WO2007041167A2 - Process for production of delta-9-tetrahydrocannabinol - Google Patents

Process for production of delta-9-tetrahydrocannabinol Download PDF

Info

Publication number
WO2007041167A2
WO2007041167A2 PCT/US2006/037709 US2006037709W WO2007041167A2 WO 2007041167 A2 WO2007041167 A2 WO 2007041167A2 US 2006037709 W US2006037709 W US 2006037709W WO 2007041167 A2 WO2007041167 A2 WO 2007041167A2
Authority
WO
WIPO (PCT)
Prior art keywords
compound
process according
substituted
acyl
unsubstituted alkyl
Prior art date
Application number
PCT/US2006/037709
Other languages
English (en)
French (fr)
Other versions
WO2007041167A3 (en
Inventor
David C. Burdick
Steven J. Collier
Frederic Jos
Betina Biolatto
Bernhard J. Paul
Harold Meckler
Mark A. Helle
Alicia J. Habershaw
Original Assignee
Amr Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amr Technology, Inc. filed Critical Amr Technology, Inc.
Priority to EP06804207A priority Critical patent/EP1928853A4/en
Priority to NZ567029A priority patent/NZ567029A/en
Priority to AU2006297300A priority patent/AU2006297300B2/en
Priority to JP2008533571A priority patent/JP2009510078A/ja
Priority to CA002623723A priority patent/CA2623723A1/en
Priority to NZ594077A priority patent/NZ594077A/xx
Publication of WO2007041167A2 publication Critical patent/WO2007041167A2/en
Publication of WO2007041167A3 publication Critical patent/WO2007041167A3/en
Priority to IL190388A priority patent/IL190388A0/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/16Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms by condensation involving hydroxy groups of phenols or alcohols or the ether or mineral ester group derived therefrom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Definitions

  • the present invention relates to processes for preparation of (-)-trans- delta-9-tetrahydrocannabinol, intermediate compounds thereof, and derivative compounds thereof.
  • delta-9-tetrahydrocannabinol delta-9-THC
  • delta-9-THC delta-9-tetrahydrocannabinol
  • cannabinoids In addition to uses as anaesthetics, spasmolytics, and hypnotics, cannabinoids have been used to combat emesis and nausea induced by cancer chemotherapy, and also in the treatment of glaucoma. In recent times, cannabinoids have achieved a certain notoriety due to their abuse potential. A significant portion of the synthetic effort has been directed toward the preparation of some of the oxygenated human urinary metabolites of delta- 9-THC for use in forensic science as analytical standards for the detection of marijuana use.
  • the present invention relates to a process for preparation of a product compound of the formula:
  • R 1 is H, substituted or unsubstituted alkyl, carboxylic ester, or acyl
  • R 2 is H, OH, protected hydroxyl, substituted or unsubstituted alkyl, alkenyl, alkynyl, acyl, aryl, or heteroaryl;
  • R 3 is H, substituted or unsubstituted alkyl, carboxylic ester, or acyl
  • R 4 is H, substituted or unsubstituted alkyl, silyl, hetero-substituted or unsubstituted acyl, alkylsulfonyl, arylsulfonyl, alkylphosphoryl, or arylphosphoryl.
  • organoaluminum-based Lewis acid catalyst under conditions effective to produce the product compound.
  • Another aspect of the present invention relates to a process for preparation of a product compound of the formula: - A -
  • R 1 is H, substituted or unsubstituted alkyl, carboxylic ester, or acyl
  • R 2 is H, OH, protected hydroxyl, substituted or unsubstituted alkyl, alkenyl, alkynyl, acyl, aryl, or heteroaryl;
  • R 3 is H, substituted or unsubstituted alkyl, carboxylic ester, or acyl
  • R 4 is H, substituted or unsubstituted alkyl, silyl, hetero-substituted or unsubstituted acyl, alkylsulfonyl, arylsulfonyl, alkylphosphoryl, or arylphosphoryl;
  • R 6 is H, substituted or unsubstituted alkyl, silyl, hetero-substituted or unsubstituted acyl, alkylsulfonyl, arylsulfonyl, alkylphosphoryl, or arylphosphoryl.
  • the process involves reacting a first starting compound of the formula:
  • X H, alkyl, acyl, silyl, aryl, lieteroaryl, sulfonyl, phosphoryl, or phosphinyl, in the presence of a metal triflate catalyst, under conditions effective to form the product compound.
  • Yet another aspect of the present invention relates to a process for preparation of a product compound of the formula:
  • R 1 is H, substituted or unsubstituted alkyl, carboxylic ester, or acyl
  • R 2 is H, OH, protected hydroxyl, substituted or unsubstituted alkyl, alkenyl, alkynyl, acyl, aryl, or heteroaryl;
  • R 3 is H, substituted or unsubstituted alkyl, carboxylic ester, or acyl; and R 4 is SO 2 R 5 , wherein R 5 is substituted or unsubstituted alkyl.
  • R 4 1 is H, substituted or unsubstituted alkyl, silyl, hetero-substituted or unsubstituted acyl, alkylsulfonyl, arylsulfonyl, alkylphosphoryl, or arylpliosphoryl,
  • R 6 is H, substituted or unsubstituted alkyl, silyl, hetero-substituted or unsubstituted acyl, alkylsulfonyl, arylsulfonyl, alkylphosphoryl, or arylphosphoryl, wherein at least one OfR 4 ' and R 6 must be H;
  • X H, alkyl, acyl, silyl, aryl, heteroaryl, sulfinyl, sulfonyl, phosphoryl, or phosphinyl, in the presence of a metal triflate catalyst, under conditions effective to form a second intermediate compound of the formula:
  • the second intermediate compound is treated with an organoaluminum-based Lewis acid catalyst, under conditions effective to produce a third intermediate compound of the formula:
  • the third intermediate compound is reacted with a substituted or unsubstituted alkylsulfonyl halide, alkylsulfonyl anhydride, alkylsulfonyl mixed anhydride, alkylsulfonyl ester, or alkylsulfonic acid, under conditions effective to produce the product compound.
  • a substituted or unsubstituted alkylsulfonyl halide, alkylsulfonyl anhydride, alkylsulfonyl mixed anhydride, alkylsulfonyl ester, or alkylsulfonic acid under conditions effective to produce the product compound.
  • the present invention also relates to a compound of the formula:
  • R 1 is H, substituted or unsubstituted alkyl, carboxylic ester, or acyl
  • R 2 is H, OH 5 protected hydroxyl, substituted or unsubstituted alkyl, alkenyl, alkynyl, acyl, aryl, or heteroaryl;
  • R 3 is H, substituted or unsubstituted alkyl, carboxylic ester, or acyl
  • R 8 , R 9 , and R 10 are the same or different and independently selected from the group consisting of H, substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or halo; and R 8 and R 9 ; R 8 and R 10 ; or R 9 and R 10 ; or R 8 , R 9 , and R 10 can together result in the formation of a cyclic moiety.
  • the method of the present invention by the slow addition of a substoichiometric amount of menthadienol to a mixture of olivetol and a metal triflate catalyst in DCM at a temperature above its boiling point, gives vastly improved selectivities for cannabidiol over its unwanted regioisomer over the prior art, and also significantly reduces the transformation of the cannabidiol into cyclized products.
  • the cyclization of cannabidiol to delta-9-THC is a notoriously difficult reaction to control and carry out selectively.
  • catalysts such as BF 3 OEt 2 , have been used.
  • the present invention relates to a process for preparation of a product compound of the formula:
  • R 1 is H, substituted or unsubstituted alkyl, carboxylic ester, or acyl
  • R 2 is H, OH, protected hydroxyl, substituted or unsubstituted alkyl, alkenyl, alkynyl, acyl, aryl, or heteroaryl;
  • R 3 is H, substituted or unsubstituted alkyl, carboxylic ester, or acyl
  • R 4 is H, substituted or unsubstituted alkyl, silyl, hetero-substituted or unsubstituted acyl, alkylsulfonyl, arylsulfonyl, alkylphosphoryl, or arylphosphoryl.
  • the process involves treating a first intermediate compound of the formula:
  • organoaluminum-based Lewis acid catalyst under conditions effective to produce the product compound.
  • the organoaluminum-based Lewis acid catalyst used in the method of the present invention can be a trialkyl- or triarylaluminum, dialkyl- or diarylaluminum halide, alkylarylaluminum halide, dialkyl- or alkylaryl- or diarylaluminum alkoxide or aryloxide, dialkyl- or alkylaryl or diarylaluminum thioalkoxide or thioarylate, dialkyl- or alkylaryl or diarylaluminum carboxylate, alkyl- or arylaluminum dihalide, alkyl- or arylaluminum dialkoxide or diaryloxide or alkylaryloxide, alkyl- or aryl aluminum dithioalkoxide or dithioarylate, alkyl- or arylaluminum dicarboxylate, aluminum trialkoxide or triaryloxide or mixed alkylaryloxide, aluminum triacylcarboxylate or mixtures
  • organoaluminum-based Lewis acid catalysts include, but are not limited to, ⁇ rimethylaluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, trioctylaluminum, tridecylaluminum, diethylaluminum chloride, diisobutylaluminum chloride, diethylaluminum sesquichloride, ethyl aluminum dichloride, methylaluminum dichloride, isobutylaluminum dichloride, diethylaluminum ethoxide, diethylaluminum isopropoxide, diisobutylaluminum methoxide, diisobutylaluminum phenoxide, diphenylaluminum isoproproxide, tetraisobutylalumoxane, methylalumoxane, methylaluminum bis-(2,6-di-t
  • the organoaluminum- based Lewis acid catalyst is a C 1 -C 30 alkylaluminum-based or C 6 -C 30 arylaluminum- based substance or mixture.
  • the organoaluminum-based Lewis acid catalyst contains one or more oxygenated substituents bonded to the aluminum which modify the physical properties or performance of the catalyst.
  • the organoaluminum-based Lewis acid catalyst may be made in situ before use by reaction of a precursor aluminum reagent with a modifying substituent.
  • the organoaluminum-based Lewis acid catalysts can be catalysts which provide high selectivity for delta-9-THC at lower levels of catalyst usage and at convenient rates for larger scale preparation. More specifically, the organoaluminum-based Lewis acid catalysts can be catalysts that produce delta-9-THC with very low levels of isomers (e.g., ezs-delta-9-THC, delta-8-THC, and wo-THC), as these are difficult to remove from the product and render it difficult to achieve current standards of pharmaceutical purity.
  • the step of treating is carried out with the organoaluminum-based Lewis acid catalyst in an amount from about 0.5 mol% to about 100 mol% with respect to the first intermediate compound.
  • the step of treating is carried out with the organoaluminum-based Lewis acid catalyst in an amount from about 5 mol% to about 15 mol% with respect to the first intermediate compound.
  • the step of treating can be carried out in an organic solvent, hi one embodiment of the present invention, the solvent is aprotic. Examples of organic solvent include, but are not limited to, hexane, heptane, toluene, xylene, dichloromethane, and mixtures thereof.
  • the step of treating can be carried out at a temperature of from about
  • the step of treating can be carried out at a temperature of from about -2O 0 C to about 50°C. In yet another embodiment of the present invention, the step of treating can be carried out at a temperature of from about O 0 C to about 30 0 C.
  • R 1 is H, substituted or unsubstituted alkyl, carboxylic ester, or acyl
  • R 2 is H, OH, protected hydroxyl, substituted or unsubstituted alkyl, alkenyl, alkynyl, acyl, aryl, or heteroaryl;
  • R 3 is H, substituted or unsubstituted alkyl, carboxylic ester, or acyl
  • R 4 '" is SO 2 R 5 , wherein R 5 is substituted or unsubstituted alkyl.
  • the product compound can be reacted with similar arylsulfonyl reagents to produce arylsulfonate compounds.
  • the above reaction is carried out with an alkylsulfonyl compound in an amount from about 1 to about 1.5 equivalents with respect to the product compound at atmospheric pressure at a temperature of from about -20 0 C to about 100 0 C depending on the reagent.
  • alkylsulfonyl chloride is used, for example, the reaction is typically carried out at a temperature of from about -10 0 C to about 20 0 C.
  • the product compound can be a totally synthetic substance or a naturally derived substance.
  • the process of the present invention further involves carrying out a method selected from chromatography, countercurrent extraction, and distillation on the second product compound under conditions effective to produce a purified second product compound.
  • the process of the present invention further involves crystallizing the second product compound under conditions effective to produce a purified second product compound.
  • the purified second product compound can be hydrolyzed under conditions effective to produce the purified product compound in a desired isomer form.
  • the step of hydrolyzing is carried out in the presence of an organic or inorganic base in a solvent.
  • bases include, but are not limited to, sodium hydroxide, potassium t-butoxide, and mixtures thereof.
  • solvent include, but are not limited to, methanol, ethanol, isopropanol, t-butanol, acetonitrile, and mixtures thereof.
  • the second product compound is of the formula:
  • R 8 , R 9 , and R 10 are the same or different and independently selected from the group consisting of H, substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or halo;
  • R 8 and R 9 ; R 8 and R 10 ; or R 9 and R 10 ; or R 8 , R 9 , and R 1 O can together result in the formation of a cyclic moiety.
  • Alkyl is defined herein as C 1 -C n , wherein the carbon chains may be straight, branched, or containing or comprising rings.
  • Substituted alkyl is defined as C 1X- C n X as described above, except that the carbons may bear one or more substituents X, such as functional groups containing oxygen, nitrogen, sulfur, halogen or aromatic or heteroaromatic rings.
  • Aryl is defined as C 6 -C n aromatic rings or multiple rings.
  • “Substituted aryl” is defined as C 6 -C n aromatic rings or multiple rings bearing substituents on one or more of these rings which may be functional groups of carbon, oxygen, nitrogen, sulfur or halogen.
  • Heteroaryl is defined as aromatic rings containing one or more heteroatom within the ring or rings.
  • Substituted heteroaryl is defined as heteroaryl containing one or more substituents on one or more ring which may be functional groups of carbon, oxygen, nitrogen, sulfur or halogen.
  • Halo is defined as chlorine, bromine, iodine or fluorine.
  • R 8 , R 9 , and Ri 0 may contain chiral centers or define a chiral center on the carbon bearing them.
  • the second product compound is a straight chain alkylsulfonate selected from methanesulfonate, ethanesulfonate, propanesulfonate, butanesulfonate, pentanesulfonate, hexanesulfonate, heptanesulfonate, octanesulfonate, nonanesulfonate, decanesulfonate, undecanesulfonate, dodecanesulfonate, tridecanesulfonate, tetradecanesulfonate, pentadecanesulfonate, hexadecanesulfonate, heptadecanesulfonate, octadecanesulfonate, nonadecanesulfonate, and icosanesulfonate.
  • the second product compound is a branched chain alkylsulfonate selected from cyclopropylsulfonate, isopropylsulfonate, isobutylsulfonate, fert-octylsulfonate, adamantly sulfonate, and 10-camphorsulfonate.
  • the second product compound is a substituted alkylsulfonate selected from chloromethylsulfonate, 2- chloroethylsulfonate j trifluoromethylsulfonate, trifluorethylsulfonate, perfluoroethylsulfonate, perfluorobutylsulfonate, perfluorooctanesulfonate, 2- aminoethylsulfonate, 2-dimethylaminoethylsulfonate, 2-phthalimidoethylsulfonate, 2- morpholinoetliylsulfonate, 3 -morpholinopropylsulfonate, 4-morpholinobutylsulfonate, 2-N-piperidinylethylsulfonate, 3-N-piperidylpropylsulfonate, 2- pyrrolidinylmethylsulfonate
  • the second product compound can have the following formula, where the camphorsulfonate group is in the R configuration:
  • the second product compound is a diastereomeric mixture of the following two formulae, where the camphorsulfonate group is in the S and R configurations, respectively:
  • the second product compound is an aryl or heteroaryl substituted alkylsulfonate selected from benzylsulfonate, 2-nitrobenzylsulfonate, 3-nitrobenzylsulfonate, 4- nitrobenzylsulfonate, 2-chlorobenzylsulfonate, 3-chlorobenzylsulfonate, 4- chlorobenzylsulfonate, 2-trifluoromethybenzylsulfonate, 3- trifluoromethylbenzylsulfonate, 4-trifluoromethylbenzylsulfonate, 3,5- dichlorobenzylsulfonate, 3,5-di-trifluoromethylbenzylsulfonate, 4- methylbenzylsulfonate, 4-t-butylbenzylsulfonate, 1-napthylethylsulfonate, 2- pyridylmethylsulfonate, 3-
  • the process of the present invention further involves reacting a second intermediate compound of the formula:
  • R 6 is H, substituted or unsubstituted alkyl, silyl, hetero-substituted or unsubstituted acyl, alkylsulfonyl, arylsulfonyl, alkylphosphoryl, or arylphosphoryl; with a second compound of the formula:
  • X H, alkyl, acyl, silyl, aryl, heteroaryl, sulfinyl, sulfonyl, phosphoryl, or phosphinyl, in the presence of a metal triflate catalyst, under conditions effective to form the first intermediate compound.
  • the step of reacting is carried out under conditions effective to achieve preferential formation of the first intermediate compound over undesired stereochemical and regiochemical isomers as well as other impurities.
  • R 1 is H or COOR 7
  • R 2 is W-C 5 H 11
  • R 3 is H or COOR 7 , where R 7 is C 1 -C 20 alkyl.
  • R 1 is COOR 7 , where R 7 is ethyl
  • R 2 is W-C 5 H 11
  • R 3 is H or COOR 7 , where R 7 is C 1 -C 2O alkyl
  • R 4 H
  • X H.
  • R 2 Az-C 5 H 11
  • X H.
  • the above reaction is carried out with the second intermediate compound in an amount of from about 1 to 1.2 equivalents with respect to the second compound.
  • the metal triflate catalyst can be a transition metal triflate or lanthanide triflate. Examples of transition metal triflate include, but are not limited to, zinc triflate, ytterbium triflate, yttrium triflate, and scandium triflate. Specifically, the transition metal triflate is zinc triflate or scandium triflate.
  • the step of reacting is carried out with the metal triflate catalyst in an amount from about 0.5 mol% to about 100 mol% with respect to the second intermediate compound. In yet another embodiment of the present invention, the step of reacting is carried out with the metal triflate catalyst in an amount from about 0.5 mol% to about 10 mol% with respect to the second intermediate compound.
  • the step of reacting is carried out in an organic solvent.
  • organic solvent include, but are not limited to, a hydrocarbon, aromatic hydrocarbon, halogenated hydrocarbon, ether, ester, amide, nitrile, carbonate, alcohol, carbon dioxide, and mixtures thereof.
  • the organic solvent is dichloromethane.
  • the step of reacting is carried out at a temperature of from about -2O 0 C to about 15O 0 C.
  • the step of reacting can be carried out under pressure at a temperature above the normal atmospheric boiling point of the organic solvent or where temperatures are above boiling point and pressure is above atmosphere.
  • the step of reacting is carried out with a less than about one equivalent of the second compound to the second intermediate compound.
  • Ethyl olivetolate (25 g, 99 mmol) was dissolved in dichloromethane (250 mL) and MgSO 4 (25 g, 1 wt) and Sc(OTf) 3 (4.88 g, 9.9 mmol, 10 mol%) were added sequentially.
  • the reaction mixture was quenched with aqueous citric acid (129.6 g citric acid, 8.3 equiv, as a 30% solution in water). The addition was exothermic. Heptane (310 mL, 10 vol) was added to the mixture and the product extracted into the heptane phase. A second extraction using heptane (150 mL, ca. 5 vol) was then performed and HPLC analysis of the aqueous fractions indicated the absence of the cannabidiol. The combined organics were dried by azeotropic distillation of the water and concentrated to ca. 250 mL and then cooled to -16 to -17°C, and seeded with solid cannabidiol when the temperature reached -1.5 0 C.
  • Example 5 Preparation of (-)-trans-delta-9- ⁇ HC [0049] Ir ⁇ 5-delta-9-THC 3-nitrobenzenesulfonate (16.5 g) was dissolved in acetonitrile (330 mL, 20 vol) and 0.5 M NaOH (165 mL, 10 vol) was added. The mixture was heated to reflux and, after ca. 2 h, HPLC analysis indicated that the reaction was complete. After cooling, water (500 mL, 30 vol) was added followed by heptane (165 mL, 10 vol). The phases were mixed and the heptane layer was collected.
  • the aqueous phase was extracted again with heptane (165 mL, 10 vol) and the organic extracts were combined, washed with water (165 mL, 10 vol), dried over Na 2 SO 4 , filtered, and concentrated to a dark brown-purple oil.
  • the oil was reconstituted with EtOH and restripped to give the product as a light brown oil (10.79 g), containing ca. 6% EtOH by proton NMR analysis. HPLC analysis indicated a purity of 99.66% AUC.
  • the nonvolatile fraction (14.7 kg of thiophenyl ether) was dissolved in glacial acetic acid (26.0 L) and stirred while 35% hydrogen peroxide (6.0 kg) added over 6.5 hours.
  • the reaction temperature was maintained at 10-20 0 C.
  • the reaction was allowed to warm to room temperature overnight, then transferred into a mixture of warm water (89 L, 40-45 0 C) and MTBE (34 L).
  • the organic phase was washed aqueous 5% sodium bicarbonate (4 washes, 18 L each) at 40-45 0 C, to achieve a final pH of ca. 8 and a negative starch-iodine test.
  • Example 8 Preparation of Ethyl Cannabidiolate [0055] To a stirred solution of ethyl olivetolate (40.1 g, 155 mmol) in dichloromethane (360 mL) was added anhydrous magnesium sulfate (10.4 g) and scandium triflate (3.93 g, 8 mmol). The mixture was cooled to 10 0 C. To this slurry was added a cold solution of (+)-menthadienol (25.1 g, 155 mmol) in dichloromethane (160 mL) over three minutes, followed by a dichloromethane rinse (120 mL). A slight exotherm was observed.
  • Example 9 Preparation of Cannabidiol
  • Crude ethyl cannabidiolate 58.6 g, ca. 90% pure by HPLC
  • methanol 390 mL
  • Aqueous sodium hydroxide solution 80.8 g of NaOH in 390 mL of water
  • the hydroxide solution was transferred under nitrogen pressure, through a steel cannula to the hot ethyl cannabidiolate/methanol solution over 20 minutes while maintaining the reaction at 7O 0 C.
  • the slowly stirred heptane solution was cooled to 10 0 C, seeded with cannabidiol crystals and stirred slowly at 10 0 C for three hours to develop a crop of crystals.
  • the slurry was stored overnight at -5°C.
  • the solid product was collected by filtration on cold sintered glass and the reactor and cake rinsed with cold heptane (150 mL). The solids were dried under nitrogen stream for two hours then under reduced pressure at 2O 0 C for 15 hours to afford 21 g (44% yield) of solid cannabidiol.
  • the reaction was quenched by addition of water (250 mL), stirred 30 minutes, combined with a slurry of celite in dichloromethane (10.0 g in 70 mL dichloromethane) and then clarified.
  • the reactor and filter cake were rinsed with dichloromethane (50 mL) and the combined filtrates distilled under reduced pressure (25°C pot temperature, 22 inches of vacuum) to about 50 mL volume.
  • Toluene (106 mL) was added and the solvents again removed under reduced pressure. More toluene (106 mL) was added and removed under reduced pressure and then the dichloromethane-free residue was reconstituted in toluene (100 mL).
  • the toluene layer was concentrated under reduced pressure to about 100 mL and additional toluene (100 mL) was added. This drying sequence was repeated and then the solvent was replaced with isopropanol (200 mL). The isopropanol was concentrated under reduced pressure and the residue was suspended in isopropanol (200 mL). The slurry was warmed to 40 0 C at which point the solids dissolved. The stirred solution was cooled to 20 0 C over 4 hours during which the product crystallized.
  • Example 13 Preparation of Delta-9-Tetrahydrocannabinol in Sesame Oil
  • a stock solution of delta-9 THC in ethanol (6.90 g of 0.109 mg/mL tetrahydrocannabinol concentration) was mixed with Croda high purity sesame oil (29.25 g) from Croda, Inc. (Edison, NJ).
  • the resulting solution was warmed to 3O 0 C, and sparged with filtered argon for 24 hours to afford ca. 30 g of 2.5 % delta-9- tetrahydrocannabinol in sesame oil.
  • 1 H NMR 500 MHz (CDCl 3 ) showed no residual ethanol.
PCT/US2006/037709 2005-09-29 2006-09-28 Process for production of delta-9-tetrahydrocannabinol WO2007041167A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP06804207A EP1928853A4 (en) 2005-09-29 2006-09-28 PROCESS FOR THE PRODUCTION OF DELTA-9-TETRAHYDROCANNABINOL
NZ567029A NZ567029A (en) 2005-09-29 2006-09-28 Process for production of delta-9- tetrahydrocannabinol
AU2006297300A AU2006297300B2 (en) 2005-09-29 2006-09-28 Process for production of delta-9-tetrahydrocannabinol
JP2008533571A JP2009510078A (ja) 2005-09-29 2006-09-28 Δ−9−テトラヒドロカンナビノールの生成法
CA002623723A CA2623723A1 (en) 2005-09-29 2006-09-28 Process for production of delta-9-tetrahydrocannabinol
NZ594077A NZ594077A (en) 2005-09-29 2006-09-28 Process for production of delta-9-tetrahydrocannabinol
IL190388A IL190388A0 (en) 2005-09-29 2008-03-24 Process for production of delta-9-tetrahydrocannabinol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US72203105P 2005-09-29 2005-09-29
US60/722,031 2005-09-29

Publications (2)

Publication Number Publication Date
WO2007041167A2 true WO2007041167A2 (en) 2007-04-12
WO2007041167A3 WO2007041167A3 (en) 2007-11-22

Family

ID=37906689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/037709 WO2007041167A2 (en) 2005-09-29 2006-09-28 Process for production of delta-9-tetrahydrocannabinol

Country Status (11)

Country Link
US (3) US7674922B2 (US07674922-20100309-C00031.png)
EP (3) EP2578577A1 (US07674922-20100309-C00031.png)
JP (1) JP2009510078A (US07674922-20100309-C00031.png)
KR (1) KR20080063800A (US07674922-20100309-C00031.png)
CN (2) CN102766128A (US07674922-20100309-C00031.png)
AU (1) AU2006297300B2 (US07674922-20100309-C00031.png)
CA (1) CA2623723A1 (US07674922-20100309-C00031.png)
IL (1) IL190388A0 (US07674922-20100309-C00031.png)
NZ (3) NZ601567A (US07674922-20100309-C00031.png)
WO (1) WO2007041167A2 (US07674922-20100309-C00031.png)
ZA (1) ZA200802767B (US07674922-20100309-C00031.png)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099183A1 (en) * 2007-02-14 2008-08-21 Resolution Chemicals Limited Delta 9 tetrahydrocannabinol derivatives
WO2009073633A1 (en) * 2007-11-30 2009-06-11 Alltranz Inc. Prodrugs of tetrahydrocannabinol, compositions comprising prodrugs of tetrahydrocannabinol and methods of using the same
WO2009099868A1 (en) * 2008-02-06 2009-08-13 Mallinckrodt Inc. Process for the preparation of (-) -delta 9-tetrahydrocannabinol
US8530679B2 (en) 2007-02-20 2013-09-10 Resolution Chemicals Limited Delta 9—tetrahydrocannabinol processing
EP3253727A4 (en) * 2015-02-05 2018-08-08 Colorado Can LLC Purified cbd and cbda, and methods, compositions and products employing cbd or cbda
WO2019030158A1 (en) 2017-08-07 2019-02-14 Enantia, S.L. CO-CRYSTAL OF 2 - [(1R, 6R) -6-ISOPROPENYL-3-METHYLCYCLOHEX-2-EN-1-YL] -5-PENTYLBENZENE-1,3-DIOL
WO2019033168A1 (en) * 2017-08-16 2019-02-21 The University Of Sydney SYNTHESIS OF PHYTOCANNABINOIDS COMPRISING A DECARBOXYLATION STAGE
EP3539637A1 (en) * 2018-03-13 2019-09-18 CLS Labs, Inc. Cannabidiol extraction and conversion process
WO2020089424A1 (en) 2018-10-31 2020-05-07 Enantia, S.L. Solid compositions of cocrystals of cannabinoids
WO2020198876A1 (en) * 2019-04-05 2020-10-08 Rapid Dose Therapeutics Corp. Apparatus for and method of converting cbd and/or cbd derivatives to at least one other type of cannabinoid and/or cannabinoid derivative such as thc
WO2020232526A1 (en) * 2019-05-17 2020-11-26 Nextleaf Solutions Ltd Method for acetylation of cannabinoids
WO2021046630A1 (en) * 2019-09-15 2021-03-18 Nextleaf Solutions Ltd Acetylation of cannabinoids using sulfuric acid catalyst
US20210106929A1 (en) * 2018-08-10 2021-04-15 Natural Extraction Systems, LLC Methods to purify cannabinoids
WO2021181420A1 (en) 2020-03-12 2021-09-16 Council Of Scientific And Industrial Research An Indian Registered Body Incorporated Under The Regn. Of Soc. Act (Act Xxi Of 1860) Process for the synthesis of cannabidiol and intermediates thereof
WO2021198692A1 (en) 2020-03-31 2021-10-07 Phytotherapeutix Ltd Terpenophenolic compounds and their use
EP3983395A4 (en) * 2019-06-11 2023-10-18 Canopy Growth Corporation IMPROVED PROCESSES FOR CONVERTING CANNABIDIOL TO DELTA 8-TETRAHYDROCANNABINOL
WO2024028516A1 (en) 2022-08-05 2024-02-08 Salud & Semillas, S.L. CANNABINOID SYNTHESIS STARTING OUT FROM OLIVETOL AND TERPENE IN DICHLOROMETHANE WITH FeCl3 * 6H2O AS CATALYST

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8980940B2 (en) 2006-11-10 2015-03-17 Johnson Matthey Public Limited Company Stable cannabinoid compositions and methods for making and storing them
US8039509B2 (en) 2006-11-10 2011-10-18 Johnson Matthey Public Limited Company Composition comprising (−)-Δ9-trans-tetrahydrocannabinol
GB0807915D0 (en) * 2008-05-01 2008-06-04 Resolution Chemicals Ltd Production of delta 9 tetrahydrocannabinol
US8445034B1 (en) 2010-11-02 2013-05-21 Albert L Coles, Jr. Systems and methods for producing organic cannabis tincture
EP2842933B1 (de) * 2013-09-03 2015-07-29 Symrise AG Mischungen cannabinoider Verbindungen, deren Herstellung und Verwendung
US10821240B2 (en) 2014-02-11 2020-11-03 Vapor Cartridge Technology Llc Methods and drug delivery devices using cannabis
US9380813B2 (en) 2014-02-11 2016-07-05 Timothy McCullough Drug delivery system and method
US9220294B2 (en) 2014-02-11 2015-12-29 Timothy McCullough Methods and devices using cannabis vapors
US10045540B2 (en) 2014-04-01 2018-08-14 Fayetteville State University Pest control composition
CA2950424C (en) * 2014-05-29 2023-03-14 Insys Pharma, Inc. Stable cannabinoid formulations
GB2531281A (en) 2014-10-14 2016-04-20 Gw Pharma Ltd Use of cannabidiol in the treatment of intractable epilepsy
EP3061450A1 (de) 2015-02-26 2016-08-31 Symrise AG Mischungen cannabinoider Verbindungen, deren Herstellung und Verwendung
US10059683B2 (en) 2015-07-10 2018-08-28 Noramco, Inc. Process for the production of cannabidiol and delta-9-tetrahydrocannabinol
PT3455213T (pt) * 2016-05-13 2022-03-01 Symrise Ag Método para purificar compostos canabinoides através de cromatografia em leito móvel simulado
US10399920B2 (en) 2016-06-01 2019-09-03 S&B Pharma, Inc. Crystalline form of cannabidiol
US10239808B1 (en) 2016-12-07 2019-03-26 Canopy Holdings, LLC Cannabis extracts
CN106632214B (zh) * 2016-12-28 2019-01-25 西北大学 一种大麻酚类化合物的合成方法
US10702495B2 (en) 2017-02-20 2020-07-07 Nexien Biopharma, Inc. Method and compositions for treating dystrophies and myotonia
ES2909350T3 (es) * 2017-06-20 2022-05-06 Yissum Res Dev Co Of Hebrew Univ Jerusalem Ltd Composiciones de ésteres de ácido cannabidiólico y usos de las mismas
US10640482B2 (en) 2017-07-21 2020-05-05 University Of South Florida Synthesis of cannabinoids
US10272360B2 (en) 2017-08-05 2019-04-30 Priya Naturals, Inc. Phytochemical extraction system and methods to extract phytochemicals from plants including plants of the family Cannabaceae sensu stricto
CN111372907A (zh) * 2017-09-01 2020-07-03 普优峰全球股份有限公司 合成大麻二酚组合物和用于制备其的方法
EP3745884A1 (en) 2018-01-31 2020-12-09 Canopy Holdings, Llc Hemp powder
US11192870B2 (en) 2018-03-07 2021-12-07 Socati Technologies—Oregon, Llc Continuous isolation of cannabidiol and conversion of cannabidiol to delta 8-tetrahydrocannabinol and delta 9-tetrahydrocannabinol
US11851415B2 (en) 2018-03-07 2023-12-26 Cleen Technology Inc. Continuous isolation of cannabidiol and cannabinoids and conversion of cannabidiol to delta 8-tetrahydrocannabinol and delta 9-tetrahydrocannabinol
CA3073093A1 (en) 2018-08-03 2020-02-06 Biomass Oil Separation Solutions, Llc Processes and apparatus for extraction of substances and enriched extracts from plant material
WO2020031179A1 (en) 2018-08-06 2020-02-13 Beetlebung Pharma Ltd. Methods for synthesis of cannabinoid compounds
CA3111788A1 (en) 2018-09-05 2020-03-12 Purisys Llc Cannabidiol compositions having modified cannabinoid profiles
US11040932B2 (en) 2018-10-10 2021-06-22 Treehouse Biotech, Inc. Synthesis of cannabigerol
CN109734554B (zh) * 2019-02-25 2021-11-23 江苏暨明医药科技有限公司 一种反式-薄荷基-2,8-二烯-1-醇的合成工艺
EP3958884A4 (en) 2019-04-23 2022-12-21 Soma Oil LLC SYSTEMS AND METHODS FOR CANNABIS PROCESSING
CN111943813B (zh) * 2019-05-17 2023-04-14 上海特化医药科技有限公司 大麻二酚类化合物的制备方法
SG11202112677WA (en) * 2019-05-23 2021-12-30 Kare Chemical Tech Inc Catalytic cannabinoid processes and precursors
EP3750528A1 (en) 2019-06-11 2020-12-16 Nexien Biopharma, Inc. Compositions for treating dystrophies and myotonia
US20220220090A1 (en) * 2019-06-11 2022-07-14 Canopy Growth Corporation Improved methods for converting cannabidiol into delta9-tetrahydrocannabinol under neat or aprotic reaction conditions
WO2020248060A1 (en) * 2019-06-11 2020-12-17 Canopy Growth Corporation Improved methods for converting cannabidiol into delta9-tetrahydrocannabinol under protic reaction conditions
US11925907B2 (en) 2019-07-22 2024-03-12 Canopy Growth Corporation Continuous crystallization of cannabinoids in a stirred-tank reactor
US10799546B1 (en) 2019-07-26 2020-10-13 Biomass Oil Separation Solutions, Llc Modular, integrated process and apparatus for extracting, refining and remediating active substances from plant material
MX2022003189A (es) 2019-09-16 2022-06-08 Vapor Cartridge Tech Llc Sistema de administración de fármacos con sustratos apilables.
US11542243B1 (en) * 2019-09-26 2023-01-03 FusionFarms, LLC Method of converting delta9-THC to delta10-THC and the purification of the delta10-THC by crystallization
EP4069215A4 (en) 2019-12-06 2024-01-17 JLABS Beauty LLC TOPICAL COMPOSITIONS CONTAINING ROSE OIL AND CANNABIDIOL AND METHODS OF PREPARING AND USING THE SAME
EP4088723A4 (en) * 2020-01-08 2024-02-21 Chengdu Baiyu Pharmaceutical Co Ltd CANNABIDIOL DERIVATIVE, METHOD FOR THE PRODUCTION THEREOF AND MEDICAL USE THEREOF
CN113087743B (zh) * 2020-01-08 2023-04-28 成都百裕制药股份有限公司 四氢大麻酚衍生物及其制备方法和在医药上的应用
US11767306B2 (en) * 2020-01-17 2023-09-26 Cannacraft, Inc Methods for converting CBD to tetrahydrocannabinols
US10981849B1 (en) * 2020-02-20 2021-04-20 Sci Pharmtech Inc. Method for preparing cannabinoids
ES2936274T3 (es) 2020-02-21 2023-03-15 Sci Pharmtech Inc Método sin disolvente para preparar cannabinoides
GB202002754D0 (en) 2020-02-27 2020-04-15 Gw Res Ltd Methods of treating tuberous sclerosis complex with cannabidiol and everolimus
US11786838B2 (en) 2020-03-23 2023-10-17 Cannacraft, Inc. Methods for removing pesticides from Cannabis products
CA3179442A1 (en) 2020-05-22 2021-11-25 Brian Warrington Compositions for treating acne and dermatological conditions
CN113896616A (zh) * 2020-07-06 2022-01-07 复旦大学 一种大麻二酚的制备方法
CN112094257B (zh) * 2020-08-19 2023-08-22 公安部禁毒情报技术中心 一种△-9四氢大麻酚的制备方法
CN114644547A (zh) * 2020-12-21 2022-06-21 云南汉盟制药有限公司 一种大麻二酚和/或次大麻二酚的制备方法
CN115504864A (zh) * 2021-06-07 2022-12-23 南通新世元生物科技有限公司 从工业大麻中获取高纯度大麻二酚的方法
CN113979836B (zh) * 2021-10-13 2023-05-30 上海应用技术大学 一种4-异丙烯基-1-甲基-2-环己烯-1-醇的制备方法
CN115583933B (zh) * 2022-10-31 2024-02-06 暨明医药科技(苏州)有限公司 一种高纯度四氢大麻素同系物的制备方法

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2509387A (en) * 1950-05-30 Dibenzopyran marihuana-like
US2304669A (en) * 1940-08-16 1942-12-08 Adams Roger Isolation of cannabidiol
GB558418A (en) 1940-08-16 1944-01-05 Roger Adams Process for securing pharmacologically useful products from cannabidiol
US2419934A (en) * 1941-07-09 1947-05-06 Adams Roger Optically active tetrahydrodibenzopyrans having marihuana activity and process for making same
US2419935A (en) * 1941-07-09 1947-05-06 Adams Roger Marihuana active compounds
US2419936A (en) * 1942-04-29 1947-05-06 Adams Roger Preparation of compounds with marihuana activity
US3636058A (en) * 1966-03-25 1972-01-18 Hoffmann La Roche 7 10 - dihydro - 3 - alkyl - 6h - dibenzo(b d) pyran-6 9(8h)-diones and 5-hydroxy-7-alkyl-4-chromanones
US3507885A (en) * 1966-03-25 1970-04-21 Hoffmann La Roche 3-alkyl-6h-dibenzo(b,d)pyrans
CH473075A (de) * 1966-11-04 1969-05-31 Theodor Dr Petrzilka Verfahren zur Herstellung von in 2-Stellung substituierten Resorcinderivaten
US3920705A (en) * 1967-05-19 1975-11-18 Theodore Petrzilka 6a,10a-trans-6a,10,10a-tetrahydrodibenzo(b,d)-pyrans
US3833616A (en) * 1968-09-16 1974-09-03 T Petrzilka 6a,10a-trans-6a,7,8,10a-tetrahydrodibenzo(b,d)-pyrans
US3919322A (en) * 1969-01-22 1975-11-11 Hoffmann La Roche 3-Substituted -5-alkyl-2-cyclohexen-1-ones
US3734930A (en) * 1971-09-22 1973-05-22 R Razdan Direct synthesis of ({31 )-trans-{66 {11 tetrahydrocannabinol from olivetol and ({30 )-trans-{66 {11 -carene oxide
US4278603A (en) * 1973-11-05 1981-07-14 Eli Lilly And Company Novel polymorphic crystalline form of dibenzopyranone
US4025516A (en) * 1975-06-23 1977-05-24 The John C. Sheehan Institute For Research, Inc. Process for the preparation of (-)-6a,10a-trans-6a,7,8,10a-tetrahydrodibenzo[b,d]-pyrans
US4116979A (en) * 1975-06-23 1978-09-26 Sheehan Institute For Research, Inc. Process for the preparation of (-)-6a,10a-trans-6a,7,8,10a-tetrahydrodibenzo[b,d]-pyrans
IL48824A (en) * 1976-01-12 1980-05-30 Yissum Res Dev Co Pharmaceutical compositions containing (3s,js) tetrahydrocanabinol derivatives and some novel compounds of this type
PT66744B (en) * 1976-07-06 1978-11-27 Lilly Co Eli Process for preparing cis-hexahydrodibenzopyranones
US4054582A (en) * 1976-07-06 1977-10-18 Eli Lilly And Company Process for converting cis-hexahydrodibenzo[b,d]pyran-9-ones to trans-hexahydrodibenzo[b,d]-pyran-9-ones
CA1096390A (en) * 1976-07-06 1981-02-24 Edward R. Lavagnino PROCESS FOR PREPARING DL-CIS-1-HYDROXY-3-SUBSTITUTED- 6,6-DIMETHYL-6,6.alpha.,7,8,10,10.alpha.-HEXAHYDRO-9H- DIBENZO(B,D,)PYRAN-9-ONES
US4102902A (en) 1976-11-10 1978-07-25 Eli Lilly And Company Stereoselective preparation of hexahydro dibenzopyranones and intermediates therefor
US4075230A (en) * 1976-11-10 1978-02-21 Eli Lilly And Company Preparation of optically active trans-hexahydrodibenzopyranones
US4171315A (en) * 1978-03-31 1979-10-16 Eli Lilly And Company Preparation of cis-hexahydrodibenzopyranones
US4202902A (en) * 1979-03-05 1980-05-13 Shell Oil Company Lipogenesis control by cyclopropane-carboxylic acids, esters and amides
CH646933A5 (fr) * 1981-05-04 1984-12-28 Firmenich & Cie Procede pour la preparation de (+)-p-mentha-2,8-diene-1-ol.
US4381399A (en) * 1981-12-21 1983-04-26 Aerojet-General Corporation Purification of tetrahydrodibenzo[b,d]pyrans from crude synthetic mixtures
IL80411A (en) * 1986-10-24 1991-08-16 Raphael Mechoulam Preparation of dibenzopyranol derivatives and pharmaceutical compositions containing them
US4933363A (en) * 1988-08-16 1990-06-12 Elsohly Mahmoud A Method for effecting systemic delivery of delta-9-tetrahydrocannabinol
US5521215A (en) 1989-11-07 1996-05-28 Ramot University Authority For Applied Research And Industrial Development Ltd. NMDA-blocking pharmaceuticals
IL92238A (en) 1989-11-07 1995-07-31 Yissum Res Dev Co ADMN blocking product containing tetrahydrocannabinol history, several new tetrahydrocannabinol histories and process for their preparation
DE4100441A1 (de) * 1991-01-09 1992-07-16 Mack Chem Pharm Verfahren zur herstellung von 6,12-dihydro-6-hydroxy-cannabidiol und dessen verwendung zur herstellung von trans-delta-9-tetrahydrocannabinol
US5635530A (en) * 1991-09-12 1997-06-03 Yissum Research Development Company Of The Hebrew University Of Jerusalem (3S,4S)-delta-6-tetrahydrocannabinol-7-oic acids and derivatives thereof, processors for their preparation and pharmaceutical compositions containing them
US5538993A (en) * 1991-09-12 1996-07-23 Yissum Research Development Company Certain tetrahydrocannabinol-7-oic acid derivatives
US5292899A (en) * 1991-11-27 1994-03-08 Synthetic Technology Corporation Synthesis of 11-nor-Δ-9-tetrahydrocannabinol-9-carboxylic acid glucuronide
IL102082A (en) * 1992-06-02 1997-07-13 Yissum Res Dev Co Antiemetic composition containing a cannabinol derivative
US5338753A (en) * 1992-07-14 1994-08-16 Sumner H. Burstein (3R,4R)-Δ6 -tetrahydrocannabinol-7-oic acids useful as antiinflammatory agents and analgesics
US5342971A (en) * 1992-12-29 1994-08-30 The Australian National University Process for the preparation of dibenzo[b,d]pyrans
US5389375A (en) * 1993-05-21 1995-02-14 University Of Mississippi Stable suppository formulations effecting bioavailability of Δ9 -thc
US5440052A (en) * 1993-08-06 1995-08-08 University Of Connecticut Compositions useful as a cannabinoid receptor probe
JPH07196565A (ja) * 1993-12-28 1995-08-01 Idemitsu Petrochem Co Ltd 4−アルキル−2−フルオロシクロヘキサノールとその製造方法及びその光学分割方法
IL115245A (en) * 1995-09-11 2002-12-01 Yissum Res Dev Co Tumor necrosis factor inhibiting pharmaceuticals
US6328992B1 (en) 1997-03-03 2001-12-11 Lawrence L. Brooke Cannabinoid patch and method for cannabis transdermal delivery
US6148261A (en) * 1997-06-20 2000-11-14 American Calcar, Inc. Personal communication system to send and receive voice data positioning information
US6162829A (en) * 1997-10-17 2000-12-19 Atlantic Pharmaceuticals, Inc. (3R,4R)-Δ8 -tetrahydrocannabinol-11-oic acids useful as antiinflammatory agents and analgesics
EP1071419B1 (en) * 1998-04-21 2007-07-25 THE UNITED STATES GOVERNMENT as represented by THE DEPARTMENT OF HEALTH AND HUMAN SERVICES Cannabinoids as antioxidants and neuroprotectants
AU6291999A (en) * 1998-10-05 2000-04-26 B.F. Goodrich Company, The Catalyst and methods for polymerizing cycloolefins
US6730519B2 (en) * 1998-10-26 2004-05-04 The University Of Mississippi Method of preparing delta-9-tetrahydrocannabinol
US6008383A (en) * 1998-10-26 1999-12-28 University Of Mississippi Method of preparing delta-9-tetrahydrocannabinol esters
US6566560B2 (en) * 1999-03-22 2003-05-20 Immugen Pharmaceuticals, Inc. Resorcinolic compounds
EP1189603A2 (en) * 1999-03-22 2002-03-27 Immugen Pharmaceuticals, Inc. Treatment of immune diseases like hiv disease and neoplastic disorders
US6949582B1 (en) * 1999-05-27 2005-09-27 Wallace Walter H Method of relieving analgesia and reducing inflamation using a cannabinoid delivery topical liniment
FR2795731B1 (fr) * 1999-07-02 2001-09-07 Warner Lambert Co PROCEDE DE PREPARATION DE [1,4] DIAZEPINO [6,7,1-hi] INDOL-4-ONES SUBSTITUEES
WO2001003690A1 (en) * 1999-07-12 2001-01-18 Virginia Commonwealth University Novel vasodilator cannabinoid analogs
MXPA02001804A (es) 1999-08-20 2004-09-06 Unimed Pharmaceuticals Inc Composicion para inhalacion que comprende delta-9-tetrahidrocanabinol en un solvente semi-acuoso.
CA2404669A1 (en) * 2000-03-27 2001-10-04 Akiko Asakawa Condensed pyrazole derivatives, process for producing the same and use thereof
US6448288B1 (en) * 2000-05-17 2002-09-10 University Of Massachusetts Cannabinoid drugs
US6974835B2 (en) * 2000-05-17 2005-12-13 Indevus Pharmaceuticals, Inc. Methods for decreasing cell proliferation based on (3r,4r)-Δ8-tetrahydrocannabinol-11-oic acids
IL136839A (en) 2000-06-16 2006-12-10 Yissum Res Dev Co Pharmaceutical compositions comprising cannabidiol derivatives, and processes for the preparation of same
NZ522349A (en) * 2000-06-22 2004-06-25 Pharmos Corp Non-psychotropic cannabinoids that afford neuroprotection by exhibiting anti-inflammatory and/or antioxidative and glutamate-receptor blocking mechanisms of action
US7235584B2 (en) * 2000-06-22 2007-06-26 Pharmos Corporation Non-psychotropic cannabinoids
DE10051427C1 (de) 2000-10-17 2002-06-13 Adam Mueller Verfahren zur Herstellung eines Tetrahydrocannabinol- und Cannabidiol-haltigen Extraktes aus Cannabis-Pflanzenmaterial sowie Cannabis-Extrakte
US20020111377A1 (en) * 2000-12-22 2002-08-15 Albany College Of Pharmacy Transdermal delivery of cannabinoids
DE10106024B4 (de) 2001-02-09 2004-10-14 Thc Pharm Gmbh Verfahren zur Herstellung von Dronabinol
EP1409473A2 (en) * 2001-03-07 2004-04-21 Websar Innovations Inc. CONVERSION OF CBD TO $g(D)?8 -THC AND $g(D)?9 -THC
GB2377218A (en) 2001-05-04 2003-01-08 Gw Pharmaceuticals Ltd Process and apparatus for extraction of active substances and enriched extracts from natural products
GB0112752D0 (en) 2001-05-25 2001-07-18 Johnson Matthey Plc Synthesis of cannabinoids
GB0112748D0 (en) 2001-05-25 2001-07-18 Johnson Matthey Plc Uncatalysed addition reactions
US20030017216A1 (en) * 2001-07-23 2003-01-23 Schmidt Robert Gustav Isolation of herbal and cannabinoid medicinal extracts
GB2381450B (en) 2001-10-31 2006-05-31 Gw Pharma Ltd Compositions for administration of natural or synthetic cannabinoids by vaporisation
DE60321318D1 (de) * 2002-02-01 2008-07-10 Resolution Chemicals Ltd Gewinnung von delta-9 tetrahydrocannabinol
US7285687B2 (en) 2002-04-25 2007-10-23 Virginia Commonwealth University Cannabinoids
US6946150B2 (en) * 2002-08-14 2005-09-20 Gw Pharma Limited Pharmaceutical formulation
US20040043946A1 (en) * 2002-09-03 2004-03-04 Popp Karl F. Topical formulations for treatment of skin disorders
GB0222077D0 (en) 2002-09-23 2002-10-30 Gw Pharma Ltd Methods of preparing cannabinoids from plant material
GB2393182B (en) 2002-09-23 2007-03-14 Gw Pharma Ltd Method of preparing cannabidiol from plant material
WO2004043946A1 (en) * 2002-11-12 2004-05-27 Mallinckrodt Inc. Cannabinoid crystalline derivatives and process of cannabinoid purification
IL153277A0 (en) * 2002-12-04 2003-07-06 Pharmos Corp High enantiomeric purity dexanabinol for pharmaceutical compositions
US20040248970A1 (en) * 2003-04-10 2004-12-09 Webster G.R. Barrie CBD-delta8-THC composition
EP1613578A2 (en) 2003-04-10 2006-01-11 Mallinckrodt Inc. Olivetol-cyclodextrin complexes and regio-selective process for preparing delta 9-tetrahydrocannabinol
DE602004031221D1 (de) * 2003-05-20 2011-03-10 Univ Tennessee Res Foundation Cannabinoidderivate, verfahren zu deren herstellung und deren verwendung
WO2005100333A1 (en) 2004-04-07 2005-10-27 Cedarburg Pharmaceuticals, Inc. Methods and intermediates for the synthesis of delta-9 tetrahydrocannabinol
GB2414933B (en) 2004-06-08 2009-07-15 Gw Pharma Ltd Cannabinoid compositions for the treatment of disease and/or symptoms in arthritis
CN1997636B (zh) 2004-07-19 2011-09-28 希莱格有限公司 获得纯四氢大麻酚的方法
US7323576B2 (en) * 2004-10-01 2008-01-29 Alphora Research Inc. Synthetic route to dronabinol
TWI369203B (en) 2004-11-22 2012-08-01 Euro Celtique Sa Methods for purifying trans-(-)-△9-tetrahydrocannabinol and trans-(+)-△9-tetrahydrocannabinol
WO2006063109A2 (en) 2004-12-09 2006-06-15 Insys Therapeutics, Inc. Room-temperature stable dronabinol formulations

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ABEL: "Marijuana: The First Twelve Thousand Years", 1980, PLENUM PRESS, pages: 11 - 12
DEVANE ET AL., MOL. PHARMACOL., vol. 34, 1988, pages 605 - 613
DEVANE ET AL., SCIENCE, vol. 258, 1992, pages 1946 - 1949
HERODOTUS: "The Histories, Book IV", 1972, PENGUIN BOOKS, LTD., pages: 295
HODJAT-KASHANI ET AL., HETEROCYCLES, vol. 24, 1986, pages 1973 - 1976
HUFFMAN ET AL., CURRENT MED. CHEM., vol. 3, 1996, pages 101 - 116
MUNRO ET AL., NATURE, vol. 365, 1993, pages 61 - 65
RAZDAN: "The Total Synthesis of Natural Products", vol. 4, 1981, WILEY AND SONS, pages: 185 - 262
RICKARDS ET AL., TETRAHEDRON LETTERS, vol. 26, no. 8, 1985, pages 1083 - 1086
See also references of EP1928853A4

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110171300A1 (en) * 2007-02-14 2011-07-14 Resolution Chemicals Limited Delta 9 tetrahydrocannabinol derivatives
WO2008099183A1 (en) * 2007-02-14 2008-08-21 Resolution Chemicals Limited Delta 9 tetrahydrocannabinol derivatives
US8530679B2 (en) 2007-02-20 2013-09-10 Resolution Chemicals Limited Delta 9—tetrahydrocannabinol processing
JP2011505382A (ja) * 2007-11-30 2011-02-24 オールトランツ インコーポレイティド テトラヒドロカンナビノールのプロドラッグ、テトラヒドロカンナビノールのプロドラッグを含む組成物、及び同一のものを使用する方法
US8227627B2 (en) 2007-11-30 2012-07-24 Alltranz Inc. Prodrugs of tetrahydrocannabinol, compositions comprising prodrugs of tetrahydrocannabinol and methods of using the same
JP2014144990A (ja) * 2007-11-30 2014-08-14 Alltranz Inc テトラヒドロカンナビノールのプロドラッグ、テトラヒドロカンナビノールのプロドラッグを含む組成物、及び同一のものを使用する方法
US8980942B2 (en) 2007-11-30 2015-03-17 Zynerba Pharmaceuticals, Inc. Prodrugs of tetrahydrocannabinol, compositions comprising prodrugs of tetrahydrocannabinol and methods of using the same
JP2016028049A (ja) * 2007-11-30 2016-02-25 ジネルバ ファーマシューティカルズ, インコーポレイティド テトラヒドロカンナビノールのプロドラッグ、テトラヒドロカンナビノールのプロドラッグを含む組成物、及び同一のものを使用する方法
US9695143B2 (en) 2007-11-30 2017-07-04 Zynerba Pharmaceuticals, Inc. Prodrugs of tetrahydrocannabinol, compositions comprising prodrugs of tetrahydrocannabinol and methods of using the same
US9957246B2 (en) 2007-11-30 2018-05-01 Zynerba Pharmaceuticals, Inc. Prodrugs of tetrahydrocannabinol, compositions comprising prodrugs of tetrahydrocannabinol and methods of using the same
WO2009073633A1 (en) * 2007-11-30 2009-06-11 Alltranz Inc. Prodrugs of tetrahydrocannabinol, compositions comprising prodrugs of tetrahydrocannabinol and methods of using the same
WO2009099868A1 (en) * 2008-02-06 2009-08-13 Mallinckrodt Inc. Process for the preparation of (-) -delta 9-tetrahydrocannabinol
EP3253727A4 (en) * 2015-02-05 2018-08-08 Colorado Can LLC Purified cbd and cbda, and methods, compositions and products employing cbd or cbda
US11168047B2 (en) 2017-08-07 2021-11-09 Enantia, S.L. Cocrystal of 2-[(1R,6R)-6-isopropenyl-3-methylcyclohex-2-en-1-yl]-5-pentylbenzene-l,3-diol
WO2019030158A1 (en) 2017-08-07 2019-02-14 Enantia, S.L. CO-CRYSTAL OF 2 - [(1R, 6R) -6-ISOPROPENYL-3-METHYLCYCLOHEX-2-EN-1-YL] -5-PENTYLBENZENE-1,3-DIOL
WO2019033168A1 (en) * 2017-08-16 2019-02-21 The University Of Sydney SYNTHESIS OF PHYTOCANNABINOIDS COMPRISING A DECARBOXYLATION STAGE
US10807931B2 (en) 2017-08-16 2020-10-20 The University Of Sydney Synthesis of phytocannabinoids including a decarboxylation step
AU2018317939B2 (en) * 2017-08-16 2021-06-03 The University Of Sydney Synthesis of phytocannabinoids including a decarboxylation step
EP3539637A1 (en) * 2018-03-13 2019-09-18 CLS Labs, Inc. Cannabidiol extraction and conversion process
US20210106929A1 (en) * 2018-08-10 2021-04-15 Natural Extraction Systems, LLC Methods to purify cannabinoids
US11702397B2 (en) * 2018-08-10 2023-07-18 Natural Extraction Systems, LLC Methods to purify cannabinoids
WO2020089424A1 (en) 2018-10-31 2020-05-07 Enantia, S.L. Solid compositions of cocrystals of cannabinoids
WO2020198876A1 (en) * 2019-04-05 2020-10-08 Rapid Dose Therapeutics Corp. Apparatus for and method of converting cbd and/or cbd derivatives to at least one other type of cannabinoid and/or cannabinoid derivative such as thc
WO2020232526A1 (en) * 2019-05-17 2020-11-26 Nextleaf Solutions Ltd Method for acetylation of cannabinoids
EP3983395A4 (en) * 2019-06-11 2023-10-18 Canopy Growth Corporation IMPROVED PROCESSES FOR CONVERTING CANNABIDIOL TO DELTA 8-TETRAHYDROCANNABINOL
WO2021046630A1 (en) * 2019-09-15 2021-03-18 Nextleaf Solutions Ltd Acetylation of cannabinoids using sulfuric acid catalyst
WO2021181420A1 (en) 2020-03-12 2021-09-16 Council Of Scientific And Industrial Research An Indian Registered Body Incorporated Under The Regn. Of Soc. Act (Act Xxi Of 1860) Process for the synthesis of cannabidiol and intermediates thereof
WO2021198692A1 (en) 2020-03-31 2021-10-07 Phytotherapeutix Ltd Terpenophenolic compounds and their use
WO2024028516A1 (en) 2022-08-05 2024-02-08 Salud & Semillas, S.L. CANNABINOID SYNTHESIS STARTING OUT FROM OLIVETOL AND TERPENE IN DICHLOROMETHANE WITH FeCl3 * 6H2O AS CATALYST

Also Published As

Publication number Publication date
US7674922B2 (en) 2010-03-09
US20110263878A1 (en) 2011-10-27
WO2007041167A3 (en) 2007-11-22
EP1928853A2 (en) 2008-06-11
AU2006297300B2 (en) 2012-05-10
CA2623723A1 (en) 2007-04-12
ZA200802767B (en) 2009-09-30
JP2009510078A (ja) 2009-03-12
IL190388A0 (en) 2008-11-03
NZ594077A (en) 2013-02-22
US8106244B2 (en) 2012-01-31
AU2006297300A1 (en) 2007-04-12
US20100069651A1 (en) 2010-03-18
EP2578561A1 (en) 2013-04-10
EP2578577A1 (en) 2013-04-10
KR20080063800A (ko) 2008-07-07
NZ601567A (en) 2013-03-28
EP1928853A4 (en) 2011-02-16
CN101316832A (zh) 2008-12-03
NZ567029A (en) 2011-09-30
US20070093665A1 (en) 2007-04-26
CN102766128A (zh) 2012-11-07

Similar Documents

Publication Publication Date Title
AU2006297300B2 (en) Process for production of delta-9-tetrahydrocannabinol
EP2044076B1 (en) Process for the preparation of asenapine and intermediate products used in said process.
CA2751741C (en) Process for the preparation of (-) -delta 9-tetrahydrocannabinol
Nemoto et al. Enantioselective total syntheses of (+)-decursin and related natural compounds using catalytic asymmetric epoxidation of an enone
CN112592260A (zh) 一种大麻二酚的合成方法
US6444826B1 (en) Processes and intermediates for preparing substituted chromanol derivatives
AU2012201041B2 (en) Process for production of delta-9-tetrahydrocannabinol
US20070287843A1 (en) Methods and Intermediates for the Synthesis of Delta-9 Tetrahydrocannabinol
US7153994B2 (en) Manufacture of trimethylhydroquinone diacylates
WO2012080243A2 (en) Novel process
WO2014111903A2 (en) A process for the preparation of 6-fluoro-3,4-dihydro-2h-chromene- 2-carbaldehyde
Sugimura et al. Chiral and flexible 2, 4-pentanediol-tethered cyclopropanation of olefins with a carbenoid derived from a diazo ester to construct three stereogenic centers
CN107188786B (zh) 一种医药中间体光学纯环戊烯醇的制备方法
JPS6289660A (ja) 4−オキソ−4,5,6,7−テトラヒドロインド−ルの製法
KR0150292B1 (ko) 피라졸을 함유한 프로페노익 에스테르 유도체의 신규한 제조방법
EP2003112A1 (en) Method for producing carboxylic acid compound
WO2023122754A1 (en) Processes and intermediates for preparing gb13, gb22 and himgaline
CN116199607A (zh) 毛果芸香碱及其中间体化合物的制备方法
US8258322B2 (en) Synthesis of hexahydrodibenzopyranones
HANAOKA et al. Chemical Transformation of Protoberberines. XIV. Acid-Catalyzed Cleavage of 8-Alkyl-8, 14-cycloberbines. A Simple Method for the Preparation of N-Unsubstituted Spirobenzylisoquinolines
JPH07242572A (ja) ジメチルヘプタトリアコンタンおよびその類似体の製造方法
JPH0211585A (ja) クロマン誘導体の製造方法
MXPA01010768A (en) Processes and intermediates for preparing substituted chromanol derivatives

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044343.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 190388

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2623723

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1510/CHENP/2008

Country of ref document: IN

Ref document number: 2006804207

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2008533571

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006297300

Country of ref document: AU

Ref document number: 567029

Country of ref document: NZ

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2006297300

Country of ref document: AU

Date of ref document: 20060928

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087010362

Country of ref document: KR