインジェクタ 3 5の作動音をかき消すことがで きる。 このような騒音対策は、 アイ ドル運転中のように、 他の運転状態と比 較して相対的に静粛性が高い状況下において、 特に有効である。'
ただし、 インジェクタ 3 5の噴射の禁止を維持し続けることはできないの で、 エアコンプレッサ 2 4の作動音が所定値以下の場合には、 水素供給流路 3 1内の水素ガスの圧力を検出する二次側圧力センサ 4 3を監視し、 二次側 圧力センサ 4 3で検出される水素供給流路 3 1内の水素ガスの圧力が所定 の圧力以下になった場合、 インジヱクタ 3 5を駆動する制御において、 二次 側圧力センサ 4 3で検出される水素供給流路 3 1内の水素ガスの調圧目標 精度を可能な限り大きくするように緩める。
この調圧目標精度を大きくするように緩める例としては、 まず第 1に、 通 常制御時のように二次側圧力センサ 4 3による二次側検出圧力の現在値 (検 出値) と目標値 (制御目標値) との圧力偏差に基づきインジェクタ 3 5の開 閉動作をフィードバック制御する第 1の制御状態から、 そのようなフィード バック制御の実行を敢えて禁止すると共に、 インジェクタ 3 5の二次側圧力 'が所定の下限圧まで低下したときに当該二次側圧力を所定の目標圧まで上 昇させる第 2の制御状態に変更する場合がある。 '
また第 2の例として、 インジェクタ 3 5の二次側検出圧力の現在値 (検出 、 値) と目標値 (制御目標値) との圧力偏差が所定値未満の場合には当該偏差 を 「0」 と見なす一方で前記偏差が所定値以上の場合には当該偏差に基づき インジェクタ 3 5の開閉動作をフィードバッグ制御する第 1の制御状態か ら、 この第 1の制御状態と比べて前記所定値を大きく、 言い換えれば、 当.該 圧力偏差を強制的に 「0」 と見なす不感帯域を広げる第 2の状態に変更する 場合がある。
さらに第 3の例として、 インジェクタ 3 5の駆動周期 (基本周期) が一定 となるようにィンジェクタ 3 5の開閉動作を制御する第 1の制御状態から、 この第 1の制御状態と比べて一駆動周期当たりのインジェクタ 3 5の噴射 量を強制的に増やす (あるいは、 噴射時間を長くする) 第 2の制御状態に変 更する場合がある。
そして第 4の例として、 インジェクタ 3 5の一駆動周期 (一基本周期) 当 たりの噴射量あるいは噴射時間が一定となるようにインジェクタ 3 5の開 閉動作が制御される第 1の制御状態から、 この第 1の制御状態と比べて一駆 動周期 (基本周期) を強制的に長くする第 2の制御状態に変更する場合があ る。
次に、 例えば第 1の例について具体的に説明すると、 図 5 ( a ) に示す通 常制御時においては、 上記現在値と目標値との圧力偏差に基づいて、 時間 1 l〜 t 1 2の間でインジェクタ 3 5を駆動 (噴射) することになり、 この 駆動に伴い、 水素供給流路 3 1内の水素ガス圧力が同図に示すように上昇す るのに対し、 図 5 ( b ) に示す当該第 1の例では、 水素供給流路 3 1内の水 素ガス圧力が所定の下限値 にまで低下する時間 t 1 3までは、 上記圧力 偏差に基づくフィードバック制御の結果としてインジヱクタ 3 5を駆動す ることはないが、'当該水素ガス圧力が下限値 P Lにまで低下すると、 時間 t 1 3〜時間 t 1 4の間でィンジヱクタ 3 5を駆動する。
そして、 この駆動時 (t 1 3〜t 1 4 ) における水素供給流路 3 1内の水 素ガスの圧力を可能な限り上昇 (例えば、 所定の上限値 (所定の目標圧) ρ Ηまで上昇) させておけば、 次に所定の下限値 P Lにまで圧力が低下してイン ジェクタ 3 5の駆動を再開するまでの時間 t 1 5を稼ぐことができるので、 インジェクタ' 3 .5の作動音の噴射回数を減らすことができ、 その作動音 耳 障りとなってしまうことを抑制できる。
この場合も、 エアコンプレッサ 2 4の作動音が所定値を超えている場合に インジヱクタ 3 5を通常通り駆動するようにすれば、 エアコンプレッサ 2 4 の作動音でインジェクタ 3 5の作動音をかき消すことができる。
このように、 エアコンプレッサ 2 4の作動音が小さいとき、 つまり図 6に 示すように、 エアコンプレッサ 2 4の作動音が下限の所定値より小さい場合 に (ステップ S 1 )、 調圧目標精度を可能な限り大きくするように緩めて (ス テツプ S 2 )、 インジェクタ 3 5の駆動回数を少なく した場合において、 単 位時間当たりのアクセル開度が上限の所定値を超えて増加したときは (ステ ップ S 3 : Y E S ) , 調圧目標精度を通常の設定に戻し (ステップ S 4 )、 ィ ンジェクタ 3 5の噴射を通常通りに行うようにしても良い。
つまり、 アクセル開度に応じて調圧目標精度を大に設定するステップ S 2 の制御を解除するようにしても良い。 このようにすれば、 車両加速時におけ るガス圧力の落ち込みを防ぎ、 加速応答性ひ 、ては商品性を高めることがで きる。 勿論、 エアコンプレッサ 2 4の作動音が小さいときに、 インジェクタ 3 5の駆動を禁止した場合にも、 アクセル開度で禁止を解除することも可能 である。
なお、 通常の制御では、 上記のとおり、 インジヱクタ 3 5の二次側検出圧 力の 「現在値—目標値」 で求められる圧力偏差に応じてフィードバック制御 ' し、 制御目標値を変更しつつ目標値に可能な限り近づけようとするが、 上記 のようにエアコンプレッサ 2 4の作動音が小さいときは、 燃料電池 1 0の負 荷要求 (発電要求) が小さい状態であり、 水素ガスおよび空気の圧力が多少 変化しても発電安定性に影響がないという前提が成り立つ場合がある。 そこ で、 かかる場合には、 制御状態を第 1の制御状態である通常制御時から、 当 該通常制御時よりも圧力制御範囲を広げた第 2の制御状態に移行させても よい。 ' '
例えば、 圧力偏差の絶対値が、 調圧目標幅を最大値とする所定値以下の場 合には、 当該圧力偏差を 「0」 とみなす不感帯域を大きく し、 通常制御時よ りも圧力制御範囲を広くすることで、 上記と同様の効果を得ることもできる。 この例は、 上記調圧目標精度を大きくするように緩める第 2の例に該当する。 さらに、 エアコンプレッサ 2 4の作動音の大きさは、 車速と概略比例関係 にあるため、 エアコンプレッサ 2 4の作動音にかえて車速を適用し、 この車 速に応じてインジェクタ 3 5の作動を制御することも可能である。 つまり、 車速が小さいと、 エアコンプレッサ 2 4の作動音も小さく、 走行音も小さい ため、車速が所定値以下の場合には、インジェクタ 3 5の噴射を禁止したり、 調圧目標精度を可能な限り大きくするように緩めてインジェクタ 3 5の噴 射回数を減らしたりするのである。
他方、 車速が大きくなると、 エアコンプレッサ 2 4の作動音の大きさが増 大するとともに、 タイヤのロードノイズや風切り音等の走行音が増大するこ とになるため、 車速が所定値を超えている場合にィンジェクタ 3 5を通常通 り駆動するようにしても、 エアコンプレッサ 2 4の作動音や走行音でィンジ ェクタ 3 5の作動音をかき消すことができる。 よって、 この作動音が耳障り となってしまうことを抑制できる。
車速は、 インジェクタ 3 5の噴射回数およびエアコンプレッサ 2 4の回転 数と概略比例関係にあるため、 協調制御がしゃすいメリッ トがある。 なお、 走行音およびエアコンプレッサ 2 4の作動音のいずれが大きいかは車両に よって異なるため、 車両に応じて走行音おょぴエアコンプレッサ 2 4の作動 音のいずれを主体としてインジ !:クタ 3 5の作動音を消すかを選択するこ とも可能である。
また、 車両補機の中でインジェクタ 3 5の駆動音をかき消すことができる 程度の比較的大きな作動音を発生させるものとして、 エアコンプレッサ 2 4 の他にも、 車室内でエアコンデイシ ナ (空調装置) の風を吹き出すブロア や、 車室外で燃料電池 1 0用の冷却水を冷やすラジェ一タフアン等があるた め、 上記したエアコンプレシサ 2 4にかえて、 これらの作動状態、 つまり、 エアコンディショナのブロアの作動音 (送風音) やラジェ一タフアンの作動 音に応じてインジェクタ 3 5の作動を上記と同様に制御するようにしても 良い。 ただし、 通常は、 エアコンプレッサ 2 4の作動音が最も大きいため、 エアコンプレッサ 2 4の作動状況で制御するのが良い。
さらに、 エアコンプレッサ 2 4の作動音の大きさは、 燃料電池 1 0の発電 電流と概略比例関係にあり、 またモータの要求負荷つまりアクセル開度 (加 減速状態) とも概略比例関係にあることから、 エアコンプレッサ 2 4の作動 音にかえてアクセル開度を適用し、 このアクセル開度に応じてインジェクタ 3 5の作動を制御することも可能である。
つまり、 アクセル開度が小さいと、 エアコンプレッサ 2 4の作動音も小さ いため、 アクセル開度が所定値以下の場合には、 インジェクタ 3 5の噴射を 禁止したり、 調圧目標精度を可能な限り大きくするように緩めてィンジェク タ 3 5の噴射回数を減らしたりするのである。
他方、 アクセル開度が大きくなると、 エアコンプレッサ 2 4の作動音の大 きさが増大することになるため、 アクセル開度が所定値を超えている場合に インジェクタ 3 5を通常通り駆動するようにしても、 エアコンプレッサ 2 4 の作動音 インジェクタ 3 5の作動音をがぎ消すことができる。
よって、 この作動音が耳障りとなってしまうことを抑制できる。 アクセル 開度は、 インジェクタ 3 5の噴射回数およびエアコンプレッサ 2 4の回転数 と概略比例関係にあるため、 協調制御がしゃすいメリットがある。
なお、 燃料電池 1 0とバッテリの 2電源のハイブリッ ドシステムの場合、 燃料電池 1 0の発電電流とモータの要求負荷つまりアクセル開度とが比例 関係にない場合もあるが、 この場合でも、 アクセル開度が大きいとき、 つま り騒音の発生が気になり難い加速時の環境下でインジヱクタ 3 5.を作動さ せることで、 この作動音が耳障りとなってしまうことを抑制できる。
なお、 以上に述べた制御は、燃料電池 1 0が暖機完了後 (出力制限解除後) ' に行うことになる。 これは、 暖機前は圧力に対する発電ロバス ト性が燃料電 池 1 0にはなく、 適用が困難なためである。
以上説明した実施形態に係る燃料電池システム 1においては、 燃料電池 1 0の運転状態 (発電時の電流値) に応じてインジ クタ 3 5の作動状態 (噴 射時間) を設定することができる。 従って、 燃料電池 1 0の運転状態に応じ て水素ガスの供給圧力を適切に変化させることができ、 応答性を向上させる ことが可能となる。 また、 水素ガスの流量調整弁及び可変調圧弁としてイン ジェクタ 3 5を採用しているため、 高精度な調圧 (燃料電池 1 0への水素ガ スの供給圧力の調整) が可能となる。
すなわち、 インジェクタ 3 5は、 燃料電池 1 0の運転状態に応じた制御装 置 4からの制御信号を受けて、 水素ガスの噴射時間や噴射時期を調整するこ とができるため、 従来の機械式の可変調圧弁よりも迅速かつ精確に圧力調整 を行うことができる。 また、 インジェクタ 3 5は、 従来の機械式の可変調圧 弁と比較すると小型 ·軽量であり低廉でもあるため、 システム全体の小型化 及び低廉化を実現させることができる。
また、 以上説明した実施形態に係る燃料電池システム 1においては、 制御 装置 4が、 関連装置の駆動状態に応じてインジェクタ 3 5の作動を制御する ため、 例えばインジェクタ 3 5の作動音が耳障りとなり難い状態でインジェ クタ 3 5を作動させることができ、 インジェクタ 3 5の作動音が耳障りとな つてしまうことを抑制できる。
つまり、 制御装置 4がエアコンプレッサ 2 4の作動状態に応じてインジェ クタ 3 5の作動を制御することにより、 例えばインジェクタ 3 5の作動音を エアコンプレッサ 2 4の作動音と重ね合わせればインジェクタ 3 5の作動 音をエアコシプレッサ 2 4の作動音で隠す又は目立たなくすることができ、 インジェクタ 2 4の作動音が耳障りとなってしまうことを抑制できる。
制御装置 4がエアコンディショナの作動状態に応じてィンジヱクタ 3 5 'の作動を制御してもよく、 この場合は、 例えばインジヱクタ 3 5の作動音を エアコンディショナの作動音と重ね合わせればインジヱクタ 3 5の作動音 を土アコンデイショナの作動音で隠す又は目立たなぐすることができ、 イン ジェクタ 3 5の作動音が ¾障りとなってしまうことを抑制できる。
また、 制御装置 4がラジェ一タフアンの作動状態に応じてインジェクタ 3 5の作動を制御してもよく、 この場合は、 例えばインジ-クタ 3 5の作動音 をラジェ一タフアンの作動音と重ね合わせればインジェクタ 3 5の作動音 をラジェータファンの作動音で隠す又は目立たなくすることができ、 インジ ェクタ 3 5の作動音が耳障りとなってしまうことを抑制できる。
また、 以上説明した実施形態に係る燃料電池システム 1においては、 移動 体に搭載される場合に、 制御装置 4が車速に応じてインジェクタ 3 5の作動 を制御することも可能であるため、 例えば車速が高いときにインジ: rクタ 3
5を作動させることで、 移動体の走行音でインジヱクタ 3 5の作動音を隠す 又は目立たなくすることができ、 この作動音が耳障りとなってしまうことを 抑制できる。
また、 以上説明した実施形態に係る燃料電池システム 1においては、 移動 体に搭載される場合に、 制御装置 4がアクセル開度 (加減速状態) に応じて インジェクタ 3 5.の作動を制御することも可能であるため、 例えばアクセル 開度が大きいとき、 つまり騒音の発生が気になり難い加速時の環境下でイン ジェクタ 3 5を作動させることで、 この作動音が耳障りとなってしまうこと を抑制できる。 .
また、 以上説明した実施形態に係る燃料電池システム 1においては、 制御 装置 4が補機であるエアコンプレッサ 2 4の作動音の周波数に応じてィン ジェクタ 2 4'の駆動周波数を制御することも可能であるため、 例えばインジ ェクタ 3 5の駆動周波数をエアコンプレッサ 2 4の作動音の周波数と一致 させ、 またはインジェクタ 3 5の駆動周波数の整数倍にエアコンプレッサ 2 • 4の作動音の周波数がなるようにすればインジヱクタ 3 5の作動音をエア コンプレッサ 2 4の作動音で隠す又は目立たなくすることができ、 インジェ クタ 3 5の作動音が耳障りとなってしまうことを抑制できる。
また、 例えばインジエ タ 3 5の駆動周波数の位相をエアコンプレッサ' 2 4の作動音の位相に対し適宜ずらすこと、 つまり騒音の発生が気になり難い 環境下でインジヱクタ 3 5を作動させることで、 インジヱクタ 3 5の作動音 が気にならなくなり、 インジェクタ 3 5の作動音が耳障りとなってしまうこ とを抑制できる。
なお、 以上の実施形態において、 インジヱクタは、 燃料電池システムにお いて水素供給流路 3 1に設けられるインジェクタを例にとり説明したが、 燃 料電池システムのガス供給流路に設けられるィンジュクタであれば、 他の 種々のインジェクタに適用可能である。
例えば、 図 7に示すように、 酸化ガス (空気) を燃料電池 1 0に供給する 空気供給流路 2 1に上記した加湿器 2 0にかえて設けられる加湿水供給ィ ンジェクタ 7 1や、 図 8に示すように、 水素ガスを燃料電池 1 0に供給する ための水素供給流路 3 1にィンジェクタにかえて^圧式.レギュレ一タ 7 2 を設けた場合に、 この空圧式レギュレータ 7 2の水素圧をエア圧で制御する ' カソードエア供給インジヱクタ 7 3等に適用可能である。
また、 以上の各実施形態においては、 本発明に^る燃料電池システムを燃 料電池車両に搭載した例を示したが、 燃料電池車両以外の各種移動体 (ロボ ット、 船舶、 航空機等) に本発明に係る燃料電池システムを搭載することも できる。 また、 本発明に係る燃料電池システムを、 建物 (住宅、 ビル等) 用 の発電設備として用いられる定置用発電システムに適用してもよい。 産業上の利用可能性
本発明によれば、 燃料電池の運転状態に応じて燃料ガスの供給圧力を適切 ' に変化させるこどが可能な応答性が高い燃料電池システムとその運転方法で あって、 しかも、 インジェクタの作動音が操作者に気になり難い燃料電池シ ステムとぞの運転方法に広く利用することができる。 '

Claims

請求の範囲
1 . ガス供給を受けて発電する燃料電池と、 該燃料電池のガス供給流路に 設けられてその上流側のガス状態を調整して下流側に供給するインジェク タと、 該インジェクタを駆動制御する制御手段とを備えた燃料電池システム であって、
. 前記制御手段は、 当該燃料電池システムを含む関連装置の駆動状態に応じ て前記インジェクタの作動を制御する燃料電池システム。
2 . 請求項 1において、
前記制御手段は、 前記関連装置の駆動に伴って発生する放射音に応じて前 記ィンジェクタの作動を制御する燃料電池システム。
3 . 請求項 2において、
前記関連装置が前記燃料電池に流^を供給するポンプである燃 電池シ ステム。
4 . 請求項 3において、
' ,前記ポンプが前記燃料電池に酸化ガスを圧送するエアコンプレッサであ る燃料電池システム。
5 . 請求項 1において、
移動体に搭載されるものであって、 前記関連装置の駆動状態が前記移動体 の乗員室内の空調装置の作動状態である燃料電池システム。
6 . 請求項 1において、
移動体に搭載されるものであって、 前記関連装置の駆動状態が前記燃料電 池やモータの冷却に使用されるファン、 又は乗員室内の空調装置の送風に使 用されるブロアの作動状態である燃料電池システム。
7 . 請求項 1において、
移動体に搭載されるものであって、 前記関連装置の駆動状態が前記移動体 の移動状態である燃料電池システム。
8 . 請求項 7において、
前記移動体の移動状態が移動速度である燃料電池システム。
9 . 請求項 7において、
前言己移動体の移動状態が加速状態である燃料電池システム。.
1 0 . 請求項 2において、
前記制御手段は、 前記関連装置からの放射音の周波数に応じて前記ィンジ ェクタの駆動周波数を制御する燃料電池システム。
1 1 . 請求項 1において、
前記制御手段は、 当該燃料電池システムを含む関連装置の駆動状態に応じ て、 前記インジュクタの調圧目標精度を変更する燃料電池システム。
1 2 . 請求項 1 1において、
移動体に瘩載されるものであって、
前記制御手段は、 前記移動体のアイ ドル運転時にのみ、 前記インジェクタ の調圧目標精度を変更する燃料電池システム。
1 3 . 請求項 i 1において、
前記調圧目標精度の変更は、 前記インジェクタの二次側圧力の検出値と制 御目標値との偏差に基づき当該ィンジヱクタの開閉'動作をフィ―ドバック 制御する第 1の制御状態から、 前記フィードバック制御の実行を禁止して、 前記ィンジェクタの二次側圧力が所定の下限圧まで低下したときに所定の 目標圧まで上昇させる第 2の制御状態に変更するものである燃料電池シス テム。
1 4 . 請求項 1 1において、
前記調圧目標精度の変更は、 前記インジェクタの二次側圧力の検出値と制 御目標値との偏差が所定値未満の場合には当該偏差を 「0」 と見なす一方で 前記偏差が所定値以上の場合には当該偏差に基づき前記ィンジェクタの開 閉動作をフィードバック制御する第 1の制御状態から、 前記第 1の制御状態 と比べて前記所定値を大きくする第 2の状態に変更するものである燃料電 池システム。
1 5 . 請求項 2において、
前記制御手段は、 前記関連装置の駆動に伴って発生する放射音を低減させ たい場合には、 前記インジェクタの二次側圧力が所定の下限圧に低下するま ' で、 .当該インジェクタの作動を禁止する燃料電池システム。 -
1 6 . 請求項 1 5において、 '
前記制御手段は、 前記インジェクタの二次側圧力が前記下限圧に低下した ら、 当該インジェクタの作動を許可して前記二次側圧力を所定圧に上昇させ る燃料電池システム。
1 7 . 移動体に搭載される燃料電池システムであって、
ガス供給^受けて発電する燃料電池と、 '該燃料電池のガス供給流路に設け られてその上流側のガス状態を調整して下流側に供給するインジェクタと、 前記移動体の移動状態に応じて前記ィンジェクタの作動を制御する制御手 '段と、 を備える燃料電池システム。
1 8 . ΐ青求項 1から 1 7のいずれかにおいて、
前記インジェクタは、 その上流側と下流側とを連通する内部流路と、 該内 部流路内に移動可能に配設されその移動位置に応じて前記内部流路の開口'面 積を変更可能な弁体と、電磁駆動力により前記弁体を駆動する弁体駆動部と、 を備えてなる燃料電池システム。
1 9 . ガス供給を受けて発電する燃料電池と、 該燃料電池のガス供給流路 に設けられてその上流側のガス状態を調整して下流側に供給するインジェ クタと、 を備えた燃料電池システムの運転方法であって、
前記燃料電池システムを含む関連装置の駆動状態に応じて前記ィンジェ クタの作動を制御する燃料電池システムの運転方法。
PCT/JP2006/323866 2005-12-19 2006-11-22 燃料電池システムとその運転方法 WO2007072662A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800480498A CN101341619B (zh) 2005-12-19 2006-11-22 燃料电池系统和用于运行该系统的方法
EP06833669.2A EP1970986B1 (en) 2005-12-19 2006-11-22 Fuel cell system and method for operating same
US12/086,770 US20090029226A1 (en) 2005-12-19 2006-11-22 Fuel Cell System and Method for Operating the System
US12/837,774 US7846597B2 (en) 2005-12-19 2010-07-16 Fuel cell system and method for operating the system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005365385 2005-12-19
JP2005-365385 2005-12-19
JP2006285092A JP5206918B2 (ja) 2005-12-19 2006-10-19 燃料電池システム
JP2006-285092 2006-10-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/086,770 A-371-Of-International US20090029226A1 (en) 2005-12-19 2006-11-22 Fuel Cell System and Method for Operating the System
US12/837,774 Division US7846597B2 (en) 2005-12-19 2010-07-16 Fuel cell system and method for operating the system

Publications (1)

Publication Number Publication Date
WO2007072662A1 true WO2007072662A1 (ja) 2007-06-28

Family

ID=38188443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323866 WO2007072662A1 (ja) 2005-12-19 2006-11-22 燃料電池システムとその運転方法

Country Status (6)

Country Link
US (2) US20090029226A1 (ja)
EP (1) EP1970986B1 (ja)
JP (1) JP5206918B2 (ja)
KR (1) KR100986709B1 (ja)
CN (1) CN101341619B (ja)
WO (1) WO2007072662A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100248062A1 (en) * 2007-11-19 2010-09-30 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US20100255397A1 (en) * 2007-11-16 2010-10-07 Toyota Jidosha Kabushiki Kaisha Fuel cell system
CN101425590B (zh) * 2007-10-30 2010-12-15 上海神力科技有限公司 一种燃料电池发动机的氢气安全保护系统
CN114233501A (zh) * 2021-11-12 2022-03-25 潍柴动力股份有限公司 一种燃气喷射阀监测方法及相关设备

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4530176B2 (ja) * 2006-10-26 2010-08-25 トヨタ自動車株式会社 燃料電池車両
JP4389922B2 (ja) * 2006-10-30 2009-12-24 トヨタ自動車株式会社 燃料電池システム
JP4756476B2 (ja) * 2006-12-07 2011-08-24 トヨタ自動車株式会社 燃料電池システム及び燃料電池車両
JP4363482B2 (ja) 2007-11-20 2009-11-11 トヨタ自動車株式会社 燃料電池システム
JP5286958B2 (ja) * 2008-06-17 2013-09-11 トヨタ自動車株式会社 燃料電池搭載車両
US9309849B2 (en) * 2011-03-23 2016-04-12 Hitachi, Ltd Method and apparatus for reducing the number of separately distinguishable noise peaks in a direct injection engine
JP5228263B2 (ja) * 2011-08-26 2013-07-03 トヨタ自動車株式会社 燃料電池システム
EP2783898B1 (en) * 2011-11-21 2018-05-02 Toyota Jidosha Kabushiki Kaisha Fuel cell system
DE102012005689B3 (de) 2012-03-21 2013-08-22 Audi Ag Verfahren zum Versorgen eines Antriebsaggregats
JP6450263B2 (ja) * 2014-08-25 2019-01-09 本田技研工業株式会社 燃料電池システム
JP6299683B2 (ja) * 2015-06-25 2018-03-28 トヨタ自動車株式会社 燃料電池システム
CN105117615B (zh) * 2015-10-14 2017-11-14 哈尔滨工业大学 基于累积和控制图的卫星电源系统异常检测方法
JP6447838B2 (ja) * 2016-11-21 2019-01-09 トヨタ自動車株式会社 燃料電池車両
CN106696742B (zh) * 2017-01-05 2018-12-21 上汽通用汽车有限公司 一种电动汽车燃料回收方法、装置及系统
JP6631566B2 (ja) * 2017-03-09 2020-01-15 トヨタ自動車株式会社 燃料電池システム及び判定方法
JP6790994B2 (ja) * 2017-04-25 2020-11-25 トヨタ自動車株式会社 燃料電池システムを搭載した車両
JP6819474B2 (ja) 2017-06-14 2021-01-27 トヨタ自動車株式会社 燃料電池システムおよび噴射制御方法
JP6973216B2 (ja) * 2018-03-19 2021-11-24 トヨタ自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
JP7115340B2 (ja) * 2019-01-28 2022-08-09 トヨタ自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
CN109830709B (zh) * 2019-02-01 2020-01-14 清华大学 燃料电池氢气供给控制方法、计算机设备和储存介质
DE102019217877A1 (de) 2019-11-20 2021-05-20 Robert Bosch Gmbh Brennstoffzellensystem mit einem Schwingungsgenerator und Verfahren zum Betreiben eines Brennstoffzellensystems mit einem Schwingungsgenerator
JP2021180148A (ja) 2020-05-15 2021-11-18 トヨタ自動車株式会社 燃料電池システム
JP7469260B2 (ja) 2021-06-11 2024-04-16 株式会社豊田自動織機 水素供給装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097353A (ja) * 1998-09-22 2000-04-04 Aisin Seiki Co Ltd 流量制御バルブ及び燃料電池システム
JP2002373687A (ja) * 2001-06-15 2002-12-26 Toyota Motor Corp 燃料電池搭載機器の消音
JP2003123822A (ja) * 2001-10-16 2003-04-25 Hitachi Ltd 車載用燃料電池の空気供給システム
JP2004048981A (ja) * 2002-05-14 2004-02-12 Toyota Motor Corp 車載バッテリのファン制御方法およびファン制御装置
JP2005044654A (ja) * 2003-07-23 2005-02-17 Nissan Motor Co Ltd 燃料電池システム
JP2005160127A (ja) * 2003-11-20 2005-06-16 Nissan Motor Co Ltd 燃料電池車両
JP2005251493A (ja) * 2004-03-03 2005-09-15 Matsushita Electric Ind Co Ltd 家庭用燃料電池コージェネシステム
JP2005302571A (ja) * 2004-04-13 2005-10-27 Toyota Motor Corp 燃料電池の制御装置
JP2006179331A (ja) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd 燃料電池システム
JP2006309976A (ja) * 2005-04-26 2006-11-09 Nissan Motor Co Ltd 燃料電池システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275300A (ja) 1993-03-24 1994-09-30 Sanyo Electric Co Ltd 燃料電池システム
US7470481B2 (en) * 2002-09-27 2008-12-30 Kabushikikaisha Equos Research Fuel cell system
JP3895263B2 (ja) 2002-11-25 2007-03-22 本田技研工業株式会社 燃料電池システムのアイドル時騒音抑制方法
US7040596B2 (en) * 2002-11-29 2006-05-09 Keihin Corporation Solenoid valve for fuel cell
DE10261610A1 (de) 2002-12-27 2004-07-08 Robert Bosch Gmbh Ventil zum Steuern eines Fluids
US7020562B2 (en) * 2003-03-31 2006-03-28 Proton Energy Systems, Inc. Method of monitoring the operation of gas sensor and system therefor
JP4929556B2 (ja) 2003-05-14 2012-05-09 トヨタ自動車株式会社 燃料電池システムの運転制御
JP4552399B2 (ja) 2003-08-07 2010-09-29 トヨタ自動車株式会社 複数タンクからなるタンクシステムおよびその制御方法
JP2005129427A (ja) 2003-10-27 2005-05-19 Aisin Seiki Co Ltd 燃料電池用ガス減圧弁及び燃料電池発電システム
JP4647236B2 (ja) * 2003-11-28 2011-03-09 本田技研工業株式会社 燃料電池の反応ガス供給装置
JP2005327635A (ja) * 2004-05-14 2005-11-24 Toyota Motor Corp 燃料電池システム
JP4780390B2 (ja) * 2005-12-15 2011-09-28 トヨタ自動車株式会社 燃料電池システム及び移動体

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097353A (ja) * 1998-09-22 2000-04-04 Aisin Seiki Co Ltd 流量制御バルブ及び燃料電池システム
JP2002373687A (ja) * 2001-06-15 2002-12-26 Toyota Motor Corp 燃料電池搭載機器の消音
JP2003123822A (ja) * 2001-10-16 2003-04-25 Hitachi Ltd 車載用燃料電池の空気供給システム
JP2004048981A (ja) * 2002-05-14 2004-02-12 Toyota Motor Corp 車載バッテリのファン制御方法およびファン制御装置
JP2005044654A (ja) * 2003-07-23 2005-02-17 Nissan Motor Co Ltd 燃料電池システム
JP2005160127A (ja) * 2003-11-20 2005-06-16 Nissan Motor Co Ltd 燃料電池車両
JP2005251493A (ja) * 2004-03-03 2005-09-15 Matsushita Electric Ind Co Ltd 家庭用燃料電池コージェネシステム
JP2005302571A (ja) * 2004-04-13 2005-10-27 Toyota Motor Corp 燃料電池の制御装置
JP2006179331A (ja) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd 燃料電池システム
JP2006309976A (ja) * 2005-04-26 2006-11-09 Nissan Motor Co Ltd 燃料電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1970986A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425590B (zh) * 2007-10-30 2010-12-15 上海神力科技有限公司 一种燃料电池发动机的氢气安全保护系统
US20100255397A1 (en) * 2007-11-16 2010-10-07 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8257876B2 (en) * 2007-11-16 2012-09-04 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US20100248062A1 (en) * 2007-11-19 2010-09-30 Toyota Jidosha Kabushiki Kaisha Fuel cell system
CN101868877A (zh) * 2007-11-19 2010-10-20 丰田自动车株式会社 燃料电池系统
US8470485B2 (en) * 2007-11-19 2013-06-25 Toyota Jidosha Kabushiki Kaisha Fuel cell system
CN114233501A (zh) * 2021-11-12 2022-03-25 潍柴动力股份有限公司 一种燃气喷射阀监测方法及相关设备

Also Published As

Publication number Publication date
US7846597B2 (en) 2010-12-07
EP1970986A4 (en) 2009-11-25
KR20080068755A (ko) 2008-07-23
KR100986709B1 (ko) 2010-10-08
US20090029226A1 (en) 2009-01-29
EP1970986B1 (en) 2015-04-01
US20100279193A1 (en) 2010-11-04
EP1970986A1 (en) 2008-09-17
CN101341619B (zh) 2010-08-04
CN101341619A (zh) 2009-01-07
JP5206918B2 (ja) 2013-06-12
JP2007194189A (ja) 2007-08-02

Similar Documents

Publication Publication Date Title
WO2007072662A1 (ja) 燃料電池システムとその運転方法
JP4780390B2 (ja) 燃料電池システム及び移動体
JP4756476B2 (ja) 燃料電池システム及び燃料電池車両
JP5041272B2 (ja) 燃料電池システム及び移動体
JP5120590B2 (ja) 燃料電池システム及びインジェクタの診断方法
US20100098980A1 (en) Fuel cell system
US8758952B2 (en) Fuel cell system with vibration control
JP4780427B2 (ja) 燃料電池システム及び移動体
JP2009123592A (ja) 燃料電池システム
WO2007142246A1 (ja) 燃料電池システム
JP2007323873A (ja) 燃料電池システム及びその制御方法
JP2007165163A (ja) 燃料電池システム及び移動体
WO2007069484A1 (ja) 燃料電池システム及び移動体
JP2009158250A (ja) 燃料電池システム
JP2008218034A (ja) 燃料電池システム及びその制御方法
JP2008004320A (ja) 燃料電池システム及び移動体
JP2008171623A (ja) 燃料電池システム
JP2008053151A (ja) 燃料電池システム
JP2007305348A (ja) 燃料電池システム及び移動体
JP2008204711A (ja) 燃料電池システム
JP2009021024A (ja) 燃料電池システム及び移動体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680048049.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006833669

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12086770

Country of ref document: US