WO2007063694A1 - 炭化物用硬化フェノール樹脂粒子及びその製造方法並びにそれを用いた炭化物の製造方法 - Google Patents

炭化物用硬化フェノール樹脂粒子及びその製造方法並びにそれを用いた炭化物の製造方法 Download PDF

Info

Publication number
WO2007063694A1
WO2007063694A1 PCT/JP2006/322558 JP2006322558W WO2007063694A1 WO 2007063694 A1 WO2007063694 A1 WO 2007063694A1 JP 2006322558 W JP2006322558 W JP 2006322558W WO 2007063694 A1 WO2007063694 A1 WO 2007063694A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenol resin
carbide
resin particles
cured
producing
Prior art date
Application number
PCT/JP2006/322558
Other languages
English (en)
French (fr)
Inventor
Ayako Iwakiri
Osamu Kanai
Original Assignee
Asahi Organic Chemicals Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co., Ltd. filed Critical Asahi Organic Chemicals Industry Co., Ltd.
Publication of WO2007063694A1 publication Critical patent/WO2007063694A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides

Definitions

  • the present invention relates to a cured phenol resin particle for carbide, a method for producing the same, and a method for producing a carbide using the same, and more particularly to a cured phenol resin particle for carbide useful as a filler, a raw material for various carbon materials, and the like. It relates to a method that can be advantageously produced. Furthermore, this invention relates to the manufacturing method of the carbide
  • particles or powders made of a hardened phenolic resin have been widely used as fillers (additives) and as raw materials for carbon materials such as activated carbon. has been proposed.
  • Patent Document 1 JP-A-11-60664 (Patent Document 1) and JP-A-2001-114852 (Patent Document 2), a predetermined alkylamine compound as a condensation reaction catalyst and an emulsifying dispersant in an aqueous medium.
  • a method for producing spherical phenolic resins characterized by the condensation reaction of phenols and aldehydes in the presence of a polymer surfactant having a dalcoside bond has been clarified.
  • Patent Document 3 a method for producing a powdered phenol'formaldehyde resin using hydrochloric acid as a condensation reaction catalyst is proposed.
  • the cured phenol resin particles and powder produced according to such a method contain a relatively large amount of nitrogen, chlorine ions, etc.
  • the cured phenol resin particles and powder produced by such a method are used.
  • heat treatment is performed separately, nitrogen oxides and silicates are generated from the nitrogen contained in the particles and powder, and these nitrogen oxides corrode the equipment and in the environment. There were problems such as adverse effects.
  • Patent Document 4 the applicant of the present application described in Japanese Patent Laid-Open No. 3-7714 (Patent Document 4) first.
  • a first step of reacting phenols with an aldehyde to form thermosetting resin particles A method for producing cured phenolic resin particles characterized by including a second step of curing the resin particles by continuing or separating from this step was proposed.
  • an acid catalyst with low corrosiveness alkylbenzene sulfonic acid
  • the existing stainless steel equipment can be used as it is without the need for an expensive corrosion-resistant reaction tank, and the cured phenol resin particles can be produced safely and with high yield under mild reaction conditions.
  • Wea Patent Document 4 Japanese Patent Laid-Open No. 3-7714
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 60664
  • Patent Document 2 Japanese Patent Laid-Open No. 2001_114852
  • Patent Document 3 Japanese Patent Publication No. 62-30211
  • Patent Document 4 Japanese Patent Laid-Open No. 3-7714
  • the present invention has been made in the background of vigorous circumstances, and the problem to be solved is that the cured phenol resin particles for carbide having a high residual carbon ratio, and the same are advantageously used. It is an object of the present invention to provide a method that can be produced and an advantageous method for producing a carbide using such cured phenol resin particles for carbide.
  • Patent Document 4 the present inventors proposed in Patent Document 4 before solving such a problem.
  • the presence of at least one compound selected from the group consisting of phosphoric acids, phosphate esters, phosphazene compounds, and specific organic phosphonic acids, along with protective colloids below, phenols and aldehydes are reacted to produce uncured phenolic resin particles, and then hardened phenolic resin particles that are strong are cured to obtain cured phenolic resin particles having a high residual carbon ratio. I found out that I could do it.
  • a cured phenol resin particle for carbide comprising at least one compound selected from the group consisting of organic phosphonic acids represented by the formula:
  • phenols and aldehydes are reacted to produce uncured phenolic resin particles.
  • R is a group containing a carbon atom and containing COOH and / or PO ( ⁇ H).
  • the reaction between phenols and aldehydes is allowed to proceed in the presence of a protective colloid and the specific compound as described above. Therefore, when the cured phenol resin particles obtained by such a method are fired, carbonization can be effectively promoted by the presence of a strong specific compound, and a high residual carbon ratio after firing. Can obtain carbide Therefore, it is possible to advantageously obtain cured phenol resin particles for carbide that can be used very advantageously as a raw material for carbon materials such as activated carbon.
  • the desired cured phenol resin particles for carbide are basically obtained by reacting phenols and aldehydes in the presence of the specific compound according to the present invention. I can do it.
  • any one of the known phenols used in the production of phenol resins can be used as one of the reaction raw materials. At least one selected from the above will be used.
  • phenols there are usually phenols having 3 or more reactive sites for aldehydes in the molecule (hereinafter simply referred to as polyfunctional phenols), and these multifunctional phenols. Phenolic purification residues etc.
  • polyfunctional phenols include, in addition to phenol, m_taresol, m-butylphenol, 3,5-xylenol, m-nitrophenol, m-aminophenol monore, m-pro M-substituted phenols such as Penino Leuenore, m-Fuenole Leuenore, m-Black-Fuenore, m-Bromophenol, resorcinol, catechol, pyrogallol, phloroglucinol, cashnut shell oil, etc.
  • Examples thereof include polyvalent phenols, bisphenol A, bisphenols such as bisphenol F and bisphenol S, polycondensed ring phenols such as naphthol, and mixtures thereof.
  • Examples of the phenolic residue include talesol residue, resorcinol residue, catechol residue, bisphenol A residue, and mixtures thereof.
  • polyfunctional phenols and phenol-based purification residues other than those exemplified here can be used as appropriate, and the desired phenol resin particles. Multifunctional phenols or phenol-based purification residues as described above May be used alone or in combination.
  • bifunctional phenols and monofunctional phenols used together with these polyfunctional phenols and Z or phenol-based purification residue include, for example, o_cresol, p_cresol 2,5_xylenol, p_tert_butylphenol, p_nonylphenol, p_phenolphenol, p_tamylphenol, 2,5-diaminophenol, 2,4_xylenol, 2,6_xylenol, etc. Can be mentioned.
  • the other reaction raw material aldehyde used in the present invention is not particularly limited, and generally from the viewpoint of reactivity, raw material price, etc., formalin, paraformaldehyde, trioxane, tetraoxane, acetal.
  • formaldehyde feed materials such as darioxal, and mixtures thereof can be suitably used.
  • acetaldehyde, butynolealdehyde, benzaldehyde, hydroxybenzaldehyde, acrolein, furfural and the like can be used as necessary.
  • at least one of these aldehydes is selected and used.
  • such aldehydes When producing cured phenolic resin particles for carbide according to the present invention, such aldehydes generally have a ratio of aldehydes: 1.0 mol or more to 1 mol of phenols. In such an amount, it is desirable that the aldehydes are used in a quantitative range such that the ratio of aldehydes: 1.:! To 1.3 moles from the viewpoints of odor and economy at the time of production.
  • the protective colloid is added for the purpose of obtaining the generated phenol resin in the form of particles, but the type is not particularly limited. More known various protective colloids can be used.
  • gum arabic, gatch gum, hydroxyalkyl guar gum, partially hydrolyzed polybulal alcohol, hydroxetyl cellulose, carboxymethyl cellulose and the like are soluble in water.
  • Powerful gum arabic can be advantageously provided with uncured phenol resin particles having a small average particle diameter by heat treatment.
  • protective colloids can be used alone or in combination of two or more.
  • the amount used will be determined according to the type of protective colloid used, etc., but in general, it will be a ratio of 0.:! To 10% by weight with respect to the amount of phenols used. Thus, it is preferably used in such an amount that the ratio is 0.5 to 5.0% by weight.
  • R is a group containing a carbon atom and containing —COOH and / or —PO ( ⁇ H).
  • At least one compound selected from the group consisting of organic phosphonic acids is preferable, among which phosphoric acids, phosphate esters, and more preferably phosphoric acids are employed.
  • phosphoric acids include polyphosphoric acids such as metaphosphoric acid, pyrophosphoric acid, orthophosphoric acid, triphosphoric acid, and tetraphosphoric acid, phosphoric anhydride, and mixtures thereof, but orthophosphoric acid that is easily available at low cost.
  • Aqueous solution for example, 75% by mass phosphoric acid, 89% by mass phosphoric acid, etc.
  • Phosphoric acid esters include methyl acid phosphate, butyl acid phosphate, dibutyl phosphate, monobutyl phosphate, 2-ethylhexyl acid phosphate, bis (2-ethylhexyl) phosphate, isodecyl acid phosphate, monoisophosphate.
  • acidic phosphate esters such as decyl phosphate
  • phosphites such as trimethyl phosphite, triethyl phosphite, tri_n-propyl phosphite, tri_n-butyl phosphite, and triphenyl phosphite can be mentioned. Of these, acidic phosphates are preferred.
  • the phosphazene compound includes cyclophosphazene, which is a cyclic compound, and polyphosphazene, which is a chain compound. Cyclophosphazene is represented by the structure shown in Chemical Formula 1 below.
  • 3 to 10000
  • alkylated polyphosphazene alkyl group
  • the like Phenoxy group
  • alkylated polyphosphazene alkyl group
  • organic phosphonic acid represented by the formula, ethylenediaminetetrakismethylenephosphonic acid, ethylenediamine bismethylenephosphonic acid, aminotrimethylenephosphonic acid, ⁇ -aminoethylphosphonic acid, ⁇ - Examples include diacetate, aminomethylphosphonic acid monoacetic acid, ⁇ -diacetic acid, 1-hydrochiginane_1,1'-diphosphonic acid, 2-phosphonobutane 1,2,4_tricarboxylic acid, and the like.
  • aminotrimethylene phosphonic acid which is industrially mass-produced and can be obtained at a low price, 1-hydroxyethane_ 1, 1'-diphosphonic acid, 2_ Phosphonobutane 1, 2, 4_tricarboxylic acid isotropic
  • the amount of the specific compound to be used is appropriately determined according to the type and the like. In general, it is preferably used in an amount such that it is in the proportion of 0.01% to 30% by weight with respect to the phenolic resin, but in the case of such specific compound carboxylic acids.
  • the blending amount of the phenolic resin is preferably 0.01% to about 10% by weight, more preferably 0.05% to 5% by weight, and 0.1% to 2%. Weight percent is most preferred.
  • the specific compound to be used is a phosphoric acid ester
  • the blending amount is preferably from 0.1% by weight to 30% by weight with respect to the phenol resin. 20% by weight is more preferred, in particular 1% by weight to 10% by weight is most preferred.
  • the particular compound to be worked out is a phosphazene compound or a general formula: R—P 0 (OH) [wherein R contains a carbon atom and —COOH and / or
  • phenol resin about 0.01% to 10% by weight is preferable, but 0.05% to 5% by weight is more preferable, and 0.1% to 2% by weight is most preferable. .
  • the specific compound will contribute as a reaction catalyst rather than as a residual carbon ratio improver, and before the desired particles are produced. , The tendency to gely will become stronger. This tendency is particularly large in phosphoric acids and phosphate esters that are originally used as reaction catalysts.
  • the reaction between the phenols and the aldehydes can be carried out by various conventionally known methods, for example, in the presence of a phenol resin synthesis catalyst. It is also effective to allow such reaction to proceed, but it is desirable to allow such a phenol resin synthesis catalyst to react in the presence of phosphoric acid as the specific compound.
  • a phenol resin synthesis catalyst any catalyst conventionally used for synthesizing phenol resins can be used. For example, alkylbenzene sulfonic acid, various amine compounds can be used. And hydrochloric acid.
  • alkylbenzenes having an alkyl group having 10 or more carbon atoms among alkylbenzene sulfonic acids Sulfonic acid power can be suitably used.
  • alkylbenzene sulfonic acid having an alkyl group having 10 or more carbon atoms examples include decyl benzene sulfonic acid, dodecyl benzene sulfonic acid, tetradecyl benzene sulfonic acid, hexadecyl benzene sulfonic acid, and octadecino benzene sulfonic acid.
  • examples thereof include acids and mixtures thereof, but among these, dodecinolebenzene sulfonic acid power can be used particularly advantageously from the viewpoints of economy, availability, catalytic function, and the like.
  • the amount of the phenol resin synthesis catalyst used is appropriately determined according to the type of catalyst, the mixing ratio of the reaction raw materials, the reaction conditions, and the like. For example, in the case of using such alkylbenzenesulfonic acids mentioned above, in the 0.5 to 2.0 wt 0/0 approximately amounts such that the ratio of the phenols, is used.
  • alkylbenzene sulfonic acid is used as a phenol resin synthesis catalyst in the present invention, the amount used is relatively small compared to the amount used when a conventional alkylamine compound or the like is used as a catalyst.
  • the resulting phenol resin particles have a relatively low content of impurities.
  • the phenol resin formation reaction proceeds in the presence of alkylbenzene sulfonic acid, the resulting phenol resin particles contain a slight amount of impurities such as sulfur compounds.
  • the specific compound defined in the present invention is used. Since it is obtained by reacting phenols and aldehydes in the presence, such a specific compound comes to be contained in the resin particles.
  • the cured phenol resin particle for carbide according to the present invention contains the specific compound defined in the present invention in the particle, and such a cured phenol resin particle is burned. Carbonization is promoted by the action of a specific compound, and after firing, a high residual carbon ratio is exhibited.
  • a high residual carbon ratio in other words, a hardened phenolic resin particle having a high carbonization yield can be used very advantageously as a raw material for a carbon material such as activated carbon.
  • the timing of addition (addition) of the protective colloid to the reaction system is not particularly limited as long as it is before the condensate (reaction product) is hardened. It is preferable to add it at the time of resinization (emulsification) or before that, particularly from the viewpoint of simplification of the work and the like, it is desirable to add it from the start of the reaction. Further, in the present invention, in order to perform granulation smoothly and prevent agglomeration of the generated uncured phenol resin particles, the water content in the reaction system is 80% by weight or more based on phenols. It is preferable to adjust the ratio to about 100 to 180% by weight from the viewpoint of waste liquid treatment and production efficiency. It should be noted that the appropriate amount of moisture is adjusted at the start of the reaction or when the protective colloid is added.
  • the inside of the reaction tank is heated at a temperature rising rate of about 0.5 to 2.0 ° C./min, and usually 70 ° C. or higher, preferably Reacts at least one phenol with at least one aldehyde for a specified time at a temperature of 90 ° C or higher (reaction temperature) to produce fusible uncured phenol resin particles (process) 1).
  • reaction temperature a temperature of 90 ° C or higher
  • the reaction is continued for a predetermined time at the same temperature as or slightly lower than the reaction temperature, thereby forming infusible cured phenol resin particles (step 2).
  • the time required for these series of reactions is usually about 0.5 to 6 hours.
  • the inside of the reaction vessel is cooled, and if necessary, the phenol resin synthesis catalyst is neutralized, and then the generated cured phenol resin particles are separated by solid-liquid separation means such as filtration or a centrifugal separator. . Then, the separated cured phenol resin particles are washed as necessary, and various conventionally known drying methods such as air drying and heat drying (for example, heating, hot air circulation, vibration, fluidized bed, etc.), etc. By drying, the desired cured phenol resin particles can be obtained.
  • various conventionally known drying methods such as air drying and heat drying (for example, heating, hot air circulation, vibration, fluidized bed, etc.), etc.
  • the average particle diameter of the cured phenol resin particles obtained in this way is a carbide.
  • the purpose of obtaining is not particularly limited because it does not affect the yield and the like, but according to the production method according to the present invention, generally a carbide having a small average particle diameter of lnm to 2 mm. It is possible to easily obtain cured phenol resin particles for use.
  • the fusible uncured phenol resin produced according to the above step 1 is further reacted until it can be handled, and then separated and necessary according to the same method as described above. It is possible to obtain infusible cured phenol resin particles for carbide by heat-curing using the above-described heat drying method after washing according to the above.
  • the cured phenol resin particles for carbides obtained according to the present invention are inherently force S, which is an infusible particle with little uncured content, and are suitable for applications requiring phenol resin particles with very little uncured content. Further, heat treatment or solvent extraction can be performed.
  • the cured phenol resin particles for carbide produced according to the present invention are acetylated in accordance with a conventionally known method, whereby a partial strength S-acetylated phenolic hydroxyl group in the particles is obtained. Cured phenol resin particles can be obtained.
  • a carbide By firing the above-mentioned cured phenol resin particles for carbide according to the present invention as described above, a carbide can be obtained with an excellent yield.
  • This carbonization yield (residual carbon ratio) is approximately 55% or more depending on the firing conditions.
  • the conditions under a reducing atmosphere are preferably employed for the purpose of further improving the yield of the carbide.
  • phenol, 92% paraformaldehyde, gum arabic, and isodecyl acid phosphate are blended in the proportions shown in Table 1 below, and cured phenol resin particles are produced in the same manner as in the production of the cured phenol resin particles a. got f.
  • Cured phenol resin particles h were obtained in the same manner as in the production of the cured phenol resin particles c, except that 3 parts by weight of hydroxyethyl cellulose was used as a protective colloid instead of gum arabic.
  • cured phenol resin particles were prepared in the same manner as in the production of cured phenol resin particles c, except that 1-hydroxyethane 1,1-diphosphonic acid was used instead of 89% phosphoric acid. i got.
  • cured phenol resin particles j were obtained in the same manner as in the production of cured phenol resin particles c except that phenol phosphazene was used instead of 89% phosphoric acid.
  • the cured phenol resin particles b to j manufactured according to the method of the present invention are the same as the cured phenol resin particles a manufactured without using a specific compound. In comparison, it was found that the rate of remaining coal was high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 残炭率の高い炭化物用硬化フェノール樹脂粒子、及びそれを製造する方法、並びにそのような硬化フェノール樹脂粒子を用いた炭化物の製造方法を提供する。  保護コロイドと共に、リン酸類、リン酸エステル類、ホスファゼン化合物、及び特定の有機ホスホン酸からなる群より選ばれた少なくとも1種の化合物の存在下において、フェノール類とアルデヒド類とを反応させて、未硬化のフェノール樹脂粒子を製造した後、かかる未硬化フェノール樹脂粒子を硬化せしめる。これにより得られた硬化フェノール樹脂粒子中には、前記した化合物が含有せしめられ、そしてこの硬化フェノール樹脂粒子が焼成されることによって、目的とする炭化物が形成される。                                                                                 

Description

炭化物用硬化フエノール樹脂粒子及びその製造方法並びにそれを用い 化物の製造方法
技術分野
本発明は、炭化物用硬化フエノール樹脂粒子及びその製造方法並びにそれを用 いた炭化物の製造方法に係り、特に、充填材、各種炭素材用の原料等として有用な 炭化物用硬化フエノール樹脂粒子、及びそれを有利に製造することが出来る方法に 関するものである。さらに、本発明は、そのような炭化物用硬化フエノール樹脂粒子を 用いた炭化物の製造方法に関するものである。
背景技術
従来より、硬化フエノール樹脂からなる粒子乃至粉末は、充填材 (添加剤)として、 また、活性炭等の炭素材用の原料等として、広く用いられてきており、その製造方法 については、様々な手法が提案されている。
例えば、特開平 11— 60664号公報(特許文献 1)ゃ特開 2001— 114852号公報 ( 特許文献 2)においては、水性媒体中で、縮合反応触媒たる所定のアルキルアミン化 合物と乳化分散剤たるダルコシド結合を有する高分子界面活性剤との存在下、フエ ノール類とアルデヒド類とを縮合反応させることを特徴とする球状フエノール樹脂の製 造法が、明らかにされており、また、特公昭 62— 30211号公報(特許文献 3)におい ては、縮合反応触媒として塩酸を用いた、粉末状フエノール'ホルムアルデヒド系樹 脂の製造法が、提案されている。
しかしながら、そのような手法に従って製造される硬化フエノール樹脂粒子や粉末 は、窒素や塩素イオン等を比較的多く含有するものであるために、かかる手法にて製 造された硬化フエノール樹脂の粒子や粉末に対して、別途、熱処理を施すと、それら 粒子や粉末に含まれる窒素等から窒素酸化物や塩ィヒ物が生成し、そしてそれら窒素 酸化物等が、設備を腐食したり、また環境に対して悪影響を及ぼす等の問題があつ た。
一方、本願出願人は、先に、特開平 3— 7714号公報 (特許文献 4)において、炭素 数が 10以上のアルキル基を有するアルキルベンゼンスルホン酸及び保護コロイドの 存在下に、フエノール類とアルデヒド類とを反応させて、熱硬化性の樹脂粒子を形成 せしめる第一の工程と、力かる第一の工程に継続又は分離して、該樹脂粒子を硬化 させる第二の工程を含むことを特徴とする硬化フエノール樹脂粒子の製造方法を、提 案した。この手法によれば、腐食性の低い酸触媒(アルキルベンゼンスルホン酸)が 使用されるものであるところから、フエノール類とアルデヒド類との反応容器として、グ ラスライニングを施したり、ハステロィ製とする等した高価な耐食性反応槽を必要とせ ず、既存のステンレス製設備をそのまま利用することが出来、また、緩やかな反応条 件にて、安全に且つ高い収率をもって、硬化フエノール樹脂粒子を製造することが可 能となるものであった。
[0006] しかしながら、力べの如き手法に従って得られる硬化フエノール樹脂粒子にあっては 、それを焼成して、炭化せしめた際に、残炭率が約 50%程度と比較的低ぐ炭化収 率の低いものであった。このため、近年における、硬化フエノール樹脂を原料として、 その炭化収率を上げる要求が為されている状況下において、炭化物用の硬化フエノ ール樹脂粒子として用いるには、本願出願人が先に提案した手法には、未だ改良の 余地が残されてレ、たのである。
[0007] 特許文献 1 :特開平 11 60664号公報
特許文献 2:特開 2001 _ 114852号公報
特許文献 3:特公昭 62— 30211号公報
特許文献 4:特開平 3 - 7714号公報
発明の開示
発明が解決しょうとする課題
[0008] ここにおいて、本発明は、力かる事情を背景にして為されたものであって、その解決 課題とするところは、残炭率の高い炭化物用硬化フエノール樹脂粒子、及びそれを 有利に製造し得る手法、並びにそのような炭化物用硬化フエノール樹脂粒子を用い た炭化物の有利な製造方法を提供することにある。
課題を解決するための手段
[0009] そして、本発明者等は、そのような課題を解決すベぐ先に、特許文献 4にて提案し た手法を基にして、鋭意検討を重ねた結果、保護コロイドと共に、リン酸類、リン酸ェ ステル類、ホスファゼン化合物、及び特定の有機ホスホン酸からなる群より選ばれた 少なくとも 1種の化合物の存在下において、フエノール類とアルデヒド類とを反応させ て、未硬化のフエノール樹脂粒子を製造した後、力かる未硬化フヱノール樹脂粒子を 硬化せしめることにより、高い残炭率を有する硬化フエノール樹脂粒子を得ることが 出来ることを見出したのである。
[0010] 従って、本発明は、力かる知見に基づいて完成されたものであって、以下に列挙せ る如き各種の態様において、好適に実施され得るものである力 以下に記載の各態 様は、任意の組み合わせにおいて、採用可能である。なお、本発明の態様乃至は技 術的特徴は、以下に記載のもののみに何等限定されることなぐ明細書全体の記載 乃至はそこに開示の発明思想に基づいて、認識され得るものであること力 s、理解され るべきである。
[0011] (1)リン酸類、リン酸エステル類、ホスファゼン化合物、及び一般式: R—PO (〇H) 〔 但し、 Rは、炭素原子を含み、且つ COOH及び/又は PO (〇H) を含む基で ある。〕で示される有機ホスホン酸からなる群より選ばれた少なくとも 1種の化合物を含 有することを特徴とする炭化物用硬化フエノール樹脂粒子。
[0012] (2)保護コロイドと共に、リン酸類、リン酸エステル類、ホスファゼン化合物、及び一般 式: R_P〇(OH) 〔但し、 Rは、炭素原子を含み、且つ _C〇OH及び Z又は—PO
(OH) を含む基である。〕で示される有機ホスホン酸からなる群より選ばれた少なくと も 1種の化合物の存在下において、フヱノール類とアルデヒド類とを反応させて、未硬 化のフヱノール樹脂粒子を製造した後、かかる未硬化フヱノール樹脂粒子を硬化せ しめることを特徴とする炭化物用硬化フエノール樹脂粒子の製造方法。
[0013] (3)前記リン酸類を存在せしめたときに、前記フエノール類とアルデヒド類との反応が 、フエノール樹脂合成触媒の存在下に行なわれることを特徴とする上記態様(2)に記 載の炭化物用硬化フエノール樹脂粒子の製造方法。
[0014] (4)前記フエノール樹脂合成触媒が、アルキルベンゼンスルホン酸であることを特徴 とする上記態様(3)に記載の炭化物用硬化フエノール樹脂粒子の製造方法。
[0015] (5)有機相と水相とを分離させない条件下で、前記反応が行われることを特徴とする 上記態様(2)乃至 (4)の何れか一つに記載の炭化物用硬化フエノール樹脂粒子の 製造方法。
[0016] (6)前記リン酸類が、前記フエノール樹脂に対して 0. 01〜: 10重量%の割合となるよ うに存在せしめられることを特徴とする上記態様(2)乃至(5)の何れか一つに記載の 炭化物用硬化フエノール樹脂粒子の製造方法。
[0017] (7)前記リン酸エステル類が、前記フエノール樹脂に対して 0.:!〜 30重量%の割合 となるように存在せしめられることを特徴とする上記態様(2)乃至(5)の何れか一つに 記載の炭化物用硬化フエノール樹脂粒子の製造方法。
[0018] (8)上記態様(1)に記載の炭化物用硬化フエノール樹脂粒子を、焼成せしめることを 特徴とする炭化物の製造方法。
[0019] (9)上記態様(2)乃至(7)の何れか一つに記載の製造方法で得られた炭化物用硬 化フエノール樹脂粒子を、焼成することを特徴とする炭化物の製造方法。
[0020] (10)リン酸類、リン酸エステル類、ホスファゼン化合物、及び一般式: R— PO (〇H)
〔但し、 Rは、炭素原子を含み、且つ COOH及び/又は PO (〇H) を含む基で ある。〕で示される有機ホスホン酸からなる群より選ばれた少なくとも 1種の化合物を含 有するフエノール樹脂の残炭率向上剤。
発明の効果
[0021] このような本発明に従う炭化物用硬化フエノール樹脂粒子においては、リン酸類、リ ン酸エステル類、ホスファゼン化合物、及び一般式: R_P〇(〇H) 〔但し、 Rは、炭 素原子を含み、且つ _C〇OH及び Z又は _PO (〇H) を含む基である。〕で示され る有機ホスホン酸からなる群より選ばれた少なくとも 1種の化合物を含有していること によって、残炭率が効果的に改善され、従って、そのような硬化フエノール樹脂粒子 を焼成せしめた際には、高い炭化収率で炭化物を得ることが出来るのである。
[0022] また、本発明に従う炭化物用硬化フエノール樹脂粒子の製造方法にあっては、フエ ノール類とアルデヒド類との反応を、保護コロイド及び上記したような特定の化合物の 存在下において進行せしめるものであるところから、そのような方法によって得られた 硬化フエノール樹脂粒子を焼成した際に、力かる特定の化合物の存在によって、炭 化が効果的に促進され得、焼成後において、高い残炭率で炭化物を得ることが出来 るのであり、以て、活性炭等の炭素材料用の原料として、極めて有利に用いられ得る 炭化物用硬化フヱノール樹脂粒子を有利に得ることが出来るのである。
発明を実施するための最良の形態
[0023] ところで、本発明において、 目的とする炭化物用硬化フエノール樹脂粒子は、基本 的には、本発明に係る特定の化合物の存在下において、フエノール類とアルデヒド類 とを反応せしめることによって、得ること力出来る。そこにおいて、一方の反応原料で あるフエノール類としては、従来よりフエノール樹脂の製造の際に用いられている公 知のものであれば、何れをも用いることが可能であり、そしてそれら公知のものの中か ら選択された少なくとも 1種以上が用いられることとなる。また、そのようなフエノール類 としては、通常、その分子内にアルデヒド類に対する反応部位を 3個以上有するフエ ノール類(以下、単に、多官能性フエノール類という)や、この多官能性フエノール類 の製造時に副生するフエノール系精製残渣等が使用されるが、必要に応じて、 2官 能性フエノール類 (分子内にアルデヒド類に対する反応部位を 2個有するフエノール 類)や、 1官能性フエノール類(分子内にアルデヒド類に対する反応部位を 1個有する フエノール類)等を、本発明の目的を阻害しない範囲内において、多官能性フエノー ル類と共に使用することも、可能である。
[0024] なお、そのような多官能性フエノール類としては、フエノールの他に、 m_タレゾール 、 m—ブチルフエノール、 3, 5—キシレノール、 m—ニトロフエノール、 m—アミノフエノ 一ノレ、 m—プロぺニノレフエノーノレ、 m—フエニノレフエノーノレ、 m—クロ口フエノーノレ、 m —ブロモフエノール等の m—置換フエノール類、レゾルシノールや、カテコール、ピロ ガロール、フロログルシノール、カシュナットシェルオイル等の多価フエノール類、ビス フエノール Aや、ビスフエノール F、ビスフエノール S等のビスフエノール類、ナフトール 等の多縮合環フエノール類、及びこれらの混合物等が、例示される。また、フエノーノレ 系精製残渣としては、タレゾール残渣、レゾルシノール残渣、カテコール残渣、ビスフ ェノール A残渣、及びこれらの混合物等が、例示される。勿論、本発明においては、 ここに例示したもの以外の多官能性フエノール類やフエノール系精製残渣であっても 、適宜に用い得ることは、言うまでもないところであり、また、 目的とするフエノール樹 脂粒子等に応じて、上述せる多官能性フエノール類若しくはフエノール系精製残渣 を単独で使用しても、或いはそれらを併用して、使用してもよい。
[0025] また、必要に応じて、それら多官能性フエノール類及び Z又はフエノール系精製残 渣と共に用いられる 2官能性フエノール類や 1官能性フエノール類としては、例えば、 o_クレゾール、 p _クレゾール、 2, 5 _キシレノール、 p _tert_ブチルフエノール、 p_ノニルフエノール、 p _フエユルフェノール、 p _タミルフエノール、 2, 5—ジァミノ フエノール、 2, 4_キシレノール、 2, 6 _キシレノール等を、挙げることができる。
[0026] 一方、本発明において用いられる他方の反応原料たるアルデヒド類は、特に限定さ れるものではなぐ一般的に、反応性や原料価格等の観点から、ホルマリン、パラホ ルムァノレデヒド、トリオキサン、テトラオキサン、ァセタール等のホルムアルデヒド供給 物質、ダリオキザール、及びこれらの混合物等が、好適に用いられ得る。その他にも 、必要に応じて、ァセトアルデヒド、ブチノレアルデヒド、ベンズアルデヒド、ヒドロォキシ ベンズアルデヒド、ァクロレイン、フルフラール等も使用可能である。本発明では、こ れらアルデヒド類のうちの少なくとも 1種以上が選択されて用いられるのである。
[0027] そして、本発明に従って炭化物用硬化フエノール樹脂粒子を製造するに際しては、 かかるアルデヒド類は、一般に、フエノール類: 1モルに対して、アルデヒド類: 1. 0モ ル以上の割合となるような量において、望ましくは、製造時の臭気や経済性等の観点 から、アルデヒド類: 1. :!〜 1. 3モルの割合となるような量的範囲において、使用され ることとなる。
[0028] ここにおいて、本発明に従う炭化物用硬化フエノール樹脂粒子を製造するに際して は、有利には、上述したようなフエノール類の少なくとも 1種とアルデヒド類の少なくと も 1種との反応において、保護コロイドと共に、本発明に従う特定の化合物が、共存 せしめられるのである。
[0029] ところで、そのような製造手法において、保護コロイドは、生成したフエノール樹脂を 粒子の形態にて得る目的で添加されるものであるが、その種類としては、特に限定さ れるものではなぐ従来より公知の各種の保護コロイドを使用することが出来る。ここで 、本発明の目的をより一層有利に達成せしめるものとしては、例えば、アラビアゴム、 ガッチゴム、ヒドロキシアルキルグアルゴム、部分カ卩水分解ポリビュルアルコール、ヒド ロキシェチルセルロース、カルボキシメチルセルロース等の水溶性高分子化合物を 例示することが出来、それらの中でも、特に、アラビアゴムが好適に用いられ得るので ある。力かるアラビアゴムは、加熱処理を施すことにより、平均粒径の小さな未硬化の フエノール樹脂粒子を、更に有利に与え得る。
[0030] なお、そのような保護コロイドは、単独で用いることも、又は 2種以上を組み合わせて 用レ、ることも、可能である。また、その使用量は、用いられる保護コロイドの種類等に 応じて決定されることとなるが、一般には、フエノール類の使用量に対して、 0.:!〜 1 0重量%の割合となるように、好ましくは、 0. 5〜5. 0重量%の割合となるような量に おいて、使用されることとなる。
[0031] 一方、力かる保護コロイドと共に存在せしめられる、本発明に従う特定の化合物とは 、リン酸類、リン酸エステル類、ホスファゼン化合物、及び一般式: R— PO (〇H) 〔但
2 し、 Rは、炭素原子を含み、且つ— COOH及び/又は— PO (〇H) を含む基である
2
。〕で示される有機ホスホン酸からなる群より選ばれた少なくとも 1種の化合物であるが 、これらの中でも、好ましくはリン酸類、リン酸エステル類、更に好ましくはリン酸類が 採用される。なお、リン酸類としては、メタリン酸、ピロリン酸、オルトリン酸、三リン酸、 四リン酸等のポリリン酸、無水リン酸及びこれらの混合物などが挙げられるが、低コス トで入手しやすいオルトリン酸水溶液、例えば、 75質量%リン酸、 89質量%リン酸等 力 有利に用いられる。また、リン酸エステル類としては、メチルアシッドホスフェート、 ブチルアシッドホスフェート、ジブチルホスフェート、モノブチルホスフェート、 2—ェチ ルへキシルアシッドホスフェート、ビス(2—ェチルへキシル)ホスフェート、イソデシル アシッドホスフェート、モノイソデシルホスフェート等の酸性リン酸エステルの他に、トリ メチルホスファイト、トリェチルホスファイト、トリ _n—プロピルホスファイト、トリ _n—ブ チルホスファイト、トリフエニルホスファイト等のホスファイトが挙げられ、これらの中でも 、酸性リン酸エステルが好ましい。
[0032] また、前記ホスファゼンィ匕合物には、環状化合物であるシクロホスファゼンと、鎖状 化合物であるポリホスファゼンとがある。シクロホスファゼンは、下記化 1に示す構造で 表され、具体的には、式中の Xで示される官能基の種類により、塩素化シクロホスファ ゼン(X=C1)、アルコキシ化シクロホスファゼン(X=アルコキシ基)、アミノ化シクロホ スファゼン(X=NH )、フエノキシ化シクロホスファゼン(X=フエノキシ基)、アルキル 化シクロホスファゼン (X=アルキル基)、ァリル化シクロホスファゼン (X =ァリル基)等 のシクロホスファゼンが、例示される。また、ポリホスファゼンは、構造式:(_PY =Ν
―) η (但し、 η= 3〜: 10000)で表され、具体的には、式中の Υで示される官能基の 種類により、塩素化ポリホスファゼン(Y=C1)、アルコキシ化ポリホスファゼン =ァ ルコキシ基)、アミノ化ポリホスファゼン(γ=ΝΗ )、フエノキシ化ポリホスファゼン(Υ
=フエノキシ基)、アルキル化ポリホスファゼン(γ=アルキル基)、ァリル化ポリホスフ ァゼン (Υ=7リル基)等のポリホスファゼン等が、例示されるが、特にこれらに限定さ れるものではない。
[0033] [化 1]
X
Ρ = Ν X η
(但し、 η = 3〜 1 0 )
[0034] さらに、一般式: R— Ρ〇(ΟΗ) 〔但し、 Rは、炭素原子を含み、且つ— COOH及び
/又は P〇(〇H) を含む基、特に有機基である。〕で示される有機ホスホン酸とし ては、ァミノポリホスホン酸類であるエチレンジアミンテトラキスメチレンホスホン酸、ェ チレンジァミンビスメチレンホスホン酸、アミノトリメチレンホスホン酸、 β—アミノエチ ルホスホン酸一 Ν, Ν—ジ酢酸、アミノメチルホスホン酸一 Ν, Ν—ジ酢酸や、 1—ヒド 口キシェタン _ 1, 1 '—ジホスホン酸、 2_ホスホノブタン一 1, 2, 4_トリカルボン酸 等があげられる。これらの中でも、本発明の目的から考えると、工業的に大量生産さ れ、安価に入手することが出来るアミノトリメチレンホスホン酸や、 1—ヒドロキシェタン _ 1, 1 '—ジホスホン酸、 2_ホスホノブタン一 1 , 2, 4_トリカルボン酸等力 望まし レ、。
[0035] そして、これらの化合物は、本発明に従う特定の化合物として、 1種単独で用いられ てもよいし、また 2種以上を組み合わせて用いられてもよ またその使用によって、 生成するフヱノール樹脂中に含有せしめられることとなる。
[0036] なお、力かる特定の化合物の使用量は、その種類等に応じて、その使用量が適宜 に決定されることとなる。一般には、フヱノール樹脂に対して、 0. 01重量%〜30重 量%の割合となるような量において、使用されることが好ましいが、そのような特定の 化合物カ^ン酸の場合においては、その配合量は、フヱノール樹脂に対して、 0. 01 重量%〜: 10重量%程度が好ましぐ中でも、 0. 05重量%〜5重量%が更に好ましく 、そして 0. 1重量%〜2重量%が、最も好ましい。また、力かる特定の化合物がリン酸 エステルの場合には、その配合量は、フエノール樹脂に対して、 0. 1重量%〜30重 量%程度が好ましぐ中でも、 0. 5重量%〜20重量%が更に好ましぐ特に 1重量% 〜: 10重量%が最も好ましい。さらに、力かる特定の化合物がホスファゼンィ匕合物又は 一般式: R— P〇(OH) 〔但し、 Rは、炭素原子を含み、且つ— COOH及び/又は
-PO (OH) を含む基である。〕で示される有機ホスホン酸の場合に、その配合量は
、フエノール樹脂に対して、 0. 01重量%〜10重量%程度が好ましぐ中でも、 0. 05 重量%〜5重量%が更に好ましぐそして 0. 1重量%〜2重量%が最も好ましい。因 みに、そのような特定の化合物の使用量が多くなり過ぎると、該特定化合物が、残炭 率向上剤としてではなぐ反応触媒として寄与するようになり、 目的とする粒子が生成 する前に、ゲルイ匕してしまう傾向が強くなる。この傾向は、元来、反応触媒としても用 レ、られているリン酸類、リン酸エステル類では、特に大きくなる。
[0037] また、本発明におレ、ては、前記フエノール類とアルデヒド類との反応は、従来より公 知の各種の手法によって行うことが出来、例えばフエノール樹脂合成触媒の存在下 において、力かる反応を進行せしめることも、有効であるが、特に、前記特定の化合 物としてリン酸類を用いる場合においては、そのようなフエノール樹脂合成触媒を併 存せしめて、反応せしめることが、望ましい。なお、かかるフエノール樹脂合成触媒と しては、従来よりフエノール樹脂を合成する際に用いられている各種触媒であれば、 何れも用いることが可能であり、例えば、アルキルベンゼンスルホン酸、各種アミンィ匕 合物、塩酸等を挙げることが出来る。それら各種のフエノール樹脂合成触媒の中でも 、フエノール樹脂粒子製造時の安全性等の観点から、好ましくは、アルキルベンゼン スルホン酸力 中でも、炭素数が 10以上のアルキル基を有するアルキルベンゼンス ルホン酸力 好適に用いられ得る。そのような炭素数が 10以上のアルキル基を有す るアルキルベンゼンスルホン酸としては、デシルベンゼンスルホン酸、ドデシルベンゼ ンスルホン酸、テトラデシルベンゼンスルホン酸、へキサデシルベンゼンスルホン酸、 ォクタデシノレベンゼンスルホン酸、及びこれらの混合物等を例示することが出来るが 、これらの中でも、経済性や入手容易性、触媒機能等の観点から、ドデシノレベンゼン スルホン酸力 特に有利に用いられ得る。
[0038] さらに、そのようなフエノール樹脂合成触媒の使用量は、触媒の種類、反応原料の 配合割合、反応条件等に応じて、適宜に決定されることとなる。例えば、上述の如き アルキルベンゼンスルホン酸を用いる場合には、フエノール類の 0. 5〜2. 0重量0 /0 程度の割合となるような量において、使用される。なお、本発明におけるフエノール樹 脂合成触媒として、アルキルベンゼンスルホン酸を用いると、その使用量は、従来の アルキルアミン化合物等を触媒として使用する場合の使用量と比較して、比較的少 量で足りるのであり、得られるフエノール樹脂粒子は、不純物の含有量が比較的少な いものとなるのである。尤も、アルキルベンゼンスルホン酸の存在下において、フエノ ール樹脂の生成反応が進行することから、得られるフエノール樹脂粒子にあっては、 硫黄化合物等の不純物を若干量、含有するものとなる。
[0039] このように、本発明に係る炭化物用硬化フエノール樹脂粒子の製造方法に従って 得られる炭化物用硬化フエノール樹脂粒子にあっては、保護コロイドと共に、本発明 にて規定される前記特定の化合物の存在下において、フエノール類とアルデヒド類と を反応せしめて得られるものであるところから、その樹脂粒子中に、かかる特定の化 合物が含有されるようになるのである。
[0040] すなわち、本発明に従う炭化物用硬化フエノール樹脂粒子は、その粒子中に、本 発明に規定される前記特定の化合物を含有し、そして、そのような硬化フエノール樹 脂粒子を焼成すると、かかる特定の化合物の作用によって炭化が促進され、焼成後 においては、高い残炭率を示すこととなる。そして、このような高い残炭率、換言すれ ば、高炭化収率の硬化フエノール樹脂粒子は、活性炭等の炭素材料用の原料として 、極めて有利に用いることが出来るのである。
[0041] ところで、本発明に従う炭化物用硬化フエノール樹脂粒子を製造するに際しては、 有利には、以下のような手法に従って、実施されることとなる。
[0042] 先ず、還流冷却器、温度計、攪拌機を備えた通常の反応槽内に、反応原料たるフ ェノール類及びアルデヒド類、保護コロイド、及び本発明にて規定される特定の化合 物、更に必要に応じて、フエノール樹脂合成触媒、希釈水 (蒸留水)、各種変性剤( 例えば、尿素、メラミン、グアナミン、ァニリン、トール油等)等が投入される。
[0043] ここで、保護コロイドの反応系への投入 (添加)時期は、縮合物 (反応生成物)が硬 化する前であれば良ぐ特に制限されるものではないが、一般的には、樹脂化 (乳化 )時又はそれ以前に添加することが好ましぐ特に、作業の簡素化等の観点から、反 応開始時より配合しておくことが望ましい。また、本発明において、造粒を円滑に実 施せしめ、且つ生成した未硬化フエノール樹脂粒子の凝集化を防止するためには、 反応系中の水分量を、フエノール類に対して 80重量%以上の割合となるように、好ま しくは、 100〜180重量%程度の割合となるように調整することが、廃液処理や生産 効率等の点からして、有利である。なお、力かる水分量の調整時期としては、反応開 始時又は保護コロイドの添カ卩時が、適当である。
[0044] 次いで、反応槽内のフエノール類等を攪拌しながら、反応槽内を、 0. 5〜2. 0°C/ 分程度の昇温速度にて加熱し、通常 70°C以上、好ましくは 90°C以上の温度(反応 温度)にて、所定時間、フエノール類の少なくとも 1種とアルデヒド類の少なくとも 1種と を反応させて、可融性の未硬化フエノール樹脂粒子を生成せしめる(工程 1)。そして 、引き続いて、反応温度と同温度、若しくは若干低めの温度にて、所定時間、反応を 継続させることにより、不融性の硬化フエノール樹脂粒子とするのである(工程 2)。な お、これら一連の反応に要する時間は、通常、 0. 5〜6時間程度である。
[0045] しかる後、反応槽内を冷却し、必要に応じて、フエノール樹脂合成触媒を中和した 後、濾過又は遠心分離器等の固液分離手段によって、生成した硬化フエノール樹脂 粒子を分離する。そして、その分離された硬化フエノール樹脂粒子を、必要に応じて 洗浄し、従来より公知の各種乾燥方法、例えば、風乾や加熱乾燥 (例えば、加熱、熱 風循環、振動、流動層等)等によって乾燥させることにより、 目的とする硬化フエノー ル樹脂粒子を得ることが出来るのである。
[0046] このようにして得られる硬化フエノール樹脂粒子の平均粒径については、炭化物を 得る目的においては、収率等に影響を及ぼすものではないため、特に限定されるも のではないが、本発明に従う製造方法によれば、一般的に、 lnm〜2mmの平均粒 径の小さな炭化物用硬化フエノール樹脂粒子を、容易に得ることが可能である。
[0047] なお、本発明においては、上記工程 1に従って生成した可融性の未硬化フヱノール 樹脂を、更にハンドリング可能な状態まで反応させた後、上記した手法と同様の手法 に従って、分離、及び必要に応じて洗浄した後、上記した加熱乾燥手法を用いて熱 硬化させることによって、不融性の炭化物用硬化フエノール樹脂粒子とすることも可 能である。
[0048] また、本発明に従って得られる炭化物用硬化フエノール樹脂粒子は、元来、未硬化 分が少ない不融性粒子ではある力 S、未硬化分が極めて少ないフエノール樹脂粒子が 要求される用途向きに、更に熱処理又は溶剤抽出を行うことも可能である。
[0049] さらに、本発明に従って製造された炭化物用硬化フエノール樹脂粒子を、従来より 公知の手法に従ってァセチル化することにより、粒子中のフエノール性水酸基の一部 力 Sァセチル化された、淡色の炭化物用硬化フエノール樹脂粒子を得ることも出来る。
[0050] そして、上述したような本発明に係る炭化物用硬化フエノール樹脂粒子を、焼成せ しめることによって、優れた収率で炭化物を得ることができる。この炭化収率 (残炭率) は、焼成条件などにもよる力 概ね 55%以上になる。なお、焼成条件については、炭 化物の収率を更に向上させる目的では、還元雰囲気下の条件が好ましく採用される
実施例
[0051] 以下に、本発明の実施例を幾つか示し、本発明を更に具体的に明らかにすることと する力 本発明が、そのような実施例の記載によって、何等の制約をも受けるもので ないことは、言うまでもないところである。また、本発明には、以下の実施例の他にも、 更には上記の具体的記述以外にも、本発明の趣旨を逸脱しない限りにおいて、当業 者の知識に基づいて、種々なる変更、修正、改良等が加え得るものであることが、理 解されるべきである。なお、本実施例において、得られた炭化物用硬化フエノール榭 脂粒子の残炭率及びリン含有量の測定は、以下のようにして行なった。
[0052] 残炭率の測定 秤量した Pt容器に、フヱノール樹脂粒子を秤量して収容し、 TG— DTA (差動型示 差熱天秤:株式会社リガク製 Thermo Plus 2シリーズ TG8120)を用いて、窒 素気流下で、力かる Pt容器を、室温から 800°Cまで、 10°C/分の昇温速度にて昇温 した時の、室温から 100°Cまでの重量減少率(%)と、 100°Cから 800°Cまでの重量 減少率(%)とを求め、下記の数 1より、算出されるものである。なお、「残炭率が高い」 ことは、高温下においても、フエノール樹脂粒子における有機化合物としての構造中 に含まれる炭素原子が、効率良くカーボン化してレ、ることを示してレ、る。
女 1コ
〔残炭率(%)〕
= (1— { (100°Cから 800°Cまでの重量減少率(%) ) /〔100— (室温から 100 °Cまでの重量減少率(%) )〕 }) X 100
[0053] リン含有量の測定
JIS— K— 0102の方法に準拠して、測定した。
[0054] 先ず、還流冷却器、温度計、及び攪拌機を備えた 1L反応フラスコ内に、フエノーノレ
: 300重量部及び 92%パラホルムアルデヒド: 125重量部と共に、保護コロイドとして アラビアゴムの 3重量部と、フエノール樹脂合成触媒としてドデシノレベンゼンスルホン 酸の 10%水溶液の 30重量部とを投入し、更に、 440重量部の希釈水 (蒸留水)をカロ えた。
[0055] 次いで、フラスコ内を攪拌しながら、フラスコ内の温度が還流温度となるまで、約 1°C Z分の昇温速度にて昇温 (加熱)し、更に還流温度にて保持したまま、反応を進行さ せ、フエノール樹脂粒子の生成から 45分経過以後は、生成した粒子の複合化を防 止するために、フラスコ内の温度を若干下げて、更に 4時間、保持することにより、生 成したフヱノール樹脂粒子を硬化せしめた。
[0056] そして、フラスコ内を水酸化ナトリウムにて中和し、冷却、濾過の後、洗浄 (湯洗—メ タノール洗浄)し、更に、減圧加熱乾燥することにより、硬化フエノール樹脂粒子 aを 製造した。
[0057] また、フエノール、 92%パラホルムアルデヒド、アラビアゴム、及び 10%ドデシルべ ンゼンスルホン酸水溶液と共に、更に、 89%リン酸を、下記表 1に掲げる割合におい て配合し、上記硬化フエノール樹脂粒子 aの製造の場合と同様の手法に従って、 4種 類の硬化フヱノール樹脂粒子 b〜eを得た。
[0058] さらに、フエノール、 92%パラホルムアルデヒド、アラビアゴム、及びイソデシルァシ ッドホスフェートを、下記表 1に掲げる割合において配合し、上記硬化フエノール樹脂 粒子 aの製造の場合と同様の手法に従って、硬化フエノール樹脂粒子 fを得た。
[0059] また、フエノール、 92%パラホルムアルデヒド、アラビアゴム、 89%リン酸及びイソデシ ルアシッドホスフェートを、下記表 1に掲げる割合において配合し、上記硬化フエノー ル樹脂粒子 aの製造の場合と同様の手法に従って、硬化フエノール樹脂粒子 gを得 た。
[0060] 保護コロイドとして、アラビアゴムの代わりに、ヒドロキシェチルセルロースを 3重量部 使用した以外は、硬化フエノール樹脂粒子 cの製造の場合と同様の手法に従って、 硬化フエノール樹脂粒子 hを得た。
[0061] また、 89%リン酸の代わりに、 1ーヒドロキシェタン 1 , 1ージホスホン酸を使用した以 外は、硬化フエノール樹脂粒子 cの製造の場合と同様の手法に従って、硬化フエノー ル樹脂粒子 iを得た。
[0062] さらに、 89%リン酸の代わりに、フエノキシホスファゼンを使用した以外は、硬化フエ ノール樹脂粒子 cの製造の場合と同様の手法に従って、硬化フエノール樹脂粒子 jを 得た。
[0063] 以上のようにして得られた各種の硬化フヱノール樹脂粒子について、その残炭率及 びリン含有量を、それぞれ、上記の手法に従って測定し、それらの結果を、下記表 1 に併せて示した。
[0064] [表 1]
Figure imgf000016_0001
力かる表 1の結果から明らかなように、本発明手法に従って製造された硬化フエノ- ル樹脂粒子 b〜jにあっては、特定の化合物を用いることなく製造された硬化フエノー ル樹脂粒子 aと比較して、残炭率が高いことが認められた。

Claims

請求の範囲
[1] リン酸類、リン酸エステル類、ホスファゼンィ匕合物、及び一般式: R—PO (OH) 〔但 し、 Rは、炭素原子を含み、且つ— COOH及び/又は— PO (〇H) を含む基である
。〕で示される有機ホスホン酸からなる群より選ばれた少なくとも 1種の化合物を含有 することを特徴とする炭化物用硬化フエノール樹脂粒子。
[2] 保護コロイドと共に、リン酸類、リン酸エステル類、ホスファゼンィ匕合物、及び一般式 : R-PO (OH) 〔但し、 Rは、炭素原子を含み、且つ— COOH及び/又は— PO (〇
H) を含む基である。〕で示される有機ホスホン酸からなる群より選ばれた少なくとも 1 種の化合物の存在下において、フエノール類とアルデヒド類とを反応させて、未硬化 のフエノール樹脂粒子を製造した後、かかる未硬化フエノール樹脂粒子を硬化せし めることを特徴とする炭化物用硬化フエノール樹脂粒子の製造方法。
[3] 前記リン酸類を存在せしめたときに、前記フヱノール類とアルデヒド類との反応が、 フエノール樹脂合成触媒の存在下に行われることを特徴とする請求項 2に記載の炭 化物用硬化フエノール樹脂粒子の製造方法。
[4] 前記フヱノール樹脂合成触媒力 アルキルベンゼンスルホン酸であることを特徴と する請求項 3に記載の炭化物用硬化フエノール樹脂粒子の製造方法。
[5] 有機相と水相とを分離させない条件下で、前記反応が行われることを特徴とする請 求項 2乃至請求項 4の何れか 1項に記載の炭化物用硬化フエノール樹脂粒子の製造 方法。
[6] 前記リン酸類が、前記フエノール樹脂に対して 0. 01〜: 10重量%の割合となるよう に存在せしめられることを特徴とする請求項 2乃至請求項 5の何れ力 1項に記載の炭 化物用硬化フエノール樹脂粒子の製造方法。
[7] 前記リン酸エステル類が、前記フエノール樹脂に対して 0.:!〜 30重量%の割合と なるように存在せしめられることを特徴とする請求項 2乃至請求項 5の何れ力 1項に記 載の炭化物用硬化フエノール樹脂粒子の製造方法。
[8] 請求項 1に記載の炭化物用硬化フエノール樹脂粒子を、焼成せしめることを特徴と する炭化物の製造方法。
[9] 請求項 2乃至請求項 7の何れか 1項に記載の製造方法で得られた炭化物用硬化フ ェノール樹脂粒子を、焼成することを特徴とする炭化物の製造方法。
リン酸類、リン酸エステル類、ホスファゼンィ匕合物、及び一般式: R_PO (〇H) 〔伹 し、 Rは、炭素原子を含み、且つ _C〇OH及び/又は _PO (〇H) を含む基である
。〕で示される有機ホスホン酸からなる群より選ばれた少なくとも 1種の化合物を含有 するフエノール樹脂の残炭率向上剤。
PCT/JP2006/322558 2005-12-02 2006-11-13 炭化物用硬化フェノール樹脂粒子及びその製造方法並びにそれを用いた炭化物の製造方法 WO2007063694A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005348933A JP2007153977A (ja) 2005-12-02 2005-12-02 炭化物用硬化フェノール樹脂粒子及びその製造方法並びにそれを用いた炭化物の製造方法
JP2005-348933 2005-12-02

Publications (1)

Publication Number Publication Date
WO2007063694A1 true WO2007063694A1 (ja) 2007-06-07

Family

ID=38092030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322558 WO2007063694A1 (ja) 2005-12-02 2006-11-13 炭化物用硬化フェノール樹脂粒子及びその製造方法並びにそれを用いた炭化物の製造方法

Country Status (2)

Country Link
JP (1) JP2007153977A (ja)
WO (1) WO2007063694A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164978A (ja) * 2015-02-27 2016-09-08 ダイニック株式会社 電気化学素子用電極およびその製造方法、ならびに下地層用塗料

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2078734B1 (en) 2006-10-20 2016-06-01 Air Water Inc. Non-thermofusible granular phenol resin, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
JP5496448B2 (ja) * 2007-09-27 2014-05-21 エア・ウォーター・ベルパール株式会社 分子ふるい炭素およびその製造方法、ならびに窒素発生装置
JP5281834B2 (ja) * 2008-07-04 2013-09-04 旭有機材工業株式会社 硬化フェノール樹脂粒子及びその製造方法並びにそれを用いた活性炭粒子の製造法
JP5476145B2 (ja) * 2010-02-01 2014-04-23 旭有機材工業株式会社 球状フラン−アルデヒド樹脂粒子の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037714A (ja) * 1989-06-05 1991-01-14 Asahi Organic Chem Ind Co Ltd 硬化フェノール樹脂粒子の製造方法
JPH05163007A (ja) * 1991-12-16 1993-06-29 Tokai Carbon Co Ltd 球体ガラス状カーボン粉末とその製造方法
JPH09124895A (ja) * 1995-11-02 1997-05-13 Dainippon Ink & Chem Inc 炭素材用熱硬化性樹脂組成物及びその硬化物
JP2000239335A (ja) * 1999-02-25 2000-09-05 Sumitomo Durez Co Ltd 高密度球状フェノール樹脂硬化物
JP2003206394A (ja) * 2002-01-16 2003-07-22 Otsuka Chemical Holdings Co Ltd エポキシ樹脂組成物
JP2004238378A (ja) * 2003-02-10 2004-08-26 Nippon Chem Ind Co Ltd リン酸エステル金属塩組成物、その製造方法、難燃剤及び難燃性樹脂組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037714A (ja) * 1989-06-05 1991-01-14 Asahi Organic Chem Ind Co Ltd 硬化フェノール樹脂粒子の製造方法
JPH05163007A (ja) * 1991-12-16 1993-06-29 Tokai Carbon Co Ltd 球体ガラス状カーボン粉末とその製造方法
JPH09124895A (ja) * 1995-11-02 1997-05-13 Dainippon Ink & Chem Inc 炭素材用熱硬化性樹脂組成物及びその硬化物
JP2000239335A (ja) * 1999-02-25 2000-09-05 Sumitomo Durez Co Ltd 高密度球状フェノール樹脂硬化物
JP2003206394A (ja) * 2002-01-16 2003-07-22 Otsuka Chemical Holdings Co Ltd エポキシ樹脂組成物
JP2004238378A (ja) * 2003-02-10 2004-08-26 Nippon Chem Ind Co Ltd リン酸エステル金属塩組成物、その製造方法、難燃剤及び難燃性樹脂組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164978A (ja) * 2015-02-27 2016-09-08 ダイニック株式会社 電気化学素子用電極およびその製造方法、ならびに下地層用塗料

Also Published As

Publication number Publication date
JP2007153977A (ja) 2007-06-21

Similar Documents

Publication Publication Date Title
WO2007063694A1 (ja) 炭化物用硬化フェノール樹脂粒子及びその製造方法並びにそれを用いた炭化物の製造方法
JP6390581B2 (ja) 液状レゾール型フェノール樹脂の製造方法、および湿式ペーパー摩擦材の製造方法
JP3879971B2 (ja) レゾール型フェノール樹脂の製造方法
JP4595751B2 (ja) ビフェニルアラルキル変性フェノール樹脂及びその製造方法、これを含むエポキシ樹脂成形材料。
JPS58118812A (ja) 粒状ノボラック樹脂の製法
JP2006232901A (ja) 硬化フェノール樹脂粒子の製造方法
JP2006232902A (ja) 硬化フェノール樹脂粒子の製造方法
JP4506213B2 (ja) 紙力増強用レゾール型フェノール樹脂乳濁液とその製造方法
JP5281834B2 (ja) 硬化フェノール樹脂粒子及びその製造方法並びにそれを用いた活性炭粒子の製造法
JP2005075938A (ja) ハイオルソノボラック型フェノール樹脂の製造方法
JP4191019B2 (ja) フェノールアラルキル樹脂の製造方法
JP2005154480A (ja) ノボラック型フェノール樹脂の製造方法
JP3874338B2 (ja) ノボラック型フェノール樹脂の製造方法
JP2005075936A (ja) ノボラック型フェノール樹脂およびその製造方法
JP2005179383A (ja) アラルキル変性フェノール樹脂の製造方法
JP2005105013A (ja) 摩擦材用レゾール型フェノール樹脂とその製造方法
JP2003292555A (ja) 固形レゾール型フェノール樹脂の製造方法
JP2006056960A (ja) レゾール型フェノール樹脂乳濁液及びその製造方法
JP2006016489A (ja) レゾール型フェノール樹脂及びその製造方法
JP2004250684A (ja) 耐火物結合剤用レゾール型フェノール樹脂とその製造方法
JP2004300649A (ja) 無機繊維結合用フェノール樹脂乳濁液の製造方法
JPS6119330B2 (ja)
JP2003212944A (ja) ノボラック型フェノール樹脂の製造方法
JP2005179382A (ja) ノボラック型フェノール樹脂の製造方法
JP2005095933A (ja) シェルモールド用ノボラック型フェノール樹脂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06823332

Country of ref document: EP

Kind code of ref document: A1