WO2007060876A1 - プラズマ処理装置およびプラズマ処理方法 - Google Patents

プラズマ処理装置およびプラズマ処理方法 Download PDF

Info

Publication number
WO2007060876A1
WO2007060876A1 PCT/JP2006/322844 JP2006322844W WO2007060876A1 WO 2007060876 A1 WO2007060876 A1 WO 2007060876A1 JP 2006322844 W JP2006322844 W JP 2006322844W WO 2007060876 A1 WO2007060876 A1 WO 2007060876A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
plasma processing
processing apparatus
support
substrate
Prior art date
Application number
PCT/JP2006/322844
Other languages
English (en)
French (fr)
Inventor
Yusuke Fukuoka
Katsushi Kishimoto
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to EP06832733A priority Critical patent/EP1959480A4/en
Priority to CN2006800518014A priority patent/CN101336467B/zh
Priority to US12/094,816 priority patent/US8093142B2/en
Priority to JP2007546414A priority patent/JP4728345B2/ja
Publication of WO2007060876A1 publication Critical patent/WO2007060876A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means

Definitions

  • the present invention relates to a plasma processing apparatus for manufacturing a semiconductor thin film and a plasma processing method using the same, and more specifically, a plasma processing apparatus using a reaction chamber into which a reaction gas is introduced and the plasma processing apparatus
  • the present invention relates to a plasma processing method to be used.
  • Patent Document 1 an apparatus that improves the uniformity of etching or vapor deposition in plasma chemical technology is known (see, for example, Patent Document 1).
  • Patent Document 1 US Pat. No. 4,264,393
  • plasma CVD devices used for manufacturing semiconductor thin films are generally arranged in pairs.
  • 'A device comprising a supported force sword and anode, a device for applying high-frequency power to one of the plate-shaped force sword and anode, and a reaction gas supply device for forming a thin film.
  • plasma CVD apparatus plasma is generated by applying high-frequency power while supplying a reactive gas between the force sword and the anode, thereby generating a plasma of the substrate installed between the force sword and the anode. A thin film is formed on the surface.
  • the gap between the force sword and the anode is called an interelectrode distance.
  • the distance between the electrodes has a certain range in which plasma can be effectively generated. In this range, the distance between the electrodes is controlled. The accuracy of the control should be as high as possible.
  • the interelectrode distance is generally controlled on the order of 1Z100 with respect to the interelectrode distance, that is, with an accuracy of about 1% of the interelectrode distance.
  • the method of controlling the distance between the electrodes ensures that the strength of the electrode force sword and the anode is sufficiently secured with respect to their size so as not to cause stagnation in the arranged force sword and anode. It is done by. Disclosure of the invention
  • An object of the present invention is to provide a plasma processing apparatus capable of obtaining a good film formability regardless of the stagnation of the electrode that occurs when the anode and the force sword, which are plate-like electrodes, have a large area. Is to provide.
  • a reaction chamber a gas introduction portion for introducing a reaction gas into the reaction chamber, an exhaust portion for exhausting the reaction gas from the reaction chamber, and a flat plate shape supported in the reaction chamber
  • the first electrode and the second electrode, and the first support and the second support that support the first electrode and the second electrode in a facing manner, the first electrode and the second electrode being the first support
  • a plasma processing apparatus is provided in which the maximum stagnation amount, which is the maximum subsidence processing due to its own weight in the state of being supported by the second support, is the same.
  • the structure of the large-area substrate can be reduced. A uniform semiconductor thin film can be obtained on the surface.
  • FIG. 1 is an explanatory diagram showing an overall configuration of a plasma processing apparatus (thin film manufacturing apparatus) according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram showing an overall configuration of a plasma processing apparatus (thin film manufacturing apparatus) according to Embodiment 2 of the present invention.
  • the maximum stagnation amount and the second electrode which are the maximum settling distance due to the weight of the first electrode.
  • the maximum amount of stagnation which is the maximum subsidence distance due to its own weight, is the same.
  • the shape, size and material of the first electrode and the second electrode are identical to each other” means that the two electrodes are mainly planar and flat. This means that the surface dimensions, thickness, and basic materials are not substantially different from the viewpoint of forming a semiconductor thin film having desired characteristics on the surface of the substrate.
  • the maximum amount of stagnation of the first electrode and the second electrode is the same as each other” means that both electrodes arranged in a predetermined state are swollen by their own weight according to their rigidity and sink for a certain distance.
  • the maximum amount of sag which is the maximum subsidence distance, is not substantially different from the viewpoint of forming a semiconductor thin film having desired characteristics on the surface of the substrate.
  • the first electrode and the second electrode can have a hollow structure.
  • a reaction gas flow path can be provided in the airspace, or an electrode heating heater can be provided.
  • first electrode and the second electrode are supported at the periphery, for example, so that they can be moved within a limited range.
  • free stagnation occurs due to its own weight in the first electrode and the second electrode, and the maximum stagnation amount of both electrodes becomes the same due to the above-described structural features.
  • a metal plate such as stainless steel or aluminum alloy can be used.
  • these metal plates are annealed at a predetermined annealing temperature, residual strain of the metal plates due to machining or the like is removed, and the same maximum stagnation amount can be obtained for both electrodes.
  • the maximum amount of stagnation that is, the maximum subsidence distance at this time is preferably 1% or more of the inter-electrode distance (distance between the first electrode and the second electrode). This is because, when the distance between the electrodes is less than 1%, it is difficult to compare the maximum amount of stagnation of both electrodes and to arrange them so that they are the same.
  • a substrate on which a film is formed by plasma treatment is formed by sandwiching the substrate along the sag of the first electrode and the second electrode. In this case, a glass substrate or the like is used as the substrate.
  • a substrate having a material strength such as glass is placed on a thin plate-shaped tray made of an aluminum alloy or the like, and the substrate and the tray are connected to the first electrode and the second electrode. It is also possible to carry out film formation by plasma treatment by bending it along the sag of the electrode.
  • the plasma processing apparatus according to the present invention is, for example, silicon-based by a plasma CVD method. Used to manufacture thin films.
  • Examples of the silicon-based thin film include a thin film having a crystalline strength and an amorphous structure mainly composed of silicon.
  • a gas containing silicon element can be used. Specifically, silane (SiH), disilane (SiH), etc. are used as the reaction gas.
  • silanes and disilanes can be diluted with hydrogen (H) or helium (He).
  • the silicon-based thin film manufactured by the plasma processing apparatus according to the present invention includes a carbonized silicon (SiC) film, a silicon nitride (SiN) film, and an oxide silicon (SiO) film. And SiGe film.
  • a gas such as CH or CH containing a carbon element is simultaneously introduced in addition to a gas containing a silicon element as a reaction gas.
  • the reactive gas is silicon.
  • gas containing Ge element gas such as GeH containing germanium element
  • impurities can be introduced into these silicon-based thin films to control conductivity.
  • n-type is used, PH is used, and when p-type is used, impurity elements such as BH are used.
  • the gas to be contained is introduced at the same time.
  • reaction chamber one capable of evacuating at least the inside to a vacuum can be used.
  • a reaction chamber can be made of, for example, stainless steel or aluminum alloy.
  • the reaction chamber has a structure that can be completely sealed using an O-ring or the like. It is preferable to do.
  • the gas introduction section is not particularly limited to the force that can be used, for example, conventionally used in a plasma CVD apparatus.
  • examples of the exhaust unit include a vacuum pump, An exhaust pipe connecting the reaction chamber and the vacuum pump, or a pressure controller provided in the middle of the exhaust pipe can be used.
  • a high frequency power supply unit for applying high frequency power between the first electrode and the second electrode is provided.
  • this high-frequency power supply section for example, a plasma excitation power supply and an impedance matching device, etc. can be used.
  • the first electrode and the second electrode those having a flat plate shape and made of a heat-resistant conductive material such as stainless steel, aluminum alloy, and carbon can be used. It is preferable that the first electrode and the second electrode have the same shape, size, and material. Also, if there is residual strain due to mechanical caulking, etc., it remains after annealing. I prefer to remove the distortion.
  • the first electrode has a hollow structure, for example, and may be an anode electrode with a built-in heater.
  • the second electrode has, for example, a hollow structure and has a large number of holes on the surface facing the first electrode. Even a force sword electrode with.
  • the first support and the second support are arranged so that the first electrode and the second electrode are orthogonal to the direction of gravity, that is, both the electrodes are horizontal. You may support. In such a configuration, for example, when the first electrode and the second electrode are substantially square, the first support and the second support are divided into four parts that support the four corners of the first electrode and the second electrode. Supporting one force each is good.
  • the four divided support pieces constituting the second support body are four struts that extend vertically upward in the bottom force of the reaction chamber. Are fixed to the top of each, respectively.
  • first support and the second support are not limited to those described above.
  • two frames that support only the edges of the first electrode and the second electrode respectively.
  • a frame-like gantry may be used, and furthermore, these two frame-like gantry may be formed integrally in a row.
  • the first support and the shape of the second support 'form can support the first electrode and the second electrode in parallel with each other, and at least of the first electrode and the second electrode.
  • it can be slidably supported, it is not particularly limited in any shape or form.
  • each of the first support and the second support has a locking projection for loosely locking the edges of the first electrode and the second electrode
  • the protrusions may be arranged such that a gap is formed between each edge of the first electrode and the second electrode and each locking protrusion.
  • each divided support piece may be provided with a locking projection.
  • the locking protrusions may protrude along the outer peripheral edge of each mount.
  • the first support and the second support may be made of an insulator.
  • the insulator constituting the first support and the second support for example, a heat-resistant material having excellent insulating properties and heat insulation properties such as glass, alumina, and zircoure can be exemplified.
  • a conductor may be used for the support on the installation side.
  • a plurality of pairs of the first electrode and the second electrode, and the first support and the second support may be provided in one reaction chamber.
  • the first electrode and the second electrode generate free stagnation in the direction of gravity by the above support method, and the size of the free stagnation, that is, the subsidence distance, is as described above. It is preferable that it is 1% or more of the gap distance between two electrodes (distance between electrodes).
  • the substrate on which the thin film is formed is placed between the first electrode and the second electrode, and follows the stagnation of the sufficiently thin first electrode and second electrode.
  • a glass substrate with a transparent conductive film coated on the surface can be used, and the substrate is placed on a tray 7 made of the same material as the first and second electrodes so that it can be easily transported. You can handle it.
  • the planar dimension of the tray 7 may be the same force as the substrate or a little larger.
  • the present invention uses the plasma processing apparatus according to the above-described one aspect, and the substrate on which the thin film is to be formed is bent along the sag of the first electrode and the second electrode. Between the first electrode and the second electrode.
  • the present invention also provides a plasma processing method for forming a semiconductor thin film on a substrate surface by applying high-frequency power to the substrate.
  • a plasma processing apparatus for producing a thin film according to Embodiment 1 of the present invention will be described with reference to FIG.
  • a plasma processing apparatus 100 for manufacturing a thin film according to Embodiment 1 includes a chamber 15, a gas introduction unit 28 for introducing a reaction gas into the chamber 15, and a chamber.
  • An exhaust unit 29 for exhausting the reaction gas in 15 and a high-frequency power source unit 30 for applying high-frequency power to the chamber 15 are provided.
  • a flat rectangular anode electrode (first electrode) 4 a flat rectangular force sword electrode (second electrode) 12, and both these electrodes 4 ⁇ 12 are parallel to each other.
  • a first support 6 and a second support 5 are provided for supporting the sliding support in a slidable manner.
  • the force sword electrode 12 has a shower plate 2 and a back plate 3 and is provided to face the anode electrode 4.
  • the chamber 15 has a rectangular planar shape, and includes a main body portion 9 and a door portion 8. Both the main body 9 and the door 8 can be made of stainless steel or aluminum alloy. The fitting part between the main body 9 and the door 8 is sealed with an O-ring (not shown).
  • An exhaust unit 29 including an exhaust pipe 20, a vacuum pump 21, and a pressure controller 22 is connected to the chamber 15 and is configured so that the inside of the chamber 15 can be controlled to an arbitrary degree of vacuum. Has been.
  • One first support 6 is provided on the rectangular bottom surface of the main body 9 of the chamber 15 in the vicinity of each corner, and the anode electrode 4 is placed on the first support 6. It has been.
  • the first support 6 is composed of four small block-shaped split support piece forces for reasons described later, and the four corners of the anode electrode 4 are supported by these four split support pieces, respectively.
  • the dimension of the anode electrode 4 is set to an appropriate dimension according to the dimension of the substrate 1 to be deposited.
  • the planar dimension of the substrate 1 was set to 900 550111111 to 1200 750111111
  • the planar dimension of the anode electrode 4 was set to 1000 ⁇ 600 mm to 1200 ⁇ 800 mm
  • the thickness was set to 10 to 50 mm.
  • the anode electrode 4 can be made of stainless steel, an aluminum alloy, carbon, or the like, but in the first embodiment, an aluminum alloy is used.
  • the anode electrode 4 has a hollow structure, and a heater (sheath heater) 24 is built in the hollow portion.
  • the anode electrode has a residual strain due to machining to make a hollow structure. For this reason, the working strain is removed from the anode electrode 4 by annealing before use.
  • This annealing process is performed using a sealed temperature sensor such as thermocouple 25.
  • the treatment temperature varies depending on the metal used as the anode electrode 4, but when an aluminum alloy is used, a temperature cycle is generally used in which annealing is performed after holding at 345 ° C.
  • the anode electrode 4 is merely placed on the first support 6 and is not fixed by screwing or the like. As a result, even if the anode electrode 4 is heated and expanded, the anode electrode 4 can slide on the first support 6 by the amount of expansion, so that the expansion is released and the gravity electrode is free to move downward. You can rub in.
  • the anode electrode 4 and the chamber 15 are electrically connected by four ground plates. That is, the ground plate is manufactured from an aluminum plate having a width of 10 to 35 mm and a thickness of 0.5 to 3 mm, and is attached to each of the four corners of the anode electrode 4.
  • the force sword electrode 12 is a hollow electrode composed of the shower plate 2 and the back plate 3. Both the shower plate 2 and the back plate 3 can produce a force such as stainless steel or aluminum alloy. Used.
  • the dimension of the force sword electrode 12 is set to an appropriate dimension according to the dimension of the substrate 1 to be deposited.
  • the force sword electrode 12 has a planar dimension of 1000 X 600 mn! By setting the thickness to ⁇ 1200 x 800mm and the thickness to 10 ⁇ 50mm, the same dimensions as the anode electrode 4 are achieved.
  • the force sword electrode 12 has a hollow inside and is connected to the gas introduction part 28 via the reaction gas pipe 23. The reaction gas introduced from the gas introduction unit 28 into the force sword electrode 12 through the reaction gas pipe 23 is discharged into a plurality of pore force showers formed in the shower plate 2 of the force sword electrode 12.
  • the plurality of holes of the shower plate 2 have a diameter of 0.1 to 2. Omm, and the adjacent holes may be formed to have a pitch of several mm to several cm. Desirable.
  • the shower plate 2 in the force sword electrode 12 is left with processing strain due to the mechanical casing, and therefore, processing strain is removed by annealing prior to use.
  • This annealing treatment is a force with different treatment temperatures depending on the metal used as the force sword electrode 12 and the shower plate 2.
  • a temperature cycle in which annealing is generally performed after holding at 345 ° C is generally used. Used.
  • the shower plate 2 in the force sword electrode 12 is provided on a total of four second supports 5 provided one at each of four corners spaced upward from the bottom surface of the main body 9 of the chamber 15. It is placed.
  • the second support 5 can be made of a force such as glass, alumina, or zirconium, and in the first embodiment, alumina or zirconium is used.
  • the force sword electrode 12 has only the shower plate 2 mounted on the second support 5 and is not fixed by screwing or the like. As a result, even if the force sword electrode 12 is heated and expands, the force sword electrode 12 is slid on the second support 5 by an amount corresponding to the expansion, so that the expansion is released and the force sword electrode 12 is freely swallowed by gravity.
  • the amount of stagnation that is, the subsidence distance when the anode electrode 4 and the force sword electrode 12 are freely squeezed by their own weight
  • the maximum amount of stagnation that is, the maximum amount of subsidence, of both electrodes 4 and 12 is also the same.
  • the maximum stagnation amount of the force sword electrode 12 is about 1.2 mm. This is 12% of 10 mm, which is a set gap (distance between electrodes) between the anode electrode 4 and the force sword electrode 12 used in the first embodiment.
  • the tolerance (interval accuracy) of the facing distance between the anode electrode 4 and the force sword electrode 12 is preferably within several% of the set value. Anode electrode 4 and force sword This is because if the tolerance of the distance between the electrodes 12 is 4% or more of the set value, a film thickness non-uniformity or non-deformable region of ⁇ 10% or more occurs. The tolerance of the facing distance is within 1% in the first embodiment.
  • Embodiment 1 a square glass substrate 1 having a length of about 10 mm x about 1000 mm and a thickness of about 2 mm is used, and the glass substrate 1 has the same dimensions and thickness so that the movement is easy. 1.
  • a high-frequency power supply unit 30 such as a plasma excitation power supply 10, an impedance matching unit 11, and the like is connected to the force sword electrode 12 through a power introduction terminal 27. Then, high frequency power is applied by the high frequency power source 30.
  • the plasma excitation power supply 10 uses electric power of 10 W to 100 kW at a frequency of DC to 108.48 MHz. In the first embodiment, a power of 10 W to: LOOkW is used at a frequency of 13.56 MHz to 54.24 MHz.
  • Si diluted with H is used.
  • the reaction gas consisting of H catalyst is introduced through the force sword electrode 12 at a predetermined flow rate and pressure
  • Glow discharge is generated by applying the high-frequency power between the cathode electrode 12 and the anode electrode 4.
  • a silicon thin film with a thickness of 300 nm is deposited on the surface of the substrate 1 with a deposition time of 10 minutes and a thickness distribution of ⁇ 10% or less.
  • the plasma processing apparatus 200 according to Embodiment 2 includes two sets of anode electrodes 4, force sword electrodes 12, and two sets of first support 6 and second support 5 in one chamber 9. It has a stage structure.
  • the first-stage force sword electrode 12 (by the first-stage second support body 5) is disposed above the first-stage anode electrode 4 supported by the first-stage first support body 6. Is supported).
  • a second-stage first support 6 for supporting the second-stage anode electrode 4 is provided above the first-stage force sword electrode 12.
  • the force plasma processing apparatus in which the plasma processing apparatus 200 has a two-stage configuration can be configured to have three or more stages by repeating the same configuration.
  • Each part configuration is substantially the same as in the first embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

 アノード電極およびカソード電極が大面積化したときに生じる電極の撓みにかかわらず良好な成膜性を得ることのできるプラズマ処理装置を提供する。  プラズマ処理装置100は、チャンバー15とガス導入部28と排気部29と高周波電源部30とを備えている。チャンバー15内には、平板状アノード電極(第1電極)4と、平板状カソード電極(第2電極)12と、両電極4・12を互いに平行にかつ摺動可能に支持する第1支持体6・第2支持体5とが配置されている。カソード電極12はアノード電極4に対向して設けられている。アノード電極4およびカソード電極12はそれぞれ、第1支持体6および第2支持体5の上に載置されているだけで、ネジ留めなどによる固定はされていない。アノード電極4とカソード電極12とが自重で自由に撓むときの撓み量は同一であり、両電極4・12の最大撓み量も同一となる。

Description

明 細 書
プラズマ処理装置およびプラズマ処理方法
技術分野
[0001] この発明は、半導体薄膜を製造するためのプラズマ処理装置およびこれを用いた プラズマ処理方法に関し、さら〖こ詳しくは、反応ガスが導入される反応室を利用する プラズマ処理装置およびこれを用いるプラズマ処理方法に関する。
背景技術
[0002] 従来、この種のプラズマ処理装置としては、プラズマ化学技術におけるエッチング あるいは蒸着の均一性を改善するようにしたものが知られて 、る(例えば特許文献 1 を参照)。
[0003] 特許文献 1 :米国特許第 4, 264, 393号明細書
[0004] また、半導体薄膜の製造に使用されるプラズマ CVD装置は一般に、対にして配置
'支持される力ソードおよびアノードを備え、平板状の力ソードおよびアノードのいず れか一方に高周波電力を印加する装置を備え、さらに、薄膜を形成するための反応 ガスの供給装置を備えてなる。そして、このプラズマ CVD装置では、力ソードとァノー ドとの間に反応ガスを供給しながら高周波電力を印カロしてプラズマを発生させること で、力ソードとアノードとの間に設置された基板の表面に薄膜を形成する。
[0005] この力ソードとアノードとの間隙は電極間距離と呼ばれている。電極間距離には、プ ラズマを効果的に発生させることのできる一定の範囲がある。この範囲において電極 間距離は制御される力 その制御の精度はできるだけ高いことが望ましい。そして、 電極間距離の制御は、一般には電極間距離に対して 1Z100のオーダーで、すなわ ち電極間距離の 1%程度の精度で行われる。また、電極間距離の制御の方法は、電 極である力ソードおよびアノードの剛性をそれらの大きさに対して十分に確保して、配 置された力ソードおよびアノードに橈みを生じさせないようにすることにより行われる。 発明の開示
発明が解決しょうとする課題
[0006] し力しながら、従来の技術では、電極の大型化に伴って基板が大型化した場合に は電極の剛性が不十分になり、所望の電極間距離精度を確保することができず、プ ラズマ処理を行ったときに良好な成膜性が得られないという問題がある。また、所望 の電極間距離精度を確保するために電極剛性をいつそう上げることも可能である力 その場合には、電極の厚さが増大することや電極の支持部の大型化などに伴ってプ ラズマ CVD装置が大型化するという問題がある。
[0007] この発明の課題は、平板状の電極であるアノードおよび力ソードが大面積ィ匕したと きに生じる電極の橈みにかかわらず良好な成膜性を得ることのできるプラズマ処理装 置を提供することにある。
課題を解決するための手段
[0008] この発明の 1つの観点によれば、反応室と、反応室に反応ガスを導入するガス導入 部と、反応室から反応ガスを排気する排気部と、反応室内に支持された平板状の第 1電極および第 2電極と、第 1電極および第 2電極を対向状に支持する第 1支持体お よび第 2支持体とを備え、第 1電極および第 2電極は、第 1支持体および第 2支持体 により支持された状態におけるそれぞれの自重による最大沈下処理である最大橈み 量が互いに同一になるように構成されていることを特徴とするプラズマ処理装置が提 供される。
発明の効果
[0009] この発明によるプラズマ処理装置にあっては、平板状の第 1電極および第 2電極が 大面積ィ匕したときに生じる電極の橈みにかかわらず、簡便な構造で大面積の基板の 表面に均一な半導体薄膜を得ることができる。
図面の簡単な説明
[0010] [図 1]この発明の実施形態 1によるプラズマ処理装置 (薄膜製造装置)の全体構成を 示す説明図である。
[図 2]この発明の実施形態 2によるプラズマ処理装置 (薄膜製造装置)の全体構成を 示す説明図である。
符号の説明
[0011] 1…基板 2· ··シャワープレート
3· ··裏板
4· ··アノード電極
5· ··第 2支持体
6· ··第 1支持体
7· トレー
8· ··扉部
9· ··本体部
lO- 'プラズマ励起電源
ll- •インピーダンス整合器
12· •力ソード電極
20· ,排気管
21· '真空ポンプ
22· '圧力制御器
23· •反応ガス管
24· '加熱器
25· ,熱電対
26· •接地線
27· '電力導入端子
28· 'ガス導入部
29· •排気部
30· •高周波電源部
発明を実施するための最良の形態
この発明によるプラズマ処理装置は、例えば第 1電極および第 2電極の形状、大き さおよび材質を互いに同一とすることで、第 1電極の自重による最大沈下距離である 最大橈み量と第 2電極の自重による最大沈下距離である最大橈み量とが同一となる 。なお、この明細書 (特許請求の範囲を含む)において、第 1電極および第 2電極の「 形状、大きさおよび材質が互いに同一」であるとは、両電極の、主として平面形状、平 面寸法、厚さおよび基本的材質が、基板の表面に所望特性の半導体薄膜を形成す る観点において実質的に差異がないことをいう。また、第 1電極および第 2電極の「最 大橈み量が互いに同一」であるとは、所定状態に配置された両電極がそれらの剛性 に応じて自重により橈んで一定距離だけ沈下するときに、最大沈下距離である最大 橈み量どうしが、基板の表面に所望特性の半導体薄膜を形成する観点において実 質的に差異がな 、ことを 、う。
[0013] また、第 1電極および第 2電極は、中空構造にすることができる。その場合には、中 空部分に、反応ガスの流路を設けることができ、あるいは電極加熱用ヒーターを設置 することができる。
[0014] さらに、第 1電極および第 2電極は、限定的範囲で移動させることができるように例 えば周辺部で支持される。このことによって、第 1電極および第 2電極には自重による 自由橈みが発生し、前記の構成上の特徴によって両電極の最大橈み量が同一にな る。
[0015] 第 1電極および第 2電極は、例えばステンレス鋼やアルミニウム合金などの金属板 を使用することができる。そして、これらの金属板に所定焼き鈍し温度で焼き鈍し処 理を行うと、機械加工などに起因する金属板の残留歪みが除去されて、両電極に同 一の最大橈み量が得られる。
[0016] このときの最大橈み量、すなわち最大沈下距離は、電極間距離 (第 1電極と第 2電 極との距離)の 1%以上であるのが好ましい。電極間距離の 1%に満たないときには、 両電極の最大橈み量を比較してこれらが同一になるように両電極を配置する作業が 困難であるからである。プラズマ処理による成膜を行う基板は、第 1電極および第 2電 極の橈みに沿うようにその基板を橈ませて薄膜の形成を行う。この場合、基板にはガ ラス基板等を使用する。
[0017] また、基板の取り扱いを簡単にするため、ガラス等の材質力もなる基板をアルミ-ゥ ム合金等でできた薄板状トレーの上に設置し、基板およびトレーを第 1電極および第 2電極の橈みに沿うように橈ませて、プラズマ処理による成膜を実施することもできる
[0018] この発明によるプラズマ処理装置は、例えば、プラズマ CVD法によってシリコン系 薄膜を製造するのに用いられる。
[0019] シリコン系薄膜としては、例えば、シリコンを主成分とする結晶質力 非晶質までの 薄膜を挙げることができる。反応ガスとしては、シリコン元素を含有するガスを用いるこ とができる。具体的には、反応ガスとしてシラン (SiH )、ジシラン (Si H )などを用い
4 2 6
ることができ、これらのシラン、ジシランを水素 (H )やヘリウム (He)などで希釈しても
2
よい。
[0020] また、この発明によるプラズマ処理装置で製造されるシリコン系薄膜には、他にも炭 化ケィ素 (SiC)膜、窒化ケィ素 (SiN)膜、酸ィ匕ケィ素 (SiO)膜、 SiGe膜などが挙げ られる。
[0021] 炭化ケィ素膜を製造する場合には、反応ガスとしてシリコン元素を含有するガスの 他に、炭素元素を含有する CH、 C Hなどのガスを同時に導入する。窒化ケィ素膜
4 2 6
を製造する場合には、反応ガスとしてシリコン元素を含有するガスの他に、窒素元素 を含有する NH、 NOなどのガスを同時に導入する。酸化ケィ素膜を製造する場合に
3
は、反応ガスとしてシリコン元素を含有するガスの他に、酸素元素を含有する NO、 C Oなどのガスを同時に導入する。 SiGe膜を製造する場合には、反応ガスとしてシリコ
2
ン元素を含有するガスの他に、ゲルマニウム元素を含有する GeHなどのガスを同時
4
に導入する。
[0022] さらに、これらのシリコン系薄膜には導電性を制御するために不純物を導入させて もよぐ n型とする場合には PHなどの、 p型とする場合には B Hなどの不純物元素を
3 2 6
含有するガスを同時に導入する。
[0023] この発明によるプラズマ処理装置において、反応室としては、少なくとも内部を真空 に排気することのできるものを用いることができる。このような反応室は、例えば、ステ ンレス鋼、アルミニウム合金などで製作することができ、 2以上の部材で構成する場合 には、嵌合部に Oリングなどを用いて完全に密閉できる構造とすることが好ましい。
[0024] この発明によるプラズマ処理装置にぉ 、て、ガス導入部としては、例えば、プラズマ CVD装置にぉ 、て慣用的に用いられて 、るものを用いることができる力 特にこれら に限定されない。
[0025] この発明によるプラズマ処理装置において、排気部としては、例えば、真空ポンプ、 反応室と真空ポンプとを接続する排気管、排気管の途中に設けられた圧力制御器な どで構成されたものを用いることができる。
[0026] この発明によるプラズマ処理装置において、第 1電極および第 2電極の間に高周波 電力を印加するための高周波電源部が設けられる。この高周波電源部としては、例 えば、プラズマ励起電源およびインピーダンス整合器などカゝら構成されたものを用い ることがでさる。
[0027] この発明によるプラズマ処理装置において、第 1電極および第 2電極としては、平板 状であってステンレス鋼、アルミニウム合金、カーボンなどの耐熱導電性材料カゝらなる ものを用いることができる。第 1電極および第 2電極の形状、大きさおよび材質は同一 であるのが好ましぐまた、機械カ卩ェなどでカ卩ェ歪みが残留している場合には、焼き 鈍し処理によって残留歪みを除去するのが好ま 、。
[0028] 第 1電極は例えば、中空構造を有し、ヒーターを内蔵したアノード電極であってもよ ぐ第 2電極は例えば、中空構造を有し、第 1電極との対向面に多数の孔を有する力 ソード電極であってもよ 、。
[0029] この発明によるプラズマ処理装置において、第 1支持体および第 2支持体は、第 1 電極および第 2電極を重力方向に対して直交するように、すなわち両電極が水平に なるように、支持してもよい。このような構成において、例えば第 1電極および第 2電極 がほぼ方形である場合に、第 1支持体および第 2支持体は、第 1電極および第 2電極 の各 4隅を支持する 4つの分割支持片力 それぞれなって 、てもよ 、。
[0030] 第 1支持体および第 2支持体が 4つの分割支持片からそれぞれなる場合、第 2支持 体を構成する 4つの分割支持片は、反応室の底面力 垂直上方へ延びる 4本の支柱 の上端にそれぞれ固定されて 、てもよ 、。
[0031] また、第 1支持体および第 2支持体の形状'形態としては、上述のものに限定されず 、例えば、第 1電極および第 2電極の縁のみをそれぞれ支持するような 2つの枠状架 台であってもよいし、さらには、これら 2つの枠状架台が上下に連なって一体に形成さ れているものでもよい。
[0032] このように、第 1支持体および第 2支持体の形状'形態は、第 1電極および第 2電極 を互いに平行に支持することができ、かつ、第 1電極および第 2電極の少なくとも一方 を摺動可能に支持することができれば、どのような形状,形態であってもよぐ特に限 定されるものではない。
[0033] また、この発明によるプラズマ処理装置において、第 1支持体および第 2支持体は、 第 1電極および第 2電極の縁をゆるく係止する係止用突起をそれぞれ有し、各係止 用突起は、第 1電極および第 2電極の各縁と各係止用突起との間に隙間が生じるよう に配置されていてもよい。
[0034] ここで、上述のように第 1支持体および第 2支持体をそれぞれ 4つの分割支持片で 構成する場合、各分割支持片には係止用突起を設けてもよい。また、上述のように第 1支持体および第 2支持体を 2つの枠状架台で構成する場合、各架台の外周縁に沿 つて係止用突起が突出して 、てもよ!/、。
[0035] また、第 1支持体および第 2支持体は絶縁物で構成されていてもよい。ここで、第 1 支持体および第 2支持体を構成する絶縁物としては、例えば、ガラス、アルミナまたは ジルコユアなどの絶縁性 ·断熱性に優れた耐熱材料を挙げることができる。また、第 1 電極および第 2電極の 、ずれか一方を設置する場合には、その設置する側の支持 体に導体を用いても構わな 、。
[0036] また、第 1電極および第 2電極と第 1支持体および第 2支持体とは、 1つの反応室内 に複数対ずつ設けられてもよ ヽ。
[0037] 第 1電極および第 2電極は、上記の支持方法によって重力方向に自由橈みを生じ るが、その自由橈みの大きさすなわち沈下距離は、上記のように、第 1電極と第 2電 極との間隙距離 (電極間距離)の 1%以上であるのが好ま U、。
[0038] 薄膜を形成する基板は、第 1電極および第 2電極の間に設置され、十分に薄ぐ第 1電極および第 2電極の橈みに沿うものとする。基板には、表面に透明導電膜を塗布 したガラス基板等の使用が考えられ、基板は、搬送しやすいように第 1電極および第 2電極と同一の材料等でできたトレー 7に設置して取り扱っても構わない。トレー 7の 平面寸法は、基板と同一である力、あるいは少し大きくてもよい。
[0039] また、この発明は別の観点からみると、上述の 1つの観点によるプラズマ処理装置 を用い、薄膜を形成すべき基板を第 1電極および第 2電極の橈みに沿うように橈ませ て両電極の間に配設し、反応室内に反応ガスを供給し、第 1電極および第 2電極間 に高周波電力を印力 tlして、基板表面に半導体薄膜を形成するプラズマ処理方法を 提供するものでもある。
[0040] 以下に、この発明の実施形態によるプラズマ処理装置について、図面に基づいて 詳細に説明する。なお、以下の複数の実施形態において、共通する部材には同じ符 号を用いて説明する。
[0041] 〔実施形態 1〕
この発明の実施形態 1による薄膜製造用プラズマ処理装置を、その全体構成を示 す図 1に基づいて説明する。
[0042] 図 1に示されたように、実施形態 1による薄膜製造用プラズマ処理装置 100は、チヤ ンバー 15と、チャンバ一 15内に反応ガスを導入するためのガス導入部 28と、チャン バー 15内の反応ガスを排気するための排気部 29と、チャンバ一 15内に高周波電力 を印加するための高周波電源部 30とを備えている。
[0043] チャンバ一 15内には、平板状の長方形アノード電極 (第 1電極) 4と、平板状の長方 形力ソード電極 (第 2電極) 12と、これら両電極 4· 12を互いに平行にかつ摺動可能 に支持するための第 1支持体 6 ·第 2支持体 5とが配置されている。力ソード電極 12は 、シャワープレート 2および裏板 3を有するとともに、アノード電極 4に対向して設けら れている。
[0044] ここで、チャンバ一 15は、平面形状が長方形であって、本体部 9と扉部 8とからなる 。本体部 9と扉部 8とはいずれも、ステンレス鋼またはアルミニウム合金などで製作す ることができる。本体部 9と扉部 8との嵌合部分は Oリング(図示せず)などを用いて密 閉されている。
[0045] チャンバ一 15には、排気管 20、真空ポンプ 21および圧力制御器 22からなる排気 部 29が接続されており、チャンバ一 15内を任意の真空度に制御することができるよう に構成されている。
[0046] チャンバ一 15の本体部 9の長方形底面にはそれぞれの隅部の近傍に 1つずつ第 1 支持体 6が設けられ、これらの第 1支持体 6の上にアノード電極 4が載置されて 、る。 第 1支持体 6は、後述の理由により、 4つの小ブロック状の分割支持片力 構成され、 これら 4つの分割支持片でアノード電極 4の 4隅がそれぞれ支持されている。 [0047] アノード電極 4の寸法は、成膜すべき基板 1の寸法に応じた適切な寸法に設定され ている。実施形態 1では、基板1の平面寸法を900 550111111〜1200 750111111に 設定し、これに対するアノード電極 4の平面寸法を 1000 X 600mm〜1200 X 800m mに設定し、厚みを 10〜50mmに設定した。
[0048] アノード電極 4は、ステンレス鋼、アルミニウム合金、カーボンなどで製作することが できるが、実施形態 1ではアルミニウム合金が用 ヽられて 、る。
[0049] アノード電極 4は、中空構造となっており、その中空部分に加熱器 (シースヒーター) 24が内蔵されている。アノード電極 4〖こは、中空構造とするための機械加工により加 ェ歪みが残留している。このため、アノード電極 4には、使用に先立って、焼き鈍し処 理により加工歪みの除去が行われる。この焼き鈍し処理は、熱電対 25などの密閉型 温度センサーを使用して行われる。また、焼き鈍し処理は、アノード電極 4として使用 する金属により処理温度が異なるが、アルミニウム合金を使用した場合には、一般に 345°Cに保持した後に徐冷する温度サイクルが用いられる。
[0050] アノード電極 4は、第 1支持体 6に載置されているだけで、ネジ留めなどによる固定 はなされていない。これにより、アノード電極 4は、加熱されて膨張しても、その膨張分 だけ第 1支持体 6上を摺動することができるので、膨張分が逃がされ、重力による自 重で下方へ自由に橈むことができる。
[0051] なお、アノード電極 4とチャンバ一 15とは、 4枚の接地板によって電気的に接続され ている。すなわち、接地板は、幅 10〜35mm、厚さ 0. 5〜3mmのアルミニウム板か ら製作され、アノード電極 4の 4隅にそれぞれ取り付けられて 、る。
[0052] 力ソード電極 12は、シャワープレート 2と裏板 3とからなる中空状の電極である。シャ ワープレート 2と裏板 3とはいずれも、ステンレス鋼、アルミニウム合金など力も製作す ることができるが、アノード電極 4と同一の材質力 製作するのが好ましぐ実施形態 1 ではアルミニウム合金が用いられて 、る。
[0053] 力ソード電極 12の寸法は、成膜すべき基板 1の寸法に応じた適切な寸法に設定さ れている。実施形態 1では、力ソード電極 12は、その平面寸法を 1000 X 600mn!〜 1200 X 800mmに設定し、厚みを 10〜50mmに設定することで、アノード電極 4と 同一の寸法にされている。 [0054] 力ソード電極 12は、その内部が中空であり、反応ガス管 23を介してガス導入部 28 に接続されている。ガス導入部 28から反応ガス管 23を通じて力ソード電極 12の内部 へ導入された反応ガスは、力ソード電極 12のシャワープレート 2に形成された複数の 孔力 シャワー状に放出される。
[0055] シャワープレート 2の複数の孔は、それぞれの直径が 0. 1〜2. Ommであって、隣 接する孔どうしの間隔が数 mm〜数 cmピッチとなるように形成されていることが望まし い。
[0056] 力ソード電極 12におけるシャワープレート 2には、機械カ卩ェによる加工歪みが残留 して 、ることから、使用に先立って焼き鈍し処理による加工歪みの除去が行われる。 この焼き鈍し処理は、力ソード電極 12およびシャワープレート 2として使用する金属に より処理温度が異なる力 これらにアルミニウム合金を使用した場合には、一般に 34 5°Cに保持した後に徐冷する温度サイクルが用いられる。
[0057] 力ソード電極 12におけるシャワープレート 2は、チャンバ一 15の本体部 9の底面か ら上方に離れた 4つの隅部に 1つずつ設けられた合計 4つの第 2支持体 5の上に載 置されている。第 2支持体 5は、ガラス、アルミナまたはジルコユアなど力も製作するこ とができ、実施形態 1ではアルミナまたはジルコ-ァが用いられている。
[0058] 力ソード電極 12は、そのシャワープレート 2が第 2支持体 5の上に載置されているだ けであり、ネジ留めなどによる固定はなされていない。これにより、力ソード電極 12は 、加熱されて膨張しても、その膨張分だけ第 2支持体 5の上を摺動することで膨張が 逃がされ、重力によって自重で自由に橈む。
[0059] アノード電極 4と力ソード電極 12とが自重で自由に橈むときの橈み量すなわち沈下 距離は同一であり、両電極 4· 12の最大橈み量すなわち最大沈下量も同一となる。 長辺長さ約 1000mm、短辺長さ約 600mm、厚さ 15mmの力ソード電極 12を使用し た実施形態 1では、力ソード電極 12の最大橈み量は、約 1. 2mmになる。これは、実 施形態 1で使用したアノード電極 4と力ソード電極 12との設定間隙 (電極間距離)であ る 10mmの 12%となっている。
[0060] アノード電極 4と力ソード電極 12との対向間隔の公差(間隔精度)は、設定値の数 %以内であることが望ましい。成膜条件により変化はするが、アノード電極 4と力ソード 電極 12との対向間隔の公差が設定値の 4%以上になると、 ± 10%以上の膜厚ムラ あるいは成膜不可領域が発生するからである。この対向間隔の公差は実施形態 1で は 1 %以内に収められて 、る。
[0061] 実施形態 1では、長さが約 lOOOmmx約 1000mmであって厚さが約 2mmである正 方形ガラス基板 1を用い、このガラス基板 1を、移動が簡単なように、同一寸法で厚さ 1. Ommのアルミニウム合金製正方形トレー 7の上に載置した状態でアノード電極 4 の上に配置した。アノード電極 4に対して、ガラス基板 1とトレー 7とは、十分に薄くて 軽ぐまた剛性がより低いため、アノード電極 4の橈みに沿って設置されたときに、ァノ ード電極 4の橈みを増加させることはほとんどな 、。
[0062] 力ソード電極 12には、プラズマ励起電源 10とインピーダンス整合器 11とカゝらなる高 周波電源部 30が電力導入端子 27を介して接続されている。そして、高周波電源部 3 0によって高周波電力が印加されるようになっている。プラズマ励起電源 10は、 DC 〜108. 48MHzの周波数で 10W〜100kWの電力を使用する。実施形態 1では、 1 3. 56MHz〜54. 24MHzの周波数で 10W〜: LOOkWの電力が使用されている。
[0063] 以上のような構成力もなる実施形態 1による薄膜製造装置 100に、 Hで希釈した Si
2
Hカゝらなる反応ガスを所定の流量と圧力とで力ソード電極 12を介して導入し、カソー
4
ド電極 12とアノード電極 4との間に上記高周波電力を印加してグロ一放電を発生さ せる。これにより、基板 1表面に膜厚 300nmのシリコン薄膜が成膜時間 10分、膜厚 分布 ± 10%以下で堆積される。
[0064] 〔実施形態 2〕
この発明の実施形態 2による薄膜製造用プラズマ処理装置を、図 4に基づいて説明 する。実施形態 2によるプラズマ処理装置 200は、 1つのチャンバ一 9の内部に、 2組 のアノード電極 4·力ソード電極 12と 2組の第 1支持体 6 ·第 2支持体 5を設けて、 2段 構成としている。
[0065] 具体的には、 1段目の第 1支持体 6により支持された 1段目のアノード電極 4の上方 に 1段目の力ソード電極 12(1段目の第 2支持体 5により支持されている)が配置されて いる。そして、この 1段目の力ソード電極 12の上方に、 2段目のアノード電極 4を支持 するための 2段目の第 1支持体 6が設けられている。このような 2段構成により、 2組の アノード電極 4·力ソード電極 12が上下に配置されている。
[0066] 実施形態 2では、プラズマ処理装置 200を 2段構成のものにした力 プラズマ処理 装置は、同様の構成を繰り返すことにより 3段以上の構成にすることも可能である。
[0067] なお、チャンバ一 15、ガス導入部 28、排気部 29、高周波電源部 30、各アノード電 極 4、各力ソード電極 12、各第 1支持体 6および各第 2支持体 5などの各部構成は実 施形態 1と実質的に同一である。

Claims

請求の範囲
[1] 反応室と、反応室に反応ガスを導入するガス導入部と、反応室から反応ガスを排気 する排気部と、反応室内に支持された平板状の第 1電極および第 2電極と、第 1電極 および第 2電極を対向状に支持する第 1支持体および第 2支持体とを備え、第 1電極 および第 2電極は、第 1支持体および第 2支持体により支持された状態におけるそれ ぞれの自重による最大沈下距離である最大橈み量が互いに同一になるように構成さ れて 、ることを特徴とするプラズマ処理装置。
[2] 第 1電極および第 2電極は、形状、大きさおよび材質が互いに同一である請求項 1 に記載のプラズマ処理装置。
[3] 第 1電極および第 2電極は、中空構造である請求項 1または 2に記載のプラズマ処 理装置。
[4] 第 1電極および第 2電極は、限定的範囲で移動させることができるように支持されて いる請求項 1〜3のいずれか 1つに記載のプラズマ処理装置。
[5] 第 1電極および第 2電極は、材質がアルミニウム合金である請求項 2に記載のブラ ズマ処理装置。
[6] 第 1電極および第 2電極は、焼き鈍しカ卩ェされている請求項 1〜4のいずれか 1つに 記載のプラズマ処理装置。
[7] 第 1電極および第 2電極は、所定の電極間距離だけ離して、かつ、それぞれの最大 橈み量が電極間距離の少なくとも 1 %になるような形状、大きさおよび材質力 構成さ れて、第 1支持体および第 2支持体により支持されている請求項 1〜4のいずれか 1 つに記載のプラズマ処理装置。
[8] 請求項 1〜7のいずれか 1つに記載のプラズマ処理装置を用い、被処理物である基 板を第 1電極および第 2電極の橈みに沿うように橈ませて両電極の間に配設し、ブラ ズマ処理を行うことによって、基板の表面に半導体薄膜を形成することを特徴とする プラズマ処理方法。
[9] ガラス基板を第 1電極および第 2電極のいずれか一方の上に載置する請求項 8に 記載のプラズマ処理方法。
[10] 被処理物である基板が第 1電極および第 2電極の橈みに沿うように橈んだ状態で両 電極の間に配設されて ヽる請求項 1に記載のプラズマ処理装置。
基板を配設するための薄板状トレーをさらに備えている請求項 10に記載のプラズ マ処理装置。
基板は、トレーの上に載置されて 、る請求項 11に記載のプラズマ処理装置。
PCT/JP2006/322844 2005-11-25 2006-11-16 プラズマ処理装置およびプラズマ処理方法 WO2007060876A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06832733A EP1959480A4 (en) 2005-11-25 2006-11-16 PLASMA PROCESSING DEVICE AND PLASMA PROCESSING METHOD
CN2006800518014A CN101336467B (zh) 2005-11-25 2006-11-16 等离子体加工装置和等离子体加工方法
US12/094,816 US8093142B2 (en) 2005-11-25 2006-11-16 Plasma processing apparatus and plasma processing method
JP2007546414A JP4728345B2 (ja) 2005-11-25 2006-11-16 プラズマ処理装置およびプラズマ処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-340847 2005-11-25
JP2005340847 2005-11-25

Publications (1)

Publication Number Publication Date
WO2007060876A1 true WO2007060876A1 (ja) 2007-05-31

Family

ID=38067107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322844 WO2007060876A1 (ja) 2005-11-25 2006-11-16 プラズマ処理装置およびプラズマ処理方法

Country Status (7)

Country Link
US (1) US8093142B2 (ja)
EP (1) EP1959480A4 (ja)
JP (1) JP4728345B2 (ja)
KR (1) KR101080437B1 (ja)
CN (1) CN101336467B (ja)
TW (1) TW200732505A (ja)
WO (1) WO2007060876A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101296554B (zh) * 2008-06-19 2011-01-26 友达光电股份有限公司 等离子体处理装置及其上电极板

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727588B2 (en) * 2003-09-05 2010-06-01 Yield Engineering Systems, Inc. Apparatus for the efficient coating of substrates
TW201101937A (en) * 2010-06-23 2011-01-01 Linco Technology Co Ltd High-density electrode device for plasma surface treatment
TWI489517B (zh) * 2013-05-07 2015-06-21 Univ Nat Taiwan 表面處理裝置及方法
CN104822219B (zh) * 2015-05-18 2017-09-19 京东方科技集团股份有限公司 等离子发生器、退火设备、镀膜结晶化设备及退火工艺
DE102018103949A1 (de) * 2018-02-21 2019-08-22 Christof-Herbert Diener Niederdruckplasmakammer, Niederdruckplasmaanlage und Verfahren zur Herstellung einer Niederdruckplasmakammer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148705A (en) 1976-03-03 1979-04-10 Dionex Corporation Gas plasma reactor and process
US4246393A (en) 1977-12-29 1981-01-20 Bayer Aktiengesellschaft Process for the preparation of poly(thio)hydantoins
EP1420081A2 (en) 2002-10-11 2004-05-19 Sharp Kabushiki Kaisha Thin film formation apparatus and thin film formation method employing the apparatus
JP2004149917A (ja) 2002-10-11 2004-05-27 Sharp Corp 薄膜製造装置およびその装置を用いた薄膜製造方法
JP2005260251A (ja) * 1999-04-06 2005-09-22 Tokyo Electron Ltd 載置台、プラズマ処理装置、および載置台の製造方法
JP2005333096A (ja) * 2003-06-25 2005-12-02 Sekisui Chem Co Ltd 表面処理装置及び方法
JP2006086470A (ja) * 2004-09-17 2006-03-30 Sharp Corp プラズマ発生装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264393A (en) * 1977-10-31 1981-04-28 Motorola, Inc. Reactor apparatus for plasma etching or deposition
JPH0314228A (ja) * 1989-06-13 1991-01-22 Nec Corp プラズマ処理装置
US5074456A (en) * 1990-09-18 1991-12-24 Lam Research Corporation Composite electrode for plasma processes
JP3884561B2 (ja) * 1998-04-10 2007-02-21 サムコ株式会社 プラズマクリーニング装置
US6073577A (en) * 1998-06-30 2000-06-13 Lam Research Corporation Electrode for plasma processes and method for manufacture and use thereof
US6461444B1 (en) * 1999-08-20 2002-10-08 Kaneka Corporation Method and apparatus for manufacturing semiconductor device
JP4856308B2 (ja) * 2000-12-27 2012-01-18 キヤノンアネルバ株式会社 基板処理装置及び経由チャンバー
US20040173313A1 (en) * 2003-03-03 2004-09-09 Bradley Beach Fire polished showerhead electrode
US7083702B2 (en) 2003-06-12 2006-08-01 Applied Materials, Inc. RF current return path for a large area substrate plasma reactor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148705A (en) 1976-03-03 1979-04-10 Dionex Corporation Gas plasma reactor and process
US4246393A (en) 1977-12-29 1981-01-20 Bayer Aktiengesellschaft Process for the preparation of poly(thio)hydantoins
JP2005260251A (ja) * 1999-04-06 2005-09-22 Tokyo Electron Ltd 載置台、プラズマ処理装置、および載置台の製造方法
EP1420081A2 (en) 2002-10-11 2004-05-19 Sharp Kabushiki Kaisha Thin film formation apparatus and thin film formation method employing the apparatus
JP2004149917A (ja) 2002-10-11 2004-05-27 Sharp Corp 薄膜製造装置およびその装置を用いた薄膜製造方法
JP2005333096A (ja) * 2003-06-25 2005-12-02 Sekisui Chem Co Ltd 表面処理装置及び方法
JP2006086470A (ja) * 2004-09-17 2006-03-30 Sharp Corp プラズマ発生装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1959480A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101296554B (zh) * 2008-06-19 2011-01-26 友达光电股份有限公司 等离子体处理装置及其上电极板

Also Published As

Publication number Publication date
JP4728345B2 (ja) 2011-07-20
EP1959480A4 (en) 2010-04-21
US20090253246A1 (en) 2009-10-08
TWI333510B (ja) 2010-11-21
US8093142B2 (en) 2012-01-10
EP1959480A1 (en) 2008-08-20
KR101080437B1 (ko) 2011-11-04
KR20080070771A (ko) 2008-07-30
CN101336467A (zh) 2008-12-31
JPWO2007060876A1 (ja) 2009-05-07
TW200732505A (en) 2007-09-01
CN101336467B (zh) 2010-05-26

Similar Documents

Publication Publication Date Title
JP3801730B2 (ja) プラズマcvd装置及びそれを用いた薄膜形成方法
CN102376564A (zh) 用于提高氮化硅批间均匀度的非晶硅陈化作用
WO2007060876A1 (ja) プラズマ処理装置およびプラズマ処理方法
US7032536B2 (en) Thin film formation apparatus including engagement members for support during thermal expansion
JP4185483B2 (ja) プラズマ処理装置
JP3970815B2 (ja) 半導体素子製造装置
KR101224669B1 (ko) 플라즈마 처리 장치
WO2011104803A1 (ja) プラズマ生成装置
JP4936297B2 (ja) プラズマ処理装置およびプラズマ処理方法ならびに半導体素子
JP4421864B2 (ja) 薄膜製造装置およびその装置を用いた薄膜製造方法
JP4890313B2 (ja) プラズマcvd装置
JP2012507133A (ja) 基板上にプロセシングされる材料の均一性を改善する堆積装置及びこれを使用する方法
JP2004091885A (ja) 薄膜製造装置およびその装置を用いた薄膜製造方法
JP2562686B2 (ja) プラズマ処理装置
JP4290207B2 (ja) 半導体素子製造装置および半導体素子製造方法
JP3968649B2 (ja) 薄膜形成方法と装置
JP3581813B2 (ja) 薄膜製造方法並びに薄膜太陽電池の製造方法
JP3808339B2 (ja) 薄膜形成方法
JP3396395B2 (ja) アモルファス半導体薄膜の製造装置
KR20090073272A (ko) 레이저 빔이 결합된 용량 결합 전극을 이용한 기판 처리방법
JPS59161828A (ja) 反応装置
JPH06283436A (ja) プラズマcvd法及びプラズマcvd装置
JPH05160028A (ja) 表面処理装置
JPH11100672A (ja) プラズマ気相反応装置
JPS63274126A (ja) 高周波印加電極構成体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007546414

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006832733

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: KR

Ref document number: 1020087015329

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680051801.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12094816

Country of ref document: US