WO2007072549A1 - 発振器 - Google Patents

発振器 Download PDF

Info

Publication number
WO2007072549A1
WO2007072549A1 PCT/JP2005/023372 JP2005023372W WO2007072549A1 WO 2007072549 A1 WO2007072549 A1 WO 2007072549A1 JP 2005023372 W JP2005023372 W JP 2005023372W WO 2007072549 A1 WO2007072549 A1 WO 2007072549A1
Authority
WO
WIPO (PCT)
Prior art keywords
degrees
differential
current source
cml
oscillation
Prior art date
Application number
PCT/JP2005/023372
Other languages
English (en)
French (fr)
Inventor
Hirohito Higashi
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2005/023372 priority Critical patent/WO2007072549A1/ja
Priority to JP2007550954A priority patent/JPWO2007072549A1/ja
Publication of WO2007072549A1 publication Critical patent/WO2007072549A1/ja
Priority to US12/143,253 priority patent/US20080252387A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/03Astable circuits
    • H03K3/0315Ring oscillators
    • H03K3/0322Ring oscillators with differential cells
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/0802Details of the phase-locked loop the loop being adapted for reducing power consumption
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • H03L7/0995Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator comprising a ring oscillator

Definitions

  • the present invention relates to an oscillator.
  • FIG. 15A is a diagram showing a configuration example of a voltage controlled ring oscillator.
  • the voltage controlled ring oscillator is a VCO (Voltage Controlled Oscillator).
  • the plurality of differential amplifiers 1501 are ring-connected.
  • the plurality of variable resistors 1502 are connected to the plurality of differential amplifiers 1501, respectively.
  • the plurality of current sources 1503 are connected to the plurality of differential amplifiers 1501, respectively.
  • the CR ring element 1504 includes one differential amplifier 1501, a variable resistor 1502, and a current source 1503. For example, four CR ring elements 1504 are ring-connected.
  • FIG. 15B is a circuit diagram showing a configuration example of the CR ring element 1504 in FIG. 15A.
  • the MOS field effect transistor is simply referred to as a transistor.
  • CR ring element 1504 has non-inverting input terminal 1+ and inverting input terminal I input a differential signal as much as possible, amplifies the differential signal, and the amplified differential signal is inverted to non-inverting output terminal 0+ and inverting Output terminal O—force Outputs.
  • a differential signal is two signals that are 180 degrees out of phase with each other. Parasitic capacitors are connected to the non-inverting output terminal 0+ and the inverting output terminal O-, respectively.
  • the non-inverting input terminal 1 + is connected to the gate of the N-channel transistor 151 la, and the inverting input terminal I ⁇ is connected to the gate of the N-channel transistor 151 lb.
  • the non-inverting output terminal O + is connected to the drain of the transistor 1511b, and the inverting output terminal O ⁇ is connected to the drain of the transistor 1511a.
  • the gate is connected to the control voltage Vcntl
  • the source is connected to the power supply voltage
  • the drain is connected to the drain of the transistor 151la, and forms a load resistance.
  • the P-channel transistor 1512b has a gate connected to the control voltage Vcntl, a source connected to the power supply voltage, and a drain connected to the drain of the transistor 151 lb to form a load resistor.
  • Transistors 1512a and 1512b correspond to the variable resistor 1502 in FIG. 15A and are variable resistors controlled by the voltage Vcntl.
  • the current source 1503 is connected between the source of the transistors 151 la and 151 lb and the ground. Play Irefl.
  • the delay amount of the output signal is determined by the CR of the capacitor and the resistor.
  • VCO Phase Locked Loop
  • Patent Document 1 listed below includes a four-phase multi-ring oscillator unit that also serves as a first to fourth transistor counter force, a resistor that serves as a load for an oscillation signal, a load resistor, and a four-phase multi-ring oscillator unit.
  • a four-phase oscillator comprising a constant current source for passing a constant current is described.
  • Patent Document 2 an oscillation circuit in which a negative logic circuit having a field effect transistor force is connected in an odd number of stages and an output of a final stage is connected to an input of the first stage is described in the above.
  • An oscillation circuit characterized by driving at least one of a power supply potential or a ground potential of a logic circuit by a constant current circuit is described.
  • Patent Document 3 discloses a ring oscillator circuit having an input unit that receives an input signal, first to third stage inverters each having P-channel MOS transistor and N-channel MOS transistor power, and a ring oscillator.
  • a first current source that provides MOS transistor power of the first conductivity type that supplies current to each inverter of the oscillator, and a MOS transistor power of the second conductivity type that differs from the first conductivity type that extracts each inverter current of the ring oscillator
  • a voltage controlled oscillator with a second current source is described.
  • Patent Document 4 describes a semiconductor integrated circuit that keeps the gate voltage of a constant current generating transistor constant and stably operates a ring oscillator of a main oscillation circuit that requires a constant current. .
  • each CR ring element 1504 needs to satisfy the oscillation condition. Therefore, each CR ring element 1504 has its tail current Irefl Current source 1503. As the number of CR ring elements 1504 increases, the number of current sources 1503 increases and the current consumption also increases in proportion.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-91892
  • Patent Document 2 JP-A 63-260316
  • Patent Document 3 Japanese Patent Laid-Open No. 11-274900
  • Patent Document 4 JP-A-11-177389
  • An object of the present invention is to provide an oscillator that consumes less current.
  • the first and second oscillation units that output signals having phases orthogonal to each other are provided, and a plurality of the oscillation units are simultaneously provided to the first and second oscillation units.
  • An oscillator is provided in which only one current source is connected at any point in time when no current source is connected.
  • a CML differential amplifier including a resonant circuit of an inductor and a capacitor, an input differential pair transistor, and a negative resistance, and having mutually orthogonal phases.
  • a plurality of current sources are not simultaneously connected to the first and second oscillation units that output signals and the negative resistances of the first and second oscillation units.
  • only one first current source is connected, and a plurality of current sources are not simultaneously connected to the input differential pair transistors of the first and second oscillation units.
  • An oscillator is provided in which only one second current source is connected.
  • FIG. 1 is a diagram showing a configuration example of a high-speed IZO (input Z output) circuit according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of an RF oscillation circuit according to the first embodiment.
  • FIG. 3B is a circuit diagram showing a configuration example of the VCO of FIG. 1 and FIG.
  • FIG. 3B is a circuit diagram showing a configuration example of the CR ring element of FIG. 3B.
  • FIG. 4 is a diagram showing an example of a half-cycle waveform of a VCO when viewed with a single-stage CR ring element.
  • FIG. 5 is a diagram showing the phase of the output signal of each ring element of the VCO in FIG. [6A]
  • FIG. 6A is a circuit diagram showing a configuration example of the VCO according to the second embodiment of the present invention.
  • FIG. 6B is a circuit diagram showing a configuration example of the ring element of FIG. 6A.
  • FIG. 6C is a circuit diagram showing another configuration example of the ring element in FIG. 6A.
  • FIG. 7A is a circuit diagram showing a configuration example of a VCO according to a third embodiment of the present invention.
  • FIG. 7B is a circuit diagram showing a configuration example of the ring element in FIG. 7A.
  • FIG. 7C is a circuit diagram showing another configuration example of the ring element in FIG. 7A.
  • FIG. 8A is a circuit diagram showing a configuration example of a VCO according to a fourth embodiment of the present invention.
  • FIG. 8B is a circuit diagram showing a configuration example of the ring element in FIG. 8A.
  • FIG. 9 is a circuit diagram showing a configuration example of a VCO according to a fifth embodiment of the present invention.
  • FIG. 10 is a circuit diagram showing a configuration example of a VCO according to a sixth embodiment of the present invention.
  • FIG. 11 is a timing chart showing the operation of the circuit of FIG.
  • FIG. 12A is a circuit diagram showing a configuration example of a Quadrature LC-VCO.
  • FIG. 12B is a circuit diagram showing a configuration example of the LC VCO in FIG. 12A.
  • FIG. 13A is a circuit diagram showing a configuration example of a VCO according to a seventh embodiment of the present invention.
  • FIG. 13B is a circuit diagram showing a configuration example of the LC VCO in FIG. 13A.
  • FIG. 14 is a circuit diagram showing a configuration example of a VCO according to an eighth embodiment of the present invention.
  • FIG. 15A is a diagram showing a configuration example of a voltage controlled ring oscillator.
  • FIG. 15B is a circuit diagram showing a configuration example of the CR ring element of FIG. 15A.
  • FIG. 1 is a diagram showing a configuration example of a high-speed IZO (input Z output) circuit according to the first embodiment of the present invention.
  • the driver ( ⁇ ) and receiver (Rx) A clock having a half frequency is required, and this clock is generated by the PLL circuit 110.
  • the PLL circuit 110 includes a phase detector 101, a charge pump 102, a loop filter (LPF) 103, a voltage controlled oscillator (VCO) 104, and a multiplier 105.
  • the phase detector 101 compares the reference clock RCLK and the output clock (feedback clock) from the multiplier 105, and outputs a noise width corresponding to the phase error to the charge pump 102.
  • the charge pump 102 supplies a current corresponding to the pulse width to the LPF 103.
  • the LPF 103 is a low-pass filter and smoothes this error signal.
  • the VCO 104 oscillates at a frequency corresponding to the smoothed voltage Vcntl and outputs an I signal and a Q signal.
  • the I signal is a 0 ° and 180 ° differential signal
  • the Q signal is a 90 ° and 270 ° differential signal.
  • the multiplier 105 outputs to the phase detector 101 a signal obtained by multiplying the frequency of one signal output from the VCO 104 by N times. As a result, when the phase error detected by the phase detector 101 becomes zero, the PLL circuit 110 shifts to a locked state (steady state), and a stable synchronous clock (I signal and Q Signal).
  • the phase interpolator 106 mixes the output signals of the VCO 104 and the digital filter 109 and outputs them to the decision latch 107.
  • the decision latch 107 latches the serial data Din and outputs it to the demultiplexer 108.
  • the demultiplexer 108 converts the data from a serial format to a parallel format and outputs data Dout.
  • the digital filter 109 filters the output data of the demultiplexer 108 and outputs it to the phase interpolator 106. Thereby, the latch timing of the decision latch 107 can be adjusted to an appropriate timing at which the data Din is stable.
  • the VCO104 used in the high-speed IZO circuit is an LC-VCO using LC resonance (Fig. 12A and Fig. 12B, etc.) or a ring oscillator type VCO that positively feeds back a CML type differential amplifier (Figs. 3 and 3). Etc.) is used.
  • LC-VCO is used because the ring oscillator type VCO cannot provide the band.
  • LC-VCO with 90 degree phase relationship is generally called Quadrature LC-VCO.
  • FIG. 2 is a diagram illustrating a configuration example of the RF oscillation circuit according to the present embodiment.
  • the two PLL circuits 110a and 110b have the same configuration as the PLL circuit 110 of FIG.
  • the PLL circuit 110a receives the reference clock RCLK1 and receives an I signal and a Q signal having a frequency N times that of the reference clock RCLK1. Output.
  • the PLL circuit 110b receives the reference clock RCLK2 and outputs an I signal and a Q signal having a frequency N times that of the reference clock RCLK2.
  • the multiplier 201a multiplies the I signals from the PLL circuits 110a and 110b and outputs the result.
  • the multiplier 201b multiplies the Q signals of the PLL circuits 110a and 110b and outputs the result.
  • the adder 202 adds the output signals of the multipliers 201a and 201b and outputs a high-frequency clock OCLK.
  • a carrier for modulating a signal is required on the transmission side, and the VCO 104 is required as a source signal of the mixer.
  • a carrier with the same frequency is required, which also requires a VCO.
  • the desired signal is generated by multiplying the orthogonal signals (sin wave and cos wave), so the V CO104 requires a multi-phase signal with a phase difference of 90 degrees.
  • LC-VCOs are often used instead of ring oscillator type VCOs.
  • This embodiment is applicable to a high-speed IZO circuit and a VCO used for RF, a PLL circuit using the VCO, and the like.
  • FIG. 3A is a circuit diagram showing a configuration example of the VCO 104 in FIGS. 1 and 2.
  • the VCO 104 is a voltage controlled ring oscillator (ring oscillator type VCO).
  • a plurality of (for example, four) differential amplifiers 301a, 301b, 301c, and 301d are ring-connected.
  • a plurality of (for example, four) load resistors 302a, 302b, 302c, and 302d are respectively connected between the plurality of differential amplifiers 301a to 301d and the power supply voltage, and are variable resistors according to the control voltage.
  • the current source 303a is connected between the differential amplifiers 301a and 301c and the ground.
  • the current source 303b is connected between the differential amplifiers 301b and 301d and the ground.
  • the CR ring element (oscillation unit) 304 includes, for example, one differential amplifier 301b and a load resistor 302b.
  • the four differential amplifiers 301a to 301d have the same configuration, and the four load resistors 302a to 302d also have the same configuration.
  • Four CR ring elements 304 with the same configuration are ring-connected.
  • the differential amplifiers 301a to 301d receive a differential signal, amplify the differential signal, and output the amplified signal.
  • a differential signal is two signals that are 180 degrees out of phase with each other.
  • the output differential signal of each differential amplifier 301a to 301d has a phase difference obtained by dividing 180 degrees by the number of differential amplifiers 301a to 301d.
  • the differential amplifier 301c receives differential signals of 0 degree and 180 degrees. Output as I signal.
  • the differential amplifier 301d outputs differential signals of 45 degrees and 225 degrees.
  • the differential amplifier 301a outputs a differential signal of 90 degrees and 270 degrees as a Q signal.
  • the differential amplifier 301b outputs 135 ° and 315 ° differential signals.
  • the differential amplifiers 301a and 301c output differential signals having phases (phase difference of 90 degrees) that are orthogonal to each other.
  • the current source 303a is connected in common to these differential amplifiers 301a and 301c.
  • the differential amplifiers 301b and 301d output differential signals having phases (phase difference of 90 degrees) that are orthogonal to each other.
  • the current source 303b is connected in common to the differential amplifiers 301b and 30Id.
  • FIG. 3B is a circuit diagram showing a configuration example of the CR ring element 304 of FIG. 3A.
  • the CR ring element 304 has a CML type differential amplifier, receives a differential signal from the non-inverting input terminal 1+ and the inverting input terminal I, amplifies the differential signal, and non-amplifies the amplified differential signal. Outputs inverting output terminal O + and inverting output terminal O—force.
  • a parasitic capacitor 313b and a parasitic capacitor 313a are connected to the non-inverting output terminal 0+ and the inverting output terminal O, respectively.
  • the non-inverting input terminal I + is connected to the gate of the N-channel transistor 312a, and the inverting input terminal I- is connected to the gate of the N-channel transistor 312b.
  • the inverting output terminal O— is connected to the drain of the transistor 312a.
  • the non-inverting output terminal 0 + is connected to the drain of the transistor 312b.
  • P-channel transistors 311a and 3 l ib have their gates connected to the control voltage Vcntl and their sources connected to the power supply voltage.
  • the drain of transistor 311a is connected to the drain of transistor 312a, and the drain of transistor 31lb is connected to the drain of transistor 312b.
  • the transistors 31 la and 31 lb correspond to, for example, the variable resistor 302b in FIG. 3A, and the resistance value changes according to the control voltage Vcntl.
  • the interconnection point of the sources of transistors 312a and 312b is connected to, for example, current source 303b in FIG. 3A.
  • the CR ring element (delay element) 304 the delay amount of the output signal is determined by the CR of the capacitance and the resistance.
  • the tail current Irefl of the differential amplifiers 301a and 301c having an orthogonal relationship of 90 degrees in phase difference is shared by the current source 303a, and the tail current I refl of the differential amplifiers 301b and 302d is Share with source 303b.
  • the current values of the tail current sources 303a and 303b are Assuming that the current value of the current source 1503 in FIG. 15A is the same as the current value of the current source 1503 in FIG. 15A, the VCO of this embodiment has half the number of tail current sources compared to the VCO in FIG. This means that the current consumption is also halved.
  • the ring oscillator type VCO has a phase shift of 45 degrees per stage, so that a tail current source is shared by every other stage of the ring.
  • the VCO of this embodiment satisfies the same oscillation conditions and oscillation frequency as the VCO in FIG. 15A. The following explains why the target can be achieved under the same conditions as the VCO in Figure 15A, even if the current source is shared.
  • the ring oscillator type VCO oscillates with positive feedback by connecting multiple CML type differential amplifiers (4 or more stages).
  • the delay value of each ring element is shifted in phase by 1Z8 of the oscillation period of the VCO, that is, the phase is rotated by 45 degrees. If the output is extracted every other stage of the ring element, the signal I signal and Q signal having a phase relationship of 90 degrees can be obtained.
  • the oscillation frequency fo is expressed by the following equation, where N is the number of stages of ring elements and ⁇ is the delay value (CR delay value) of each ring element.
  • lrefl means the current value of the tail current source 1503 of each ring element.
  • the conditions for oscillation of a ring oscillator type VCO are determined by the gain and phase margin of each ring element.
  • the gain A required for each ring element is derived from the phase margin for applying positive feedback, the following equation is obtained.
  • ⁇ f and ⁇ 0 represent the oscillation frequency and the frequency of the 3 dB band, respectively.
  • each ring element rotates 45 degrees in phase, so to oscillate under this condition means that if each stage has a gain of at least 2, it oscillates.
  • the ring oscillator type VCO shown in FIGS. 3A and 3B is nothing but a differential amplifier when viewed with a single-stage CR ring element 304.
  • the differential amplifier is a circuit that amplifies the difference between the input voltages by a gain. If the difference voltage is constant, naturally the output waveform does not fluctuate. That is why.
  • the differential amplifier can obtain a signal 501 with an output phase of 0 degrees and 180 degrees.
  • the signal that is farthest from the output signal 501 is 90 degrees.
  • FIG. 4 is a diagram showing a waveform example of a half cycle of the VCO when viewed with a single-stage CR ring element 304.
  • the period in which the amplifying operation is required is only in the period 401 when the input voltage changes from high level to low level or from low level to high level.
  • the current source must be active because the differential amplifier requires an amplification operation.
  • the signal is held at a low level or a low level for a predetermined period. Therefore, during that period, there is no problem even if the current source is off.
  • the output voltage need only be held.
  • the output signal level is held by the capacitors 313a and 313b in FIG. 3B.
  • this hold period is actually the moment when signals with orthogonal phases are performing amplification, which is exactly a signal with a phase difference of 90 degrees.
  • a period 401 is an amplification operation period of the one-stage ring element of FIG. 3A
  • a period 402 is an amplification operation period of the one-stage ring element of FIG. 15A. Therefore, in this embodiment, by sharing the tail current source, the current source can be effectively used only for the amplification operation in one cycle, and as a result, the total current of the VCO can be reduced by half. It becomes possible.
  • FIG. 5 is a diagram showing the phase of the output signal of each ring element 304 of the VCO in FIG. 3A.
  • the differential amplifier 301c outputs a differential signal 501 of 0 degrees and 180 degrees.
  • the differential amplifier 301 a outputs a differential signal 503 of 90 degrees and 270 degrees orthogonal to the differential signal 501. Since the differential amplifiers 301a and 301c perform amplification operations in different periods as described above, they share the current source 303a.
  • the differential amplifier 301d outputs differential signals 502 of 45 degrees and 225 degrees.
  • the differential amplifier 301b outputs a differential signal 504 of 135 degrees and 315 degrees orthogonal to the differential signal 502. Since the differential amplifiers 301b and 301d perform amplification operations in different periods as described above, they share the current source 303b.
  • FIG. 6A is a circuit diagram showing a configuration example of the VCO 104 (FIGS. 1 and 2) according to the second embodiment of the present invention.
  • the noise circuit 604 includes transistors 601 and 602.
  • the P-channel transistor 601 has a gate connected to the control voltage Vcntl and a source connected to the power supply voltage.
  • the N-channel transistor 602 has a gate and a drain connected to the drain of the transistor 601 and a source connected to the ground.
  • the bias circuit 604 outputs bias voltages Vbl and Vb2.
  • the voltage Vbl is the same voltage as the control voltage Vcntl.
  • Voltage Vb2 is the voltage at the interconnection point of the drains of transistors 601 and 602.
  • the N-channel transistor 603a corresponds to the current source 303a in FIG. 3A, and has a gate connected to the gate of the transistor 602, a drain connected to the differential amplifiers 301a and 30lc, and a source connected to the ground.
  • the N-channel transistor 603b corresponds to the current source 303b of FIG. 3A, has a gate connected to the gate of the transistor 602, a drain connected to the differential amplifiers 301b and 301d, and a source connected to the ground.
  • the transistors 602, 603a, and 603b constitute a current mirror circuit.
  • a drain current Irefl flows through the transistors 603a and 603b.
  • the resistance values of the variable resistors 302a to 302d change according to the voltage Vbl.
  • the voltages Vbl and Vb2 are variable values corresponding to the control voltage Vcntl.
  • the oscillation frequency of the ring oscillator can be controlled by controlling the voltage Vcntl.
  • FIG. 6B is a circuit diagram showing a configuration example of the ring element 304 in FIG. 6A.
  • the configuration in FIG. 6B is the same as the configuration in FIG. 3B.
  • the gate voltage Vbl of the transistors 311a and 3 l ib is the same as the control voltage Vcntl.
  • FIG. 6C is a circuit diagram showing another configuration example of the ring element 304 in FIG. 6A.
  • the circuit of FIG. 6C is obtained by adding transistors 612a and 612b to the circuit of FIG. 6B.
  • the source is connected to the power supply voltage, and the gate and drain are connected to the drain of the transistor 312a.
  • the P-channel transistor 612b the source is connected to the power supply voltage, and the gate and drain are connected to the drain of the transistor 312b.
  • this embodiment is a ring oscillator type VCO in which a differential amplifier having a phase difference of 90 degrees shares a tail current source.
  • Figure 6 shows the load transistor. Two examples are shown: the B P-channel bias type and the symmetric load type shown in Fig. 6C.
  • the load resistors 302a to 302d and the tail current sources 603a and 603b are both controlled at the same time or only on one side according to the control voltage Vcntl. That is, one of the voltages Vbl and Vb2 may be a variable value and the other may be a fixed value.
  • the differential amplifiers having a phase difference of 90 degrees and the orthogonal relationship share the tail current source, so that the power source current is reduced. Can be halved.
  • the tail current sources 303a and 303b are composed of N-channel transistors 603a and 603b.
  • the noise voltages Vbl and Vb2 supplied to the load resistor and the tail current source are variable or fixed according to the control voltage Vcntl.
  • FIG. 7A is a circuit diagram showing a configuration example of the VCO 104 (FIGS. 1 and 2) according to the third embodiment of the present invention. The difference between Fig. 7A and Fig. 6A will be explained.
  • the circuit of Fig. 7A is the circuit of Fig. 6A with the load resistance and current source positions reversed.
  • the P-channel transistor 701a has a gate connected to the voltage Vbl, a source connected to the power supply voltage, and a drain connected to the differential amplifiers 301a and 301c.
  • the P-channel transistor 701b has a gate connected to the voltage Vbl, a source connected to the power supply voltage, and a drain connected to the differential amplifiers 30 lb and 301d.
  • Transistors 701a and 701b constitute a current source of a current mirror, and allow a drain current Irefl to flow.
  • the load resistors 302a to 302d are respectively connected between the differential amplifiers 301a to 301d and the ground, and the resistance values thereof change according to the voltage Vb2.
  • the ring element 702 includes, for example, a differential amplifier 30 lb and a load resistor 302b. Similar ring elements 702 are connected in four stages.
  • FIG. 7B is a circuit diagram showing a configuration example of the ring element 702 in FIG. 7A.
  • the P-channel transistor 703a has a gate connected to the non-inverting input terminal 1+, a source connected to the drain of the transistor 701b in FIG. 7A, for example, and a drain connected to the inverting output terminal O ⁇ .
  • the P channel transistor 703b has a gate connected to the inverting input terminal I—, a source connected to the drain of the transistor 701b in FIG. 7A, for example, and a drain connected to the non-inverting output terminal 0+.
  • the N-channel transistor 704a has a gate connected to the voltage Vb2, a source connected to the diode, and a drain connected to the inverting output terminal O ⁇ .
  • N-channel transistor 7 In 04b the gate is connected to voltage Vb2, the source is connected to ground, and the drain is connected to the non-inverted output terminal 0 +.
  • Transistors 704a and 704b correspond to load resistor 302b, for example.
  • FIG. 7C is a circuit diagram showing another configuration example of the ring element 702 in FIG. 7A.
  • the circuit of FIG. 7C is obtained by adding transistors 705a and 705b to the circuit of FIG. 7B.
  • the N-channel transistor 705a has a gate and a drain connected to the inverting output terminal O—, and a source connected to the ground.
  • the N-channel transistor 705b has a gate and a drain connected to the non-inverting output terminal 0 + and a source connected to the ground.
  • this embodiment is a ring oscillator type VCO in which a differential amplifier having a phase difference of 90 degrees shares a tail current source, and current sources 701a and 70 This is when lb is connected to the power supply voltage side.
  • the circuit is configured with a P-channel transistor as the main, the bandwidth is lower than when the N-channel transistor is configured as the main, but the 1 / f noise characteristics are advantageous, so jitter is reduced.
  • the CML type differential ring oscillator type VCO of the present embodiment can halve the power supply current by sharing the tail current source with the differential amplifiers having a 90-degree orthogonal relationship.
  • the tail current sources 701a and 701b are P-channel transistors.
  • the bias voltages Vbl and Vb2 supplied to the load resistor and tail current source are variable or fixed according to the control voltage Vcntl.
  • FIG. 8A is a circuit diagram showing a configuration example of the VCO 104 (FIGS. 1 and 2) according to the fourth embodiment of the present invention. The difference between Fig. 8A and Fig. 6A will be explained.
  • the circuit of FIG. 8A is obtained by adding transistors 801a and 801b to the circuit of FIG. 6A.
  • the bias circuit 802 outputs voltages Vbl and Vb2 according to the control voltage Vcntl.
  • the P-channel transistor 8 Ola has a gate connected to the voltage Vbl, a source connected to the power supply voltage, and a drain connected to the differential amplifiers 301a and 301c.
  • the P-channel transistor 801b has a gate connected to the voltage Vbl, a source connected to the power supply voltage, and a drain connected to the differential amplifiers 30 lb and 301d.
  • the transistors 801a and 801b are current source of the current mirror, and flow the current Irefl.
  • Differential amplifiers 301a and 301c are connected to a common current source 801a.
  • the differential amplifiers 301b and 301d are connected to a common current source 801b.
  • the differential amplifiers 301a to 301d include the variable load resistors 302a to 302d of FIG. 6A.
  • the ring element 803 includes, for example, a differential amplifier 301b. Similar ring elements 803 are connected in four stages.
  • FIG. 8B is a circuit diagram showing a configuration example of the ring element 803 in FIG. 8A.
  • the circuit of FIG. 8B is obtained by adding transistors 811A and 8 ib to the circuit of FIG. 3B.
  • the P-channel transistor 811a has a gate connected to the non-inverting input terminal 1+, a drain connected to the inverting output terminal O—, and a source connected to the drain of the transistor 801b in FIG. 8A, for example.
  • the gate is connected to the inverting input terminal I
  • the drain is connected to the non-inverting output terminal 0+
  • the source is connected to the drain of the transistor 801b in FIG. 8A, for example.
  • this embodiment is a ring oscillator type VCO in which a differential amplifier having a phase difference of 90 degrees shares a tail current source.
  • LVDS Low voltage differential signaling
  • the current sources 801a and 801b are connected to the power supply voltage side, the current sources 603a and 603b are connected to the ground side, and the differential amplifiers 301a to 301d are sandwiched between the current sources 801a and 801b and the current sources 603a and 603b.
  • the currents of both current sources 801a, 801b, 603a, 603b change simultaneously according to the voltage Vcntl.
  • the CML type differential ring oscillator type VCO of this embodiment can halve the power supply current by sharing the tail current source with the differential amplifiers having a 90-degree orthogonal relationship.
  • Current sources having the same current value are provided on the power supply voltage and ground sides, respectively.
  • the noise voltage supplied to the load resistance and tail current source is variable or fixed according to the control voltage Vcntl.
  • FIG. 9 is a circuit diagram showing a configuration example of the VCO 104 (FIGS. 1 and 2) according to the fifth embodiment of the present invention.
  • a force indicating a ring oscillator type VCO that connects four stages of ring elements is shown.
  • a ring oscillator type VCO that connects six stages of ring elements is shown.
  • Six differential amplifiers 901a to 901f are ring-connected.
  • the variable load resistors 902a to 902f are connected between the differential amplifiers 901a to 901f and the power supply voltage, respectively, and the resistance values change according to the control voltage Vcntl.
  • Current source 903a is a differential amplifier 901a, 9 Connected between Old and ground.
  • the current source 903b is connected between the differential amplifiers 901b and 901e and the ground.
  • the current source 903c is connected between the differential amplifiers 901c and 901f and the ground.
  • the current sources 903a to 903c pass the same current Irefl.
  • the differential amplifier 901a has a differential signal of 0 degrees and 180 degrees
  • the differential amplifier 901b has a differential signal of 30 degrees and 210 degrees
  • the differential amplifier 901c has a differential signal of 60 degrees and 240 degrees
  • the differential amplifier 901d outputs differential signals of 90 degrees and 270 degrees
  • the differential amplifier 901e outputs differential signals of 120 degrees and 300 degrees
  • the differential amplifier 901f outputs differential signals of 150 degrees and 330 degrees.
  • the differential amplifiers 901a and 901d output differential signals having phases that are orthogonal to each other, and can therefore be connected to a common current source 903a. Since the differential amplifiers 901b and 901e output differential signals with phases orthogonal to each other, they can be connected to a common current source 903b. Since the differential amplifiers 901c and 901f output differential signals having phases orthogonal to each other, they can be connected to a common current source 903c.
  • the CML type differential ring oscillator type VCO of the present embodiment has a differential current amplifier having a 90-degree orthogonal relationship by sharing a tail current source.
  • the power supply current can be halved.
  • the delay amount of each ring element is uniquely determined by 180 degrees divided by the number of ring elements. If this delay value is divisible by 90 degrees, an orthogonal relationship of 90 degrees is established and the tail current source can be shared.
  • the bias voltage supplied to the load resistor and tail current source is variable or fixed according to the control voltage Vcntl.
  • FIG. 10 is a circuit diagram showing a configuration example of the VCO 104 (FIGS. 1 and 2) according to the sixth embodiment of the present invention
  • FIG. 11 is a timing chart showing the operation thereof.
  • the transistors 1001a to 1001d are provided instead of the transistors 603a and 603b in FIG. 6A.
  • the N-channel transistor 1001a has a source connected to the ground and a drain connected to the differential amplifier 301a.
  • N-channel transistor 1001b is source Is connected to ground and the drain is connected to 30 lb of differential amplifier.
  • the N-channel transistor 1001c has a source connected to the ground and a drain connected to the differential amplifier 301c.
  • the N-channel transistor lOOld has a source connected to the ground and a drain connected to the differential amplifier 301d.
  • the switch of the control signal ⁇ 1 connects the voltage Vb2 to the gate of the transistor 1001a and connects the ground to the gate of the transistor 1001c according to the control signal ⁇ 1.
  • the switch of the control signal ⁇ ⁇ 1 connects the ground to the gate of the transistor 1001a and the voltage Vb2 to the gate of the transistor 1001c according to the control signal ⁇ ⁇ 1.
  • the control signals ⁇ 1 and ⁇ ⁇ 1 are signals whose phases are inverted from each other.
  • the switch of the control signal ⁇ 2 connects the voltage Vb2 to the gate of the transistor 1001b and connects the ground to the gate of the transistor lOOld according to the control signal ⁇ 2.
  • the switch of the control signal Z ⁇ 2 connects the ground to the gate of the transistor 1001b and connects the voltage Vb2 to the gate of the transistor 1001d according to the control signal Z ⁇ 2.
  • the control signals ⁇ 2 and ⁇ ⁇ 2 are signals whose phases are inverted from each other.
  • the period T1 is one period of the oscillation operation.
  • the transistors 1001a to 100d are current sources.
  • the clocks of the control signals ⁇ 1, ⁇ 2, ⁇ 1, ⁇ 2 are out of phase by 90 degrees of the clock period.
  • the control signal ⁇ ⁇ 1 becomes a high level, and the control signal ⁇ 1 becomes a low level.
  • the voltage Vb2 is supplied to the gate of the transistor 1001c, and the current source of the transistor 1001c is connected to the differential amplifier 301c.
  • the gate of the transistor 1001a is supplied with ground, and the current source of the transistor 1001c is disconnected from the differential amplifier 301a.
  • the control signal ⁇ 2 becomes high level and the control signal Z ⁇ 2 becomes low level.
  • the voltage Vb2 is supplied to the gate of the transistor 1001b, and the current source of the transistor 1001b is connected to the differential amplifier 301b.
  • a ground is supplied to the gate of the transistor lOOld, and the current source of the transistor lOOld is disconnected from the differential amplifier 301d.
  • Current sources 1001a and 1001c correspond to current source 603a in FIG. 6A.
  • the current source 1001a is in the connected state
  • the current source 1001c is in the disconnected state
  • the current source 1001a is in the disconnected state. That is, the current sources 1001a and 1001c are alternately connected to the differential amplifiers 301a and 301c, respectively, and only one of them is connected and the other is disconnected.
  • only one of the differential amplifiers 301a and 301c is in an amplification operation state, and both of them are not in an amplification operation state at the same time.
  • current sources 1001b and 1001d correspond to current source 603b in FIG. 6A.
  • Current source 1001d is in a disconnected state when current source 1 001b is in a connected state
  • current source 1001b is in a disconnected state when current source 1001d is in a connected state. That is, the current sources 1001b and 100Id are alternately connected to the differential amplifiers 301b and 301d, respectively, and only one of them is connected and the other is disconnected. Only one of the differential amplifiers 301b or 301d is in an amplification operation state, and both of them are not in an amplification operation state at the same time.
  • all current sources 1001 a to 100 Id are turned on until the PLL locks up, and the switch is controlled with a clock as shown in FIG. 11 in a steady state after the lockup.
  • the current consumption can be halved.
  • the same operation as in the first to fifth embodiments can be performed by switching the tail current sources 1001 a to 100 Id without sharing the current source. Suites In the case of ching control, the current consumption can be halved by controlling with the clock shown in Fig. 11.
  • FIG. 12A is a circuit diagram showing a configuration example of the Quadrature LC-VCO.
  • Quadrature LC-VCO is composed of two CML type LC—VCO (oscillation units) 1201a and 1201b, which are further coupled to each other.
  • LC VCO1201a and 1201b change the oscillation frequency according to the control voltage Vcntl, amplify the differential signal input from non-inverting input terminal 1+ and inverting input terminal I, and output the amplified differential signal as non-inverting output Output from terminal O + and inverted output terminal O.
  • the LC-VCO1201a outputs differential signals with 0 ° and 180 ° output terminals 0+ and O force.
  • LC-VCO1201b outputs 270 and 90 degree differential signals from output terminals O + and O.
  • the low-pass filter 1202a is connected between the output terminal O- of the LC-VCO 1201b and the input terminal 1+ of the LC-VC012 0 la.
  • the low-pass filter 1202b is connected between the output terminal O + of the LC—VCO 1201a and the input terminal I + of the LC—VCO 120 lb.
  • the low-pass filter 1202c is connected between the output terminal 0+ of the LC—VCO1201b and the input terminal I of the LC—VCO1201a.
  • the low-pass filter 1202d is connected between the output terminal O- of the LC-VCO 1201a and the input terminal I- of the LC-VCO 120 lb. Since the low-pass filters 1202a to 1202d pass only the signal in the low frequency band, the delay amount changes according to the frequency.
  • FIG. 12B is a circuit diagram showing a configuration example of the LC-VCO 1201a and 1201b in FIG. 12A.
  • the LC—VCOs 1201a and 1201b have a resonant circuit of an inductor 1212 and capacitors 1213a and 1 213b, a CML type differential amplifier including input differential pair transistors 1216a and 1216b, and negative resistors 1214a and 1214b, respectively.
  • the P-channel transistor 121 la has a gate connected to the non-inverting output terminal 0+ and a source Is connected to the power supply voltage, and the drain is connected to the inverting output terminal o—.
  • the gate is connected to the inverting output terminal O
  • the source is connected to the power supply voltage
  • the drain is connected to the non-inverting output terminal 0+.
  • the inductor 1212 is connected between the output terminals O + and O.
  • the variable capacitor 1213a is connected between the control voltage Vcntl and the inverting output terminal O, and the capacitance value changes according to the control voltage Vcntl.
  • the variable capacitor 1213b is connected between the control voltage Vcntl and the non-inverting output terminal 0+, and the capacitance value changes according to the control voltage Vcntl.
  • the N-channel transistor 1214a has a gate connected to the output terminal 0+, a drain connected to the output terminal O, and a source connected to the ground via the current source 1215.
  • the N-channel transistor 1214b has a gate connected to the output terminal O ⁇ , a drain connected to the output terminal O +, and a source connected to the ground via the current source 1215.
  • the N-channel transistor 1216a has a gate connected to the non-inverting input terminal 1+, a drain connected to the output terminal O ⁇ , and a source connected to the ground via the current source 1217.
  • the N-channel transistor 1216b has a gate connected to the inverting input terminal I—, a drain connected to the output terminal O +, and a source connected to the ground via the current source 1217.
  • the transistors 1216a and 1216b constitute an input differential pair transistor.
  • the current Irerl flowing through the current source 1215 and the current Iref2 flowing through the current source 1217 are variable or fixed according to the control voltage Vcntl.
  • This LC-VCO oscillates due to LC resonance.
  • the oscillation frequency changes by controlling the control voltage Vcntl.
  • This LC-VCO has two CML tail current sources 1215 and 1217.
  • Current source 1215 is a current source used for LC resonance.
  • the current source 1217 is a current source that determines the strength of coupling for coupling.
  • the LC—VCO 1201a and 1201b output a signal having a phase difference of 90 degrees of the resonance frequency determined by LC.
  • the oscillation frequency fo of LC VCO is expressed by the following equation.
  • the LC-VCO is composed of an LC resonance circuit and negative resistance circuit units 121 la, 1211b, 1214a, and 1214b, and the conditions for oscillation are as follows.
  • the LC VCO operates at the above-described oscillation frequency as long as the above-described oscillation condition is satisfied.
  • FIG. 13A is a circuit diagram showing a configuration example of the VCO 104 (FIGS. 1 and 2) according to the seventh embodiment of the present invention.
  • This embodiment is a quadrature LC-VCO in which two LC VCOs 1201a and 1201b share current sources 1301a and 1301b, as in the first to fifth embodiments. The difference between FIG. 13A and FIG. 12A will be described.
  • the LC VCOs 1201a and 1201b have terminals Vtaill and Vtail2 in addition to input terminals ⁇ + and I and output terminals ⁇ + and O.
  • the current source 1301a is connected between the terminal Vtaill of the LC—VCO 1201a and 1201b and the ground, and flows a current Irefl.
  • the current source 1301b is connected between the terminals Vtail2 of the LC—VCOs 1201a and 1201b and the ground, and flows a current Iref2.
  • FIG. 13B is a circuit diagram showing a configuration example of the LC-VCO 1201a and 1201b in FIG. 13A. The difference between FIG. 13B and FIG. 12B will be described.
  • Terminals Vtaill and Vtail2 are provided in place of the current sources 1215 and 1217 in FIG. 12B.
  • Terminal Vtaill is connected to the interconnection point of the sources of transistors 1214a and 1214b. That is, the interconnection point of the sources of the transistors 1214a and 1214b is connected to the current source 1301a in FIG. 13A via the terminal Vtaill.
  • Terminal Vtail2 is connected to the interconnection point of the sources of transistors 1216a and 1216b. That is, the interconnection point of the sources of transistors 1216a and 1216b is connected to current source 130 lb in FIG. 13A via terminal Vtail2.
  • two LC-VCOs 1201a and 1201b have two current sources 1215 and 1217, respectively.
  • two LC-VCOs 1201a and 1201b are connected to a common current source 1301a and 1 301b.
  • Current sources 1301a and 1301b in FIG. 13A correspond to current sources 1215 and 1217 in FIG. 12B, respectively.
  • LC—VCO 1201a and 1201b output differential signals with phases that are orthogonal to each other Therefore, as in the first to fifth embodiments, the current sources 1301a and 1301b can be shared.
  • the Quadrature LC-VCO in FIG. 13A can halve the current consumption.
  • the Quadratur e LC- VCO guarantees a 90 degree phase difference between the two LC—VCOs 1201a and 1201b, so the current consumption can be reduced by sharing the tail current sources 1301a and 1301b of the LC VCO 1201a and 1201b. Cut in half.
  • each LC-VCO 1201a and 1201b oscillates with a differential signal, and the phase difference of 90 degrees is maintained by combining them.
  • the two LC VCOs 1201a and 1201b are exactly 90 degrees out of phase and can share these tail current sources 1301a and 1301b.
  • the quadrature LC-VCO includes a tail current source 1301a for LC-VCO oscillation and a tail current source 130 lb for coupling between L C and VCO. Since the LC-VCOs 201a and 1201b have a phase difference of 90 degrees, the current sources 1301a and 1301b can be shared.
  • FIG. 14 is a circuit diagram showing a configuration example of the VCO 104 (FIGS. 1 and 2) according to the eighth embodiment of the present invention.
  • a quadrature LC-VCO that combines two CML-type LC VCOs is shown.
  • a multi-phase LC VCO that combines four CML-type LC—VCOs 1401a to 1401d is shown.
  • LC—VCOs 1401a to 1401d each have the same configuration as FIG. 13B.
  • the LC-VCO 1401a outputs differential signals of 0 degree and 180 degrees.
  • LC—VCO1401b outputs 45 and 225 degree differential signals.
  • LC—VCO1401c outputs 90 ° and 270 ° differential signals.
  • LC—VCO1401d outputs 135 ° and 315 ° differential signals.
  • the oscillation frequency of L C—VCOs 1401a to 1401d changes according to the control voltage Vcntl.
  • the low-pass filter 1402a is connected between the output terminal of the LC-VCO 1401a and the input terminal of the LC-VCO 1401b.
  • the low-pass filter 1402b is connected between the output terminal of the LC—VCO 1401b and the input terminal of the LC—VCO 1401c.
  • the low pass filter 1402c is connected between the LC-VCO1401c output terminal and the LC-VCO1401d input terminal. .
  • the low-pass filter 1402d is connected between the output terminal of the LC—VCO 1401d and the input terminal of the LC—VCO 1401a.
  • the current source 1403a is connected between the terminal Vtaill of the LC—VCOs 1401a and 1401c and the ground.
  • the current source 1404a is connected between the terminal Vtail2 of the LC—VCO 1401a and 1401c and the ground.
  • the current source 1403b is connected between the terminals Vtaill of the LC—VCOs 1401b and 1401d and the ground.
  • the current source 1404b is connected between the terminal Vtail2 of the LC—VCO 1401b and 1401d and the ground.
  • the current sources 1403a and 1403b pass a current Ire fl.
  • Current sources 1404a and 1404b pass current Iref2.
  • the current sources 1403a and 1404a can be shared.
  • the current sources 1403b and 1404b can be shared.
  • a plurality of LC-VCOs (CML type differential amplifiers) are combined.
  • the output signal of each coupled LC V CO (CML differential amplifier) has a phase difference of 180 degrees divided by the number of coupled LC VCOs (CML differential amplifiers). Even in this case, the LC VCO having a phase difference of 90 degrees shares the current source, so that the current consumption can be halved.
  • the current consumption can be halved by sharing the tail current source between the differential amplifiers in quadrature relationship. Even if the tail current source is shared, the same oscillation condition and oscillation frequency as when not sharing are maintained. In other words, under the same oscillation conditions as when they are not shared, the VCO can obtain the desired voltage-frequency characteristics and only halve the current consumption.
  • a high-speed IZO circuit and R in bipolar or CMOS technology are used.
  • VCO which is the source of F mixer.
  • the first and second oscillation units that output signals having phases orthogonal to each other have different times for consuming current. Since the current source passes only the necessary current, the current consumption can be reduced by J.

Abstract

 相互に直交関係にある位相の信号を出力する第1及び第2の発振ユニット(301a,301c)を有し、第1及び第2の発振ユニットに対して同時に複数の電流源が接続されることはなく、いずれの時点であっても1個の電流源(303a)のみが接続される発振器が提供される。例えば、電流源は、第1及び第2の発振ユニットに対して共通に接続される。第1及び第2の発振ユニットは、それぞれ抵抗及び容量のディレイ素子を含むCML型差動アンプを有し、リング接続されるリング発振器を構成する。

Description

発振器
技術分野
[0001] 本発明は、発振器に関する。
背景技術
[0002] 図 15Aは、電圧制御リングオシレータの構成例を示す図である。電圧制御リングォ シレータは、 VCO (Voltage Controlled Oscillator)である。複数の差動アンプ 1501 は、リング接続される。複数の可変抵抗 1502は、それぞれ複数の差動アンプ 1501 に接続される。複数の電流源 1503は、それぞれ複数の差動アンプ 1501に接続され る。 CRリング素子 1504は、 1個の差動アンプ 1501、可変抵抗 1502及び電流源 15 03を有する。例えば、 4個の CRリング素子 1504がリング接続される。
[0003] 図 15Bは、図 15Aの CRリング素子 1504の構成例を示す回路図である。以下、 M OS電界効果トランジスタを単にトランジスタという。 CRリング素子 1504は、非反転入 力端子 1+及び反転入力端子 I一力も差動信号を入力し、その差動信号を増幅し、増 幅した差動信号を非反転出力端子 0+及び反転出力端子 O—力 出力する。差動 信号は、相互に位相が 180度反転した 2本の信号である。非反転出力端子 0+及び 反転出力端子 O—には、それぞれ寄生容量が接続されている。非反転入力端子 1 + は Nチャネルトランジスタ 151 laのゲートに接続され、反転入力端子 I -は Nチャネル トランジスタ 151 lbのゲートに接続される。非反転出力端子 O +はトランジスタ 1511 bのドレインに接続され、反転出力端子 O—はトランジスタ 1511aのドレインに接続さ れる。 Pチャネルトランジスタ 1512aは、ゲートが制御電圧 Vcntlに接続され、ソース が電源電圧に接続され、ドレインがトランジスタ 151 laのドレインに接続され、負荷抵 抗を構成する。 Pチャネルトランジスタ 1512bは、ゲートが制御電圧 Vcntlに接続され 、ソースが電源電圧に接続され、ドレインがトランジスタ 151 lbのドレインに接続され、 負荷抵抗を構成する。トランジスタ 1512a及び 1512bは、図 15Aの可変抵抗 1502 に対応し、電圧 Vcntlにより制御される可変抵抗である。電流源 1503は、トランジス タ 151 la及び 151 lbのソースの相互接続点及びグランド間に接続され、テール電流 Ireflを流す。 CRリング素子 1504は、容量及び抵抗の CRにより出力信号の遅延量 が決まる。電圧 Vcntlにより可変抵抗 1512a及び 1512bを変化させることにより、リン グオシレータの発振周波数を制御することができる。
[0004] 近年、信号の高速化が進む一方、低消費電力化も重要なテーマとして掲げられて いる。上記の VCOは、 PLL (Phase Locked Loop)回路に用いられる。 PLL回路の場 合、その消費電流を支配しているのは VCOであり、 VCOの消費電力を抑えることは PLL回路のパワーを抑えることにつながるため、重要な課題となる。
[0005] また、下記の特許文献 1には、第 1乃至第 4のトランジスタ対力もなる 4相マルチリン グオシレータ部と、発振信号の負荷となる抵抗と、負荷抵抗、及び 4相マルチリングォ シレータ部のトランジスタに流れる電流を制御電圧によって可変させるトランジスタと、 負荷抵抗に流れる電流を一定とするように相反する電流を可変するトランジスタと、発 振信号の電流と相反する電流とをァイソレートするトランジスタと、一定の電流を流す 定電流源を備える 4相位相発振器が記載されて 、る。
[0006] また、下記の特許文献 2には、電界効果トランジスタ力もなる否定論理回路を奇数 段縦続接続し最終段の出力を初段の入力に接続してなる発振回路にお!、て、前記 否定論理回路の電源電位もしくは接地電位の少なくとも一方を定電流回路により駆 動することを特徴とする発振回路が記載されて!ヽる。
[0007] また、下記の特許文献 3には、入力信号を受ける入力部と、各々が Pチャネル MOS トランジスタおよび Nチャネル MOSトランジスタ力もなる第 1乃至第 3段のインバータ を有するリングオシレータ回路と、リングオシレータの各インバータに電流を供給する 、第 1導電型の MOSトランジスタ力 なる第 1の電流源と、リングオシレータの各イン バータカ 電流を引抜ぐ第 1導電型と異なる第 2導電型の MOSトランジスタ力 なる 第 2の電流源とを備えた電圧制御発振器が記載されている。
[0008] また、下記の特許文献 4には、定電流発生トランジスタのゲート電圧を一定に保ち、 定電流を必要とする主発振回路のリングオシレータを安定動作させる半導体集積回 路が記載されている。
[0009] しかし、電圧制御リングオシレータの場合、各 CRリング素子 1504が発振条件を満 足する必要がある。そのため、各 CRリング素子 1504は、それぞれテール電流 Irefl の電流源 1503を有する。 CRリング素子 1504の段数を増やすほど、電流源 1503の 数が増え、消費電流も比例して増えるという問題がある。
[0010] 特許文献 1 :特開 2000— 91892号公報
特許文献 2:特開昭 63 - 260316号公報
特許文献 3:特開平 11― 274900号公報
特許文献 4:特開平 11— 177389号公報
発明の開示
[0011] 本発明の目的は、消費電流量が少ない発振器を提供することである。
[0012] 本発明の一観点によれば、相互に直交関係にある位相の信号を出力する第 1及び 第 2の発振ユニットを有し、前記第 1及び第 2の発振ユニットに対して同時に複数の電 流源が接続されることはなぐいずれの時点であっても 1個の電流源のみが接続され る発振器が提供される。
[0013] 本発明の他の観点によれば、インダクタ及び容量の共振回路と入力差動対トランジ スタを含む CML型差動アンプと負性抵抗とを有し、相互に直交関係にある位相の信 号を出力する第 1及び第 2の発振ユニットと、前記第 1及び第 2の発振ユニットの負性 抵抗に対して同時に複数の電流源が接続されることはなぐいずれの時点であっても 1個の第 1の電流源のみが接続され、前記第 1及び第 2の発振ユニットの入力差動対 トランジスタに対して同時に複数の電流源が接続されることはなぐいずれの時点で あっても 1個の第 2の電流源のみが接続される発振器が提供される。
図面の簡単な説明
[0014] [図 1]図 1は、本発明の第 1の実施形態による高速 IZO (入力 Z出力)回路の構成例 を示す図である。
[図 2]図 2は、第 1の実施形態による RF発振回路の構成例を示す図である。
[図 3Α]図 3Αは、図 1及び図 2の VCOの構成例を示す回路図である。
[図 3Β]図 3Βは、図 3Αの CRリング素子の構成例を示す回路図である。
[図 4]図 4は、 1段の CRリング素子で見たときの VCOの半周期の波形例を示す図で ある。
[図 5]図 5は、図 3Αの VCOの各リング素子の出力信号の位相を示す図である。 圆 6A]図 6Aは、本発明の第 2の実施形態による VCOの構成例を示す回路図である
[図 6B]図 6Bは、図 6Aのリング素子の構成例を示す回路図である。
[図 6C]図 6Cは、図 6Aのリング素子の他の構成例を示す回路図である。
[図 7A]図 7Aは、本発明の第 3の実施形態による VCOの構成例を示す回路図である
[図 7B]図 7Bは、図 7Aのリング素子の構成例を示す回路図である。
[図 7C]図 7Cは、図 7Aのリング素子の他の構成例を示す回路図である。
[図 8A]図 8Aは、本発明の第 4の実施形態による VCOの構成例を示す回路図である
[図 8B]図 8Bは、図 8Aのリング素子の構成例を示す回路図である。
[図 9]図 9は、本発明の第 5の実施形態による VCOの構成例を示す回路図である。
[図 10]図 10は、本発明の第 6の実施形態による VCOの構成例を示す回路図である
[図 11]図 11は、図 10の回路の動作を示すタイミングチャートである。
[図 12A]図 12Aは、 Quadrature LC- VCOの構成例を示す回路図である。
[図 12B]図 12Bは、図 12Aの LC VCOの構成例を示す回路図である。
[図 13A]図 13Aは、本発明の第 7の実施形態による VCOの構成例を示す回路図で ある。
[図 13B]図 13Bは、図 13Aの LC VCOの構成例を示す回路図である。
[図 14]図 14は、本発明の第 8の実施形態による VCOの構成例を示す回路図である
[図 15A]図 15Aは、電圧制御リングオシレータの構成例を示す図である。
[図 15B]図 15Bは、図 15Aの CRリング素子の構成例を示す回路図である。
発明を実施するための最良の形態
(第 1の実施形態)
図 1は、本発明の第 1の実施形態による高速 IZO (入力 Z出力)回路の構成例を示 す図である。高速 ΙΖΟ回路の場合、ドライバ (Τχ)及びレシーバ (Rx)ではデータレ ートの半分の周波数のクロックが必要とされ、このクロックは PLL回路 110により生成 される。 PLL回路 110は、位相検出器 101、チャージポンプ 102、ループフィルタ(L PF) 103、電圧制御発振器 (VCO) 104、及び遁倍器 105を有する。位相検出器 10 1は、リファレンスクロック RCLKと、遁倍器 105からの出力クロック(フィードバッククロ ック)とを比較し、その位相誤差に応じたノ ルス幅をチャージポンプ 102に出力する。 チャージポンプ 102は、このパルス幅に応じた電流を LPF103に流す。 LPF103は、 ローパスフィルタであり、この誤差信号を平滑化する。 VCO104は、この平滑化され た電圧 Vcntlに応じた周波数で発振し、 I信号及び Q信号を出力する。例えば、 I信 号は 0度及び 180度の差動信号であり、 Q信号は 90度及び 270度の差動信号であ る。遁倍器 105は、 VCO104が出力する 1つの信号の周波数を N倍にした信号を位 相検出器 101に出力する。その結果、位相検出器 101で検出される位相誤差が 0に なると、 PLL回路 110はロック状態(定常状態)に移行し、リファレンスクロック RCLK の周波数を N倍した安定した同期クロック (I信号及び Q信号)を得ることができる。
[0016] 位相インターポレータ 106は、 VCO104及びデジタルフィルタ 109の出力信号をミ キシングし、デシジョンラッチ 107に出力する。デシジョンラッチ 107は、シリアル形式 のデータ Dinをラッチし、デマルチプレクサ 108に出力する。デマルチプレクサ 108 は、データをシリアル形式からパラレル形式に変換し、データ Doutを出力する。デジ タルフィルタ 109は、デマルチプレクサ 108の出力データをフィルタリングし、位相ィ ンターポレータ 106に出力する。これにより、デシジョンラッチ 107のラッチタイミング を、データ Dinが安定した適切なタイミングに調整することができる。
[0017] 高速 IZO回路で用いられる VCO104は、 LC共振を用いた LC— VCO (図 12A及 び図 12B等)又は CML型差動アンプを正帰還かけるリングオシレータ型 VCO (図 3 Α及び図 3Β等)が使われる。特に、 RF帯の用途 (数 GHzオーバー)の場合は、リン グオシレータ型 VCOでは帯域がだせないため、 LC—VCOが用いられる。 90度の 位相関係を有する LC—VCOは一般に Quadrature LC-VCOと呼ばれる。
[0018] 図 2は、本実施形態による RF発振回路の構成例を示す図である。 2個の PLL回路 110a及び 110bは、図 1の PLL回路 110と同じ構成を有する。 PLL回路 110aは、リ ファレンスクロック RCLK1を入力し、その N倍の周波数を有する I信号及び Q信号を 出力する。 PLL回路 110bは、リファレンスクロック RCLK2を入力し、その N倍の周波 数を有する I信号及び Q信号を出力する。乗算器 201aは、 PLL回路 110a及び 110 bの I信号を乗算して出力する。乗算器 201bは、 PLL回路 110a及び 110bの Q信号 を乗算して出力する。加算器 202は、乗算器 201a及び 201bの出力信号を加算し、 高周波数のクロック OCLKを出力する。
[0019] また、 RF通信回路では、送信側では信号に変調をかけるためのキャリアが必要とな り、そのミキサの源信として VCO 104が必要になる。受信側ではこの信号を復調する ために、同じ周波数のキャリアが必要となり、そこでも VCOを必要とする。ミキサでは 直交関係にある信号 (sin波と cos波)のかけ算により、所望の信号を作り出すため、 V CO104では 90度の位相差を有するマルチフェイズの信号が要求されることになる。 RFの分野でも帯域が高い場合、リングオシレータ型 VCOではなぐ LC— VCOが用 いられるケースが多い。
[0020] 本実施形態は、高速 IZO回路及び RFに用いられる VCO、並びに VCOを用いた PLL回路等に適用可能である。
[0021] 図 3Aは、図 1及び図 2の VCO104の構成例を示す回路図である。この VCO104 は、電圧制御リングオシレータ(リングオシレータ型 VCO)である。複数 (例えば 4個) の差動アンプ 301a, 301b, 301c, 301dは、リング接続される。複数 (例えば 4個)の 負荷抵抗 302a, 302b, 302c, 302dは、それぞれ複数の差動アンプ 301a〜301d と電源電圧との間に接続され、制御電圧に応じた可変抵抗である。電流源 303aは、 差動アンプ 301a及び 301cとグランドとの間に接続される。電流源 303bは、差動ァ ンプ 301b及び 301dとグランドとの間に接続される。
[0022] CRリング素子 (発振ユニット) 304は、例えば 1個の差動アンプ 301b及び負荷抵抗 302bを有する。 4個の差動アンプ 301a〜301dは同じ構成を有し、 4個の負荷抵抗 302a〜302dも同じ構成を有する。同じ構成の 4個の CRリング素子 304がリング接 続される。差動アンプ 301a〜301dは、差動信号を入力し、その差動信号を増幅し て出力する。差動信号は、相互に位相が 180度反転した 2本の信号である。各差動 アンプ 301a〜301dの出力差動信号は、 180度を差動アンプ 301a〜301dの数で 割った位相差を有する。例えば、差動アンプ 301cは、 0度及び 180度の差動信号を I信号として出力する。差動アンプ 301dは、 45度及び 225度の差動信号を出力する 。差動アンプ 301aは、 90度及び 270度の差動信号を Q信号として出力する。差動ァ ンプ 301bは、 135度及び 315度の差動信号を出力する。
[0023] 差動アンプ 301a及び 301cは、相互に直交関係にある位相(位相差が 90度)の差 動信号を出力する。電流源 303aは、これらの差動アンプ 301a及び 301cに対して共 通に接続される。また、差動アンプ 301b及び 301dは、相互に直交関係にある位相( 位相差が 90度)の差動信号を出力する。電流源 303bは、これらの差動アンプ 301b 及び 30 Idに対して共通に接続される。
[0024] 図 3Bは、図 3Aの CRリング素子 304の構成例を示す回路図である。 CRリング素子 304は、 CML型差動アンプを有し、非反転入力端子 1+及び反転入力端子 I一から 差動信号を入力し、その差動信号を増幅し、増幅した差動信号を非反転出力端子 O +及び反転出力端子 O—力 出力する。非反転出力端子 0+及び反転出力端子 O 一には、それぞれ寄生容量 313b及び寄生容量 313aが接続されている。非反転入 力端子 I +は Nチャネルトランジスタ 312aのゲートに接続され、反転入力端子 I -は N チャネルトランジスタ 312bのゲートに接続される。反転出力端子 O—は、トランジスタ 312aのドレインに接続される。非反転出力端子 0 +は、トランジスタ 312bのドレイン に接続される。 Pチャネルトランジスタ 311a及び 3 l ibは、ゲートが制御電圧 Vcntlに 接続され、ソースが電源電圧に接続される。トランジスタ 311aのドレインはトランジス タ 312aのドレインに接続され、トランジスタ 31 lbのドレインはトランジスタ 312bのドレ インに接続される。トランジスタ 31 la及び 31 lbは、例えば図 3Aの可変抵抗 302bに 対応し、制御電圧 Vcntlに応じて抵抗値が変化する。トランジスタ 312a及び 312bの ソースの相互接続点は、例えば図 3Aの電流源 303bに接続される。 CRリング素子( ディレイ素子) 304は、容量及び抵抗の CRにより出力信号の遅延量が決まる。電圧 Vcntlにより可変抵抗 31 la及び 31 lbを変化させることにより、リングオシレータの発 振周波数を制御することができる。
[0025] 上記のように、位相差が 90度の直交関係にある差動アンプ 301a及び 301cのテー ル電流 Ireflを電流源 303aで共有させ、差動アンプ 301b及び 302dのテール電流 I reflを電流源 303bで共有させる。テール電流源 303a及び 303bの電流値は、それ ぞれ図 15Aの電流源 1503の電流値と同じであると考えると、本実施形態の VCOは 、図 15Aの VCOの比べ、 VCO全体としてテール電流源の数が半分になるため、トー タルの消費電流量も半分になることを意味する。
[0026] リングオシレータ型 VCOは、図 5のように、一段あたりの遅延量が 45度ずつ位相シ フトしているため、リング一段おきにテール電流源を共有させる。本実施形態の VCO は、図 15Aの VCOと同じ発振条件と発振周波数が成り立つ。ではなぜ電流源を共 有しても、図 15Aの VCOと同じ条件で目標を達成できるのかを以下に説明する。
[0027] まず、図 15Aの VCOの発振条件を説明する。リングオシレータ型 VCOは、 CML 型差動アンプを複数段数 (4段以上)接続して正帰還を力けて発振させる。 4段のリン グ素子を接続した場合、各リング素子のディレイ値は VCOの発振周期の 1Z8ずつ 位相がシフトしていることになり、即ち 45度ずつ位相が回っている状態になる。リング 素子の一段おきに出力を引き出せば、 90度の位相関係を有する信号 I信号及び Q 信号を得られることになる。発振周波数 foは、リング素子の段数を N段、各リング素子 のディレイ値 (CRディレイ値)を τとした場合、次式で表される。
[0028] fo = 1/ (2 Χ Ν Χ τ ) c lrefl
[0029] ここで、 lreflは、各リング素子のテール電流源 1503の電流値を意味する。リングォ シレータ型 VCOの発振するための条件は、各リング素子のゲインと位相余裕で決ま る。正帰還をかけるための位相余裕から、各リング素子に必要なゲイン Aを導き出す と、次式のようになる。
[0030] &11—1 (
Figure imgf000010_0001
0) 0) =45度
A= 2
[0031] ここで、 ω f及び ω 0は、それぞれ発振周波数及び 3dB帯域の周波数を示す。 4段 の差動リングオシレータ型 VCOの場合、各リング素子は 45度ずつ位相が回るため、 この条件で発振するには各ステージで最低でも 2のゲインがあれば発振するという ことを意味する。
[0032] 図 3A及び 3Bのリングオシレータ型 VCOは、 1段の CRリング素子 304で動作を見 た場合、差動アンプに他ならない。差動アンプは、入力された電圧の差分をゲイン倍 だけ増幅する回路であり、差電圧が一定であれば、当然出力の波形変動も生じない わけである。差動アンプは、図 5に示すように、 0度と 180度の出力位相の信号 501が 得られるわけだが、この出力信号 501から一番、位相の離れた信号というのは、まさ に 90度と 270度の信号 503である。
[0033] 図 4は、 1段の CRリング素子 304で見たときの VCOの半周期の波形例を示す図で ある。増幅動作が必要とされる期間は、入力電圧がハイレベルからローレベル、又は ローレベルからハイレベルに変動するときの期間 401のみにおいてである。この期間 401は、差動アンプで増幅のオペレーションを要するため、電流源がアクティブにな つている必要がある。しかし、増幅動作終了後は、所定期間、ノ、ィレベルのまま、又 はローレベルのまま信号が保持されている。そのため、その期間においては、電流源 はオフ状態でも問題ないわけである。出力電圧は、ホールドだけしておけばよい。そ の出力信号レベルは、図 3Bの容量 313a及び 313bにより保持される。見方を変える と、このホールド期間というのは、実は、ちょうど直交する位相の信号が増幅動作を行 つている瞬間であり、これこそがまさに 90度の位相差関係にある信号に他ならない。 期間 401は図 3Aの 1段のリング素子の増幅動作期間であり、期間 402は図 15Aの 1 段のリング素子の増幅動作期間である。したがって、本実施形態は、テール電流源を 共有することで、一周期すベて増幅動作のみに電流源を有効活用することができ、 結果として、 VCOのトータルの電流を半分に削減することが可能となる。
[0034] 図 5は、図 3Aの VCOの各リング素子 304の出力信号の位相を示す図である。差動 アンプ 301cは、 0度及び 180度の差動信号 501を出力する。差動アンプ 301aは、 差動信号 501に直交する 90度及び 270度の差動信号 503を出力する。これらの差 動アンプ 301a及び 301cは、上記のように、異なる期間に増幅動作を行うので、電流 源 303aを共有する。
[0035] 同様に、差動アンプ 301dは、 45度及び 225度の差動信号 502を出力する。差動 アンプ 301bは、差動信号 502に直交する 135度及び 315度の差動信号 504を出力 する。これらの差動アンプ 301b及び 301dは、上記のように、異なる期間に増幅動作 を行うので、電流源 303bを共有する。
[0036] 出力信号が直交する差動アンプが電流源を共有することにより、電流源を 1周期に わたって有効活用することができる。 [0037] (第 2の実施形態)
図 6Aは、本発明の第 2の実施形態による VCO104 (図 1及び図 2)の構成例を示 す回路図である。図 6Aが図 3Aと異なる点を説明する。ノ^ァス回路 604は、トランジ スタ 601及び 602を有する。 Pチャネルトランジスタ 601は、ゲートが制御電圧 Vcntl に接続され、ソースが電源電圧に接続される。 Nチャネルトランジスタ 602は、ゲート 及びドレインがトランジスタ 601のドレインに接続され、ソースがグランドに接続される 。バイアス回路 604は、バイアス電圧 Vbl及び Vb2を出力する。電圧 Vblは、制御電 圧 Vcntlと同じ電圧である。電圧 Vb2は、トランジスタ 601及び 602のドレインの相互 接続点の電圧である。 Nチャネルトランジスタ 603aは、図 3Aの電流源 303aに対応 し、ゲートがトランジスタ 602のゲートに接続され、ドレインが差動アンプ 301a及び 30 lcに接続され、ソースがグランドに接続される。 Nチャネルトランジスタ 603bは、図 3 Aの電流源 303bに対応し、ゲートがトランジスタ 602のゲートに接続され、ドレインが 差動アンプ 301b及び 301dに接続され、ソースがグランドに接続される。トランジスタ 602、 603a及び 603bは、カレントミラー回路を構成する。トランジスタ 603a及び 603 bにはドレイン電流 Ireflが流れる。可変抵抗 302a〜302dは、電圧 Vblに応じて抵 抗値が変化する。電圧 Vbl及び Vb2は、制御電圧 Vcntlに応じた可変値である。電 圧 Vcntlを制御することにより、リングオシレータの発振周波数を制御することができ る。
[0038] 図 6Bは、図 6Aのリング素子 304の構成例を示す回路図である。図 6Bの構成は、 図 3Bの構成と同じである。トランジスタ 311a及び 3 l ibのゲート電圧 Vblは、制御電 圧 Vcntlと同じである。
[0039] 図 6Cは、図 6Aのリング素子 304の他の構成例を示す回路図である。図 6Cの回路 は、図 6Bの回路に対して、トランジスタ 612a及び 612bを追加したものである。 Pチヤ ネルトランジスタ 612aは、ソースが電源電圧に接続され、ゲート及びドレインがトラン ジスタ 312aのドレインに接続される。 Pチャネルトランジスタ 612bは、ソースが電源電 圧に接続され、ゲート及びドレインがトランジスタ 312bのドレインに接続される。
[0040] 本実施形態は、第 1の実施形態と同様に、 90度の位相差関係にある差動アンプが テール電流源を共有したリングオシレータ型 VCOである。負荷のトランジスタは、図 6 Bの Pチャネルバイアス型及び図 6Cのシンメトリックロード型の 2つを例に示す。負荷 抵抗 302a〜302dとテール電流源 603a, 603bは、制御電圧 Vcntlに応じて、両方 同時に制御される、又は片側だけ制御される。すなわち、電圧 Vbl及び Vb2は、い ずれか一方が可変値であり、他方が固定値であってもよい。
[0041] 以上のように、本実施形態は、 CML型の差動リングオシレータ型 VCOにおいて、 位相差が 90度の直交関係にある差動アンプがテール電流源を共有することにより、 電源電流を半分にすることできる。テール電流源 303a, 303bは、 Nチャネルトランジ スタ 603a, 603bで構成される。負荷抵抗及びテール電流源に供給されるノィァス 電圧 Vbl及び Vb2は、制御電圧 Vcntlに応じて可変、又は固定である。
[0042] (第 3の実施形態)
図 7Aは、本発明の第 3の実施形態による VCO104 (図 1及び図 2)の構成例を示 す回路図である。図 7Aが図 6Aと異なる点を説明する。図 7Aの回路は、図 6Aの回 路に対して、負荷抵抗及び電流源の位置を逆にしたものである。 Pチャネルトランジ スタ 701aは、ゲートが電圧 Vblに接続され、ソースが電源電圧に接続され、ドレイン が差動アンプ 301a及び 301cに接続される。 Pチャネルトランジスタ 701bは、ゲート が電圧 Vblに接続され、ソースが電源電圧に接続され、ドレインが差動アンプ 30 lb 及び 301dに接続される。トランジスタ 701a及び 701bは、カレントミラーの電流源を 構成し、ドレイン電流 Ireflを流す。負荷抵抗 302a〜302dは、それぞれ差動アンプ 301a〜301dとグランドとの間に接続され、電圧 Vb2に応じて抵抗値が変化する。リ ング素子 702は、例えば差動アンプ 30 lb及び負荷抵抗 302bを有する。同様のリン グ素子 702が 4段接続される。
[0043] 図 7Bは、図 7Aのリング素子 702の構成例を示す回路図である。 Pチャネルトランジ スタ 703aは、ゲートが非反転入力端子 1+に接続され、ソースが例えば図 7Aのトラン ジスタ 701bのドレインに接続され、ドレインが反転出力端子 O—に接続される。 Pチヤ ネルトランジスタ 703bは、ゲートが反転入力端子 I—に接続され、ソースが例えば図 7 Aのトランジスタ 701bのドレインに接続され、ドレインが非反転出力端子 0+に接続 される。 Nチャネルトランジスタ 704aは、ゲートが電圧 Vb2に接続され、ソースがダラ ンドに接続され、ドレインが反転出力端子 O—に接続される。 Nチャネルトランジスタ 7 04bは、ゲートが電圧 Vb2に接続され、ソースがグランドに接続され、ドレインが非反 転出力端子 0 +に接続される。トランジスタ 704a及び 704bは、例えば負荷抵抗 302 bに対応する。
[0044] 図 7Cは、図 7Aのリング素子 702の他の構成例を示す回路図である。図 7Cの回路 は、図 7Bの回路に対して、トランジスタ 705a及び 705bを追加したものである。 Nチヤ ネルトランジスタ 705aは、ゲート及びドレインが反転出力端子 O—に接続され、ソー スがグランドに接続される。 Nチャネルトランジスタ 705bは、ゲート及びドレインが非 反転出力端子 0 +に接続され、ソースがグランドに接続される。
[0045] 本実施形態は、第 1及び第 2の実施形態と同様に、 90度の位相差関係にある差動 アンプがテール電流源を共有したリングオシレータ型 VCOであり、電流源 701a, 70 lbを電源電圧側に接続した場合である。 Pチャネルトランジスタをメインで回路を構 成した場合、 Nチャネルトランジスタをメインに構成した場合に比べ帯域は落ちるが、 1/fノイズ特性が有利になるため、ジッタは小さくなる。
[0046] 本実施形態の CML型の差動リングオシレータ型 VCOは、 90度の直交関係にある 差動アンプがテール電流源を共有することにより、電源電流を半分にすることができ る。テール電流源 701a, 701bは、 Pチャネルトランジスタである。負荷抵抗及びテー ル電流源に供給されるバイアス電圧 Vbl及び Vb2は、制御電圧 Vcntlに応じて可変 、又は固定である。
[0047] (第 4の実施形態)
図 8Aは、本発明の第 4の実施形態による VCO104 (図 1及び図 2)の構成例を示 す回路図である。図 8Aが図 6Aと異なる点を説明する。図 8Aの回路は、図 6Aの回 路に対して、トランジスタ 801a及び 801bが追加されたものである。バイアス回路 802 は、制御電圧 Vcntlに応じて電圧 Vbl及び Vb2を出力する。 Pチャネルトランジスタ 8 Olaは、ゲートが電圧 Vblに接続され、ソースが電源電圧に接続され、ドレインが差 動アンプ 301a及び 301cに接続される。 Pチャネルトランジスタ 801bは、ゲートが電 圧 Vblに接続され、ソースが電源電圧に接続され、ドレインが差動アンプ 30 lb及び 301dに接続される。トランジスタ 801a及び 801bは、カレントミラーの電流源であり、 電流 Ireflを流す。差動アンプ 301a及び 301cは、共通の電流源 801aに接続される 。差動アンプ 301b及び 301dは、共通の電流源 801bに接続される。ここで、差動ァ ンプ 301a〜301dは、図 6Aの可変負荷抵抗 302a〜302dを含む。リング素子 803 は、例えば差動アンプ 301bを有する。同様のリング素子 803が 4段接続される。
[0048] 図 8Bは、図 8Aのリング素子 803の構成例を示す回路図である。図 8Bが図 3Bと異 なる点を説明する。図 8Bの回路は、図 3Bの回路に対して、トランジスタ 811A及び 8 l ibを追カ卩したものである。 Pチャネルトランジスタ 811aは、ゲートが非反転入力端子 1+に接続され、ドレインが反転出力端子 O—に接続され、ソースが例えば図 8Aのト ランジスタ 801bのドレインに接続される。 Pチャネルトランジスタ 81 lbは、ゲートが反 転入力端子 I一に接続され、ドレインが非反転出力端子 0 +に接続され、ソースが例 えば図 8Aのトランジスタ 801bのドレインに接続される。
[0049] 本実施形態は、第 1〜第 3の実施形態と同様に、 90度の位相差関係にある差動ァ ンプがテール電流源を共有したリングオシレータ型 VCOであり、 LVDS (Low voltage differential signaling)型の回路構成を有する。電源電圧側に電流源 801a, 801bを 接続し、グランド側に電流源 603a, 603bを接続し、電流源 801a, 801b及び電流源 603a, 603bで差動アンプ 301a〜301dを挟み込む。この場合、両方の電流源 801 a, 801b, 603a, 603bの電流は、同時に、帘1』御電圧 Vcntlに応じて変ィ匕する。
[0050] 本実施形態の CML型の差動リングオシレータ型 VCOは、 90度の直交関係にある 差動アンプがテール電流源を共有することにより、電源電流を半分にすることができ る。電源電圧及びグランド側にそれぞれ同じ電流値の電流源を有する。負荷抵抗及 びテール電流源に供給されるノィァス電圧は、制御電圧 Vcntlに応じて可変、又は 固定である。
[0051] (第 5の実施形態)
図 9は、本発明の第 5の実施形態による VCO104 (図 1及び図 2)の構成例を示す 回路図である。第 1〜第 4の実施形態では 4段のリング素子を接続するリングオシレ ータ型 VCOを示した力 本実施形態では 6段のリング素子を接続するリングオシレー タ型 VCOを示す。 6個の差動アンプ 901a〜901fがリング接続される。可変負荷抵 抗 902a〜902fは、それぞれ差動アンプ 901a〜901fと電源電圧との間に接続され 、制御電圧 Vcntlに応じて抵抗値が変化する。電流源 903aは、差動アンプ 901a, 9 Old及びグランド間に接続される。電流源 903bは、差動アンプ 901b, 901e及びグ ランド間に接続される。電流源 903cは、差動アンプ 901c, 901f及びグランド間に接 続される。電流源 903a〜903cは、同じ電流 Ireflを流す。
[0052] 例えば、差動アンプ 901aは 0度及び 180度の差動信号、差動アンプ 901bは 30度 及び 210度の差動信号、差動アンプ 901cは 60度及び 240度の差動信号、差動ァ ンプ 901dは 90度及び 270度の差動信号、差動アンプ 901eは 120度及び 300度の 差動信号、差動アンプ 901fは 150度及び 330度の差動信号を出力する。
[0053] 差動アンプ 901a及び 901dは、相互に直交関係にある位相の差動信号を出力す るので、共通の電流源 903aに接続することができる。差動アンプ 901b及び 901eは 、相互に直交関係にある位相の差動信号を出力するので、共通の電流源 903bに接 続することができる。差動アンプ 901c及び 901fは、相互に直交関係にある位相の差 動信号を出力するので、共通の電流源 903cに接続することができる。
[0054] リング素子の段数が増えると、リング一段当たりの位相シフト量が変わることになるが 、この場合でも 90度の位相差関係があれば、そのリング素子は電流源を共有するこ とができ、消費電流量を半分にすることができる。
[0055] 本実施形態の CML型の差動リングオシレータ型 VCOは、第 1〜第 4の実施形態と 同様に、 90度の直交関係にある差動アンプがテール電流源を共有することにより、 電源電流を半分にすることができる。各リング素子の遅延量は 180度をリング素子の 数で割った値に一意的に決定される。この遅延値が 90度で割り切れる数である場合 、 90度の直交関係が成り立ち、テール電流源の共有が可能となる。負荷抵抗及びテ ール電流源に供給されるバイアス電圧は、制御電圧 Vcntlに応じて可変、又は固定 である。
[0056] (第 6の実施形態)
図 10は本発明の第 6の実施形態による VCO104 (図 1及び図 2)の構成例を示す 回路図であり、図 11はその動作を示すタイミングチャートである。図 10が図 6Aと異な る点を説明する。トランジスタ 1001a〜1001dは、図 6Aのトランジスタ 603a, 603b の代わりに設けられる。 Nチャネルトランジスタ 1001aは、ソースがグランドに接続され 、ドレインが差動アンプ 301aに接続される。 Nチャネルトランジスタ 1001bは、ソース がグランドに接続され、ドレインが差動アンプ 30 lbに接続される。 Nチャネルトランジ スタ 1001cは、ソースがグランドに接続され、ドレインが差動アンプ 301cに接続され る。 Nチャネルトランジスタ lOOldは、ソースがグランドに接続され、ドレインが差動ァ ンプ 301dに接続される。
[0057] 制御信号 φ 1のスィッチは、制御信号 φ 1に応じて、トランジスタ 1001aのゲートに 電圧 Vb2を接続し、トランジスタ 1001cのゲートにグランドを接続する。制御信号 Ζ Φ 1のスィッチは、制御信号 Ζ Φ 1に応じて、トランジスタ 1001aのゲートにグランドを接 続し、トランジスタ 1001cのゲートに電圧 Vb2を接続する。制御信号 φ 1及び Ζ Φ 1 は、相互に位相が反転した信号である。
[0058] 制御信号 φ 2のスィッチは、制御信号 φ 2に応じて、トランジスタ 1001bのゲートに 電圧 Vb2を接続し、トランジスタ lOOldのゲートにグランドを接続する。制御信号 Z φ 2のスィッチは、制御信号 Z Φ 2に応じて、トランジスタ 1001bのゲートにグランドを 接続し、トランジスタ 1001dのゲートに電圧 Vb2を接続する。制御信号 φ 2及び Ζ Φ 2は、相互に位相が反転した信号である。
[0059] 周期 T1は、発振動作の 1周期である。トランジスタ 1001a〜100dは、電流源である 。制御信号 Φ 1、 Φ 2、, φ 1、, φ 2のクロックは、それぞれクロック周期の 90度ずつ 位相がずれている。
[0060] 例えば、クロック周期の 0度のとき、制御信号 Ζ Φ 1がハイレベルになり、制御信号 φ 1がローレベルになる。トランジスタ 1001cのゲートには電圧 Vb2が供給され、トラ ンジスタ 1001cの電流源が差動アンプ 301cに接続される。トランジスタ 1001aのゲ 一トにはグランドが供給され、トランジスタ 1001cの電流源が差動アンプ 301aから切 り離される。
[0061] クロック周期の 90度のとき、制御信号 Z Φ 2がハイレベルになり、制御信号 φ 2が口 一レベルになる。トランジスタ 1001dのゲートには電圧 Vb2が供給され、トランジスタ 1 001dの電流源が差動アンプ 301dに接続される。トランジスタ 1001bのゲートにはグ ランドが供給され、トランジスタ 1001bの電流源が差動アンプ 301bから切り離される
[0062] クロック周期の 180度のとき、制御信号 φ 1がハイレベルになり、制御信号 Z Φ 1が ローレベルになる。トランジスタ 1001aのゲートには電圧 Vb2が供給され、トランジス タ 1001aの電流源が差動アンプ 301aに接続される。トランジスタ 1001cのゲートに はグランドが供給され、トランジスタ 1001cの電流源が差動アンプ 301cから切り離さ れる。
[0063] クロック周期の 270度のとき、制御信号 φ 2がハイレベルになり、制御信号 Z Φ 2が ローレベルになる。トランジスタ 1001bのゲートには電圧 Vb2が供給され、トランジス タ 1001bの電流源が差動アンプ 301bに接続される。トランジスタ lOOldのゲートに はグランドが供給され、トランジスタ lOOldの電流源が差動アンプ 301dから切り離さ れる。
[0064] 電流源 1001a及び 1001cは、図 6Aの電流源 603aに対応する。電流源 1001aが 接続状態にあるとき電流源 1001 cが切断状態にあり、電流源 1001 cが接続状態に あるとき電流源 1001aが切断状態にある。すなわち、電流源 1001a及び 1001cは、 それぞれ差動アンプ 301a及び 301cに対して交互に接続され、いずれか一方のみ が接続状態になり、他方が切断状態になる。第 1の実施形態で説明したように、差動 アンプ 301a又は 301cは、いずれか一方のみが増幅動作状態になり、両方が同時に 増幅動作状態になることはな 、。
[0065] 同様に、電流源 1001b及び 1001dは、図 6Aの電流源 603bに対応する。電流源 1 001bが接続状態にあるとき電流源 1001dが切断状態にあり、電流源 1001dが接続 状態にあるとき電流源 1001bが切断状態にある。すなわち、電流源 1001b及び 100 Idは、それぞれ差動アンプ 301b及び 301dに対して交互に接続され、いずれか一 方のみが接続状態になり、他方が切断状態になる。差動アンプ 301b又は 301dは、 いずれか一方のみが増幅動作状態になり、両方が同時に増幅動作状態になることは ない。
[0066] 本実施形態では、 PLLがロックアップするまでは、電流源 1001 a〜 100 Idをすベ てオンさせておき、ロックアップ後の定常状態では図 11のようなクロックでスィッチを 制御すれば、消費電流を半分にすることができる。
[0067] 本実施形態は、電流源を共有せずに、テール電流源 1001 a〜 100 Idをスィッチン グ制御することにより、第 1〜第 5の実施形態と同様の動作を行うことができる。スイツ チング制御の場合、図 11のようなタイミングのクロックで制御することにより、消費電流 量を半分にすることができる。
[0068] テール電流源 1001a〜1001dのゲートにスィッチがある場合、ある位相の電流源 1 001a〜1001dがオン状態であれば、 90度位相がずれたリング素子のスィッチはォ フ状態でよい。この場合、外部カゝらスィッチのオン Zオフを制御する必要があり、 VC Oの発振周波数の 2倍の周波数で制御する必要がある。
[0069] (第 7の実施形態)
図 12Aは、 Quadrature LC- VCOの構成例を示す回路図である。 Quadrature LC- V COは、 2個の CML型の LC— VCO (発振ユニット) 1201a及び 1201bを並べて、さ らにお互いをカップリングさせて回路を構成している。 LC VCO1201a及び 1201b は、制御電圧 Vcntlに応じて発振周波数が変化し、非反転入力端子 1+及び反転入 力端子 I一から入力した差動信号を増幅し、増幅した差動信号を非反転出力端子 O +及び反転出力端子 O から出力する。 LC— VCO1201aは、出力端子 0+及び O 力も 0度及び 180度の差動信号を出力する。 LC—VCO1201bは、出力端子 O +及び O から 270度及び 90度の差動信号を出力する。
[0070] ローパスフィルタ 1202aは、 LC— VCO1201bの出力端子 O—及び LC— VC012 0 laの入力端子 1 +間に接続される。ローパスフィルタ 1202bは、 LC— VCO1201a の出力端子 O +及び LC— VCO 120 lbの入力端子 I +間に接続される。ローパスフ ィルタ 1202cは、 LC— VCO1201bの出力端子 0+及び LC— VCO1201aの入力 端子 I 間に接続される。ローパスフィルタ 1202dは、 LC— VCO1201aの出力端子 O -及び LC— VCO 120 lbの入力端子 I -間に接続される。ローパスフィルタ 1202 a〜1202dは、低周波数帯域の信号のみを通過させるので、周波数に応じて遅延量 が変化する。
[0071] 図 12Bは、図 12Aの LC— VCO1201a及び 1201bの各構成例を示す回路図であ る。 LC— VCO1201a及び 1201bは、それぞれインダクタ 1212及び容量 1213a, 1 213bの共振回路と入力差動対トランジスタ 1216a, 1216bを含む CML型差動アン プと負性抵抗 1214a, 1214bとを有する。
[0072] Pチャネルトランジスタ 121 laは、ゲートが非反転出力端子 0+に接続され、ソース が電源電圧に接続され、ドレインが反転出力端子 o—に接続される。 Pチャネルトラン ジスタ 1211bは、ゲートが反転出力端子 O に接続され、ソースが電源電圧に接続 され、ドレインが非反転出力端子 0 +に接続される。インダクタ 1212は、出力端子 O +及び O 間に接続される。可変容量 1213aは、制御電圧 Vcntl及び反転出力端 子 O 間に接続され、制御電圧 Vcntlに応じて容量値が変化する。可変容量 1213b は、制御電圧 Vcntl及び非反転出力端子 0 +間に接続され、制御電圧 Vcntlに応じ て容量値が変化する。 Nチャネルトランジスタ 1214aは、ゲートが出力端子 0+に接 続され、ドレインが出力端子 O に接続され、ソースが電流源 1215を介してグランド に接続される。 Nチャネルトランジスタ 1214bは、ゲートが出力端子 O—に接続され、 ドレインが出力端子 O +に接続され、ソースが電流源 1215を介してグランドに接続さ れる。 Nチャネルトランジスタ 1216aは、ゲートが非反転入力端子 1+に接続され、ド レインが出力端子 O—に接続され、ソースが電流源 1217を介してグランドに接続さ れる。 Nチャネルトランジスタ 1216bは、ゲートが反転入力端子 I—に接続され、ドレイ ンが出力端子 O +に接続され、ソースが電流源 1217を介してグランドに接続される。 トランジスタ 1216a及び 1216bは、入力差動対トランジスタを構成する。電流源 1215 に流れる電流 Irerl及び電流源 1217に流れる電流 Iref2は、制御電圧 Vcntlに応じ て可変、又は固定である。この LC— VCOは、 LC共振により発振する。制御電圧 Vc ntlを制御することにより、発振周波数が変化する。
[0073] この LC—VCOは、 2つの CMLのテール電流源 1215及び 1217を有する。電流源 1215は、 LC共振のために使われる電流源である。電流源 1217は、カップリングさ せるための結合の強さを決める電流源である。共振電流 Ireflとカップリングの電流 Ir ef2の比を最適化すると、 LC— VCO1201a及び 1201bは、 LCで決まる共振周波 数の 90度の位相差関係を有する信号を出力することになる。 LC VCOの発振周波 数 foは、次式で表される。
[0074] fo = l/ (2 X π X ^ (L X C) )
[0075] LC—VCOは、 LC共振回路と負性抵抗回路部 121 la, 1211b, 1214a, 1214b と力も構成され、発振するための条件は以下のようになる。
[0076] gm X Rp ≥ 1 [0077] ここで、 LC共振部の等価回路力 求めた抵抗値を Rp、負性抵抗部のインピーダン スを— lZgmと仮定している。ここで、共振回路の CMLのテール電流源 1215の役 割は、バイアス電流を作ること及びスイッチングトランジスタが線形領域に入っても、 抵抗値が低くならないようにする役割がある。
[0078] LC VCOは、上記の発振条件を満たしさえすれば、上述の発振周波数で動作す ることになる。
[0079] 図 13Aは、本発明の第 7の実施形態による VCO104 (図 1及び図 2)の構成例を示 す回路図である。本実施形態は、第 1〜第 5の実施形態と同様に、 2個の LC VCO 1201a及び 1201bが電流源 1301a及び 1301bを共有する Quadrature LC- VCOで ある。図 13Aが図 12Aと異なる点を説明する。 LC VCO1201a及び 1201bは、入 力端子 Ι + , I 及び出力端子 Ο + , O の他、端子 Vtaill, Vtail2を有する。電流 源 1301aは、 LC— VCO1201a及び 1201bの端子 Vtaillとグランドとの間に接続さ れ、電流 Ireflを流す。電流源 1301bは、 LC— VCO1201a及び 1201bの端子 Vta il2とグランドとの間に接続され、電流 Iref 2を流す。
[0080] 図 13Bは、図 13Aの LC— VCO1201a及び 1201bの各構成例を示す回路図であ る。図 13Bが図 12Bと異なる点を説明する。端子 Vtaill及び Vtail2は、図 12Bの電 流源 1215及び 1217の代わりに設けられる。端子 Vtaillは、トランジスタ 1214a及び 1214bのソースの相互接続点に接続される。すなわち、トランジスタ 1214a及び 121 4bのソースの相互接続点は、端子 Vtaillを介して、図 13Aの電流源 1301aに接続 される。端子 Vtail2は、トランジスタ 1216a及び 1216bのソースの相互接続点に接 続される。すなわち、トランジスタ 1216a及び 1216bのソースの相互接続点は、端子 Vtail2を介して、図 13Aの電流源 130 lbに接続される。
[0081] 図 12A及び図 12Bの回路では、 2個の LC— VCO1201a及び 1201bが、それぞ れ 2個の電流源 1215及び 1217を個別に有している。これに対し、図 13A及び図 13 Bの回路では、 2個の LC—VCO1201a及び 1201bは、共通の電流源 1301a及び 1 301b〖こ接続される。図 13Aの電流源 1301a及び 1301bは、それぞれ図 12Bの電 流源 1215及び 1217に対応する。
[0082] LC— VCO1201a及び 1201bは、相互に直交関係になる位相の差動信号を出力 するので、第 1〜第 5の実施形態と同様に、電流源 1301a及び 1301bを共有するこ とがでさる。
[0083] 図 13Aの Quadrature LC- VCOは、消費電流を半分にすることができる。 Quadratur e LC- VCOは、 2個の LC— VCO1201a及び 1201b間で 90度の位相差関係が保証 されているため、 LC VCO1201a及び 1201bのテール電流源 1301a及び 1301b を共有することにより、消費電流を半分に削減できる。
[0084] Quadrature LC-VCOでは、各 LC— VCO1201a及び 1201bはそれぞれ差動信号 で発振し、それらを結合させることで 90度の位相差関係を保つことになる。 2個の LC VCO1201a及び 1201bは、正に 90度の位相差関係にあり、これらのテール電流 源 1301a及び 1301bを共有させることができる。
[0085] Quadrature LC-VCOは、 LC—VCOの発振のためのテール電流源 1301a及び L C - VCO間を結合するためのテール電流源 130 lbとから構成される。 LC-VCOl 201a及び 1201bは、 90度の位相差関係を有するため、電流源 1301a及び 1301b を共有することができる。
[0086] (第 8の実施形態)
図 14は、本発明の第 8の実施形態による VCO104 (図 1及び図 2)の構成例を示す 回路図である。第 7の実施形態では 2個の CML型 LC VCOを結合する Quadrature LC- VCOを示したが、本実施形態では 4個の CML型 LC— VCO1401a〜1401d を結合するマルチフェイズ LC VCOを示す。
[0087] LC— VCO1401a〜1401dは、それぞれ図 13Bと同じ構成を有する。 LC-VCO 1401aは、 0度及び 180度の差動信号を出力する。 LC— VCO1401bは、 45度及 び 225度の差動信号を出力する。 LC— VCO1401cは、 90度及び 270度の差動信 号を出力する。 LC— VCO1401dは、 135度及び 315度の差動信号を出力する。 L C— VCO1401a〜1401dは、制御電圧 Vcntlに応じて発振周波数が変化する。
[0088] ローパスフィルタ 1402aは、 LC— VCO1401aの出力端子及び LC— VCO1401b の入力端子間に接続される。ローパスフィルタ 1402bは、 LC— VCO1401bの出力 端子及び LC— VCO1401cの入力端子間に接続される。ローパスフィルタ 1402cは 、 LC— VCO1401cの出力端子及び LC— VCO1401dの入力端子間に接続される 。ローパスフィルタ 1402dは、 LC— VCO1401dの出力端子及び LC— VCO1401a の入力端子間に接続される。
[0089] 電流源 1403aは、 LC— VCO1401a及び 1401cの端子 Vtaillとグランドとの間に 接続される。電流源 1404aは、 LC— VCO1401a及び 1401cの端子 Vtail2とグラン ドとの間に接続される。電流源 1403bは、 LC— VCO1401b及び 1401dの端子 Vta illとグランドとの間に接続される。電流源 1404bは、 LC— VCO1401b及び 1401d の端子 Vtail2とグランドとの間に接続される。電流源 1403a及び 1403bは、電流 Ire flを流す。電流源 1404a及び 1404bは、電流 Iref2を流す。
[0090] LC—VCO1401a及び 1401cは、相互に直交関係を有する位相の差動信号を出 力するので、電流源 1403a及び 1404aを共有することができる。同様に、 LC-VC 01401b及び 1401dは、相互に直交関係を有する位相の差動信号を出力するので 、電流源 1403b及び 1404bを共有することができる。
[0091] LC—VCOの場合も、リングオシレータ型 VCOと同様に、 LC—VCOの数だけマル チフェイズを作り出すことができる。 LC—VCOを複数個(2個以上)並べた場合、リン グオシレータ型 VCOと同様に、位相シフト量が変わることになる。
[0092] 複数の LC—VCO (CML型差動アンプ)は結合される。その結合される各 LC V CO (CML型差動アンプ)の出力信号は、 180度をその結合される LC VCO (CM L型差動アンプ)の数で割った位相差を有する。この場合でも、 90度の位相差関係を 有する LC VCOが電流源を共有するので、消費電流を半分にすることができる。
[0093] 以上のように、第 1〜第 8の実施形態によれば、複数のリング素子又は複数の LC VCOに対して同時に複数の電流源が接続されることはなぐいずれの時点であって も 1個の電流源のみが接続される。直交関係にある位相を有する CML型のリングォ シレータ型 VCO又は LC—VCOにおいて、直交関係にある差動アンプがテール電 流源を共有することにより、消費電流を半分にすることができる。テール電流源を共 有しても、共有しないときと同じ発振条件及び発振周波数が保たれる。すなわち、共 有しないときと同じ発振条件で、 VCOは所望の電圧—周波数特性を取得でき、消費 電流のみを半分にすることができる。
[0094] 上記実施形態は、バイポーラ又は CMOSテクノロジにおける高速 IZO回路及び R Fのミキサの源信となる VCOに適用可能である。
[0095] なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示し たものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはなら ないものである。すなわち、本発明はその技術思想、またはその主要な特徴力も逸脱 することなぐ様々な形で実施することができる。
産業上の利用可能性
[0096] 相互に直交関係にある位相の信号を出力する第 1及び第 2の発振ユニットは、それ ぞれ電流を消費する時間が異なる。電流源は必要な電流のみを流すので、消費電 流を/ Jヽさくすることができる。

Claims

請求の範囲
[1] 相互に直交関係にある位相の信号を出力する第 1及び第 2の発振ユニットを有し、 前記第 1及び第 2の発振ユニットに対して同時に複数の電流源が接続されることは なぐいずれの時点であっても 1個の電流源のみが接続されることを特徴とする発振
[2] 前記電流源は、前記第 1及び第 2の発振ユニットに対して共通に接続され、
前記第 1及び第 2の発振ユニットは、それぞれ抵抗及び容量のディレイ素子を含む
CML型差動アンプを有し、リング接続されるリング発振器を構成することを特徴とす る請求項 1記載の発振器。
[3] 前記電流源及び前記抵抗は、制御電圧に応じて可変であることを特徴とする請求 項 2記載の発振器。
[4] 前記抵抗は、電源電圧に接続され、
前記電流源は、前記 CML型差動アンプ及びグランド間に接続される Nチャネル電 界効果トランジスタを用いて ヽることを特徴とする請求項 2記載の発振器。
[5] 前記抵抗は、グランドに接続され、
前記電流源は、前記 CML型差動アンプ及び電源電圧間に接続される Pチャネル 電界効果トランジスタを用いて ヽることを特徴とする請求項 2記載の発振器。
[6] 前記電流源は、前記 CML型差動アンプ及び電源電圧間に接続される第 1の電流 源と、前記 CML型差動アンプ及びグランド間に接続される第 2の電流源とを有するこ とを特徴とする請求項 2記載の発振器。
[7] 前記リング接続される各 CML型差動アンプの出力信号は、 180度を前記リング接 続される CML型差動アンプの数で割った位相差を有することを特徴とする請求項 2 記載の発振器。
[8] 前記電流源は 2個であり、
前記 2個の電流源は、それぞれ前記第 1及び第 2の発振ユニットに対して交互に接 続され、
前記第 1及び第 2の発振ユニットは、それぞれ抵抗及び容量のディレイ素子を含む CML型差動アンプを有し、リング接続されるリング発振器を構成することを特徴とす る請求項 1記載の発振器。
[9] 前記第 1の発振ユニットは 0度及び 180度の差動信号を出力し、前記第 2の発振ュ ニットは 90度及び 270度の差動信号を出力することを特徴とする請求項 2記載の発 振器。
[10] さらに、抵抗及び容量のディレイ素子を含む CML型差動アンプを有し、 45度及び 225度の差動信号を出力する第 3の発振ユニットと、
抵抗及び容量のディレイ素子を含む CML型差動アンプを有し、 135度及び 315度 の差動信号を出力する第 4の発振ユニットと
を有することを特徴とする請求項 9記載の発振器。
[11] さらに、抵抗及び容量のディレイ素子を含む CML型差動アンプを有し、 30度及び 210度の差動信号を出力する第 3の発振ユニットと、
抵抗及び容量のディレイ素子を含む CML型差動アンプを有し、 60度及び 240度 の差動信号を出力する第 4の発振ユニットと、
抵抗及び容量のディレイ素子を含む CML型差動アンプを有し、 120度及び 300度 の差動信号を出力する第 5の発振ユニットと、
抵抗及び容量のディレイ素子を含む CML型差動アンプを有し、 150度及び 330度 の差動信号を出力する第 6の発振ユニットと
を有することを特徴とする請求項 9記載の発振器。
[12] インダクタ及び容量の共振回路と入力差動対トランジスタを含む CML型差動アン プと負性抵抗とを有し、相互に直交関係にある位相の信号を出力する第 1及び第 2 の発振ユニットと、
前記第 1及び第 2の発振ユニットの負性抵抗に対して同時に複数の電流源が接続 されることはなぐいずれの時点であっても 1個の第 1の電流源のみが接続され、 前記第 1及び第 2の発振ユニットの入力差動対トランジスタに対して同時に複数の 電流源が接続されることはなぐいずれの時点であっても 1個の第 2の電流源のみが 接続されることを特徴とする発振器。
[13] 前記第 1の電流源は、前記第 1及び第 2の発振ユニットの負性抵抗に対して共通に 接続され、 前記第 2の電流源は、前記第 1及び第 2の発振ユニットの入力差動対トランジスタに 対して共通に接続されることを特徴とする請求項 12記載の発振器。
[14] 前記複数の CML型差動アンプは結合され、
前記結合される各 CML型差動アンプの出力信号は、 180度を前記結合される CM L型差動アンプの数で割った位相差を有することを特徴とする請求項 13記載の発振
[15] さらに、前記複数の CML型差動アンプ間に接続されるローパスフィルタを有するこ とを特徴とする請求項 14記載の発振器。
[16] 前記容量は、制御電圧に応じて可変であることを特徴とする請求項 13記載の発振
[17] 前記第 1の発振ユニットは 0度及び 180度の差動信号を出力し、前記第 2の発振ュ ニットは 90度及び 270度の差動信号を出力することを特徴とする請求項 13記載の発 振器。
[18] さらに、インダクタ及び容量の共振回路と入力差動対トランジスタを含む CML型差 動アンプと負性抵抗とを有し、 45度及び 225度の差動信号を出力する第 3の発振ュ -ッ卜と、
インダクタ及び容量の共振回路と入力差動対トランジスタを含む CML型差動アン プと負性抵抗とを有し、 135度及び 315度の差動信号を出力する第 4の発振ユニット と
を有することを特徴とする請求項 17記載の発振器。
PCT/JP2005/023372 2005-12-20 2005-12-20 発振器 WO2007072549A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2005/023372 WO2007072549A1 (ja) 2005-12-20 2005-12-20 発振器
JP2007550954A JPWO2007072549A1 (ja) 2005-12-20 2005-12-20 発振器
US12/143,253 US20080252387A1 (en) 2005-12-20 2008-06-20 Oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/023372 WO2007072549A1 (ja) 2005-12-20 2005-12-20 発振器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/143,253 Continuation US20080252387A1 (en) 2005-12-20 2008-06-20 Oscillator

Publications (1)

Publication Number Publication Date
WO2007072549A1 true WO2007072549A1 (ja) 2007-06-28

Family

ID=38188340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023372 WO2007072549A1 (ja) 2005-12-20 2005-12-20 発振器

Country Status (3)

Country Link
US (1) US20080252387A1 (ja)
JP (1) JPWO2007072549A1 (ja)
WO (1) WO2007072549A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106062A (ja) * 2011-11-10 2013-05-30 Handotai Rikougaku Kenkyu Center:Kk 分周回路およびpll回路
JP2015159355A (ja) * 2014-02-21 2015-09-03 株式会社メガチップス クロック生成回路及びクロックの位相補正方法
JP2016025389A (ja) * 2014-07-16 2016-02-08 国立大学法人広島大学 高周波発振器
US10651856B2 (en) 2017-06-01 2020-05-12 Fujitsu Limited Four-phase oscillator and CDR circuit

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101541733B1 (ko) * 2008-10-09 2015-08-04 삼성전자주식회사 디지털 제어 발진기
US20110241746A1 (en) * 2010-03-30 2011-10-06 Taiwan Semiconductor Manufacturing Co., Ltd. Low power small area static phase interpolator with good linearity
US8803617B2 (en) * 2011-09-02 2014-08-12 Texas Instruments Incorporated Oscillators and clock generation
US8975974B2 (en) 2012-03-01 2015-03-10 Qualcomm Incorporated Low voltage, wide frequency range oscillator
US9024694B2 (en) 2013-02-06 2015-05-05 Taiwan Semiconductor Manufacturing Co., Ltd. Voltage controlled oscillator with a large frequency range and a low gain
CN103475366B (zh) * 2013-09-26 2016-11-16 昆山锐芯微电子有限公司 压控振荡器
US9191014B2 (en) 2013-11-08 2015-11-17 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus of synchronizing oscillators
US9473152B2 (en) 2013-11-08 2016-10-18 Taiwan Semiconductor Manufacturing Company, Ltd. Coupling structure for inductive device
US10153728B2 (en) 2013-11-08 2018-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method
US9673790B2 (en) 2013-11-08 2017-06-06 Taiwan Semiconductor Manufacturing Company Limited Circuits and methods of synchronizing differential ring-type oscillators
US10270389B2 (en) 2013-11-08 2019-04-23 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method
US9602054B2 (en) * 2015-07-15 2017-03-21 Texas Instruments Incorporated System and method for reconfigurable phase shifter and mixer
US10237052B1 (en) * 2017-05-03 2019-03-19 Cadence Design Systems, Inc. Multiphase clock generation and interpolation with clock edge skew correction
US10686429B1 (en) * 2020-01-22 2020-06-16 Realtek Semiconductor Corp. High-speed clock filter and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253304A (ja) * 1988-08-18 1990-02-22 Sony Corp 移相型発振回路
JPH09214299A (ja) * 1996-02-08 1997-08-15 Toshiba Corp 電圧制御発振器
JPH09326676A (ja) * 1996-06-07 1997-12-16 Sony Corp 移相型発振回路
JPH11330852A (ja) * 1998-03-10 1999-11-30 Lucent Technol Inc 電圧制御オシレ―タ(vco)cmos回路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5485126A (en) * 1994-01-25 1996-01-16 International Business Machines Corporation Ring oscillator circuit having output with fifty percent duty cycle
JP2830735B2 (ja) * 1994-04-19 1998-12-02 日本電気株式会社 位相同期型タイミング発生回路
JP3299631B2 (ja) * 1994-06-07 2002-07-08 三菱電機株式会社 電圧制御型発振器およびそれを用いた位相同期ループ回路
US5477198A (en) * 1994-06-23 1995-12-19 At&T Global Information Solutions Company Extendible-range voltage controlled oscillator
KR100363107B1 (ko) * 1998-12-30 2003-02-20 주식회사 하이닉스반도체 반도체메모리 장치
JP2000244285A (ja) * 1999-02-23 2000-09-08 Mitsubishi Electric Corp 電圧制御型発振器
US6690243B1 (en) * 2001-06-07 2004-02-10 Cypress Semiconductor Corp. Multi-phase voltage-controlled oscillator at modulated, operating frequency
US6956442B2 (en) * 2003-09-11 2005-10-18 Xilinx, Inc. Ring oscillator with peaking stages
US7154352B2 (en) * 2003-11-05 2006-12-26 Mstar Semiconductor, Inc. Clock generator and related biasing circuit
US20050253659A1 (en) * 2004-05-14 2005-11-17 Pierre Favrat Current-controlled quadrature oscillator using differential gm/C cells incorporating amplitude limiters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253304A (ja) * 1988-08-18 1990-02-22 Sony Corp 移相型発振回路
JPH09214299A (ja) * 1996-02-08 1997-08-15 Toshiba Corp 電圧制御発振器
JPH09326676A (ja) * 1996-06-07 1997-12-16 Sony Corp 移相型発振回路
JPH11330852A (ja) * 1998-03-10 1999-11-30 Lucent Technol Inc 電圧制御オシレ―タ(vco)cmos回路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106062A (ja) * 2011-11-10 2013-05-30 Handotai Rikougaku Kenkyu Center:Kk 分周回路およびpll回路
JP2015159355A (ja) * 2014-02-21 2015-09-03 株式会社メガチップス クロック生成回路及びクロックの位相補正方法
JP2016025389A (ja) * 2014-07-16 2016-02-08 国立大学法人広島大学 高周波発振器
US10651856B2 (en) 2017-06-01 2020-05-12 Fujitsu Limited Four-phase oscillator and CDR circuit

Also Published As

Publication number Publication date
JPWO2007072549A1 (ja) 2009-05-28
US20080252387A1 (en) 2008-10-16

Similar Documents

Publication Publication Date Title
WO2007072549A1 (ja) 発振器
US8154352B2 (en) Oscillating circuit
US6535037B2 (en) Injection locked frequency multiplier
JP5793698B2 (ja) 注入同期型奇数分周器及びpll回路
US7176737B2 (en) Phase-locked loop and delay-locked loop including differential delay cells having differential control inputs
JP4932572B2 (ja) カップリングキャパシタを備える4位相電圧制御発振器
US20110156829A1 (en) Oscillator combined circuit, semiconductor device, and current reuse method
US8248132B2 (en) Oscillation signal generator for compensating for I/Q mismatch and communication system including the same
JP2002111449A (ja) 電圧制御発振回路およびそれを備える位相同期ループ回路
US8217725B2 (en) Electrical circuit and ring oscillator circuit including even-number inverters
US8362820B2 (en) Semiconductor integrated circuit
US8140039B2 (en) Quadrature-input quadrature-output divider and phase locked loop frequency synthesizer or single side band mixer
KR100909538B1 (ko) 다상 전압 제어 발진기
JP5300035B2 (ja) 発振回路
US6864728B1 (en) Frequency multiplier and amplification circuit
JP4793595B2 (ja) 周波数シンセサイザ
KR20100073948A (ko) 광대역 출력 주파수를 갖는 링 발진기
US7081781B2 (en) Charge pump for a low-voltage wide-tuning range phase-locked loop
JP6338033B1 (ja) 局部発振器
US7642867B2 (en) Simple technique for reduction of gain in a voltage controlled oscillator
US20040207433A1 (en) High speed differential signaling logic gate and applications thereof
US6472944B2 (en) Voltage controlled oscillator with delay circuits
CN112886962B (zh) 五倍频器及其方法
US20220244755A1 (en) Circuits and methods for multi-phase clock generators and phase interpolators
US7498892B2 (en) Split-biased interpolated voltage-controlled oscillator and phase locked loop

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007550954

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05820102

Country of ref document: EP

Kind code of ref document: A1