WO2007068386A1 - Multifunktionales sprengsystem - Google Patents
Multifunktionales sprengsystem Download PDFInfo
- Publication number
- WO2007068386A1 WO2007068386A1 PCT/EP2006/011711 EP2006011711W WO2007068386A1 WO 2007068386 A1 WO2007068386 A1 WO 2007068386A1 EP 2006011711 W EP2006011711 W EP 2006011711W WO 2007068386 A1 WO2007068386 A1 WO 2007068386A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- container
- edge length
- explosive device
- explosive
- hole
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B3/00—Blasting cartridges, i.e. case and explosive
- F42B3/02—Blasting cartridges, i.e. case and explosive adapted to be united into assemblies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B39/00—Packaging or storage of ammunition or explosive charges; Safety features thereof; Cartridge belts or bags
Definitions
- the present invention relates to an explosive device according to claim 1, a container according to claim 17 and a shaped article according to claim 18.
- Blasting devices can be roughly divided into two types. On the one hand, those explosive devices which are intended for a very specific purpose and are also suitable only for this purpose. On the other hand the
- Explosive devices which are to be used in a variety of applications and therefore need to be adapted to the specific circumstances in a specific application. Especially the latter are subject to various disadvantages, in particular as regards the achievement of the desired explosive effect.
- Examples of explosive devices with a specific purpose are hopper charges and direct loads.
- Funnel explosive charges consist of a so-called shaped charge, which makes it possible to prepare the blast hole required for the actual explosive charge in the underground. This cylindrical blast hole is then provided with the actual explosive charge and detonated. Funnel explosive charges are designed to quickly create obstacles in the field.
- Directional charges are explosive devices that allow directional detonation of splinter charges.
- a layer of explosive is applied to a steel plate, to which a further layer, for example made of plastic, with embedded steel splinters or balls is applied.
- the detonation causes the steel splinters to be fired directionally.
- the charge strength of the directional charge is usually fixed and can not be varied.
- no specialized explosive devices such as those mentioned above
- improvised explosive charges must be used. This is very often the case in the military field. For example, explosives such as trotyl or plastite are used, depending on the situation and the target in different quantities.
- Trotyl is a solid explosive, whereas plastite is deformable within certain limits, which also depend on the ambient temperature. As a rule, therefore, the explosive charge will be composed of several explosive bodies. This can be accomplished, for example, by attaching the required amount of trotyl to a board by means of adhesive tape and then detonating it with an igniter.
- the explosive device has to be tediously assembled on the spot. Since this is often under time pressure, this procedure is very error-prone. So it happens that not the whole explosive charge detonates, because the individual explosive bodies (eg of Trotyl) are not tightly and firmly enough attached to each other. Thus, the desired explosive effect is poor or not achieved.
- Object of the present invention is to provide an explosive device available that is easy to handle, can be used in a very short time, in their
- the explosive device should be used both in the field and in buildings.
- An inventive explosive device has the features according to claim 1.
- a predetermined ratio of the edge lengths of one of the cuboid, explosive-containing moldings of 1: 2: 4 and the dependent dimensions of an interior of a container have the consequence that the moldings can be arranged in the container exactly fitting.
- the interior of the container has a square plan, with a side length corresponding to the longest edge length of the molding.
- two of the moldings can be placed in this interior. They can be arranged either longitudinally or transversely.
- four moldings can be placed in the interior of the container.
- the moldings can be placed side by side upright or two moldings can be arranged side by side and the two other moldings arranged thereon. This placement can be both longitudinal and transverse. Corresponds to the height of the interior of four times the smallest edge length of the molding, find eight moldings in the interior space. These can each two moldings next to each other in four layers, four moldings side by side in two Layers or all eight shaped bodies are placed on their smallest side standing side by side. These different possibilities of arrangement can be used without the functionality of the explosive device would be in question, for example, because all the ignition holes of the moldings are inaccessible.
- the exact fit, close arrangement of the explosives in the container ensures the safe transmission of the detonation.
- the ignition of the explosive is usually carried out by means of a detonator, as they are usually used for the initial ignition of explosives.
- the detonator is for this purpose through a through hole, which is aligned with a detonating hole of the shaped body, to the interior of the container in the ignition hole of the mold body inserted. If the dimensions of the interior only approximate, filler is arranged in the remaining space to achieve a close arrangement of the explosive-containing moldings to one another and thus ensure the transmission of the detonation.
- the container is used for a storage and transport of the explosive moldings, but on the other hand at the same time a part of the blasting device.
- the container can be made of wood, metal or plastic. With the choice of material and wall thickness, the detonation effect can be specifically influenced. Through the use of walls of different materials directional charges are possible, it can be used for a side wall metal, for example, while the other walls are made of wood.
- the shelf life of the explosive device can be further increased by packaging it in shrink wrap.
- the through-hole is arranged to the interior of the container in a bottom wall of the container.
- the container in addition to the interior of a service room, which is separated by an intermediate wall from the interior.
- the service room serves to accommodate accessories, e.g. Tools, fuses, detonators, various operations such as fragmentation or fire, etc.
- accessories e.g. Tools, fuses, detonators, various operations such as fragmentation or fire, etc.
- the entire accessories of the explosive device can be stored and transported with this and is fully available on site.
- the intermediate wall and a side wall of the container bounding the service area also each have at least one through-hole.
- the detonator from the service room of the container forth in the ignition hole of the mold body is inserted.
- the fuse is then passed through the through hole of the service room limiting side wall to the outside.
- the explosive device according to the invention can thus be buried without further ado and is not damaged even by vehicles driving over it.
- the container has a plurality of through holes.
- multiple detonators may be used to ignite the explosive moldings. Depending on which of the existing with a detonation hole of one of the moldings aligned through holes are used for ignition, so that the type of detonation can be influenced.
- the through holes are closed.
- the closure elements protect the explosive moldings in the interior from environmental influences, in particular from moisture.
- Various types of closure elements can be used, e.g. the through holes can be closed by means of an adhesive strip. This adhesive tape can be removed very easily and quickly in the application.
- Suitable inserts are also suitable, e.g. Pins that can be removed by light pressure from the relevant through hole.
- the closure elements are incorporated in the walls of the container. They are an integral part of the wall and can be easily pushed out of the wall if necessary via a predetermined breaking point. This has the advantage that no special closure elements, such as pins or the like, are needed. Separate closure elements may be lost during transport or, if this should be prevented, must be secured with great care.
- the nature of the predetermined breaking points can be different. So that can be provided Through holes can be specified by perforation of the wall. Another possibility is that a non-continuous annular gap or a blind hole are provided. Now, if a certain through hole is required, the already largely isolated wall piece can be completely separated by relatively low pressure.
- the container is constructed in a modular manner.
- the combination of a basic module with one or more additional modules makes it possible in the simplest way to realize various explosive charges.
- the height of a basic module or an additional module corresponds to the single or twice the smallest edge length of the molding.
- the basic module e.g. two explosives molded body used, with an additional module four and with one or two additional module (s) six or eight.
- the explosive strength can be adapted very precisely to the respective application target. It is also possible, e.g. when using eight moldings, two basic modules without top walls, the height of which corresponds to twice the smallest edge length of the molding, with each other facing each other interior spaces.
- the attachment between the two basic modules is achieved by means of bands, clamps, screws or other known means.
- the shaped bodies have a plurality of ignition holes. This allows, on the one hand, the shaped bodies to be arranged in different ways in the interior of the container. On the other hand, several ignition holes of the same shaped body can be used for ignition. This in turn allows the Way (eg the direction) to influence the detonation.
- the shaped bodies on the three parallel side pairs on a different number of ignition holes are shaped bodies on the three parallel side pairs on a different number of ignition holes.
- a Zündloch is arranged, which is preferably located exactly in the center of the pages.
- On the two parallel sides with the edge length ratio 1: 4 are each two ignition holes.
- the ignition holes are preferably arranged at a distance which corresponds to the smallest edge length of the shaped body, from the shorter edge of the side and at a distance which corresponds to half the smallest edge length of the shaped body, from the longer edge of the side.
- On the two parallel sides with the edge length ratio 2: 4 four ignition holes each are arranged, whereby these ignition holes are continuous.
- the ignition holes are preferably arranged at a distance which corresponds to the smallest edge length of the molding body, from the shorter edge of the side and at a distance which corresponds to half the smallest edge length of the shaped body, from the longer edge of the side.
- the ignition holes of the other two parallel side pairs are not necessarily continuous, they only need to have a depth which allows the inclusion of conventional detonators or other means of ignition.
- each of the sides of the molding may be used to initiate detonation, which greatly simplifies the arrangement of the moldings in the interior of the container in particular and the handling of the blasting apparatus in general.
- the shaped bodies on at least one side on a groove-shaped recess for receiving an insert.
- the cross section of the groove-shaped depression can be configured both approximately semicircular and rectangular.
- the rectangular shape since with this shape the inserts come flush with matching shape with the side of the molding, without the free space remains.
- Particularly preferred is a square cross section of the groove-shaped recess.
- the inserts can be made of different materials. Metal inserts make it possible to provide the shaped bodies in a simple manner with splinters. Highly suitable metals are iron and tungsten.
- the shaped bodies have a plurality of groove-shaped depressions extending parallel to edges of the shaped body. If there are several groove-shaped recesses, this allows the use of grid-like inserts.
- Moldings each have a different color, e.g. Green,
- the container on fastening means which allow the attachment of a telescopic support, preferably with a condyle.
- the fastening means are preferably arranged on the bottom wall of the container.
- the telescopic support allows the use of the explosive device above the ground, e.g. on walls, pillars or under the ceiling in buildings.
- the telescopic support is extendable and can be adjusted in length to the circumstances. Due to the movable rod end, the telescopic support can be tilted so that the explosive device can be mounted at the desired height on a wall.
- the extended, obliquely arranged telescopic support is for this purpose at a suitable resistance, e.g. the opposite wall, wedged.
- the explosive device on the wall is wedged by its own weight.
- An insert according to claim 15 allows additional functionalization of the shaped articles, e.g. by means of splinters or fire inserts.
- the scope of the inventive explosive device is greatly expanded.
- it is also suitable for rendering traffic infrastructure unusable for other purposes.
- the insert contains metal or fire. Suitable and preferred metals are iron or tungsten, but they can other metals are used. In addition, it is possible to influence the size of the splitter by means of appropriate predetermined breaking points in the use of metals.
- a preferred example of a fire agent is aluminum powder. If no splinters or fire inserts are to be used, it is possible to fill the groove-shaped recesses with suitable explosive inserts. As a result, the interior of the container is optimally used and there are no cavities.
- a container according to claim 17 for an inventive blasting device in its simplest embodiment has an interior whose dimensions are dependent on the edge lengths of the shaped body.
- the floor plan of the interior is square with a side length which corresponds at least approximately to the longest edge length of the shaped body, and a height which corresponds at least approximately to the simple smallest edge length of the shaped body or an integer multiple thereof.
- the interior of the container is almost completely filled by the moldings. Due to the compact and solid arrangement of the molded body is ensured in the ignition, which transmits the detonation on all moldings and thus the full charge strength comes into play.
- the container is a component of the explosive device, in each stage, ie from storage to transport to the actual application, the blasting, a function comes.
- a shaped body according to claim 18 for an inventive explosive device is cuboid and contains explosive.
- at least one, preferably more, ignition hole is present in the molded body.
- Edge lengths of the shaped body are specified insofar as they have a ratio of 1: 2: 4. Compliance with this edge length ratio is crucial because of this, the dimensions of the interior of the container depend.
- a kit according to claim 19 for an inventive explosive device includes a base module and at least one additional module.
- the modular design allows to vary the strength of the explosive charge within wide limits and thus adapt to the desired goal.
- FIG. 1 shows an embodiment of a container with the lid open in a perspective view.
- FIG. 2 shows the container according to FIG. 1 in plan view
- FIG. 3 shows the container according to FIG. 1 in a view with the lid wall in the closed position
- FIG. 4 shows the container according to FIG. 1 in side view
- FIG. Fig. 5 shows an embodiment of a cuboid, explosive-containing shaped body in a perspective view
- FIG. 6a shows the shaped body according to FIG. 5 in elevation
- FIG. 6b shows the shaped body according to FIG. 5 in plan view
- FIG. 6c shows the molding according to FIG. 5 in side elevation
- FIG. 7 is a perspective view of an embodiment of an insert intended for insertion into groove-shaped recesses of one of the moldings;
- FIG. 8a shows the insert according to FIG. 7 in elevation
- FIG. 8b shows the insert according to FIG. 7 in plan view
- FIG. 8c shows the insert according to FIG. 7 in side elevation
- FIG. 9 is a perspective view of a steel plate to achieve a directional charge.
- FIG. 10a shows the steel plate according to FIG. 9 in elevation
- FIG. 10b shows the steel plate according to FIG. 9 in plan view
- Fig. 10c the steel plate according to FIG. 9 in side elevation.
- Fig. 1 shows a container 1 according to the invention with a rectangular bottom wall 10, side walls 20 and an open top wall 30.
- the container 1 shown consists of a base module 5 and an additional module 8.
- the height the side walls 20 of the base module 5 and the side walls 20 of the additional module 8 have a height which corresponds to the smallest edge length of the molded body 120.
- the basic module has a bottom wall 10, side walls 20.
- the additional module has side walls 20, wherein the cover belonging to the base module 30 is attached to the additional module.
- the side walls 20 have through bolt holes 40 and are preferably screwed by screws to the bottom wall 10.
- An intermediate wall 50 separates an inner space 60, which is intended to receive moldings 120 according to FIG. 5 as described below, from a service area 70.
- the intermediate wall 50 also has through holes 80 through which a detonator can be inserted from the service area 70.
- the cover wall 30 is hinged via two hinges 110 to the rear side wall 20.
- FIG. 2 the floor plan of the container 1 according to FIG. 1 is shown. Also shown in suggestion are four moldings 120, which are placed in the interior 60 with a square floor plan.
- both the bottom wall 10, the intermediate wall 50 and the side wall 20 delimiting the service space 70 have through holes 80.
- the side walls 20 are preferably fastened to the bottom wall 10 by means of screws via the screw holes 40 provided for this purpose.
- the arrangement of the through-holes 80 in the bottom wall 20 and the intermediate wall 50 is selected so that the ignition holes 130 arranged in the molded body 120 can be brought into line with the through-holes 80.
- a mounting plate 90 shown here only schematically, for a telescopic support Rod end, which is preferably fastened with screws via the screw holes 100 provided for this purpose.
- the top wall 30 is fastened to the rear side wall 20 by means of two hinges 110.
- the corner joints of the side walls 20 are designed like a dovetail. This allows the mating of the side walls 20, without the use of other fasteners, such as screws. Moreover, this type of connection can be realized very easily. You can also choose other types of connections.
- FIG. 3 the container 1 according to FIG. 1 is shown in view with the top wall in the closed position. Visible are the side walls 20, the bottom wall 10 with the mounting plate 90 and the top wall 30 in the closed position. Anchungtul be shown, the screw holes 40, which serve to fasten the side walls 20, and the screw holes 100, which serve to attach the mounting plate 90. Not visible are the interior space 60, in which the moldings 120 are placed and the service room 70 separated by the intermediate wall 50. The latter serves to accommodate all other accessories of the blasting device, This accessory includes the telescopic support with condyle, all ignition means, such as detonators, fuses, Tools, etc.
- the mounting plate 90 for the telescopic support is already attached to the bottom wall 10 via the screw holes 100 provided therefor. If the mounting plate 90 is not needed, it will be stowed together with the other accessories in the service room 70. Only hinted are the screw holes 40 of the side walls 20 and the intermediate wall 50th Fig. 4 shows the inventive container 1 according to FIG. 1 in side view, which has a bottom wall 10, side walls 20 and a top wall 30.
- the side walls 20 have through screw holes 40 via which they are preferably fastened by means of screws to the bottom wall 10.
- the side wall 20 also has through holes 70.
- a mounting plate 90 is mounted for the telescopic support with condyle.
- the top wall 30 is fastened to the rear side wall 20 by means of two hinges 110.
- Edge lengths for example, 6cm, 12cm and 24cm, a
- the exemplified mass of the molding 120 result for the interior 60 of the container 1 has a floor plan of 24cm by 24cm and a height of 6cm.
- the additional module has in the example shown on a height of 6cm. Which results in a total height of the interior 60 of 12cm.
- Ignition holes 130 are clearly visible.
- the two parallel sides with the aspect ratio of 1: 2 140 have a firing hole 130, for example at a distance of 6 cm from the smaller edge and at a distance of 3 cm from the larger edge in the center the page is arranged.
- the two parallel sides with the edge length ratio 1: 4 150 have 2 ignition holes 130; These are, for example, at a distance of 3cm each from the longer edges and at a distance of 6cm each, arranged from the smaller edge.
- the visible in this figure ignition holes are not designed continuously. You only need to record the commonly used detonators, such as fuses or detonators. However, embodiments are also conceivable in which these ignition holes are designed to be continuous.
- firing holes on the two parallel sides with the edge length ratio of 2: 4 160 are not visible. These firing holes have, for example, a distance of 3 cm from the longer edge and a distance of 6 cm from the smaller edge. They are therefore arranged exactly in the crossing points of the groove-shaped depressions.
- the two parallel sides with the edge length ratio of 2: 4 160 have in the illustrated embodiment 4 groove-shaped recesses
- Shaped 120 run and thus a grid-like
- Patterns yield.
- Recesses 170 with square cross-section for example, has a side length of 6mm.
- the parallel course of the groove-shaped depressions 170 to edges of the molded body 120 is also preferred. It is easy to imagine that other arrangements of the groove-shaped depressions can also be carried out.
- FIG. 6a shows an elevation of the shaped body 120 shown in perspective in FIG. 5.
- the groove-shaped depressions 170 with the particularly preferred square cross section are visible. Also visible is the ignition hole 130 arranged in the center of the side.
- the ignition holes 130 of the other sides of the cuboid shaped body 120 are shown only by way of an indication.
- FIG. 6b shows the outline of the shaped body 120 shown in perspective in FIG. 5. The four figures are shown
- Embodiment arranged in the crossing points of the groove-shaped recesses 170.
- FIG. 6c shows the side elevation in FIG. 5 of a shaped body 120 shown in perspective.
- the ignition holes 130 of the side with the edge length ratio of 1: 4 150 and a part of the groove-shaped depressions 170 are clearly visible.
- FIG. 7 shows a perspective view of an insert 180 of FIGS. 8a to 8c which fits the groove-shaped depressions 170 of the shaped body 120.
- the insert 180 has rod-shaped elements 182 and 185 arranged at right angles to one another. This results in a grid-like pattern.
- the rod-shaped elements 182 and 185 have a particularly preferred square cross-section.
- the cylindrical pins 190 which are arranged at right angles to the remaining insert 180, fit into the ignition holes 130 of the two parallel sides with the edge length ratio of 2: 4 160.
- the pins 190 make optimum use of the available space in the interior 60, which directly results in an optimized blasting effect brings.
- the insert 180 with the rod-shaped elements 182 and 185 has together with the pin 190 has a height which corresponds to half of the smallest edge length of the molding 120.
- 120 inserts 180 can be used on both parallel sides with the edge length ratio of 2: 4 160 of a shaped body.
- the insert 180 may contain various materials. Splinter inserts can be made of metal. For this purpose, most metals are suitable, tungsten and iron are preferred. Tungsten has a high density and is also a very hard metal. By intended breaking points in the insert 180 corresponding fragments are generated in the detonation of the blasting device. This can be done in the military field e.g. be used against armored vehicles. In other embodiments, the insert 180 contains a fire medium, e.g. in the form of aluminum powder. Also possible are inserts 180 which contain the same or possibly a different explosive as the shaped body 120. Such explosive-containing inserts 180 can be used for optimal space utilization in the interior 60 use.
- FIGS. 10a, 10b and 10c show a perspective view of a metal plate 200 of FIGS. 10a, 10b and 10c.
- the metal plate 200 preferably contains iron and serves to achieve a directional charge. It may also contain other metals.
- the metal plate 200 has an aspect ratio of 1: 4, and may preferably be attached by screws through the screw holes 210 on the corresponding side of a molded article 120. Since the moldings 120 at least approximately fill the interior space 60, when using such metal plates 200 on a on the Moldings are dispensed with. Another way to create the required space in the interior 60 is the use of an additional module to the base module. The remaining space in the interior space 60 must be filled with fillers, for example sand, in order to ensure a tight fit of the moldings 120.
- the container 1 of the explosive device according to the invention has no service area 70.
- An embodiment in which the base module 5 has an inner space 60 whose height corresponds to twice the smallest edge length of the shaped body 120 is preferred.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Portable Nailing Machines And Staplers (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
- Liquid Crystal Substances (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Exchange Systems With Centralized Control (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Threshing Machine Elements (AREA)
- Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
- Crushing And Pulverization Processes (AREA)
- Press Drives And Press Lines (AREA)
Abstract
Sprengvorrichtung mit mindestens zwei quaderförmigen, mindestens ein Zündloch aufweisenden Formkörpern aus Sprengstoff, deren Kantenlängen ein Verhältnis von 1:2:4 aufweisen, und einem Behälter (1) mit mindestens einem Durchgangsloch (80) zu einem Innenraum (60) mit einem quadratischen Grundriss, dessen Seitenlänge wenigstens annähernd der längsten Kantenlänge des Formkörpers entspricht und dessen Höhe wenigstens annähernd der kleinsten Kantenlänge des Formkörpers oder einem ganzzahligen Vielfachen davon entspricht. Die Formkörper sind derart im Innenraum (60) des Behälters (1) platzierbar, dass mindestens das Zündloch des einen der Formkörper mit dem Durchgangsloch (80) des Behälters (1) fluchtet, und das Durchgangsloch (80) zur Einführung einer Sprengkapsel in das Zündloch des betreffenden Formkörpers bestimmt ist.
Description
Multifunktionales Sprengsystem
Die vorliegende Erfindung bezieht sich auf eine Sprengvorrichtung gemäss Anspruch 1, einen Behälter nach Anspruch 17 und einen Formkörper gemäss Anspruch 18.
Sprengvorrichtungen lassen sich grob in zwei Arten einteilen. Zum einen jene Sprengvorrichtung, die für einen ganz bestimmten Zweck vorgesehen sind und sich auch lediglich für diesen Zweck eignen. Zum anderen die
Sprengvorrichtungen, welche vielfältiger eingesetzt werden sollen und daher im konkreten Anwendungsfall den konkreten Umständen angepasst werden müssen. Besonders letztere sind mit verschiedenen Nachteilen behaftet, insbesondere was das Erreichen der angestrebten Sprengwirkung betrifft.
Beispiele für Sprengvorrichtungen mit einem bestimmten Zweck sind Trichtersprengladungen und Riehtladungen.
Trichtersprengladungen bestehen aus einer sogenannten Hohlladung, welche es erlaubt, das für die eigentliche Sprengladung erforderliche Sprengloch im Untergrund vorzubereiten. Dieses zylinderförmige Sprengloch wird anschliessend mit der eigentlichen Sprengladung versehen und zur Detonation gebracht. Trichtersprengladungen sind zur schnellen Schaffung von Hindernissen im Gelände bestimmt .
Richtladungen sind Sprengvorrichtungen, welche die gerichtete Detonation von Splitterladungen ermöglichen. Um dies zu erreichen, wird beispielsweise auf eine Stahlplatte eine Schicht aus Sprengstoff aufgebracht, auf die eine weitere Schicht, z.B. aus Kunststoff, mit eingebetteten Stahlsplittern oder -kugeln aufgebracht ist. Die Detonation bewirkt, dass die Stahlsplitter gerichtet verschossen werden. Die Ladungsstärke der Richtladung ist meistens fest vorgegeben und kann nicht variiert werden.
Für Zwecke, für die keine spezialisierten Sprengvorrichtungen zur Verfügung stehen, beispielsweise wie die oben genannten, müssen improvisierte Sprengladungen eingesetzt werden. Dies trifft im militärischen Bereich sehr oft zu. Dabei werden z.B. Sprengstoffe wie Trotyl oder Plastit verwendet, je nach Situation und angestrebtem Ziel in unterschiedlichen Mengen. Trotyl ist ein fester Sprengstoff, wogegen Plastit in gewissen Grenzen, die auch von der Umgebungstemperatur abhängen, verformbar ist. In der Regel wird daher die Sprengladung aus mehreren Sprengstoffkörpern zusammengesetzt sein. Dies kann beispielsweise dadurch bewerkstelligt werden, dass die benötigte Menge Trotyl mittels Klebeband auf einem Brett befestigt und anschliessend mit einem Zünder zur Detonation gebracht wird. Dies bringt jedoch offensichtlich eine Reihe von Nachteilen mit sich. Die Sprengvorrichtung muss umständlich an Ort und Stelle zusammengebastelt werden. Da dies oft unter Zeitdruck erfolgt, ist dieses Vorgehen sehr fehleranfällig. So kommt es vor, dass nicht die ganze Sprengladung detoniert, weil die einzelnen Sprengstoffkörper (z.B. aus Trotyl) nicht eng und fest genug aneinander befestigt sind. Damit wird die angestrebte Sprengwirkung nur mangelhaft oder gar nicht erreicht.
Auch wird bei improvisierten Sprengladungen oft der ungeschützte Zünder beschädigt, womit letztlich die ganze Sprengvorrichtung unbrauchbar wird.
Aufgabe der vorliegenden Erfindung ist es, eine Sprengvorrichtung zur Verfügung zu stellen, die einfach handhabbar, in kürzester Zeit einsetzbar ist, in ihrer
Stärke angepasst werden kann und eine zuverlässige
Detonation der gesamten Sprengladung gewährleistet. Die Sprengvorrichtung soll sowohl im Gelände als auch in Gebäuden einsetzbar sein.
Die Aufgabe wird durch eine Sprengvorrichtung gelöst, welche die in Anspruch 1 angegebenen Merkmale aufweist. Weitere bevorzugte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
Eine erfindungsgemässe Sprengvorrichtung weist die Merkmale gemäss Anspruch 1 auf. Ein vorgegebenes Verhältnis der Kantenlängen eines der quaderförmigen, Sprengstoff enthaltenden Formkörper von 1:2:4 und die davon abhängigen Dimensionen eines Innenraumes eines Behälters haben zur Folge, dass die Formkörper genau passend im Behälter angeordnet werden können. Der Innenraum des Behälters weist einen quadratischen Grundriss auf, mit einer Seitenlänge entsprechend der längsten Kantenlänge des Formkörpers. Entspricht die Höhe des Innenraumes der kleinsten Kantenlänge eines Formkörpers, können zwei der Formkörper in diesem Innenraum platziert werden. Sie können dabei entweder längs oder quer angeordnet werden. Entspricht die Höhe des Innenraumes dem doppelten der kleinsten Kantenlänge des Formkörpers, können vier Formkörper im Innenraum des Behälters platziert werden. Die Formkörper können hochkant nebeneinander platziert werden oder es können zwei Formkörper nebeneinander und die beiden anderen Formkörper darauf angeordnet werden. Diese Platzierung kann sowohl längs als auch quer sein. Entspricht die Höhe des Innenraumes dem Vierfachen der kleinsten Kantenlänge des Formkörpers, finden acht Formkörper im Innenraum Platz. Diese können je zwei Formkörper nebeneinander in vier Schichten, je vier Formkörper nebeneinander in zwei
Schichten oder alle acht Formkörper auf ihrer kleinsten Seite stehend nebeneinander platziert werden. Diese verschiedenen Möglichkeiten der Anordnung können benutzt werden, ohne dass die Funktionstüchtigkeit der Sprengvorrichtung in Frage gestellt wäre, weil beispielsweise alle Zündlöcher der Formkörper unzugänglich sind.
Durch die genau passende, enge Anordnung der Formkörper aus Sprengstoff im Behälter wird die sichere Übertragung der Detonation gewährleistet. Die Zündung des Sprengstoffs erfolgt in der Regel mittels einer Sprengkapsel, wie sie üblicherweise zur Initialzündung von Sprengstoff verwendet werden. Die Sprengkapsel ist zu diesem Zweck durch ein Durchgangsloch, welches mit einem Zündloch des Formkörpers fluchtet, zum Innenraum des Behälters in das Zündloch eines der Formkörper einführbar. Stimmen die Dimensionen des Innenraums nur annähernd, wird im verbleibenden Raum Füllstoff angeordnet, um eine enge Anordnung der Sprengstoff enthaltenden Formkörper zueinander zu erreichen und damit die Übertragung der Detonation sicherzustellen.
Der Behälter dient zum einen der Lagerung und dem Transport der Sprengstoff-Formkörper, ist aber zum anderen gleichzeitig ein Bestandteil der Sprengvorrichtung. Der Behälter kann sowohl aus Holz, Metall oder Kunststoff bestehen. Mit der Wahl des Materials und der Wandstärke kann die Detonations-Wirkung gezielt beeinflusst werden. Durch die Verwendung von Wänden aus unterschiedlichem Material werden Richtladungen möglich, so kann z.B. für eine Seitenwand Metall verwendet werden, während die übrigen Wände aus Holz bestehen.
Die Lagerfähigkeit der Sprengvorrichtung kann zusätzlich dadurch gesteigert werden, dass sie in Schrumpffolie verpackt wird.
In einer bevorzugten Ausführungsform gemäss Anspruch 2 ist das Durchgangsloch zum Innenraum des Behälters in einer Bodenwand des Behälters angeordnet. Die bietet besonders zahlreiche Möglichkeiten zur Anordnung des Durchgangsloches .
In einer weiteren bevorzugten Ausführungsform gemäss Anspruch 3 weist der Behälter zusätzlich zum Innenraum einen Serviceraum auf, der durch eine Zwischenwand vom Innenraum abgetrennt ist. Der Serviceraum dient der Aufnahme von Zubehörteilen, z.B. Werkzeugen, Zündschnüren, Sprengkapseln, verschiedenen Einsätzen wie Splitter- oder Brandeinsätzen usw. Damit kann das komplette Zubehör der Sprengvorrichtung mit dieser gelagert und transportiert werden und ist am Einsatzort vollständig vorhanden.
In einer bevorzugten Ausführungsform gemäss Anspruch 4 weisen auch die Zwischenwand und eine den Serviceraum begrenzende Seitenwand des Behälters je wenigstens ein Durchgangsloch auf. Dies ermöglicht es, dass die Sprengkapsel vom Serviceraum des Behälters her in das Zündloch eines der Formkörper einführbar ist. Die Zündschnur wird dann über das Durchgangsloch der den Serviceraum begrenzenden Seitenwand ins Freie geführt. Damit erreicht man einen sehr guten Schutz der Zündvorrichtung gegen Umwelteinflüsse. Die erfindungsgemässe Sprengvorrichtung kann so ohne Weiteres vergraben werden und wird selbst durch darüber hinwegfahrende Fahrzeuge nicht beschädigt.
In einer weiteren bevorzugten Ausführungsform gemäss Anspruch 5 weist der Behälter mehrere Durchgangslöcher auf. In dieser Ausführungsform können mehrere Sprengkapseln zur Zündung der Sprengstoff-Formkörper verwendet werden. Je nachdem welche der vorhandenen mit einem Zündloch eines der Formkörper fluchtenden Durchgangslöcher zur Zündung verwendet werden, kann damit die Art der Detonation beeinflusst werden.
In einer bevorzugten Ausführungsform gemäss Anspruch 6 sind die Durchgangslöcher verschlossen. Die Verschlusselemente schützen die Sprengstoff-Formkörper im Innenraum vor Umwelteinflüssen, insbesondere vor Nässe. Es können verschiedenartigste Verschlusselemente eingesetzt werden, z.B. können die Durchgangslöcher mittels eines Klebstreifens verschlossen sein. Dieser Klebstreifen kann im Anwendungsfall sehr einfach und schnell entfernt werden. Verwendbar sind auch passende Einsätze, z.B. Zapfen, die durch leichten Druck aus dem betreffenden Durchgangsloch entfernt werden können.
In einer besonders bevorzugten Ausführungsform gemäss Anspruch 7 sind die Verschlusselemente in die Wände des Behälters eingearbeitet. Sie sind ein Bestandteil der Wand und können bei Bedarf über eine Sollbruchstelle leicht aus der Wand herausgedrückt werden. Dies hat den Vorteil, dass keine besonderen Verschlusselemente, beispielsweise Zapfen oder ähnliches, benötigt werden. Separate Verschlusselemente können beim Transport verloren gehen oder müssen, soll dies verhindert werden, aufwendig gesichert werden.
Die Beschaffenheit der Sollbruchstellen kann unterschiedlich sein. So können die vorgesehen
Durchgangslöcher durch Perforation der Wand vorgegeben sein. Eine andere Möglichkeit besteht darin, dass ein nicht-durchgehender Ringspalt oder eine Sacklochbohrung vorgesehen sind. Wird nun ein bestimmtes Durchgangsloch benötigt, kann das bereits weitgehend herausgetrennte Wandstück durch verhältnismässig geringen Druck vollständig herausgetrennt werden.
In einer bevorzugten Ausführungsform der Sprengvorrichtung gemäss Anspruch 8 ist der Behälter modulartig aufgebaut. Die Kombination eines Grundmoduls mit einem oder mehreren Zusatzmodulen ermöglicht in einfachster Weise die Realisierung verschiedener Sprengladungsstärken. Die Höhe eines Grund- bzw. eines Zusatzmoduls entspricht der einfachen oder der doppelten kleinsten Kantenlänge des Formkörpers. Im Grundmodul werden z.B. zwei Sprengstoff- Formkörper verwendet, mit einem Zusatzmodul vier und mit einem oder zwei weiteren Zusatzmodul (en) sechs bzw. acht. Die Sprengladungsstärke lässt sich so dem jeweiligen Anwendungsziel sehr genau anpassen. Es ist auch möglich, z.B. bei der Verwendung von acht Formkörpern, zwei Grundmodule ohne Deckelwände, deren Höhe der doppelten kleinsten Kantenlänge des Formkörpers entspricht, mit gegeneinander gerichteten Innenräumen aufeinander zu stecken. Die Befestigung zwischen den beiden Grundmodulen wird mittels Bändern, Klammern, Schrauben oder anderen bekannten Mitteln erreicht.
In einer weiteren bevorzugten Ausführungsform gemäss Anspruch 9 weisen die Formkörper mehrere Zündlöcher auf. Dies ermöglicht zum einen, die Formkörper in verschiedener Art uns Weise im Innenraum des Behälters anzuordnen. Zum anderen können mehrere Zündlöcher des gleichen Formkörpers zur Zündung verwendet werden. Dies erlaubt wiederum, die
Art und Weise (z.B. die Richtung) der Detonation zu beeinflussen.
In einer besonders bevorzugten Ausführungsform gemäss Anspruch 10 weisen die Formkörper auf den drei parallelen Seitenpaaren eine unterschiedliche Zahl von Zündlöchern auf.
Auf den beiden parallelen Seiten mit dem Kantenlängenverhältnis 1:2 ist ein Zündloch angeordnet, das sich vorzugsweise genau im Mittelpunkt der Seiten befindet. Auf den beiden parallelen Seiten mit dem Kantenlängenverhältnis 1:4 befinden je zwei Zündlöcher. Auf diesen beiden Seiten sind die Zündlöcher vorzugsweise in einem Abstand, welcher der kleinsten Kantenlänge des Formkörpers entspricht, von der kürzeren Kante der Seite und in einem Abstand, welcher der Hälfte der kleinsten Kantenlänge des Formkörpers entspricht, von der längeren Kante der Seite angeordnet. Auf den beiden parallelen Seiten mit dem Kantenlängenverhältnis 2:4 sind je vier Zündlöcher angeordnet, wobei diese Zündlöcher durchgängig sind. Auch auf diesen beiden Seiten sind die Zündlöcher vorzugsweise in einem Abstand, welcher der kleinsten Kantenlänge des Forrnkörpers entspricht, von der kürzeren Kante der Seite und in einem Abstand, welcher der Hälfte der kleinsten Kantenlänge des Formkörpers entspricht, von der längeren Kante der Seite angeordnet. Die Zündlöcher der anderen beiden parallelen Seitenpaare sind nicht zwingend durchgängig, sie müssen lediglich eine Tiefe aufweisen, welche die Aufnahme herkömmlicher Sprengkapseln oder anderer Zündmittel gestattet.
In dieser Ausführungsform kann jede der Seiten des Formkörpers zur Auslösung der Detonation verwendet werden,
was die Anordnung der Formkörper im Innenraum des Behälters im Besonderen und die Handhabung der Sprengvorrichtung im Allgemeinen stark vereinfacht.
In einer bevorzugten Ausführungsform gemäss Anspruch 11 weisen die Formkörper auf mindestens einer Seite eine nutenförmige Vertiefung zur Aufnahme eines Einsatzes auf. Der Querschnitt der nutenförmigen Vertiefung kann sowohl annähernd halbkreisförmig als auch rechteckig ausgestaltet sein. Bevorzugt wird jedoch die rechteckige Form, da mit dieser Form die Einsätze bei passender Form mit der Seite des Formkörpers bündig in Anschlag kommen, ohne das freier Raum verbleibt. Besonders bevorzugt ist ein quadratischer Querschnitt der nutenförmigen Vertiefung.
Die Einsätze können aus verschiedensten Materialien bestehen. Einsätze aus Metall ermöglichen es, die Formkörper auf einfache Art und Weise mit Splittern zu versehen. Gut geeignete Metalle sind Eisen und Wolfram.
In einer besonders bevorzugten Ausführungsform gemäss Anspruch 12 weisen die Formkörper mehrere nutenförmige Vertiefungen auf die parallel zu Kanten des Formkörpers verlaufen. Sind mehrere nutenförmige Vertiefungen vorhanden, erlaubt dies die Verwendung von gitterartigen Einsätze .
In einer weiteren bevorzugten Ausführungsform gemäss Anspruch 13 weisen die drei parallelen Seitenpaare der
Formkörper je eine unterschiedliche Farbe auf, z.B. Grün,
Blau und Braun. Vorteilhafterweise werden leicht unterscheidbare Farben gewählt, Die unterschiedlichen
Farben gestatten die einfache Kontrolle, ob die Formkörper richtig im Innenraum des Behälters angeordnet sind, da jeweils nur eine Farbe sichtbar sein sollte, wenn alle
Formkörper eingesetzt sind. Diese einfache Kontrolle stellt die korrekte Anordnung der Formkörper sicher und vereinfacht damit die Handhabung der Sprengvorrichtung.
In einer weiteren bevorzugten Ausführungsform gemäss Anspruch 14 weist der Behälter Befestigungsmittel auf, welche die Befestigung einer Teleskopstütze, vorzugsweise mit einem Gelenkkopf, erlauben. Die Befestigungsmittel sind vorzugsweise an der Bodenwand des Behälters angeordnet. Die Teleskopstütze gestattet die Verwendung der Sprengvorrichtung über dem Boden, z.B. an Wänden, Säulen oder unter der Decke in Gebäuden. Die Teleskopstütze ist ausziehbar und kann so in ihrer Länge den Umständen angepasst werden. Durch den beweglichen Gelenkkopf kann die Teleskopstütze schräg gestellt werden und so die Sprengvorrichtung in der gewünschten Höhe an einer Wand angebracht werden. Die ausgezogene, schräg angeordnete Teleskopstütze wird zu diesem Zweck an einem geeigneten Widerstand, z.B. der gegenüberliegenden Wand, verkeilt. Die Sprengvorrichtung an der Wand verkeilt sich durch ihr eigenes Gewicht.
Ein Einsatz gemäss Anspruch 15 erlaubt eine zusätzliche Funktionaiisierung der Formkörper, z.B. mittels Splitteroder Brandeinsätzen. Damit wird der Anwendungsbereich der erfindungsgemässen Sprengvorrichtung stark erweitert. Sie eignet sich neben dem Beseitigen von Hindernissen oder spezifisch im militärischen Bereich dem Unbrauchbarmachen von Verkehrsinfrastruktur auch für weitere Anwendungszwecke .
In einer bevorzugten Ausführung gemäss Anspruch 16 enthält der Einsatz Metall oder Brandmittel. Geeignete und bevorzugte Metalle sind Eisen oder Wolfram, es können aber
auch andere Metalle eingesetzt werden. Es besteht im Weiteren die Möglichkeit, durch entsprechende Sollbruchstellen im Metalleinsatz die Grosse der Splitter zu beeinflussen. Ein bevorzugtes Beispiel für ein Brandmittel ist Aluminium-Pulver. Sollen keine Splitteroder Brandeinsätze verwendet werden, besteht die Möglichkeit, die nutenförmigen Vertiefungen mit passenden Einsätzen aus Sprengstoff aufzufüllen. Dadurch wird der Innenraum des Behälters optimal genutzt und es verbleiben keine Hohlräume.
Ein Behälter gemäss Anspruch 17 für eine erfindungsgemässe Sprengvorrichtung, besitzt in seiner einfachsten Ausführungsform einen Innenraum, dessen Dimensionen von den Kantenlängen des Formkörpers abhängig sind. Der Grundriss des Innenraums ist quadratisch mit einer Seitenlänge, die wenigstens annähernd der längsten Kantenlänge des Formkörpers entspricht, und einer Höhe, die wenigstens annähernd der einfachen kleinsten Kantenlänge des Formkörpers oder einem ganzzahligen Vielfachen davon entspricht. Dies erlaubt zahlreiche Anordnungen der Formkörper im Innenraum, wie weiter oben bereits beschrieben wurde. Zudem ist gewährleistet, dass durch das Durchgangsloch zum Innenraum, welches mit einem der Zündlöcher eines der Formkörper fluchtet, ein Zündmittel, z.B. eine Sprengkapsel in ein Zündloch eines der Formkörper einführbar ist und damit die Detonation der Sprengvorrichtung ausgelöst werden kann. Der Innenraum des Behälters wird durch die Formkörper praktisch vollständig ausgefüllt. Durch die kompakte und feste Anordnung der Formkörper wird bei der Zündung gewährleistet, das sich die Detonation auf alle Formkörper überträgt und damit die volle Ladungsstärke zum Tragen kommt. Der Behälter ist ein Bestandteil der Sprengvorrichtung, dem in jeder Stufe,
d.h. von der Lagerung über den Transport bis hin zur eigentlichen Anwendung, der Sprengung, eine Funktion zukommt .
Ein Formkörper gemäss Anspruch 18 für eine erfindungsgemässe Sprengvorrichtung ist quaderförmig und enthält Sprengstoff. Zudem ist im Formkörper mindestens ein, vorzugsweise mehrere, Zündloch vorhanden. Die
Kantenlängen des Formkörpers sind insofern vorgegeben, als sie ein Verhältnis von 1:2:4 aufweisen. Die Einhaltung diesen Kantenlängenverhältnisses ist entscheidend, da hievon auch die Dimensionen des Innenraums des Behälters abhängen.
Ein Bausatz gemäss Anspruch 19 für eine erfindungsgemässe Sprengvorrichtung enthält ein Grundmodul und mindestens einem Zusatzmodul. Die modulare Bauweise erlaubt es, die Stärke der Sprengladung in weiten Grenzen zu variieren und damit dem angestrebten Ziel anzupassen.
Die erfindungsgemässe Sprengvorrichtung wird nachstehend anhand von einem in den Zeichnungen gezeigten Ausführungsbeispiel näher erläutert. Es zeigt rein schematisch:
Fig. 1 eine Ausführungsform eines Behälters mit geöffnetem Deckel in perspektivischer Ansicht;
Fig. 2 den Behälter gemäss Fig. 1 im Grundriss;
Fig. 3 den Behälter gemäss Fig. 1 in Ansicht mit der Deckelwand in Schliessstellung;
Fig. 4 den Behälter gemäss Fig. 1 in Seitenansicht;
Fig. 5 eine Ausführungsform eines quaderförmigen, Sprengstoff enthaltenden Formkörpers in perspektivischer Ansicht
Fig. 6a den Formkörper gemäss Fig. 5 im Aufriss;
Fig. 6b den Formkörper gemäss Fig. 5 im Grundriss;
Fig. 6c den Formkörper gemäss Fig. 5 im Seitenriss;
Fig. 7 in perspektivischer Ansicht eine Ausführungsform eines Einsatzes, der zum Einsetzen in nutenförmige Vertiefungen eines der Formkörper bestimmt ist;
Fig. 8a den Einsatz gemäss Fig. 7 im Aufriss;
Fig. 8b den Einsatz gemäss Fig. 7 im Grundriss;
Fig. 8c den Einsatz gemäss Fig. 7 im Seitenriss;
Fig. 9 in perspektivischer Ansicht eine Stahlplatte zur Erzielung einer Richtladung;
Fig. 10a die Stahlplatte gemäss Fig. 9 im Aufriss;
Fig. 10b die Stahlplatte gemäss Fig. 9 im Grundriss; und
Fig. 10c die Stahlplatte gemäss Fig. 9 im Seitenriss.
Fig. 1 zeigt einen erfindungsgemässen Behälter 1 mit einer rechteckförmigen Bodenwand 10, Seitenwänden 20 und einer geöffneten Deckelwand 30. Der gezeigte Behälter 1 besteht aus einem Grundmodul 5 und einem Zusatzmodul 8. Die Höhe
der Seitenwände 20 des Grundmoduls 5 und der Seitenwände 20 des Zusatzmoduls 8 weisen eine Höhe auf, welche der kleinsten Kantenlänge des Formkörpers 120 entspricht. Das Grundmodul weist eine Bodenwand 10, Seitenwände 20 auf. Das Zusatzmodul weist Seitenwände 20 auf, wobei die zum Grundmodul gehörende Deckelwand 30 am Zusatzmodul befestigt ist. Die Seitenwände 20 weisen durchgehende Schraubenlöcher 40 auf und sind vorzugsweise mittels Schrauben an der Bodenwand 10 festgeschraubt. Eine Zwischenwand 50 trennt einen Innenraum 60, der zur Aufnahme von Formkörpern 120 gemäss Fig. 5 wie weiter unten beschrieben bestimmt ist, von einem Serviceraum 70. Die Zwischenwand 50 weist zudem Durchganglöcher 80 auf, durch welche vom Serviceraum 70 her eine Sprengkapsel einführbar ist. Die Deckelwand 30 ist über zwei Scharniere 110 an die hintere Seitenwand 20 angelenkt.
In Fig. 2 wird der Grundriss des Behälters 1 gemäss Fig. 1 gezeigt. Ebenfalls andeutungsweise gezeigt werden vier Formkörper 120, die im Innenraum 60 mit einem quadratischen Grundriss, platziert sind. In der vorliegenden Ausführungsform weisen sowohl die Bodenwand 10, die Zwischenwand 50 als auch die den Serviceraum 70 begrenzende Seitenwand 20 Durchganglöcher 80 auf. Die Seitenwände 20 sind vorzugsweise mittels Schrauben über die hierfür vorgesehenen Schraubenlöcher 40 an der Bodenwand 10 befestigt. Die Anordnung der Durchgangslöcher 80 in der Bodenwand 20 und der Zwischenwand 50 ist so gewählt, dass die im Formkörper 120 angeordneten Zündlöcher 130 mit den Durchgangslöchern 80 zur Deckung gebracht werden können. Ebenfalls an der Bodenwand 10 angebracht ist eine hier lediglich andeutungsweise gezeigte Befestigungsplatte 90 für eine Teleskopstütze mit
Gelenkkopf, welche vorzugsweise mit Schrauben über die dafür vorgesehenen Schraubenlöcher 100 befestigt wird. Die Deckelwand 30 wird mittels zwei Scharnieren 110 an der hinteren Seitenwand 20 befestigt. Die Eckverbindungen der Seitenwände 20 sind schwalbenschwanzartig ausgestaltet. Dies gestattet das Zusammenstecken der Seitenwände 20, ohne die Verwendung von weiteren Befestigungsmitteln, z.B. Schrauben. Überdies lässt sich diese Art der Verbindung sehr einfach realisieren. Es können auch andere Verbindungsarten gewählt werde.
In Fig. 3 wird der Behälter 1 gemäss Fig. 1 in Ansicht mit der Deckelwand in Schliessstellung gezeigt. Sichtbar sind die Seitenwände 20, die Bodenwand 10 mit der Befestigungsplatte 90 und die Deckelwand 30 in Schliessstellung. Andeutungsweise gezeigt werden die Schraubenlöcher 40, die der Befestigung der Seitenwände 20 dienen, und die Schraubenlöcher 100, die dem Anbringen der Befestigungsplatte 90 dienen. Nicht sichtbar sind der Innenraum 60, in dem die Formkörper 120 platziert werden und der durch die Zwischenwand 50 abgetrennte Serviceraum 70. Letzterer dient der Aufnahme allen weiteren Zubehörs der Sprengvorrichtung, Dieses Zubehör umfasst die Teleskopstütze mit Gelenkkopf, alle Zündmittel, z.B. Sprengkapseln, Zündschnüre, Werkzeuge usw. In der hier gezeigten Ausführungsform ist die Befestigungsplatte 90 für die Teleskopstütze bereits an der Bodenwand 10 über die hierfür vorgesehen Schraubenlöcher 100 befestigt. Wird die Befestigungsplatte 90 nicht gebraucht, so wird sie zusammen mit dem übrigen Zubehör im Serviceraum 70 verstaut. Nur andeutungsweise dargestellt sind die Schraubenlöcher 40 der Seitenwände 20 und der Zwischenwand 50.
Fig. 4 zeigt den erfindungsgemässen Behälter 1 gemäss Fig. 1 in Seitenansicht, der eine Bodenwand 10, Seitenwände 20 und eine Deckelwand 30 aufweist. Die Seitenwände 20 weisen durchgehende Schraubenlöcher 40 auf über welche sie vorzugsweise mittels Schrauben an der Bodenwand 10 befestigt werden. Die Seitenwand 20 weist zudem Durchgangslöcher 70 auf. Ebenfalls an der Bodenplatte 10 ist eine Befestigungsplatte 90 für die Teleskopstütze mit Gelenkkopf angebracht. Die Deckelwand 30 ist mittels zwei Scharnieren 110 an der hinteren Seitenwand 20 befestigt.
Fig. 5 zeigt einen erfindungsgemässen quaderförmigen,
Sprengstoff enthaltenden Formkörper 120, dessen
Kantenlängen, beispielsweise 6cm, 12cm und , 24cm, ein
Verhältnis von 1:2:4 aufweisen, in perspektivischer Darstellung.
Die beispielhaft genannten Masse des Formkörpers 120 ergeben für den Innenraum 60 des Behälters 1 einen Grundriss von 24cm auf 24cm und eine Höhe von 6cm. Das Zusatzmodul weist im gezeigten Beispiel eine Höhe von 6cm auf. Womit sich eine Gesamthöhe des Innenraums 60 von 12cm ergibt.
Gut sichtbar sind Zündlöcher 130. In der vorliegenden Ausführungsform weisen die beiden parallelen Seiten mit dem Kantenlängenverhältnis von 1:2 140 ein Zündloch 130 auf, welches beispielsweise im Abstand von 6 cm von der kleineren Kante und im Abstand von 3cm von der grosseren Kante im Zentrum der Seite angeordnet ist. Die beiden parallelen Seiten mit dem Kanteniängenverhältnis 1:4 150 weisen 2 Zündlöcher 130 auf; diese sind beispielsweise im Abstand von 3cm je von den längeren Kanten und im Abstand
von 6cm je von der kleineren Kante angeordnet. Die in dieser Figur sichtbaren Zündlöcher sind nicht durchgehend ausgestaltet. Sie müssen lediglich die üblicherweise verwendeten Zündmittel, z.B. Zündschnüre oder Sprengkapseln aufnehmen können. Es sind jedoch auch Ausführungsformen denkbar, in welchen diese Zündlöcher durchgehend ausgestaltet sind. Nicht sichtbar sind die je vier Zündlöcher auf den beiden parallelen Seiten mit dem Kantenlängenverhältnis von 2:4 160. Diese Zündlöcher weisen beispielsweise einen Abstand von 3cm von der längeren Kante und einen Abstand von 6cm von der kleineren Kanten auf. Sie sind daher genau in den Kreuzungspunkten der nutenförmigen Vertiefungen angeordnet.
Die beiden parallelen Seiten mit dem Kantenlängenverhältnis von 2:4 160 weisen in der dargestellten Ausführungsform 4 nutenförmige Vertiefungen
170 auf, welche paarweise parallel zu Kanten des
Formkörpers 120 verlaufen und somit einen gitterartiges
Muster ergeben. Es sind verschiedene Querschnitte der nutenförmigen Vertiefungen 170 denkbar. Besonders bevorzugt sind die dargestellten nutenförmigen
Vertiefungen 170 mit quadratischem Querschnitt, der beispielsweise eine Seitenlänge von 6mm aufweist.
Bevorzugt ist auch der parallele Verlauf der nutenförmigen Vertiefungen 170 zu Kanten des Formkörpers 120. Es ist leicht vorstellbar, dass andere Anordnungen der nutenförmigen Vertiefungen auch durchführbar sind.
Figur 6a zeigt Aufriss des in Fig. 5 perspektivisch dargestellten Formkörpers 120. Sichtbar sind die nutenförmigen Vertiefungen 170 mit dem besonders bevorzugten quadratischen Querschnitt. Ebenfalls sichtbar
ist das im Zentrum der Seite angeordnete Zündloch 130. Lediglich andeutungsweise gezeigt sind die Zündlöcher 130 der anderen Seiten des quaderförmigen Formkörpers 120.
Fig. 6b zeigt den Grundriss des in Fig. 5 perspektivisch dargestellten Formkörpers 120.. Dargestellt sind die vier
Zündlöcher 130 auf einer der beiden parallelen Seiten mit dem Kantenlängenverhältnis von 2:4 160. Diese 4 Zündlöcher
130 sind durchgehend ausgestaltet und in der vorliegenden
Ausführungsform in den Kreuzungspunkten der nutenförmigen Vertiefungen 170 angeordnet.
Fig. 6c zeigt den Seitenriss es in Fig. 5 perspektivisch dargestellten Formkörpers 120. Gut sichtbar sind die Zündlöcher 130 der Seite mit dem Kantenlängenverhältnis von 1:4 150 und ein Teil der nutenförmigen Vertiefungen 170. Andeutungsweise gezeigt sind die Zündlöcher 130 der anderen Seiten des Formkörpers 120.
Fig. 7 zeigt in perspektivischer Ansicht einen zu den nutenförmigen Vertiefungen 170 des Formkörpers 120 passenden Einsatz 180 der Figuren 8a bis 8c. Der Einsatz 180 weist rechtwinklig zueinander angeordnete, stabförmige Elemente 182 und 185 auf. Dies ergibt ein gitterartiges Muster. Die stabförmigen Elemente 182 und 185 haben einen besonders bevorzugten quadratischen Querschnitt. Die zylinderförmigen, rechtwinklig zum übrigen Einsatz 180 angeordneten Zapfen 190 passen in die Zündlöcher 130 der beiden parallelen Seiten mit dem Kantenlängenverhältnis von 2:4 160. Die Zapfen 190 bewirken eine optimale Nutzung des vorhandenen Platzes im Innenraum 60, was direkt eine optimierte Sprengwirkung mit sich bringt. Der Einsatz 180 mit den stabförmigen Elementen 182 und 185 weist zusammen
mit den Zapfen 190 eine Höhe auf, welche der Hälfte der kleinsten Kantenlänge des Formkörpers 120 entspricht. Damit können auf beiden parallelen Seiten mit dem Kantenlängenverhältnis von 2:4 160 eines Formkörpers 120 Einsätze 180 verwendet werden.
Der Einsatz 180 kann verschiedene Materialien enthalten. Splittereinsätze können aus Metall hergestellt werden. Hierzu eignen sich die meisten Metalle, bevorzugt sind Wolfram und Eisen. Wolfram besitzt eine hohe Dichte und ist auch ein sehr hartes Metall. Durch vorgesehene Sollbruchstellen in dem Einsatz 180 werden bei der Detonation der Sprengvorrichtung entsprechende Splitter generiert. Dies kann im militärischen Bereich z.B. gegen gepanzerte Fahrzeuge eingesetzt werden. In anderen Aufführungsformen enthält der Einsatz 180 ein Brandmittel, z.B. in Form von Aluminium-Pulver . Möglich sind auch Einsätze 180 die den gleichen oder allenfalls einen unterschiedlichen Sprengstoff wie der Formkörper 120 enthalten. Solche Sprengstoff-enthaltenden Einsätze 180 können zur optimalen Platzausnutzung im Innenraum 60 Verwendung finden.
Fig. 9 zeigt in perspektivischer Ansicht eine Metallplatte 200 der Figuren 10a, 10b und 10c. Die Metallplatte 200 enthält vorzugsweise Eisen und zur dient zur Erzielung einer Richtladung. Sie kann auch andere Metalle enthalten Die Metallplatte 200 weist ein Kantenlängenverhältnis von 1:4 auf und kann vorzugsweise mittels Schrauben durch die Schraubenlöcher 210 auf der entsprechenden Seite eines Formkörpers 120 angebracht werden. Da die Formkörper 120 den Innenraum 60 mindestens annähernd ausfüllen, muss beim Gebrauch solcher Metallplatten 200 auf einen auf der
Formkörper verzichtet werden. Eine andere Möglichkeit den erforderlichen Platz im Innenraum 60 zu schaffen besteht in der Verwendung eines Zusatzmoduls zum Grundmodul. Der im Innenraum 60 verbleibende Platz muss mit Füllstoffen, z.B. Sand, aufgefüllt werden, um einen festen Sitz der Formkörper 120 zu gewährleisten.
Neben dem gezeigten Beispiel sind noch weitere Ausführungsformen denkbar. In einer einfacheren Ausführungsform weist der Behälter 1 der erfindungsgemässen Sprengvorrichtung keinen Serviceraum 70 auf. Bevorzugt ist eine Ausführungsform in welcher das Grundmodul 5 einen Innenraum 60 aufweist, dessen Höhe dem doppelten der kleinsten Kantenlänge des Formkörpers 120 entspricht .
Claims
1. Sprengvorrichtung mit mindestens zwei quaderförmigen, mindestens ein Zündloch (130) aufweisenden Formkörpern (120) aus Sprengstoff, deren Kantenlängen ein Verhältnis von 1:2:4 aufweisen, und einem Behälter (1) mit mindestens einem Durchgangsloch (80) zu einem Innenraum (60) mit einem quadratischen Grundriss, dessen Seitenlänge wenigstens annähernd der längsten Kantenlänge des Formkörpers (120) entspricht und dessen Höhe wenigstens annähernd der kleinsten Kantenlänge des Formkörpers (120) oder einem ganzzahligen Vielfachen davon entspricht, wobei die Formkörper (120) derart im Innenraum (60) des Behälters (1) platzierbar sind, dass mindestens das Zündloch (130) des einen der Formkörper (120) mit dem Durchgangsloch (80) des Behälters (1) fluchtet, und das Durchgangsloch (80) zur Einführung einer Sprengkapsel in das Zündloch (130) des betreffenden Formkörpers (120) bestimmt ist.
2. Sprengvorrichtung nach Anspruch 1, wobei das Durchgangsloch (80) in einer Bodenwand (10) des Behälters (1) angeordnet ist.
3. Sprengvorrichtung nach Anspruch 1 oder 2, wobei der Behälter (1) zusätzlich einen Serviceraum (70) aufweist, der durch eine Zwischenwand (50) vom Innenraum (60) getrennt ist.
4. Sprengvorrichtung nach Anspruch 3, wobei die Zwischenwand (50) und eine den Serviceraum (70) begrenzende Seitenwand (20) des Behälters (1) je wenigstens ein Durchgangsloch (80) aufweisen, wobei das Durchgangsloch (80) in der Zwischenwand (50) dazu bestimmt ist, mit dem Zündloch (130) eines der Formkörper (120) zu fluchten.
5. Sprengvorrichtung nach einem der Ansprüche 1 bis 4, wobei der Behälter (1) mehrere Durchganglöcher (80) aufweist .
6. Sprengvorrichtung nach Anspruch 5, wobei Durchgangslöcher (80) des Behälters (1) mittels eines abtrennbaren Verschlusselements verschlossen sind.
7. Sprengvorrichtung nach Anspruch 6, wobei die Verschlusselemente integraler Bestandteil der den Behälter (1) bildenden Wände sind und über Sollbruchstellen mit dem übrigen Teil der betreffenden Wand heraustrennbar verbunden sind.
8. Sprengvorrichtung nach einem der Ansprüche 1 bis 7, wobei der Behälter (1) modulartig aufgebaut ist und ein Grundmodul (5) und wenigstens ein Zusatzmodul (8) aufweist, wobei das Grundmodul (5) eine Bodenwand (10), vier Seitenwände (20), deren Höhe der einfachen oder der doppelten kleinsten Kantenlänge des Formkörpers (120) entspricht, und eine Deckelwand (30) aufweist, und wobei das Zusatzmodul (8) vier Seitenwände (20) , deren Höhe der einfachen oder der doppelten kleinsten Kantenlänge des Formkörpers (120) entspricht, aufweist.
9. Sprengvorrichtung nach einem der Ansprüche 1 bis 8, wobei die Formkörper (120) auf allen Seiten mindestens ein Zündloch (130) aufweisen.
10. Sprengvorrichtung nach Anspruch 9, wobei die Formkörper (120) auf den beiden parallelen Seiten mit dem Kantenlängenverhältnis 1:2 (140) ein Zündloch (130), auf den beiden parallelen Seiten mit dem Kantenlängenverhältnis 1:4 (150) zwei Zündlöcher (130) und auf den beiden parallelen Seiten mit dem Kantenlängenverhältnis 2:4 (160) vier Zündlöcher (130) aufweisen.
11. Sprengvorrichtung nach einem der Ansprüche 1 bis 10, wobei die Formkörper (120) auf mindestens einer Seite mindestens eine nutenförmige Vertiefung (170) zur Aufnahme eines Einsatzes (180), vorzugsweise eines Splitter- oder Brandeinsatzes, aufweisen.
12. Sprengvorrichtung nach Anspruch 11, wobei die Formkörper (120) mindestens zwei nutenförmige
Vertiefungen (170) aufweisen, die parallel zu Kanten des Formkörpers (120) angeordnet sind.
13. Sprengvorrichtung nach einem der Ansprüche 1 bis 12, wobei die Formkörper (120) auf den beiden parallelen Seiten mit dem Kantenlängenverhältnis 1:2 (140) eine erste Farbe, auf den beiden parallelen Seiten mit dem Kantenlängenverhältnis 1:4 (150) eine zweite Farbe und auf den beiden parallelen Seiten mit dem Kantenlängenverhältnis 2:4 (160) eine dritte Farbe aufweisen.
14. Sprengvorrichtung nach einem der Ansprüche 1 bis 13, wobei der Behälter (1) Befestigungsplatte (90) für eine Teleskoostütze aufweist = - 2A -
15. Einsatz (180) passend in die nutenförmigen Vertiefungen (170) des Formkörpers (120) nach Anspruch 11 oder 12.
16. Einsatz (180) nach Anspruch 15, wobei der Einsatz (180) Metall, Brandmittel oder Sprengstoff enthält.
17. Behälter (1) für eine Sprengvorrichtung nach einem der Ansprüche 1 bis 14, wobei der Behälter (1) mindestens ein Durchgangsloch (80) zu einem Innenraum
(60) mit einem quadratischen Grundriss, dessen Seitenlänge wenigstens annähernd der längsten Kantenlänge des Formkörpers (120) entspricht und dessen Höhe wenigstens annähernd der kleinsten Kantenlänge des Formkörpers (120) oder einem ganzzahligen Vielfachen davon entspricht, aufweist.
18. Formkörper (120) für eine Sprengvorrichtung nach einem der Ansprüche 1 bis 14, wobei der Formkörper
(120) quaderförmig ist und Sprengstoff enthält, mindestens ein Zündloch (130) aufweist und die
Kantenlängen des Formkörpers (120) ein Verhältnis von 1:2:4 aufweisen.
19. Bausatz für eine Sprengvorrichtung nach einem der Ansprüche 1 bis 14 mit einem Grundmodul (5) und mindestens einem Zusatzmodul (8).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/097,032 US8146500B2 (en) | 2005-12-12 | 2006-12-06 | Multifunctional detonation system |
IL192087A IL192087A (en) | 2005-12-12 | 2008-06-12 | Multifunctional explosive system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05027055A EP1795859B8 (de) | 2005-12-12 | 2005-12-12 | Multifunktionales Sprengsystem |
EP05027055.2 | 2005-12-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007068386A1 true WO2007068386A1 (de) | 2007-06-21 |
Family
ID=36283668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2006/011711 WO2007068386A1 (de) | 2005-12-12 | 2006-12-06 | Multifunktionales sprengsystem |
Country Status (6)
Country | Link |
---|---|
US (1) | US8146500B2 (de) |
EP (1) | EP1795859B8 (de) |
AT (1) | ATE402388T1 (de) |
DE (1) | DE502005004832D1 (de) |
IL (1) | IL192087A (de) |
WO (1) | WO2007068386A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8367371B2 (en) * | 2006-10-10 | 2013-02-05 | Ajinomoto Co., Inc. | Method for production of L-amino acid |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9303961B1 (en) * | 2013-10-11 | 2016-04-05 | The United States Of America As Represented By The Secretary Of The Navy | Modular charge system |
WO2015058396A1 (zh) * | 2013-10-25 | 2015-04-30 | 华为技术有限公司 | 业务切换的方法、网络设备和用户设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3477373A (en) * | 1968-04-04 | 1969-11-11 | Us Navy | Underwater demolition package |
DE2216150A1 (de) * | 1971-04-06 | 1972-11-02 | R. Amberg, Ingenieurbureau, Sargans-Zürich; W.R. & Dr. W. Heierli, Dipl. Bauingenieure ETH/SIA, Ingenieurbureau, Zürich; (Schweiz) | Sprengpatrone |
FR2558949A1 (fr) * | 1984-01-31 | 1985-08-02 | Buon Christiane | Plaque propulsee de neutralisation d'engins suspects a distance |
AT383890B (de) * | 1982-05-07 | 1987-09-10 | Voest Alpine Ag | Geschuetzmunitions-behaelter |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2087209A (en) * | 1936-05-16 | 1937-07-13 | American Cyanamid & Chem Corp | Moisture impervious package for explosive compositions |
US2682220A (en) * | 1945-03-28 | 1954-06-29 | Carl P Hagensen | Prepared demolition charge |
BE480096A (de) * | 1947-02-04 | |||
US2982209A (en) * | 1947-06-27 | 1961-05-02 | Charles A Borcher | Demolition firing device |
US2916992A (en) * | 1956-06-11 | 1959-12-15 | Du Pont | Blasting assembly |
US3720166A (en) * | 1971-08-02 | 1973-03-13 | Us Navy | Apparatus and method for terrain clearance |
-
2005
- 2005-12-12 EP EP05027055A patent/EP1795859B8/de active Active
- 2005-12-12 AT AT05027055T patent/ATE402388T1/de not_active IP Right Cessation
- 2005-12-12 DE DE502005004832T patent/DE502005004832D1/de active Active
-
2006
- 2006-12-06 US US12/097,032 patent/US8146500B2/en not_active Expired - Fee Related
- 2006-12-06 WO PCT/EP2006/011711 patent/WO2007068386A1/de active Application Filing
-
2008
- 2008-06-12 IL IL192087A patent/IL192087A/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3477373A (en) * | 1968-04-04 | 1969-11-11 | Us Navy | Underwater demolition package |
DE2216150A1 (de) * | 1971-04-06 | 1972-11-02 | R. Amberg, Ingenieurbureau, Sargans-Zürich; W.R. & Dr. W. Heierli, Dipl. Bauingenieure ETH/SIA, Ingenieurbureau, Zürich; (Schweiz) | Sprengpatrone |
AT383890B (de) * | 1982-05-07 | 1987-09-10 | Voest Alpine Ag | Geschuetzmunitions-behaelter |
FR2558949A1 (fr) * | 1984-01-31 | 1985-08-02 | Buon Christiane | Plaque propulsee de neutralisation d'engins suspects a distance |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8367371B2 (en) * | 2006-10-10 | 2013-02-05 | Ajinomoto Co., Inc. | Method for production of L-amino acid |
Also Published As
Publication number | Publication date |
---|---|
US20090000504A1 (en) | 2009-01-01 |
EP1795859B8 (de) | 2008-09-24 |
IL192087A0 (en) | 2008-12-29 |
DE502005004832D1 (de) | 2008-09-04 |
US8146500B2 (en) | 2012-04-03 |
EP1795859B1 (de) | 2008-07-23 |
IL192087A (en) | 2011-12-29 |
EP1795859A1 (de) | 2007-06-13 |
ATE402388T1 (de) | 2008-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19825260B4 (de) | Anordnung zum Schutz von Objekten gegen geformte Ladungen | |
EP1847797B1 (de) | Umschaltbare Ladung | |
DE102010052210B4 (de) | Leistungsvariabler Irritationskörper | |
DE602005002639T2 (de) | Fragmentierbare granate | |
WO2006063564A1 (de) | Irritationskörper | |
DE69508465T2 (de) | Vorrichtung zum Verbinden von zwei Behältern und Behälter dafür | |
DE202018006180U1 (de) | Tür für einen Sicherungsschrank | |
DE102010052209B4 (de) | Irritationskörper | |
DE102007054435B4 (de) | Feuerwerkskörperanordnungsvorrichtung und Feuerwerkskörperanordnung | |
EP1795859B1 (de) | Multifunktionales Sprengsystem | |
DE2138807B2 (de) | Munitionskassette zum Transport und zum Abschießen von selbstgetriebenen Geschossen | |
DE60014810T2 (de) | Pyrotechnische Vorrichtung zur Verbindung und Verzögerung | |
DE2318039A1 (de) | Annaeherungszuender | |
DE10119596A1 (de) | Reaktiver Panzerungsmodul | |
DE69218650T2 (de) | Behälter, vorgesehen mit elektrischen Verbindungsmitteln | |
EP2653825B1 (de) | Pyrotechnische Vorrichtung | |
DE102016201484A1 (de) | Beschusshemmendes Bauteil zum Bau eines Schutzraumes | |
WO2007057740A1 (de) | Feuerweksbatterie mit modularem aufbau | |
DE19830134A1 (de) | Lechtrakete für einen Hubschrauber und Verfahren zum Erzeugen einer Köderspur | |
WO1999020975A1 (de) | Zündeinrichtung für feuerwerksartikel | |
DE102008045645B4 (de) | Möbelstecksystem mit einer Vielzahl von einzelnen Möbelmodulen | |
DE102022000839B4 (de) | Aufnahmevorrichtung für die Aufnahme von wenigstens zwei Zündeinrichtungen | |
DE2743171C2 (de) | ||
WO2018095783A1 (de) | Pyrotechnischer wirkkörper | |
DE4444095C2 (de) | Bandförmiger Ladestreifen für Bolzensetzgeräte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12097032 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06829341 Country of ref document: EP Kind code of ref document: A1 |