WO2007037353A1 - 排ガスの処理方法及び処理装置 - Google Patents

排ガスの処理方法及び処理装置 Download PDF

Info

Publication number
WO2007037353A1
WO2007037353A1 PCT/JP2006/319410 JP2006319410W WO2007037353A1 WO 2007037353 A1 WO2007037353 A1 WO 2007037353A1 JP 2006319410 W JP2006319410 W JP 2006319410W WO 2007037353 A1 WO2007037353 A1 WO 2007037353A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
catalyst
space
fluorine
gas treatment
Prior art date
Application number
PCT/JP2006/319410
Other languages
English (en)
French (fr)
Inventor
Yoichi Mori
Yasuhiko Suzuki
Toyoji Shinohara
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Publication of WO2007037353A1 publication Critical patent/WO2007037353A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8659Removing halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2066Fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing

Definitions

  • the present invention relates to an exhaust gas treatment method including both a fluorine-containing compound and a compound that forms a solid substance that becomes a catalyst poison when solidified, such as a silicon-containing compound. Efficient exhaust gas containing both fluorine-containing compounds and silicon-containing compounds discharged in processes such as dry cleaning the inner surface of manufacturing equipment and etching various types of films such as oxide films.
  • the present invention relates to a method and an apparatus for detoxification well.
  • fluorine-containing compounds such as C, C F, C F, SF, NF, CHF, CH F, CH F
  • a decomposition apparatus disclosed in Patent Document 1 introduces an exhaust gas containing both a fluorine-containing compound and a silicon-containing compound into a pre-spray (a key remover) in advance and uses the pre-spray by spraying. Water is continuously poured into a spray container, and Si F as a compound containing silicon in the exhaust gas is decomposed into SiO and HF by the reaction of formula (1). (Note that “SiF” is a fluorinated compound.
  • SiO is a solid fine particle, it is exhausted by water sprayed at the same time as it is generated.
  • HF is also removed from the exhaust gas because it has a high solubility in water.
  • the exhaust gas containing CF after removing impurities is the reaction water (or piped power) (or
  • the hydrolysis reaction of 4 is expressed as follows.
  • Patent Document 1 JP-A-11 319485
  • the Si-containing component contained in the exhaust gas is charged as SiO (solid) in the reaction vessel.
  • the exhaust gas with the pretreatment capacity contains the Si-containing components that could not be treated together with moisture, so in order to completely remove the Si-containing components, A demister is provided to reduce moisture in the exhaust gas (resulting in Si-containing components). For this reason, it was necessary to supply fresh (clean) moisture to the reactor.
  • Exhaust gas components 4 3 3 6 correspond to catalyst poisons.
  • the present invention has been made in view of such a conventional problem, and does not require precipitation or removal of water-containing chemical compound by water in the pretreatment section, and does not require the inclusion of silicon in the exhaust gas. It is an object of the present invention to provide a method and an apparatus for efficiently and inexpensively treating a fluorine-containing compound contained in exhaust gas in the presence of a compound.
  • the present inventors use such knowledge to avoid problems such as when a silicon-containing compound contacts SiO near room temperature and precipitates SiO.
  • the present invention has solved the above-mentioned problems by the following means.
  • An exhaust gas treatment method comprising a compound that forms a solid that becomes a catalyst poison when solidified and a fluorine-containing compound, wherein the exhaust gas is introduced into a space at a temperature at which the solid does not precipitate, and the space The exhaust gas is heated at a temperature equal to or higher than the temperature at which the solid matter does not precipitate in the presence of water vapor and oxygen at the part, and a part of the fluorine-containing compound is thermally decomposed, and the exhaust gas that has passed through the space part.
  • a method for treating exhaust gas comprising heating a catalyst portion in the presence of water vapor and oxygen to hydrolyze a fluorine-containing compound not decomposed in the space portion.
  • the diacid hike generated by the reaction with water in the space is temporarily held by the contact assisting means and prevented from flowing into the catalyst, and is contained in the exhaust gas and / or the fluorine-containing It is characterized by reacting with hydrogen fluoride generated during the hydrolysis of the compound to chemically change the dioxygenated silicon to silicon fluoride (SiF) and then introducing it into the catalyst part.
  • the contact assisting means forms a bypass path for the exhaust gas!
  • An exhaust gas treatment apparatus including a compound that generates a solid substance that becomes a catalyst poison when solidified and a fluorine-containing compound, and an introduction pipe that introduces exhaust gas at a temperature at which the solid substance does not precipitate Water is introduced into a region where the water is heated and steamed, and the exhaust gas is heated in the presence of water and oxygen to thermally decompose a part of the fluorine-containing compound.
  • the space, the gas heated in the space is introduced, the catalyst filled with a catalyst that hydrolyzes the fluorine-containing compound contained in the gas, and the space and the catalyst are heated.
  • An exhaust gas treatment apparatus characterized by comprising a reaction tank having a heating device.
  • the exhaust gas treatment apparatus according to (10), further including a cooling unit that cools the exhaust gas containing the cracked gas discharged from the catalyst unit after the catalyst unit.
  • a plurality of exhaust gas treatment apparatuses according to any one of (10) to (19), wherein one house scrubber is connected, and the treated gas is discharged from the house scrubber into the atmosphere.
  • a processing apparatus characterized by that.
  • a compound that forms a solid that becomes a catalyst poison when solidified in exhaust gas for example, a silicon-containing compound such as SiF, is decomposed and deposited as a solid, for example, SiO.
  • the initial cost can be reduced and the installation space is also small. can do.
  • the fluorine-containing compound contained in the exhaust gas can be efficiently and economically treated while the compound that generates the above-described solid substance in the exhaust gas, for example, the compound containing the silicon is coexisted.
  • FIG. 1 is a schematic diagram illustrating one embodiment of an exhaust gas treatment apparatus of the present invention.
  • the compound that generates a solid substance that becomes a catalyst poison when the solid in the exhaust gas is a silicon-containing compound.
  • FIG. 1 shows a fluorine-containing compound in an exhaust gas according to the present invention in the presence of a silicon-containing compound. It is the schematic of the processing apparatus of the waste gas which decomposes
  • the exhaust gas treatment apparatus includes a reaction tank 4 that hydrolyzes a fluorine-containing compound contained in exhaust gas, and a cooling that removes acidic gas such as HF generated by hydrolysis from the exhaust gas. Fan for removing strong SiF that has not been completely removed by cooling unit 7 and cooling unit 7
  • mist trap 10 for completely removing force
  • reaction tank 4 and a circulation tank 3 for storing water supplied to the mist trap 10.
  • the reaction vessel 4 includes a space part (heated oxidation part) 5 and a protective agent layer 14 for preventing poisoning of the catalyst by a silicon-containing compound located on the downstream side of the space part 5.
  • a catalyst portion 6 located downstream of the protective agent layer 14, a support layer 15 filled with a support material to prevent the catalyst located downstream of the catalyst portion 6 from sliding down, and a support And a post-processing section (cooling section) 7 positioned downstream of the agent material layer 15.
  • a heater 8 is arranged around the space part 5, the protective agent layer 14 and the catalyst part 6, and the space part 5 and the catalyst part 6 are preferably 700 to 900 ° C, more preferably 750 to 850 ° C by the main heater 8. It is structured to be heated.
  • bypass plates 9 are installed as contact assisting means for increasing the contact efficiency between exhaust gas and water vapor and oxygen used for hydrolysis.
  • These bypass plates 9 are made of a material with good heat conductivity, and are arranged so as to form an exhaust gas bypass. Preheating is performed so that the temperature of the exhaust gas rises in this bypass channel.
  • An introduction pipe 2a having an opening at a position heated to a temperature higher than ° C is inserted, and water or water vapor is mixed with the exhaust gas.
  • SiF which is a silicon-containing compound, comes into contact and precipitates as SiO (solid matter).
  • SiF which is a compound containing silicon, contacts and precipitates as SiO (solid).
  • This part is the source of HF needed to control poisoning.
  • the diverting plate 9 is a disc in which a plurality of diverting plates have a cutout portion or a stepped portion that hangs downward from the cutout portion at a single location so that the cutout portion is in a contrasting position. Are arranged vertically.
  • the diameter of the disc may be selected so as to be in contact with the inner wall of the space portion 5 by thermal expansion which is not necessarily the same as the inner diameter of the space portion 5.
  • the structure of the diverting plate 9 may be a spiral structure, but it is difficult to manufacture by machining, so that the diverting plate 9 is shown as having a structure in which the circular plates are arranged in parallel as described above.
  • SiO is hardly deposited directly on the catalyst layer by hydrolysis of
  • the following mechanism prevents SiO from being deposited directly on the catalyst layer due to the presence of the plate.
  • the gas layer can reach the catalyst layer and at least blockage with SiO powder can be avoided.
  • SiF generates SiO powder by hydrolysis and in the space, which is formed on the bypass plate.
  • SiF remover for example, y-alumina
  • the main perfluoride (F) decomposition catalyst It is possible to prevent a decrease in the activity of the FC) decomposition catalyst.
  • the protective agent layer 14 is made of SiO generated by the above-mentioned formula (3) in the space, and in this portion.
  • the protective agent layer By reacting, there is a role to prevent SiO from accumulating.
  • the protective agent layer By reacting, there is a role to prevent SiO from accumulating.
  • the protective agent layer By reacting, there is a role to prevent SiO from accumulating.
  • the protective agent layer By reacting, there is a role to prevent SiO from accumulating.
  • the protective agent layer By reacting, there is a role to prevent SiO from accumulating.
  • the protective agent layer By reacting, there is a role to prevent SiO from accumulating.
  • the contact auxiliary means (bypass plate) that is not always necessary is sufficient to reach the SiO catalyst layer.
  • the catalyst section 6 is filled with a catalyst for decomposing the fluorine-containing compound.
  • a catalyst for decomposing the fluorine-containing compound As the catalyst, use is made of soda-alumina or alumina zircore composite oxide supporting tungsten oxide.
  • a spray 7a is disposed in the post-processing unit 7, and cooling water 17 is ejected upward from the spray 7a.
  • the cooling water 17 is sent from the circulation tank 3 to the spray 7a by the water supply pump 21. Cooling water 17 accumulated in the post-processing section 7 is returned to the circulation tank 3 as drainage 22.
  • a heat insulating material may be provided around the catalyst unit 6 instead of the heater 8. This reduces the heater area and reduces the amount of electricity used.
  • SiO always reacts with HF due to the presence of HF generated in the space (SiO + 4HF ⁇ SiF
  • silicon dioxide generated by the reaction with water is reacted by supplying hydrogen fluoride from the space part, so that silicon fluoride (SiF 3) is reacted.
  • a lower spray 11 and an upper spray 13 are arranged inside the mist trap 10.
  • the upper spray 13 is positioned above the lower spray 11, and fresh water 18 is ejected from the upper spray 13.
  • Water is sent from the circulation tank 3 to the lower spray 11 by a water pump 21 and is ejected as washing water 16 from the lower spray 11.
  • a demister (not shown) is disposed in the mist trap 10. This demister is located between the lower spray 11 and the upper spray 13 and has a structure that causes turbulent flow in the exhaust gas passing therethrough. In the present embodiment, a plurality of plate-like members arranged alternately as demisters are used. The exhaust gas after being treated in the mist trap 10 passes through the discharge pipe 32. Released into the atmosphere.
  • water is branched into two flows by a branching device, one flows into the spray 7a as the cooling water 17 and the other sprays as the washing water 16 to the bottom spray 11 I started to flow into!
  • the catalyst unit 6 is filled with SiF.
  • the amount can be increased periodically to wash away residual SiO on the catalyst surface.
  • direct cooling by the water spray 7a is also performed in combination with indirect cooling from the peripheral wall of the force cooling section (post-processing section) 7 employed in this embodiment.
  • SiF in the reaction tank 4 is directly introduced into the reaction tank 4 by introducing the exhaust gas 1 containing SiF.
  • the processing performance of the acid gas is high, and that the gas scrubber 23 is interposed between the cooling unit 7 and the mist trap 10 to increase the acid gas processing capacity.
  • the cooling unit 7 does not directly cool the water spray 7a but only cools the acidic gas by the indirect cooling method, a dry treatment method using a solid drug can be employed.
  • an air ejector 27 for adjusting the pressure in the exhaust gas treatment device is provided on the downstream side of the mist trap 10. Air (purge air 12) (for example, about 100 liters Zmin) is blown into the air ejector 27, so that the pressure in the exhaust gas treatment device is maintained at 0 to 1 lOkPa. Yes. Further, an analyzer (not shown) for analyzing the component concentration in the treated exhaust gas is provided for the downstream measurement of the mist trap 10. This analyzer monitors whether the exhaust gas has been processed to an acceptable level.
  • thermocouple is preferably used as the temperature sensor.
  • the exhaust gas containing both the fluorine-containing compound and the silicon-containing compound is introduced into the reaction vessel 4 through an introduction pipe installed at the top of the reaction vessel 4.
  • the exhaust gas introduced into the reaction tank 4 first flows into the space 5 where the fluorine-containing compound in the exhaust gas is hydrolyzed. That is, the exhaust gas flowing into the space 5 is heated to 700 to 900 ° C, preferably 750 to 850 ° C by the heater 8 when passing through the bypass formed by the bypass plate 9, thereby
  • the fluorine-containing compound force in the exhaust gas is oxidized by heating in the presence of moisture (H 0, water vapor) introduced into the intermediate portion of the space 5 from the introduction pipe 2a and oxygen in the exhaust gas.
  • the fluorine-containing compound is hydrolyzed only with water vapor.
  • SiF contained in the exhaust gas does not precipitate as SiO.
  • the exhaust gas that has passed through the space portion 5 flows into the catalyst portion 6, where fluorine-containing compounds that could not be treated in the space portion 5 are decomposed by the catalyst. Specifically, the fluorine-containing compound in the exhaust gas is hydrolyzed by contacting with the catalyst in the presence of moisture and oxygen.
  • the exhaust gas that has passed through the catalyst unit 6 in the exhaust gas flows into the post-processing unit 7, where it is cooled by the cooling water 17 ejected from the spray 7a.
  • the exhaust gas treated in the reaction tank 4 is introduced into the fan scrubber 23 through the connecting pipe 26 and subjected to preliminary acid gas treatment, and the power is also introduced into the mist trap 10.
  • washing water 16 and brine 18 are ejected downward from the lower spray 11 and upper spray 13 so as to face the exhaust gas flowing upward, and acidic gases such as HF generated by the hydrolysis reaction Power S Removed from exhaust gas. Specifically, SiF that has passed through the reaction tank 4 is reacted with H 2 O to produce HF, and this HF is further absorbed.
  • the removal efficiency can be further improved by providing the upper spray 13. Further, the water 18 provided from the upper spray 13 can wash away products such as SiO adhering to the inner surface of the demister mist trap 10.
  • the exhaust gas containing both the fluorine-containing compound and the silicon-containing compound is preliminarily converted into water in the pretreatment unit. There is no need to remove it by contact, and exhaust gas containing both is introduced directly into the space provided with the bypass plate of the reaction tank, and it is contacted only with water vapor, so that solid SiO can be deposited.
  • the product can be hydrolyzed. Therefore, in the present invention, the fluorine-containing compound contained in the exhaust gas can be treated efficiently and economically.
  • the present invention can also be applied to compounds that form solids upon contact with water other than the silicon-containing compound, and can also be applied to hydrolyzable gases such as BC1, A1C1, and WF.
  • the exhaust gas treatment apparatus of the present invention is a power applied mainly to treat exhaust gas discharged in the CVD process or etching process.
  • FIG. 2 will be described by taking the case of an etching apparatus as an example.
  • a mixture of PFC gas and CO gas is used as a processing gas and supplied to a chamber in which the etching apparatus 30 is located. Then, the plasma is marked and changed into a highly corrosive gas, and the silicon wafer is etched.
  • Each chamber is connected to a vacuum pump and continuously evacuated. Vacuum pumping power
  • Exhaust exhaust gas is often processed by connecting one exhaust gas treatment device 31 to a plurality of etching devices 30. How many etching devices are connected per exhaust gas treatment device depends on the amount and concentration of the exhaust gas, so an appropriate number is connected according to the nature of the process. Usually, more than a dozen etching devices are connected to one exhaust gas treatment device.
  • the exhaust gas treatment apparatus of the present invention space can be saved by removing the fan scrubber, so that the factory layout can be afforded.
  • the exhaust gas treated and exhausted by the exhaust gas treatment device is cooled with water as described above, and then collected in a house scrubber 32 installed outdoors.
  • a single house scrubber is usually connected to multiple exhaust gas treatment equipment.
  • One exhaust gas treatment device is connected to multiple etching apparatuses, and one house scrubber is connected to multiple exhaust gas treatment apparatuses.
  • complete treatment including harmful gas that leaks due to malfunction of the exhaust gas treatment device shall be performed.
  • the gas that passes through the house scrubber is eventually released into the atmosphere. Since detoxified gas is released in this way, it contributes to prevention of ozone layer destruction by fluorine-containing compounds.
  • the exhaust gas treatment method and the treatment apparatus of the present invention have great applicability to exhaust gas treatment in a semiconductor manufacturing plant that contains both fluorine-containing compounds and silicon-containing compounds in the exhaust gas.

Abstract

 本発明は、固形化すると触媒毒となる固形物を生成する化合物とフッ素含有化合物を含む排ガスの処理方法であって、ケイ素含有化合物の水による析出、除去のための前処理部を必要とすることなく、排ガスに含まれるフッ素含有化合物を効率的に処理する方法及び装置を提供する。該方法は、固形物が析出しない温度で排ガスを空間部に導入し、空間部にて排ガスを水蒸気及び酸素の存在下で固形物が析出しない温度以上の温度で加熱してフッ素含有化合物の一部を加熱分解し、空間部を通過した排ガスを触媒部で水蒸気及び酸素の存在下で加熱し、空間部で分解されなかったフッ素含有化合物を加水分解する点に特徴がある。本発明の装置では、フッ素含有化合物を処理する反応槽は、複数の迂流板が設置され、導入された水が加熱されて水蒸気化される温度に保たれた領域に開口する導入管を備えた、排ガスを加熱する空間部を有する。

Description

排ガスの処理方法及び処理装置
技術分野
[0001] 本発明は、フッ素含有化合物とケィ素含有化合物のような固形化すると触媒毒とな る固形物を生成する化合物との両方を含む排ガスの処理方法及びその処理装置に 係り、特に半導体製造装置の内面等をドライクリーニングする工程や、酸化膜等の各 種成膜をエッチングする工程などで排出されるフッ素含有ィ匕合物とケィ素含有ィ匕合 物の両方を含む排ガスを効率よく無害化処理する方法及び装置に関する。
背景技術
[0002] 半導体製造時のエッチング工程や CVD工程においては、 CF , C F , C F , C F
4 2 6 3 8 4 8
, C F , C F , SF , NF , CHF , CH F , CH Fなどのフッ素含有化合物を含む排
5 8 4 6 6 3 3 2 2 3
ガスが排出される。このようなフッ素含有ィ匕合物を含む排ガスを処理する装置として、 従来から加熱酸化分解装置や触媒分解装置が用いられて!/ヽる (例えば、特許文献 1 参照)。
[0003] 特許文献 1に開示されて!ヽる分解装置は、フッ素含有化合物とケィ素含有化合物 の両方を含む排ガスを、予め前置スプレー (ケィ素除去器)に導入し、スプレーにより 前置スプレーの容器内に連続的に注水し、排ガス中のケィ素含有ィ匕合物としての Si Fを式(1)の反応により SiOと HFに分解している。(なお、前記「SiF」はフッ素化合
4 2 4
物でもあるが、本件明細書では「ケィ素含有ィ匕合物」とすることにする)
SiF + 2H O → SiO +4HF · · · · (1)
4 2 2
SiOは、固体の微粒子であるので、生成と同時にスプレーされた水により排ガスか
2
ら除去される。 HFも、水への溶解度が大きいので、同様に排ガスから除去される。
[0004] 不純物を除去した後の CFを含む排ガスは、配管力 供給される反応用の水 (又は
4
水蒸気)と混合されて配管にて加熱器に導入される。排ガスへ水 (又は水蒸気)を供給 するのは、触媒層での CFの反応が、 CFの H Oによる加水分解であるためである。
4 4 2
CF
4の加水分解反応は、次のように表わされる。
[0005] CF + 2H O → CO +4HF … ·(2) 特許文献 1 :特開平 11 319485号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、上記の特許公報に開示された技術では、ケィ素含有ィ匕合物を SiOと
2 して分解析出するための前置スプレー (ケィ素除去装置)及びこれに水を供給するた めの水供給装置を設置する必要があり、さらに供給配管を別途設ける必要がある。こ のため、これらの付帯設備の設置によるイニシャルコストの増加や設置スペースの増 加と!/ヽつた問題点があった。
[0007] また、一般に、排ガスに含まれる Si含有成分は反応槽内で SiO (固形物)となって装
2
置の閉塞や触媒の性能低下を招くため、前処理部により Si含有成分を排ガスから完 全に除去することが必要とされる。し力しながら、実際には、前処理部力もの排ガスに は、処理しきれなかった Si含有成分が水分と共に含まれるため、 Si含有成分を完全 に除去するために、前処理部の下流にデミスタを設け、排ガス中の水分 (結果的に Si 含有成分)を低減させることが行われている。このため、新たな (きれいな)水分を反応 槽に供給する必要があった。
[0008] さらに、排ガスの加水分解処理においては、水と接触して固形物を生成する化合物 としては、 SiFを代表とする化合物以外にも BC1 , A1C1 , WFのメタルエッチヤー系
4 3 3 6 の排ガス成分が触媒毒として該当する。
[0009] 本発明は、このような従来の課題に鑑みてなされたものであり、前処理部によるケィ 素含有ィ匕合物の水による析出、除去を必要とせず、排ガス中にケィ素含有ィ匕合物を 存在させながら、排ガスに含まれるフッ素含有化合物を効率的かつ廉価に処理する 方法及び装置を提供することを課題とする。
課題を解決するための手段
[0010] 前記の課題を解決するために、本発明者等は鋭意研究を行ったところ、フッ素含有 化合物とケィ素含有化合物の両方を含有する排ガスを直接、反応槽の頂部の複数 の迂流板が設置されている空間部に導入して加熱し、水を供給しても加熱された空 間部内で水蒸気化される温度に保たれた領域に開口部を有する導入管に供給する ことにより、空間部には水蒸気として導入するようにして、空間部で加熱された前記排 ガスと接触させ、フッ素含有化合物を加水分解処理すれば、 SiO粉の析出が抑制さ
2
れることを見出した。そこで、本発明者等は、このような知見を利用して、ケィ素含有 化合物が常温近くの水と接触して SiOを析出する場合のような問題を回避すること
2
により、本発明を完成させた。
本発明は下記の手段により上記の課題を解決することができた。
(1)固形化すると触媒毒となる固形物を生成する化合物とフッ素含有化合物を含む 排ガスの処理方法であって、該固形物が析出しない温度で該排ガスを空間部に導 入し、該空間部にて該排ガスを水蒸気及び酸素の存在下で該固形物が析出しない 温度以上の温度で加熱して該フッ素含有ィ匕合物の一部を加熱分解し、該空間部を 通過した該排ガスを触媒部で水蒸気及び酸素の存在下で加熱し、該空間部で分解 されなかったフッ素含有化合物を加水分解することを特徴とする排ガスの処理方法。
(2)前記触媒部で加水分解を行った後、前記フッ素含有ィ匕合物の分解によって生じ た分解ガスを含む排ガスを冷却する工程を含む前記(1)記載の排ガスの処理方法。
(3)前記排ガスの冷却が、水スプレー冷却又は後処理部の周壁からの間接冷却であ ることを特徴とする前記(2)記載の排ガスの処理方法。
(4)前記固形化すると触媒毒となる固形物を生成する化合物は、ケィ素含有化合物 であることを特徴とする前記(1)乃至(3)の 、ずれか 1項に記載の排ガス処理方法。
(5)前記空間部で、更に一酸化炭素の酸化処理を行うことを特徴とする前記(1)乃 至 (4)の 、ずれか 1項に記載の排ガス処理方法。
(6)前記空間部で水との反応により発生した二酸ィヒケィ素を接触補助手段にて一旦 保持して前記触媒部に流入するのを防ぐとともに、前記排ガスに含まれる及び/又は 前記フッ素含有化合物の加水分解の際に発生したフッ化水素と反応させ、前記二酸 化ケィ素をフッ化ケィ素(SiF )に化学変化させてから触媒部に導入することを特徴と
4
する前記 (4)に記載の排ガス処理方法。
(7)前記触媒部で水との反応により発生した二酸ィ匕ケィ素を、前記空間部力 フッ化 水素を供給して反応させ、フッ化ケィ素(SiF )に化学変化させて触媒部を通過させ
4
る前記(6)に記載の排ガス処理方法。
(8)前記接触補助手段は、前記排ガスの迂流路を形成して!/ヽることを特徴とする前 記(6)又は(7)に記載の排ガス処理方法。
(9)前記加水分解は、加熱酸化分解及び/又は触媒による分解であることを特徴とす る前記(1)記載の排ガスの処理方法。
(10)固形化すると触媒毒となる固形物を生成する化合物とフッ素含有化合物を含む 排ガスの処理装置であって、該固形物が析出しな ヽ温度で排ガスを導入する導入管 と、導入された水が加熱されて水蒸気化される温度の区域に開口する水の導入管を 備え、前記排ガスを水及び酸素の存在下に加熱して該フッ素含有ィ匕合物の一部を 加熱分解する空間部と、前記空間部で加熱された前記ガスが導入され、前記ガスに 含まれる前記フッ素含有化合物を加水分解する触媒が充填された触媒部と、前記空 間部及び前記触媒部を加熱する加熱装置とを有する反応槽から構成されたことを特 徴とする排ガスの処理装置。
(11)前記触媒部の次に触媒部から排出された分解ガスを含む排ガスを冷却する冷 却部を有することを特徴とする前記(10)記載の排ガスの処理装置。
(12)前記空間部は、前記フッ素含有ィ匕合物の一部を分解したときに生成する固形 物を保持する接触補助部材を備えたことを特徴とする前記(10)記載の排ガスの処 理装置。
(13)前記接触補助部材は、前記排ガスの迂回路を形成する迂流板であることを特 徴とする前記( 12)記載の排ガスの処理装置。
(14)前記固形化すると触媒毒となる固形物を生成する化合物は、ケィ素含有化合 物であることを特徴とする前記(10)〜(13)のいずれか 1項に記載の排ガス処理装 置。
(15)前記冷却された排ガス中の酸性ガスの除去装置として、ミストトラップを有するこ とを特徴とする前記(10)〜(14)のいずれか 1項記載の排ガス処理装置。
(16)前記反応槽力 排出される冷却排ガス中の酸性ガスの予備除去装置として、フ アンスクラバー又は固形薬剤による乾式処理装置をミストトラップの前段に有すること を特徴とする前記(15)記載の排ガスの処理装置。
(17)前記迂流板が複数あることを特徴とする前記(13)記載の排ガスの処理装置。
(18)前記複数の迂流板が、一ヶ所に切欠部又は切欠部から下方へ垂下する階段 部を有する円板が、前記切欠部が対称的位置になるように上下に配置されて構成さ れて 、ることを特徴とする前記( 17)記載の排ガスの処理装置。
(19)前記空間部と前記触媒部との間に、前記固形物による触媒の被毒を防止する 保護剤層を設けたことを特徴とする前記(10)〜(18)の ヽずれか 1項記載の排ガス の処理装置。
(20)前記(10)〜(19)のいずれか 1項記載の排ガスの処理装置の複数台について 1台のハウススクラバーを連結し、前記ハウススクラバーより処理済みガスを大気中に 放出するようにしたことを特徴とする処理装置。
発明の効果
[0012] 本発明によれば、排ガス中の固形化すると触媒毒となる固形物を生成する化合物、 例えば SiFなどのケィ素含有化合物を、固形物、例えば SiOとして分解析出するた
4 2
めの前処理部としての前置スプレー(具体的にはケィ素除去装置)及びこのための水 供給装置などの付帯設備を設置する必要がないため、イニシャルコストを低減でき、 かつ設置スペースも小さくすることができる。また、排ガス中に前記の固形物を生成 する化合物、例えばケィ素含有ィ匕合物を共存させたまま、排ガス中に含まれるフッ素 含有化合物を効率良ぐしかも経済的に処理することができる。
図面の簡単な説明
[0013] [図 1]本発明の排ガス処理装置の一実施態様を説明する概略図である。
[図 2]排ガス処理装置のレイアウトを示す。
符号の説明
[0014] 1 排ガス
2 水蒸気
2a 導入管
3 循環タンク
4 反応槽
5 空間部 (加熱酸化部)
6 触媒部
7 後処理部 (冷却部) 7a スプレー
8 ヒータ
9 迂流板
10 ミストトラップ
11 下スプレー
12 パージエア
13 上スプレー
14 保護剤層
15 支持剤層
16 洗浄水
17 冷却水
18 巿水 (真水)
21 送水ポンプ
22 排水
23 ファンスクラバー
24 ファン
25 回転軸
26 接続配管
27 ェジ工クタ一
28 処理済みガス
30 エッチング装置
31 排ガス処理装置
32 ハウススクラノ ー
発明を実施するための最良の形態
[0015] 以下、本発明の実施形態について図面を参照しながら、半導体製造プロセスから の排ガス処理を例にとって詳細に説明する。以下においては、排ガス中の固形ィ匕す ると触媒毒となる固形物を生成する化合物がケィ素含有化合物の場合である。
[0016] 図 1は、本発明に係る排ガス中からケィ素含有化合物の共存下にフッ素含有化合 物を分解、除去する排ガスの処理装置の概略図である。
[0017] 図 1に示すように、排ガス処理装置は、排ガス中に含まれるフッ素含有化合物を加 水分解させる反応槽 4と、加水分解によって生じた HF等の酸性ガスを排ガスから除 去する冷却部 7と、冷却部 7で完全に除去されな力つた SiFを除去するためのファン
4
スクラバー 23と、加水分解によって生じた HFや残留する SiF等の酸性ガスを排ガス
4
力 完全に除去するミストトラップ 10と、反応槽 4及びミストトラップ 10に供給される水 を貯留する循環タンク 3とを備えて 、る。
[0018] 図 1に示すように、反応槽 4は、空間部 (加熱酸化部) 5と、空間部 5の下流側に位置 するケィ素含有化合物による触媒の被毒を防止する保護剤層 14と、保護剤層 14の 下流側に位置する触媒部 6と、触媒部 6の下流に位置する触媒が下方に滑落するこ とを防止するために支持材を充填した支持剤層 15と、支持剤材層 15の下流部に位 置する後処理部 (冷却部) 7とから構成されている。空間部 5、保護剤層 14及び触媒 部 6の周囲にはヒータ 8が配置され、空間部 5と触媒部 6が主ヒータ 8によって好ましく は 700〜900°C、更に好ましくは 750〜850°Cに加熱される構造となっている。空間 部 5には、排ガスと、加水分解に用いられる水蒸気と酸素との接触効率を高めるため の接触補助手段としての複数の迂流板 9が設置されて 、る。これらの迂流板 9は熱伝 導性の良好な材料カゝら形成されており、排ガスの迂流路が形成されるように配置され ている。この迂流路で排ガスの温度が上昇するよう予熱される。迂流板 9を複数配置 することで、伝熱面積の増加及び乱流の発生による伝熱効率の向上が図られる。
[0019] 上記の空間部 5には、頂部に排ガス 1を導入するための導入管と、水が加熱された 空間部 5内で水蒸気化される温度に保たれた領域、具体的には 100°C以上に加熱 される位置に開口部を有する導入管 2aが頂部力 挿入されて、排ガスに水又は水蒸 気が混合される。排ガスが 100°C以下の温度において水又は水蒸気と接触すると、 ケィ素含有化合物である SiFが接触して SiO (固形物)として析出することが起こりや
4 2
すいので、排ガスが 100°C以上の温度で水又は水蒸気と接触するように設計される 。それによりケィ素含有ィ匕合物である SiFが接触して SiO (固形物)として析出するこ
4 2
とを防止できるように考慮されて 、る。
[0020] 空間部 5では、排ガスの予熱と!/、う役割以外にも排ガス成分と水蒸気との接触効率 が高められ (迂流板の設置)、この部分で積極的に PFC (PF , SF以外の PFC、例え
4 6
ば C F, C F, CHF等)の加水分解処理や COの酸化処理が行われる。さらに、こ
4 8 4 6 3
の部分で PFCの加水分解処理を行うことで、その分解生成物として HFが発生する。 HFは触媒層での SiOの蓄積を抑制(SiO +4HF→SiF + 2H O)する作用に使わ
2 2 4 2
れており、この部分は被毒抑制に必要な HFの供給源となる。
[0021] また迂流板 9は、複数の迂流板が、 1ケ所に切欠部又は切欠部から下方へ垂下す る階段部を有する円板が、前記切欠部が対照的な位置になるように上下方向に配置 されている。そして円板の直径は、空間部 5の内径と同一である必要はなぐ熱膨張 により空間部 5の内壁と接触するような寸法に選べば良い。さらに、迂流板の表面に 触媒作用を有する表面処理剤をコーティングすることも好ま 、方策である。なお、 迂流板 9の構造としては、螺旋状の構造としても差し支えないが、機械工作上製作が 難しくなるので、前記のように円板を並列とした構造のものとして示している。
[0022] このような迂流板 9が設置された空間部 5を有する反応槽 4においては、 SiFを含
4 む排ガスを直接反応槽に導入した場合、排ガスが 100°C以上となった条件下で水又 は水蒸気と接触しても、水は水蒸気の状態で排ガスと接触する関係のためか、 SiF
4 の加水分解による SiOが直接触媒層に堆積することが極めて少ないか、又は、ほと
2
んどな!/、な!/、ことが確認された。
[0023] これは、水蒸気と接触する空間部で SiFの加水分解により SiOが生成しても、迂流
4 2
板があることで SiOが直接触媒層に堆積することなぐ次の様なメカニズムで SiFが
2 4 ガス体のまま触媒層に到達し、少なくとも SiOの粉による閉塞は避けられることが考
2
えられる。
[0024] SiFは、加水分解によりー且は空間部で SiOの粉が生成して、これが迂流板上に
4 2
堆積しても、排ガス中の HF (PFCガスや他の酸性ガスの分解ガスとして生成)により 、式(3)に示すように再度 SiFのガスになる。
4
[0025] SiO +4HF→SiF + 2H O · · · · (3)
2 4 2
保護剤層 14には、空間部 5を流過して排出された SiFが触媒部 6に達すると、ここ
4
で SiFの加水分解反応が起こり、生成した SiOによる触媒の被毒が懸念されるため
4 2
、 SiFの除去剤 (例えば、 y—アルミナ)を保護剤として充填し、メインの過フッ化物 (F FC)分解触媒の活性低下を防止することが可能である。
[0026] また、保護剤層 14は、空間部で前記式(3)により発生した SiOを、この部分でー且
2
捕集し、触媒層に SiOが到達することを防止するとともに、空間部で生成した HFと
2
反応させることで、 SiOを蓄積させないようにする役割がある。ただし、保護剤層は、
2
必ずしも必須ではなぐ接触補助手段 (迂流板)で SiOの触媒層への到達を十分に
2
防げていれば、必ずしも設けなくてもよい。
[0027] 触媒部 6には、フッ素含有化合物を分解させる触媒が充填されている。触媒として は、 Ί—アルミナ、またはアルミナジルコア複合酸ィ匕物にタングステン酸ィ匕物を担持 させたものが用いられる。後処理部 7内にはスプレー 7aが配置されており、このスプレ 一 7aから冷却水 17が上方に向けて噴出される。冷却水 17は循環タンク 3から送水ポ ンプ 21によりスプレー 7aに送られる。後処理部 7に溜まった冷却水 17は排水 22とし て循環タンク 3に戻される。なお、触媒部 6の周囲には、ヒータ 8の代わりに保温材を 設けてもよい。これにより、ヒータ面積が小さくなり、電気使用量が少なくなる。
[0028] 触媒部では、空間部で処理されな力つた PFC (主として CF
4、 SF等)を加水分解処 6
理するためにある。空間部や保護剤部カゝら排出される SiFが、触媒層に混入した場
4
合、空間部で発生した HFの存在により SiOは常時 HFと反応し(SiO +4HF→SiF
2 2
+ 2H 0)、 SiFのまま触媒層を通り抜けることになる。
4 2 4
[0029] また、前記触媒部では、水との反応により発生した二酸化ケイ素を、前記空間部か らフッ化水素を供給して反応させ、フッ化ケィ素(SiF )
4 に化学変化させて触媒部を通 過させるよう〖こすることがでさる。
[0030] ミストトラップ 10の内部には下スプレー 11及び上スプレー 13が配置されている。上 スプレー 13は下スプレー 11の上方に位置しており、上スプレー 13からは巿水(真水 ) 18が噴出される。下スプレー 11には送水ポンプ 21によって循環タンク 3から水が送 られ、下スプレー 11から洗浄水 16として噴出されるようになっている。また、ミストトラ ップ 10内にはデミスタ(図示省略)が配置されている。このデミスタは、下スプレー 11 と上スプレー 13との間に位置しており、通過する排ガスに乱流を生じさせるような構 造を有している。本実施形態では、デミスタとして交互に配置された複数の板状部材 が使用されている。ミストトラップ 10で処理された後の排ガスは、排出配管 32を通つ て大気中に放出される。
[0031] 下スプレー 11及び上スプレー 13から噴出された洗浄水 16及び巿水(真水) 18は、 配管を通ってファンスクラバー 23中へ入り、その底部から配管を通って循環タンク 3 に流入する。循環タンク 3からポンプ 21によって冷却部 7に向力 水は分岐装置によ つて 2つの流れに分岐され、一つは冷却水 17としてスプレー 7aに流れ込み、もう一 つは洗浄水 16として下スプレー 11に流れ込むようになって!/、る。
[0032] この冷却部では、排ガスの冷却の他に、触媒層力も流出してくる HF, SiFの有毒
4 ガスを水に吸収させて、除去する役割がある。
[0033] 上記の構成よりなる排ガス処理装置において、 SiFの混入により触媒部 6に充填さ
4
れた触媒層での SiFの排出能力が徐々に低下する場合には、水又は水蒸気の導入
4
量を定期的に増量して、触媒表面の残存 SiOを洗い流すこともできる。
2
[0034] 触媒部 6から HFや SiFを含む高温の排ガスが排出される力 これを冷却する外に
4
これら酸性ガスの除去も併せ行うために水スプレー 7aによる直接冷却を本実施態様 においては採用している力 冷却部 (後処理部) 7の周壁からの間接冷却も併せ行うこ とちでさる。
[0035] 更に、反応槽 4へ SiFを含む排ガス 1を直接導入することにより反応槽 4での SiF
4 4 の処理負荷が増大するが、反応槽 4の冷却部力 排出される排出ガスの SiFは従来
4 のミストセバレータでは除去しきれな 、。そのために酸性ガスの処理性能の高 、ファ ンスクラバー 23を冷却部 7とミストトラップ 10の間に介在させて酸性ガス処理能力を 高めることが好ましい。ただし、冷却部 7で水スプレー 7aによる直接冷却を行わない で、間接冷却法による酸性ガスの冷却だけを行う場合には、固形薬剤による乾式処 理法を採用することもできる。
[0036] 上記した事項にカ卩えて、排ガスの流量や反応槽 4の処理温度の上昇によって排ガ ス処理装置内の圧力が高くなると、排ガスカ^ークするなどの不具合が発生するおそ れがある。そこで、本実施形態では、図 1に示すように、排ガス処理装置内の圧力を 調整する空気ェジヱクタ一 27がミストトラップ 10の下流側に設けられている。この空 気ェジェクタ一 27には空気(パージエア 12) (例えば 100リットル Zmin程度)が吹き 込まれ、これにより排ガス処理装置内の圧力が 0〜一 lOkPaに保たれるようになって いる。また、ミストトラップ 10の下流測には、処理済みの排ガス中の成分濃度を分析 する分析装置(図示省略)が設けられている。この分析装置によって、排ガスが許容 レベルにまで処理されて 、るか否かが監視される。
[0037] 排ガス処理装置に大量の排ガスが導入されたり、排ガス中に含まれる粉体によりガ ス流路が閉塞されると、排ガス処理装置内の圧力が上昇し、排ガスが装置外部に漏 れたり、装置の破損を招く場合がある。その場合には、排ガス 1の導入配管内の圧力 センサによりモニターし、圧力が上昇して予め設定されている警報点を超えた場合に は、導入配管内に開放弁を設置し、この弁を開いて排ガス処理装置の圧力を開放、 低下するようにすればよい。
[0038] 排ガスの流量がある程度低下すると、反応槽 4の空間部 5や触媒部 6の温度が低下 し、反応槽 4内での排ガスの処理が良好に行われなくなるおそれがある。そこで、空 間部 5及び触媒部 6の温度を監視するために、温度センサを空間部 5及び触媒部 6 の内部にそれぞれ設け、これらの温度センサを図示しない警報機に接続、温度セン サの示す値が警報点よりも下がった場合には、警報機に異常警報を発出させるよう に構成すればょ 、。温度センサとしては熱電対が好適に用いられる。
[0039] 次に、上記のように構成された排ガス処理装置の作用について説明する。
[0040] フッ素含有ィ匕合物とケィ素含有ィ匕合物の両方を含む排ガスは、反応槽 4の頂部に 設置された導入管を通り、反応槽 4に導入される。反応槽 4に導入された排ガスは、 まず空間部 5に流入し、ここで、排ガス中のフッ素含有化合物の加水分解処理が行 われる。すなわち、空間部 5に流入した排ガスは、迂流板 9によって形成された迂流 路を通過する際にヒータ 8によって 700〜900°C、好ましくは 750〜850°Cに加熱さ れ、これにより、排ガス中のフッ素含有ィ匕合物力 導入管 2aから空間部 5の中間部に 導入された水分 (H 0、水蒸気)と排ガス中の酸素との存在下で加熱酸化される。この
2
ように、反応槽 4においては、水蒸気だけでフッ素含有化合物の加水分解処理が行 われる。その結果、排ガス中に含まれる SiFは SiOとして析出することがない。
4 2
[0041] なお、上記の排ガス中には、 SiO以外にも C Fポリマーのような固形物や SiOを
2 2 含まない固形物が混入していることがあるため、これらの固形物をフィルタ一等で物 理的に除去する粉体トラップを排ガス導入管の前段に設置することが好ましい。なお 、粉体トラップでは、ガス状の SiFを除去できないことは言うまでもない。
4
[0042] 空間部 5を通過した排ガスは触媒部 6に流入し、ここで、空間部 5で処理しきれなか つたフッ素含有ィ匕合物が触媒によって分解される。具体的には、排ガス中のフッ素含 有化合物が、水分と酸素との存在下で触媒と接触することにより加水分解される。排 ガス中の触媒部 6を通過した排ガスは後処理部 7に流入し、ここで、スプレー 7aから 噴出された冷却水 17により冷却される。反応槽 4で処理された排ガスは、接続配管 2 6を介してファンスクラバー 23に導入されて予備酸性ガス処理を行って力もミストトラッ プ 10に導入される。このミストトラップ 10では、上方に向力つて流れる排ガスに対面 するように洗浄水 16及び巿水 18が下スプレー 11及び上スプレー 13から下方に噴出 され、加水分解反応によって生じた HFなどの酸性ガス力 S排ガスから除去される。具 体的には、反応槽 4を通過した SiFを H Oと反応させて HFを生成し、この HFをさら
4 2
に洗浄水 16及び巿水 18に溶解させて除去する。このような SiFや HFの処理は下ス
4
プレー 11のみでも行えるが、上スプレー 13を設けることにより更に除去効率を向上さ せることができる。また、上スプレー 13から供絵される巿水 18は、デミスタゃミストトラ ップ 10の内面に付着した SiOなどの生成物を洗い流すことができる。
2
[0043] 上述したように、本発明によれば、フッ素含有ィ匕合物とケィ素含有ィ匕合物の両方を 含む排ガスを、予めケィ素含有ィ匕合物を前処理部で水に接触させて除去する必要 がなく、両方を含んだ排ガスを直接反応槽の迂流板を備えた空間部に導入し、水蒸 気とのみ接触させることにより固形物である SiOを析出することなぐフッ素含有化合
2
物を加水分解することができる。したがって、本発明では、排ガスに含まれるフッ素含 有化合物を効率良ぐしかも経済的に処理することができる。
[0044] なお、本発明は、ケィ素含有化合物以外の水と接触して固形物を生成する化合物 にも適用でき、例えば BC1 , A1C1 , WF等の加水分解性のガスにも適用可能である
3 3 6
[0045] 次に、図 2を用いて本発明を半導体製造工場で使用する態様について説明する。
本発明の排ガス処理装置は、主に CVD工程やエッチング工程で排出される排ガス を処理するために適用される力 図 2では、エッチング装置の場合を例に挙げて説明 する。 [0046] エッチング工程では、処理用のガスとして PFCガス及び COガスが混合したものが 利用され、エッチング装置 30のあるチャンバ一に供給される。そしてプラズマを印カロ し、その一部を腐食性の高いガスに変え、シリコンウェハーのエッチングを行う。チヤ ンバーには各々真空ポンプが接続され、連続的に排気される。真空ポンプ力 排気 された排ガスは、複数台のエッチング装置 30に対し、 1台の排ガス処理装置 31が接 続され、処理を行う場合が多い。 1台の排ガス処理装置につき何台のエッチング装置 が接続されるかは、排ガスの量と濃度に依存するので、工程の性質に応じて適切な 台数が接続される。通常は、 1台の排ガス処理装置に 10数台のエッチング装置が接 続されていることが多い。
[0047] 本発明の排ガス処理装置によれば、ファンスクラバーを除去したことにより、省スぺ ース化が図られるので、工場のレイアウトにも余裕を持たすことができる。排ガス処理 装置で処理されて排出されたガスは、前述のように水で冷却されてから、屋外に設置 したハウススクラバー 32に集められる。 1台のハウススクラバーには、複数台の排ガス 処理装置が接続されるのが普通である。複数台のエッチング装置に 1台の排ガス処 理装置が接続され、複数の排ガス処理装置に 1台のハウススクラバーが接続されるこ とになる。ハウススクラバーでは、排ガス処理装置から排出された処理済のガスに対 して処理を行う際には、排ガス処理装置の不具合等によりリークする有害ガスを含め て、完全処理を行うものとする。ハウススクラバーを通ったガスは、最終的に大気中に 放出される。このように無害化されたガスが放出されるので、フッ素含有化合物による オゾン層破壊の防止に資することとなる。
産業上の利用可能性
[0048] 本発明の排ガスの処理方法及びその処理装置は、排ガス中にフッ素含有ィ匕合物と ケィ素含有化合物の両方を含む半導体製造工場の排ガス処理に大きな利用可能性 を有する。

Claims

請求の範囲
[1] 固形化すると触媒毒となる固形物を生成する化合物とフッ素含有化合物を含む排 ガスの処理方法であって、該固形物が析出しな 、温度で該排ガスを空間部に導入し 、該空間部にて該排ガスを水蒸気及び酸素の存在下で該固形物が析出しない温度 以上の温度で加熱して該フッ素含有ィ匕合物の一部を加熱分解し、該空間部を通過 した該排ガスを触媒部で水蒸気及び酸素の存在下で加熱し、該空間部で分解され なかったフッ素含有化合物を加水分解することを特徴とする排ガスの処理方法。
[2] 前記触媒部で加水分解を行った後、前記フッ素含有化合物の分解によって生じた 分解ガスを含む排ガスを冷却する工程を含む請求項 1記載の排ガスの処理方法。
[3] 前記排ガスの冷却力 水スプレー冷却又は後処理部の周壁力 の間接冷却である ことを特徴とする請求項 2記載の排ガスの処理方法。
[4] 前記固形化すると触媒毒となる固形物を生成する化合物は、ケィ素含有化合物で あることを特徴とする請求項 1乃至 3のいずれか 1項に記載の排ガス処理方法。
[5] 前記空間部で、更に一酸化炭素の酸化処理を行うことを特徴とする請求項 1乃至 4 の!、ずれか 1項に記載の排ガス処理方法。
[6] 前記空間部で水との反応により発生した二酸化ケイ素を接触補助手段にて一旦保 持して前記触媒部に流入するのを防ぐとともに、前記排ガスに含まれる及び/又は前 記フッ素含有化合物の加水分解の際に発生したフッ化水素と反応させ、前記二酸化 ケィ素をフッ化ケィ素(SiF )に化学変化させてから触媒部に導入することを特徴とす
4
る請求項 4に記載の排ガス処理方法。
[7] 前記触媒部で水との反応により発生した二酸ィ匕ケィ素を、前記空間部からフッ化水 素を供給して反応させ、フッ化ケィ素(SiF )に化学変化させて触媒部を通過させる
4
請求項 6に記載の排ガス処理方法。
[8] 前記接触補助手段は、前記排ガスの迂流路を形成して 、ることを特徴とする請求 項 6又は請求項 7に記載の排ガス処理方法。
[9] 前記加水分解は、加熱酸化分解及び/又は触媒による分解であることを特徴とする 請求項 1記載の排ガスの処理方法。
[10] 固形化すると触媒毒となる固形物を生成する化合物とフッ素含有化合物を含む排 ガスの処理装置であって、該固形物が析出しな ヽ温度で排ガスを導入する導入管と 、導入された水が加熱されて水蒸気化される温度の区域に開口する水の導入管を備 え、前記排ガスを承蒸気及び酸素の存在下に加熱して該フッ素含有化合物の一部 を加熱分解する空間部と、前記空間部で加熱された前記ガスが導入され、前記ガス に含まれる前記フッ素含有化合物を加水分解する触媒が充填された触媒部と、前記 空間部及び前記触媒部を加熱する加熱装置とを有する反応槽から構成されたことを 特徴とする排ガスの処理装置。
[11] 前記触媒部の次に触媒部力 排出された分解ガスを含む排ガスを冷却する冷却部 を有することを特徴とする請求項 10記載の排ガスの処理装置。
[12] 前記空間部は、前記フッ素含有ィ匕合物の一部を分解したときに生成する固形物を 保持する接触補助部材を備えたことを特徴とする請求項 10記載の排ガスの処理装 置。
[13] 前記接触補助部材は、前記排ガスの迂回路を形成する迂流板であることを特徴と する請求項 12記載の排ガスの処理装置。
[14] 前記固形化すると触媒毒となる固形物を生成する化合物は、ケィ素含有化合物で あることを特徴とする請求項 10〜13のいずれか 1項に記載の排ガス処理装置。
[15] 前記冷却された排ガス中の酸性ガスの除去装置として、ミストトラップを有することを 特徴とする請求項 10〜 14のいずれか 1項記載の排ガス処理装置。
[16] 前記反応槽力 排出される冷却排ガス中の酸性ガスの予備除去装置として、ファン スクラバー又は固形薬剤による乾式処理装置をミストトラップの前段に有することを特 徴とする請求項 15記載の排ガスの処理装置。
[17] 前記迂流板が複数あることを特徴とする請求項 13記載の排ガスの処理装置。
[18] 前記複数の迂流板が、一ヶ所に切欠部又は切欠部から下方へ垂下する階段部を 有する円板が、前記切欠部が対称的位置になるように上下に配置されて構成されて いることを特徴とする請求項 17記載の排ガスの処理装置。
[19] 前記空間部と前記触媒部との間に、前記固形物による触媒の被毒を防止する保護 剤層を設けたことを特徴とする請求項 10〜18のいずれか 1項記載の排ガスの処理 装置。 請求項 10〜19のいずれか 1項記載の排ガスの処理装置の複数台について 1台の ハウススクラバーを連結し、前記ハウススクラバーより処理済みガスを大気中に放出 するようにしたことを特徴とする処理装置。
PCT/JP2006/319410 2005-09-29 2006-09-29 排ガスの処理方法及び処理装置 WO2007037353A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005285106A JP5004453B2 (ja) 2005-09-29 2005-09-29 排ガスの処理方法及び処理装置
JP2005-285106 2005-09-29

Publications (1)

Publication Number Publication Date
WO2007037353A1 true WO2007037353A1 (ja) 2007-04-05

Family

ID=37899774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319410 WO2007037353A1 (ja) 2005-09-29 2006-09-29 排ガスの処理方法及び処理装置

Country Status (2)

Country Link
JP (1) JP5004453B2 (ja)
WO (1) WO2007037353A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110195694A (zh) * 2018-02-26 2019-09-03 株式会社荏原制作所 湿式除害装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5661249B2 (ja) * 2009-03-04 2015-01-28 株式会社荏原製作所 排ガス処理システム及びその運転方法
JP7068101B2 (ja) 2018-08-22 2022-05-16 キオクシア株式会社 ファンスクラバおよびファンスクラバの制御方法
DE102021103365B4 (de) 2021-02-12 2024-02-15 Das Environmental Expert Gmbh Verfahren und Brenner zur thermischen Entsorgung von Schadstoffen in Prozessgasen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319485A (ja) * 1997-11-14 1999-11-24 Hitachi Ltd 過弗化物の処理方法及びその処理装置
JP2003317265A (ja) * 2002-04-17 2003-11-07 Funai Electric Co Ltd 光ピックアップ
WO2004089515A1 (en) * 2003-04-01 2004-10-21 Ebara Corporation Method and apparatus for treating exhaust gas
JP2005185933A (ja) * 2003-12-25 2005-07-14 Hitachi Ltd パーフルオロコンパウンドの分解処理方法および分解処理装置
JP2005319401A (ja) * 2004-05-10 2005-11-17 Hitachi Ltd Pfc分解処理方法と装置及び処理システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3709432B2 (ja) * 1999-04-30 2005-10-26 アプライド マテリアルズ インコーポレイテッド 排ガス処理装置及び基板処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319485A (ja) * 1997-11-14 1999-11-24 Hitachi Ltd 過弗化物の処理方法及びその処理装置
JP2003317265A (ja) * 2002-04-17 2003-11-07 Funai Electric Co Ltd 光ピックアップ
WO2004089515A1 (en) * 2003-04-01 2004-10-21 Ebara Corporation Method and apparatus for treating exhaust gas
JP2005185933A (ja) * 2003-12-25 2005-07-14 Hitachi Ltd パーフルオロコンパウンドの分解処理方法および分解処理装置
JP2005319401A (ja) * 2004-05-10 2005-11-17 Hitachi Ltd Pfc分解処理方法と装置及び処理システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110195694A (zh) * 2018-02-26 2019-09-03 株式会社荏原制作所 湿式除害装置

Also Published As

Publication number Publication date
JP2007090276A (ja) 2007-04-12
JP5004453B2 (ja) 2012-08-22

Similar Documents

Publication Publication Date Title
US7641867B2 (en) Apparatus for processing perfluorocarbon
KR100847916B1 (ko) 반도체 제조 시의 배출 가스를 산화 처리하기 위한 배기가스 스트림 처리 장치 및 방법
JP5837351B2 (ja) 排気系システム
TW458803B (en) Apparatus and method for controlled decomposition oxidation of gaseous pollutants
EP2168655B1 (en) Exhaust gas cleaning apparatus
TWI448324B (zh) Pesticide Removal Method and Its Device for Zinc Chloride
US20060198769A1 (en) Apparatus for abatement of by-products generated from deposition processes and cleaning of deposition chambers
KR20060053164A (ko) 배기가스 분해처리장치
WO2007037353A1 (ja) 排ガスの処理方法及び処理装置
JP3217034B2 (ja) 過弗化物の処理方法及びその処理装置
WO2018216446A1 (ja) 排ガスの減圧除害装置
JP3927359B2 (ja) 排ガス処理装置
KR20090011467A (ko) 반도체 배기 가스 처리 장치
US8231851B2 (en) Method for processing perfluorocarbon, and apparatus therefor
JP4966521B2 (ja) 過弗化物含有排ガスの処理方法及び処理装置
KR100978350B1 (ko) 과불화화합물 가스 처리용 고온 스크러버
JP3242875B2 (ja) 排ガス除害装置及び排ガスの除害方法
JP4491696B2 (ja) 排気ガス処理装置
TW200904511A (en) Semiconductor exhaust gas treating device
JP4434933B2 (ja) 排ガスの処理方法及び処理装置
JP2001237211A (ja) 基板処理装置
JPH0779949B2 (ja) 排ガス処理装置
JP3817428B2 (ja) 過弗化物の分解処理装置
KR20230128229A (ko) 가스 처리 시스템 및 이를 이용한 가스 처리 방법
KR20100092826A (ko) 촉매식 과불화 화합물 처리 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810816

Country of ref document: EP

Kind code of ref document: A1