WO2007069578A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2007069578A1
WO2007069578A1 PCT/JP2006/324708 JP2006324708W WO2007069578A1 WO 2007069578 A1 WO2007069578 A1 WO 2007069578A1 JP 2006324708 W JP2006324708 W JP 2006324708W WO 2007069578 A1 WO2007069578 A1 WO 2007069578A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
amount
circuit
refrigerant circuit
pipe
Prior art date
Application number
PCT/JP2006/324708
Other languages
English (en)
French (fr)
Inventor
Takahiro Yamaguchi
Tadafumi Nishimura
Manabu Yoshimi
Shinichi Kasahara
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to CN2006800463740A priority Critical patent/CN101326416B/zh
Priority to AU2006324593A priority patent/AU2006324593B2/en
Priority to EP06834463.9A priority patent/EP1970652B1/en
Priority to ES06834463T priority patent/ES2732086T3/es
Priority to US12/096,693 priority patent/US7946121B2/en
Publication of WO2007069578A1 publication Critical patent/WO2007069578A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a function for determining the suitability of the amount of refrigerant in the refrigerant circuit of an air conditioner, in particular, by connecting a compressor, a heat source side heat exchanger ⁇ , an expansion mechanism, and a user side heat exchanger.
  • the present invention relates to a function of determining the suitability of the amount of refrigerant in the refrigerant circuit of the air conditioner configured.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-304388
  • An object of the present invention is to make it possible to determine with high accuracy whether or not the amount of refrigerant in the refrigerant circuit is appropriate while suppressing the calculation load.
  • An air conditioner includes a refrigerant circuit, a refrigerant amount calculation unit, and a refrigerant amount determination unit.
  • the refrigerant circuit is configured by connecting a compressor, a heat source side heat exchanger, and a use side heat exchanger.
  • the refrigerant quantity calculating means uses the relational expression between the refrigerant quantity of each part and the refrigerant flowing through the refrigerant circuit or the operating state quantity of the component device when the refrigerant circuit is divided into a plurality of parts.
  • the refrigerant quantity of each part is calculated from the operating state quantity of the component equipment.
  • the refrigerant quantity determination means determines the suitability of the refrigerant quantity in the refrigerant circuit using the refrigerant quantity of each part calculated by the refrigerant quantity calculation means.
  • the refrigerant circuit is divided into a plurality of parts, and a relational expression between the refrigerant amount and the operation state quantity in each part is set, so that the conventional refrigeration cycle characteristics are obtained.
  • simulation -Compared to the case of performing the simulation, the calculation load can be reduced, and the operation state quantity important for calculating the refrigerant amount of each part can be selectively taken in as a variable of the relational expression.
  • the calculation accuracy of the refrigerant amount is also improved, and as a result, the suitability of the refrigerant amount in the refrigerant circuit can be determined with high accuracy.
  • ⁇ the operating state quantity of the refrigerant flowing through the refrigerant circuit or the component equipment '' means the quantity of state of the refrigerant flowing through the refrigerant circuit, such as the temperature and pressure, and the state quantity of the equipment constituting the air conditioner! / Speak.
  • An air conditioner according to a second invention is the air conditioner according to the first invention, wherein the refrigerant circuit includes a heat source unit including a compressor and a heat source side heat exchanger, and a use side heat exchanger. And a refrigerant communication pipe connecting the heat source unit and the utilization unit.
  • the relational expression is set by dividing the refrigerant circuit into a refrigerant communication pipe and a portion other than the refrigerant communication pipe.
  • the refrigerant circuit is divided into a refrigerant communication pipe in which the refrigerant amount changes depending on conditions such as the installation location, and a part other than the refrigerant communication pipe, and the refrigerant amount and operating state of each part are divided. Since the relational expression with the amount is set, the relational expression for calculating the refrigerant amount in the part other than the refrigerant communication pipe can be used so that the calculation error due to the change in the refrigerant quantity in the refrigerant communication pipe is less likely to occur. As a result, it is possible to further improve the accuracy of determining whether or not the amount of refrigerant in the refrigerant circuit is appropriate.
  • the air conditioner according to the third aspect of the invention is the air conditioner according to the second aspect of the invention!
  • the relational expression is that parts other than the refrigerant communication pipe are divided into the heat source unit and the utilization unit. Divided and set.
  • the parts other than the refrigerant communication pipe are divided into the heat source unit and the utilization unit, and the relational expression between the refrigerant amount and the operating state quantity of each part is set. Even when the unit and the utilization unit are connected, the relational expression prepared for each heat source unit or each utilization unit can be used. As a result, the amount of refrigerant in the refrigerant circuit can be used. It is possible to further improve the accuracy of determining whether or not the device is appropriate.
  • the air conditioner according to the fourth aspect of the invention is the air conditioner according to the third aspect of the invention!
  • the relational expression indicates that the heat source unit is the heat source side heat exchanger and the heat source side heat exchanger. It is set separately from other parts!
  • the operating state quantity of the refrigerant or the component equipment flowing through the refrigerant circuit includes the refrigerant circulation quantity or an operation state quantity equivalent to the refrigerant circulation quantity.
  • the heat source unit is divided into heat source side heat exchange and parts other than the heat source side heat exchange, and a relational expression between the refrigerant amount and the operating state quantity of each part is set, and the heat source side Since the operation state quantity used in the relational expression for calculating the refrigerant amount of heat exchange ⁇ includes the refrigerant circulation quantity or the operation state quantity equivalent to the refrigerant circulation quantity, the calculation error due to the difference in refrigerant circulation quantity As a result, it is possible to further improve the determination accuracy of the suitability of the refrigerant amount in the refrigerant circuit.
  • the air conditioner according to the fifth invention is the air conditioner according to the third or fourth invention, wherein the utilization unit further includes a blower fan for supplying air to the utilization side heat exchanger. ing.
  • the relational expression set for the refrigerant amount of the utilization unit includes the airflow amount of the blower fan or the operation state amount equivalent to the airflow amount as the operation state amount of the refrigerant flowing through the refrigerant circuit or the component device.
  • the operation state quantity used in the relational expression for calculating the refrigerant amount of the utilization unit is to include the air volume of the blower fan or the operation state quantity equivalent to the air volume! Calculation errors due to the difference in the air volume can be made less likely to occur, and as a result, it is possible to further improve the accuracy of determining the suitability of the refrigerant amount in the refrigerant circuit.
  • An air conditioner according to a sixth aspect of the present invention is the air conditioner according to any of the first to fifth aspects, wherein the refrigerant amount calculating means fills the refrigerant in the refrigerant circuit using a relational expression.
  • the refrigerant quantity in each part is calculated from the refrigerant flowing through the refrigerant circuit or the operating state quantity of the component equipment in the automatic refrigerant filling operation.
  • the refrigerant amount determination means determines whether or not the refrigerant amount in the refrigerant circuit has reached the charging target value by using the refrigerant amount of each part calculated by the refrigerant amount calculation means.
  • the refrigerant amount can be quickly calculated during the automatic refrigerant charging operation, and the force can be accurately determined whether the refrigerant amount in the refrigerant circuit has reached the target charging value. It can be set to half U.
  • An air conditioner according to a seventh aspect of the present invention is the air conditioner according to any of the first to sixth aspects of the invention, wherein the refrigerant amount calculating means uses a relational expression to install the constituent devices Alternatively, the initial amount of refrigerant can be calculated by calculating the amount of refrigerant in each part of the refrigerant flowing through the refrigerant circuit or the operating state of the component device in the initial refrigerant amount detection operation for detecting the initial amount of refrigerant after the refrigerant is filled in the refrigerant circuit. Is detected.
  • the refrigerant quantity can be quickly calculated during the initial refrigerant quantity detection operation, and the initial refrigerant quantity can be detected with high accuracy.
  • An air conditioner according to an eighth invention is the air conditioner according to any one of the first to seventh inventions, wherein the refrigerant amount calculating means uses the relational expression to leak the refrigerant from the refrigerant circuit.
  • the refrigerant amount of each part is calculated from the refrigerant flowing through the refrigerant circuit in the refrigerant leak detection operation for determining the presence or absence of the operation state quantity of the component device.
  • the refrigerant quantity determination means compares the refrigerant quantity of each part calculated by the refrigerant quantity calculation means with the reference refrigerant quantity that serves as a reference for determining the presence or absence of leakage, thereby reducing the refrigerant leakage of the refrigerant circuit force. Determine presence or absence.
  • the refrigerant amount can be quickly calculated during the refrigerant leakage detection operation, and the presence or absence of refrigerant leakage due to the refrigerant circuit force can be determined with high accuracy.
  • FIG. 1 is a schematic configuration diagram of an air-conditioning apparatus according to an embodiment of the present invention.
  • FIG. 2 is a control block diagram of the air conditioner.
  • FIG. 3 is a flowchart of a test operation mode.
  • FIG. 4 is a flowchart of an automatic refrigerant charging operation.
  • FIG. 5 is a schematic diagram showing the state of refrigerant flowing in the refrigerant circuit in the refrigerant quantity determination operation (illustration of a four-way switching valve and the like is omitted).
  • FIG. 6 is a flowchart of pipe volume judgment operation.
  • FIG. 7 is a Mollier diagram showing the refrigeration cycle of the air conditioner in the pipe volume determination operation for the liquid refrigerant communication pipe.
  • FIG. 8 is a Mollier diagram showing the refrigeration cycle of the air conditioner in the pipe volume determination operation for the gas refrigerant communication pipe.
  • FIG. 9 is a flowchart of an initial refrigerant quantity determination operation.
  • FIG. 10 is a flowchart of a refrigerant leak detection operation mode. Explanation of symbols
  • FIG. 1 is a schematic configuration diagram of an air-conditioning apparatus 1 according to one embodiment of the present invention.
  • the air conditioner 1 is an apparatus used for air conditioning in a room such as a building by performing a vapor compression refrigeration cycle operation.
  • the air conditioner 1 mainly includes an outdoor unit 2 as a single heat source unit, and indoor units 4 and 5 as a plurality of (two in this embodiment) usage units connected in parallel to the outdoor unit 2.
  • the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 are provided as refrigerant communication pipes connecting the outdoor unit 2 and the indoor units 4 and 5. That is, in the vapor compression refrigerant circuit 10 of the air conditioner 1 of the present embodiment, the outdoor unit 2, the indoor units 4, 5, the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 are connected. Consists of this.
  • the indoor units 4 and 5 are installed by being embedded or suspended in the ceiling of a room such as a building or by hanging on the wall surface of the room. Indoor units 4 and 5 have liquid refrigerant communication piping It is connected to the outdoor unit 2 via 6 and the gas refrigerant communication pipe 7 and constitutes a part of the refrigerant circuit 10.
  • the configuration of the indoor units 4 and 5 will be described. Since the indoor unit 4 and the indoor unit 5 have the same configuration, only the configuration of the indoor unit 4 will be described here, and the configuration of the indoor unit 5 indicates each part of the indoor unit 4 respectively. Instead of the 40's code, the 50's code is used, and the description of each part is omitted.
  • the indoor unit 4 mainly includes an indoor refrigerant circuit 10a (in the indoor unit 5, the indoor refrigerant circuit 10b) that constitutes a part of the refrigerant circuit 10.
  • the indoor refrigerant circuit 10a mainly has an indoor expansion valve 41 as an expansion mechanism and an indoor heat exchange 42 as a use side heat exchanger.
  • the indoor expansion valve 41 is an electric expansion valve connected to the liquid side of the indoor heat exchanger 42 in order to adjust the flow rate of the refrigerant flowing in the indoor refrigerant circuit 10a.
  • the indoor heat exchange is a cross-fin type fin 'and' tube heat exchanger composed of heat transfer tubes and a large number of fins, and functions as a refrigerant evaporator during cooling operation. It is a heat exchanger that functions as a refrigerant condenser during heating operation to heat indoor air.
  • the indoor unit 4 sucks indoor air into the unit, exchanges heat with the refrigerant in the indoor heat exchanger 42, and then supplies the indoor fan 43 as a blower fan to be supplied indoors as supply air.
  • the indoor fan 43 is a fan capable of changing the air volume Wr of air supplied to the indoor heat exchanger 42, and in this embodiment, the centrifugal fan or the multiblade fan driven by the motor 43a that also has DC fan motor power.
  • the indoor unit 4 is provided with various sensors. On the liquid side of the indoor heat exchanger 42, a liquid side temperature sensor 44 that detects the temperature of the refrigerant (that is, the refrigerant temperature corresponding to the condensation temperature Tc during heating operation or the evaporation temperature Te during cooling operation) is provided. ing. A gas side temperature sensor 45 for detecting the refrigerant temperature Teo is provided on the gas side of the indoor heat exchanger 42. The indoor air inlet side of the indoor unit 4 An indoor temperature sensor 46 for detecting the temperature of the incoming indoor air (that is, the indoor temperature Tr) is provided. In the present embodiment, the liquid side temperature sensor 44, the gas side temperature sensor 45, and the room temperature sensor 46 are composed of thermistors.
  • the indoor unit 4 also has an indoor side control unit 47 that controls the operation of each part constituting the indoor unit 4.
  • the indoor control unit 47 includes a microcomputer, a memory, and the like provided for controlling the indoor unit 4, and a remote controller (not shown) for individually operating the indoor unit 4. Control signals etc. can be exchanged with the outdoor unit 2 and control signals etc. can be exchanged with the outdoor unit 2 via the transmission line 8a.
  • the outdoor unit 2 is installed outside a building or the like, and is connected to the indoor units 4 and 5 via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7. Circuit 10 is configured.
  • the outdoor unit 2 mainly has an outdoor refrigerant circuit 10c that constitutes a part of the refrigerant circuit 10.
  • This outdoor refrigerant circuit 10c mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23 as a heat source side heat exchange, an outdoor expansion valve 38 as an expansion mechanism, an accumulator 24, A supercooler 25 as a temperature adjusting mechanism, a liquid side closing valve 26 and a gas side closing valve 27 are provided.
  • the compressor 21 is a compressor whose operating capacity can be varied.
  • the compressor 21 is a positive displacement compressor driven by a motor 21a whose rotational speed Rm is controlled by an inverter.
  • the number of the compressors 21 is only one, but is not limited to this, and two or more compressors may be connected in parallel according to the number of indoor units connected.
  • the four-way switching valve 22 is a valve for switching the flow direction of the refrigerant.
  • the outdoor heat exchanger 23 serves as a refrigerant condenser compressed by the compressor 21, and the indoor
  • the heat exchangers 42 and 52 to function as an evaporator for the refrigerant condensed in the outdoor heat exchanger 23
  • the discharge side of the compressor 21 and the gas side of the outdoor heat exchanger 23 are connected and the suction side of the compressor 21 ( Specifically, the accumulator 24) is connected to the gas refrigerant communication pipe 7 side (see the solid line of the four-way selector valve 22 in Fig. 1), and the indoor heat exchangers 42, 52 are used during heating operation.
  • the discharge side of the compressor 21 It is possible to connect the gas refrigerant communication pipe 7 side and also connect the suction side of the compressor 21 and the gas side of the outdoor heat exchange (see the broken line of the four-way switching valve 22 in FIG. 1).
  • the outdoor heat exchange is a cross-fin type fin 'and' tube heat exchanger composed of heat transfer tubes and a large number of fins, and functions as a refrigerant condenser during cooling operation. This is heat exchange that functions as a refrigerant evaporator during heating operation.
  • the outdoor heat exchanger 23 has a gas side connected to the four-way switching valve 22 and a liquid side connected to the liquid coolant communication pipe 6.
  • the outdoor expansion valve 38 is an electric expansion valve connected to the liquid side of the outdoor heat exchanger 23 in order to adjust the pressure and flow rate of the refrigerant flowing in the outdoor refrigerant circuit 10c.
  • the outdoor unit 2 has an outdoor fan 28 as a blower fan for sucking outdoor air into the unit, exchanging heat with the refrigerant in the outdoor heat exchanger 23, and then discharging the air outside.
  • the outdoor fan 28 is a fan capable of changing the air volume Wo of the air supplied to the outdoor heat exchanger ⁇ 23.
  • the outdoor fan 28 is a propeller fan or the like driven by a motor 28a having a DC fan motor power. is there.
  • the accumulator 24 is connected between the four-way selector valve 22 and the compressor 21, and removes excess refrigerant generated in the refrigerant circuit 10 in accordance with fluctuations in the operation load of the indoor units 4 and 5. It is a container that can be stored.
  • the subcooler 25 is a double-pipe heat exchanger, and is provided to cool the refrigerant sent to the indoor expansion valves 41 and 51 after being condensed in the outdoor heat exchanger 23. ing.
  • the supercooler 25 is connected between the outdoor expansion valve 38 and the liquid side closing valve 26.
  • a bypass refrigerant circuit 61 as a cooling source for the subcooler 25 is provided.
  • the part excluding the bypass refrigerant circuit 61 from the refrigerant circuit 10 will be referred to as a main refrigerant circuit for convenience.
  • the bypass refrigerant circuit 61 is provided in the main refrigerant circuit so that a part of the refrigerant sent from the outdoor heat exchanger 23 to the indoor expansion valves 41, 51 is branched from the main refrigerant circuit and returned to the suction side of the compressor 21. It is connected.
  • the bypass refrigerant circuit 61 connects a part of the refrigerant sent from the outdoor expansion valve 38 to the indoor expansion valves 41 and 51 so that the positional force between the outdoor heat exchanger and the subcooler 25 also branches.
  • the junction circuit 61b connected to the suction side of the compressor 21 so as to return to the suction side of the compressor 21 from the outlet of the bypass refrigerant circuit side of the subcooler 25.
  • the branch circuit 61a is provided with a bypass expansion valve 62 for adjusting the flow rate of the refrigerant flowing through the bypass refrigerant circuit 61.
  • the bypass expansion valve 62 also has an electric expansion valve force.
  • the refrigerant sent from the outdoor heat exchanger 23 to the indoor expansion valves 41 and 51 is cooled by the refrigerant flowing in the bypass refrigerant circuit 61 after being depressurized by the no-pass expansion valve 62 in the supercooler 25. That is, the capacity control of the subcooler 25 is performed by adjusting the opening degree of the bypass expansion valve 62.
  • the liquid side shutoff valve 26 and the gas side shutoff valve 27 are valves provided at connection ports with external devices and pipes (specifically, the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7). .
  • the liquid side closing valve 26 is connected to the outdoor heat exchanger 23.
  • the gas side closing valve 27 is connected to the four-way switching valve 22.
  • the outdoor unit 2 is provided with various sensors. Specifically, the outdoor unit 2 includes a suction pressure sensor 29 that detects the suction pressure Ps of the compressor 21, a discharge pressure sensor 30 that detects the discharge pressure Pd of the compressor 21, and the compressor 21. A suction temperature sensor 31 for detecting the suction temperature Ts and a discharge temperature sensor 32 for detecting the discharge temperature Td of the compressor 21 are provided. The suction temperature sensor 31 is provided at a position between the accumulator 24 and the compressor 21.
  • the outdoor heat exchanger 23 includes a heat exchange temperature sensor that detects the temperature of the refrigerant flowing in the outdoor heat exchanger 23 (that is, the refrigerant temperature corresponding to the condensation temperature Tc during the cooling operation or the evaporation temperature Te during the heating operation). 33 is provided.
  • a liquid side temperature sensor 34 for detecting the temperature Tco of the refrigerant is provided on the liquid side of the outdoor heat exchanger 23.
  • a liquid pipe temperature sensor 35 that detects the temperature of the refrigerant (that is, the liquid pipe temperature Tip) is provided at the outlet of the subcooler 25 on the main refrigerant circuit side.
  • the temperature of the refrigerant flowing through the outlet of the subcooler 25 on the bypass refrigerant circuit side is detected.
  • a bypass temperature sensor 63 is provided!
  • An outdoor temperature sensor 36 for detecting the temperature of the outdoor air flowing into the unit (that is, the outdoor temperature Ta) is provided on the outdoor air inlet side of the outdoor unit 2.
  • the suction temperature sensor 31, the discharge temperature sensor 32, the heat exchange temperature sensor 33, the liquid side temperature sensor 34, the liquid pipe temperature sensor 35, the outdoor temperature sensor 36, and the binose temperature sensor 63 are composed of thermistors.
  • the outdoor unit 2 also has an outdoor control unit 37 that controls the operation of each part constituting the outdoor unit 2.
  • the outdoor control unit 37 includes a microcomputer provided to control the outdoor unit 2, an inverter circuit that controls the memory and the motor 21 a, and the indoor control units of the indoor units 4 and 5. Control signals etc. can be exchanged with 47 and 57 via the transmission line 8a. That is, the control unit 8 that controls the operation of the entire air conditioner 1 is configured by the indoor control units 47 and 57, the outdoor control unit 37, and the transmission line 8a that connects the control units 37, 47, and 57. Yes.
  • FIG. 2 is a control block diagram of the air conditioner 1.
  • Refrigerant communication pipes 6 and 7 are refrigerant pipes that are installed on site when the air conditioner 1 is installed in a building or other location, such as a combination of the installation location or outdoor unit and indoor unit. Depending on the installation conditions, those having various lengths and pipe diameters are used. For this reason, for example, when a new air conditioner is installed, it is necessary to accurately grasp information such as the length of the refrigerant communication pipes 6 and 7 in order to calculate the refrigerant charge amount. Therefore, the calculation of the refrigerant amount is complicated. In addition, when the existing unit is used to update the indoor unit or the outdoor unit, information such as the diameter of the refrigerant communication pipes 6 and 7 may be lost.
  • the refrigerant circuits 10 of the air conditioner 1 are configured by connecting the pipes 6 and 7.
  • the refrigerant circuit 10 can be paraphrased as being composed of a bypass refrigerant circuit 61 and a main refrigerant circuit excluding the bypass refrigerant circuit 61.
  • the air conditioner 1 according to the present embodiment is operated by switching the cooling operation and the heating operation by the four-way switching valve 22 by the control unit 8 including the indoor side control units 47 and 57 and the outdoor side control unit 37.
  • the outdoor unit 2 and the indoor units 4 and 5 are controlled according to the operation load of the indoor units 4 and 5.
  • the normal operation mode for controlling the components of the outdoor unit 2 and the indoor units 4 and 5 according to the operation load of the indoor units 4 and 5 is used.
  • a test run mode for performing a test run performed after repair, etc., and a refrigerant leak detection that determines whether or not a refrigerant leaks from the refrigerant circuit 10 after the test run is finished and a normal operation is started There is an operation mode.
  • the normal operation mode mainly includes a cooling operation for cooling the room and a heating operation for heating the room.
  • the test operation mode mainly includes the automatic refrigerant charging operation in which the refrigerant is filled in the refrigerant circuit 10, the pipe volume determination operation for detecting the volume of the refrigerant communication pipes 6 and 7, and after the components are installed or the refrigerant And an initial refrigerant quantity detection operation for detecting the initial refrigerant quantity after the refrigerant is filled in the circuit.
  • the cooling operation in the normal operation mode will be described with reference to FIGS. 1 and 2.
  • the four-way switching valve 22 is in the state indicated by the solid line in FIG. 1, that is, the discharge side of the compressor 21 is the outdoor heat. It is connected to the gas side of exchanger 23 and the suction side of compressor 21 is gas It is connected to the gas side of the indoor heat exchangers 42 and 52 via the side closing valve 27 and the gas refrigerant communication pipe 7.
  • the outdoor expansion valve 38 is fully opened.
  • the liquid side closing valve 26 and the gas side closing valve 27 are in an open state.
  • the indoor expansion valves 41 and 51 are opened so that the superheat degree SHr of the refrigerant at the outlets of the indoor heat exchangers 42 and 52 (that is, the gas side of the indoor heat exchangers 42 and 52) is constant at the superheat degree target value SHrs.
  • the degree is adjusted! /
  • the degree of superheat SHr of the refrigerant at the outlets of the indoor heat exchangers 42, 52 is the refrigerant temperature value detected by the gas side temperature sensors 45, 55, and the refrigerant temperature sensors 44, 54 also detect the refrigerant temperature value force.
  • a temperature sensor for detecting the temperature of the refrigerant flowing in each of the indoor heat exchangers 42 and 52 is provided and corresponds to the evaporation temperature Te detected by this temperature sensor.
  • the superheat degree SHr of the refrigerant at the outlet of each indoor heat exchanger 42 and 52 is detected. Also good. Further, the bypass expansion valve 62 is adjusted in opening degree so that the superheat degree SHb of the refrigerant at the outlet on the bypass refrigerant circuit side of the supercooler 25 becomes the superheat degree target value SHbs.
  • the superheat degree SHb of the refrigerant at the outlet on the bypass refrigerant circuit side of the subcooler 25 is the saturation temperature value corresponding to the evaporation pressure Te, which is the suction pressure Ps of the compressor 21 detected by the suction pressure sensor 29.
  • a temperature sensor is provided at the bypass refrigerant circuit side inlet of the subcooler 25, and the refrigerant temperature value detected by this temperature sensor is detected by the bypass temperature sensor 63.
  • the refrigerant superheat degree SHb at the outlet of the subcooler 25 on the bypass refrigerant circuit side may be detected by subtracting the refrigerant temperature value.
  • the low-pressure gas refrigerant is sucked into the compressor 21 and compressed to become the high-pressure gas refrigerant.
  • the high-pressure gas refrigerant is sent to the outdoor heat exchanger 23 via the four-way switching valve 22, exchanges heat with the outdoor air supplied by the outdoor fan 28, and condenses to form a high-pressure liquid refrigerant.
  • this high-pressure liquid refrigerant passes through the outdoor expansion valve 38 and flows into the supercooler 25, and is further cooled by exchanging heat with the refrigerant flowing through the bypass refrigerant circuit 61 to be in a supercooled state.
  • a part of the high-pressure liquid refrigerant condensed in the outdoor heat exchange is branched to the bypass refrigerant circuit 61, decompressed by the bypass expansion valve 62, and then returned to the suction side of the compressor 21.
  • a part of the refrigerant passing through the binos expansion valve 62 is evaporated by being reduced to near the suction pressure Ps of the compressor 21.
  • the refrigerant flowing in the direction of the outlet force of the bypass expansion valve 62 of the bypass refrigerant circuit 61 toward the suction side of the compressor 21 passes through the subcooler 25 and from the outdoor heat exchanger 23 on the main refrigerant circuit side. Exchanges heat with high-pressure liquid refrigerant sent to indoor units 4 and 5.
  • the high-pressure liquid refrigerant in a supercooled state is sent to the indoor units 4 and 5 via the liquid-side stop valve 26 and the liquid refrigerant communication pipe 6.
  • the high-pressure liquid refrigerant sent to the indoor units 4 and 5 is decompressed to near the suction pressure Ps of the compressor 21 by the indoor expansion valves 41 and 51 to become a low-pressure gas-liquid two-phase refrigerant and exchanges heat in the room.
  • the heat is exchanged with the indoor air in the indoor heat exchangers 42 and 52 to evaporate and become low-pressure gas refrigerant.
  • This low-pressure gas refrigerant is sent to the outdoor unit 2 via the gas refrigerant communication pipe 7 and flows into the accumulator 24 via the gas side closing valve 27 and the four-way switching valve 22. Then, the low-pressure gas refrigerant that has flowed into the accumulator 24 is again sucked into the compressor 21.
  • the four-way switching valve 22 is in the state indicated by the broken line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the indoor heat exchanger 42 via the gas-side closing valve 27 and the gas refrigerant communication pipe 7. 52, and the suction side of the compressor 21 is connected to the gas side of the outdoor heat exchanger 23.
  • the degree of opening of the outdoor expansion valve 38 is adjusted to reduce the pressure of the refrigerant flowing into the outdoor heat exchanger 23 to a pressure at which the refrigerant can be evaporated in the outdoor heat exchanger (that is, the evaporation pressure Pe). Further, the liquid side closing valve 26 and the gas side closing valve 27 are opened.
  • the indoor expansion valves 41 and 51 are connected to the indoor heat exchangers 42 and 52, respectively.
  • the degree of opening of the refrigerant is adjusted so that the supercooling degree SCr of the refrigerant at the inlet becomes constant at the supercooling degree target value SCrs.
  • the degree of refrigerant supercooling SCr at the outlets of the indoor heat exchangers 42 and 52 is the saturation temperature value corresponding to the condensation temperature Tc, which is the discharge pressure Pd of the compressor 21 detected by the discharge pressure sensor 30.
  • the refrigerant temperature value is detected by subtracting the refrigerant temperature value detected by the liquid side temperature sensors 44 and 54 from the saturation temperature value of the refrigerant.
  • a temperature sensor that detects the temperature of the refrigerant flowing in each indoor heat exchanger 42, 52 is provided, and the refrigerant corresponding to the condensation temperature Tc detected by this temperature sensor.
  • the subcooling degree SCr of the refrigerant at the outlets of the indoor heat exchangers 42, 52 may be detected by subtracting the temperature value from the refrigerant temperature value detected by the liquid side temperature sensors 44, 54.
  • the bypass expansion valve 62 is closed.
  • the high-pressure gas refrigerant sent to the indoor units 4 and 5 is condensed by exchanging heat with the indoor air in the outdoor heat exchangers ⁇ 42 and 52 to become a high-pressure liquid refrigerant.
  • the pressure is reduced according to the opening degree of the indoor expansion valves 41 and 51.
  • the refrigerant that has passed through the indoor expansion valves 41 and 51 is sent to the outdoor unit 2 via the liquid refrigerant communication pipe 6 and passes through the liquid side closing valve 26, the supercooler 25, and the outdoor expansion valve 38.
  • the pressure is further reduced and then flows into the outdoor heat exchanger 23.
  • the low-pressure gas-liquid two-phase refrigerant flowing into the outdoor heat exchanger 23 exchanges heat with the outdoor air supplied by the outdoor fan 28 to evaporate into a low-pressure gas refrigerant.
  • control unit 8 (more specifically, the indoor side control units 47 and 57 functioning as normal operation control means for performing normal operation including cooling operation and heating operation. And the transmission line 8a) connecting the outdoor control unit 37 and the control units 37, 47, and 57.
  • Fig. 3 is a flowchart of the test operation mode.
  • the test operation mode first, the automatic refrigerant charging operation in step S1 is performed, then the pipe volume determination operation in step S2 is performed, and further, the initial refrigerant amount detection operation in step S3 is performed. .
  • the outdoor unit 2 pre-filled with the refrigerant and the indoor units 4 and 5 are installed at a place such as a building and connected via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7.
  • a place such as a building and connected via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7.
  • the refrigerant circuit 10 is additionally filled with a refrigerant that is insufficient in accordance with the volume of the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7.
  • Step S1 Refrigerant automatic charging operation
  • the liquid side shutoff valve 26 and the gas side shutoff valve 27 of the outdoor unit 2 are opened, and the refrigerant circuit 10 is filled with the refrigerant filled in the outdoor unit 2 in advance.
  • FIG. 4 is a flowchart of the automatic refrigerant charging operation.
  • Step S11 Refrigerant amount judgment operation
  • the refrigerant circuit 10 When an instruction to start the automatic refrigerant charging operation is made, the refrigerant circuit 10 is in a state where the four-way switching valve 22 of the outdoor unit 2 is shown by a solid line in FIG. 1 and the indoor expansion valves 41 of the indoor units 4 and 5 51 and outdoor expansion valve 38 are opened, compressor 21, outdoor fan 28 and indoor fans 4 3, 53 are activated, and all indoor units 4, 5 are forcibly cooled (hereinafter referred to as the total number of indoor units). Driving).
  • the high-pressure gas refrigerant compressed and discharged by the compressor 21 is disposed in the flow path from the compressor 21 to the outdoor heat exchange functioning as a condenser.
  • the outdoor heat exchanger 23 functioning as a condenser
  • High-pressure refrigerant that changes phase from a gas state to a liquid state due to heat exchange with the air flows see the hatched hatched and black hatched parts in Fig. 5 corresponding to the outdoor heat exchanger 23).
  • the low-pressure refrigerant flows (the grid-shaped hatching and the hatched hatching in Fig. 5 (Refer to indoor heat exchanger ⁇ 42, 52 and subcooler 25)), gas refrigerant communication pipe 7 and accumulator 2 4 from indoor heat exchanger 42, 52 to compressor 21
  • the partial force on the bypass refrigerant circuit side of the subcooler 25 also flows through the low-pressure gas refrigerant to the flow path to the compressor 21 (inside the hatched portion in Fig. 5, the indoor heat exchange ⁇ 42, (Refer to the section from 52 to the compressor 21 and the partial force on the bypass refrigerant circuit side of the subcooler 25 as to the section from the compressor 21).
  • FIG. 5 is a schematic diagram showing the state of the refrigerant flowing in the refrigerant circuit 10 in the refrigerant quantity determination operation (the illustration of the four-way switching valve 22 and the like is omitted).
  • the following device control is performed, The operation shifts to an operation in which the state of the refrigerant circulating in the refrigerant circuit 10 is stabilized.
  • the indoor expansion valves 41 and 51 are controlled so that the superheat degree SHr of the indoor heat exchangers 42 and 52 functioning as an evaporator becomes constant (hereinafter referred to as superheat degree control).
  • the operation capacity of the compressor 21 is controlled so as to be constant (hereinafter referred to as evaporation pressure control), and the outdoor fan 28 is used for outdoor heat exchange so that the refrigerant condensation pressure Pc in the outdoor heat exchanger 23 is constant.
  • the subcooler is controlled so that the air volume Wo of the outdoor air supplied to the cooler 23 is controlled (hereinafter referred to as condensing pressure control) so that the temperature of the refrigerant sent from the supercooler 25 to the indoor expansion valves 41 and 51 is constant.
  • the indoor fan 43, 53 controls the indoor heat exchanger 42 so that the refrigerant evaporating pressure Pe is controlled stably by the above evaporating pressure control.
  • the air volume Wr of the indoor air supplied to No. 52 is kept constant.
  • the evaporation pressure control is performed in the indoor heat exchangers 42 and 52 functioning as an evaporator in a gas-liquid two-phase state force due to heat exchange with the room air while the phase is changed to a gas state.
  • Inside the indoor heat exchanger ⁇ 42, 52 through which the refrigerant flows see the section corresponding to the indoor heat exchangers 42, 52 in the grid-shaped, hatched and hatched hatched parts in Fig. 5; This is because the amount of refrigerant in (part C) greatly affects the evaporation pressure Pe of the refrigerant.
  • the evaporation pressure Pe of the refrigerant in the indoor heat exchangers 42 and 52 is made constant, and the evaporator The state of the refrigerant flowing in the part C is stabilized, and a state in which the amount of refrigerant in the evaporator C is changed mainly by the evaporation pressure Pe is created.
  • the refrigerant temperature value (corresponding to the evaporation temperature Te) detected by the liquid side temperature sensors 44, 54 of the indoor heat exchangers 42, 52 is used as the saturation pressure.
  • the operating capacity of the compressor 21 is controlled so that this pressure value becomes constant at the low pressure target value Pes (that is, control for changing the rotational speed Rm of the motor 21a) is performed so that the refrigerant This is realized by increasing or decreasing the refrigerant circulation amount Wc flowing in the circuit 10.
  • the compression detected by the suction pressure sensor 29, which is an operation state quantity equivalent to the refrigerant pressure at the refrigerant evaporating pressure Pe in the indoor heat exchangers 42 and 52, is used.
  • the suction pressure Ps of the machine 21 is constant at the low pressure target value Pes, or the saturation temperature value (corresponding to the evaporation temperature Te) corresponding to the suction pressure Ps is constant at the low pressure target value Tes.
  • the operating capacity of the compressor 21 may be controlled, and the refrigerant temperature value (corresponding to the evaporation temperature Te) detected by the liquid side temperature sensors 44 and 54 of the indoor heat exchangers 42 and 52 is the low pressure target value Tes.
  • the operating capacity of the compressor 21 may be controlled so as to be constant.
  • the refrigerant refrigerant pipe including the gas refrigerant communication pipe 7 and the accumulator 24 from the indoor heat exchangers 42, 52 to the compressor 21 (the hatched lines in FIG. 5).
  • the state of the refrigerant flowing through the indoor heat exchangers 42 and 52 to the compressor 21 (hereinafter referred to as the gas refrigerant circulation section D) is stable and mainly the gas refrigerant circulation section D.
  • a state is created in which the amount of refrigerant in the gas refrigerant circulation portion D is changed by the evaporating pressure Pe (ie, the suction pressure Ps), which is an operation state amount equivalent to the refrigerant pressure at.
  • Condensation pressure control is also performed in the outdoor heat exchanger ⁇ 23 in which high-pressure refrigerant flows while changing the gas state force to the liquid state due to heat exchange with the outdoor air (hatched hatched and blackened in Fig. 5).
  • the condenser portion A which is also the force that greatly affects the refrigerant condensing pressure Pc. Since the refrigerant condensing pressure Pc in the condenser part A changes greatly due to the influence of the outdoor temperature Ta, the air volume Wo of the indoor air supplied from the outdoor fan 28 to the outdoor heat exchanger 23 is controlled by the motor 28a.
  • the condensation pressure Pc of the refrigerant in the outdoor heat exchanger 23 is made constant, and the state of the refrigerant flowing in the condenser section A is stabilized, and mainly the liquid side of the outdoor heat exchanger 23 (hereinafter referred to as the refrigerant).
  • the refrigerant amount in the condenser A is changed by the degree of supercooling SCo at the outlet of the outdoor heat exchanger 23).
  • the compressor 21 detected by the discharge pressure sensor 30 which is an operation state amount equivalent to the refrigerant condensation pressure Pc in the outdoor heat exchanger 23 is used.
  • the discharge pressure Pd or the temperature of the refrigerant flowing in the outdoor heat exchanger 23 detected by the heat exchange temperature sensor 33 that is, the condensation temperature Tc is used.
  • the outdoor expansion valve 38 from the outdoor heat exchange to the indoor expansion valves 41 and 51, the main refrigerant circuit side portion of the subcooler 25, and the liquid refrigerant communication pipe 6 are included.
  • a high-pressure liquid refrigerant flows into the flow path and the flow path from the outdoor heat exchanger 23 to the bypass expansion valve 62 of the bypass refrigerant circuit 61, and from the outdoor heat exchanger 23 to the indoor expansion valves 41 and 51 and the binos expansion valve.
  • the refrigerant pressure in the section up to 62 (see the black hatched area in Fig. 5; hereinafter referred to as the liquid refrigerant circulation section B) is stable, and the liquid refrigerant circulation section B is sealed with the liquid refrigerant and stabilized. It becomes.
  • the liquid pipe temperature control is performed in the refrigerant pipe including the liquid refrigerant communication pipe 6 from the subcooler 25 to the indoor expansion valves 41 and 51 (the subcooler in the liquid refrigerant circulation section B shown in FIG. 5). This is to prevent the refrigerant density from changing from 25 to the indoor expansion valves 41 and 51).
  • the capacity control of the subcooler 25 is controlled so that the refrigerant temperature Tip detected by the liquid pipe temperature sensor 35 provided at the outlet of the main refrigerant circuit of the subcooler 25 is constant at the liquid pipe temperature target value Tips.
  • the refrigerant heat is filled in the refrigerant circuit 10, and as the amount of refrigerant in the refrigerant circuit 10 gradually increases, the outdoor heat exchange 23
  • the refrigerant temperature Tco at the outlet of the outdoor heat exchanger 23 is changed even when the refrigerant temperature Tco at the outlet of the outdoor heat exchanger 23 changes (that is, the degree of refrigerant supercooling SCo at the outlet of the outdoor heat exchanger 23).
  • the superheat control is performed because the amount of refrigerant in the evaporator section C greatly affects the dryness of the refrigerant at the outlets of the indoor heat exchangers 42 and 52.
  • the degree of superheat SHr of the refrigerant at the outlet of the indoor heat exchanger 52 is controlled by controlling the opening degree of the indoor expansion valves 41 and 51, so that the gas side of the indoor heat exchangers 42 and 52 (hereinafter referred to as refrigerant amount determination operation).
  • the superheat degree SHr of the refrigerant in the indoor heat exchangers 42 and 52 is made constant at the superheat target value SHrs (that is, the gas refrigerant at the outlets of the indoor heat exchangers 42 and 52 is used). The state of the refrigerant flowing in the evaporator section C is stabilized.
  • the state of the refrigerant circulating in the refrigerant circuit 10 is stabilized, and the distribution of the refrigerant amount in the refrigerant circuit 10 becomes constant.
  • the refrigerant begins to be charged, it is possible to create a state in which the change in the refrigerant amount in the refrigerant circuit 10 mainly appears as a change in the refrigerant amount in the outdoor heat exchanger 23 (hereinafter, this operation is performed). Is the refrigerant quantity determination operation).
  • control unit 8 (more specifically, the indoor side control units 47 and 57, the outdoor side control unit 37, and the control unit 37 that function as a refrigerant amount determination operation control unit that performs the refrigerant amount determination operation.
  • 47, 57 is performed as a process of step S11 by the transmission line 8a) connecting between them.
  • step S12 additional refrigerant charging is performed in the refrigerant circuit 10 while performing the above-described refrigerant amount determination operation.
  • the additional charging of the refrigerant in step S12 is performed by the control unit 8 functioning as the refrigerant amount calculating means.
  • the refrigerant amount in the refrigerant circuit 10 is calculated from the refrigerant flowing through the refrigerant circuit 10 at the time or the operating state quantity of the component equipment.
  • the refrigerant quantity calculating means calculates the refrigerant quantity in the refrigerant circuit 10 by dividing the refrigerant circuit 10 into a plurality of parts and calculating the refrigerant quantity for each of the divided parts. More specifically, for each of the divided parts, a relational expression between the refrigerant amount of each part and the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is set. By using it, the amount of refrigerant in each part can be calculated.
  • the refrigerant circuit 10 includes the four-way switching valve 22 in the state indicated by the solid line in FIG.
  • compressor 21 including four-way switching valve 22 and accumulator 24 (Hereinafter referred to as the low pressure gas pipe section H) and the low pressure gas pipe section H including the parts on the bypass refrigerant circuit side of the bypass expansion valve 62 and the subcooler 25 from the high temperature side liquid pipe section B1 in the liquid refrigerant circulation section B.
  • the relational expression is set for each part. Next, the relational expressions set for each part will be described.
  • the relational expression between the refrigerant amount Mogl in the high-pressure gas pipe E and the operating state quantity of the refrigerant or the component device flowing through the refrigerant circuit 10 is, for example,
  • This is expressed as a functional expression obtained by multiplying the volume Vogl of the high-pressure gas pipe E of the outdoor unit 2 by the refrigerant density / 0 d in the high-pressure gas pipe E.
  • the volume Vogl of the high-pressure gas pipe E is a known value of the front force at which the outdoor unit 2 is installed at the installation location, and is stored in advance in the memory of the control unit 8.
  • the density of the refrigerant in the high-pressure gas pipe E can be obtained by converting the discharge temperature Td and the discharge pressure Pd.
  • the relational expression between the refrigerant quantity Mc in the condenser part A and the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is, for example,
  • Mc kcl XTa + kc2 XTc + kc3 X SHm + kc4 XWc
  • the outdoor temperature Ta, the condensation temperature Tc, the compressor discharge superheat SHm, the refrigerant circulation rate Wc, the saturated liquid density pc of the refrigerant in the outdoor heat exchanger 23, and the refrigerant density P at the outlet of the outdoor heat exchanger 23 It is expressed as a function expression of co.
  • the parameters kcl to kc7 in the above relational expression are obtained by regression analysis of the results of tests and detailed simulations, and are stored in the memory of the control unit 8 in advance.
  • the compressor discharge superheat degree S Hm is the refrigerant superheat degree on the discharge side of the compressor.
  • the discharge pressure Pd is converted to the refrigerant saturation temperature value, and the discharge temperature Td force is subtracted from the refrigerant saturation temperature value.
  • the saturated liquid density pc of the refrigerant can be obtained by converting the condensation temperature Tc.
  • the refrigerant density p co at the outlet of the outdoor heat exchanger 23 is obtained by converting the condensation pressure Pc obtained by converting the condensation temperature Tc and the refrigerant temperature Tco.
  • the volume Voll of the high-pressure liquid pipe section B1 is a known value of the front force at which the outdoor unit 2 is installed at the installation location, and is stored in the memory of the control section 8 in advance.
  • the relational expression between the refrigerant quantity Mol2 in the low temperature liquid pipe part B2 and the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is, for example,
  • the refrigerant density p lp in the cryogenic liquid pipe section B2 is the refrigerant density at the outlet of the subcooler 25, and is obtained by converting the condensation pressure Pc and the refrigerant temperature Tip at the outlet of the subcooler 25. It is done.
  • volume Vlp of the liquid refrigerant communication pipe 6 is a refrigerant pipe that is installed locally when the liquid refrigerant communication pipe 6 is installed at the installation location of the air conditioner 1 at a place such as a building. Enter the value calculated locally from the information, etc. At this time, the information power of the liquid refrigerant communication pipe 6 that has been input is also calculated by the control unit 8, or is calculated using the operation result of the pipe volume determination operation as described later.
  • Mr krl XTlp + kr2 X AT + kr3 X SHr + kr4 XWr + kr5
  • the refrigerant temperature Tlp at the outlet of the supercooler 25 is expressed as a function expression of the air volume Wr.
  • the parameters krl to kr5 in the above relational expression are obtained by regression analysis of the results of the test and detailed simulation, and are stored in the memory of the control unit 8 in advance.
  • the relational expression of the refrigerant amount Mr is set corresponding to each of the two indoor units 4 and 5, and the refrigerant amount Mr of the indoor unit 4 and the refrigerant amount Mr of the indoor unit 5 are added. As a result, the total amount of refrigerant in the indoor unit F is calculated. If the indoor unit 4 and the indoor unit 5 have different models and capacities, the relational forces S with different values of the parameters krl to kr5 will be used.
  • volume Vgp of the gas refrigerant communication pipe 7 is the refrigerant installed at the site when the gas refrigerant communication pipe 7 installs the air conditioner 1 at the installation location of the building, etc., like the liquid coolant communication pipe 6.
  • the refrigerant density p gp in the gas refrigerant pipe connecting portion G is equal to the refrigerant density P s on the suction side of the compressor 21 and the outlets of the indoor heat exchangers 42 and 52 (that is, the inlet of the gas refrigerant connecting pipe 7). This is the average value with the density p eo of the refrigerant.
  • the density ps of refrigerant is the suction pressure Ps and the suction temperature.
  • the refrigerant density p eo is obtained by converting the evaporation pressure Pe, which is the conversion value of the evaporation temperature Te, and the outlet temperature Teo of the indoor heat exchangers 42, 52.
  • volume Vog2 of the low-pressure gas pipe H in the outdoor unit 2 is a known value of the pre-force that is shipped to the installation location, and is stored in the memory of the controller 8 in advance.
  • the relational expression between the refrigerant amount Mob in the no-pass circuit section I and the operation state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is, for example,
  • Mob kobl X co + kob2 X ps + kob3 X Pe + kob4
  • the refrigerant density p co at the outlet of the outdoor heat exchanger 23, the refrigerant density p s at the outlet of the subcooler 25 on the bypass circuit side, and the evaporation pressure Pe are expressed as functional expressions.
  • the parameters kobl to kob3 in the above relational expression are obtained by regression analysis of the results of tests and detailed simulations, and are stored in the memory of the control unit 8 in advance.
  • the volume Mob of the bypass circuit part I may be smaller than the other parts, and may be calculated by a simpler relational expression. For example,
  • the volume Vob of the bypass circuit section I is also a known value of the front force at which the outdoor unit 2 is installed at the installation location, and is stored in the memory of the control section 8 in advance.
  • the saturated liquid density pe in the portion on the bypass circuit side of the subcooler 25 can be obtained by converting the suction pressure Ps or the evaporation temperature Te.
  • the number of the outdoor units 2 is one.
  • the refrigerant amounts relating to the outdoor units Mogl, Mc, Moll, Mol2, Mog2 And Mob a relational expression of the refrigerant amount of each part is set corresponding to each of the plurality of outdoor units, and by adding the refrigerant amount of each part of the plurality of outdoor units, all refrigerants in the outdoor unit are added. The amount is calculated.
  • the relational expression for the refrigerant amount of each part with different parameter values is used.
  • the refrigerant flowing through the refrigerant circuit 10 in the refrigerant quantity determination operation or the operating state quantity of the component device is calculated.
  • the refrigerant amount of the refrigerant circuit 10 can be calculated.
  • step S12 Since this step S12 is repeated until a condition for determining whether the refrigerant amount is appropriate in step S13, which will be described later, is satisfied, the refrigerant is charged until the additional charging of the refrigerant is started and the force is completed.
  • the amount of refrigerant in each part is calculated. More specifically, the refrigerant amount Mo in the outdoor unit 2 and the refrigerant amount Mr in each of the indoor units 4 and 5 necessary for determining whether or not the refrigerant amount is appropriate in step S 13 described later (that is, the refrigerant communication pipe 6, The refrigerant amount of each part of the refrigerant circuit 10 excluding 7 is calculated.
  • the refrigerant quantity Mo in the outdoor unit 2 is calculated by calculating the power of the refrigerant quantities Mogl, Mc, Moll, Mol2, Mog2 and Mob in each part in the outdoor unit 2 described above. .
  • control unit 8 that functions as the refrigerant amount calculating means for calculating the refrigerant amount of each part of the refrigerant circuit 10 from the refrigerant flowing in the refrigerant circuit 10 or the operating state quantity of the component device in the refrigerant automatic charging operation, performs step S. 12 processes are performed.
  • the refrigerant amount in the refrigerant circuit 10 gradually increases.
  • the amount of refrigerant to be filled in the refrigerant circuit 10 after the additional charging of the refrigerant cannot be defined as the refrigerant amount of the refrigerant circuit 10 as a whole.
  • the optimum amount of refrigerant in the outdoor unit 2 in the normal operation mode is confirmed through tests and detailed simulations.
  • the refrigerant amount is stored in advance in the memory of the control unit 8 as the charging target value Ms, and the refrigerant or the component device that flows in the refrigerant circuit 10 in the automatic refrigerant charging operation using the relational expression described above.
  • the value of the refrigerant amount obtained by adding the refrigerant amount Mo of the outdoor unit 2 and the refrigerant amount Mr of the indoor units 4 and 5 is also calculated until the target charge value Ms is reached. Will do. That is, step S13 determines whether or not the refrigerant amount value obtained by adding the refrigerant amount Mo of the outdoor unit 2 and the refrigerant amounts Mr of the indoor units 4 and 5 in the automatic refrigerant charging operation has reached the charging target value Ms. This determination is a process for determining whether or not the amount of refrigerant charged in the refrigerant circuit 10 by additional charging of the refrigerant is appropriate.
  • step S13 the additional charging of the refrigerant in which the refrigerant amount value obtained by adding the refrigerant amount Mo of the outdoor unit 2 and the refrigerant amount Mr of the indoor units 4 and 5 is smaller than the charging target value Ms is completed. If not, the process of step S13 is repeated until the filling target value Ms is reached. In addition, when the refrigerant amount value obtained by adding the refrigerant amount Mo of the outdoor unit 2 and the refrigerant amount Mr of the indoor units 4 and 5 reaches the charging target value Ms, the additional charging of the refrigerant is completed and the refrigerant automatic Step S1 as the filling operation process is completed.
  • the charging target value Ms is set to the value of the outdoor unit 2 that is not the outdoor unit 2 and the indoor units 4 and 5.
  • the charging target value Ms is set to the value of the outdoor unit 2 that is not the outdoor unit 2 and the indoor units 4 and 5.
  • the refrigerant amount determination unit functions to determine whether or not the refrigerant amount in the refrigerant circuit 10 in the refrigerant amount determination operation of the automatic refrigerant charging operation is appropriate (that is, whether or not the charging target value Ms has been reached).
  • the control unit 8 performs the process of step S13.
  • Step S2 Pipe volume judgment operation
  • step S1 When the above-described automatic refrigerant charging operation in step S1 is completed, the process proceeds to the pipe volume determination operation in step S2.
  • the control unit 8 performs the steps shown in FIG. Steps S21 to S25 are performed.
  • FIG. 6 is a flow chart of the pipe volume judgment operation.
  • Step S21 the indoor unit 100% operation and condensation are performed in the same manner as the refrigerant amount judgment operation in step S11 in the above-described automatic refrigerant charging operation.
  • Perform pipe volume judgment operation for liquid refrigerant communication pipe 6 including pressure control, liquid pipe temperature control, superheat control and evaporation pressure control.
  • the refrigerant temperature at the outlet of the main refrigerant circuit of the subcooler 25 in the liquid pipe temperature control is set as the first target value Tlpsl
  • the refrigerant amount judgment operation is performed with the first target value Tlpsl.
  • the stable state is the first state (see the refrigeration cycle indicated by the line including the broken line in Fig. 7).
  • FIG. 7 is a Mollier diagram showing the refrigeration cycle of the air-conditioning apparatus 1 in the pipe volume determination operation for the liquid refrigerant communication pipe.
  • the refrigerant amount Mlp in the liquid refrigerant communication pipe part B3 in the second state Will decrease compared to the amount of refrigerant in the first state. Then, the refrigerant decreased from the liquid refrigerant communication pipe part B3 moves to the other part of the refrigerant circuit 10.
  • the equipment control conditions other than the liquid pipe temperature control are not changed, so that the refrigerant amount Mogl in the high pressure gas pipe E and the refrigerant in the low pressure gas pipe H
  • the amount of refrigerant Mog2 and the refrigerant amount Mgp in the gas refrigerant communication pipe part G are kept almost constant, and the refrigerant decreased from the liquid refrigerant communication pipe part B3 is the condenser part A, the high temperature liquid pipe part Bl, the low temperature liquid pipe part B2, It will move to indoor unit F and bypass circuit I. That is, the condenser section is equivalent to the amount of refrigerant reduced from the liquid refrigerant communication pipe section B3.
  • Refrigerant amount Mc in A refrigerant amount Moll in high-temperature liquid pipe part Bl, refrigerant quantity Mol2 in low-temperature liquid pipe part B2, refrigerant quantity Mr in indoor unit part F, and refrigerant quantity Mob in bypass circuit part I increase It will be.
  • control unit 8 (more specifically, the chamber functioning as the pipe volume determination operation control means for performing the pipe volume determination operation for calculating the volume Mlp of the liquid refrigerant communication pipe unit 6. This is performed as the process of step S21 by the transmission line 8a) connecting the inner control units 47, 57, the outdoor control unit 37, and the control units 37, 47, 57.
  • step S22 the liquid cooling medium is utilized by utilizing the phenomenon that the refrigerant is decreased from the liquid refrigerant communication pipe section B3 and moves to the other part of the refrigerant circuit 10 due to the change from the first state to the second state. Calculate the volume Vlp of connecting pipe 6.
  • the amount of refrigerant that has decreased from the liquid refrigerant communication piping section B3 and moved to the other part of the refrigerant circuit 10 by the pipe volume determination operation described above is defined as the refrigerant increase / decrease amount ⁇ Mlp, and each part between the first and second states If the amount of increase / decrease in refrigerant is A Mc, ⁇ ⁇ 11, ⁇ ⁇ 12, A Mr, and ⁇ Mob (here, the amount of refrigerant Mogl, the amount of refrigerant Mog2, and the amount of refrigerant Mgp are omitted because they are kept almost constant)
  • the quantity ⁇ Mlp is, for example,
  • ⁇ Mlp — ( ⁇ Mc + ⁇ Moll + ⁇ ⁇ 12 + ⁇ Mr + ⁇ Mob)
  • the functional force It is possible to calculate the functional force. Then, by dividing the value of ⁇ Mlp by the refrigerant density change ⁇ pip between the first and second states in the liquid refrigerant communication pipe 6, the volume Vlp of the liquid refrigerant communication pipe 6 can be calculated. It can. Note that although the calculation result of the refrigerant increase / decrease amount ⁇ Mlp is hardly affected, the refrigerant amount Mogl and the refrigerant amount Mog2 may be included in the above-described functional expression.
  • Vlp ⁇ Mlp / ⁇ lp
  • a Mc, ⁇ ⁇ 11, ⁇ ⁇ 12, A Mr, and A Mob are used to calculate the refrigerant amount in the first state and the refrigerant amount in the second state using the relational expressions for each part of the refrigerant circuit 10 described above. Further, the amount of refrigerant in the second state is obtained by subtracting the amount of refrigerant in the first state, and the density change amount ⁇ lp is the amount of refrigerant at the outlet of the subcooler 25 in the first state. Calculate the density and the refrigerant density at the outlet of the subcooler 25 in the second state, Further, the density force of the refrigerant in the second state is obtained by subtracting the density of the refrigerant in the first state.
  • the volume Vlp of the liquid refrigerant communication pipe 6 can be calculated from the refrigerant flowing through the refrigerant circuit 10 in the first and second states or the operating state quantity of the component equipment using the arithmetic expression as described above.
  • the state is changed so that the second target value Tlps2 in the second state is higher than the first target value Tlpsl in the first state, and the refrigerant in the liquid refrigerant communication pipe section B2 is changed.
  • the amount of refrigerant in the other part is increased by moving the part to the other part, and the volume Vlp of the increased force liquid refrigerant communication pipe 6 is calculated.
  • the second target value Tlps2 in the second state is Change the state so that the temperature is lower than the first target value Tlpsl in 1 state, and move the refrigerant from the other part to the liquid refrigerant communication pipe part B3 to reduce the amount of refrigerant in the other part, From this decrease, the volume Vlp of the liquid refrigerant communication pipe 6 may be calculated.
  • the volume Vlp of the liquid refrigerant communication pipe 6 is calculated from the refrigerant flowing in the refrigerant circuit 10 in the pipe volume determination operation for the liquid refrigerant communication pipe 6 or the operating state quantity of the component equipment.
  • Pipe for the liquid refrigerant communication pipe The process of step S22 is performed by the control unit 8 functioning as a volume calculating means.
  • Step S23, S24 Pipe volume determination operation and volume calculation for gas refrigerant communication pipe
  • Step S23 all indoor units are operated, condensation pressure control, liquid Pipe volume judgment operation for gas refrigerant communication pipe 7 including pipe temperature control, superheat control and evaporation pressure control is performed.
  • the low pressure target value Pes of the suction pressure Ps of the compressor 21 in the evaporation pressure control is set as the first target value Pesl
  • the state in which the refrigerant amount determination operation is stable at the first target value Pesl is set as the first state.
  • FIG. 8 is a Mollier diagram showing the refrigeration cycle of the air conditioner 1 in the pipe volume determination operation for the gas refrigerant communication pipe.
  • the low pressure target value Pes of the suction pressure Ps of the compressor 21 in the evaporation pressure control is stable at the first target value Pesl, other equipment control, that is, liquid pipe temperature control, condensation pressure control and The conditions for superheat control are not changed (ie, liquid tube temperature Without changing the target value Tips or superheat degree target value SHrs)
  • the low pressure target value Pes is changed to the second target value Pes2, which is different from the first target value Pesl, to achieve a stable second state (solid line in Fig. 8). See refrigeration cycle shown only in In the present embodiment, the second target value Pes2 is a pressure lower than the first target value Pesl.
  • the device control conditions other than the evaporation pressure control are changed, so that the refrigerant amount Mogl in the high-pressure gas pipe section E, the high-temperature liquid pipe section Refrigerant amount Moll in B1, refrigerant amount Mol2 in low-temperature liquid pipe section B2 and liquid Refrigerant communication pipe section B3 Refrigerant quantity Mlp is kept almost constant and gas refrigerant communication pipe section G It will move to pipe H, condenser A, indoor unit F and binos circuit I.
  • the refrigerant amount Mog2 in the low-pressure gas pipe part H, the refrigerant quantity Mc in the condenser part A, the refrigerant quantity Mr in the indoor unit part F, and the binos circuit part I by the amount of refrigerant reduced from the gas refrigerant communication pipe part G Refrigerant amount Mob will increase.
  • control unit 8 (more specifically, indoor side) that functions as a pipe volume determination operation control means for performing a pipe volume determination operation for calculating the volume Vgp of the gas refrigerant communication pipe 7. This is performed as the process of step S23 by the control unit 47, 57, the outdoor control unit 37, and the transmission line 8a) connecting the control units 37, 47, 57.
  • step S24 by changing from the first state to the second state, the gas refrigerant communication piping part G force also uses the phenomenon that the refrigerant decreases and moves to the other part of the refrigerant circuit 10 to connect the gas refrigerant. Calculate the volume Vgp of pipe 7.
  • refrigerant increase / decrease amount ⁇ Mgp The amount of refrigerant that has decreased from the gas refrigerant communication piping part G and moved to the other part of the refrigerant circuit 10 by the pipe volume determination operation described above is defined as the refrigerant increase / decrease amount ⁇ Mgp, and each part between the first and second states Increase or decrease the amount of refrigerant in A Mc, A Mog2, A Mr, and ⁇
  • Mob refrigerant amount Mogl, refrigerant amount Moll, refrigerant amount Mol2 and refrigerant amount Mlp are kept almost constant
  • refrigerant increase / decrease amount A Mgp is, for example,
  • a Mgp -(A Mc + A Mog2 + A Mr + A Mob)
  • a Mc, A Mog2, ⁇ Mr, and ⁇ Mob calculate the refrigerant amount in the first state and the refrigerant amount in the second state using the relational expressions for the respective parts of the refrigerant circuit 10 described above, and
  • the refrigerant quantity power in the second state is obtained by subtracting the refrigerant quantity in the first state
  • the density change amount ⁇ p gp is the refrigerant density ps on the suction side of the compressor 21 in the first state and the indoor heat exchanger. It is obtained by calculating the average density with the refrigerant density p eo at the outlets 42 and 52 and subtracting the average density in the first state from the average density in the second state.
  • the volume Vgp of the gas refrigerant communication pipe 7 can be calculated from the refrigerant flowing through the refrigerant circuit 10 in the first and second states or the operation state quantity of the component equipment in the first and second states using the above arithmetic expression.
  • the state is changed so that the second target value Pes2 in the second state is lower than the first target value Pesl in the first state and the pressure is changed, and the cooling of the gas refrigerant communication pipe section G is performed.
  • the amount of refrigerant in the other part is increased by moving the medium to the other part, and this increased force also calculates the volume Vlp of the gas refrigerant communication pipe 7, but the second target value Pes2 in the second state is Change the state so that the pressure is higher than the first target value Pesl in the first state, and move the refrigerant from the other part to the gas refrigerant communication pipe part G to reduce the amount of refrigerant in the other part. Calculate the volume Vlp of the gas refrigerant communication pipe 7 from this decrease.
  • step S24 is performed by the control unit 8 that functions as a pipe volume calculating means for the gas refrigerant communication pipe 7 that calculates the volume Vgp of the gas refrigerant communication pipe 7 from the flowing refrigerant or the operating state quantity of the component equipment.
  • Step S25 Determining the validity of the pipe volume judgment operation result
  • step S25 whether or not the result of the pipe volume determination operation is appropriate, that is, the refrigerant communication pipes 6 and 7 calculated by the pipe volume calculation means. It is determined whether the volume of Vlp and Vgp is reasonable.
  • ⁇ 1 and ⁇ 2 are values that can be varied based on the minimum value and the maximum value of the pipe volume ratio in a feasible combination of the heat source unit and the utilization unit.
  • step S2 which is effective for the pipe volume determination operation is completed, and when the volume ratio VlpZVgp does not satisfy the above numerical range, the step is repeated.
  • the pipe volume determination operation and the volume calculation process in S21 to Step S24 are performed.
  • step S25 is performed by the control unit 8 functioning as validity determination means for determining whether or not there is.
  • the pipe volume judgment operation (steps S 21 and S22) for the liquid refrigerant communication pipe 6 is performed first, and then the pipe volume judgment for the gas refrigerant communication pipe 7 is performed.
  • the operation (steps S23 and S24) is performed, the pipe volume determination operation for the gas refrigerant communication pipe 7 may be performed first.
  • step S25 when the result of the pipe volume determination operation in steps S21 to S24 is determined a plurality of times as inappropriate, or the refrigerant communication distribution is simplified.
  • step S25 it is determined that the result of the pipe volume determination operation in steps S21 to S24 is not valid.
  • the pipe length of the refrigerant communication pipes 6 and 7 is estimated from the pressure loss in the refrigerant communication pipes 6 and 7, and the volumes Vlp and Vgp of the refrigerant communication pipes 6 and 7 are calculated from the estimated pipe length and the average volume ratio. It is also possible to obtain the volumes Vlp and Vgp of the refrigerant communication pipes 6 and 7 by shifting to the process of calculating.
  • the length of the refrigerant communication pipes 6 and 7 has no information such as the pipe diameter.
  • the volume of the refrigerant communication pipes 6 and 7 is assumed to be unknown, assuming that the volumes Vlp and Vgp are unknown.
  • Judgment Force is described to calculate the volume Vlp and Vgp of refrigerant communication pipes 6 and 7, and the pipe volume calculation means inputs information such as the length of refrigerant communication pipes 6 and 7 and the pipe diameter. If it has a function to calculate the volume Vlp and Vgp of the refrigerant communication pipes 6 and 7, this function may be used together.
  • the length of the refrigerant communication pipes 6 and 7 is information such as the pipe diameter. If only the function to calculate the volume Vlp and Vgp of the refrigerant communication pipes 6 and 7 is used, the appropriate refrigerant determination pipe (step S25) is used to input the refrigerant communication pipe 6 If the length is 7, it may be determined whether the information such as the tube diameter is appropriate.
  • Step S3 Initial refrigerant quantity detection operation
  • FIG. 9 is a flowchart of the initial refrigerant quantity detection operation.
  • Step S31 Refrigerant amount judgment operation
  • step S31 similar to the refrigerant amount determination operation in step S11 of the above-described automatic refrigerant charging operation, the refrigerant amount determination operation including all indoor unit operations, condensation pressure control, liquid pipe temperature control, superheat degree control, and evaporation pressure control is performed. Is done.
  • the low pressure target value Pes in principle is the same value as the target value in the refrigerant quantity determination operation in step S11 of the automatic refrigerant charging operation.
  • control unit 8 functioning as the refrigerant amount determination operation control means for performing the refrigerant amount determination operation including the indoor unit total number operation, the condensation pressure control, the liquid pipe temperature control, the superheat degree control, and the evaporation pressure control. Then, the process of step S31 is performed.
  • control unit 8 that functions as the refrigerant amount calculation means while performing the refrigerant amount determination operation described above, the refrigerant flowing from the refrigerant circuit 10 in the initial refrigerant amount determination operation in step S32 or the operation state amount of the component device is used.
  • the amount of refrigerant in the refrigerant circuit 10 is calculated using a relational expression between the amount of refrigerant in each part of the refrigerant circuit 10 described above and the operating state amount of the refrigerant flowing through the refrigerant circuit 10 or the constituent devices.
  • the volume Vlp and Vgp of the refrigerant communication pipes 6 and 7 that were unknown after the installation of the components of the air conditioner 1 are calculated and known by the above-described pipe volume determination operation.
  • Refrigerant communication pipes 6 and 7 volumes Vlp and Vgp are multiplied by the refrigerant density to calculate refrigerant amounts Mlp and Mgp in refrigerant communication pipes 6 and 7, and the refrigerant quantities in the other parts are calculated.
  • the initial refrigerant amount of the entire refrigerant circuit 10 can be detected.
  • This initial refrigerant quantity is used as a reference refrigerant quantity Mi for the refrigerant circuit 10 as a reference for determining the presence or absence of leakage from the refrigerant circuit 10 in the refrigerant leakage detection operation described later. Is stored in the memory of the control unit 8 as state quantity storage means.
  • step S32 the control that functions as the refrigerant amount calculating means for calculating the refrigerant amount in each part of the refrigerant circuit 10 from the refrigerant flowing in the refrigerant circuit 10 in the initial refrigerant amount detection operation or the operation state quantity of the constituent devices.
  • the process of step S32 is performed by the unit 8.
  • FIG. 10 is a flowchart of the refrigerant leak detection operation mode.
  • Step S41 Refrigerant amount judgment operation
  • the refrigerant leak detection operation mode is automatically or manually changed from the normal operation mode.
  • the refrigerant quantity judgment operation including the indoor unit total number operation, the condensation pressure control, the liquid pipe temperature control, the superheat degree control, and the evaporation pressure control is performed.
  • the liquid pipe temperature target value Tlps in the liquid pipe temperature control, the superheat degree target value SHrs in the superheat degree control, and the low pressure target value Pes in the evaporation pressure control are, in principle, the refrigerant quantity judgment operation in the initial refrigerant quantity detection operation. The same value as the target value in step S31 is used.
  • This refrigerant quantity determination operation is performed for each refrigerant leakage detection operation.For example, if the condensation pressure Pc is different, refrigerant leakage occurs! Even if the refrigerant temperature Tco at the outlet of the outdoor heat exchanger 23 fluctuates due to the liquid pipe temperature control, the refrigerant temperature Tip in the liquid refrigerant communication pipe 6 is kept constant at the same liquid pipe temperature target value Tips. It will be.
  • control unit 8 functioning as the refrigerant amount determination operation control means for performing the refrigerant amount determination operation including the indoor unit total number operation, the condensation pressure control, the liquid pipe temperature control, the superheat degree control, and the evaporation pressure control, performs step S41. Is performed.
  • control unit 8 that functions as the refrigerant quantity calculation means while performing the refrigerant quantity determination operation described above, the refrigerant from the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device in the refrigerant leakage detection operation in step S42.
  • the refrigerant amount in the refrigerant circuit 10 is calculated using a relational expression between the refrigerant amount of each part of the refrigerant circuit 10 and the operation state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device.
  • the volumes Vlp and Vgp of the refrigerant communication pipes 6 and 7 that were unknown after the installation of the components of the air conditioner 1 are calculated by the above-described pipe volume determination operation as in the initial refrigerant amount determination operation. Therefore, the refrigerant volumes Mlp and Mgp in the refrigerant communication pipes 6 and 7 are calculated by multiplying the volumes Vlp and Vgp of the refrigerant communication pipes 6 and 7 by the density of the refrigerant. Refrigerant amount M of refrigerant circuit 10 as a whole by adding the refrigerant amounts of other parts Can be calculated.
  • the liquid refrigerant communication pipe section The refrigerant amount Mlp in B3 is kept constant even when the refrigerant temperature Tco fluctuates at the outlet of the outdoor heat exchanger 23, regardless of the operating conditions of the refrigerant leak detection operation.
  • control unit 8 that functions as the refrigerant amount calculating means for calculating the refrigerant amount of each part of the refrigerant circuit 10 from the refrigerant flowing in the refrigerant circuit 10 or the operating state quantity of the component device in the refrigerant leakage detection operation causes the step S42. Is performed.
  • Steps S43, S44 Judgment of appropriateness of refrigerant amount, warning display
  • the refrigerant amount M of the entire refrigerant circuit 10 calculated in step S42 described above is the reference refrigerant amount MU detected in the initial refrigerant amount detection operation when refrigerant leakage from the refrigerant circuit 10 occurs. If the refrigerant leaks from the refrigerant circuit 10 and becomes V, in this case, it becomes almost the same value as the reference refrigerant amount Mi.
  • step S43 it is determined whether or not refrigerant has leaked. If it is determined in step S43 that no refrigerant leaks from the refrigerant circuit 10, the refrigerant leak detection operation mode is terminated.
  • step S43 if it is determined in step S43 that refrigerant has leaked from the refrigerant circuit 10, the process proceeds to step S44, and a warning is sent to the warning display unit 9 informing that the refrigerant has been detected. After the display, the refrigerant leak detection operation mode is terminated.
  • the refrigerant amount determination means for detecting the presence or absence of refrigerant leakage by determining whether or not the refrigerant amount in the refrigerant circuit 10 is appropriate while performing the refrigerant amount determination operation in the refrigerant leakage detection operation mode.
  • the processing of steps S42 to S44 is performed by the control unit 8 that functions as one refrigerant leakage detection means.
  • the control unit 8 includes the refrigerant amount determination operation means, the refrigerant amount calculation means, the refrigerant amount determination means, the pipe volume determination operation means, the pipe volume calculation means, A refrigerant amount determination system for determining the suitability of the amount of refrigerant charged in the refrigerant circuit 10 by functioning as a validity determination unit and a state quantity storage unit is configured.
  • the air conditioner 1 of the present embodiment has the following features.
  • the refrigerant circuit 10 is divided into a plurality of parts, and a relational expression between the refrigerant amount and the operating state quantity of each part is set. Compared to the simulation, the calculation load can be reduced, and the operating state quantity important for calculating the refrigerant amount in each part can be selectively captured as a variable in the relational expression. The calculation accuracy of the refrigerant amount is also improved, and as a result, the suitability of the refrigerant amount in the refrigerant circuit 10 can be determined with high accuracy.
  • control unit 8 serving as the refrigerant amount calculation means uses the relational expression to calculate the refrigerant flowing through the refrigerant circuit 10 or the operating state quantity force of the constituent device in the refrigerant automatic charging operation in which the refrigerant is filled in the refrigerant circuit 10. Also, the amount of refrigerant in each part can be calculated quickly.
  • control unit 8 serving as the refrigerant amount determining means uses the calculated refrigerant amount of each part to calculate the refrigerant amount in the refrigerant circuit 10 (specifically, the refrigerant amount Mo in the outdoor unit 2 and the indoor unit 4, It is possible to determine with high accuracy whether or not the value obtained by adding the refrigerant amount Mr in 5) has reached the charging target value Ms.
  • control unit 8 uses the relational expression to determine whether the refrigerant flowing through the refrigerant circuit 10 in the initial refrigerant amount detection operation in which the initial refrigerant amount is detected after the component device is installed or after the refrigerant circuit 10 is filled with the refrigerant or By calculating the refrigerant amount of each part from the operation state quantities of the component devices, the initial refrigerant amount as the reference refrigerant amount Mi can be quickly calculated. Also, the initial cooling amount can be detected with high accuracy.
  • control unit 8 uses the relational expression to determine whether or not refrigerant has leaked from the refrigerant circuit 10, and to operate the refrigerant or the component device that flows through the refrigerant circuit 10 in the refrigerant leakage detection operation.
  • the state quantity force can also quickly calculate the amount of refrigerant in each part.
  • the control unit 8 also increases the presence or absence of refrigerant leakage from the refrigerant circuit 10 by comparing the calculated refrigerant amount of each part with the reference refrigerant amount Mi that serves as a reference for determining the presence or absence of leakage. The accuracy can be determined.
  • the refrigerant circuit 10 is connected to the refrigerant communication pipes 6 and 7 in which the amount of refrigerant changes depending on conditions such as the installation location (that is, the liquid refrigerant communication pipe part B3 and the gas refrigerant communication pipe part G).
  • parts other than refrigerant communication pipes 6 and 7 here, outdoor unit 2 as a heat source unit and indoor units 4 and 5 as a use unit
  • the relational expression for calculating the refrigerant amount in parts other than the refrigerant communication pipes 6 and 7 use the relational expression that is unlikely to cause calculation errors due to changes in the refrigerant amount in the refrigerant communication pipes 6 and 7.
  • the parts other than the refrigerant communication pipes 6 and 7 are divided into the outdoor unit 2 and the indoor units 4 and 5, and the relational expression between the refrigerant quantity and the operating state quantity in each part. Therefore, even when the outdoor unit 2 and the indoor units 4 and 5 are connected in various combinations, the relational expressions prepared for each outdoor unit 2 or each indoor unit 4 and 5 are used. As a result, it is possible to further improve the determination accuracy of the suitability of the refrigerant amount in the refrigerant circuit 10.
  • the outdoor unit 2 is connected to a portion other than the outdoor heat exchanger 23 (that is, the condenser part A) as the heat source side heat exchanger and the outdoor heat exchanger 23 (here, the high-pressure gas pipe).
  • the refrigerant circulation amount Wc or the operation state amount equivalent to the refrigerant circulation amount Wc (e.g., the evaporation temperature Te or the condensation temperature). Tc, etc.) is included, so that calculation errors due to the difference in the refrigerant circulation amount Wc can be made less likely to occur. As a result, determination of the suitability of the refrigerant amount in the refrigerant circuit 10 can be made. The accuracy can be further improved.
  • the air flow rate Wr or the air flow rate Wr of the indoor fans 43 and 53 as the blower fan is used as the operating state amount used in the relational expression for calculating the refrigerant amount of the indoor units 4 and 5. Therefore, it is possible to make it difficult for calculation errors due to the difference in the air volume Wr to occur, and as a result, whether the refrigerant amount in the refrigerant circuit 10 is appropriate or not. The determination accuracy can be further improved.
  • the temperature adjustment mechanism that can adjust the temperature of the refrigerant sent from the outdoor heat exchanger 23 as a condenser to the indoor expansion valves 41 and 51 as an expansion mechanism.
  • a supercooler 25 is provided, and the temperature of the refrigerant sent to the indoor expansion valves 41 and 51 as the subcooler 25 force expansion mechanism during the refrigerant quantity judgment operation is fixed so that the tip temperature of the refrigerant is constant.
  • the refrigerant density p lp in the refrigerant piping from the subcooler 25 to the indoor expansion valves 41 and 51 is not changed, so that the condenser at the outlet of the outdoor heat exchanger 23 Even if the refrigerant temperature Tco changes each time the refrigerant quantity judgment operation is performed, the effect of such a difference in refrigerant temperature is contained only in the refrigerant pipe from the outdoor heat exchanger outlet to the subcooler 25. Therefore, when judging the amount of refrigerant, the outlet of the outdoor heat exchanger 23 Difference in temperature Tco of definitive refrigerant (i.e., the difference in density of the refrigerant) can be reduced decision error by.
  • the subcooler 25 is provided and the refrigerant in the liquid refrigerant communication pipe 6 is used during the refrigerant quantity judgment operation as described above.
  • the temperature of the subcooler 25 so that the tip is constant.
  • the outdoor heat exchanger 23 is used when judging the refrigerant amount.
  • the judgment error due to the difference in refrigerant temperature at the outlet Tco (that is, the difference in refrigerant density) can be reduced by J.
  • the initial refrigerant amount can be detected with high accuracy in the initial refrigerant amount detection operation in which the initial refrigerant amount is detected after the component device is installed or after the refrigerant circuit 10 is filled with the refrigerant.
  • the refrigerant leak detection operation for determining the presence or absence of refrigerant leakage from the refrigerant circuit 10
  • the presence or absence of refrigerant leakage from the refrigerant circuit 10 can be determined with high accuracy.
  • the refrigerant pressure (for example, the suction pressure Ps or the evaporation pressure Pe) sent to the compressor 21 from the indoor heat exchangers 42 and 52 as the evaporator during the refrigerant quantity determination operation or the pressure is equivalent.
  • the operating state quantity for example, the evaporation temperature Te
  • the density p gp of the refrigerant sent from the indoor heat exchanger 42, 52 to the compressor 21 is not changed. Therefore, when determining the refrigerant amount, it is possible to reduce the determination error due to the difference in the operating state quantity equivalent to the refrigerant pressure or pressure at the outlet of the indoor heat exchange 42, 52 (that is, the refrigerant density difference). it can.
  • a pipe volume determination operation that creates two states in which the density of the refrigerant flowing in the refrigerant communication pipes 6 and 7 is different is performed, and the increase / decrease amount of the refrigerant between these two states is determined by the refrigerant communication pipe.
  • the air conditioner 1 uses the volume of the refrigerant communication pipes 6 and 7 calculated by the pipe volume calculation means and the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component equipment. Since the suitability of the refrigerant amount can be determined, the suitability of the refrigerant amount in the refrigerant circuit 10 can be accurately determined even when the volume of the refrigerant communication pipes 6 and 7 is unknown after the components are installed. Can be determined.
  • the initial refrigerant quantity determination operation is performed using the volume of the refrigerant communication pipes 6 and 7 calculated by the pipe volume calculation means.
  • the amount of refrigerant in the refrigerant circuit 10 can be calculated.
  • the refrigerant leakage detection is performed using the volume of the refrigerant communication pipes 6 and 7 calculated by the pipe volume calculation means.
  • the amount of refrigerant in the refrigerant circuit 10 during operation can be calculated.
  • information on the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 (for example, the length of the refrigerant communication pipes 6 and 7 input by the operation results of the pipe volume determination operation, the operator, etc.) Calculate the volume Vlp and the gas refrigerant communication pipe 7 volume Vgp and the volume Vgp of the liquid refrigerant communication pipe 6 obtained from the calculation by calculating the volume Vlp and the gas refrigerant communication pipe 7 volume. Since the information of the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 used in the calculation is determined from the Vgp calculation results, it is determined that the information is correct.
  • volume Vgp of the liquid refrigerant communication pipe 6 and the volume Vgp of the gas refrigerant communication pipe 7 can be obtained and judged to be invalid, information on the appropriate liquid refrigerant communication pipe 6 and gas refrigerant communication pipe 7 Or re-execute the pipe volume judgment operation. It is possible to carry out the correspondence. However, the determination method is not to check the volume Vlp of the liquid refrigerant communication pipe 6 and the volume Vgp of the gas refrigerant communication pipe 7 obtained individually by calculation.
  • the liquid refrigerant communication pipe 7 is determined based on whether or not the capacity Vgp of the gas refrigerant communication pipe 7 satisfies the predetermined relationship, the liquid refrigerant communication pipe Appropriate judgment can be made in consideration of the relative relationship between the volume Vlp of 6 and the volume Vgp of the gas refrigerant communication pipe 7.
  • the present invention is applied to an air conditioner capable of switching between cooling and heating.
  • the present invention is not limited to this, and the present invention is applied to other air conditioners such as a cooling-only air conditioner. May be applied.
  • the example in which the present invention is applied to the air conditioner including one outdoor unit has been described.
  • the present invention is not limited to this, and the air conditioner includes a plurality of outdoor units. The present invention may be applied to an apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 演算負荷を抑えつつ、冷媒回路内の冷媒量の適否を高精度に判定できるようにする。空気調和装置(1)は、冷媒回路(10)と、冷媒量演算手段と、冷媒量判定手段とを備えている。冷媒回路(10)は、圧縮機(21)と室外熱交換器(23)と室内熱交換器(42、52)とが接続されることによって構成されている。冷媒量演算手段は、冷媒回路(10)を複数の部分に分割した場合における各部分の冷媒量と冷媒回路(10)を流れる冷媒又は構成機器の運転状態量との関係式を用いて、冷媒回路(10)を流れる冷媒又は構成機器の運転状態量から各部分の冷媒量を演算する。冷媒量判定手段は、冷媒量演算手段によって演算される各部分の冷媒量を用いて、冷媒回路(10)内の冷媒量の適否を判定する。

Description

明 細 書
空気調和装置
技術分野
[0001] 本発明は、空気調和装置の冷媒回路内の冷媒量の適否を判定する機能、特に、 圧縮機と熱源側熱交^^と膨張機構と利用側熱交 とが接続されることによって 構成される空気調和装置の冷媒回路内の冷媒量の適否を判定する機能に関する。 背景技術
[0002] 従来より、空気調和装置の冷媒回路内の冷媒量の過不足を判定するために、冷凍 サイクル特性のシミュレーションを行い、この演算結果を用いて、冷媒量の過不足を 判定する手法が提案されている (例えば、特許文献 1参照)。
特許文献 1:特開 2000— 304388号公報
発明の開示
[0003] しかし、上述のような冷凍サイクル特性のシミュレーションにより冷媒量の過不足を 判定する手法では、莫大な量の演算が必要であり、通常、空気調和装置に搭載され るマイコン等の安価な演算装置では演算時間が長くなつたり、また、演算そのものが 不可能になるおそれがある。
本発明の課題は、演算負荷を抑えつつ、冷媒回路内の冷媒量の適否を高精度に 判定できるようにすることにある。
[0004] 第 1の発明にかかる空気調和装置は、冷媒回路と、冷媒量演算手段と、冷媒量判 定手段とを備えている。冷媒回路は、圧縮機と熱源側熱交換器と利用側熱交換器と が接続されることによって構成されている。冷媒量演算手段は、冷媒回路を複数の部 分に分割した場合における各部分の冷媒量と冷媒回路を流れる冷媒又は構成機器 の運転状態量との関係式を用いて、冷媒回路を流れる冷媒又は構成機器の運転状 態量から各部分の冷媒量を演算する。冷媒量判定手段は、冷媒量演算手段によつ て演算される各部分の冷媒量を用いて、冷媒回路内の冷媒量の適否を判定する。
[0005] この空気調和装置では、冷媒回路を複数の部分に分割して、各部分の冷媒量と運 転状態量との関係式を設定して 、るため、従来のような冷凍サイクル特性のシミュレ ーシヨンを行う場合に比べて、演算負荷を抑えることができるとともに、各部分の冷媒 量を演算する上で重要な運転状態量を関係式の変数として選択的に取り込むことが できるため、各部分の冷媒量の演算精度も向上し、その結果、冷媒回路内の冷媒量 の適否を高精度に判定することができる。ここで、「冷媒回路を流れる冷媒又は構成 機器の運転状態量」とは、冷媒回路を流れる冷媒の温度や圧力等の状態量及び空 気調和装置を構成する機器の状態量を意味して!/ヽる。
[0006] 第 2の発明にかかる空気調和装置は、第 1の発明にかかる空気調和装置において 、冷媒回路は、圧縮機と熱源側熱交換器とを含む熱源ユニットと、利用側熱交換器を 含む利用ユニットと、熱源ユニットと利用ユニットとを接続する冷媒連絡配管とから構 成されている。関係式は、冷媒回路を、冷媒連絡配管と冷媒連絡配管以外の部分と に分割して設定されている。
[0007] この空気調和装置では、冷媒回路を、設置場所等の条件によって冷媒量が変化す る冷媒連絡配管と、冷媒連絡配管以外の部分とに分割して、各部分の冷媒量と運転 状態量との関係式を設定しているため、冷媒連絡配管以外の部分の冷媒量を演算 する関係式として、冷媒連絡配管の冷媒量変化による演算誤差が生じにくい関係式 を使用することができるようになり、その結果、冷媒回路内の冷媒量の適否の判定精 度をさらに向上させることができる。
[0008] 第 3の発明に力かる空気調和装置は、第 2の発明に力かる空気調和装置にお!、て 、関係式は、冷媒連絡配管以外の部分を、熱源ユニットと利用ユニットとに分割して 設定されている。
この空気調和装置では、冷媒連絡配管以外の部分を、熱源ユニットと利用ユニット とに分割して、各部分の冷媒量と運転状態量との関係式を設定しているため、種々 の組み合わせで熱源ユニットと利用ユニットとが接続される場合であっても、熱源ュ- ットごと又は利用ユニットごとに準備された関係式を使用することができるようになり、 その結果、冷媒回路内の冷媒量の適否の判定精度をさらに向上させることができる。
[0009] 第 4の発明に力かる空気調和装置は、第 3の発明に力かる空気調和装置にお!、て 、関係式は、熱源ユニットを、熱源側熱交^^と熱源側熱交 以外の部分とに分 割して設定されて!、る。熱源側熱交換器の冷媒量につ!、て設定された関係式には、 冷媒回路を流れる冷媒又は構成機器の運転状態量として、冷媒循環量又は冷媒循 環量に等価な運転状態量が含まれて!/、る。
この空気調和装置では、熱源ユニットを、熱源側熱交翻と熱源側熱交翻以外 の部分とに分割して、各部分の冷媒量と運転状態量との関係式を設定するとともに、 熱源側熱交^^の冷媒量を演算するための関係式に使用される運転状態量として、 冷媒循環量又は冷媒循環量に等価な運転状態量を含むようにしているため、冷媒 循環量の違いによる演算誤差を生じにくくすることができるようになり、その結果、冷 媒回路内の冷媒量の適否の判定精度をさらに向上させることができる。
[0010] 第 5の発明に力かる空気調和装置は、第 3又は第 4の発明に力かる空気調和装置 において、利用ユニットは、利用側熱交換器に空気を供給する送風ファンをさらに有 している。利用ユニットの冷媒量について設定された関係式には、冷媒回路を流れる 冷媒又は構成機器の運転状態量として、送風ファンの風量又は風量に等価な運転 状態量が含まれている。
この空気調和装置では、利用ユニットの冷媒量を演算するための関係式に使用さ れる運転状態量として、送風ファンの風量又は風量に等価な運転状態量を含むよう にして!/、るため、風量の違いによる演算誤差を生じにくくすることができるようになり、 その結果、冷媒回路内の冷媒量の適否の判定精度をさらに向上させることができる。
[0011] 第 6の発明にかかる空気調和装置は、第 1〜第 5の発明のいずれかにかかる空気 調和装置において、冷媒量演算手段は、関係式を用いて、冷媒回路内に冷媒を充 填する冷媒自動充填運転における冷媒回路を流れる冷媒又は構成機器の運転状 態量から各部分の冷媒量を演算する。冷媒量判定手段は、冷媒量演算手段によつ て演算される各部分の冷媒量を用いて、冷媒回路内の冷媒量が充填目標値に到達 した力どうかを判定する。
[0012] この空気調和装置では、冷媒自動充填運転の際に、冷媒量の演算を素早く行うこ とができ、し力も、冷媒回路内の冷媒量が充填目標値に到達した力どうかを高精度に 半 U定することができる。
[0013] 第 7の発明にかかる空気調和装置は、第 1〜第 6の発明のいずれかにかかる空気 調和装置において、冷媒量演算手段は、関係式を用いて、構成機器を設置した後 又は冷媒回路内に冷媒を充填した後の初期冷媒量を検知する初期冷媒量検知運 転における冷媒回路を流れる冷媒又は構成機器の運転状態量力 各部分の冷媒量 を演算することで、初期冷媒量を検知する。
この空気調和装置では、初期冷媒量検知運転の際に、冷媒量の演算を素早く行う ことができ、し力も、初期冷媒量を高精度に検知することができる。
[0014] 第 8の発明にかかる空気調和装置は、第 1〜第 7の発明のいずれかにかかる空気 調和装置において、冷媒量演算手段は、関係式を用いて、冷媒回路からの冷媒の 漏洩の有無を判定する冷媒漏洩検知運転における冷媒回路を流れる冷媒又は構成 機器の運転状態量から各部分の冷媒量を演算する。冷媒量判定手段は、冷媒量演 算手段によって演算される各部分の冷媒量と、漏洩の有無を判定する基準となる基 準冷媒量とを比較することで、冷媒回路力 の冷媒の漏洩の有無を判定する。
この空気調和装置では、冷媒漏洩検知運転の際に、冷媒量の演算を素早く行うこ とができ、し力も、冷媒回路力 の冷媒の漏洩の有無を高精度に判定することができ る。
図面の簡単な説明
[0015] [図 1]本発明の一実施形態に力かる空気調和装置の概略構成図である。
[図 2]空気調和装置の制御ブロック図である。
[図 3]試運転モードのフローチャートである。
[図 4]冷媒自動充填運転のフローチャートである。
[図 5]冷媒量判定運転における冷媒回路内を流れる冷媒の状態を示す模式図(四路 切換弁等の図示を省略)である。
[図 6]配管容積判定運転のフローチャートである。
[図 7]液冷媒連絡配管用の配管容積判定運転における空気調和装置の冷凍サイク ルを示すモリエル線図である。
[図 8]ガス冷媒連絡配管用の配管容積判定運転における空気調和装置の冷凍サイク ルを示すモリエル線図である。
[図 9]初期冷媒量判定運転のフローチャートである。
[図 10]冷媒漏洩検知運転モードのフローチャートである。 符号の説明
1 空気調和装置
2 室外ユニット (熱源ユニット)
4、 5 室内ユニット (利用ユニット)
6 液冷媒連絡配管 (冷媒連絡配管)
7 ガス冷媒連絡配管 (冷媒連絡配管)
10 冷媒回路
21 圧縮機
23 室外熱交換器 (熱源側熱交換器)
41、 51 室内膨張弁 (膨張機構)
42、 52 室内熱交翻 (利用側熱交翻)
43、 53 室内ファン(送風ファン)
発明を実施するための最良の形態
[0017] 以下、図面に基づいて、本発明にかかる空気調和装置の実施形態について説明 する。
(1)空気調和装置の構成
図 1は、本発明の一実施形態に力かる空気調和装置 1の概略構成図である。空気 調和装置 1は、蒸気圧縮式の冷凍サイクル運転を行うことによって、ビル等の室内の 冷暖房に使用される装置である。空気調和装置 1は、主として、 1台の熱源ユニットと しての室外ユニット 2と、それに並列に接続された複数台(本実施形態では、 2台)の 利用ユニットとしての室内ユニット 4、 5と、室外ユニット 2と室内ユニット 4、 5とを接続 する冷媒連絡配管としての液冷媒連絡配管 6及びガス冷媒連絡配管 7とを備えてい る。すなわち、本実施形態の空気調和装置 1の蒸気圧縮式の冷媒回路 10は、室外 ユニット 2と、室内ユニット 4、 5と、液冷媒連絡配管 6及びガス冷媒連絡配管 7とが接 続されること〖こよって構成されて 、る。
[0018] <室内ユニット >
室内ユニット 4、 5は、ビル等の室内の天井に埋め込みや吊り下げ等により、又は、 室内の壁面に壁掛け等により設置されている。室内ユニット 4、 5は、液冷媒連絡配管 6及びガス冷媒連絡配管 7を介して室外ユニット 2に接続されており、冷媒回路 10の 一部を構成している。
次に、室内ユニット 4、 5の構成について説明する。尚、室内ユニット 4と室内ユニット 5とは同様の構成であるため、ここでは、室内ユニット 4の構成のみ説明し、室内ュ- ット 5の構成については、それぞれ、室内ユニット 4の各部を示す 40番台の符号の代 わりに 50番台の符号を付して、各部の説明を省略する。
室内ユニット 4は、主として、冷媒回路 10の一部を構成する室内側冷媒回路 10a ( 室内ユニット 5では、室内側冷媒回路 10b)を有している。この室内側冷媒回路 10a は、主として、膨張機構としての室内膨張弁 41と、利用側熱交換器としての室内熱交 翻 42とを有している。
[0019] 本実施形態において、室内膨張弁 41は、室内側冷媒回路 10a内を流れる冷媒の 流量の調節等を行うために、室内熱交換器 42の液側に接続された電動膨張弁であ る。
本実施形態において、室内熱交 は、伝熱管と多数のフィンとにより構成され たクロスフィン式のフィン 'アンド'チューブ型熱交換器であり、冷房運転時には冷媒 の蒸発器として機能して室内空気を冷却し、暖房運転時には冷媒の凝縮器として機 能して室内空気を加熱する熱交^^である。
本実施形態において、室内ユニット 4は、ユニット内に室内空気を吸入して、室内熱 交 42において冷媒と熱交換させた後に、供給空気として室内に供給するための 送風ファンとしての室内ファン 43を有している。室内ファン 43は、室内熱交換器 42に 供給する空気の風量 Wrを可変することが可能なファンであり、本実施形態において 、 DCファンモータ力もなるモータ 43aによって駆動される遠心ファンや多翼ファン等 である。
[0020] また、室内ユニット 4には、各種のセンサが設けられている。室内熱交換器 42の液 側には、冷媒の温度 (すなわち、暖房運転時における凝縮温度 Tc又は冷房運転時 における蒸発温度 Teに対応する冷媒温度)を検出する液側温度センサ 44が設けら れている。室内熱交換器 42のガス側には、冷媒の温度 Teoを検出するガス側温度セ ンサ 45が設けられている。室内ユニット 4の室内空気の吸入口側には、ユニット内に 流入する室内空気の温度 (すなわち、室内温度 Tr)を検出する室内温度センサ 46が 設けられている。本実施形態において、液側温度センサ 44、ガス側温度センサ 45及 び室内温度センサ 46は、サーミスタからなる。また、室内ユニット 4は、室内ユニット 4 を構成する各部の動作を制御する室内側制御部 47を有している。そして、室内側制 御部 47は、室内ユニット 4の制御を行うために設けられたマイクロコンピュータやメモ リ等を有しており、室内ユニット 4を個別に操作するためのリモコン(図示せず)との間 で制御信号等のやりとりを行ったり、室外ユニット 2との間で伝送線 8aを介して制御信 号等のやりとりを行うことができるようになって 、る。
[0021] <室外ユニット >
室外ユニット 2は、ビル等の室外に設置されており、液冷媒連絡配管 6及びガス冷 媒連絡配管 7を介して室内ユニット 4、 5に接続されており、室内ユニット 4、 5の間で 冷媒回路 10を構成している。
次に、室外ユニット 2の構成について説明する。室外ユニット 2は、主として、冷媒回 路 10の一部を構成する室外側冷媒回路 10cを有している。この室外側冷媒回路 10 cは、主として、圧縮機 21と、四路切換弁 22と、熱源側熱交 としての室外熱交換 器 23と、膨張機構としての室外膨張弁 38と、アキュムレータ 24と、温度調節機構とし ての過冷却器 25と、液側閉鎖弁 26と、ガス側閉鎖弁 27とを有している。
圧縮機 21は、運転容量を可変することが可能な圧縮機であり、本実施形態におい て、インバータにより回転数 Rmが制御されるモータ 21aによって駆動される容積式圧 縮機である。本実施形態において、圧縮機 21は、 1台のみであるが、これに限定され ず、室内ユニットの接続台数等に応じて、 2台以上の圧縮機が並列に接続されてい てもよい。
[0022] 四路切換弁 22は、冷媒の流れの方向を切り換えるための弁であり、冷房運転時に は、室外熱交 23を圧縮機 21によって圧縮される冷媒の凝縮器として、かつ、室 内熱交 42、 52を室外熱交 23において凝縮される冷媒の蒸発器として機能 させるために、圧縮機 21の吐出側と室外熱交 23のガス側とを接続するとともに 圧縮機 21の吸入側 (具体的には、アキュムレータ 24)とガス冷媒連絡配管 7側とを接 続し(図 1の四路切換弁 22の実線を参照)、暖房運転時には、室内熱交換器 42、 52 を圧縮機 21によって圧縮される冷媒の凝縮器として、かつ、室外熱交換器 23を室内 熱交翻 42、 52において凝縮される冷媒の蒸発器として機能させるために、圧縮機 21の吐出側とガス冷媒連絡配管 7側とを接続するとともに圧縮機 21の吸入側と室外 熱交 のガス側とを接続することが可能である(図 1の四路切換弁 22の破線を 参照)。
[0023] 本実施形態において、室外熱交 は、伝熱管と多数のフィンとにより構成され たクロスフィン式のフィン 'アンド'チューブ型熱交換器であり、冷房運転時には冷媒 の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する熱交 であ る。室外熱交換器 23は、そのガス側が四路切換弁 22に接続され、その液側が液冷 媒連絡配管 6に接続されている。
本実施形態において、室外膨張弁 38は、室外側冷媒回路 10c内を流れる冷媒の 圧力や流量等の調節を行うために、室外熱交換器 23の液側に接続された電動膨張 弁である。
本実施形態において、室外ユニット 2は、ユニット内に室外空気を吸入して、室外熱 交 23において冷媒と熱交換させた後に、室外に排出するための送風ファンとし ての室外ファン 28を有している。この室外ファン 28は、室外熱交^^ 23に供給する 空気の風量 Woを可変することが可能なファンであり、本実施形態において、 DCファ ンモータ力もなるモータ 28aによって駆動されるプロペラファン等である。
[0024] アキュムレータ 24は、四路切換弁 22と圧縮機 21との間に接続されており、室内ュ ニット 4、 5の運転負荷の変動等に応じて冷媒回路 10内に発生する余剰冷媒を溜め ることが可能な容器である。
過冷却器 25は、本実施形態において、 2重管式の熱交換器であり、室外熱交換器 23において凝縮された後に、室内膨張弁 41、 51に送られる冷媒を冷却するために 設けられている。過冷却器 25は、本実施形態において、室外膨張弁 38と液側閉鎖 弁 26との間に接続されて!ヽる。
本実施形態において、過冷却器 25の冷却源としてのバイパス冷媒回路 61が設け られている。尚、以下の説明では、冷媒回路 10からバイパス冷媒回路 61を除いた部 分を、便宜上、主冷媒回路と呼ぶことにする。 [0025] バイパス冷媒回路 61は、室外熱交換器 23から室内膨張弁 41、 51へ送られる冷媒 の一部を主冷媒回路から分岐させて圧縮機 21の吸入側に戻すように主冷媒回路に 接続されている。具体的には、バイパス冷媒回路 61は、室外膨張弁 38から室内膨 張弁 41、 51に送られる冷媒の一部を室外熱交 と過冷却器 25との間の位置 力も分岐させるように接続された分岐回路 61aと、過冷却器 25のバイパス冷媒回路 側の出口カゝら圧縮機 21の吸入側に戻すように圧縮機 21の吸入側に接続された合流 回路 61bとを有している。そして、分岐回路 61aには、バイパス冷媒回路 61を流れる 冷媒の流量を調節するためのバイパス膨張弁 62が設けられている。ここで、バイパス 膨張弁 62は、電動膨張弁力もなる。これにより、室外熱交翻23から室内膨張弁 41 、 51に送られる冷媒は、過冷却器 25において、ノ ィパス膨張弁 62によって減圧され た後のバイパス冷媒回路 61を流れる冷媒によって冷却される。すなわち、過冷却器 25は、バイパス膨張弁 62の開度調節によって能力制御が行われることになる。
[0026] 液側閉鎖弁 26及びガス側閉鎖弁 27は、外部の機器,配管 (具体的には、液冷媒 連絡配管 6及びガス冷媒連絡配管 7)との接続口に設けられた弁である。液側閉鎖弁 26は、室外熱交翻23に接続されている。ガス側閉鎖弁 27は、四路切換弁 22に接 続されている。
また、室外ユニット 2には、各種のセンサが設けられている。具体的には、室外ュ- ット 2には、圧縮機 21の吸入圧力 Psを検出する吸入圧力センサ 29と、圧縮機 21の 吐出圧力 Pdを検出する吐出圧力センサ 30と、圧縮機 21の吸入温度 Tsを検出する 吸入温度センサ 31と、圧縮機 21の吐出温度 Tdを検出する吐出温度センサ 32とが 設けられている。吸入温度センサ 31は、アキュムレータ 24と圧縮機 21との間の位置 に設けられている。室外熱交換器 23には、室外熱交換器 23内を流れる冷媒の温度 (すなわち、冷房運転時における凝縮温度 Tc又は暖房運転時における蒸発温度 Te に対応する冷媒温度)を検出する熱交温度センサ 33が設けられている。室外熱交換 器 23の液側には、冷媒の温度 Tcoを検出する液側温度センサ 34が設けられて 、る 。過冷却器 25の主冷媒回路側の出口には、冷媒の温度 (すなわち、液管温度 Tip) を検出する液管温度センサ 35が設けられている。ノ ィパス冷媒回路 61の合流回路 6 lbには、過冷却器 25のバイパス冷媒回路側の出口を流れる冷媒の温度を検出する ためのバイパス温度センサ 63が設けられて!/、る。室外ユニット 2の室外空気の吸入口 側には、ユニット内に流入する室外空気の温度 (すなわち、室外温度 Ta)を検出する 室外温度センサ 36が設けられている。本実施形態において、吸入温度センサ 31、 吐出温度センサ 32、熱交温度センサ 33、液側温度センサ 34、液管温度センサ 35、 室外温度センサ 36及びバイノ ス温度センサ 63は、サーミスタからなる。また、室外ュ ニット 2は、室外ユニット 2を構成する各部の動作を制御する室外側制御部 37を有し ている。そして、室外側制御部 37は、室外ユニット 2の制御を行うために設けられた マイクロコンピュータ、メモリやモータ 21aを制御するインバータ回路等を有しており、 室内ユニット 4、 5の室内側制御部 47、 57との間で伝送線 8aを介して制御信号等の やりとりを行うことができるようになつている。すなわち、室内側制御部 47、 57と室外 側制御部 37と制御部 37、 47、 57間を接続する伝送線 8aとによって、空気調和装置 1全体の運転制御を行う制御部 8が構成されている。
[0027] 帘 U御咅 8ίま、図 2【こ示されるよう【こ、各種センサ 29〜36、 44〜46、 54〜56、 63の 検出信号を受けることができるように接続されるとともに、これらの検出信号等に基づ ヽて各種機器及び弁 21、 22、 24、 28a, 38、 41、 43a, 51、 53a, 62を帘 U御すること ができるように接続されている。また、制御部 8には、後述の冷媒漏洩検知運転にお いて、冷媒漏洩を検知したことを知らせるための LED等力 なる警告表示部 9が接続 されている。ここで、図 2は、空気調和装置 1の制御ブロック図である。
<冷媒連絡配管 >
冷媒連絡配管 6、 7は、空気調和装置 1をビル等の設置場所に設置する際に、現地 にて施工される冷媒配管であり、設置場所や室外ユニットと室内ユニットとの組み合 わせ等の設置条件に応じて種々の長さや管径を有するものが使用される。このため、 例えば、新規に空気調和装置を設置する場合には、冷媒充填量を計算するために、 冷媒連絡配管 6、 7の長さゃ管径等の情報を正確に把握する必要があるが、その情 報管理ゃ冷媒量の計算自体が煩雑である。また、既設配管を利用して室内ユニット や室外ユニットを更新するような場合には、冷媒連絡配管 6、 7の長さゃ管径等の情 報が失われて 、ることがある。
[0028] 以上のように、室内側冷媒回路 10a、 10bと、室外側冷媒回路 10cと、冷媒連絡配 管 6、 7とが接続されて、空気調和装置 1の冷媒回路 10が構成されている。また、この 冷媒回路 10は、バイパス冷媒回路 61と、バイパス冷媒回路 61を除く主冷媒回路と 力 構成されていると言い換えることもできる。そして、本実施形態の空気調和装置 1 は、室内側制御部 47、 57と室外側制御部 37とから構成される制御部 8によって、四 路切換弁 22により冷房運転及び暖房運転を切り換えて運転を行うとともに、各室内 ユニット 4、 5の運転負荷に応じて、室外ユニット 2及び室内ユニット 4、 5の各機器の 制御を行うようになって 、る。
(2)空気調和装置の動作
次に、本実施形態の空気調和装置 1の動作について説明する。
[0029] 本実施形態の空気調和装置 1の運転モードとしては、各室内ユニット 4、 5の運転負 荷に応じて室外ユニット 2及び室内ユニット 4、 5の構成機器の制御を行う通常運転モ ードと、空気調和装置 1の構成機器の設置後 (具体的には、最初の機器設置後に限 られず、例えば、室内ユニット等の構成機器を追加や撤去する等の改造後や機器の 故障を修理した後等も含まれる)に行われる試運転を行うための試運転モードと、試 運転を終了して通常運転を開始した後において、冷媒回路 10からの冷媒の漏洩の 有無を判定する冷媒漏洩検知運転モードとがある。そして、通常運転モードには、主 として、室内の冷房を行う冷房運転と、室内の暖房を行う暖房運転とが含まれている 。また、試運転モードには、主として、冷媒回路 10内に冷媒を充填する冷媒自動充 填運転と、冷媒連絡配管 6、 7の容積を検知する配管容積判定運転と、構成機器を 設置した後又は冷媒回路内に冷媒を充填した後の初期冷媒量を検知する初期冷媒 量検知運転とが含まれて ヽる。
[0030] 以下、空気調和装置 1の各運転モードにおける動作について説明する。
<通常運転モード >
(冷房運転)
まず、通常運転モードにおける冷房運転について、図 1及び図 2を用いて説明する 冷房運転時は、四路切換弁 22が図 1の実線で示される状態、すなわち、圧縮機 21 の吐出側が室外熱交換器 23のガス側に接続され、かつ、圧縮機 21の吸入側がガス 側閉鎖弁 27及びガス冷媒連絡配管 7を介して室内熱交換器 42、 52のガス側に接続 された状態となっている。室外膨張弁 38は、全開状態にされている。液側閉鎖弁 26 及びガス側閉鎖弁 27は、開状態にされている。各室内膨張弁 41、 51は、室内熱交 42、 52の出口(すなわち、室内熱交換器 42、 52のガス側)における冷媒の過 熱度 SHrが過熱度目標値 SHrsで一定になるように開度調節されるようになって!/、る 。本実施形態において、各室内熱交換器 42、 52の出口における冷媒の過熱度 SHr は、ガス側温度センサ 45、 55により検出される冷媒温度値力も液側温度センサ 44、 54により検出される冷媒温度値 (蒸発温度 Teに対応)を差し引くことによって検出さ れるか、又は、吸入圧力センサ 29により検出される圧縮機 21の吸入圧力 Psを蒸発 温度 Teに対応する飽和温度値に換算し、ガス側温度センサ 45、 55により検出される 冷媒温度値からこの冷媒の飽和温度値を差し引くことによって検出される。尚、本実 施形態では採用していないが、各室内熱交換器 42、 52内を流れる冷媒の温度を検 出する温度センサを設けて、この温度センサにより検出される蒸発温度 Teに対応す る冷媒温度値を、ガス側温度センサ 45、 55により検出される冷媒温度値から差し引 くことによって、各室内熱交換器 42、 52の出口における冷媒の過熱度 SHrを検出す るようにしてもよい。また、バイパス膨張弁 62は、過冷却器 25のバイパス冷媒回路側 の出口における冷媒の過熱度 SHbが過熱度目標値 SHbsになるように開度調節され るようになっている。本実施形態において、過冷却器 25のバイパス冷媒回路側の出 口における冷媒の過熱度 SHbは、吸入圧力センサ 29により検出される圧縮機 21の 吸入圧力 Psを蒸発温度 Teに対応する飽和温度値に換算し、バイパス温度センサ 63 により検出される冷媒温度値からこの冷媒の飽和温度値を差し引くことによって検出 される。尚、本実施形態では採用していないが、過冷却器 25のバイパス冷媒回路側 の入口に温度センサを設けて、この温度センサにより検出される冷媒温度値をバイパ ス温度センサ 63により検出される冷媒温度値力も差し引くことによって、過冷却器 25 のバイパス冷媒回路側の出口における冷媒の過熱度 SHbを検出するようにしてもよ い。
この冷媒回路 10の状態で、圧縮機 21、室外ファン 28及び室内ファン 43、 53を起 動すると、低圧のガス冷媒は、圧縮機 21に吸入されて圧縮されて高圧のガス冷媒と なる。その後、高圧のガス冷媒は、四路切換弁 22を経由して室外熱交換器 23に送ら れて、室外ファン 28によって供給される室外空気と熱交換を行って凝縮して高圧の 液冷媒となる。そして、この高圧の液冷媒は、室外膨張弁 38を通過して、過冷却器 2 5に流入し、バイパス冷媒回路 61を流れる冷媒と熱交換を行ってさらに冷却されて過 冷却状態になる。このとき、室外熱交 において凝縮した高圧の液冷媒の一部 は、バイパス冷媒回路 61に分岐され、バイパス膨張弁 62によって減圧された後に、 圧縮機 21の吸入側に戻される。ここで、バイノ ス膨張弁 62を通過する冷媒は、圧縮 機 21の吸入圧力 Ps近くまで減圧されることで、その一部が蒸発する。そして、バイパ ス冷媒回路 61のバイパス膨張弁 62の出口力も圧縮機 21の吸入側に向力つて流れ る冷媒は、過冷却器 25を通過して、主冷媒回路側の室外熱交換器 23から室内ュニ ット 4、 5へ送られる高圧の液冷媒と熱交換を行う。
[0032] そして、過冷却状態になった高圧の液冷媒は、液側閉鎖弁 26及び液冷媒連絡配 管 6を経由して、室内ユニット 4、 5に送られる。この室内ユニット 4、 5に送られた高圧 の液冷媒は、室内膨張弁 41、 51によって圧縮機 21の吸入圧力 Ps近くまで減圧され て低圧の気液二相状態の冷媒となって室内熱交換器 42、 52に送られ、室内熱交換 器 42、 52において室内空気と熱交換を行って蒸発して低圧のガス冷媒となる。 この低圧のガス冷媒は、ガス冷媒連絡配管 7を経由して室外ユニット 2に送られ、ガ ス側閉鎖弁 27及び四路切換弁 22を経由して、アキュムレータ 24に流入する。そして 、アキュムレータ 24に流入した低圧のガス冷媒は、再び、圧縮機 21に吸入される。
(暖房運転)
次に、通常運転モードにおける暖房運転について説明する。
[0033] 暖房運転時は、四路切換弁 22が図 1の破線で示される状態、すなわち、圧縮機 21 の吐出側がガス側閉鎖弁 27及びガス冷媒連絡配管 7を介して室内熱交換器 42、 52 のガス側に接続され、かつ、圧縮機 21の吸入側が室外熱交換器 23のガス側に接続 された状態となっている。室外膨張弁 38は、室外熱交 23に流入する冷媒を室 外熱交 において蒸発させることが可能な圧力(すなわち、蒸発圧力 Pe)まで 減圧するために開度調節されるようになっている。また、液側閉鎖弁 26及びガス側閉 鎖弁 27は、開状態にされている。室内膨張弁 41、 51は、室内熱交換器 42、 52の出 口における冷媒の過冷却度 SCrが過冷却度目標値 SCrsで一定になるように開度調 節されるようになつている。本実施形態において、室内熱交換器 42、 52の出口にお ける冷媒の過冷却度 SCrは、吐出圧力センサ 30により検出される圧縮機 21の吐出 圧力 Pdを凝縮温度 Tcに対応する飽和温度値に換算し、この冷媒の飽和温度値から 液側温度センサ 44、 54により検出される冷媒温度値を差し引くことによって検出され る。尚、本実施形態では採用していないが、各室内熱交換器 42、 52内を流れる冷媒 の温度を検出する温度センサを設けて、この温度センサにより検出される凝縮温度 T cに対応する冷媒温度値を、液側温度センサ 44、 54により検出される冷媒温度値か ら差し引くことによって室内熱交^^ 42、 52の出口における冷媒の過冷却度 SCrを 検出するようにしてもよい。また、バイパス膨張弁 62は、閉止されている。
[0034] この冷媒回路 10の状態で、圧縮機 21、室外ファン 28及び室内ファン 43、 53を起 動すると、低圧のガス冷媒は、圧縮機 21に吸入されて圧縮されて高圧のガス冷媒と なり、四路切換弁 22、ガス側閉鎖弁 27及びガス冷媒連絡配管 7を経由して、室内ュ ニット 4、 5〖こ送られる。
そして、室内ユニット 4、 5に送られた高圧のガス冷媒は、室外熱交^^ 42、 52に おいて、室内空気と熱交換を行って凝縮して高圧の液冷媒となった後、室内膨張弁 41、 51を通過する際に、室内膨張弁 41、 51の弁開度に応じて減圧される。
この室内膨張弁 41、 51を通過した冷媒は、液冷媒連絡配管 6を経由して室外ュ- ット 2に送られ、液側閉鎖弁 26、過冷却器 25及び室外膨張弁 38を経由してさらに減 圧された後に、室外熱交換器 23に流入する。そして、室外熱交換器 23に流入した 低圧の気液二相状態の冷媒は、室外ファン 28によって供給される室外空気と熱交換 を行って蒸発して低圧のガス冷媒となり、四路切換弁 22を経由してアキュムレータ 24 に流入する。そして、アキュムレータ 24に流入した低圧のガス冷媒は、再び、圧縮機 21に吸人される。
[0035] 以上のような通常運転モードにおける運転制御は、冷房運転及び暖房運転を含む 通常運転を行う通常運転制御手段として機能する制御部 8 (より具体的には、室内側 制御部 47、 57と室外側制御部 37と制御部 37、 47、 57間を接続する伝送線 8a)によ つて行われる。 <試運転モード >
次に、試運転モードについて、図 1〜図 3を用いて説明する。ここで、図 3は、試運 転モードのフローチャートである。本実施形態において、試運転モードでは、まず、ス テツプ S1の冷媒自動充填運転が行われ、続いて、ステップ S2の配管容積判定運転 が行われ、さらに、ステップ S3の初期冷媒量検知運転が行われる。
本実施形態では、冷媒が予め充填された室外ユニット 2と、室内ユニット 4、 5とをビ ル等の設置場所に設置し、液冷媒連絡配管 6及びガス冷媒連絡配管 7を介して接続 して冷媒回路 10を構成した後に、液冷媒連絡配管 6及びガス冷媒連絡配管 7の容 積に応じて不足する冷媒を冷媒回路 10内に追加充填する場合を例にして説明する
[0036] (ステップ S 1:冷媒自動充填運転)
まず、室外ユニット 2の液側閉鎖弁 26及びガス側閉鎖弁 27を開けて、室外ユニット 2に予め充填されている冷媒を冷媒回路 10内に充満させる。
次に、試運転を行う作業者が、追加充填用の冷媒ボンべを冷媒回路 10のサービス ポート(図示せず)に接続し、制御部 8に対して直接に又はリモコン(図示せず)等を 通じて遠隔から試運転を開始する指令を出すと、制御部 8によって、図 4に示されるス テツプ S11〜ステップ S13の処理が行われる。ここで、図 4は、冷媒自動充填運転の フローチャートである。
(ステップ S 11:冷媒量判定運転)
冷媒自動充填運転の開始指令がなされると、冷媒回路 10が、室外ユニット 2の四路 切換弁 22が図 1の実線で示される状態で、かつ、室内ユニット 4、 5の室内膨張弁 41 、 51及び室外膨張弁 38が開状態となり、圧縮機 21、室外ファン 28及び室内ファン 4 3、 53が起動されて、室内ユニット 4、 5の全てについて強制的に冷房運転 (以下、室 内ユニット全数運転とする)が行われる。
[0037] すると、図 5に示されるように、冷媒回路 10において、圧縮機 21から凝縮器として 機能する室外熱交 までの流路には圧縮機 21において圧縮されて吐出され た高圧のガス冷媒が流れ(図 5の斜線のハッチング部分のうち圧縮機 21から室外熱 交換器 23までの部分を参照)、凝縮器として機能する室外熱交換器 23には室外空 気との熱交換によってガス状態から液状態に相変化する高圧の冷媒が流れ (図 5の 斜線のハッチング及び黒塗りのハッチングの部分のうち室外熱交換器 23に対応する 部分を参照)、室外熱交換器 23から室内膨張弁 41、 51までの室外膨張弁 38、過冷 却器 25の主冷媒回路側の部分及び液冷媒連絡配管 6を含む流路と室外熱交換器 2 3からバイパス膨張弁 62までの流路には高圧の液冷媒が流れ(図 5の黒塗りのハツ チング部分のうち室外熱交換器 23から室内膨張弁 41、 51及びバイパス膨張弁 62ま での部分を参照)、蒸発器として機能する室内熱交 42、 52の部分と過冷却器 2 5のバイパス冷媒回路側の部分とには室内空気との熱交換によって気液二相状態か らガス状態に相変化する低圧の冷媒が流れ(図 5の格子状のハッチング及び斜線の ハッチングの部分のうち室内熱交^^ 42、 52の部分と過冷却器 25の部分を参照)、 室内熱交換器 42、 52から圧縮機 21までのガス冷媒連絡配管 7及びアキュムレータ 2 4を含む流路と過冷却器 25のバイパス冷媒回路側の部分力も圧縮機 21までの流路 とには低圧のガス冷媒が流れるようになる(図 5の斜線のハッチングの部分のうち室内 熱交^^ 42、 52から圧縮機 21までの部分と過冷却器 25のバイパス冷媒回路側の 部分力も圧縮機 21までの部分とを参照)。図 5は、冷媒量判定運転における冷媒回 路 10内を流れる冷媒の状態を示す模式図(四路切換弁 22等の図示を省略)である 次に、以下のような機器制御を行って、冷媒回路 10内を循環する冷媒の状態を安 定させる運転に移行する。具体的には、蒸発器として機能する室内熱交 42、 52 の過熱度 SHrが一定になるように室内膨張弁 41、 51を制御(以下、過熱度制御とす る)し、蒸発圧力 Peが一定になるように圧縮機 21の運転容量を制御(以下、蒸発圧 力制御とする)し、室外熱交換器 23における冷媒の凝縮圧力 Pcが一定になるように 、室外ファン 28によって室外熱交換器 23に供給される室外空気の風量 Woを制御( 以下、凝縮圧力制御とする)し、過冷却器 25から室内膨張弁 41、 51に送られる冷媒 の温度が一定になるように過冷却器 25の能力を制御(以下、液管温度制御とする)し 、上述の蒸発圧力制御によって冷媒の蒸発圧力 Peが安定的に制御されるように、室 内ファン 43、 53によって室内熱交換器 42、 52に供給される室内空気の風量 Wrを一 定にしている。 [0039] ここで、蒸発圧力制御を行うのは、蒸発器として機能する室内熱交換器 42、 52内 には室内空気との熱交換によって気液二相状態力 ガス状態に相変化しながら低圧 の冷媒が流れる室内熱交^^ 42、 52内(図 5の格子状のノ、ツチング及び斜線のハツ チングの部分のうち室内熱交換器 42、 52に対応する部分を参照、以下、蒸発器部 C とする)における冷媒量が、冷媒の蒸発圧力 Peに大きく影響するからである。そして、 ここでは、インバータにより回転数 Rmが制御されるモータ 21aによって圧縮機 21の 運転容量を制御することによって、室内熱交換器 42、 52における冷媒の蒸発圧力 P eを一定にして、蒸発器部 C内を流れる冷媒の状態を安定させて、主として、蒸発圧 力 Peによって蒸発器 C内における冷媒量が変化する状態を作り出している。尚、本 実施形態の圧縮機 21による蒸発圧力 Peの制御においては、室内熱交換器 42、 52 の液側温度センサ 44、 54により検出される冷媒温度値 (蒸発温度 Teに対応)を飽和 圧力値に換算して、この圧力値が低圧目標値 Pesで一定になるように、圧縮機 21の 運転容量を制御して (すなわち、モータ 21aの回転数 Rmを変化させる制御を行って )、冷媒回路 10内を流れる冷媒循環量 Wcを増減することによって実現されて 、る。 尚、本実施形態では採用していないが、室内熱交換器 42、 52における冷媒の蒸発 圧力 Peにおける冷媒の圧力に等価な運転状態量である、吸入圧力センサ 29によつ て検出される圧縮機 21の吸入圧力 Psが、低圧目標値 Pesで一定になるように、又は 、吸入圧力 Psに対応する飽和温度値 (蒸発温度 Teに対応)が、低圧目標値 Tesで 一定になるように、圧縮機 21の運転容量を制御してもよいし、室内熱交換器 42、 52 の液側温度センサ 44、 54により検出される冷媒温度値 (蒸発温度 Teに対応)が、低 圧目標値 Tesで一定になるように、圧縮機 21の運転容量を制御してもよい。
[0040] そして、このような蒸発圧力制御を行うことによって、室内熱交 42、 52から圧縮 機 21までのガス冷媒連絡配管 7及びアキュムレータ 24を含む冷媒配管内(図 5の斜 線のノ、ツチングの部分のうち室内熱交換器 42、 52から圧縮機 21までの部分を参照 、以下、ガス冷媒流通部 Dとする)を流れる冷媒の状態も安定して、主として、ガス冷 媒流通部 Dにおける冷媒の圧力に等価な運転状態量である、蒸発圧力 Pe (すなわ ち、吸入圧力 Ps)によってガス冷媒流通部 D内における冷媒量が変化する状態を作 り出している。 また、凝縮圧力制御を行うのは、室外空気との熱交換によってガス状態力も液状態 に相変化しながら高圧の冷媒が流れる室外熱交^^ 23内(図 5の斜線のハッチング 及び黒塗りのハッチングの部分のうち室外熱交換器 23に対応する部分を参照、以下 、凝縮器部 Aとする)における冷媒量が、冷媒の凝縮圧力 Pcに大きく影響する力もで ある。そして、この凝縮器部 Aにおける冷媒の凝縮圧力 Pcは、室外温度 Taの影響よ り大きく変化するため、モータ 28aにより室外ファン 28から室外熱交換器 23に供給す る室内空気の風量 Woを制御することによって、室外熱交換器 23における冷媒の凝 縮圧力 Pcを一定にして、凝縮器部 A内を流れる冷媒の状態を安定させて、主として 、室外熱交換器 23の液側 (以下、冷媒量判定運転に関する説明では、室外熱交換 器 23の出口とする)における過冷却度 SCoによって凝縮器 A内における冷媒量が変 化する状態を作り出している。尚、本実施形態の室外ファン 28による凝縮圧力 Pcの 制御においては、室外熱交換器 23における冷媒の凝縮圧力 Pcに等価な運転状態 量である、吐出圧力センサ 30によって検出される圧縮機 21の吐出圧力 Pd、又は、 熱交温度センサ 33によって検出される室外熱交換器 23内を流れる冷媒の温度 (す なわち、凝縮温度 Tc)が用いられる。
そして、このような凝縮圧力制御を行うことによって、室外熱交 から室内膨 張弁 41、 51までの室外膨張弁 38、過冷却器 25の主冷媒回路側の部分及び液冷媒 連絡配管 6を含む流路と室外熱交翻 23からバイパス冷媒回路 61のバイパス膨張 弁 62までの流路とには高圧の液冷媒が流れて、室外熱交換器 23から室内膨張弁 4 1、 51及びバイノス膨張弁 62までの部分(図 5の黒塗りのハッチング部分を参照、以 下、液冷媒流通部 Bとする)における冷媒の圧力も安定し、液冷媒流通部 Bが液冷媒 でシールされて安定した状態となる。
また、液管温度制御を行うのは、過冷却器 25から室内膨張弁 41、 51に至る液冷媒 連絡配管 6を含む冷媒配管内(図 5に示される液冷媒流通部 Bのうち過冷却器 25か ら室内膨張弁 41、 51までの部分を参照)の冷媒の密度が変化しないようにするため である。そして、過冷却器 25の能力制御は、過冷却器 25の主冷媒回路側の出口に 設けられた液管温度センサ 35によって検出される冷媒の温度 Tipが液管温度目標 値 Tipsで一定になるようにバイパス冷媒回路 61を流れる冷媒の流量を増減して、過 冷却器 25の主冷媒回路側を流れる冷媒とバイパス冷媒回路側を流れる冷媒との間 の交換熱量を調節することによって実現されている。尚、このバイパス冷媒回路 61を 流れる冷媒の流量の増減は、バイパス膨張弁 62の開度調節によって行われる。この ようにして、過冷却器 25から室内膨張弁 41、 51に至る液冷媒連絡配管 6を含む冷 媒配管内における冷媒の温度が一定となる液管温度制御が実現されている。
[0042] そして、このような液管温度一定制御を行うことによって、冷媒回路 10に冷媒を充 填することによって冷媒回路 10内の冷媒量が徐々に増加するのに伴って、室外熱交 23の出口における冷媒の温度 Tco (すなわち、室外熱交換器 23の出口におけ る冷媒の過冷却度 SCo)が変化する場合であっても、室外熱交換器 23の出口にお ける冷媒の温度 Tcoの変化の影響力、室外熱交 の出口力も過冷却器 25に 至る冷媒配管のみに収まり、液冷媒流通部 Bのうち過冷却器 25から液冷媒連絡配管 6を含む室内膨張弁 41、 51までの冷媒配管には影響しな 、状態となる。
さらに、過熱度制御を行うのは、蒸発器部 Cにおける冷媒量が、室内熱交換器 42、 52の出口における冷媒の乾き度に大きく影響するからである。この室内熱交 、 52の出口における冷媒の過熱度 SHrは、室内膨張弁 41、 51の開度を制御するこ とによって、室内熱交換器 42、 52のガス側(以下、冷媒量判定運転に関する説明で は、室内熱交換器 42、 52の出口とする)における冷媒の過熱度 SHrが過熱度目標 値 SHrsで一定になるように(すなわち、室内熱交換器 42、 52の出口のガス冷媒を過 熱状態)にして、蒸発器部 C内を流れる冷媒の状態を安定させている。
[0043] そして、このような過熱度制御を行うことによって、ガス冷媒連絡部 Dにガス冷媒が 確実に流れる状態を作り出して ヽる。
上述の各種制御によって、冷媒回路 10内を循環する冷媒の状態が安定して、冷媒 回路 10内における冷媒量の分布が一定となるため、続いて行われる冷媒の追加充 填によって冷媒回路 10内に冷媒が充填され始めた際に、冷媒回路 10内の冷媒量 の変化が、主として、室外熱交換器 23内の冷媒量の変化となって現れる状態を作り 出すことができる(以下、この運転を冷媒量判定運転とする)。
以上のような制御は、冷媒量判定運転を行う冷媒量判定運転制御手段として機能 する制御部 8 (より具体的には、室内側制御部 47、 57と室外側制御部 37と制御部 37 、 47、 57間を接続する伝送線 8a)により、ステップ S 11の処理として行われる。
尚、本実施形態と異なり、室外ユニット 2に予め冷媒が充填されていない場合には、 このステップ S11の処理に先だって、上述の冷媒量判定運転を行う際に、構成機器 が異常停止してしまうことがない程度の冷媒量になるまで冷媒充填を行う必要がある
(ステップ S 12:冷媒量の演算)
次に、上記の冷媒量判定運転を行いつつ、冷媒回路 10内に冷媒の追加充填を実 施するが、この際、冷媒量演算手段として機能する制御部 8によって、ステップ S12 における冷媒の追加充填時における冷媒回路 10を流れる冷媒又は構成機器の運 転状態量から冷媒回路 10内の冷媒量を演算する。
まず、本実施形態における冷媒量演算手段について説明する。冷媒量演算手段 は、冷媒回路 10を複数の部分に分割して、分割された各部分ごとに冷媒量を演算 することで、冷媒回路 10内の冷媒量を演算するものである。より具体的には、分割さ れた各部分ごとに、各部分の冷媒量と冷媒回路 10を流れる冷媒又は構成機器の運 転状態量との関係式が設定されており、これらの関係式を用いて、各部分の冷媒量 を演算することができるようになつている。そして、本実施形態においては、冷媒回路 10は、四路切換弁 22が図 1の実線で示される状態、すなわち、圧縮機 21の吐出側 が室外熱交換器 23のガス側に接続され、かつ、圧縮機 21の吸入側がガス側閉鎖弁 27及びガス冷媒連絡配管 7を介して室内熱交換器 42、 52の出口に接続された状態 において、圧縮機 21の部分及び圧縮機 21から四路切換弁 22 (図 5では図示せず) を含む室外熱交換器 23までの部分 (以下、高圧ガス管部 Eとする)と、室外熱交換器 23の部分 (すなわち、凝縮器部 A)と、液冷媒流通部 Bのうち室外熱交換器 23から過 冷却器 25までの部分及び過冷却器 25の主冷媒回路側の部分の入口側半分 (以下 、高温側液管部 B1とする)と、液冷媒流通部 Bのうち過冷却器 25の主冷媒回路側の 部分の出口側半分及び過冷却器 25から液側閉鎖弁 26 (図 5では図示せず)までの 部分 (以下、低温側液管部 B2とする)と、液冷媒流通部 Bのうち液冷媒連絡配管 6の 部分 (以下、液冷媒連絡配管部 B3とする)と、液冷媒流通部 Bのうち液冷媒連絡配 管 6から室内膨張弁 41、 51及び室内熱交換器 42、 52の部分 (すなわち、蒸発器部 C)を含むガス冷媒流通部 Dのうちガス冷媒連絡配管 7までの部分 (以下、室内ュニ ット部 Fとする)と、ガス冷媒流通部 Dのうちガス冷媒連絡配管 7の部分 (以下、ガス冷 媒連絡配管部 Gとする)と、ガス冷媒流通部 Dのうちガス側閉鎖弁 27 (図 5では図示 せず)から四路切換弁 22及びアキュムレータ 24を含む圧縮機 21までの部分 (以下、 低圧ガス管部 Hとする)と、液冷媒流通部 Bのうち高温側液管部 B1からバイパス膨張 弁 62及び過冷却器 25のバイパス冷媒回路側の部分を含む低圧ガス管部 Hまでの 部分 (以下、バイパス回路部 Iとする)とに分割されて、各部分ごとに関係式が設定さ れている。次に、上述の各部分ごとに設定された関係式について、説明する。
本実施形態において、高圧ガス管部 Eにおける冷媒量 Moglと冷媒回路 10を流れ る冷媒又は構成機器の運転状態量との関係式は、例えば、
Mogl =Vogl X p d
という、室外ユニット 2の高圧ガス管部 Eの容積 Voglに高圧ガス管部 Eにおける冷媒 の密度/ 0 dを乗じた関数式として表される。尚、高圧ガス管部 Eの容積 Voglは、室外 ユニット 2が設置場所に設置される前力 既知の値であり、予め制御部 8のメモリに記 憶されている。また、高圧ガス管部 Eにおける冷媒の密度 は、吐出温度 Td及び 吐出圧力 Pdを換算することによって得られる。
凝縮器部 Aにおける冷媒量 Mcと冷媒回路 10を流れる冷媒又は構成機器の運転 状態量との関係式は、例えば、
Mc=kcl XTa+kc2 XTc+kc3 X SHm+kc4 XWc
Figure imgf000023_0001
という、室外温度 Ta、凝縮温度 Tc、圧縮機吐出過熱度 SHm、冷媒循環量 Wc、室 外熱交換器 23における冷媒の飽和液密度 p c及び室外熱交換器 23の出口におけ る冷媒の密度 P coの関数式として表される。尚、上述の関係式におけるパラメータ kc l〜kc7は、試験や詳細なシミュレーションの結果を回帰分析することによって求めら れたものであり、予め制御部 8のメモリに記憶されている。また、圧縮機吐出過熱度 S Hmは、圧縮機の吐出側における冷媒の過熱度であり、吐出圧力 Pdを冷媒の飽和 温度値に換算し、吐出温度 Td力 この冷媒の飽和温度値を差し引くことにより得られ る。冷媒循環量 Wcは、蒸発温度 Teと凝縮温度 Tcとの関数 (すなわち、 Wc = f (Te、 Tc) )として表される。冷媒の飽和液密度 p cは、凝縮温度 Tcを換算することによって 得られる。室外熱交換器 23の出口における冷媒の密度 p coは、凝縮温度 Tcを換算 することによって得られる凝縮圧力 Pc及び冷媒の温度 Tcoを換算することによって得 られる。
[0046] 高温液管部 B1における冷媒量 Mollと冷媒回路 10を流れる冷媒又は構成機器の 運転状態量との関係式は、例えば、
Moll =Voll X p co
t 、う、室外ユニット 2の高温液管部 B1の容積 Vollに高温液管部 B1における冷媒 の密度 p co (すなわち、上述の室外熱交換器 23の出口における冷媒の密度)を乗じ た関数式として表される。尚、高圧液管部 B1の容積 Vollは、室外ユニット 2が設置 場所に設置される前力 既知の値であり、予め制御部 8のメモリに記憶されている。 低温液管部 B2における冷媒量 Mol2と冷媒回路 10を流れる冷媒又は構成機器の 運転状態量との関係式は、例えば、
Mol2=Vol2 X ip
という、室外ユニット 2の低温液管部 B2の容積 Vol2に低温液管部 B2における冷媒 の密度 p lpを乗じた関数式として表される。尚、低温液管部 B2の容積 Vol2は、室外 ユニット 2が設置場所に設置される前力 既知の値であり、予め制御部 8のメモリに記 憶されている。また、低温液管部 B2における冷媒の密度 p lpは、過冷却器 25の出 口における冷媒の密度であり、凝縮圧力 Pc及び過冷却器 25の出口における冷媒の 温度 Tipを換算することによって得られる。
[0047] 液冷媒連絡配管部 B3における冷媒量 Mlpと冷媒回路 10を流れる冷媒又は構成 機器の運転状態量との関係式は、例えば、
Mlp=Vlp X ip
という、液冷媒連絡配管 6の容積 Vlpに液冷媒連絡配管部 B3における冷媒の密度 lp (すなわち、過冷却器 25の出口における冷媒の密度)を乗じた関数式として表さ れる。尚、液冷媒連絡配管 6の容積 Vlpは、液冷媒連絡配管 6が空気調和装置 1をビ ル等の設置場所に設置する際に現地にて施工される冷媒配管であるため、長さや管 径等の情報から現地において演算した値を入力したり、長さゃ管径等の情報を現地 にお 、て入力し、これらの入力された液冷媒連絡配管 6の情報力も制御部 8で演算し たり、又は、後述のように、配管容積判定運転の運転結果を用いて演算される。
[0048] 室内ュニット部 Fにおける冷媒量 Mrと冷媒回路 10を流れる冷媒又は構成機器の 運転状態量との関係式は、例えば、
Mr=krl XTlp+kr2 X AT+kr3 X SHr+kr4 XWr+kr5
という、過冷却器 25の出口における冷媒の温度 Tlp、室内温度 Trから蒸発温度 Teを 差し引いた温度差 ΔΤ、室内熱交換器 42、 52の出口における冷媒の過熱度 SHr及 び室内ファン 43、 53の風量 Wrの関数式として表される。尚、上述の関係式における パラメータ krl〜kr5は、試験や詳細なシミュレーションの結果を回帰分析することに よって求められたものであり、予め制御部 8のメモリに記憶されている。尚、ここでは、 2台の室内ユニット 4、 5のそれぞれに対応して冷媒量 Mrの関係式が設定されており 、室内ユニット 4の冷媒量 Mrと室内ユニット 5の冷媒量 Mrとを加算することにより、室 内ユニット部 Fの全冷媒量が演算されるようになっている。尚、室内ユニット 4と室内ュ ニット 5の機種や容量が異なる場合には、パラメータ krl〜kr5の値が異なる関係式 力 S使用されること〖こなる。
[0049] ガス冷媒連絡配管部 Gにおける冷媒量 Mgpと冷媒回路 10を流れる冷媒又は構成 機器の運転状態量との関係式は、例えば、
Mgp = Vgp X gp
という、ガス冷媒連絡配管 7の容積 Vgpにガス冷媒連絡配管部 Hにおける冷媒の密 度 p gpを乗じた関数式として表される。尚、ガス冷媒連絡配管 7の容積 Vgpは、液冷 媒連絡配管 6と同様に、ガス冷媒連絡配管 7が空気調和装置 1をビル等の設置場所 に設置する際に現地にて施工される冷媒配管であるため、長さゃ管径等の情報から 現地において演算した値を入力したり、長さゃ管径等の情報を現地において入力し 、これらの入力されたガス冷媒連絡配管 7の情報力 制御部 8で演算したり、又は、 後述のように、配管容積判定運転の運転結果を用いて演算される。また、ガス冷媒配 管連絡部 Gにおける冷媒の密度 p gpは、圧縮機 21の吸入側における冷媒の密度 P sと、室内熱交換器 42、 52の出口(すなわち、ガス冷媒連絡配管 7の入口)におけ る冷媒の密度 p eoとの平均値である。冷媒の密度 p sは、吸入圧力 Ps及び吸入温 度 Tsを換算することによって得られ、冷媒の密度 p eoは、蒸発温度 Teの換算値であ る蒸発圧力 Pe及び室内熱交換器 42、 52の出口温度 Teoを換算することによって得 られる。
[0050] 低圧ガス管部 Hにおける冷媒量 Mog2と冷媒回路 10を流れる冷媒又は構成機器 の運転状態量との関係式は、例えば、
Mog2=Vog2 X p s
という、室外ユニット 2内の低圧ガス管部 Hの容積 Vog2に低圧ガス管部 Hにおける 冷媒の密度 p sを乗じた関数式として表される。尚、低圧ガス管部 Hの容積 Vog2は、 設置場所に出荷される前力 既知の値であり、予め制御部 8のメモリに記憶されてい る。
ノ ィパス回路部 Iにおける冷媒量 Mobと冷媒回路 10を流れる冷媒又は構成機器の 運転状態量との関係式は、例えば、
Mob = kobl X co + kob2 X p s + kob3 X Pe + kob4
という、室外熱交換器 23の出口における冷媒の密度 p co、過冷却器 25のバイパス 回路側の出口における冷媒の密度 p s及び蒸発圧力 Peの関数式として表される。尚 、上述の関係式におけるパラメータ kobl〜kob3は、試験や詳細なシミュレーション の結果を回帰分析することによって求められたものであり、予め制御部 8のメモリに記 憶されている。また、バイパス回路部 Iの容積 Mobは、他の部分に比べて冷媒量が少 ないこともあり、さらに簡易的な関係式によって演算されてもよい。例えば、
Mob=Vob X e X kob5
という、バイパス回路部 Iの容積 Vobに過冷却器 25のバイパス回路側の部分におけ る飽和液密度 p e及び補正係数 kobを乗じた関数式として表される。尚、バイパス回 路部 Iの容積 Vobは、室外ユニット 2が設置場所に設置される前力も既知の値であり、 予め制御部 8のメモリに記憶されている。また、過冷却器 25のバイパス回路側の部分 における飽和液密度 p eは、吸入圧力 Ps又は蒸発温度 Teを換算することによって得 られる。
[0051] 尚、本実施形態において、室外ユニット 2は 1台である力 室外ユニットが複数台接 続される場合には、室外ユニットに関する冷媒量 Mogl、 Mc、 Moll, Mol2、 Mog2 及び Mobは、複数の室外ユニットのそれぞれに対応して各部分の冷媒量の関係式 が設定され、複数の室外ユニットの各部分の冷媒量を加算することにより、室外ュニ ットの全冷媒量が演算されるようになっている。尚、機種や容量が異なる複数の室外 ユニットが接続される場合には、パラメータの値が異なる各部分の冷媒量の関係式が 使用されること〖こなる。
以上のように、本実施形態では、冷媒回路 10の各部分についての関係式を用いて 、冷媒量判定運転における冷媒回路 10を流れる冷媒又は構成機器の運転状態量 力 各部分の冷媒量を演算することで、冷媒回路 10の冷媒量を演算することができ るようになっている。
[0052] そして、このステップ S 12は、後述のステップ S 13における冷媒量の適否の判定の 条件が満たされるまで繰り返されるため、冷媒の追加充填が開始して力 完了するま での間、冷媒回路 10の各部分についての関係式を用いて、冷媒充填時における運 転状態量力 各部分の冷媒量が演算される。より具体的には、後述のステップ S 13 における冷媒量の適否の判定に必要な室外ユニット 2内の冷媒量 Mo及び各室内ュ ニット 4、 5内の冷媒量 Mr (すなわち、冷媒連絡配管 6、 7を除く冷媒回路 10の各部 分の冷媒量)が演算される。ここで、室外ユニット 2内の冷媒量 Moは、上述の室外ュ ニット 2内の各部分の冷媒量 Mogl、 Mc、 Moll, Mol2、 Mog2及び Mobを力卩算す ること〖こよって演算される。
このように、冷媒自動充填運転における冷媒回路 10内を流れる冷媒又は構成機器 の運転状態量から冷媒回路 10の各部分の冷媒量を演算する冷媒量演算手段として 機能する制御部 8により、ステップ S 12の処理が行われる。
[0053] (ステップ S13 :冷媒量の適否の判定)
上述のように、冷媒回路 10内に冷媒の追加充填を開始すると、冷媒回路 10内の 冷媒量が徐々に増加する。ここで、冷媒連絡配管 6、 7の容積が未知である場合には 、冷媒の追加充填後に冷媒回路 10内に充填されるべき冷媒量を、冷媒回路 10全体 の冷媒量として規定することができない。しかし、室外ユニット 2及び室内ユニット 4、 5 だけに着目すれば (すなわち、冷媒連絡配管 6、 7を除く冷媒回路 10)、試験や詳細 なシミュレーションにより通常運転モードにおける最適な室外ユニット 2の冷媒量を予 め知ることができるため、この冷媒量を充填目標値 Msとして予め制御部 8のメモリに 記憶しておき、上述の関係式を用いて冷媒自動充填運転における冷媒回路 10内を 流れる冷媒又は構成機器の運転状態量力も演算される室外ユニット 2の冷媒量 Moと 室内ユニット 4、 5の冷媒量 Mrとを加算した冷媒量の値力 この充填目標値 Msに到 達するまで、冷媒の追カ卩充填を行えばよいことになる。すなわち、ステップ S 13は、冷 媒自動充填運転における室外ユニット 2の冷媒量 Moと室内ユニット 4、 5の冷媒量 M rとを加算した冷媒量の値が充填目標値 Msに到達したかどうかを判定することで、冷 媒の追加充填により冷媒回路 10内に充填された冷媒量の適否を判定する処理であ る。
[0054] そして、ステップ S13において、室外ユニット 2の冷媒量 Moと室内ユニット 4、 5の冷 媒量 Mrとを加算した冷媒量の値が充填目標値 Msよりも小さぐ冷媒の追加充填が 完了していない場合には、充填目標値 Msに到達するまで、ステップ S13の処理が繰 り返される。また、室外ユニット 2の冷媒量 Moと室内ユニット 4、 5の冷媒量 Mrとを加 算した冷媒量の値が充填目標値 Msに到達した場合には、冷媒の追加充填が完了し 、冷媒自動充填運転処理としてのステップ S1が完了する。
尚、上述の冷媒量判定運転においては、冷媒回路 10内への冷媒の追加充填が進 むにつれて、主として、室外熱交換器 23の出口における過冷却度 SCoが大きくなる 傾向が現れて室外熱交換器 23における冷媒量 Mcが増加し、他の部分における冷 媒量がほぼ一定に保たれる傾向になるため、充填目標値 Msを、室外ユニット 2及び 室内ユニット 4、 5ではなぐ室外ユニット 2の冷媒量 Moのみに対応する値として設定 したり、又は、室外熱交換器 23の冷媒量 Mcに対応する値として設定して、充填目標 値 Msに到達するまで冷媒の追加充填を行うようにしてもよい。
[0055] このように、冷媒自動充填運転の冷媒量判定運転における冷媒回路 10内の冷媒 量の適否 (すなわち、充填目標値 Msに到達したかどうか)を判定する冷媒量判定手 段として機能する制御部 8により、ステップ S 13の処理が行われる。
(ステップ S2:配管容積判定運転)
上述のステップ S1の冷媒自動充填運転が完了したら、ステップ S 2の配管容積判 定運転に移行する。配管容積判定運転では、制御部 8によって、図 6に示されるステ ップ S21〜ステップ S25の処理が行われる。ここで、図 6は、配管容積判定運転のフ ローチャートである。
(ステップ S21、S22 :液冷媒連絡配管用の配管容積判定運転及び容積の演算) ステップ S21では、上述の冷媒自動充填運転におけるステップ S 11の冷媒量判定 運転と同様に、室内ユニット全数運転、凝縮圧力制御、液管温度制御、過熱度制御 及び蒸発圧力制御を含む液冷媒連絡配管 6用の配管容積判定運転を行う。ここで、 液管温度制御における過冷却器 25の主冷媒回路側の出口の冷媒の温度 Tipの液 管温度目標値 Tipsを第 1目標値 Tlpslとし、この第 1目標値 Tlpslで冷媒量判定運 転が安定した状態を第 1状態とする(図 7の破線を含む線で示された冷凍サイクルを 参照)。尚、図 7は、液冷媒連絡配管用の配管容積判定運転における空気調和装置 1の冷凍サイクルを示すモリエル線図である。
次に、液管温度制御における過冷却器 25の主冷媒回路側の出口の冷媒の温度 T lpが第 1目標値 Tlpslで安定した第 1状態から、他の機器制御、すなわち、凝縮圧力 制御、過熱度制御及び蒸発圧力制御の条件については変更することなく(すなわち 、過熱度目標値 SHrsや低圧目標値 Tesを変更することなく)、液管温度目標値 Tips を第 1目標値 Tlpslと異なる第 2目標値 Tlps2に変更して安定させた第 2状態とする( 図 7の実線で示された冷凍サイクルを参照)。本実施形態において、第 2目標値 Tips 2は、第 1目標値 Tlpslよりも高い温度である。
このように、第 1状態で安定した状態から第 2状態に変更することによって、液冷媒 連絡配管 6内の冷媒の密度が小さくなるため、第 2状態における液冷媒連絡配管部 B3の冷媒量 Mlpは、第 1状態における冷媒量に比べて減少することになる。そして、 この液冷媒連絡配管部 B3から減少した冷媒は、冷媒回路 10の他の部分に移動する ことになる。より具体的には、上述のように、液管温度制御以外の他の機器制御の条 件については変更していないことから、高圧ガス管部 Eにおける冷媒量 Mogl、低圧 ガス管部 Hにおける冷媒量 Mog2及びガス冷媒連絡配管部 Gにおける冷媒量 Mgp がほぼ一定に保たれて、液冷媒連絡配管部 B3から減少した冷媒は、凝縮器部 A、 高温液管部 Bl、低温液管部 B2、室内ユニット部 F及びバイパス回路部 Iに移動する ことになる。すなわち、液冷媒連絡配管部 B3から冷媒が減少した分だけ、凝縮器部 Aにおける冷媒量 Mc、高温液管部 Blにおける冷媒量 Moll、低温液管部 B2にお ける冷媒量 Mol2、室内ユニット部 Fにおける冷媒量 Mr及びバイパス回路部 Iにおけ る冷媒量 Mobが増加することになる。
[0057] 以上のような制御は、液冷媒連絡配管部 6の容積 Mlpを演算するための配管容積 判定運転を行う配管容積判定運転制御手段として機能する制御部 8 (より具体的に は、室内側制御部 47、 57と室外側制御部 37と制御部 37、 47、 57間を接続する伝 送線 8a)により、ステップ S 21の処理として行われる。
次に、ステップ S22では、第 1状態から第 2状態への変更により、液冷媒連絡配管 部 B3から冷媒が減少して冷媒回路 10の他の部分に移動する現象を利用して、液冷 媒連絡配管 6の容積 Vlpを演算する。
まず、液冷媒連絡配管 6の容積 Vlpを演算するために使用される演算式について、 説明する。上述の配管容積判定運転によって、この液冷媒連絡配管部 B3から減少 して冷媒回路 10の他の部分に移動した冷媒量を冷媒増減量 Δ Mlpとし、第 1及び第 2状態間における各部分の冷媒の増減量を A Mc、 Δ Μο11、 Δ Μο12、 A Mr及び Δ Mob (ここでは、冷媒量 Mogl、冷媒量 Mog2及び冷媒量 Mgpがほぼ一定に保たれ るため省略する)とすると、冷媒増減量 Δ Mlpは、例えば、
Δ Mlp=— ( Δ Mc+ Δ Moll + Δ Μο12+ Δ Mr+ Δ Mob)
という関数式力 演算することができる。そして、この Δ Mlpの値を液冷媒連絡配管 6 内における第 1及び第 2状態間の冷媒の密度変化量 Δ p ipで除算することにより、液 冷媒連絡配管 6の容積 Vlpを演算することができる。尚、冷媒増減量 Δ Mlpの演算結 果にはほとんど影響しないが、上述の関数式において、冷媒量 Mogl及び冷媒量 M og2が含まれていてもよい。
[0058] Vlp = Δ Mlp/ Δ lp
尚、 A Mc、 Δ Μο11、 Δ Μο12、 A Mr及び A Mobは、上述の冷媒回路 10の各部分 についての関係式を用いて、第 1状態における冷媒量と第 2状態における冷媒量とを 演算し、さらに第 2状態における冷媒量力 第 1状態の冷媒量を減算することによつ て得られ、また、密度変化量 Δ lpは、第 1状態における過冷却器 25の出口におけ る冷媒の密度と第 2状態における過冷却器 25の出口における冷媒の密度を演算し、 さらに第 2状態における冷媒の密度力 第 1状態における冷媒の密度を減算すること によって得られる。
以上のような演算式を用いて、第 1及び第 2状態における冷媒回路 10を流れる冷 媒又は構成機器の運転状態量から液冷媒連絡配管 6の容積 Vlpを演算することがで きる。
[0059] 尚、本実施形態では、第 2状態における第 2目標値 Tlps2が第 1状態における第 1 目標値 Tlpslよりも高い温度になるように状態変更を行い、液冷媒連絡配管部 B2の 冷媒を他の部分に移動させることで他の部分における冷媒量を増加させて、この増 加量力 液冷媒連絡配管 6の容積 Vlpを演算しているが、第 2状態における第 2目標 値 Tlps2が第 1状態における第 1目標値 Tlpslよりも低い温度になるように状態変更 を行い、液冷媒連絡配管部 B3に他の部分から冷媒を移動させることで他の部分に おける冷媒量を減少させて、この減少量から液冷媒連絡配管 6の容積 Vlpを演算し てもよい。
このように、液冷媒連絡配管 6用の配管容積判定運転における冷媒回路 10内を流 れる冷媒又は構成機器の運転状態量から液冷媒連絡配管 6の容積 Vlpを演算する 液冷媒連絡配管用の配管容積演算手段として機能する制御部 8により、ステップ S2 2の処理が行われる。
[0060] (ステップ S23、S24 :ガス冷媒連絡配管用の配管容積判定運転及び容積の演算) 上述のステップ S21及びステップ S22が完了した後、ステップ S23において、室内 ユニット全数運転、凝縮圧力制御、液管温度制御、過熱度制御及び蒸発圧力制御 を含むガス冷媒連絡配管 7用の配管容積判定運転を行う。ここで、蒸発圧力制御に おける圧縮機 21の吸入圧力 Psの低圧目標値 Pesを第 1目標値 Peslとし、この第 1目 標値 Peslで冷媒量判定運転が安定した状態を第 1状態とする(図 8の破線を含む線 で示された冷凍サイクルを参照)。尚、図 8は、ガス冷媒連絡配管用の配管容積判定 運転における空気調和装置 1の冷凍サイクルを示すモリエル線図である。
次に、蒸発圧力制御における圧縮機 21の吸入圧力 Psの低圧目標値 Pesが第 1目 標値 Peslで安定した第 1状態から、他の機器制御、すなわち、液管温度制御、凝縮 圧力制御及び過熱度制御の条件については変更することなく(すなわち、液管温度 目標値 Tipsや過熱度目標値 SHrsを変更することなく)、低圧目標値 Pesを第 1目標 値 Peslと異なる第 2目標値 Pes2に変更して安定させた第 2状態とする(図 8の実線 のみで示された冷凍サイクルを参照)。本実施形態において、第 2目標値 Pes2は、 第 1目標値 Peslよりも低い圧力である。
[0061] このように、第 1状態で安定した状態から第 2状態に変更することによって、ガス冷 媒連絡配管 7内の冷媒の密度が小さくなるため、第 2状態におけるガス冷媒連絡配 管部 Gの冷媒量 Mgpは、第 1状態における冷媒量に比べて減少することになる。そし て、このガス冷媒連絡配管部 Gから減少した冷媒は、冷媒回路 10の他の部分に移動 することになる。より具体的には、上述のように、蒸発圧力制御以外の他の機器制御 の条件にっ 、ては変更して 、な 、ことから、高圧ガス管部 Eにおける冷媒量 Mogl、 高温液管部 B1における冷媒量 Moll、低温液管部 B2における冷媒量 Mol2及び液 冷媒連絡配管部 B3における冷媒量 Mlpがほぼ一定に保たれて、ガス冷媒連絡配管 部 Gカゝら減少した冷媒は、低圧ガス管部 H、凝縮器部 A、室内ユニット部 F及びバイ ノ ス回路部 Iに移動することになる。すなわち、ガス冷媒連絡配管部 Gから冷媒が減 少した分だけ、低圧ガス管部 Hにおける冷媒量 Mog2、凝縮器部 Aにおける冷媒量 Mc、室内ユニット部 Fにおける冷媒量 Mr及びバイノス回路部 Iにおける冷媒量 Mob が増加することになる。
[0062] 以上のような制御は、ガス冷媒連絡配管 7の容積 Vgpを演算するための配管容積 判定運転を行う配管容積判定運転制御手段として機能する制御部 8 (より具体的に は、室内側制御部 47、 57と室外側制御部 37と制御部 37、 47、 57間を接続する伝 送線 8a)により、ステップ S23の処理として行われる。
次に、ステップ S24では、第 1状態から第 2状態への変更により、ガス冷媒連絡配管 部 G力も冷媒が減少して冷媒回路 10の他の部分に移動する現象を利用して、ガス 冷媒連絡配管 7の容積 Vgpを演算する。
まず、ガス冷媒連絡配管 7の容積 Vgpを演算するために使用される演算式につい て、説明する。上述の配管容積判定運転によって、このガス冷媒連絡配管部 Gから 減少して冷媒回路 10の他の部分に移動した冷媒量を冷媒増減量 Δ Mgpとし、第 1 及び第 2状態間における各部分の冷媒の増減量を A Mc、 A Mog2、 A Mr及び Δ Mob (ここでは、冷媒量 Mogl、冷媒量 Moll、冷媒量 Mol2及び冷媒量 Mlpがほぼ 一定に保たれるため省略する)とすると、冷媒増減量 A Mgpは、例えば、
A Mgp= - ( A Mc+ A Mog2+ A Mr+ A Mob)
という関数式力 演算することができる。そして、この A Mgpの値をガス冷媒連絡配 管 7内における第 1及び第 2状態間の冷媒の密度変化量 Δ p gpで除算することによ り、ガス冷媒連絡配管 7の容積 Vgpを演算することができる。尚、冷媒増減量 A Mgp の演算結果にはほとんど影響しないが、上述の関数式において、冷媒量 Mogl、冷 媒量 Moll及び冷媒量 Mol2が含まれて 、てもよ 、。
Figure imgf000033_0001
尚、 A Mc、 A Mog2、 Δ Mr及び Δ Mobは、上述の冷媒回路 10の各部分について の関係式を用いて、第 1状態における冷媒量と第 2状態における冷媒量とを演算し、 さらに第 2状態における冷媒量力 第 1状態の冷媒量を減算することによって得られ 、また、密度変化量 Δ p gpは、第 1状態における圧縮機 21の吸入側における冷媒の 密度 p sと室内熱交換器 42、 52の出口における冷媒の密度 p eoとの平均密度を演 算し、第 2状態における平均密度から第 1状態における平均密度を減算することによ つて得られる。
以上のような演算式を用いて、第 1及び第 2状態における冷媒回路 10を流れる冷 媒又は構成機器の運転状態量からガス冷媒連絡配管 7の容積 Vgpを演算することが できる。
尚、本実施形態では、第 2状態における第 2目標値 Pes2が第 1状態における第 1目 標値 Peslよりも低 、圧力になるように状態変更を行 、、ガス冷媒連絡配管部 Gの冷 媒を他の部分に移動させることで他の部分における冷媒量を増加させて、この増加 量力もガス冷媒連絡配管 7の容積 Vlpを演算しているが、第 2状態における第 2目標 値 Pes2が第 1状態における第 1目標値 Peslよりも高い圧力になるように状態変更を 行い、ガス冷媒連絡配管部 Gに他の部分から冷媒を移動させることで他の部分にお ける冷媒量を減少させて、この減少量からガス冷媒連絡配管 7の容積 Vlpを演算して ちょい。
[0064] このように、ガス冷媒連絡配管 7用の配管容積判定運転における冷媒回路 10内を 流れる冷媒又は構成機器の運転状態量からガス冷媒連絡配管 7の容積 Vgpを演算 するガス冷媒連絡配管用の配管容積演算手段として機能する制御部 8により、ステツ プ S24の処理が行われる。
(ステップ S25:配管容積判定運転の結果の妥当性の判定)
上述のステップ S21〜ステップ S24が完了した後、ステップ S25において、配管容 積判定運転の結果が妥当なものであるかどうか、すなわち、配管容積演算手段によ つて演算された冷媒連絡配管 6、 7の容積 Vlp、 Vgpが妥当なものであるかどうかを判 定する。
具体的には、以下の不等式のように、演算により得られたガス冷媒連絡配管 7の容 積 Vgpに対する液冷媒連絡配管 6の容積 Vlpの比が所定の数値範囲内にあるかどう かにより判定する。
[0065] ε 1 く Vlp/Vgp く ε 2
ここで、 ε 1及び ε 2は、熱源ユニットと利用ユニットとの実現可能な組み合わせにお ける配管容積比の最小値及び最大値に基づいて可変される値である。
そして、容積比 VlpZVgpが上述の数値範囲を満たす場合には、配管容積判定運 転に力かるステップ S2の処理が完了となり、容積比 VlpZVgpが上述の数値範囲を 満たさない場合には、再度、ステップ S21〜ステップ S 24の配管容積判定運転及び 容積の演算の処理が行われる。
このように、上述の配管容積判定運転の結果が妥当なものであるかどうか、すなわ ち、配管容積演算手段によって演算された冷媒連絡配管 6、 7の容積 Vlp、 Vgpが妥 当なものであるかどうかを判定する妥当性判定手段として機能する制御部 8により、ス テツプ S25の処理が行われる。
[0066] 尚、本実施形態にぉ 、ては、液冷媒連絡配管 6用の配管容積判定運転 (ステップ S 21、 S22)を先に行い、その後に、ガス冷媒連絡配管 7用の配管容積判定運転 (ステ ップ S23、 S24)を行っているが、ガス冷媒連絡配管 7用の配管容積判定運転を先に 行ってもよい。
また、上述のステップ S25において、ステップ S21〜S24の配管容積判定運転の 結果が妥当でないものと複数回判定されるような場合や、より簡易的に冷媒連絡配 管 6、 7の容積 Vlp、 Vgpの判定を行いたい場合には、図 6には図示しないが、例えば 、ステップ S25において、ステップ S21〜S24の配管容積判定運転の結果が妥当で ないものと判定された後に、冷媒連絡配管 6、 7における圧力損失から冷媒連絡配管 6、 7の配管長さを推定し、この推定された配管長さと平均容積比から冷媒連絡配管 6、 7の容積 Vlp、 Vgpを演算する処理に移行して、冷媒連絡配管 6、 7の容積 Vlp、 V gpを得るようにしてもよい。
[0067] また、本実施形態においては、冷媒連絡配管 6、 7の長さゃ管径等の情報がなぐ 冷媒連絡配管 6、 7の容積 Vlp、 Vgpが未知であることを前提として、配管容積判定 運転を行って冷媒連絡配管 6、 7の容積 Vlp、 Vgpを演算する場合について説明した 力 配管容積演算手段が、冷媒連絡配管 6、 7の長さゃ管径等の情報を入力すること で冷媒連絡配管 6、 7の容積 Vlp、 Vgpを演算する機能を有している場合には、この 機能を併用してもよい。
さらに、上述の配管容積判定運転及びその運転結果を用いて冷媒連絡配管 6、 7 の容積 Vlp、 Vgpを演算する機能を使用せず、冷媒連絡配管 6、 7の長さゃ管径等の 情報を入力することで冷媒連絡配管 6、 7の容積 Vlp、 Vgpを演算する機能のみを使 用する場合には、上述の妥当性判定手段 (ステップ S25)を用いて、入力された冷媒 連絡配管 6、 7の長さゃ管径等の情報が妥当であるかどうかについての判定を行うよ うにしてもよい。
[0068] (ステップ S3 :初期冷媒量検知運転)
上述のステップ S 2の配管容積判定運転が完了したら、ステップ S3の初期冷媒量 判定運転に移行する。初期冷媒量検知運転では、制御部 8によって、図 9に示される ステップ S31及びステップ S32の処理が行われる。ここで、図 9は、初期冷媒量検知 運転のフローチャートである。
(ステップ S31:冷媒量判定運転)
ステップ S31では、上述の冷媒自動充填運転のステップ S11の冷媒量判定運転と 同様に、室内ユニット全数運転、凝縮圧力制御、液管温度制御、過熱度制御及び蒸 発圧力制御を含む冷媒量判定運転が行われる。ここで、液管温度制御における液 管温度目標値 Tlps、過熱度制御における過熱度目標値 SHrs及び蒸発圧力制御に おける低圧目標値 Pesは、原則として、冷媒自動充填運転のステップ S 11の冷媒量 判定運転における目標値と同じ値が使用される。
[0069] このように、室内ユニット全数運転、凝縮圧力制御、液管温度制御、過熱度制御及 び蒸発圧力制御を含む冷媒量判定運転を行う冷媒量判定運転制御手段として機能 する制御部 8により、ステップ S 31の処理が行われる。
(ステップ S32:冷媒量の演算)
次に、上述の冷媒量判定運転を行!、つつ冷媒量演算手段として機能する制御部 8 によって、ステップ S32における初期冷媒量判定運転における冷媒回路 10を流れる 冷媒又は構成機器の運転状態量から冷媒回路 10内の冷媒量を演算する。冷媒回 路 10内の冷媒量の演算は、上述の冷媒回路 10の各部分の冷媒量と冷媒回路 10を 流れる冷媒又は構成機器の運転状態量との関係式を用いて演算されるが、この際、 上述の配管容積判定運転によって、空気調和装置 1の構成機器の設置後において 未知であった冷媒連絡配管 6、 7の容積 Vlp、 Vgpが演算されて既知となっているた め、これらの冷媒連絡配管 6、 7の容積 Vlp、 Vgpに冷媒の密度を乗算することによつ て、冷媒連絡配管 6、 7内の冷媒量 Mlp、 Mgpを演算し、さらに他の各部分の冷媒量 を加算することにより、冷媒回路 10全体の初期冷媒量を検知することができる。この 初期冷媒量は、後述の冷媒漏洩検知運転において、冷媒回路 10からの漏洩の有無 を判定する基準となる冷媒回路 10全体の基準冷媒量 Miとして使用されるため、運 転状態量の 1つとして、状態量蓄積手段としての制御部 8のメモリに記憶される。
[0070] このように、初期冷媒量検知運転における冷媒回路 10内を流れる冷媒又は構成機 器の運転状態量から冷媒回路 10の各部分の冷媒量を演算する冷媒量演算手段とし て機能する制御部 8により、ステップ S32の処理が行われる。
<冷媒漏洩検知運転モード >
次に、冷媒漏洩検知運転モードについて、図 1、図 2、図 5及び図 10を用いて説明 する。ここで、図 10は、冷媒漏洩検知運転モードのフローチャートである。
本実施形態において、定期的 (例えば、休日や深夜等で空調を行う必要がない時 間帯等)に、不測の原因により冷媒回路 10から冷媒が外部に漏洩していないかどう かを検知する場合を例にして説明する。 (ステップ S41:冷媒量判定運転)
まず、上記の冷房運転や暖房運転のような通常運転モードにおける運転が一定時 間(例えば、半年〜 1年ごと等)経過した場合に、自動又は手動で通常運転モードか ら冷媒漏洩検知運転モードに切り換えて、初期冷媒量検知運転の冷媒量判定運転 と同様に、室内ユニット全数運転、凝縮圧力制御、液管温度制御、過熱度制御及び 蒸発圧力制御を含む冷媒量判定運転を行なう。ここで、液管温度制御における液管 温度目標値 Tlps、過熱度制御における過熱度目標値 SHrs及び蒸発圧力制御にお ける低圧目標値 Pesは、原則として、初期冷媒量検知運転の冷媒量判定運転のステ ップ S31における目標値と同じ値が使用される。
尚、この冷媒量判定運転は、冷媒漏洩検知運転ごとに行われることになるが、例え ば、凝縮圧力 Pcが異なる場合ゃ冷媒漏洩が生じて!/ヽる場合のような運転条件の違 いによって室外熱交換器 23出口における冷媒の温度 Tcoが変動する場合において も、液管温度制御によって、液冷媒連絡配管 6内の冷媒の温度 Tipが同じ液管温度 目標値 Tipsで一定に保たれることになる。
このように、室内ユニット全数運転、凝縮圧力制御、液管温度制御、過熱度制御及 び蒸発圧力制御を含む冷媒量判定運転を行う冷媒量判定運転制御手段として機能 する制御部 8により、ステップ S41の処理が行われる。
(ステップ S42:冷媒量の演算)
次に、上述の冷媒量判定運転を行!、つつ冷媒量演算手段として機能する制御部 8 によって、ステップ S42における冷媒漏洩検知運転における冷媒回路 10を流れる冷 媒又は構成機器の運転状態量から冷媒回路 10内の冷媒量を演算する。冷媒回路 1 0内の冷媒量の演算は、上述の冷媒回路 10の各部分の冷媒量と冷媒回路 10を流 れる冷媒又は構成機器の運転状態量との関係式を用いて演算されるが、この際、初 期冷媒量判定運転と同様に、上述の配管容積判定運転によって、空気調和装置 1 の構成機器の設置後において未知であった冷媒連絡配管 6、 7の容積 Vlp、 Vgpが 演算されて既知となっているため、これらの冷媒連絡配管 6、 7の容積 Vlp、 Vgpに冷 媒の密度を乗算することによって、冷媒連絡配管 6、 7内の冷媒量 Mlp、 Mgpを演算 し、さらに他の各部分の冷媒量を加算することにより、冷媒回路 10全体の冷媒量 M を演算することができる。
[0072] ここで、上述のように、液管温度制御によって液冷媒連絡配管 6内の冷媒の温度 T1 Pが同じ液管温度目標値 Tipsで一定に保たれているため、液冷媒連絡配管部 B3に おける冷媒量 Mlpは、冷媒漏洩検知運転の運転条件の違いによらず、室外熱交換 器 23出口における冷媒の温度 Tcoが変動する場合においても、一定に保たれること になる。
このように、冷媒漏洩検知運転における冷媒回路 10内を流れる冷媒又は構成機器 の運転状態量から冷媒回路 10の各部分の冷媒量を演算する冷媒量演算手段として 機能する制御部 8により、ステップ S42の処理が行われる。
(ステップ S43、 S44 :冷媒量の適否の判定、警告表示)
冷媒回路 10から冷媒が外部に漏洩すると、冷媒回路 10内の冷媒量が減少する。 そして、冷媒回路 10内の冷媒量が減少すると、主として、室外熱交換器 23の出口に おける過冷却度 SCが小さくなる傾向が現れ、これに伴い、室外熱交 におけ る冷媒量 Mcが減少し、他の部分における冷媒量がほぼ一定に保たれる傾向になる 。このため、上述のステップ S42において演算された冷媒回路 10全体の冷媒量 Mは 、冷媒回路 10からの冷媒漏洩が生じている場合には、初期冷媒量検知運転におい て検知された基準冷媒量 MUりも小さくなり、冷媒回路 10からの冷媒漏洩が生じて V、な 、場合には、基準冷媒量 Miとほぼ同じ値になる。
[0073] このことを利用して、ステップ S43では、冷媒の漏洩の有無を判定している。そして 、ステップ S43において、冷媒回路 10からの冷媒の漏洩が生じていないと判定され る場合には、冷媒漏洩検知運転モードを終了する。
一方、ステップ S43において、冷媒回路 10からの冷媒の漏洩が生じていると判定さ れる場合には、ステップ S44の処理に移行して、冷媒漏洩を検知したことを知らせる 警告を警告表示部 9に表示した後、冷媒漏洩検知運転モードを終了する。
このように、冷媒漏洩検知運転モードにお!ヽて冷媒量判定運転を行!ヽつつ冷媒回 路 10内の冷媒量の適否を判定して冷媒漏洩の有無を検知する、冷媒量判定手段の 一つである冷媒漏洩検知手段として機能する制御部 8により、ステップ S42〜S44の 処理が行われる。 [0074] 以上のように、本実施形態の空気調和装置 1では、制御部 8が、冷媒量判定運転 手段、冷媒量演算手段、冷媒量判定手段、配管容積判定運転手段、配管容積演算 手段、妥当性判定手段及び状態量蓄積手段として機能することにより、冷媒回路 10 内に充填された冷媒量の適否を判定するための冷媒量判定システムを構成して 、る
(3)空気調和装置の特徴
本実施形態の空気調和装置 1には、以下のような特徴がある。
(A)
本実施形態の空気調和装置 1では、冷媒回路 10を複数の部分に分割して、各部 分の冷媒量と運転状態量との関係式を設定しているため、従来のような冷凍サイクル 特性のシミュレーションを行う場合に比べて、演算負荷を抑えることができるとともに、 各部分の冷媒量を演算する上で重要な運転状態量を関係式の変数として選択的に 取り込むことができるため、各部分の冷媒量の演算精度も向上し、その結果、冷媒回 路 10内の冷媒量の適否を高精度に判定することができる。
[0075] 例えば、冷媒量演算手段としての制御部 8は、関係式を用いて、冷媒回路 10内に 冷媒を充填する冷媒自動充填運転における冷媒回路 10を流れる冷媒又は構成機 器の運転状態量力も各部分の冷媒量を素早く演算することができる。しかも、冷媒量 判定手段としての制御部 8は、演算された各部分の冷媒量を用いて、冷媒回路 10内 の冷媒量 (具体的には、室外ユニット 2における冷媒量 Moと室内ユニット 4、 5におけ る冷媒量 Mrとを加算した値)が充填目標値 Msに到達したかどうかを高精度に判定 することができる。
また、制御部 8は、関係式を用いて、構成機器を設置した後又は冷媒回路 10内に 冷媒を充填した後の初期冷媒量を検知する初期冷媒量検知運転における冷媒回路 10を流れる冷媒又は構成機器の運転状態量から各部分の冷媒量を演算することで 、基準冷媒量 Miとしての初期冷媒量を素早く演算することができる。し力も、初期冷 媒量を高精度に検知することができる。
[0076] さらに、制御部 8は、関係式を用いて、冷媒回路 10からの冷媒の漏洩の有無を判 定する冷媒漏洩検知運転における冷媒回路 10を流れる冷媒又は構成機器の運転 状態量力も各部分の冷媒量を素早く演算することができる。し力も、制御部 8は、演算 された各部分の冷媒量と、漏洩の有無を判定する基準となる基準冷媒量 Miとを比較 することで、冷媒回路 10からの冷媒の漏洩の有無を高精度に判定することができる。
(B)
本実施形態の空気調和装置 1では、冷媒回路 10を、設置場所等の条件によって 冷媒量が変化する冷媒連絡配管 6、 7 (すなわち、液冷媒連絡配管部 B3及びガス冷 媒連絡配管部 G)と、冷媒連絡配管 6、 7以外の部分 (ここでは、熱源ユニットとしての 室外ユニット 2及び利用ユニットとしての室内ユニット 4、 5)とに分割して、各部分の冷 媒量と運転状態量との関係式を設定しているため、冷媒連絡配管 6、 7以外の部分 の冷媒量を演算する関係式として、冷媒連絡配管 6、 7の冷媒量変化による演算誤 差が生じにくい関係式を使用することができるようになり、その結果、冷媒回路 10内 の冷媒量の適否の判定精度をさらに向上させることができる。
(C)
本実施形態の空気調和装置 1では、冷媒連絡配管 6、 7以外の部分を、室外ュニッ ト 2と室内ユニット 4、 5とに分割して、各部分の冷媒量と運転状態量との関係式を設 定しているため、種々の組み合わせで室外ユニット 2と室内ユニット 4、 5とが接続され る場合であっても、室外ユニット 2ごと又は室内ユニット 4、 5ごとに準備された関係式 を使用することができるようになり、その結果、冷媒回路 10内の冷媒量の適否の判定 精度をさらに向上させることができる。
(D)
本実施形態の空気調和装置では、室外ユニット 2を、熱源側熱交換器としての室外 熱交翻 23 (すなわち、凝縮器部 A)と室外熱交翻 23以外の部分 (ここでは、高圧 ガス管部 F、高温液管部 Bl、低温液管部 B2、低圧ガス管部 H及びバイパス回路部 I )とに分割して、各部分の冷媒量と運転状態量との関係式を設定するとともに、室外 熱交換器 23の冷媒量を演算するための関係式に使用される運転状態量として、冷 媒循環量 Wc又は冷媒循環量 Wcに等価な運転状態量 (例えば、蒸発温度 Teや凝 縮温度 Tc等)を含むようにして!/、るため、冷媒循環量 Wcの違いによる演算誤差を生 じにくくすることができるようになり、その結果、冷媒回路 10内の冷媒量の適否の判定 精度をさらに向上させることができる。
[0078] (E)
本実施形態の空気調和装置 1では、室内ユニット 4、 5の冷媒量を演算するための 関係式に使用される運転状態量として、送風ファンとしての室内ファン 43、 53の風量 Wr又は風量 Wrに等価な運転状態量 (例えば、ファンタップ等)を含むようにして 、る ため、風量 Wrの違いによる演算誤差を生じにくくすることができるようになり、その結 果、冷媒回路 10内の冷媒量の適否の判定精度をさらに向上させることができる。
(F)
本実施形態の空気調和装置 1では、凝縮器としての室外熱交換器 23から膨張機 構としての室内膨張弁 41、 51に送られる冷媒の温度を調節することが可能な温度調 節機構としての過冷却器 25が設けられており、冷媒量判定運転の際に過冷却器 25 力 膨張機構としての室内膨張弁 41、 51に送られる冷媒の温度 Tipが一定になるよ うに過冷却器 25の能力制御を行うことで過冷却器 25から室内膨張弁 41、 51に至る 冷媒配管内の冷媒の密度 p lpが変化しないようにしているため、凝縮器としての室 外熱交換器 23の出口における冷媒の温度 Tcoが冷媒量判定運転を行うごとに異な る場合であっても、このような冷媒の温度の相違の影響が室外熱交 の出口か ら過冷却器 25に至る冷媒配管のみに収まることとなり、冷媒量判定の際に、室外熱 交換器 23の出口における冷媒の温度 Tcoの相違 (すなわち、冷媒の密度の相違)に よる判定誤差を小さくすることができる。
[0079] 特に、本実施形態のように、熱源ユニットとしての室外ユニット 2と利用ユニットとして の室内ユニット 4、 5とが液冷媒連絡配管 6及びガス冷媒連絡配管 7を介して接続され ている場合には、室外ユニット 2と室内ユニット 4、 5との間を接続する冷媒連絡配管 6 、 7の長さゃ管径等が設置場所等の条件により異なるため、冷媒連絡配管 6、 7の容 積が大きくなる場合には、室外熱交 の出口における冷媒の温度 Tcoの相違 力 室外熱交換器 23の出口から室内膨張弁 41、 51に至る冷媒配管の大部分を構 成する液冷媒連絡配管 6内の冷媒の温度の相違となってしまい、判定誤差が大きく なる傾向にあるが、上述のように、過冷却器 25を設けるとともに、冷媒量判定運転の 際に液冷媒連絡配管 6内の冷媒の温度 Tipが一定になるように過冷却器 25の能力 制御を行っており、過冷却器 25から室内膨張弁 41、 51に至る冷媒配管内の冷媒の 密度/ o lpが変化しないようにしているため、冷媒量判定の際に、室外熱交換器 23の 出口 Tcoにおける冷媒の温度の相違 (すなわち、冷媒の密度の相違)による判定誤 差を/ J、さくすることができる。
[0080] 例えば、冷媒回路 10内に冷媒を充填する冷媒自動充填運転の際には、冷媒回路 10内の冷媒量が充填目標値 Miに到達した力どうかを高精度に判定することができる 。また、構成機器を設置した後又は冷媒回路 10内に冷媒を充填した後の初期冷媒 量を検知する初期冷媒量検知運転の際には、初期冷媒量を高精度に検知すること ができる。また、冷媒回路 10からの冷媒の漏洩の有無を判定する冷媒漏洩検知運 転の際には、冷媒回路 10からの冷媒の漏洩の有無を高精度に判定することができる また、本実施形態の空気調和装置 1では、冷媒量判定運転の際に蒸発器としての 室内熱交換器 42、 52から圧縮機 21に送られる冷媒の圧力(例えば、吸入圧力 Psや 蒸発圧力 Pe)又は圧力に等価な運転状態量 (例えば、蒸発温度 Te等)が一定になる ように構成機器の制御を行うことで室内熱交 42、 52から圧縮機 21に送られる冷 媒の密度 p gpが変化しないようにしているため、冷媒量判定の際に、室内熱交翻 42、 52の出口における冷媒の圧力又は圧力に等価な運転状態量の相違 (すなわち 、冷媒の密度の相違)による判定誤差を小さくすることができる。
[0081] (G)
本実施形態の空気調和装置 1では、冷媒連絡配管 6、 7内を流れる冷媒の密度が 異なる 2つの状態を作り出す配管容積判定運転を行い、これら 2つの状態間の冷媒 の増減量を冷媒連絡配管 6、 7以外の部分の冷媒量力 演算し、冷媒の増減量を、 第 1及び第 2状態間における冷媒連絡配管 6、 7内の冷媒の密度変化量で除算する ことにより、冷媒連絡配管 6、 7の容積を演算するようにしているため、例えば、構成機 器を設置した後において冷媒連絡配管 6、 7の容積が未知の場合であっても、冷媒 連絡配管 6、 7の容積を検知することができる。これにより、冷媒連絡配管 6、 7の情報 を入力する手間を減らしつつ、冷媒連絡配管 6、 7の容積を得ることができるようにな る。 そして、この空気調和装置 1では、配管容積演算手段によって演算される冷媒連絡 配管 6、 7の容積と、冷媒回路 10を流れる冷媒又は構成機器の運転状態量とを用い て、冷媒回路 10内の冷媒量の適否を判定することができるため、構成機器を設置し た後において冷媒連絡配管 6、 7の容積が未知の場合であっても、冷媒回路 10内の 冷媒量の適否を高精度に判定することができる。
例えば、構成機器を設置した後において冷媒連絡配管 6、 7の容積が未知の場合 であっても、配管容積演算手段によって演算された冷媒連絡配管 6、 7の容積を用い て初期冷媒量判定運転における冷媒回路 10内の冷媒量を演算することができる。ま た、構成機器を設置した後において冷媒連絡配管 6、 7の容積が未知の場合であつ ても、配管容積演算手段によって演算された冷媒連絡配管 6、 7の容積を用いて冷 媒漏洩検知運転における冷媒回路 10内の冷媒量を演算することができる。これによ り、冷媒連絡配管の情報を入力する手間を減らしつつ、冷媒回路 10からの冷媒の漏 洩を検知するために必要な初期冷媒量を検知したり、冷媒回路 10からの冷媒の漏 洩の有無を高精度に判定することができる。
(H)
本実施形態の空気調和装置 1では、液冷媒連絡配管 6及びガス冷媒連絡配管 7の 情報 (例えば、配管容積判定運転の運転結果や作業者等が入力する冷媒連絡配管 6、 7の長さゃ管径等の情報)から液冷媒連絡配管 6の容積 Vlp及びガス冷媒連絡配 管 7の容積 Vgpを演算し、演算によって得られた液冷媒連絡配管 6の容積 Vlp及び ガス冷媒連絡配管 7の容積 Vgpの演算結果から、演算に使用された液冷媒連絡配 管 6及びガス冷媒連絡配管 7の情報が妥当であるかどうかを判定しているため、妥当 であると判断される場合には、正確な液冷媒連絡配管 6の容積 Vlp及びガス冷媒連 絡配管 7の容積 Vgpを得ることができ、妥当でないと判断される場合には、適切な液 冷媒連絡配管 6及びガス冷媒連絡配管 7の情報を入力し直したり、配管容積判定運 転を再度行う等の対応を行うことができる。し力も、その判定方法が、演算により得ら れた液冷媒連絡配管 6の容積 Vlp及びガス冷媒連絡配管 7の容積 Vgpを個々にチェ ックするのではなぐ液冷媒連絡配管 6の容積 Vlpとガス冷媒連絡配管 7の容積 Vgp とが所定の関係を満たす力どうかによって判定するものであるため、液冷媒連絡配管 6の容積 Vlpとガス冷媒連絡配管 7の容積 Vgpとの相対関係も考慮した適切な判定 することができる。
[0083] (4)他の実施形態
以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、 これらの実施形態に限られるものではなぐ発明の要旨を逸脱しない範囲で変更可 能である。
例えば、上述の実施形態では、冷暖切り換え可能な空気調和装置に本発明を適 用した例を説明したが、これに限定されず、冷房専用の空気調和装置等の他の空気 調和装置に本発明を適用してもよい。また、上述の実施形態では、 1台の室外ュ-ッ トを備えた空気調和装置に本発明を適用した例を説明したが、これに限定されず、 複数台の室外ユニットを備えた空気調和装置に本発明を適用してもよい。
産業上の利用可能性
[0084] 本発明を利用すれば、演算負荷を抑えつつ、冷媒回路内の冷媒量の適否を高精 度に判定できるようになる。

Claims

請求の範囲
[1] 圧縮機 (21)と熱源側熱交 (23)と利用側熱交 (42、 52)とが接続されるこ とによって構成される冷媒回路(10)と、
前記冷媒回路を複数の部分に分割した場合における各部分の冷媒量と前記冷媒 回路を流れる冷媒又は構成機器の運転状態量との関係式を用いて、前記冷媒回路 を流れる冷媒又は構成機器の運転状態量から前記各部分の冷媒量を演算する冷媒 量演算手段と、
前記冷媒量演算手段によって演算される前記各部分の冷媒量を用いて、前記冷 媒回路内の冷媒量の適否を判定する冷媒量判定手段と、
を備えた空気調和装置(1)。
[2] 前記冷媒回路(10)は、前記圧縮機 (21)と前記熱源側熱交 (23)とを含む熱 源ユニット(2)と、前記利用側熱交換器 (42、 52)を含む利用ユニット (4、 5)と、前記 熱源ユニットと前記利用ユニットとを接続する冷媒連絡配管 (6、 7)とから構成されて おり、
前記関係式は、前記冷媒回路を、前記冷媒連絡配管と前記冷媒連絡配管以外の 部分とに分割して設定されている、
請求項 1に記載の空気調和装置( 1)。
[3] 前記関係式は、前記冷媒連絡配管以外の部分を、前記熱源ユニット (2)と前記利 用ユニット (4、 5)とに分割して設定されている、請求項 2に記載の空気調和装置(1)
[4] 前記関係式は、前記熱源ユニット (2)を、前記熱源側熱交換器 (23)と前記熱源側 熱交 以外の部分とに分割して設定されており、
前記熱源側熱交翻の冷媒量について設定された関係式には、前記冷媒回路(1
0)を流れる冷媒又は構成機器の運転状態量として、冷媒循環量又は前記冷媒循環 量に等価な運転状態量が含まれて!/、る、
請求項 3に記載の空気調和装置( 1 )。
[5] 前記利用ユニット (4、 5)は、前記利用側熱交換器 (42、 52)に空気を供給する送 風ファン (43、 53)をさらに有しており、 前記利用ユニットの冷媒量について設定された関係式には、前記冷媒回路(10)を 流れる冷媒又は構成機器の運転状態量として、前記送風ファンの風量又は前記風 量に等価な運転状態量が含まれて!/、る、
請求項 3又は 4に記載の空気調和装置(1)。
[6] 前記冷媒量演算手段は、前記関係式を用いて、前記冷媒回路(10)内に冷媒を充 填する冷媒自動充填運転における前記冷媒回路を流れる冷媒又は構成機器の運 転状態量から前記各部分の冷媒量を演算し、
前記冷媒量判定手段は、前記冷媒量演算手段によって演算される前記各部分の 冷媒量を用いて、前記冷媒回路内の冷媒量が充填目標値に到達した力どうかを判 定する、
請求項 1〜5のいずれかに記載の空気調和装置(1)。
[7] 前記冷媒量演算手段は、前記関係式を用いて、構成機器を設置した後又は前記 冷媒回路(10)内に冷媒を充填した後の初期冷媒量を検知する初期冷媒量検知運 転における前記冷媒回路を流れる冷媒又は構成機器の運転状態量力 前記各部分 の冷媒量を演算することで、前記初期冷媒量を検知する、
請求項 1〜6の!、ずれかに記載の空気調和装置(1)。
[8] 前記冷媒量演算手段は、前記関係式を用いて、前記冷媒回路(10)からの冷媒の 漏洩の有無を判定する冷媒漏洩検知運転における前記冷媒回路を流れる冷媒又は 構成機器の運転状態量から前記各部分の冷媒量を演算し、
前記冷媒量判定手段は、前記冷媒量演算手段によって演算される前記各部分の 冷媒量と、漏洩の有無を判定する基準となる基準冷媒量とを比較することで、前記冷 媒回路からの冷媒の漏洩の有無を判定する、
請求項 1〜7のいずれかに記載の空気調和装置(1)。
PCT/JP2006/324708 2005-12-16 2006-12-12 空気調和装置 WO2007069578A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2006800463740A CN101326416B (zh) 2005-12-16 2006-12-12 空调装置
AU2006324593A AU2006324593B2 (en) 2005-12-16 2006-12-12 Air conditioner
EP06834463.9A EP1970652B1 (en) 2005-12-16 2006-12-12 Air conditioner
ES06834463T ES2732086T3 (es) 2005-12-16 2006-12-12 Acondicionador de aire
US12/096,693 US7946121B2 (en) 2005-12-16 2006-12-12 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-363732 2005-12-16
JP2005363732A JP4124228B2 (ja) 2005-12-16 2005-12-16 空気調和装置

Publications (1)

Publication Number Publication Date
WO2007069578A1 true WO2007069578A1 (ja) 2007-06-21

Family

ID=38162886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324708 WO2007069578A1 (ja) 2005-12-16 2006-12-12 空気調和装置

Country Status (8)

Country Link
US (1) US7946121B2 (ja)
EP (1) EP1970652B1 (ja)
JP (1) JP4124228B2 (ja)
KR (1) KR20080081281A (ja)
CN (1) CN101326416B (ja)
AU (1) AU2006324593B2 (ja)
ES (1) ES2732086T3 (ja)
WO (1) WO2007069578A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113804A1 (ja) * 2009-03-30 2010-10-07 三菱電機株式会社 冷凍サイクル装置
CN102792108A (zh) * 2010-03-12 2012-11-21 三菱电机株式会社 冷冻空调装置
WO2013183414A1 (ja) 2012-06-04 2013-12-12 ダイキン工業株式会社 冷凍装置管理システム
CN104596172A (zh) * 2010-03-12 2015-05-06 三菱电机株式会社 冷冻空调装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4169057B2 (ja) 2006-07-24 2008-10-22 ダイキン工業株式会社 空気調和装置
JP4957243B2 (ja) * 2006-12-28 2012-06-20 ダイキン工業株式会社 空気調和装置
JP2009198154A (ja) 2007-10-23 2009-09-03 Daikin Ind Ltd 流体センサ、冷媒漏洩検知装置、冷凍装置、及び、冷媒漏洩検知方法
CN101871699B (zh) * 2009-04-23 2012-10-03 珠海格力电器股份有限公司 空调系统的制冷剂灌注量的判断方法
CN101886852B (zh) * 2009-05-15 2012-07-25 珠海格力电器股份有限公司 应用过冷器的空调系统的制冷剂流量的控制方法
JP5183609B2 (ja) * 2009-10-23 2013-04-17 三菱電機株式会社 冷凍空調装置
EP2491317B1 (en) 2009-10-23 2018-06-27 Carrier Corporation Refrigerant vapor compression system operation
WO2011080800A1 (ja) 2009-12-28 2011-07-07 ダイキン工業株式会社 ヒートポンプシステム
CN102725599B (zh) * 2010-01-29 2014-11-26 大金工业株式会社 热泵系统
EP2407735B1 (en) 2010-04-30 2016-07-20 Daikin Industries, Ltd. Heat pump system
US9759465B2 (en) 2011-12-27 2017-09-12 Carrier Corporation Air conditioner self-charging and charge monitoring system
DK178047B1 (da) * 2013-02-04 2015-04-13 Agramkow Fluid Systems As Fremgangsmåde til påfyldning af kølemiddel
KR102136647B1 (ko) * 2013-06-10 2020-07-22 삼성전자주식회사 공기 조화기 및 그 제어 방법
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
JP5971371B1 (ja) * 2015-03-31 2016-08-17 ダイキン工業株式会社 冷凍装置
JP2018084378A (ja) * 2016-11-24 2018-05-31 三菱重工冷熱株式会社 冷媒漏洩検知方法及び冷媒漏洩検知手段
CN107131703B (zh) * 2017-07-05 2021-12-21 南通远征冷冻设备有限公司 一种对冲吹风冷风循环装置
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
JP6887979B2 (ja) * 2018-09-28 2021-06-16 ダイキン工業株式会社 冷媒漏洩判定装置、この冷媒漏洩判定装置を備える冷凍装置、及び冷媒漏洩判定方法
FR3091336B1 (fr) * 2018-12-31 2021-01-29 Faiveley Transp Tours Méthode de détermination du niveau de charge en fluide réfrigérant dans un circuit de refroidissement pour un système de climatisation
US11231198B2 (en) 2019-09-05 2022-01-25 Trane International Inc. Systems and methods for refrigerant leak detection in a climate control system
JP7347295B2 (ja) * 2020-03-30 2023-09-20 株式会社富士通ゼネラル 空気調和装置および空気調和方法
US12117191B2 (en) 2022-06-24 2024-10-15 Trane International Inc. Climate control system with improved leak detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148170A (ja) * 1990-10-12 1992-05-21 Mitsubishi Electric Corp 冷媒封入量演算装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997487B2 (ja) 1989-12-13 2000-01-11 株式会社日立製作所 冷凍装置及び冷凍装置における冷媒量表示方法
CN1143096C (zh) * 1997-03-29 2004-03-24 Lg电子株式会社 控制多级空调器中制冷剂量的装置和方法
KR19990039709A (ko) * 1997-11-13 1999-06-05 최진호 냉동시스템 설계방법
JP3327215B2 (ja) 1998-07-22 2002-09-24 三菱電機株式会社 空気調和機の冷媒充填量決定方法
JP2000304388A (ja) 1999-04-23 2000-11-02 Matsushita Refrig Co Ltd 空気調和装置
JP4292525B2 (ja) 1999-07-15 2009-07-08 株式会社ヴァレオサーマルシステムズ 蒸気圧縮式冷凍サイクルの冷媒量検知方法
WO2001029489A1 (fr) * 1999-10-18 2001-04-26 Daikin Industries, Ltd. Dispositif de refrigeration
JP3951711B2 (ja) * 2001-04-03 2007-08-01 株式会社デンソー 蒸気圧縮式冷凍サイクル
JP2002350014A (ja) * 2001-05-22 2002-12-04 Daikin Ind Ltd 冷凍装置
US20040237555A1 (en) * 2003-05-30 2004-12-02 Andrews Craig C. Mechanical refrigeration system with a high turndown ratio
JP2005098642A (ja) 2003-09-26 2005-04-14 Hitachi Ltd 冷凍空調機器及び冷凍空調システム
JP4396286B2 (ja) * 2004-01-21 2010-01-13 三菱電機株式会社 機器診断装置および機器監視システム
ES2509964T3 (es) * 2004-06-11 2014-10-20 Daikin Industries, Ltd. Acondicionador de aire
US7310956B2 (en) * 2004-11-18 2007-12-25 Snap-On Incorporated Refrigerant charging by optimum performance
JP4114691B2 (ja) * 2005-12-16 2008-07-09 ダイキン工業株式会社 空気調和装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148170A (ja) * 1990-10-12 1992-05-21 Mitsubishi Electric Corp 冷媒封入量演算装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113804A1 (ja) * 2009-03-30 2010-10-07 三菱電機株式会社 冷凍サイクル装置
JP2010236714A (ja) * 2009-03-30 2010-10-21 Mitsubishi Electric Corp 冷凍サイクル装置
CN102378884A (zh) * 2009-03-30 2012-03-14 三菱电机株式会社 制冷循环装置
US8806877B2 (en) 2009-03-30 2014-08-19 Mitsubishi Electric Corporation Refrigerating cycle apparatus
CN102792108A (zh) * 2010-03-12 2012-11-21 三菱电机株式会社 冷冻空调装置
CN102792108B (zh) * 2010-03-12 2015-02-18 三菱电机株式会社 冷冻空调装置
CN104596172A (zh) * 2010-03-12 2015-05-06 三菱电机株式会社 冷冻空调装置
WO2013183414A1 (ja) 2012-06-04 2013-12-12 ダイキン工業株式会社 冷凍装置管理システム

Also Published As

Publication number Publication date
EP1970652B1 (en) 2019-03-27
US20090126379A1 (en) 2009-05-21
AU2006324593B2 (en) 2009-12-10
JP2007163099A (ja) 2007-06-28
EP1970652A4 (en) 2014-08-06
EP1970652A1 (en) 2008-09-17
ES2732086T3 (es) 2019-11-20
KR20080081281A (ko) 2008-09-09
CN101326416B (zh) 2010-09-15
JP4124228B2 (ja) 2008-07-23
AU2006324593A1 (en) 2007-06-21
CN101326416A (zh) 2008-12-17
US7946121B2 (en) 2011-05-24

Similar Documents

Publication Publication Date Title
JP4124228B2 (ja) 空気調和装置
JP4120676B2 (ja) 空気調和装置
JP4114691B2 (ja) 空気調和装置
JP4165566B2 (ja) 空気調和装置
JP4705878B2 (ja) 空気調和装置
JP4075933B2 (ja) 空気調和装置
WO2008001687A1 (en) Air conditioner
JP2007212134A (ja) 空気調和装置
JP2008064456A (ja) 空気調和装置
JP3933179B1 (ja) 空気調和装置
JP5104225B2 (ja) 空気調和装置
JP4826266B2 (ja) 空気調和装置
JP4665748B2 (ja) 空気調和装置
JP2008025935A (ja) 空気調和装置
JP4892954B2 (ja) 空気調和装置
JP4311470B2 (ja) 空気調和装置
JP4655107B2 (ja) 空気調和装置
JP4826247B2 (ja) 空気調和装置
WO2008013089A1 (fr) Conditionneur d&#39;air

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680046374.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12096693

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006324593

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2006834463

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006324593

Country of ref document: AU

Date of ref document: 20061212

Kind code of ref document: A