WO2007043699A1 - 培養容器及び培養方法 - Google Patents

培養容器及び培養方法 Download PDF

Info

Publication number
WO2007043699A1
WO2007043699A1 PCT/JP2006/320798 JP2006320798W WO2007043699A1 WO 2007043699 A1 WO2007043699 A1 WO 2007043699A1 JP 2006320798 W JP2006320798 W JP 2006320798W WO 2007043699 A1 WO2007043699 A1 WO 2007043699A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
permeability
permeable membrane
gas
carbon dioxide
Prior art date
Application number
PCT/JP2006/320798
Other languages
English (en)
French (fr)
Other versions
WO2007043699A9 (ja
Inventor
Satoshi Tanaka
Yasushi Hatano
Original Assignee
Toyo Seikan Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha, Ltd. filed Critical Toyo Seikan Kaisha, Ltd.
Priority to CN200680046267.8A priority Critical patent/CN101326279B/zh
Priority to US12/083,327 priority patent/US20090258417A1/en
Priority to EP06811987.4A priority patent/EP1935974B1/en
Publication of WO2007043699A1 publication Critical patent/WO2007043699A1/ja
Publication of WO2007043699A9 publication Critical patent/WO2007043699A9/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/04Flat or tray type, drawers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/14Bags
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/24Gas permeable parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/26Constructional details, e.g. recesses, hinges flexible

Definitions

  • the present invention relates to a culture vessel and a culture method, and more particularly to a sealed culture vessel excellent in oxygen / carbon dioxide gas exchange and suitable for culturing cells, microorganisms, and the like under low humidity. And a culture method.
  • the humidity of the incubator used for culturing cells, microorganisms, etc. is very high at 95% or more, and there are hygiene problems such as the generation of mold bacteria. It is important in the culture of Therefore, it is necessary to strictly manage hygiene as well as humidity control, and it is necessary to sterilize the humidifying water in the incubator to prevent the generation of bacteria. Sterile water must be replenished regularly. Furthermore, after being placed in the incubator cabinet, it must be sterilized by UV irradiation as necessary in order to maintain the sterility of the humidifying water, so UV irradiation equipment is required in the incubator. As described above, the conventional culture of cells, microorganisms, etc. has a problem that it is necessary to keep the inside of the incubator at a high humidity, so that the humidity management and the hygiene management are troublesome and the culture cost is also high.
  • Japanese Patent Laid-Open No. 6-3-2 1 4 1 78 Japanese Utility Model Laid-Open No. 2-9 3 999, Japanese Utility Model Laid-Open No. 4 1 1 2 9 8 0 0, and Japanese Patent Application Laid-Open No.
  • the culture bag disclosed in 7 2 6 8 is designed with high gas permeability of the container material itself in consideration of the gas exchange capacity of oxygen and carbon dioxide, etc. Gas diffusion in the culture solution becomes rate-limiting, and there is a difference in the dissolved gas concentration between the container wall and the part farthest from the container wall, and the optimal dissolved gas concentration cannot be achieved. There was a problem that the culture efficiency was inferior.
  • a gas permeable membrane as disclosed in Japanese Patent Application Laid-Open No. 2 0 4-1 2 9 5 6 8 and Special Table 2 0 0 4-5 1 4 4 3 2 is used.
  • Rigid, flat and thin culture vessels equipped are proposed and used. This culture vessel is flat and thin and has a large surface area relative to the volume of the culture solution, so it has good residue exchange capacity.To use under low humidity, there is too much water vapor to evaporate, and the concentration of the culture solution components changes. There are various problems that arise. That is, it is due to the evaporation of moisture As a result, the concentration of the buffer system in the culture medium increases and the pH increases, leading to a decrease in cell activity and a decrease in culture efficiency, and even cell damage.
  • Buffers used in the culture medium include HEPES buffer (N-2-hydroxyethylbiperazine-N'_2-ethanesulfonic acid buffer), Earl salt, and buffer using Hanks salt composition.
  • HEPES buffer N-2-hydroxyethylbiperazine-N'_2-ethanesulfonic acid buffer
  • Earl salt buffer using Hanks salt composition.
  • HEPES buffer N-2-hydroxyethylbiperazine-N'_2-ethanesulfonic acid buffer
  • Earl salt buffer using Hanks salt composition.
  • the amount of water evaporated from the culture vessel increases as the temperature increases. This is due to the high moisture permeability of the material composing the container, but mainly due to the low relative humidity.
  • the saturated water vapor pressure at 37 ° C is almost twice that at 25 ° C, so the relative humidity at 25 ° C Even at 50%, it becomes 25%, half of that at 37 ° C, and the evaporation rate is about 15 times. If the humidity is not adjusted, it is quite possible that such low humidity will occur at a temperature in the vicinity of 37 ° C, and it is important to consider this, but there are no culture vessels that take this into consideration.
  • the present invention has been made in view of the above problems of the conventional cell culture vessel, and it is more hygienic when culturing is performed at a low humidity than at a high humidity where strict humidity management and hygiene management are required. Focusing on the advantages in all aspects such as cost, management, etc., it has a high gas exchange capacity in a culture vessel partly composed of a gas permeable membrane, and also due to the evaporation of water in the culture solution even at low humidity Cultivation container and culture method that suppresses changes in concentration within a range that does not cause problems and enables long-term culture of cells, microorganisms, etc. Is to provide.
  • the culture vessel of the present invention that achieves the above object has a gas permeable membrane and has a specified internal volume.
  • a culture vessel having a flat shape as a whole and having the gas permeable membrane on at least one side.
  • the culturing method of the present invention that achieves the above object is characterized in that when the weight of the infusion medium is m (g) and the culturing time is t (hr), the culture vessel is used and the pH 20 XS at a relative humidity of 50% or less. It is characterized by culturing so that / mX t / 24 ⁇ 0.10.
  • the culture target is an animal cell.
  • the culture container of the present invention has a high gas exchange ability of oxygen and carbon dioxide gas, and is troublesome such as strict sterilization by humidity control, periodic supply of sterilized water, and sterilization by ultraviolet irradiation of humidifying water in the cabinet. Hygienic management is unnecessary, and at low humidity, where culture costs can be saved, changes in concentration due to water evaporation in the culture solution can be kept within the range where no problems occur.
  • the culture method of the present invention strict humidity control and hygiene management are not required, and hygiene, cost, and management are performed by culturing at a relative humidity of 50% or less using the culture vessel. Under low humidity, which is advantageous, etc., the concentration change caused by evaporation of the water in the culture solution is suppressed within a range where no problem occurs, and long-term culture is possible under optimum conditions.
  • FIG. 1 shows a cell culture vessel according to one embodiment of the present invention, in which (a) is a perspective view and (b) is a cross-sectional view taken along line AA in FIG. 1 (a).
  • the culture container according to the present invention is a hermetically sealed culture container, and can be constituted by a bag-shaped culture bag made of a flexible resin sheet as described in each patent document.
  • a preferred container form is the above-mentioned JP-A-2004-129568.
  • the container is a generally flat sealed container made of a material having rigidity, and is opposed to each other while being spaced apart from each other.
  • a container having two planar surfaces and side portions between the planar surfaces and having a gas permeable membrane on at least one of the planar surfaces.
  • FIG. 1 shows one embodiment of a culture vessel according to the present invention, in which (a) is a perspective view and (b) is a cross-sectional view taken along line AA in FIG. 1 (a).
  • the culture container 1 for cells and the like is a rectangular and flat container as a whole, and is made of a plastic having a certain degree of flexibility and rigidity, such as polyethylene, polypropylene, and vinyl chloride.
  • the frame body 2 is formed with a long side portion 3, a short side portion 4 and a window portion 5 by injection molding or the like.
  • the frame body 2 is appropriately arranged so as to face the front and back of the frame body 2 at a predetermined interval of the thickness of the frame body 2.
  • Gas permeable membranes 5 and 5 are formed by the means.
  • the frame 2 is provided with a step so that the outer peripheral side is thicker and the inner peripheral side is thinner.In order to secure rigidity on the outer peripheral side and to attach a member for filling and taking out the content liquid
  • the inner window is thick enough to secure the necessary parts, and the inner window is adjusted to a thickness sufficient to ensure the specified liquid filling space.
  • the gas permeable membrane 5 is made of a material and a material that allow passage of culture gas and does not allow passage of microorganisms and the like that contaminate cells, and an appropriate one is selected from the resins described later.
  • the culture vessel 1 is composed of a frame 2 and a space 6 formed by gas permeable membranes 5 and 5 formed on the front and back of the frame 2 [(FIG. 1 (b)] force.
  • the content liquid filling space for storing the liquid is constructed, and the volume of this space 6 becomes the specified internal volume of the container 1.
  • a content liquid filling tube 7 and a take-out tube 8 are attached to one 3 a of the long side portion 3 of the frame 2, and a mixed solution of cells and culture medium is supplied from the content liquid filling tube 7.
  • Fill the container 1 with a certain content liquid seal it appropriately with known means, and after completion of filling and sealing the content liquid, culturing was performed for a predetermined time at a predetermined temperature, humidity, gas composition and concentration, and the culture was completed.
  • the content liquid is taken out from the content liquid take-out pipe 8 later.
  • the container 1 may have a form in which the internal volume can be changed.
  • the specified internal volume V is variable, but since the area S of the gas permeable membrane 5 is constant, the cells to be cultured, etc. Even if the specified internal volume of the container 1 is variable according to the amount of the culture solution to be filled, the culture can be performed within the range of the determined culturable internal volume.
  • the gas permeable membrane 5 must be made of a material with excellent oxygen and carbon dioxide gas exchange capacity and extremely low moisture permeability so that it is suitable for cultivation under low humidity, and oxygen at 37 ° C. P transmittance. 2 , carbon dioxide permeability Pc . 2 , the water vapor permeability is P H2 .
  • the gas permeable membrane 5 is P. 2 XS / V> 2.0 oxygen permeability, P C. 2 XS / V> 8.0 carbon dioxide permeability and P H2 . It is necessary to have a moisture permeability of XS / V ⁇ 0 0 2
  • the gas permeable membrane 5 is P. 2 XS / V> 2.0 oxygen permeability, P C. 2 XS / V> 8.0 carbon dioxide permeability and P H2 . It is necessary to have a moisture permeability of XS / V ⁇ 0 0 2 The
  • the gas permeable membrane 5 is made of a material whose oxygen permeability, carbon dioxide permeability, and moisture permeability are not affected by relative humidity.
  • the gas permeable membrane 5 is a simple substance mainly composed of polyolefin or fluororesin. The one that consists of layers or layers is preferred.
  • one of the olefins such as ethylene, propylene, butene, pentene, hexene, heptene, and octene, and cyclic olefins such as norbornene and tetracycline dodecene is used.
  • Taneno Homopolymers or copolymers polymerized from several types of olefinic monomers, such as polyethylene, polypropylene, polybutene-1, poly-4-methyl-pentene-1, polyolefins such as cyclic olefin copolymers
  • examples of the material include fluorine resins such as polystyrene, tetrafluoroethylene / hexafluoropropylene copolymer, silicone polymers, and the like. Appropriate according to the culture conditions such as the type and humidity of the incubator It is preferable to select one.
  • the gas permeable membrane 5 has a certain degree of tension so as not to loosen when formed on the frame and has excellent visible light permeability.
  • the specified internal volume V (ml) of the culture vessel is in a space surrounded by the gas permeable membrane and the frame body, the gas permeable membrane is kept in equilibrium with the facing surface, and the culture space is completely filled with the culture solution.
  • the amount of the culture solution in a fresh state is the specified internal volume V (ml) of the culture vessel.
  • the membrane area S (cm 2 ) of the gas permeable membrane is the membrane area calculated on the assumption that the membrane is a smooth membrane surrounded by a frame without taking into account the fine irregularities on the membrane surface.
  • Oxygen permeability and carbon dioxide permeability were measured using a gas permeability measuring device (GPM-250 GL Sciences) with a mixed gas consisting of nitrogen (65%), oxygen (15%) and carbon dioxide (20%). Used as feed gas and measured at 37 ° C.
  • the moisture permeability is 3 7 using a moisture permeability measuring device (PERMATRAN—W 3/30 Mocon). Measured with C.
  • the total number of collected cells was counted, and the multiplication factor was determined from the total number of cells seeded at the start of the culture. Considering loss during collection and variation in counting, cells that give a growth rate of 90% or more to cells cultured under relative humidity of 100% (control) are indicated by ⁇ .
  • the growth factor was represented by X.
  • Thickness' 1 0 consisting of a polypropylene (PP) layer with a thickness of 20 m and a linear low-density polyethylene (L LD PE) layer with a meta-xacene catalyst with a thickness of 80 xm on the front and back of the window part of this frame
  • PP polypropylene
  • L LD PE linear low-density polyethylene
  • a 0 ⁇ m co-extruded film was used as a gas permeable membrane and heat sealed with the L LD PE layer on the inside to prepare a culture vessel having the structure shown in FIG.
  • the cells were cultured for 95 hours in an atmosphere of 37 ° C., relative humidity 20%, and carbon dioxide concentration 5%, and the evaporation rate of the culture solution (content solution) and growth rate were evaluated.
  • the gas permeable membrane of the culture vessel has a thickness of 3 0 11? (Mitsui Chemicals Poly-4-methylpentene-1) and 70 im thick L LD PE were laminated and laminated with urethane adhesive, and cultured and evaluated in the same manner as in Example 1. It was.
  • the gas permeable membrane of the culture vessel is 1 ⁇ £ with a thickness of 3 0 111? (Daikin Kogyo Tetrafluoroethylene 'hexafluoropropylene copolymer) and 70 ⁇ m thick L LD ⁇ ⁇ laminated with urethane adhesive Culturing was carried out in the same manner as in Example 1 except that the volume was changed to Lum.
  • Example 2 Culturing was carried out in the same manner as in Example 1 except that a polystyrene (PS) frame was used and the gas permeable membrane of the culture vessel was changed to a PS film having a thickness of 1 OO ⁇ um as shown in Table 1. Evaluation was performed.
  • PS polystyrene
  • a 100 ⁇ m-thick L LD PE film is sealed in all directions, and a culture bag with a non-heat-sealed inner part with a long side length of 21 5 mm and a short side length of 15 Omm is created.
  • the culture was carried out in the same manner as in Example 1 except that the back vessel wall was used as a permeable membrane and the culture vessel shown in Table 1 was used for evaluation.
  • Example 1 the culture was conducted and evaluated in the same manner as in Example 1, except that the thickness of the window portion of the frame was 6 mm, so that the specified internal volume of the culture vessel was tripled.
  • Oxygen permeability Po2, carbon dioxide permeability Pco2, and moisture permeability PH2O were measured at 37 ° C and relative humidity 90 ⁇ 1 ⁇ 2.
  • the cell culture containers of Examples 1 to 3 all satisfy the required performance of the present invention in all of the oxygen exchange capacity, carbon dioxide exchange capacity, and water vapor barrier capacity. The value is satisfied, indicating that the cell culture vessel is suitable for cell culture under low humidity.
  • the cell culture container of Comparative Example 1 has all of oxygen permeability (oxygen exchange ability), carbon dioxide permeability (carbon dioxide exchange ability) and moisture permeability (water vapor barrier ability). 3 and 3 do not meet the required performance of the present invention in terms of oxygen permeability (oxygen exchange capacity) and carbon dioxide permeability (carbon dioxide exchange capacity), and are not suitable as culture containers under low humidity. It turns out that it is.
  • the culture container according to the present invention can be used for culturing microorganisms, but is particularly suitable for culturing animal cells.
  • the culture temperature is generally 35 to 40 ° C. for animal cells and 15 to 60 ° C. for microorganisms such as E. coli. Industrial applicability
  • the present invention can be applied to a culture method and a culture vessel.
  • the present invention has a high gas exchange capacity for oxygen and carbon dioxide gas, and also has strict humidity control and sterilization water control.
  • There is no need for troublesome hygiene management such as periodic supply and sterilization of the humidifying water by ultraviolet irradiation, and the concentration change caused by moisture evaporation of the culture solution is a problem at low humidity that can save culture costs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Clinical Laboratory Science (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Mushroom Cultivation (AREA)

Abstract

ガス透過膜を有し、規定内容量をV(ml)、ガス透過膜の膜面積をS(cm2)、37℃おける酸素透過率をPO2(ml/cm2・day・atm)、二酸化炭素透過率をPCO2(ml/cm2・day・atm)、透湿度をPH2O(g/cm2・day)としたとき、ガス透過膜がPO2×S/V>2.0の酸素透過率、PCO2×S/V>8.0の二酸化炭素透過率、かつ、PH2O×S/V<0.02の透湿度を有する培養容器。

Description

明細書 培養容器および培養方法 技術分野 本発明は、 培養容器および培養方法に関し、 特に酸素 ·炭酸ガスのガス交換 能に優れ、 低湿度下での細胞、 微生物等の培養に適した密閉系培養容器および 培養方法に関する。 背景技術
一般に細胞、 微生物等の培養に用いられるィンキュベータ一の庫内の湿度は 9 5 %以上と非常に高く、 カビゃ細菌の発生など衛生面での問題があり、 この 問題は特に医療用での細胞の培養においては重要である。 したがって、 湿度管 理と共に衛生管理を厳重に行わなければならず、 インキュベータ一庫内に入れ る加湿用水は力ビゃ細菌の発生を防止するために予め滅菌しておく必要があり、 かつ、 この滅菌水を定期的に補充しなければならない。 さらに、 インキュベー ター庫内に入れた後も、 加湿用水の無菌性を保っために必要に応じて紫外線照 射により滅菌しなければならないのでインキュベーター内に紫外線照射設備が 必要である。 このように、 従来の細胞、 微生物等の培養に関しては、 インキュ ベータ一内を高湿度に保つ必要があるため、 湿度管理と衛生管理が面倒であり、 培養のコストもかかるという問題点がある。
この衛生性等の問題を解決するため、 従来種々の密閉系の培養容器が提 案され、 使用されてきた。 たとえば、 特開昭 6 3— 2 1 4 1 7 8号公報、 実開 平 2— 9 3 9 9 9号公報、 実開平 4一 1 2 9 8 0 0号公報、 および特開平 3— 2 7 7 2 6 8号公報に開示されている培養バッグでは、 酸素と二酸化炭素等の ガス交換能を考慮して容器素材自体のガス透過性は高く設計されているが、 培 養液量が多く、 培養液の中のガス拡散が律速となり、 容器壁近傍と容器壁から 最も離れた部分では溶存ガス濃度に差を生じ、 最適溶存ガス濃度が達成できず、 そのため開放系での培養と比較して培養効率に劣るという問題点を有していた。
また、 培養バッグに代わるものとして、 特開 2 0 0 4— 1 2 9 5 6 8号 公報および特表 2 0 0 4 - 5 1 4 4 3 2号公報に開示されるようなガス透過膜 を備えたリジッドな扁平薄型の培養容器が提案され、 使用されている。 この培 養容器は、 扁平薄型で培養液量に対し表面積が大きいため、 カス交換能はよい 、 低湿度下で使用するには蒸発する水蒸気量が多過ぎ、 培養液成分の濃度変 化に伴って生じる種々の問題点がある。 すなわち、 水分が蒸発することによつ て、 培養液中の緩衝系の濃度が高まり p Hが上昇して、 細胞活度の低下や培養 効率の低下を引き起こし、 さらには細胞を損傷することがある。
また、 培養液に用いられている緩衝液には HEPES緩衝液 (N - 2 - ヒ ドロキシ ェチルビペラジン一 N' _ 2—エタンスルホン酸緩衝液) やアール塩、 ハンクス 塩組成を用いた緩衝液等があるが、 これらには細胞毒性があり、 添加量が制限 されていることから水分蒸発に伴う培養液の高濃度化は望ましくなく、 また、 カルシウムやマグネシウムの濃度に影響を与えてしまうため使用濃度が制限さ れており、 培養液の高濃度化は培養に悪影響を及ぼす。 その他、 培養の阻害要 因となる乳酸塩や尿素チッソ等の細胞自身が発生する老廃物濃度が高くなるこ とや、 さらには細胞の浸透圧に許容範囲があることからしても培養液中の緩衝 系の高濃度化は望ましくない。
また、 水蒸気が抜けるとその代わりに空気が容器内に入り込み、 容器内に気 泡が発生し、 この気泡がはじけると細胞等を損傷するおそれがある。 あるいは リジッドな容器では容器内が負圧になり細胞等を損傷するおそれがある。
一方、 一般に、 培養容器より蒸発する水分量は温度が高くなる程多くなる。 これは容器を構成する素材の透湿度が高くなることにも因るが、 主には相対湿 度が低くなることに起因する。 例えば、 2 5 °Cと 3 7 °Cの相対湿度を比較した 場合、 3 7 °Cでの飽和水蒸気圧は 2 5 °Cに対しほぼ 2倍となるため、 2 5 °Cで の相対湿度が 5 0 %でも 3 7 °Cではその半分の 2 5 %となり、 蒸発速度はおよ そ 1 5倍となる。 調湿しない場合、 3 7 °Cの近傍の温度ではこうした低湿度 となることは十分に考えられ、 これを考慮することが重要であるが、 こうした ことを考慮した培養容器はない。
従って、 従来の培養容器は、 一般的に 3 7 °Cで高湿度下の使用を前提として おり、 低湿度下での使用を考慮して設計されたものはない。 また、 上記文献の 中でも容器に用いられているガス透過膜のガス透過係数、 透湿度、 材質などに 関する記述はあるが、 低湿度で容器を用いるためにガス透過膜の膜面積と培養 液の内容量を考慮した知見や蒸発する水蒸気量をどこまで抑えればよいかとい うことに関してはまったく記載されていない。 発明の開示
本発明は、 上記従来の細胞培養容器の問題点に鑑みてなされたものであって、 厳重な湿度管理や衛生管理が必要な高湿度下よりも低湿度下で培養を行った方 が衛生面、 コス ト、 管理等すベての面において有利である点に着目し、 一部が ガス透過膜からなる培養容器において高いガス交換能を有するとともに、 低湿 度下においても培養液の水分蒸発による濃度変化が問題の生じない範囲内に抑 えられ、 長期間の細胞、 微生物等の培養が可能となる培養容器および培養方法 を提供しようとするものである。
上記目的を達成する本発明の培養容器は、 ガス透過膜を有し、 規定内容量を
V (m l )、 ガス透過膜の膜面積を S (cm2), 37 °Cにおける酸素透過率を P 02 (m 1 / c m2 · d a y · a t m)、 二酸化炭素透過率を Pc2 (m 1 /c m2 · d a y · a tm)、 透湿度を PH2。 (g/cm2 · d a y) としたとき、 ガス透過膜が P02X S/V> 2 0の酸素透過率、 P∞2X S/V〉 8. 0の二酸化炭素透過率、 かつ、 PH2QX S/Vく 0. 02の透湿度を有することを特徴とするものである。 本発明の他の側面においては、 全体として扁平な形状を有し、 前記ガス透過 膜を少なくとも片面に有する培養容器が提供される。
上記目的を達成する本発明の培養方法は、 注入培養液重量を m (g)、 培養時 間を t (h r ) としたとき、 上記培養容器を用いて、 相対湿度 50%以下で PH20 X S/mX t/24≤0. 10となるように培養を行うことを特徴とするもので ある。
本発明に係る培養方法の 1態様において、 培養の対象は動物細胞であること を特徵とする。
本発明に係る培養容器によれば、 酸素、 二酸化炭素ガスの高いガス交換能を 有すると共に、 厳重な湿度管理、 滅菌水の定期的供給および庫内の加湿用水の 紫外線照射による滅菌等の面倒な衛生管理が不要で、 培養コストを節約するこ とができる低湿度において、 培養液の水分蒸発に起因する濃度変化を、 問題の 生じない範囲内に抑えることができる。
また、 本発明に係る培養方法によれば、 上記培養容器を用いて、 相対湿度 5 0 %以下で培養を行うことにより、 厳重な湿度管理や衛生管理が不要で、 衛生 面、 コス ト、 管理等で有利な低湿度下において、 培養液の水分蒸発に起因する 濃度変化が問題の生じない範囲内に抑えられ、 最適条件で長期間の培養が可能 となる。 図面の簡単な説明
第 1図は本発明の 1実施形態に係る細胞培養容器を示すもので、 (a) は斜 視図、 (b) は第 1図 (a) の A— A断面図である。
発明を実施するための最良の形態
以下添付図面を参照して本発明の実施の形態について説明する。
本発明に係る培養容器は、 密閉型の培養容器であって、 各特許文献に記載さ れているような可撓性樹脂製シー卜からなる袋状の培養バッグで構成すること もできるが、 好ましい容器の形態は、 上記特開 2004— 1 29568号公報 および特表 2 0 0 4— 5 1 4 4 3 2号公報に記載されているように、 剛性を有 する材料からなる全体として扁平な形状の密閉容器であって、 相互に離間して 対向する 2つの平面状表面とこれら平面状表面の間の側部を備え、 該平面状表 面の少なくとも一つにガス透過膜を有する容器である。
第 1図は本発明に係る培養容器の 1実施形態を示すもので、 (a ) は斜視図、 ( b ) は図 1 ( a ) の A— A断面図である。
細胞等の培養容器 1は、 全体として長方形で扁平形状の容器であって、 ポリ エチレン、 ポリプロピレン、 塩化ビニル等のある程度の可撓性と共に剛性を有 するプラスチックから成る。 この枠体 2は、 射出成形等により長辺部 3、 短辺 部 4と窓部 5が形成され、 この枠体 2の表裏に、 枠体 2の厚みの所定間隔で対 向するように適宜手段によりガス透過膜 5、 5が形成されている。
なお、 この枠体 2は外周側が厚く、 内周側が薄くなるように段差が設けられ ており、 外周側は剛性を確保することと、 内容液の充填 ·取り出しを行うため の部材を取り付けるために必要な部位を確保することを目的として厚く、 内周 側の窓部は規定の内容液充填空間を確保するための厚さに調整されている。 そして、 ガス透過膜 5は培養ガスの通過を許容し、 細胞を汚染する微生物等 の通過を許容しなレ、材質からなり、 後述の樹脂の中から適宜のものが選択され る。
この培養容器 1は、 枠体 2とこの枠体 2の表裏に形成されるガス透過膜 5、 5によって形成される空間 6 [ (第 1図 (b ) ] 力 細胞等の培養すべき内容液 を収容する内容液充填空間を構成し、 この空間 6の容積が容器 1の規定内容量 となる。
また、 枠体 2の長辺部 3の一方 3 aには、 内容液充填管 7及び取り出しを行 う管 8が取り付けられており、 上記内容液充填管 7から細胞と培養液の混合液 である内容液を容器 1内に充填し、 適宜公知の手段で密封し、 内容液の充填密 封終了後、 所定の温度、 湿度、 ガス組成および濃度で所定時間培養を実施し、 培養を完了した後に内容液を内容液取出し管 8から取出す。
尚、 上記容器 1は、 内容積を変えることが可能な形態でも良く、 この場合、 規定内容量 Vは可変となるが、 ガス透過膜 5の面積 Sが一定であるため、 培養 すべき細胞等、 充填する培養液量に合わせて容器 1の規定内容量を可変として も、 決定した培養可能内容量の範囲内で培養することが可能となる。
ガス透過膜 5は、 酸素およひ炭酸ガスのガス交換能に優れ、 低湿度下での培 養に適するよう透湿度が極めて小さい材質であることが必要であり、 3 7 °Cに おける酸素透過率を P。2、 二酸化炭素透過率を P c2、 透湿度を P H2。としたとき、 ガス透過膜 5が P。2 X S /V〉 2 . 0の酸素透過率、 PC2 X S /V〉 8 . 0の二酸 化炭素透過率、 かつ、 P H2。X S /V < 0 0 2の透湿度を有することが必要であ る。
そして、 上記ガス透過膜 5は、 酸素透過率、 二酸化炭素透過率及び透湿度が 相対湿度に影響されない材質であり、 このような要求を満たすものとして、 ポ リオレフインまたはフッ素樹脂を主成分とする単層ないし多層からなるものが 好ましレ、。
このような条件を満たすカス透過膜の材質としては、エチレン、プロピレン、 ブテン、 ペンテン、 へキセン、 ヘプテン、 ォクテンなどのォレフィン類、 およ びノルボルネンゃテトラシク口 ドデセンなどの環状ォレフィン類の内の 1種乃 至数種のォレフィン系モノマーから重合されるホモポリマーあるいは共重合体 榭脂、 例えば、 ポリエチレン、 ポリプロピレン、 ポリブテン一 1、 ポリ一 4— メチルーペンテン一 1、 環状ォレフィン共重合体等のポリオレフインが挙げら れ、 またその他に材質として、 ポリスチレン、 四フッ化工チレン一六フッ化プ 口ピレン共重合体等のフッ素樹脂、 シリコーンポリマー等を挙げることができ、 これらの樹脂の中から培養すべき細胞の種類、 ィンキュベータ一の湿度等の培 養条件に合わせて適当なものを選択することが好ましい。
また、 ガス透過膜 5は、 枠体に形成した際に弛まないようにある程度の張力 を有し、 可視光線透過性に優れていることが好ましい。
以下に本発明の実施例を示す。
実施例
[測定]
1 . 培養容器の規定内容量
培養容器の規定内容量 V (m l ) はガス透過膜と枠体とに囲まれた空間にお いて、 ガス透過膜が対面と平衡を維持した状態で、 かつ培養空間を完全に培養 液で満たした状態での培養液量とする。
2 . ガス透過膜の膜面積
ガス透過膜の膜面積 S ( c m 2) は膜表面の微細な凹凸等を考慮せず、 枠体に 囲まれた平滑な膜と仮定して算出された膜の面積とする。
3 . 酸素透過率および二酸化炭素透過率
酸素透過率および二酸化炭素透過率はガス透過率測定装置 (GPM— 250 GL Sciences社) により、 窒素 (6 5 %)、 酸素 (1 5 %) と二酸化炭素 (2 0 %) からなる混合ガスを供給ガスとして用い、 3 7 °Cで測定した。
4 . 透湿度
透湿度は透湿度測定装置 (PERMATRAN— W 3 / 3 0 Mocon社) により 3 7。Cで 測定した。
[評価]
1 . 培養液 (内容液) 蒸発割合 培養液と細胞からなる所定濃度の懸濁液を培養容器に規定内容量 V (m 1 ) 充填した後、 容器総重量 Wo (g) を測定し、 これより予め測定しておいた容 器の単体重量 w (g) を差し引いて、 培養液の初期充填重量 (Wo— w) を求 めた。 また、 培養を行った後、 同様に容器総重量 W (g) を測定し、 培養前の 容器総重量 Wo (g) 力 らこれを差し引いて、 蒸発した培養液重量 (Wo— W) を求めた。 培養液の蒸発割合は蒸発した培養液重量 (Wo— W) を培養液の初 期充填重量 (Wo— w) で除して、 (Wo—W) / (Wo -w) として求めた。 2. 増殖倍率
培養後、 回収した総細胞数を計測し、 培養開始時に播種した総細胞数から増 殖倍率を求めた。 回収時のロスや計数のばらつきを考慮し、 相対湿度 1 0 0% の条件下で培養した細胞 (コントロール) に対して 9 0 %以上の増殖倍率を与 えるものを〇で表し、 それ以下の増殖倍率となるものを Xで表した。
[実施例 1 ]
長辺部の長さ 1 2 7mm、 短辺部の長さ 8 5mm、 厚み 5. 8mmの 高密度ポリエチレンからなる枠体の内側を薄く して、 長辺部の長さ 8 3. 3 mm、 短辺部の長さ 6 0mm、 厚み 2 mmの窓部を設けた。 この枠体の窓 部の表裏に、 厚み 2 0 mのポリプロピレン (P P) 層と厚み 8 0 x mの メタ口セン系触媒による線状低密度ポリエチレン (L LD P E) 層とから成る 厚み ' 1 0 0 μ mの共押出しフィルムをガス透過膜とし、 該 L LD P E層を内 側にしてヒートシールし、 表 1に示す図 1の構成の培養容器を作成した。
この培養容器に、 無血清培養液 (細胞科学研究所製 AlyS505N、 IL-2 700IU/ml含有) にマウス由来細胞障害性 T cell CTLL— 2を 4 0 0 Ocells/m 1の濃度で播種した規定内容量の内容液 1 O m lを内容液充填管から容器内に 充填し密封した。
次いで、 3 7 °C、 相対湿度 2 0%、 二酸化炭素濃度 5 %の雰囲気で 9 5時間 培養を行い、 培養液 (内容液) の蒸発割合、 増殖倍率の評価を行った。
その結果を表 2に示す。
[実施例 2]
表 1に示すように、 培養容器のガス透過膜を、 厚み 3 0 11の丁? (三 井化学製 ポリ— 4ーメチルペンテン— 1 ) と厚み 7 0 i mの L LD P Eを ウレタン系接着剤でラミネートした多層フィルムとした以外は、 実施例 1と同 様に培養を行い、 評価を行った。
[実施例 3 ]
表 1に示すように、 培養容器のガス透過膜を、 厚み 3 0 111の1^ £? (ダ ィキン工業製 テトラフルォロエチレン'へキサフルォロプロピレン共重合体) と厚み 7 0 μ mの L LD Ρ Εをウレタン系接着剤でラミネ一トした多層フィ ルムとした以外は、 実施例 1と同様に培養を行い、 評価を行った。
[比較例 1 ]
ポリスチレン (P S) 製の枠体を用い、 かつ表 1に示すように、 培養容器の ガス透過膜を、 厚み 1 O O ^umの P Sフィルムとした以外は、 実施例 1と同 様に培養を行い、 評価を行った。
[比較例 2]
厚み 100 μ mの L LD P Eフィルムを四方シールして、 内側の非ヒート シール部が長辺部の長さ 21 5 mm, 短辺部の長さ 1 5 Ommの培養バッ グを作成し、 このバックの容器壁を透過膜として表 1に示す培養容器とした以 外は、 実施例 1と同様に培養を行い、 評価を行った。
[比較例 3]
実施例 1において、 枠体の窓部の厚みを 6 mmとすることにより、 培養容器 の規定内容量を 3倍とした以外は、 実施例 1と同様に培養を行い、 評価を行つ た。
表 1
Figure imgf000010_0001
※酸素透過率 Po2、二酸化炭素透過率 Pco2及び透湿度 PH2Oは、 37°C、相対湿度 90<½における値を用いた。
表 2
Figure imgf000011_0001
表 1、 2の結果から明らかなように、 実施例 1〜3の細胞培養容器は、 いず れも酸素交換能、 二酸化炭素交換能、 水蒸気バリア能のすべてにおいて、 本発 明の要求性能の値を満たしており、 低湿度下での細胞培養に適した細胞培養容 器であることを示している。
これに対し、 比較例 1の細胞培養容器は、 酸素透過率 (酸素交換能)、 二酸化 炭素透過率 (二酸化炭素交換能) 及び透湿度 (水蒸気バリア能) の全てにおい て、 また、 比較例 2及び 3の細胞培養容器は、 酸素透過率 (酸素交換能) 及び 二酸化炭素透過率 (二酸化炭素交換能) において、 本発明の要求性能に達して おらず、 低湿度下での培養容器としては不適であることが判る。
また、 本発明にかかる培養容器は微生物の培養にも使用可能であるが、 特に 動物細胞の培養用として好適である。
尚、 培養時の温度は、 動物細胞等は 3 5〜4 0 °C、 大腸菌等の微生物は 1 5 〜6 0 °Cで行われるのが一般的である。 産業上の利用可能性
本発明は、 培養方法および培養容器に適用することができ、 特に酸素、 二 酸化炭素ガスの高いガス交換能を有すると共に、 厳重な湿度管理、 滅菌水の定 期的供給および庫内の加湿用水の紫外線照射による滅菌等の面倒な衛生管理が 不要で、 培養コストを節約することができる低湿度において、 培養液の水分蒸 発に起因する濃度変化を、問題の生じない範囲内に抑えることができる、酸素' 炭酸ガスのガス交換能に優れ、 低湿度下での細胞、 微生物等の培養に適した密 閉系培養容器および培養方法として適用することができる。

Claims

請求の範囲
1 ガス透過膜を有し、 規定内容量を V (m l ), ガス透過膜の膜面積を S (c m2)、 37°Cおける酸素透過率を P02 (m 1 / c m2 · d a y · a t m)、 二酸化 炭素透過率を Pc2 (m 1 / c m2 · d a y · a t m)、 透湿度を P H20 ( g / c m · d a y) としたとき、 ガス透過膜が P02X S/V〉 2 0の酸素透過率、 PC02X S/V> 8 0の二酸化炭素透過率、 かつ、 PH2。X S/V< 0. 02の透湿度を 有することを特徴とする培養容器。
2. 全体として扁平な形状を有し、 前記ガス透過膜を少なくとも片面に有する 請求項 1記載の培養容器。
3. 注入培養液重量を m (g)、 培養時間を t (h r) としたとき、 請求項 1ま たは 2に記載の培養容器を用いて、 相対湿度 50%以下で PH2。X S/mX t/2 4≤0. 10となるように培養を行うことを特徴とする培養方法。
4. 培養の対象は動物細胞であることを特徴とする請求項 3記載の培養方法。
PCT/JP2006/320798 2005-10-14 2006-10-12 培養容器及び培養方法 WO2007043699A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200680046267.8A CN101326279B (zh) 2005-10-14 2006-10-12 培养容器和培养方法
US12/083,327 US20090258417A1 (en) 2005-10-14 2006-10-12 Culture Vessel and a Method of Culture
EP06811987.4A EP1935974B1 (en) 2005-10-14 2006-10-12 Culture vessel and culture method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-299601 2005-10-14
JP2005299601A JP2007104975A (ja) 2005-10-14 2005-10-14 培養容器および培養方法

Publications (2)

Publication Number Publication Date
WO2007043699A1 true WO2007043699A1 (ja) 2007-04-19
WO2007043699A9 WO2007043699A9 (ja) 2007-06-28

Family

ID=37942913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320798 WO2007043699A1 (ja) 2005-10-14 2006-10-12 培養容器及び培養方法

Country Status (6)

Country Link
US (1) US20090258417A1 (ja)
EP (1) EP1935974B1 (ja)
JP (1) JP2007104975A (ja)
KR (1) KR20080056017A (ja)
CN (1) CN101326279B (ja)
WO (1) WO2007043699A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012239401A (ja) * 2011-05-17 2012-12-10 Toyo Seikan Kaisha Ltd 細胞培養方法、及び細胞培養システム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009028338A1 (de) * 2009-08-07 2011-02-10 Wacker Chemie Ag Bioreaktor mit Siliconbeschichtung
FR2952070B1 (fr) 2009-11-03 2011-12-09 Maco Pharma Sa Procede pour l'expansion et/ou la conservation de cellules par enrichissement en gaz du milieu de culture
EP2594628A1 (en) * 2010-07-16 2013-05-22 Hitachi, Ltd. Cell culture vessel and cell culture device
US20130164831A1 (en) * 2010-09-06 2013-06-27 Toyo Seikan Kaisha, Ltd. Multilayer film and cell culture container
WO2015093041A1 (ja) 2013-12-18 2015-06-25 東洋製罐グループホールディングス株式会社 培養容器、リンパ球の培養方法、培養容器の製造方法、及び固相化装置
JP5768174B1 (ja) * 2014-06-24 2015-08-26 日本写真印刷株式会社 培養容器
GB201700621D0 (en) * 2017-01-13 2017-03-01 Guest Ryan Dominic Method,device and kit for the aseptic isolation,enrichment and stabilsation of cells from mammalian solid tissue
GB201709140D0 (en) * 2017-06-08 2017-07-26 Vitrolife As Lid for culture dish
WO2019046304A1 (en) 2017-08-28 2019-03-07 Matthias Wagner MICROFLUIDIC LASER ACTIVATED INTRACELLULAR ADMINISTRATION SYSTEMS AND METHODS
US11866735B2 (en) 2021-03-07 2024-01-09 Cellino Biotech, Inc. Platforms and systems for automated cell culture
US11931737B2 (en) 2021-09-02 2024-03-19 Cellino Biotech, Inc. Platforms and systems for automated cell culture

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198972A (ja) * 1988-02-17 1988-08-17 Daikin Ind Ltd 培養器
JPS63214178A (ja) 1987-02-28 1988-09-06 Kawasumi Lab Inc 細胞培養容器及び細胞培養装置
JPH0199200U (ja) * 1987-12-24 1989-07-03
JPH0293999U (ja) 1989-01-13 1990-07-26
JPH03277268A (ja) 1990-03-26 1991-12-09 Nissho Corp 細胞培養用バツグ
JPH0420281A (ja) * 1990-05-15 1992-01-23 Nitto Denko Corp 組織培養容器
JPH04129800U (ja) 1991-05-22 1992-11-27 積水化学工業株式会社 培養用バツグ
JPH11137241A (ja) * 1997-11-05 1999-05-25 Otsuka Techno Kk 培養容器
JP2004129568A (ja) 2002-10-10 2004-04-30 Olympus Corp 培養容器および培養方法
JP2004514432A (ja) 2000-11-21 2004-05-20 バイオクリスタル・リミテッド 細胞培養装置および使用方法
JP2005295904A (ja) * 2004-04-13 2005-10-27 Toyo Seikan Kaisha Ltd 培養容器および培養方法
JP2006314276A (ja) * 2005-05-13 2006-11-24 Toyo Seikan Kaisha Ltd 細胞培養容器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2062100C (en) * 1991-03-05 2000-10-31 Hirotoshi Fujisawa Disc cartridge
US6521451B2 (en) * 1999-12-09 2003-02-18 California Institute Of Technology Sealed culture chamber
JP2003190259A (ja) * 2001-12-28 2003-07-08 Hisako Ogawara 人工臓器用チャンバー
CN1458271A (zh) * 2002-05-16 2003-11-26 朱红 微生物及细胞的液体培养方法及其培养装置
WO2003103813A2 (en) * 2002-06-05 2003-12-18 Bioprocessors Corporation Materials and reactor systems having humidity and gas control
CN2571767Y (zh) * 2002-10-09 2003-09-10 江苏绿宝植物微繁公司 一种组织培养袋状容器

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63214178A (ja) 1987-02-28 1988-09-06 Kawasumi Lab Inc 細胞培養容器及び細胞培養装置
JPH0199200U (ja) * 1987-12-24 1989-07-03
JPS63198972A (ja) * 1988-02-17 1988-08-17 Daikin Ind Ltd 培養器
JPH0293999U (ja) 1989-01-13 1990-07-26
JPH03277268A (ja) 1990-03-26 1991-12-09 Nissho Corp 細胞培養用バツグ
JPH0420281A (ja) * 1990-05-15 1992-01-23 Nitto Denko Corp 組織培養容器
JPH04129800U (ja) 1991-05-22 1992-11-27 積水化学工業株式会社 培養用バツグ
JPH11137241A (ja) * 1997-11-05 1999-05-25 Otsuka Techno Kk 培養容器
JP2004514432A (ja) 2000-11-21 2004-05-20 バイオクリスタル・リミテッド 細胞培養装置および使用方法
JP2004129568A (ja) 2002-10-10 2004-04-30 Olympus Corp 培養容器および培養方法
JP2005295904A (ja) * 2004-04-13 2005-10-27 Toyo Seikan Kaisha Ltd 培養容器および培養方法
JP2006314276A (ja) * 2005-05-13 2006-11-24 Toyo Seikan Kaisha Ltd 細胞培養容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1935974A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012239401A (ja) * 2011-05-17 2012-12-10 Toyo Seikan Kaisha Ltd 細胞培養方法、及び細胞培養システム

Also Published As

Publication number Publication date
EP1935974A4 (en) 2012-04-25
EP1935974A1 (en) 2008-06-25
JP2007104975A (ja) 2007-04-26
US20090258417A1 (en) 2009-10-15
KR20080056017A (ko) 2008-06-19
WO2007043699A9 (ja) 2007-06-28
CN101326279B (zh) 2014-05-07
CN101326279A (zh) 2008-12-17
EP1935974B1 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
WO2007043699A1 (ja) 培養容器及び培養方法
JP5098471B2 (ja) 細胞培養用トレイ状容器並びに同容器への収容物の充填方法
US5763267A (en) Apparatus for the large scale growth and packaging of cell suspensions and three-dimensional tissue cultures
US5707869A (en) Compartmentalized multiple well tissue culture plate
EP3237598B1 (en) T-cell culture double bag assembly
EP0725134A2 (en) Flexible bioreactor for therapeutic cells
JP4991352B2 (ja) 培養袋及び培養装置
WO2016027800A1 (ja) 細胞培養バッグ、細胞培養装置および細胞培養容器
JP2009523417A (ja) 細胞を培養および運搬するための装置
JP2007175028A (ja) 閉鎖系細胞培養容器、閉鎖系細胞培養用キット、及び閉鎖系細胞培養容器の製造方法
US20190359925A1 (en) System for culture of cells in a controlled environment
Jensen et al. Diffusion in tissue cultures on gas-permeable and impermeable supports
US9200244B2 (en) Method for culturing photoautotrophic microorganisms for the production of biomass
US20190048302A1 (en) Cell culture vessel and jig for fixing cell culture vessel
JP4706327B2 (ja) 細胞培養容器
JP6613558B2 (ja) 細胞培養容器、培地入細胞培養容器および細胞の培養方法
JP2018121568A (ja) シート状生体組織の輸送用容器及びそれを用いた輸送方法
JPH0640813B2 (ja) 培養器
JP2021185877A (ja) 細胞培養容器、細胞培養方法、及び細胞生育状態の評価方法
WO2022097582A1 (ja) 気体透過性容器、その容器を使用した培養装置および培養システム
JPH076799Y2 (ja) 培養用バック
JP2020068741A5 (ja)
JP4378514B2 (ja) 細胞培養容器
JP2022027483A (ja) 細胞培養容器、細胞の製造方法、及び細胞培養容器の製造方法
JPS61202683A (ja) 細菌培養用シャ−レ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680046267.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12083327

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006811987

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087011495

Country of ref document: KR