WO2007069486A1 - データ処理装置 - Google Patents

データ処理装置 Download PDF

Info

Publication number
WO2007069486A1
WO2007069486A1 PCT/JP2006/324145 JP2006324145W WO2007069486A1 WO 2007069486 A1 WO2007069486 A1 WO 2007069486A1 JP 2006324145 W JP2006324145 W JP 2006324145W WO 2007069486 A1 WO2007069486 A1 WO 2007069486A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
unit
data storage
clock
storage unit
Prior art date
Application number
PCT/JP2006/324145
Other languages
English (en)
French (fr)
Inventor
Yoichi Nishida
Takayuki Ejima
Yasunori Sato
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/817,594 priority Critical patent/US8892909B2/en
Priority to JP2007550131A priority patent/JP4794572B2/ja
Priority to EP06833915A priority patent/EP1962170A4/en
Publication of WO2007069486A1 publication Critical patent/WO2007069486A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/324Power saving characterised by the action undertaken by lowering clock frequency
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/02Control of operating function, e.g. switching from recording to reproducing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/87Regeneration of colour television signals
    • H04N9/877Regeneration of colour television signals by assembling picture element blocks in an intermediate memory
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/78Television signal recording using magnetic recording
    • H04N5/781Television signal recording using magnetic recording on disks or drums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/84Television signal recording using optical recording
    • H04N5/85Television signal recording using optical recording on discs or drums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/907Television signal recording using static stores, e.g. storage tubes or semiconductor memories
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/804Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components
    • H04N9/8042Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components involving data reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/804Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components
    • H04N9/8042Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components involving data reduction
    • H04N9/8047Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components involving data reduction using transform coding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the present invention relates to a data processing apparatus for AV playback such as audio and video, and more particularly to a data processing apparatus for portable devices for the purpose of reducing power consumption during playback.
  • Recent mobile phone terminals, portable information terminals, and cordless monitors are not limited to terminals that are capable of AV playback and broadcast viewing such as audio playback and video playback and radio and television viewing.
  • there is a desire to store and transmit these contents with high compression and there are many compression methods that are complicated and have a heavy processing load for decoding.
  • there is a high demand for long-time playback Therefore, these portable terminals that are notch-driven are required to reduce power consumption in order to be driven for a long time.
  • the following techniques are available as conventional techniques for solving such problems.
  • FIG. 11 shows a schematic diagram of a conventional data processing apparatus described in Patent Document 1.
  • a conventional data processing apparatus includes a broadcast receiving unit 1 that receives a broadcast wave, a decoding unit 2 that decodes data obtained from the broadcast wave received by the broadcast receiving unit 1, A data storage unit 3 that stores decoded data that is a result of decoding by the decoding unit 2, a DA conversion unit 4 that performs analog conversion of the data in the data storage unit 3, and a system control that controls the operation of each unit A unit 5, a power supply unit 6 that controls power supply to each unit of the apparatus, and a timer unit 7 that notifies the activation timing of the decoding unit 2.
  • a conventional data processing apparatus having this configuration receives and decodes a data broadcast updated several times a day by intermittently operating the broadcast receiving unit 1 and the decoding unit 2. More specifically, in the conventional data processing apparatus, when it is time to receive a data broadcast, system control by the timer unit 7 is performed. The power supply to the broadcast receiving unit 1 and the decoding unit 2 is started by an interrupt to the control unit 5. Thereafter, the conventional data processing apparatus receives the broadcast wave by the broadcast receiving unit 1 and stores the result decoded by the decoding unit 2 in the data storage unit 3. After that, the system control unit 5 stops each process in the broadcast receiving unit 1, the decoding unit 2, and the data storage unit 3, and supplies power to the broadcast receiving unit 1 and the decoding unit 2 by the power supply unit 6. Cut off.
  • the conventional data processing apparatus reduces power consumption in the standby state by cutting off the supply of power during the stop period of the intermittent operation.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-122586
  • offset current consumed only by supplying power and clock to the system LSI is increasing.
  • the conventional data processing device described in Patent Document 1 controls power supply and shut-off by a timer, so that the data update frequency is about several times a day and is used in applications such as data broadcasting. Can reduce power consumption.
  • the conventional data processing apparatus cannot be applied to a use in which continuous compressed data is decoded and reproduced or viewed by real-time processing, such as AV reproduction or broadcast viewing.
  • the present invention solves such a conventional problem, and provides a data processing device capable of reproducing and viewing continuous compressed data such as AV reproduction and broadcast viewing with low power consumption.
  • the purpose is to provide.
  • a data processing apparatus includes a first data storage unit for storing compressed data, and a first data storage unit for decoding the compressed data that has been read and the decoded data that has been read is decoded.
  • a second data storage unit that stores the decoded data output by the decoding unit, a DA conversion unit that reads the decoded data from the second data storage unit in real time and converts the decoded data into an analog signal;
  • a first control unit that controls at least the decoding unit to perform an intermittent operation by performing processing from reading the compressed data to storing the decoded data at a speed faster than the real time; and the decoding unit And controlling the supply of at least one of a clock and power to the first control unit, and during the intermittent operation stop period, a clock or a clock to the decoding unit and the first control unit.
  • a clock Z power supply control unit that limits power supply on the upstream side of the second data storage unit by limiting supply of at least one of the power supplies, and the decoding data in the second data storage unit
  • a second control unit that manages a storage state of the data and outputs a control signal corresponding to the storage state; and controls the clock Z power supply control unit in response to the control signal to control the second data storage unit
  • a startup control unit that releases the restriction on power consumption on the upstream side.
  • the data processing apparatus of the present invention generates the upstream side from the second data storage unit by performing the process up to the storage of the compressed data and the storage of the decoded data at a speed faster than the real time.
  • low-power consumption enables continuous compressed data playback and viewing such as AV playback and broadcast viewing be able to.
  • the data processing device of the present invention it is possible to reduce power consumption during continuous playback and viewing of compressed data such as AV playback and broadcast viewing.
  • compressed data such as AV playback and broadcast viewing.
  • battery-powered mobile phones and portable devices can improve playback time and viewing time.
  • FIG. 1 is a schematic diagram of a data processing device according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart for explaining the operation of the data processing device in Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of a data processing device in Embodiment 2 of the present invention.
  • FIG. 4 is a timing chart of the data processing device in Embodiment 2 of the present invention.
  • FIG. 5 is a first control flow diagram of a portion of an intermittent operation of the data processing device in Embodiment 2 of the present invention.
  • Fig. 6 is a second control flow diagram of a portion in which the data processing device according to Embodiment 2 of the present invention performs intermittent operation.
  • FIG. 7 is a schematic diagram of a data processing device according to Embodiment 3 of the present invention.
  • FIG. 8 is a timing chart of the data processing device according to the third embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a data processing device according to Embodiment 4 of the present invention.
  • FIG. 10 is a timing chart of the data processing apparatus in Embodiment 4 of the present invention.
  • FIG. 11 is a schematic diagram of a conventional data processing apparatus described in Patent Document 1. Explanation of symbols
  • FIG. 1 shows a schematic diagram of a data processing apparatus according to Embodiment 1 of the present invention.
  • the data processing apparatus according to the first embodiment of the present invention stores a compressed data in a first data storage unit 21 and reads the compressed data from the first data storage unit 21 and decodes the read compressed data.
  • the decoding unit 11 that generates the decoded data
  • the second data storage unit 22 that stores the decoded data output by the decoding unit 11, and the decoded data is read from the second data storage unit 22 in real time.
  • the DA conversion unit 41 that converts to an analog signal, the first control unit 52 that controls each part of the data processing device, and the storage state of the decoded data in the second data storage unit 22 are managed, and according to this storage state
  • Control generated by the second control unit 53 In response to items, by controlling the clock Z power control unit 54, and a start control unit 55 to release the power limit on the upstream side of the second data storage unit 22.
  • the first data storage unit 21 is configured by a storage medium such as a buffer, and is a storage device such as a magnetic disk such as a hard disk, an optical disk such as a CD or DVD, or a semiconductor storage device such as a flash memory or a memory card.
  • Compressed data stored in the network a broadcast receiving unit (not shown) that receives broadcast waves and generates compressed data, or a data force transmitted via a network, or a network connection unit (not shown) that generates compressed data. Compressed data sent is now stored! / Speak.
  • the first data storage unit 21 is already stored with compressed data, such as a magnetic tape, a magnetic disk, a semiconductor memory, or a hard disk, and is detachable from the data processing device. It may be configured with a storage medium.
  • the compressed data may be audio data compressed in accordance with AAC (Advanced Audio Codec) or MP3 (Moving Picture Experts Group 1 Audio Layer 3).
  • AAC Advanced Audio Codec
  • MP3 Motion Picture Experts Group 1 Audio Layer 3
  • MP EG-2 or MPEG It may be image data compressed in accordance with 4 or Motion JPEG (Joint Photographic Experts Group), but in this embodiment, it is audio data compressed in accordance with AAC.
  • the compressed data may be encrypted by DES (Data Encryption Standard), AES (Advanced Encryption Standard), or the like.
  • the decryption unit 11 is configured to decrypt the compressed data after releasing the encryption applied to the compressed data.
  • the decoding unit 11 is programmed to read compressed data for the amount specified by the first control unit 52 from the first data storage unit 21 and generate decoded data obtained by decoding the read compressed data. It is composed of DSP (Digital Signal Processor). In the present embodiment, the decoding unit 11 generates PCM (Pulse Code Modulation) data as decoded data.
  • DSP Digital Signal Processor
  • the decoding unit 11 may be configured by another processor such as a CPU (Central Processing Unit).
  • the decoding unit 11 may be configured by a processor and a nodeware circuit which may be configured by a hardware circuit.
  • the second data storage unit 22 is configured by a storage medium such as SRAM (Static Random Access Memory).
  • the first control unit 52 is configured by a processor such as a CPU programmed to control each unit of the data processing device.
  • the first control unit 52 controls the start, stop and operation conditions of the DA conversion unit 41, the clock frequency and power supply voltage change setting control of the clock Z power control unit 54, and the control.
  • the second control unit 53 is controlled to start, stop, and control various operating conditions.
  • the first control unit 52 controls at least the decoding unit 11 so as to perform an intermittent operation by performing processing from reading compressed data to storing decoded data at a speed faster than real time. It has become.
  • the first control unit 52 receives the clock supplied to the decoding unit 11.
  • the clock Z power supply control unit 54 By controlling the clock Z power supply control unit 54 to increase the lock frequency or controlling the decoding unit 11 to perform processing using a dedicated circuit such as an accelerator (not shown), The process up to storing the decrypted data is performed faster and faster than real time.
  • the first control unit 52 stops the clock supplied to the decoding unit 11 or reduces the frequency of the clock supplied to the decoding unit 11. clock
  • the Z power controller 54 is controlled.
  • the first control unit 52 starts decoding when it can perform the process up to storing compressed data and storing decoded data at a speed faster than real time without performing high-speed processing.
  • the decoding unit 11 may be instructed to control the decoding unit 11 so that it can be stopped when a decoding completion notification is received from the decoding unit 11.
  • the first control unit 52 collects a plurality of frames as shown in FIG. 4 to be described later, instructs the decoding unit 11 to decode, for example, 5 frames of compressed data, and notifies the completion of the indicated decoding.
  • the clock Z power supply control is performed so as to limit the power consumption on the upstream side of the second data storage unit 22 after controlling the decoding unit 11 to be in a stoppable state. It comes to control part 54.
  • the amount of compressed data instructed to be decoded by the first control unit 52 to the decoding unit 11 is one frame or more, and the amount of decoded data stored in the second data storage unit 22 is the second amount. If the capacity of the data storage unit 22 does not exceed the range, it is possible to reduce the processing required to control the decoding unit 11 to be in a stoppable and operable state. Good.
  • the second control unit 53 generates a control signal when the amount of decoded data stored in the second data storage unit 22 becomes equal to or less than a predetermined amount.
  • the predetermined amount is determined so as not to become the storage capacity S 0 of the decoded data in the second data storage unit 22 .
  • the activation control unit 55 uses the clock Z to release the restriction on the power consumption upstream from the second data storage unit 22.
  • the power controller 54 is controlled.
  • the clock Z power control unit 54 is controlled by the first control unit 52 to limit the power consumption on the upstream side of the second data storage unit 22, the decoding unit 11 and the first
  • the activation control unit 55 is controlled to stop the supply of the clock to the control unit 52 and release the restriction on the power consumption upstream from the second data storage unit 22, the decoding unit 11 and the second
  • the clock supply to the control unit 52 of 1 is started.
  • the clock Z power supply control unit 54 performs the first control when it is controlled by the activation control unit 55 so as to release the power consumption restriction upstream of the second data storage unit 22.
  • the supply of the clock to the unit 52 may be started, and the supply of the clock to the decoding unit 11 may be started in response to an instruction from the first control unit 52 that has started supplying the clock!
  • the first control unit 52 that has started supplying the clock controls the decoding unit 11 to be operable, and then instructs the decoding unit 11 to decode the compressed data for five frames again. It has become like that.
  • the first control unit 52 instructs the decoding unit 11 to decode compressed data for a predetermined reproduction time, for example, 5 frames (Sl).
  • the decoding unit 11 that has received this instruction decodes the compressed data stored in the first data storage unit 21 by the specified amount (S2) and stores it in the second data storage unit 22.
  • a decoding completion notification is transmitted from the decoding unit 11 to the first control unit 52 (S3).
  • the first control unit 52 that has received the completion notification controls the decoding unit 11 to be in a stoppable state (S4), and the upstream side of the second data storage unit 22 is controlled.
  • the clock Z power control unit 54 is controlled to limit power consumption (S5).
  • the clock Z power supply control unit 54 controlled by the first control unit 52 stops the supply of clocks to the decoding unit 11 and the first control unit 52 (S6).
  • the decoded data is read from the second data storage unit 22 by the DA conversion unit 41 in real time while the storage of the decoded data in the second data storage unit 22 is stopped, the time As time passes, the amount of decrypted data stored in the second data storage unit 22 decreases.
  • a control signal is generated by the second control unit 53 (S8).
  • the activation control unit 55 controls the clock Z power control unit 54 so as to release the restriction on the power consumption on the upstream side of the second data storage unit 22 (S9).
  • the clock Z power supply control unit 54 controlled by the activation control unit 55 starts to supply clocks to the decoding unit 11 and the first control unit 52 (S10).
  • the first control unit 52 which has started to supply the clock, controls the decoding unit 11 to be in an operable state (S11), and the first control unit 52 controls the decoding unit 11 to be predetermined. Decryption of the compressed data for the playback time is instructed (Sl).
  • the data processing apparatus performs the processing from reading compressed data to storing decoded data at a speed faster than real time, so that the second data storage unit 22 In order to limit the power consumption on the upstream side from the second data storage unit 22 during the period of intermittent operation that occurs upstream from the upstream side, low power consumption and continuous compressed data such as AV playback and broadcast viewing Playback and viewing can be made possible.
  • the first control unit 52 performs processing from reading data from the first data storage unit 21 to storing the decoded data in the second data storage unit 22 from real-time processing.
  • the first control unit 52 performs processing from reading data from the first data storage unit 21 to storing the decoded data in the second data storage unit 22 from real-time processing.
  • the clock Z power supply control unit 54 when limiting the power consumption on the upstream side of the second data storage unit 22 2, the decoding unit 11 and the first control unit
  • the clock supply to the decoding unit 11 and the first control unit 52 is started.
  • the clock Z power supply control unit 54 is supplied to the decoding unit 11 and the first control unit 52 when the power consumption on the upstream side of the second data storage unit 22 is limited.
  • the frequency of the clock supplied to the decoding unit 11 and the first control unit 52 is increased. Try to raise it.
  • the clock Z power control unit 54 is internally configured. You can control the supply of the generated clock, or you can control the supply of the clock generated by an external clock generator.
  • the clock Z power control unit 54 determines the voltage applied to the decoding unit 11 and the first control unit 52 when limiting the power consumption on the upstream side of the second data storage unit 22. If the power consumption limit on the upstream side of the second data storage unit 22 is released, the voltage applied to the decoding unit 11 and the first control unit 52 may be increased. Oh ,.
  • the clock Z power supply control unit 54 stops applying voltage to the decoding unit 11 and the first control unit 52 when the power consumption on the upstream side of the second data storage unit 22 is limited. However, when the restriction on the power consumption on the upstream side of the second data storage unit 22 is released, application of a voltage to the decoding unit 11 and the first control unit 52 may be started.
  • the clock Z power control unit 54 when configured to control the voltage applied to the decoding unit 11 and the first control unit 52, the clock Z power control unit 54 is internally configured.
  • the application of the generated voltage may be controlled, or the application of the voltage generated by an external power supply may be controlled.
  • the clock Z power control unit 54 limits the power consumption of the activation control unit 55 within a range in which the activation control unit 55 is not stopped when limiting the power consumption of the decoding unit 11 and the first control unit 52. You may make it restrict
  • the second control unit 53 has been described as generating a control signal according to the amount of decoded data stored in the second data storage unit 22, the second control unit 53 is configured by a timer. And a control signal corresponding to the time measured by the timer may be generated.
  • the second control unit 53 generates a control signal when the power consumption on the upstream side from the second data storage unit 22 is limited and a predetermined time has elapsed.
  • the second predetermined time is determined such that the storage amount of the decoded data in the second data storage unit 22 does not become zero.
  • the first control unit 52 sends a decoding completion notification from the decoding unit 11.
  • control the clock Z power supply control unit 54 to limit the power consumption on the upstream side of the second data storage unit 22 after controlling the decoding unit 11 to be able to stop.
  • the third data storage unit for storing the decoded data generated by the decoding unit 11 and the decoded data stored in the third data storage unit in the data processing device are stored in the second data.
  • the clock Z power supply control unit 54 may stop at least the decoding unit 11 during the intermittent operation stop period, but other blocks vary depending on the system configuration. It is possible to limit the supply of clocks or power to any block that does not require any operation during the suspension period, and there is no particular limitation.
  • the second control unit 53 determines that the storage amount of the decoded data is equal to or greater than the specified amount when the storage amount of the decoded data in the second data storage unit 22 is equal to or greater than the specified amount.
  • Control signal is generated, and when the first control unit 52 receives this control signal, the first control unit 52 controls the decoding unit 11 and the data transfer unit in a stoppable state, and then the second data storage unit 22
  • the clock Z power control unit 54 may be controlled so as to limit power consumption on the upstream side. In this case, the prescribed amount is determined to such an extent that the amount of decrypted data stored in the second data storage unit 22 does not become zero.
  • FIG. 3 shows a schematic diagram of a data processing apparatus according to the second embodiment of the present invention.
  • the data processing apparatus includes a first data storage unit 21 that stores compressed data, a decoding unit 11 that reads the compressed data and decodes the compressed data, and a decoding unit that decodes the compressed data.
  • the system control unit 51 constitutes the first control unit and the activation control unit in the present invention
  • the storage amount management unit 81 or the timer unit 82 is the first control unit in the present invention. 2
  • at least one of the clock supply unit 61 and the power supply unit 71 forms a clock Z power control unit in the present invention.
  • the first data storage unit 21 stores compressed data.
  • the first data storage unit 21 is, for example, a memory card, and the compressed data is, for example, AAC compressed data of audio data.
  • the decoding unit 11 reads this compressed data from the first data storage unit 21 and decodes it to generate decoded data.
  • the decoding unit 11 is a DSP, for example, and is decoded by DSP software processing.
  • the decoded data decoded by the decoding unit 11 is stored in the second data storage unit 22.
  • the second data storage unit 22 is a semiconductor memory such as SRAM, and the decoded data is PCM data, for example.
  • the decoded data stored in the second data storage unit 22 is converted into an analog signal by the DA conversion unit 41 and output as analog audio data.
  • the clock supply unit 61 generates and supplies a clock necessary for performing each process.
  • the storage amount management unit 81 manages the data storage amount of the second data storage unit 22 and notifies the system control unit 51 as necessary.
  • the system control unit 51 performs processing from reading data from the first data storage unit 21 to storing the decoded data in the second data storage unit 22 at a speed higher than that of real-time processing. As a result, the period in which the process is performed and the period in which the process is not performed are explicitly separated, and the decoding unit 11 is controlled to operate intermittently. In addition, the system control unit 51 performs control so that the processing after reading out the decoded data from the second data storage unit 22 is performed in real-time processing, and during the intermittent operation stop period, the clock supply unit Direct to 61 and intermittent Control is performed so as to stop the clock supply to the first data storage unit 21 and the decoding unit 11 that are stopped by the operation.
  • FIG. 4 is a timing chart of the data processing device in Embodiment 2 of the present invention.
  • Compressed data that has undergone digital signal compression such as AAC is processed in units of frames until it is decoded.
  • 0 to 9 indicate periods during which processing of each frame is being performed.
  • each frame is decoded according to the frame period, as in the prior art. If the sampling frequency is 48kHz, each frame is processed at approximately 20msec intervals.
  • the speeding up of the frame processing is realized by improving the processing capability of each frame processing and providing a margin for the processing time.
  • frame processing speed such as improving the clock frequency, improving the processing capability of the hardware accelerator, and improving the data transfer capability of the node. For example, if the frame processing capacity is doubled, the frame processing period is about 10 msec, 50% is processed, and 50% is not processed.
  • the processing from 0 to 4 and 5 to 9 is summarized, the processing of 1 to 4 and 6 to 9 is advanced, and the operation period and the stop period are explicitly indicated. To be separated. If the sampling frequency is 8 kHz, the decoder 11 operates intermittently at approximately 100 msec intervals. Also, the decoding unit 11 performs processing in a period of about 50 msec and does not perform processing in a period of about 50 msec!
  • FIG. 5 is a first control flow diagram of a portion where the data processing device according to Embodiment 2 of the present invention performs intermittent operation.
  • the condition for the intermittent operation to transition to the stop period is that the necessary amount of decoded data has been processed and stored in the second data storage unit 22. With this as the starting point, the system controller 51 power clock is stopped, and intermittent operation transitions to the stop period.
  • the decoding unit 11 since the decoding unit 11 processes data for 5 frames at a time, storing the decoded data for 5 frames is the starting point for transition to the stop period.
  • the remaining data remaining in the decrypted data stored in the second data storage unit 22 without being processed by the DA conversion unit 41 is a predetermined remaining amount.
  • the storage amount management unit 81 notifies the system control unit 51 with an interrupt or the like when the value falls below the upper limit.
  • the remaining amount threshold value is stored in the DA converter 41 that performs real-time processing until the storage amount management unit 81 notifies the activation interrupt and the decoded data of the next frame is stored in the second data storage unit 22. It is sufficient to make a decision based on the level without delaying the supply of decrypted data.
  • the system control unit 51 Upon receiving the start interrupt notification, the system control unit 51 instructs the clock supply unit 61 to start the clock supply, and then reads the data from the first data storage unit 21 and starts decoding the decoding data. Control is performed so that the processing up to the storage in the second data storage unit 22 is resumed.
  • the process from the data reading from the first data storage unit 21 to the storage of the decoded data in the second data storage unit 22 by the system control unit 51 is faster than the real-time processing!
  • the decoding unit 11 is intermittently operated, and the supply of the clock is stopped during the stop period, thereby reducing the offset current.
  • the data processing device manages the transition to the stop period of the intermittent operation based on the data amount of the decoded data stored in the second data storage unit 22, so that the system control unit 51 can compare with the control by the polling process.
  • the intermittent operation can be accurately controlled even when the data transfer amount is not constant!
  • the data processing device manages the transition to the operation period of the intermittent operation by the remaining amount of the decoded data that is not DA-converted among the decoded data stored in the second data storage unit 22. Compared with control by polling processing, the load on the system controller 51 can be reduced, and intermittent operation can be accurately controlled even when the data transfer amount is not constant.
  • FIG. 6 is a second control flow diagram of a portion in which the data processing device according to Embodiment 2 of the present invention performs an intermittent operation.
  • the condition for the intermittent operation to transition to the stop period is that the required amount of decoded data has been processed and stored in the second data storage unit 22. With this as the starting point, the system controller 51 power clock is stopped, and intermittent operation transitions to the stop period.
  • the decoding unit 11 processes data for 5 frames at a time
  • storing the decoded data for 5 frames is the starting point for transition to the stop period. afterwards
  • the system control unit 51 determines whether or not the intermittent operation may shift to the stop period. For example, When not in the low power consumption mode, control is performed so as not to shift to the stop period. Alternatively, if other processing such as heavy load, graphic processing, or the like competes with the data processing apparatus, control is performed so as not to shift to the stop period.
  • the transition to the operation period and the restart of the process when the transition to the stop period is made, and the restart of the process when the transition to the stop period does not occur are performed on the decrypted data stored in the second data storage unit 22.
  • the starting point is that the storage management unit 81 notifies the system control unit 51 with an interrupt or the like when the remaining data amount that is not processed by the DA conversion unit 41 falls below a predetermined remaining threshold value. As done.
  • the remaining amount threshold is stored in the DA converter 41 that performs real-time processing until the storage amount management unit 81 notifies the activation interrupt and the decoded data of the next frame is stored in the second data storage unit 22.
  • the decision should be made at a level where the supply of decrypted data is not delayed.
  • the system control unit 51 Upon receiving the start interrupt notification, the system control unit 51 instructs the clock supply unit 61 to start the clock supply, and then reads the data from the first data storage unit 21 and starts decoding the decoding data. Control is performed so that the processing up to the storage in the second data storage unit 22 is resumed.
  • clock control processing and power supply control processing processing necessary for state transition such as clock control processing and power supply control processing (hereinafter referred to as clock control processing and power supply control processing) is performed by controlling the clock and power supply so as not to stop according to the operation status of the device.
  • Overhead processing can be reduced. As a result, it is possible to improve the interrupt response during the processing capacity stop period of the data processing apparatus.
  • the first data storage unit 21 has been described as a memory card.
  • the present invention is not limited to this as long as it can store compressed data such as a magnetic tape, a magnetic disk, a semiconductor memory, and a hard disk. The same effect can be obtained.
  • the compressed data is not limited to this as long as it is data obtained by compressing digitized audio data such as the power MP3 described as AAC, and the same effect can be obtained.
  • the compressed data can be implemented even if it is compressed image data such as MPEG-2, MPEG-4, or Motion JPEG described as audio data, and similar effects can be obtained.
  • the compressed data may be ciphertext encrypted with DES, AES, or the like.
  • Decryption by the decryption unit 11 including decryption of ciphertext and decryption of compressed data is sufficient to obtain the same effect. be able to.
  • the power described with the decoding unit 11 as a DSP is not limited to this.
  • other processors such as a CPU, a configuration in which a part of the processing is supported by the nodeware, or a configuration in which all decoding processes are performed by the nodeware can be implemented, and similar effects can be obtained.
  • system control unit 51 has been described as stopping the supply of the clock during the intermittent operation stop period. However, since the same effect can be obtained by reducing the normal operation frequency, It is not limited to.
  • system control unit 51 has been described as stopping the supply of the clock during the intermittent operation stop period, the voltage supplied from the power supply unit 71 is decreased from the normal time, or the supply is stopped (OV Supply), the leakage current can be further suppressed, and the same effect can be obtained. Also, by controlling the substrate of the LSI, it is possible to control the threshold voltage and value voltage of the control transistor and suppress the leakage current.
  • the method of grouping frames in the decoding process is in units of 5 frames, it is not limited to this.
  • the transition between the operation period and the stop period of the intermittent operation includes overhead processing necessary for the transition, such as clock control processing and power supply control processing. As the number of transitions increases, the number of overhead processing increases and the overhead processing load increases. Therefore, it is preferable that the granularity of the way of combining is coarse (the cycle of intermittent operation is long).
  • the transition factor from the intermittent operation stop period to the operation period can be controlled by the interrupt from the force timer unit 82 described as the interrupt from the storage amount management unit 81.
  • the same effect can be obtained by determining the stop period and starting it with a timer at a level where the supply of the decoded data to the DA converter 41 for real-time processing is not delayed.
  • system control unit 51 supplies and supplies a clock to the first data storage unit 21 and the decoding unit 11.
  • a clock or power supply can be limited as long as the block does not require operation during the suspension period, and is not particularly limited.
  • FIG. 7 shows a schematic diagram of a data processing device according to Embodiment 3 of the present invention.
  • the same components as those in FIG. 7 are identical to FIG. 7 and the same components as those in FIG. 7;
  • the data processing apparatus includes a first data storage unit 21 that stores compressed data, a second data transfer unit 32 that reads and transfers the compressed data, and a second data transfer unit 32.
  • a first data transfer unit 31 that reads and transfers the decoded data
  • a second data storage unit 22 that stores the decoded data transferred by the first data transfer unit 31, and the decoded data DA converter 41 that performs analog conversion
  • clock supply unit 61 that generates and supplies a clock
  • power supply unit 71 that supplies power to each part of the device
  • storage amount that manages the data storage amount of the second data storage unit 22 Manager 81 and each part of the device
  • the timer unit 82 that notifies the start timing of the system and the system control unit 51 that controls the operation of each unit of the apparatus.
  • the system control unit 51 constitutes the first control unit and the activation control unit in the present invention
  • the storage amount management unit 81 or the timer unit 82 is the first control unit in the present invention. 2
  • at least one of the clock supply unit 61 and the power supply unit 71 forms a clock Z power control unit in the present invention.
  • the first data storage unit 21 stores compressed data.
  • the first data storage unit 21 is, for example, a memory card, and the compressed data is, for example, AAC compressed data of audio data.
  • the compressed data is transferred to the fourth data storage unit 24 by the second data transfer unit 32.
  • the fourth data storage unit 24 is a semiconductor memory such as SRAM.
  • the decoding unit 11 reads the compressed data from the fourth data storage unit 24, decodes it, and generates decoded data.
  • the decoding unit 11 is a DSP, for example, and is decoded by DSP software processing.
  • the decrypted data decrypted by the decryption unit 11 is stored in the third data storage unit 23.
  • the third data storage unit 23 is a semiconductor memory such as SRAM, and the decoded data is PCM data, for example.
  • the second data storage unit 22 is a semiconductor memory such as SRAM.
  • the decoded data stored in the second data storage unit 22 is converted into an analog signal by the DA converter 41 and output as analog audio data.
  • the clock supply unit 61 generates and supplies a clock necessary for performing each process.
  • the storage amount management unit 81 manages the data storage amount of the second data storage unit 22, and notifies the system control unit 51 as necessary.
  • the system control unit 51 performs processing from data reading from the first data storage unit 21 to storage of the decoded data in the second data storage unit 22 at a speed higher than that of real-time processing. As a result, the period in which the process is performed and the period in which the process is not performed are explicitly separated, and the decoding unit 11 is controlled to operate intermittently. In addition, the system control unit 51 performs control so that the processing after reading out the decoded data from the second data storage unit 22 is performed in real-time processing, and during the intermittent operation stop period, the clock supply unit The first data storage unit 21, the second data transfer unit 32, the fourth data storage unit 24, the decryption unit 11, the third data storage unit 23, the first data storage unit 21, the second data transfer unit 32, which are stopped by intermittent operation.
  • FIG. 8 is a timing diagram in the third embodiment of the present invention.
  • 0 to 9 indicate a period during which processing of each frame such as AAC is being performed, and after the processing up to frame number 3 is completed, the transition to the intermittent operation stop period is made.
  • the upper part shows an example of transition to the stop period after all the data has been transferred, and the lower part shows an example of transition to the stop period while retaining one frame of data.
  • the process from reading data from the first data storage unit 21 to storing the decoded data in the second data storage unit 22 is faster and faster than real-time processing.
  • the offset current can be reduced by intermittent operation by stopping the supply of the clock during the stop period.
  • the force described with the first data storage unit 21 as a memory card is not limited to this as long as it can store compressed data, such as a magnetic tape, a magnetic disk, a semiconductor memory, and a hard disk, and the same effect can be obtained. Is possible.
  • the compressed data is not limited to this as long as it is data obtained by compressing digitized audio data such as MP3 described as AAC, and the same effect can be obtained.
  • the compressed data can be implemented even if it is compressed image data such as MPEG-2, MPEG-4, Motion JPEG or the like described as audio data, and the same effect can be obtained.
  • the compressed data may be ciphertext encrypted by DES, AES, or the like. If the decryption unit 11 decrypts the ciphertext and the compressed data, the same effect can be obtained.
  • the decoding unit 11 is described as a DSP, such as another processor such as a CPU, a configuration in which part of the processing is supported by the nodeware, or a configuration in which all decoding processing is performed by hardware.
  • the present invention is not limited to this, and similar effects can be obtained.
  • system control unit 51 has been described as stopping the supply of the clock during the stop period of the intermittent operation. However, the same effect can be obtained by reducing the normal operation frequency. It is not limited to.
  • the system control unit 51 has been described as stopping the supply of the clock during the intermittent operation stop period.
  • the voltage supplied from the power supply unit 71 is decreased from the normal time, or the supply is stopped (0V Supply), the leakage current can be further suppressed, and the same effect can be obtained.
  • the substrate of the LSI it is possible to control the threshold voltage and value voltage of the control transistor and suppress the leakage current.
  • the method of grouping frames in the decoding process is in units of 5 frames, it is not limited to this.
  • the transition between the operation period and the stop period of the intermittent operation includes overhead processing necessary for transition such as clock control processing and power supply control processing. As the number of transitions increases, the number of overhead processing increases and the overhead processing load increases, so it is preferable that the granularity of the summary method is coarse (the cycle of intermittent operation is long).
  • Each data storage unit shifts to a stop period while retaining data for one frame.
  • the present invention is not limited to this, and the same effect can be obtained.
  • the system control unit 51 also includes the first data storage unit 21, the second data transfer unit 32, the fourth data storage unit 24, the decryption unit 11, the third data storage unit 23, and the first data storage unit 23.
  • the clock supply and the power supply to the data transfer unit 31 are controlled to stop, at least the decoding unit 11 that performs the decoding process may be controlled to stop.
  • Other blocks vary depending on the system configuration, but it is possible to limit the supply of clocks or power to a block that does not require operation during the suspension period, and is not particularly limited.
  • FIG. 9 shows a schematic diagram of a data processing device according to Embodiment 4 of the present invention.
  • the same components as those in FIGS. 3 and 7 are denoted by the same reference numerals and description thereof is omitted.
  • the data processing apparatus includes a broadcast receiving unit 91 that receives broadcast waves and extracts compressed data, a fourth data storage unit 24 that stores the compressed data, and reads and compresses the compressed data.
  • a decoding unit 11 for decoding the data a third data storage unit 23 for storing the decoded data decoded by the decoding unit 11, a first data transfer unit 31 for reading and transferring the decoded data, and a first data
  • a second data storage unit 22 for storing the decoded data transferred by the transfer unit 31, a DA conversion unit 41 for analog conversion of the decoded data, a clock supply unit 61 for generating and supplying a clock, and a power source for each unit
  • Power supply unit 71 that supplies power
  • a storage amount management unit 81 that manages the data storage amount of the second data storage unit 22, a timer unit 82 that notifies the start timing of each part of the device, and controls the operation of each part of the device System control Part 51.
  • system control unit 51 constitutes a first control unit and an activation control unit in the present invention
  • storage amount management unit 81 or timer unit 82 is the first control unit in the present invention.
  • at least one of the clock supply unit 61 and the power supply unit 71 forms a clock Z power control unit in the present invention.
  • the broadcast receiving unit 91 receives broadcast waves such as terrestrial digital broadcasts, and extracts compressed data such as audio.
  • the compressed data is, for example, AAC compressed data of audio data.
  • This compressed data is stored in the fourth data storage unit 24.
  • Reference numeral 24 denotes a semiconductor memory such as SRAM.
  • the decoding unit 11 reads the compressed data from the fourth data storage unit 24, decodes it, and generates decoded data.
  • the decoding unit 11 is a DPS, for example, and is decoded by DSP software processing.
  • the decrypted data decrypted by the decrypting unit 11 is stored in the third data storage unit 23.
  • the third data storage unit 23 is a semiconductor memory such as SRAM, and the decoded data is PCM data, for example.
  • the decoded data is transferred to the second data storage unit 22 by the first data transfer unit 31.
  • the second data storage unit 22 is a semiconductor memory such as SRAM.
  • the decoded data stored in the second data storage unit 22 is converted into an analog signal by the DA conversion unit 41 and output as analog audio data.
  • the clock supply unit 61 generates and supplies a clock necessary for performing each process.
  • the storage amount management unit 81 manages the data storage amount of the second data storage unit 22, and notifies the system control unit 51 as necessary.
  • the system control unit 51 performs processing from reading data from the fourth data storage unit 24 to storing the decoded data in the second data storage unit 22 at a speed higher than that of the real-time processing. As a result, the period in which the process is performed and the period in which the process is not performed are explicitly separated, and the decoding unit 11 is controlled to operate intermittently. Further, the system control unit 51 stores the compressed data in the fourth data storage unit 24 by the transmission / reception unit 91 and the decoded data. Control is performed so that the processing after reading from the second data storage unit 22 is performed in real-time processing, and during the intermittent operation stop period, the clock supply unit 61 is instructed and the decoding unit is stopped by the intermittent operation. 11.
  • FIG. 10 is a timing diagram of the data processing device in Embodiment 4 of the present invention.
  • 0 to 9 indicate periods during which processing of each frame such as AAC is executed.
  • the broadcast receiving unit 91 performs real-time processing. After the decoding unit 11 completes the processing up to the frame number 4 and the first data transfer unit 31 completes the processing up to the frame number 3, the transition is made to the stop period of the missing operation.
  • the DA conversion unit 41 performs real-time processing.
  • the processing is started immediately after returning to the operation period.
  • the fourth data storage unit 24 stores compressed data up to frame number 8
  • the third data storage unit 23 stores decoded data of frame number 4.
  • the data processing device that requires real-time processing in both the input part (broadcast reception) and the output part (DA conversion) of the process!
  • the offset current of the operating part can be reduced. Furthermore, it is only necessary to return to the operation period when the DA conversion of frame number 3 is performed. Therefore, it is possible to set the stop period longer than the example in which the transition is made to the stop period after all data has been transferred. This makes it possible to reduce the offset current.
  • a network connecting unit that connects to a wired or wireless network, receives AV content, and extracts compressed data may be provided.
  • data is received according to the communication speed of the network power network such as the Internet, and stored in the fourth data storage unit 24.
  • the same operation as in the embodiment shown in FIG. 9 is performed.
  • a data processing device that requires real-time processing in both the input part (reception from the network) and the output part (DA conversion) of the process operates intermittently including the decoding unit 11.
  • the offset current of the part can be reduced.
  • the compressed data is not limited to this as long as it is data obtained by compressing digital audio data such as power MP3 described as AAC, and the same effect can be obtained. Can do.
  • the compressed data can be implemented even with the power described as audio data, for example, compressed image data such as MPEG-2, MPEG-4, and Motion JPEG, and the same effect can be obtained.
  • compressed image data such as MPEG-2, MPEG-4, and Motion JPEG
  • the compressed data may be ciphertext encrypted by DES, AES, or the like. If the decryption unit 11 decrypts the ciphertext and the compressed data, the same effect can be obtained.
  • the decoding unit 11 is described as a DSP, such as another processor such as a CPU, a configuration in which part of the processing is supported by the nodeware, or a configuration in which all decoding processing is performed by hardware.
  • the present invention is not limited to this, and similar effects can be obtained.
  • system control unit 51 has been described as stopping the supply of the clock during the intermittent operation stop period. However, since the same effect can be obtained by lowering the normal operation frequency, It is not limited to.
  • the system control unit 51 has been described as stopping the supply of the clock during the intermittent operation stop period.
  • the voltage supplied from the power supply unit 71 may be lowered from the normal time, or the supply may be stopped (0V Supply), the leakage current can be further suppressed, and the same effect can be obtained.
  • the substrate of the LSI it is possible to control the threshold voltage and value voltage of the control transistor and suppress the leakage current.
  • the method of grouping frames in the decoding process is in units of 5 frames, it is not limited to this.
  • the transition between the operation period and the stop period of the intermittent operation includes overhead processing necessary for transition such as clock control processing and power supply control processing. As the number of transitions increases, the number of overhead processing increases and the overhead processing load increases. Therefore, it is preferable that the granularity of the way of grouping is coarse (the cycle of intermittent operation is long).
  • each data storage unit has been described with respect to an example in which the transition to the stop period is performed while retaining data for one frame, but the transition to the stop period may be performed while retaining several frames. The same effect can be obtained.
  • the system control unit 51 has a small amount of power described as controlling the clock supply and power supply to the decoding unit 11, the third data storage unit 23, and the first data transfer unit 31 to be stopped. In both cases, the decoding unit 11 that performs the decoding process may be controlled to stop.
  • Other blocks vary depending on the system configuration, but the supply of clocks or power can be limited as long as the blocks do not require operation during the suspension period, and are not particularly limited.
  • the data processing apparatus is particularly useful for applications such as an audio and video player for mobile devices driven by a battery and a mobile phone capable of performing AV processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Power Sources (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

 低消費電力でAV再生や放送の視聴のような連続した圧縮データの再生や視聴を可能にしたデータ処理装置を提供する。  第1のデータ格納部21から読出した圧縮データを復号した復号データを出力する復号部11と、復号データを格納する第2のデータ格納部22と、第2のデータ格納部22から復号データを実時間で読出してアナログ信号に変換するDA変換部41と、圧縮データの読出しから復号データの格納までの処理を実時間よりも速い速度で行うことで間欠動作させるよう復号部11を制御する第1の制御部52と、間欠動作の停止期間に第2のデータ格納部22より上流側での消費電力を制限するクロック/電源制御部54と、第2のデータ格納部22における復号データの格納状態に応じた制御信号を出力する第2の制御部53と、制御信号を受けて、消費電力の制限をクロック/電源制御部54に解除させる起動制御部55とを備える。

Description

明 細 書
データ処理装置
技術分野
[0001] 本発明は、オーディオやビデオ等の AV再生におけるデータ処理装置に関するも のであり、特に再生における消費電力の低減を目的とした携帯機器向けのデータ処 理装置に関するものである。
背景技術
[0002] 近年の携帯電話端末や携帯情報端末やコードレスモニタは、オーディオ再生ゃビ デォ再生やラジオやテレビの視聴といった AV再生や放送の視聴が可能な端末も少 なくない。また、これらのコンテンツを高圧縮して蓄積や伝送するといつた要望もあり、 複雑かつ復号の処理負荷が重い圧縮方式も多くなつてきている。一方で、長時間再 生視聴したいという要望も高い。従って、ノ ッテリ駆動しているこれら携帯端末では、 長時間駆動させるために消費電力を削減することが求められることになる。このような 問題を解決する従来技術として以下のような技術がある。
[0003] データ放送の受信にお!、て間欠的にデータ放送波の受信と復号を行 、、復号した 結果をメモリに蓄えるものがあった (例えば、特許文献 1参照)。
[0004] 図 11は、特許文献 1に記載された従来のデータ処理装置の概略図を示すものであ る。
[0005] 図 11において、従来のデータ処理装置は、放送波を受信する放送受信部 1と、こ の放送受信部 1により受信された放送波から得られたデータを復号する復号部 2と、 この復号部 2で復号した結果である復号データを格納するデータ格納部 3と、このデ ータ格納部 3のデータをアナログ変換する DA変換部 4と、装置各部の動作を制御す るシステム制御部 5と、装置各部へ電源供給を制御する電源供給部 6と、復号部 2の 起動タイミングを通知するタイマ部 7で構成される。
[0006] この構成の従来のデータ処理装置は、 1日に数回更新されるデータ放送を、放送 受信部 1と復号部 2を間欠動作させて受信および復号する。より具体的には、従来の データ処理装置は、データ放送を受信する時間になるとタイマ部 7によるシステム制 御部 5への割込みにより放送受信部 1と復号部 2への電源供給を開始する。その後、 従来のデータ処理装置は、放送波を放送受信部 1で受信し、復号部 2で復号した結 果をデータ格納部 3に格納する。その後システム制御部 5は、放送受信部 1、復号部 2、データ格納部 3での各処理を停止し、かつ、電源供給部 6による放送受信部 1と復 号部 2への電源の供給を遮断する。
[0007] このように、従来のデータ処理装置は、間欠動作の停止期間に電源の供給を遮断 することにより、待機状態時の消費電力を削減する。
特許文献 1:特開平 11— 122586号公報
発明の開示
発明が解決しょうとする課題
[0008] し力しながら、近年、半導製造技術の進歩、とりわけ微細化の進歩により、 1チップ に搭載可能なトランジスタ数が増大し、様々な機能力 ^チップに集積され、 1チップで システムを構成きるようにまでなつてきて 、る。
[0009] 一方、このような高性能かつ大規模なシステム LSIは、処理性能向上のためにクロ ックの周波数を上げることや、大規模ィ匕による配線等の負荷容量増大によるクロック ツリーの高負荷ィ匕により、クロックツリーでの消費電力が増大している。
[0010] また、プロセスの微細化と動作周波数向上によって、サブスレツショルドリーク電流 やゲートリーク電流をはじめとするトランジスタのリーク電流が増大しており、このような トランジスタを多用することによりシステム全体のリーク電流が増大している。
[0011] 以上のことより、システム LSIに電源およびクロックを供給するだけで消費する消費 電流(以後、オフセット電流と呼ぶ)が増大している。
[0012] 特許文献 1記載の従来のデータ処理装置は、タイマによって電源供給 '遮断の制 御を行なっているため、データの更新頻度が 1日に数回程度の、データ放送のような 用途においては消費電力の削減が可能である。
[0013] し力しながら、従来のデータ処理装置は、 AV再生や放送の視聴のように連続した 圧縮データを復号し、実時間処理で再生や視聴するような用途には適用できな 、。
[0014] 本発明は、このような従来の課題を解決するもので、低消費電力で、 AV再生や放 送の視聴のような連続した圧縮データの再生や視聴を可能にしたデータ処理装置を 提供することを目的とする。
課題を解決するための手段
[0015] 本発明のデータ処理装置は、圧縮データを格納する第 1のデータ格納部と、前記 第 1のデータ格納部力 圧縮データを読出し、読出した圧縮データを復号した復号 データを出力する復号部と、前記復号部によって出力された復号データを格納する 第 2のデータ格納部と、前記第 2のデータ格納部から前記復号データを実時間で読 出してアナログ信号に変換する DA変換部と、前記圧縮データの読出しから前記復 号データの格納までの処理を前記実時間よりも速い速度で行うことで間欠動作させる よう、少なくとも前記復号部を制御する第 1の制御部と、前記復号部と前記第 1の制御 部に対してクロック又は電源の少なくとも一方の供給を制御するとともに、前記間欠動 作の停止期間には、前記復号部と前記第 1の制御部に対してクロック又は電源の少 なくとも一方の供給を制限して、前記第 2のデータ格納部より上流側での消費電力を 制限するクロック Z電源制御部と、前記第 2のデータ格納部における前記復号デ一 タの格納状態を管理し前記格納状態に応じた制御信号を出力する第 2の制御部と、 前記制御信号を受けて、前記クロック Z電源制御部を制御して、前記第 2のデータ格 納部より上流側での消費電力の制限を解除させる起動制御部と、を備えた構成を有 している。
[0016] この構成により、本発明のデータ処理装置は、圧縮データの読出し力 復号データ の格納までの処理を実時間よりも速い速度で行うことによって第 2のデータ格納部か ら上流側で生じる間欠動作の停止期間に第 2のデータ格納部から上流側での消費 電力を制限するため、低消費電力で、 AV再生や放送の視聴のような連続した圧縮 データの再生や視聴を可能にすることができる。
発明の効果
[0017] 本発明のデータ処理装置によれば、 AV再生や放送の視聴のような、連続した圧縮 データの再生や視聴時の消費電力を削減することができる。特にバッテリ駆動する携 帯電話や携帯機器では再生時間や視聴時間を向上することが可能となる。
図面の簡単な説明
[0018] [図 1]図 1は、本発明の実施の形態 1におけるデータ処理装置の概略図である。 [図 2]図 2は、本発明の実施の形態 1におけるデータ処理装置の動作説明のためのフ ロー図である。
[図 3]図 3は、本発明の実施の形態 2におけるデータ処理装置の概略図である。
[図 4]図 4は、本発明の実施の形態 2におけるデータ処理装置のタイミング図である。
[図 5]図 5は、本発明の実施の形態 2におけるデータ処理装置の間欠動作する部分 の第 1の制御フロー図である。
[図 6]図 6は、本発明の実施の形態 2におけるデータ処理装置の間欠動作する部分 の第 2の制御フロー図である。
[図 7]図 7は、本発明の実施の形態 3におけるデータ処理装置の概略図である。
[図 8]図 8は、本発明の実施の形態 3におけるデータ処理装置のタイミング図である。
[図 9]図 9は、本発明の実施の形態 4におけるデータ処理装置の概略図である。
[図 10]図 10は、本発明の実施の形態 4におけるデータ処理装置のタイミング図であ る。
[図 11]図 11は、特許文献 1に記載された従来のデータ処理装置の概略図である。 符号の説明
11 復号部
21 第 1のデ -タ格納部
22 第 2のデ -タ格納部
23 第 3のデ -タ格納部
24 第 4のデ -タ格納部
31 第 1のデ -タ転送部
32 第 2のデ -タ転送部
41 DA変換部
51 システム制御部
52 第 1の制御部
53 第 2の制御部
54 クロック/ '電源制御部
55 起動制御部 61 クロック供給咅
71 電源供給部
81 格納量管理部
82 タイマ部
91 放送受信部
発明を実施するための最良の形態
[0020] 以下、本発明の実施の形態について、図面を参照しながら説明する。
[0021] (実施の形態 1)
図 1は、本発明の実施の形態 1によるデータ処理装置の概略図を示すものである。 図 1において、本発明の実施の形態 1のデータ処理装置は、圧縮データを格納する 第 1のデータ格納部 21と、第 1のデータ格納部 21から圧縮データを読出し、読出し た圧縮データを復号した復号データを生成する復号部 11と、復号部 11によって出 力された復号データを格納する第 2のデータ格納部 22と、第 2のデータ格納部 22か ら復号データを実時間で読出してアナログ信号に変換する DA変換部 41と、データ 処理装置の各部を制御する第 1の制御部 52と、第 2のデータ格納部 22における復 号データの格納状態を管理し、この格納状態に応じた制御信号を生成する第 2の制 御部 53と、復号部 11および第 1の制御部 52を含む第 2のデータ格納部 22から上流 側の消費電力を制御するクロック Z電源制御部 54と、第 2の制御部 53によって生成 された制御信号を受けて、クロック Z電源制御部 54を制御して、第 2のデータ格納部 22より上流側での消費電力の制限を解除させる起動制御部 55とを備えている。
[0022] 第 1のデータ格納部 21は、バッファ等の記憶媒体によって構成され、ハードディスク 等の磁気ディスク、 CDや DVD等の光ディスク、もしくは、フラッシュメモリやメモリカー ドの半導体記憶装置等の蓄積デバイスに格納された圧縮データ、または、放送波を 受信し圧縮データを生成する図示しない放送受信部、もしくは、ネットワークを介して 送信されたデータ力 圧縮データを生成する図示しないネットワーク接続部等によつ て送信された圧縮データを格納するようになって!/ヽる。
[0023] なお、第 1のデータ格納部 21は、磁気テープ、磁気ディスク、半導体メモリまたはハ ードディスク等のように、圧縮データが既に格納され、データ処理装置に着脱自在な 記憶媒体によって構成してもよ 、。
[0024] ここで、圧縮データは、 AAC (Advanced Audio Codec)や MP3 (Moving Picture Ex perts Group 1 Audio Layer 3)に準拠して圧縮された音声データであってもよぐ MP EG— 2や MPEG— 4や Motion JPEG (Joint Photographic Experts Group)等に準拠 して圧縮された画像データであってもよいが、本実施の形態においては、 AACに準 拠して圧縮された音声データとする。
[0025] また、圧縮データは、 DES (Data Encryption Standard)や AES (Advanced Encrypti on Standard)等で暗号化されていてもよい。この場合には、復号部 11は、圧縮デー タに施された暗号を解除した後に、圧縮データを復号するように構成する。
[0026] 復号部 11は、第 1の制御部 52によって指定された分の圧縮データを第 1のデータ 格納部 21から読出し、読出した圧縮データを復号した復号データを生成するようプ ログラミングされた DSP (Digital Signal Processor)によって構成されている。なお、本 実施の形態において、復号部 11は、復号データとして PCM (Pulse Code Modulation )データを生成するものとする。
[0027] なお、復号部 11は、 CPU (Central Processing Unit)等の他のプロセッサによって 構成してもよい。また、復号部 11は、ハードウェア回路によって構成してもよぐプロ セッサおよびノヽードウエア回路によって構成してもよい。
[0028] 第 2のデータ格納部 22は、 SRAM (Static Random Access Memory)等の記憶媒体 によって構成されている。また、第 1の制御部 52は、データ処理装置の各部を制御 するようプログラミングされた CPU等のプロセッサによって構成されている。
[0029] 第 1の制御部 52は、 DA変換部 41の起動、停止および動作の諸条件の制御、クロ ック Z電源制御部 54のクロックの周波数および電源の電圧の変更設定制御、ならび に、第 2の制御部 53の起動、停止および動作の諸条件の制御等を行うようになって いる。
[0030] また、第 1の制御部 52は、圧縮データの読出しから復号データの格納までの処理 を実時間よりも速 、速度で行うことで間欠動作させるよう、少なくとも復号部 11を制御 するようになっている。
[0031] 例えば、間欠動作の稼動期間には、第 1の制御部 52は、復号部 11に供給されるク ロックの周波数を上昇させるようクロック Z電源制御部 54を制御したり、図示しないァ クセラレータのような専用回路を用いて処理を行うよう復号部 11を制御したりすること によって、圧縮データの読出し力 復号データの格納までの処理を実時間よりも速 、 速度で行うようになっている。
[0032] 一方、間欠動作の待機期間には、第 1の制御部 52は、復号部 11に供給されるクロ ックを停止、または、復号部 11に供給されるクロックの周波数を低下させるようクロック
Z電源制御部 54を制御するようになって ヽる。
[0033] なお、第 1の制御部 52は、圧縮データの読出し力 復号データの格納までの処理 を高速ィ匕しなくとも実時間よりも速い速度で行うことができる場合には、復号の開始を 復号部 11に指示し、復号の完了通知を復号部 11から受けたときに復号部 11が停止 可能な状態になるよう制御するようにしてもょ 、。
[0034] また、第 1の制御部 52は、後述の図 4のように複数のフレームをまとめて、例えば 5 フレーム分の圧縮データの復号を復号部 11に指示し、指示した復号の完了通知を 復号部 11から受けた場合には、復号部 11が停止可能な状態になるよう制御した後 に、第 2のデータ格納部 22より上流側での消費電力を制限するようクロック Z電源制 御部 54を制御するようになって ヽる。
[0035] なお、第 1の制御部 52から復号部 11に復号が指示される圧縮データの量は、 1フ レーム分以上で、第 2のデータ格納部 22における復号データの格納量が第 2のデー タ格納部 22の容量を超えな 、範囲内であればょ 、が、復号部 11を停止可能および 作動可能な状態にするよう制御するのにかかる処理を削減できるため、多い方が好 ましい。
[0036] 第 2の制御部 53は、第 2のデータ格納部 22における復号データの格納量が所定 量以下になったときに、制御信号を生成するようになっている。ここで、所定量は、第 2のデータ格納部 22における復号データの格納量力 S0にならない程度に定められて いる。
[0037] 起動制御部 55は、第 2の制御部 53によって生成された制御信号を受けた場合に は、第 2のデータ格納部 22より上流側での消費電力の制限を解除するようクロック Z 電源制御部 54を制御するようになって ヽる。 [0038] クロック Z電源制御部 54は、第 2のデータ格納部 22より上流側での消費電力を制 限するよう第 1の制御部 52に制御された場合には、復号部 11および第 1の制御部 5 2に対するクロックの供給を停止し、第 2のデータ格納部 22より上流側での消費電力 の制限を解除するよう起動制御部 55に制御された場合には、復号部 11および第 1 の制御部 52に対するクロックの供給を開始するようになっている。
[0039] なお、クロック Z電源制御部 54は、第 2のデータ格納部 22より上流側での消費電 力の制限を解除するよう起動制御部 55に制御された場合には、第 1の制御部 52に 対するクロックの供給を開始すると共に、クロックの供給が開始された第 1の制御部 5 2による指示に応じて復号部 11に対するクロックの供給を開始するようにしてもよ!、。
[0040] クロックの供給が開始された第 1の制御部 52は、復号部 11が作動可能な状態にな るよう制御した後に、 5フレーム分の圧縮データの復号を再び復号部 11に指示するよ うになつている。
[0041] 以上のように構成されたデータ処理装置について、図 2を用いてその動作を説明す る。
[0042] まず、第 1の制御部 52によって復号部 11に所定の再生時間分、例えば、 5フレー ム分の圧縮データの復号が指示される(Sl)。次に、この指示を受けた復号部 11に よって第 1のデータ格納部 21に格納された圧縮データが指示された量だけ復号され (S2)、第 2のデータ格納部 22に格納されると共に、復号部 11から第 1の制御部 52 に復号の完了通知が送信される (S3)。
[0043] 次に、この完了通知を受けた第 1の制御部 52によって、復号部 11が停止可能な状 態になるよう制御され (S4)、第 2のデータ格納部 22より上流側での消費電力を制限 するようクロック Z電源制御部 54が制御される (S5)。
[0044] 次に、第 1の制御部 52に制御されたクロック Z電源制御部 54によって、復号部 11 および第 1の制御部 52に対するクロックの供給が停止される(S6)。
[0045] 第 2のデータ格納部 22に対する復号データの格納が停止している間にも、第 2の データ格納部 22から復号データが DA変換部 41によって実時間で読出されている ため、時間経過と共に、第 2のデータ格納部 22における復号データの格納量が減少 していく。 [0046] ここで、第 2のデータ格納部 22における復号データの格納量が所定量以下になつ た場合には(S7)、第 2の制御部 53によって制御信号が生成され (S8)、この制御信 号を受けた起動制御部 55によって、第 2のデータ格納部 22より上流側での消費電 力の制限を解除するようクロック Z電源制御部 54が制御される(S9)。
[0047] 次に、起動制御部 55に制御されたクロック Z電源制御部 54によって、復号部 11お よび第 1の制御部 52に対するクロックの供給が開始される(S10)。次に、クロックの供 給が開始された第 1の制御部 52によって、復号部 11が作動可能な状態になるよう制 御され (S 11)、第 1の制御部 52によって復号部 11に所定の再生時間分の圧縮デー タの復号が指示される(Sl)。
[0048] このような本発明の実施の形態 1のデータ処理装置は、圧縮データの読出しから復 号データの格納までの処理を実時間よりも速い速度で行うことによって第 2のデータ 格納部 22から上流側で生じる間欠動作の停止期間に第 2のデータ格納部 22から上 流側での消費電力を制限するため、低消費電力で、 AV再生や放送の視聴のような 連続した圧縮データの再生や視聴を可能にすることができる。
[0049] また、第 1の制御部 52は、第 1のデータ格納部 21からのデータ読出しから、復号デ 一タの第 2のデータ格納部 22への格納までの処理を、実時間処理よりも速 、速度で 実施させることで、処理が実施されている期間と処理が実施されていない期間を明示 的に分離し、復号部 11が間欠動作するように制御することができる。
[0050] なお、本実施の形態において、クロック Z電源制御部 54は、第 2のデータ格納部 2 2より上流側での消費電力を制限する場合には、復号部 11および第 1の制御部 52に 対するクロックの供給を停止し、第 2のデータ格納部 22より上流側での消費電力の制 限を解除する場合には、復号部 11および第 1の制御部 52に対するクロックの供給を 開始するものとして説明した。
[0051] これに対し、クロック Z電源制御部 54は、第 2のデータ格納部 22より上流側での消 費電力を制限する場合には、復号部 11および第 1の制御部 52に供給されるクロック の周波数を低下させ、第 2のデータ格納部 22より上流側での消費電力の制限を解除 する場合には、復号部 11および第 1の制御部 52に供給されるクロックの周波数を上 昇させるようにしてちょい。 [0052] 上述したように、復号部 11および第 1の制御部 52に供給するクロックを制御するよ うにクロック Z電源制御部 54を構成した場合には、クロック Z電源制御部 54は、内部 で生成したクロックの供給を制御するようにしてもよぐ外部のクロック発生器によって 発生されたクロックの供給を制御するようにしてもょ 、。
[0053] また、クロック Z電源制御部 54は、第 2のデータ格納部 22より上流側での消費電力 を制限する場合には、復号部 11および第 1の制御部 52に印加される電圧を低下さ せ、第 2のデータ格納部 22より上流側での消費電力の制限を解除する場合には、復 号部 11および第 1の制御部 52に印加される電圧を上昇させるようにしてもょ 、。
[0054] また、クロック Z電源制御部 54は、第 2のデータ格納部 22より上流側での消費電力 を制限する場合には、復号部 11および第 1の制御部 52に対する電圧の印加を停止 し、第 2のデータ格納部 22より上流側での消費電力の制限を解除する場合には、復 号部 11および第 1の制御部 52に対する電圧の印加を開始するようにしてもよい。
[0055] 上述したように、復号部 11および第 1の制御部 52に印加する電圧を制御するように クロック Z電源制御部 54を構成した場合には、クロック Z電源制御部 54は、内部で 生成した電圧の印加を制御するようにしてもよぐ外部の電源によって生成された電 圧の印加を制御するようにしてもよい。
[0056] また、クロック Z電源制御部 54は、復号部 11および第 1の制御部 52の消費電力を 制限にする際に、起動制御部 55を停止させない範囲で起動制御部 55の消費電力 を制限するようにしてもよい。
[0057] また、第 2の制御部 53は、第 2のデータ格納部 22における復号データの格納量に 応じた制御信号を生成するものとして説明したが、第 2の制御部 53をタイマによって 構成し、タイマによって計測された時間に応じた制御信号を生成するようにしてもよい
[0058] この場合には、第 2の制御部 53は、第 2のデータ格納部 22から上流側での消費電 力が制限されて力 所定時間が経過したときに、制御信号を生成するように構成する 。ここで、第 2の所定時間は、第 2のデータ格納部 22における復号データの格納量が 0にならない程度に定められる。
[0059] また、本実施の形態においては、第 1の制御部 52は、復号部 11から復号の完了通 知を受けた場合には、復号部 11を停止可能な状態に制御した後に、第 2のデータ格 納部 22より上流側での消費電力を制限するようクロック Z電源制御部 54を制御する ものとして説明した。
[0060] これに対し、データ処理装置に、復号部 11によって生成された復号データを格納 する第 3のデータ格納部と、第 3のデータ格納部に格納された復号データを第 2のデ ータ格納部 22に転送するデータ転送部を設け、第 1の制御部 52が、このデータ転送 部から復号部に指示した分の復号データの転送が完了した旨の通知を受けた場合 に、復号部 11およびデータ転送部を停止可能な状態に制御した後に、第 2のデータ 格納部 22より上流側での消費電力を制限するようクロック Z電源制御部 54を制御す るようにしてちょい。
[0061] このように、クロック Z電源制御部 54は、間欠動作の停止期間に少なくとも復号部 1 1を停止するようにすればよいが、その他のブロックに関しては、システム構成により 様々であるが、停止期間に動作不要なブロックであればクロックまたは電源の供給を 制限することは可能であり、特に限定したものではない。
[0062] また、第 2の制御部 53が、第 2のデータ格納部 22における復号データの格納量が 規定量以上になったときに、復号データの格納量が規定量以上になったことを表す 制御信号を生成し、第 1の制御部 52が、この制御信号を受けた場合に、復号部 11お よびデータ転送部を停止可能な状態に制御した後に、第 2のデータ格納部 22より上 流側での消費電力を制限するようクロック Z電源制御部 54を制御するようにしてもよ い。この場合には、規定量は、第 2のデータ格納部 22における復号データの格納量 が 0にならな 、程度に定められる。
[0063] (実施の形態 2)
図 3は、本発明の実施の形態 2によるデータ処理装置の概略図を示すものである。 図 3に示すように、このデータ処理装置は、圧縮データを格納する第 1のデータ格納 部 21と、この圧縮データを読出し圧縮データを復号する復号部 11と、この復号部 11 で復号した復号データを格納する第 2のデータ格納部 22と、この復号データをアナ ログ変換する DA変換部 41と、クロックを生成および供給するクロック供給部 61と、装 置各部に電源を供給する電源供給部 71と、第 2のデータ格納部 22のデータ格納量 を管理する格納量管理部 81と、装置各部の起動タイミングを通知するタイマ部 82と、 装置各部の動作を制御するシステム制御部 51と、で構成される。
[0064] なお、本実施の形態において、システム制御部 51は、本発明における第 1の制御 部および起動制御部を構成し、格納量管理部 81またはタイマ部 82は、本発明にお ける第 2の制御部を構成し、クロック供給部 61および電源供給部 71の少なくとも一方 は、本発明におけるクロック Z電源制御部を構成する。
[0065] 以下代表的な動作を具体的に説明する。
[0066] 第 1のデータ格納部 21に圧縮データが格納されている。この第 1のデータ格納部 2 1は例えばメモリカードであり、圧縮データは例えば音声データの AACの圧縮データ である。
[0067] 復号部 11は、この圧縮データを第 1のデータ格納部 21から読出し、復号し復号デ ータを生成する。この復号部 11は例えば DSPであり、 DSPのソフトウェア処理により 復号される。
[0068] この復号部 11により復号された復号データは、第 2のデータ格納部 22に格納され る。この第 2のデータ格納部 22は例えば SRAM等の半導体メモリであり、復号データ は例えば PCMデータである。
[0069] この第 2のデータ格納部 22に格納された復号データは、 DA変換部 41でアナログ 信号に変換されアナログの音声データとして出力される。
[0070] クロック供給部 61は、各処理を実施する上で必要なクロックを生成および供給する
[0071] 格納量管理部 81は、第 2のデータ格納部 22のデータ格納量を管理し、必要に応じ てシステム制御部 51へ通知する。
[0072] システム制御部 51は、第 1のデータ格納部 21からのデータ読出しから、復号デ一 タの第 2のデータ格納部 22への格納までの処理を、実時間処理よりも速 、速度で実 施させることで、処理が実施されている期間と処理が実施されていない期間を明示的 に分離し、復号部 11が間欠動作するように制御する。また、システム制御部 51は、復 号データの第 2のデータ格納部 22からの読出し以降の処理を実時間処理で実施す るように制御すると共に、間欠動作の停止期間には、クロック供給部 61へ指示し間欠 動作で停止している第 1のデータ格納部 21、復号部 11へのクロック供給を停止する ように制御する。
[0073] 図 4は、本発明の実施の形態 2におけるデータ処理装置のタイミング図である。 AA C等のデジタル信号圧縮が施された圧縮データは、復号処理が施されるまでフレー ムという単位で処理される。 0〜9は各フレームの処理が実行されている期間を示して いる。
[0074] 実時間処理では、従来技術等でもあるように、各フレームがフレーム周期に合わせ て復号処理される。サンプリング周波数が 48kHzであれば、およそ 20msec間隔で 各フレームが処理される。
[0075] 次に、フレーム処理の高速化は、各フレーム処理の処理能力を向上させ、処理時 間に余裕を持たせることによって実現する。フレーム処理を高速ィ匕するには、クロック 周波数の向上や、ハードウェアァクセラレータによる処理能力の向上、ノ スのデータ 転送能力の向上など様々な方法がある。例えば、フレームの処理能力が 2倍になると 、フレームの処理期間はおよそ 10msecとなり、 50%は処理をして、 50%処理をして いない期間ができる。
[0076] 最後に、処理統合による間欠処理は、例えば、 0〜4、 5〜9までの処理をまとめ、か つ 1〜4および 6〜9の処理を前倒し、稼動期間と停止期間を明示的に分離するよう に実施する。サンプリング周波数力 8kHzであれば、およそ 100msec間隔で復号 部 11が間欠動作する。また、復号部 11は、およそ 50msecの期間に処理を実施し、 およそ 50msecの期間に処理を実施しな!、ようになる。
[0077] 図 5は、本発明の実施の形態 2におけるデータ処理装置の間欠動作する部分の第 1の制御フロー図である。図 5に示す通り、間欠動作が停止期間に遷移する条件は、 必要量の復号データが処理されて第 2のデータ格納部 22に格納されたことである。 これを起点にシステム制御部 51力クロックを停止し、間欠動作が停止期間に遷移す る。図 4の例では、復号部 11が 5フレーム分のデータをまとめて処理しているので、 5 フレーム分の復号データが格納されたことが停止期間に遷移する起点となる。一方、 停止期間から稼動期間への遷移は、第 2のデータ格納部 22に格納された復号デ一 タのうち DA変換部 41で処理されずに残っているデータ残量が予め定めた残量しき い値を下回った場合に、格納量管理部 81がシステム制御部 51に割込み等で通知 することを起点として行われる。残量しきい値は、格納量管理部 81が起動割込み通 知して力も次のフレームの復号データが第 2のデータ格納部 22に格納されるまでに 、実時間処理する DA変換部 41への復号データの供給が滞ることのな 、レベルで決 定すれば良い。
[0078] 起動割込み通知を受けたシステム制御部 51は、クロック供給部 61へ指示してクロッ ク供給を開始させ、その後、第 1のデータ格納部 21からのデータ読出しから、復号デ 一タの第 2のデータ格納部 22への格納までの処理を再開するよう制御する。
[0079] このように、システム制御部 51が第 1のデータ格納部 21からのデータ読出しから、 復号データの第 2のデータ格納部 22への格納までの処理を、実時間処理よりも速!、 速度で実施させることで復号部 11を間欠動作させ、その停止期間はクロックの供給 を停止することにより、オフセット電流が削減される。
[0080] また、データ処理装置は、間欠動作の停止期間への遷移を第 2のデータ格納部 22 に格納した復号データのデータ量により管理することで、ポーリング処理による制御 に比べシステム制御部 51の負荷を軽減でき、データ転送量が一定でな!、場合にな どでも正確に間欠動作を制御することができる。
[0081] また、データ処理装置は、間欠動作の稼動期間への遷移を第 2のデータ格納部 22 に格納された復号データのうち DA変換されていない復号データの残量により管理 することで、ポーリング処理による制御に比べシステム制御部 51の負荷を軽減でき、 データ転送量が一定でない場合になどでも正確に間欠動作を制御することができる
[0082] 図 6は、本発明の実施の形態 2におけるデータ処理装置の間欠動作する部分の第 2の制御フロー図である。図 6に示す通り、間欠動作が停止期間に遷移する条件は、 必要量の復号データが処理されて第 2のデータ格納部 22に格納されたことである。 これを起点にシステム制御部 51力クロックを停止し、間欠動作が停止期間に遷移す る。図 4の例では、復号部 11が 5フレーム分のデータをまとめて処理しているので、 5 フレーム分の復号データが格納されたことが停止期間に遷移する起点となる。その後
、システム制御部 51は、間欠動作が停止期間に移行して良いか判定する。例えば、 低消費電力モードで無い場合は、停止期間に移行しないように制御する。または、本 データ処理装置にぉ 、て負荷の重 、グラフィック処理等、他の処理が競合して 、る 場合、停止期間に移行しないように制御する。
[0083] 一方、停止期間に遷移した場合の稼動期間への遷移と処理の再開と、停止期間に 遷移しなかった場合の処理再開は、第 2のデータ格納部 22に格納された復号データ のうち DA変換部 41で処理されずに残っているデータ残量が予め定めた残量しきい 値を下回った場合に、格納量管理部 81がシステム制御部 51に割込み等で通知する ことを起点として行われる。残量しきい値は、格納量管理部 81が起動割込み通知し て力 次のフレームの復号データが第 2のデータ格納部 22に格納されるまでに、実 時間処理する DA変換部 41への復号データの供給が滞ることのないレベルで決定 すれば良い。
[0084] 起動割込み通知を受けたシステム制御部 51は、クロック供給部 61へ指示してクロッ ク供給を開始させ、その後、第 1のデータ格納部 21からのデータ読出しから、復号デ 一タの第 2のデータ格納部 22への格納までの処理を再開するよう制御する。
[0085] 力かる構成によれば、装置の動作状況に応じてクロックや電源供給を停止しないよ う制御することにより、クロック制御処理や電源制御処理等の、状態の遷移に必要な 処理 (以下、オーバーヘッド処理)を削減することがでる。このことにより、データ処理 装置の処理能力停止期間中での割込み応答性を向上することができる。
[0086] なお、本実施の形態では、第 1のデータ格納部 21をメモリカードとして説明したが、 磁気テープ、磁気ディスク、半導体メモリ、ハードディスク等圧縮データが格納できる ものであればこれに限定しないし、同様の効果を得ることが可能である。
[0087] また、圧縮データは、 AACとして説明した力 MP3等のデジタル化した音声データ を圧縮したデータであればこれに限定しないし同様の効果を得ることができる。
[0088] また、圧縮データは音声データとして説明した力 例えば MPEG— 2や MPEG— 4 や Motion JPEG等の圧縮された画像データであっても実施可能であり同様の効果を 得ることができる。
[0089] また、圧縮データは DESや AES等で暗号ィ匕された暗号文であっても良い。暗号文 の復号と圧縮データの復号も含めて復号部 11で復号すれば良く同様の効果を得る ことができる。
[0090] また、復号部 11を DSPとして説明した力 これに限定されない。例えば、 CPU等の 他のプロセッサや、その処理の一部をノヽードウエアによりサポートする構成や、全ての 復号処理をノヽードウエアにより実施する構成でも実施可能であり、同様の効果を得る ことができる。
[0091] また、システム制御部 51は、間欠動作の停止期間においてクロックの供給を停止 するとして説明したが、通常の動作周波数を低下させることで同様の効果を得ること は可能であるので、これに限定したものではな 、。
[0092] 更に、システム制御部 51は、間欠動作の停止期間においてクロックの供給を停止 するとして説明したが、電源供給部 71から供給する電圧を通常時より低下させること や、供給を停止 (OVを供給)することで、さらにリーク電流を抑制することができ、同様 の効果を得ることができる。また、 LSIの基板制御を行なうことで、制御トランジスタの しき 、値電圧を制御し、リーク電流を抑制することも可能である。
[0093] また、復号処理でのフレームのまとめ方は 5フレーム単位としたがこれに限らない。
間欠動作の稼動期間と停止期間との遷移には、クロック制御処理や電源制御処理等 の、遷移に必要なオーバーヘッド処理がある。遷移回数が多いほどオーバーヘッド 処理回数が増え、オーバーヘッド処理負荷が増大するため、まとめ方の粒度が粗い (間欠動作の周期が長い)方が好適である。
[0094] また、フレーム処理の高速ィ匕を実施し処理時間に余裕を持たせていた力 フレーム 処理を高速化しなくても処理時間に余裕を持って 、る場合には、フレーム処理を高 速ィ匕させる必要はない。処理の統合による間欠動作を実施することで、同様の効果 を得ることができる。
[0095] また、間欠動作の停止期間からの稼動期間への遷移要因を、格納量管理部 81か らの割込みとして説明した力 タイマ部 82からの割込みにより制御することも可能で ある。例えば、実時間処理する DA変換部 41への復号データの供給が滞らないレべ ルで、停止期間を決定しタイマにより起動させても良ぐ同様の効果を得ることができ る。
[0096] また、システム制御部 51は、第 1のデータ格納部 21、復号部 11へのクロック供給お よび電源の供給を停止するように制御すると説明したが、少なくとも復号処理を実施 する復号部 11を停止するように制御すれば良い。その他のブロックに関しては、シス テム構成により様々であるが、停止期間に動作不要なブロックであればクロックまたは 電源の供給を制限することは可能であり、特に限定したものではない。
[0097] (実施の形態 3)
図 7は、本発明の実施の形態 3におけるデータ処理装置の概略図を示すものであ る。図 7において図 3と同じ構成要素については同じ符号を用い、説明を省略する。
[0098] 図 7において、このデータ処理装置は、圧縮データを格納する第 1のデータ格納部 21と、この圧縮データを読出し転送する第 2のデータ転送部 32と、第 2のデータ転送 部 32で転送された圧縮データを格納する第 4のデータ格納部 24と、この圧縮データ を読出し圧縮データを復号する復号部 11と、この復号部 11で復号した復号データを 格納する第 3のデータ格納部 23と、この復号データを読出し転送する第 1のデータ 転送部 31と、第 1のデータ転送部 31で転送された復号データを格納する第 2のデー タ格納部 22と、この復号データをアナログ変換する DA変換部 41と、クロックを生成 および供給するクロック供給部 61と、装置各部に電源を供給する電源供給部 71と、 第 2のデータ格納部 22のデータ格納量を管理する格納量管理部 81と、装置各部の 起動タイミングを通知するタイマ部 82と、装置各部の動作を制御するシステム制御部 51と、で構成される。
[0099] なお、本実施の形態において、システム制御部 51は、本発明における第 1の制御 部および起動制御部を構成し、格納量管理部 81またはタイマ部 82は、本発明にお ける第 2の制御部を構成し、クロック供給部 61および電源供給部 71の少なくとも一方 は、本発明におけるクロック Z電源制御部を構成する。
[0100] 以下代表的な動作を具体的に説明する。
[0101] 第 1のデータ格納部 21に圧縮データが格納されている。この第 1のデータ格納部 2 1は例えばメモリカードであり、圧縮データは例えば音声データの AACの圧縮データ である。
[0102] この圧縮データは、第 2のデータ転送部 32により第 4のデータ格納部 24に転送さ れる。この第 4のデータ格納部 24は例えば SRAM等の半導体メモリである。 [0103] 復号部 11は、この第 4のデータ格納部 24から圧縮データを読出し、復号し復号デ ータを生成する。この復号部 11は例えば DSPであり、 DSPのソフトウェア処理により 復号される。
[0104] この復号部 11により復号された復号データは、第 3のデータ格納部 23に格納され る。この第 3のデータ格納部 23は例えば SRAM等の半導体メモリであり、復号データ は例えば PCMデータである。
[0105] この復号データは、第 1のデータ転送部 31により第 2のデータ格納部 22に転送さ れる。この第 2のデータ格納部 22は例えば SRAM等の半導体メモリである。
[0106] この第 2のデータ格納部 22に格納された復号データは、 DA変換部 41でアナログ 信号に変換されアナログの音声データとして出力される。
[0107] クロック供給部 61は、各処理を実施する上で必要なクロックを生成および供給する
[0108] 格納量管理部 81は、第 2のデータ格納部 22のデータ格納量を管理し、必要に応じ てシステム制御部 51へ通知する。
[0109] システム制御部 51は、第 1のデータ格納部 21からのデータ読出しから、復号デ一 タの第 2のデータ格納部 22への格納までの処理を、実時間処理よりも速 、速度で実 施させることで、処理が実施されている期間と処理が実施されていない期間を明示的 に分離し、復号部 11が間欠動作するように制御する。また、システム制御部 51は、復 号データの第 2のデータ格納部 22からの読出し以降の処理を実時間処理で実施す るように制御すると共に、間欠動作の停止期間には、クロック供給部 61へ指示し間欠 動作で停止している第 1のデータ格納部 21、第 2のデータ転送部 32、第 4のデータ 格納部 24、復号部 11、第 3のデータ格納部 23、第 1のデータ転送部 31へのクロック 供給を停止するように制御する。更に、システム制御部 51は、第 3のデータ格納部 2 3と第 4のデータ格納部 24には、停止期間に遷移する前に全データを転送するので はなぐ 1フレーム分のデータを保持したまま停止期間に遷移するよう制御する。
[0110] 間欠動作を実現する手順や、制御フローに関しては、実施の形態 2と同様であるの で割愛する。
[0111] 図 8は、本発明の実施の形態 3におけるタイミング図である。 [0112] 0〜9は AAC等の各フレームの処理が実行されている期間を示しており、フレーム 番号 3までの処理が実施完了した後に間欠動作の停止期間に遷移する。また、上段 は全データを転送した後に停止期間に遷移する例を、下段は 1フレーム分のデータ を保持したまま停止期間に遷移する例を示して ヽる。
[0113] 全データを転送した後に停止期間に遷移する例では、フレーム番号 4の DA変換の 前までに、第 4フレームの復号データの転送を完了していないと、音声データが途切 れてしまうため、圧縮データの転送は DA変換部 41でフレーム番号 2の DA変換を実 施して 、る時点で処理を再開する必要がある。
[0114] 1フレーム分のデータを保持したまま停止期間に遷移する例では、各処理部が処 理できるデータが予めデータ格納部に保持されているので、稼動期間に復帰後すぐ に処理が開始される。具体的には、第 4のデータ格納部 24にはフレーム番号 5の圧 縮データ、第 3のデータ格納部 23にはフレーム番号 4の復号データが格納されてい る。
[0115] 力かる構成によれば、第 1のデータ格納部 21からのデータ読出しから、復号データ の第 2のデータ格納部 22への格納までの処理を、実時間処理よりも速 、速度で実施 させることで間欠動作させ、その停止期間はクロックの供給を停止することにより、ォ フセット電流を削減することができる。
[0116] 更に、フレーム番号 3の DA変換を実施している時点で稼動期間に復帰すれば良 V、ため、全データを転送した後に停止期間に遷移する例に比べて停止期間を長く設 定することが可能となり、オフセット電流を削減することができる。
[0117] なお、本実施の形態では、第 1のデータ転送部 31と第 2のデータ転送部 32の双方 について説明したが、当然どちらか一方であっても実施可能であり、同様の効果を得 ることがでさる。
[0118] 第 1のデータ格納部 21をメモリカードとして説明した力 磁気テープ、磁気ディスク 、半導体メモリ、ハードディスク等圧縮データが格納できるものであればこれに限定し ないし、同様の効果を得ることが可能である。
[0119] また、圧縮データは、 AACとして説明した力 MP3等のデジタル化した音声データ を圧縮したデータであればこれに限定しな 、し、同様の効果を得ることができる。 [0120] また、圧縮データは音声データとして説明した力 例えば MPEG— 2や MPEG— 4 や Motion JPEG等の圧縮された画像データであっても実施可能であり、同様の効果 を得ることができる。
[0121] また、圧縮データは DESや AES等で暗号ィ匕された暗号文であっても良い。暗号文 の復号と圧縮データの復号も含めて復号部 11で復号すれば良ぐ同様の効果を得 ることがでさる。
[0122] また、復号部 11を DSPとして説明した力 CPU等の他のプロセッサや、その処理 の一部をノヽードウエアによりサポートする構成や、全ての復号処理をハードウェアによ り実施する構成でも実施可能であり、これに限定しないし、同様の効果を得ることがで きる。
[0123] また、システム制御部 51は、間欠動作の停止期間においてクロックの供給を停止 するとして説明したが、通常の動作周波数を低下させることで同様の効果を得ること は可能であるので、これに限定したものではな 、。
[0124] 更に、システム制御部 51は、間欠動作の停止期間においてクロックの供給を停止 するとして説明したが、電源供給部 71から供給する電圧を通常時より低下させること や、供給を停止 (0Vを供給)することで、さらにリーク電流を抑制することができ、同様 の効果を得ることができる。また、 LSIの基板制御を行なうことで、制御トランジスタの しき 、値電圧を制御し、リーク電流を抑制することも可能である。
[0125] また、復号処理でのフレームのまとめ方は 5フレーム単位としたがこれに限らない。
間欠動作の稼動期間と停止期間との遷移には、クロック制御処理や電源制御処理等 の遷移に必要なオーバーヘッド処理がある。遷移回数が多!、ほどオーバーヘッド処 理回数が増え、オーバーヘッド処理負荷が増大するため、まとめ方の粒度が粗い( 間欠動作の周期が長い)方が好適である。
[0126] また、フレーム処理の高速ィ匕を実施し処理時間に余裕を持たせていた力 フレーム 処理を高速化しなくても処理時間に余裕を持って 、る場合には、フレーム処理を高 速ィ匕させる必要はない。処理の統合による間欠動作を実施することで、同様の効果 を得ることができる。
[0127] また、各データ格納部では、 1フレーム分のデータを保持したまま停止期間に遷移 する例について説明したが、数フレーム分を保持したまま停止期間に遷移しても良く 、これに限定しないし、同様の効果を得ることができる。
[0128] また、間欠動作の停止期間力もの稼動期間への遷移要因を、格納量管理部 81か らの割込みとして説明した力 タイマ部 82からの割込みにより制御することも可能で ある。例えば、実時間処理する DA変換部 41への復号データの供給が滞らないレべ ルで、停止期間を決定しタイマにより起動させても良ぐ同様の効果を得ることができ る。
[0129] また、システム制御部 51は、第 1のデータ格納部 21、第 2のデータ転送部 32、第 4 のデータ格納部 24、復号部 11、第 3のデータ格納部 23、第 1のデータ転送部 31へ のクロック供給および電源の供給を停止するように制御すると説明したが、少なくとも 復号処理を実施する復号部 11を停止するように制御すれば良 、。その他のブロック に関しては、システム構成により様々であるが、停止期間に動作不要なブロックであ ればクロックまたは電源の供給を制限することは可能であり、特に限定したものでは ない。
[0130] (実施の形態 4)
図 9は、本発明の実施の形態 4におけるデータ処理装置の概略図を示すものであ る。図 9において図 3、図 7と同じ構成要素については同じ符号を用い、説明を省略 する。
[0131] 図 9において、このデータ処理装置は、放送波を受信し圧縮データを抽出する放送 受信部 91と、この圧縮データを格納する第 4のデータ格納部 24と、この圧縮データ を読出し圧縮データを復号する復号部 11と、この復号部 11で復号した復号データを 格納する第 3のデータ格納部 23と、この復号データを読出し転送する第 1のデータ 転送部 31と、第 1のデータ転送部 31で転送した復号データを格納する第 2のデータ 格納部 22と、この復号データをアナログ変換する DA変換部 41と、クロックを生成お よび供給するクロック供給部 61と、装置各部に電源を供給する電源供給部 71と、第 2のデータ格納部 22のデータ格納量を管理する格納量管理部 81と、装置各部の起 動タイミングを通知するタイマ部 82と、装置各部の動作を制御するシステム制御部 5 1と、で構成される。 [0132] なお、本実施の形態において、システム制御部 51は、本発明における第 1の制御 部および起動制御部を構成し、格納量管理部 81またはタイマ部 82は、本発明にお ける第 2の制御部を構成し、クロック供給部 61または電源供給部 71の少なくとも一方 は、本発明におけるクロック Z電源制御部を構成する。
[0133] 以下代表的な動作を具体的に説明する。
[0134] 放送受信部 91は、地上デジタル放送などの放送波を受信し、音声などの圧縮デー タを抽出する。圧縮データは例えば音声データの AACの圧縮データである。
[0135] この圧縮データは、第 4のデータ格納部 24に格納される。この第 4のデータ格納部
24は例えば SRAM等の半導体メモリである。
[0136] 復号部 11は、この第 4のデータ格納部 24から圧縮データを読出し、復号し復号デ ータを生成する。この復号部 11は例えば DPSであり、 DSPのソフトウェア処理により 復号される。
[0137] この復号部 11により復号された復号データは、第 3のデータ格納部 23に格納され る。この第 3のデータ格納部 23は例えば SRAM等の半導体メモリであり、復号データ は例えば PCMデータである。
[0138] この復号データを第 1のデータ転送部 31により第 2のデータ格納部 22に転送する
。この第 2のデータ格納部 22は、例えば SRAM等の半導体メモリである。
[0139] この第 2のデータ格納部 22に格納された復号データは、 DA変換部 41でアナログ 信号に変換されアナログの音声データとして出力される。
[0140] クロック供給部 61は、各処理を実施する上で必要なクロックを生成および供給する
[0141] 格納量管理部 81は、第 2のデータ格納部 22のデータ格納量を管理し必要に応じ てシステム制御部 51へ通知する。
[0142] システム制御部 51は、第 4のデータ格納部 24からのデータ読出しから、復号デ一 タの第 2のデータ格納部 22への格納までの処理を、実時間処理よりも速 、速度で実 施させることで、処理が実施されている期間と処理が実施されていない期間を明示的 に分離し、復号部 11を間欠動作するように制御する。また、システム制御部 51は、放 送受信部 91による圧縮データの第 4のデータ格納部 24への格納と、復号データの 第 2のデータ格納部 22からの読出し以降の処理を実時間処理で実施するように制御 すると共に、間欠動作の停止期間には、クロック供給部 61へ指示し間欠動作で停止 している復号部 11、第 3のデータ格納部 23、第 1のデータ転送部 31へのクロック供 給を停止するように制御する。更に、システム制御部 51は、第 3のデータ格納部 23と 第 4のデータ格納部 24には、停止期間に遷移する前に全データを転送するのでは なぐ 1フレーム分のデータを保持したまま停止期間に遷移するよう制御する。
[0143] 間欠動作を実現する手順や、制御フローに関しては、実施の形態 3と同様であるの で割愛する。
[0144] 図 10は、本発明の実施の形態 4におけるデータ処理装置のタイミング図である。
[0145] 0〜9は AAC等の各フレームの処理が実行されている期間を示している。放送受信 部 91は実時間処理を行って 、る。復号部 11がフレーム番号 4までの処理を実施完 了し、第 1のデータ転送部 31がフレーム番号 3までの処理を実施完了した後に、間 欠動作の停止期間に遷移する。 DA変換部 41は実時間処理を行っている。
[0146] 各処理部が処理できるデータが予めデータ格納部に保持されているので、稼動期 間に復帰後すぐに処理が開始される。具体的には、第 4のデータ格納部 24にはフレ ーム番号 8までの圧縮データ、第 3のデータ格納部 23にはフレーム番号 4の復号デ ータが格納されている。
[0147] 力かる構成によれば、処理の入力部分 (放送の受信)と出力部分 (DA変換)双方で 実時間処理が必要なデータ処理装置にお!、ても、復号部 11を含む間欠動作する部 分のオフセット電流を削減できる。更に、フレーム番号 3の DA変換を実施している時 点で稼動期間に復帰すれば良 、ため、全データを転送した後に停止期間に遷移す る例に比べて停止期間を長く設定することが可能となり、オフセット電流を削減するこ とがでさる。
[0148] また、放送受信部 91の代わりに、有線または無線ネットワークと接続し、 AVコンテ ンッを受信し、圧縮データを抽出する、ネットワーク接続部を設けても良い。この場合 、インターネットを始めとしたネットワーク力 ネットワークの通信速度に応じてデータ 受信し、第 4のデータ格納部 24に格納する。その後の処理は、図 9で示した実施の 形態と同様の動作を行う。 [0149] 力かる構成によれば、処理の入力部分 (ネットワークからの受信)と出力部分 (DA変 換)双方で実時間処理が必要なデータ処理装置においても、復号部 11を含む間欠 動作する部分のオフセット電流を削減できる。更に、フレーム番号 3の DA変換を実 施している時点で稼動期間に復帰すれば良い。このため、全データを転送した後に 停止期間に遷移する例に比べて、停止期間を長く設定することが可能となり、オフセ ット電流を削減することができる。
[0150] なお、本実施の形態では、圧縮データは、 AACとして説明した力 MP3等のデジ タルイ匕した音声データを圧縮したデータであればこれに限定しな 、し、同様の効果を 得ることができる。
[0151] また、圧縮データは音声データとして説明した力 例えば MPEG— 2や MPEG— 4 や Motion JPEG等の圧縮された画像データであっても実施可能であり、同様の効果 がえることができる。
[0152] また、圧縮データは DESや AES等で暗号ィ匕された暗号文であっても良い。暗号文 の復号と圧縮データの復号も含めて復号部 11で復号すれば良ぐ同様の効果を得 ることがでさる。
[0153] また、復号部 11を DSPとして説明した力 CPU等の他のプロセッサや、その処理 の一部をノヽードウエアによりサポートする構成や、全ての復号処理をハードウェアによ り実施する構成でも実施可能であり、これに限定しないし、同様の効果を得ることがで きる。
[0154] また、システム制御部 51は、間欠動作の停止期間においてクロックの供給を停止 するとして説明したが、通常の動作周波数を低下させることで同様の効果を得ること は可能であるので、これに限定したものではな 、。
[0155] 更に、システム制御部 51は、間欠動作の停止期間においてクロックの供給を停止 するとして説明したが、電源供給部 71から供給する電圧を通常時より低下させること や、供給を停止 (0Vを供給)することで、さらにリーク電流を抑制することができ、同様 の効果を得ることができる。また、 LSIの基板制御を行なうことで、制御トランジスタの しき 、値電圧を制御し、リーク電流を抑制することも可能である。
[0156] また、復号処理でのフレームのまとめ方は 5フレーム単位としたがこれに限らない。 間欠動作の稼動期間と停止期間との遷移には、クロック制御処理や電源制御処理等 の遷移に必要なオーバーヘッド処理がある。遷移回数が多!、ほどオーバーヘッド処 理回数が増え、オーバーヘッド処理負荷が増大するため、まとめ方の粒度が粗い方 (間欠動作の周期が長い)方が好適である。
[0157] また、フレーム処理の高速ィ匕を実施し処理時間に余裕を持たせていた力 フレーム 処理を高速化しなくても処理時間に余裕を持って 、る場合には、フレーム処理を高 速ィ匕させる必要はない。処理の統合による間欠動作を実施することで、同様の効果 を得ることができる。
[0158] また、各データ格納部では、 1フレーム分のデータを保持したまま停止期間に遷移 する例について説明したが、数フレーム分を保持したまま停止期間に遷移しても良く 、これに限定しないし、同様の効果を得ることができる。
[0159] また、間欠動作の停止期間力もの稼動期間への遷移要因を、格納量管理部 81か らの割込みとして説明した力 タイマ部 82からの割込みにより制御することも可能で ある。例えば、実時間処理する DA変換部 41への復号データの供給が滞らないレべ ルで、停止期間を決定しタイマにより起動させても良ぐ同様の効果を得ることができ る。
[0160] また、システム制御部 51は、復号部 11、第 3のデータ格納部 23、第 1のデータ転送 部 31へのクロック供給および電源の供給を停止するように制御すると説明した力 少 なくとも復号処理を実施する復号部 11を停止するように制御すれば良 、。その他の ブロックに関しては、システム構成により様々であるが、停止期間に動作不要なブロッ クであればクロックまたは電源の供給を制限することは可能であり、特に限定したもの ではない。
産業上の利用可能性
[0161] 本発明にかかるデータ処理装置は、バッテリ駆動する携帯機器向けのオーディオ、 ビデオプレーヤや AV処理が実施可能な携帯電話等の用途に特に有用である。

Claims

請求の範囲
[1] 圧縮データを格納する第 1のデータ格納部と、
前記第 1のデータ格納部から圧縮データを読出し、読出した圧縮データを復号した 復号データを出力する復号部と、
前記復号部によって出力された復号データを格納する第 2のデータ格納部と、 前記第 2のデータ格納部から前記復号データを実時間で読出してアナログ信号に 変換する DA変換部と、
前記圧縮データの読出しから前記復号データの格納までの処理を前記実時間より も速い速度で行うことで間欠動作させるよう、少なくとも前記復号部を制御する第 1の 制御部と、
前記復号部と前記第 1の制御部に対してクロック又は電源の少なくとも一方の供給 を制御するとともに、前記間欠動作の停止期間には、前記復号部と前記第 1の制御 部に対してクロック又は電源の少なくとも一方の供給を制限して、前記第 2のデータ 格納部より上流側での消費電力を制限するクロック Z電源制御部と、
前記第 2のデータ格納部における前記復号データの格納状態を管理し前記格納 状態に応じた制御信号を出力する第 2の制御部と、
前記制御信号を受けて、前記クロック Z電源制御部を制御して、前記第 2のデータ 格納部より上流側での消費電力の制限を解除させる起動制御部と、
を備えたデータ処理装置。
[2] 前記クロック Z電源制御部は、前記第 2のデータ格納部より上流側での処理の消費 電力を制限する際に、前記起動制御部を停止しない範囲で、前記起動制御部に対 してクロック又は電源の少なくとも一方の供給を制限することを特徴とする請求項 1に 記載のデータ処理装置。
[3] 前記第 1の制御部は、各フレーム処理の処理能力を向上させることによって、前記 圧縮データの読出し力 前記復号データの格納までの処理を前記実時間よりも速い 速度で行うよう制御することを特徴とする請求項 1に記載のデータ処理装置。
[4] 前記第 1の制御部は、更に、複数のフレームをまとめて処理することによって、前記 圧縮データの読出し力 前記復号データの格納までの処理を前記実時間よりも速い 速度で行うよう制御することを特徴とする請求項 3に記載のデータ処理装置。
[5] 前記起動制御部は、前記第 2のデータ格納部における前記復号データの格納量 が所定量以下になったことを前記制御信号が表す場合に、前記クロック Z電源制御 部を制御して、前記第 2のデータ格納部より上流側での消費電力の制限を解除させ ることを特徴とする請求項 1に記載のデータ処理装置。
[6] 前記第 1の制御手段は、所定の再生時間分以上の前記圧縮データの復号を完了 したことを前記復号部から通知された場合に、前記第 2のデータ格納部より上流側で の消費電力を制限するよう前記クロック Z電源制御部を制御することを特徴とする請 求項 1に記載のデータ処理装置。
[7] 前記第 1の制御手段は、前記復号部に加えて前記データ処理装置の他の各部を 制御し、前記他の各部を制御している間は、前記第 2のデータ格納部より上流側で の消費電力を制限するよう前記クロック Z電源制御部を制御することを中止すること を特徴とする請求項 6に記載のデータ処理装置。
[8] 前記クロック Z電源制御部は、前記第 2のデータ格納部に所定時間分以上の前記 復号データが格納されて 、ることを前記制御信号が表す場合に、前記第 2のデータ 格納部より上流側での消費電力を制限することを特徴とする請求項 1に記載のデー タ処理装置。
[9] 前記起動制御部は、前記第 2のデータ格納部より上流側の消費電力が制限されて 力も所定時間が経過したことを前記制御信号が表す場合に、前記クロック Z電源制 御部を制御して、前記第 2のデータ格納部より上流側での消費電力の制限を解除さ せることを特徴とする請求項 1に記載のデータ処理装置。
[10] 前記クロック Z電源制御部は、少なくとも前記復号部へ供給されるクロックの周波数 を低下させることによって、前記第 2のデータ格納部より上流側での消費電力を制限 することを特徴とする請求項 1に記載のデータ処理装置。
[11] 前記クロック Z電源制御部は、少なくとも前記復号部へのクロックの供給を停止する ことによって、前記第 2のデータ格納部より上流側での消費電力を制限することを特 徴とする請求項 1に記載のデータ処理装置。
[12] 前記クロック Z電源制御部は、少なくとも前記復号部へ印加される電圧を低下させ ることによって、前記第 2のデータ格納部より上流側での消費電力を制限することを 特徴とする請求項 1に記載のデータ処理装置。
[13] 前記クロック Z電源制御部は、少なくとも前記復号部への電圧の印加を停止するこ とによって、前記第 2のデータ格納部より上流側での消費電力を制限することを特徴 とする請求項 1に記載のデータ処理装置。
[14] 放送波を受信し前記圧縮データを生成する放送受信部を更に備え、
前記第 1のデータ格納部は、前記放送受信部によって生成された圧縮データを格 納することを特徴とする請求項 1に記載のデータ処理装置。
[15] ネットワークを介して送信されたデータ力 前記圧縮データを生成するネットワーク 接続部を更に備え、
前記第 1のデータ格納部は、前記ネットワーク接続部によって生成された圧縮デー タを格納することを特徴とする請求項 1に記載のデータ処理装置。
PCT/JP2006/324145 2005-12-13 2006-12-04 データ処理装置 WO2007069486A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/817,594 US8892909B2 (en) 2005-12-13 2006-12-04 Clock and power control for intermittent operation of decoder
JP2007550131A JP4794572B2 (ja) 2005-12-13 2006-12-04 データ処理装置
EP06833915A EP1962170A4 (en) 2005-12-13 2006-12-04 DATA PROCESSOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005358771 2005-12-13
JP2005-358771 2005-12-13

Publications (1)

Publication Number Publication Date
WO2007069486A1 true WO2007069486A1 (ja) 2007-06-21

Family

ID=38162796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324145 WO2007069486A1 (ja) 2005-12-13 2006-12-04 データ処理装置

Country Status (5)

Country Link
US (1) US8892909B2 (ja)
EP (1) EP1962170A4 (ja)
JP (4) JP4794572B2 (ja)
CN (4) CN100489739C (ja)
WO (1) WO2007069486A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142820A1 (ja) * 2007-05-21 2008-11-27 Panasonic Corporation データ処理装置
JP2011509461A (ja) * 2008-01-07 2011-03-24 アップル インコーポレイテッド データ処理システムの強制アイドル
JP2011519083A (ja) * 2008-04-07 2011-06-30 エスティー‐エリクソン、ソシエテ、アノニム 低電力メディアレンダリングサブシステムを備えたモバイル電話
JP2013242896A (ja) * 2007-09-07 2013-12-05 Qualcomm Inc 電力効率の高いバッチフレームオーディオデコーディング装置、システム、および、方法
JP2016163134A (ja) * 2015-02-27 2016-09-05 沖電気工業株式会社 動画再生装置及びプログラム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010134858A (ja) * 2008-12-08 2010-06-17 Renesas Electronics Corp データ処理回路
CN102316559B (zh) * 2010-07-02 2014-11-05 上海华虹集成电路有限责任公司 一种cmmb接收机中低功耗ldpc译码装置的实现方法
KR20150115199A (ko) * 2014-04-03 2015-10-14 삼성전자주식회사 알림 제공 방법 및 그 장치
CN104122977B (zh) * 2014-07-11 2018-02-23 华为技术有限公司 一种存储数据的方法及存储系统
US10516892B2 (en) 2015-09-28 2019-12-24 Cybrook Inc. Initial bandwidth estimation for real-time video transmission
US10756997B2 (en) 2015-09-28 2020-08-25 Cybrook Inc. Bandwidth adjustment for real-time video transmission
US10506257B2 (en) 2015-09-28 2019-12-10 Cybrook Inc. Method and system of video processing with back channel message management
US10506245B2 (en) 2015-11-18 2019-12-10 Cybrook Inc. Video data processing using a ring buffer
US10506283B2 (en) * 2015-11-18 2019-12-10 Cybrook Inc. Video decoding and rendering using combined jitter and frame buffer
JP6887131B2 (ja) * 2017-11-06 2021-06-16 パナソニックIpマネジメント株式会社 再生装置、再生方法及び再生プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09231688A (ja) * 1996-02-27 1997-09-05 Matsushita Electric Ind Co Ltd 記録再生システム
JP2004062932A (ja) * 2002-07-25 2004-02-26 Matsushita Electric Ind Co Ltd 光ディスク再生装置及び光ディスク再生方法
JP2004087052A (ja) * 2002-08-28 2004-03-18 Sony Corp 映像音声記録再生装置とその制御方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2993276B2 (ja) * 1992-06-11 1999-12-20 セイコーエプソン株式会社 プリンタ
JPH06105278A (ja) * 1992-09-24 1994-04-15 Matsushita Electric Ind Co Ltd 動き検出による録再装置
JP3591028B2 (ja) * 1995-01-25 2004-11-17 ソニー株式会社 再生装置、再生方法
JPH08321136A (ja) * 1995-05-24 1996-12-03 Sony Corp デコーダ及び再生装置
EP0905987B1 (en) * 1997-09-26 2005-06-15 Matsushita Electric Industrial Co., Ltd. Image decoding method and apparatus, and data recording medium
JPH11122586A (ja) 1997-10-14 1999-04-30 Victor Co Of Japan Ltd データ放送受信機
JP2000013792A (ja) * 1998-06-24 2000-01-14 Toppan Printing Co Ltd カラー画像情報データ処理装置
JP4067650B2 (ja) * 1998-07-17 2008-03-26 株式会社東芝 データ記録装置およびデータ記録方法
JP4538907B2 (ja) * 1999-06-29 2010-09-08 ソニー株式会社 記録装置および再生装置
JP2001175606A (ja) * 1999-12-20 2001-06-29 Sony Corp データ処理装置、データ処理機器およびその方法
JP2001184464A (ja) 1999-12-27 2001-07-06 Sanyo Electric Co Ltd データ再生装置
US7315764B1 (en) * 2000-06-14 2008-01-01 Marvell International Ltd Integrated circuit, method, and computer program product for recording and reproducing digital data
US7522964B2 (en) * 2000-12-01 2009-04-21 O2Micro International Limited Low power digital audio decoding/playing system for computing devices
JP2003008680A (ja) * 2001-06-19 2003-01-10 Sony Corp 再生装置および再生方法
US7215367B2 (en) * 2001-07-23 2007-05-08 Mtekvision Co., Ltd. Image data control system and method for capturing and displaying an original image of an object
CN1219283C (zh) * 2001-08-07 2005-09-14 北京大恒鼎芯科技有限公司 可视音带的图文数据生成和编码方法及图文数据播放装置
US6968468B2 (en) * 2002-02-25 2005-11-22 O2 Micro, Inc. Digital computer utilizing buffer to store and output data to play real time applications enabling processor to enter deep sleep state while buffer outputs data
JP2004062928A (ja) * 2002-07-25 2004-02-26 Hitachi Ltd 磁気ディスク装置及び記憶システム
JP4618760B2 (ja) * 2002-07-25 2011-01-26 ルネサスエレクトロニクス株式会社 光ディスク再生装置およびそのデータ再生方法
JP4030420B2 (ja) * 2002-12-17 2008-01-09 パイオニア株式会社 情報記録再生装置
US7213086B2 (en) * 2003-10-28 2007-05-01 Hewlett-Packard Development Company, L.P. System having a storage controller that modifies operation of a storage system based on the status of a data transfer
JP4959935B2 (ja) 2004-11-09 2012-06-27 株式会社東芝 復号装置
JP2007095040A (ja) * 2005-08-31 2007-04-12 Matsushita Electric Ind Co Ltd データ処理装置、プログラム、記録媒体、コンテンツ再生装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09231688A (ja) * 1996-02-27 1997-09-05 Matsushita Electric Ind Co Ltd 記録再生システム
JP2004062932A (ja) * 2002-07-25 2004-02-26 Matsushita Electric Ind Co Ltd 光ディスク再生装置及び光ディスク再生方法
JP2004087052A (ja) * 2002-08-28 2004-03-18 Sony Corp 映像音声記録再生装置とその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1962170A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142820A1 (ja) * 2007-05-21 2008-11-27 Panasonic Corporation データ処理装置
JP2013242896A (ja) * 2007-09-07 2013-12-05 Qualcomm Inc 電力効率の高いバッチフレームオーディオデコーディング装置、システム、および、方法
JP2011509461A (ja) * 2008-01-07 2011-03-24 アップル インコーポレイテッド データ処理システムの強制アイドル
JP2011519083A (ja) * 2008-04-07 2011-06-30 エスティー‐エリクソン、ソシエテ、アノニム 低電力メディアレンダリングサブシステムを備えたモバイル電話
JP2016163134A (ja) * 2015-02-27 2016-09-05 沖電気工業株式会社 動画再生装置及びプログラム

Also Published As

Publication number Publication date
JPWO2007069486A1 (ja) 2009-05-21
CN101516037B (zh) 2012-07-25
US20090070610A1 (en) 2009-03-12
EP1962170A1 (en) 2008-08-27
CN101516038B (zh) 2012-11-28
CN101516039A (zh) 2009-08-26
JP4794572B2 (ja) 2011-10-19
JP4912490B2 (ja) 2012-04-11
JP2011014154A (ja) 2011-01-20
CN101516037A (zh) 2009-08-26
CN101133378A (zh) 2008-02-27
CN101516038A (zh) 2009-08-26
US8892909B2 (en) 2014-11-18
JP4977774B2 (ja) 2012-07-18
EP1962170A4 (en) 2010-05-05
JP2011028762A (ja) 2011-02-10
CN100489739C (zh) 2009-05-20
JP2011054164A (ja) 2011-03-17
CN101516039B (zh) 2012-09-26
JP4912491B2 (ja) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4912490B2 (ja) データ処理装置
JP5084347B2 (ja) データ処理装置
US7734310B2 (en) Mobile terminal device
CN100545825C (zh) 影像声音处理用集成电路及影像声音设备
US8290186B2 (en) Method and apparatus for controlling portable audio device
TWI264635B (en) Information-processing apparatus and method of controlling power saving
JP2006236057A (ja) 情報処理装置および情報処理方法、並びにプログラム
US20120278639A1 (en) Data processor
WO2006095868A1 (ja) コンテンツデータ送信装置、コンテンツデータ送信方法および遠隔再生システム
JP2008305250A (ja) データ処理装置
KR101804799B1 (ko) 저전력으로 오디오 데이터를 재생하는 장치 및 방법
KR200290852Y1 (ko) 플래시 디스크 장착형 앰피쓰리 플레이어
JP2004325761A (ja) 情報処理装置、情報処理方法
JP2008042236A (ja) トランスコーダを内蔵するデジタルストリーム再生装置
JP2008052487A (ja) ディジタル信号処理装置およびディジタル信号処理端末
KR20080060421A (ko) 무선인터넷 기술을 적용한 휴대용 플레이어

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680006487.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007550131

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006833915

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11817594

Country of ref document: US