WO2007037253A1 - 光信号解析装置および光信号解析方法 - Google Patents

光信号解析装置および光信号解析方法 Download PDF

Info

Publication number
WO2007037253A1
WO2007037253A1 PCT/JP2006/319133 JP2006319133W WO2007037253A1 WO 2007037253 A1 WO2007037253 A1 WO 2007037253A1 JP 2006319133 W JP2006319133 W JP 2006319133W WO 2007037253 A1 WO2007037253 A1 WO 2007037253A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
light
optical signal
measurement point
measurement points
Prior art date
Application number
PCT/JP2006/319133
Other languages
English (en)
French (fr)
Inventor
Akemi Suzuki
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to JP2007537634A priority Critical patent/JP4740952B2/ja
Priority to EP06810624A priority patent/EP1939607A1/en
Publication of WO2007037253A1 publication Critical patent/WO2007037253A1/ja
Priority to US12/055,763 priority patent/US8130383B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence

Definitions

  • the present invention relates to an optical signal analysis device and an optical signal analysis method.
  • Use continuous measurement data (continuous measurement signal) of fluorescence intensity obtained from points, or use multi-point time-series mixed data (multi-point time-series mixed signal) measured while repeatedly switching multiple measurement points in time Analysis algorithms include multiple calculation methods or table search methods.
  • the algorithm of the general method or single measurement point multiple method is used for analysis, that is, the single measurement point multiple ⁇ method is used for data such as channel calculation and data reconstruction.
  • the autocorrelation function or cross-correlation function at the measurement point is estimated, and when measuring multiple measurement points at once, the general method or table search method and the U algorithm are used for the analysis.
  • the table retrieval method estimates each autocorrelation function or cross-correlation function at multiple measurement points simultaneously through time division of data for each measurement point and high-speed data processing based on the location information obtained by measuring the position information of the measurement points.
  • Kazuhiko Mase Mitsuru Nagazono, Shinichiro Tanaka, Shinichi Nagaoka, "Electron Ion 'Coincidence Spectroscopy "Study of ion desorption derived from inner-shell electron excitation of surface molecules using”", Synchrotron Radiation, 10, 37 5-391, 1997 discloses a coincidence analysis method.
  • the estimation of the autocorrelation function and the cross-correlation function at one measurement point is to observe molecular diffusion having a relatively small diffusion rate due to the microscopic region of the molecule.
  • the molecular diffusion rate is slow and the diffusion time is long.
  • signal transduction and the influence of molecular movement in a certain direction cannot be observed by autocorrelation cross-correlation based on observation of only one point.
  • the observation area is limited to one measurement point (confocal volume).
  • the movement of molecules between two or more points cannot be observed.
  • slow molecular diffusion is not observable.
  • the present invention has been proposed in view of such a situation, and an object of the present invention is to provide an optical signal analysis apparatus and an optical signal analysis method capable of observing the movement of molecules between two points. That's it.
  • An optical signal analyzing apparatus is configured to detect light emitted from a plurality of measurement points in a sample, and to detect fluctuations in light from the plurality of measurement points detected by the light detection unit.
  • Analyzing means for analyzing the molecular interaction between two of the plurality of measurement points by using a plurality of fluctuation signals corresponding to each.
  • An optical signal analysis method includes a light detection step of detecting light emitted from a plurality of measurement point forces in a sample, and a plurality of fluctuation signals respectively corresponding to light fluctuations of the plurality of measurement point forces. And an analysis step for analyzing molecular interaction between two of the plurality of measurement points.
  • FIG. 1 schematically shows an optical signal analyzing apparatus according to a first embodiment of the present invention.
  • FIG. 2 shows a fluctuation signal corresponding to the fluctuation of light from the measurement point P1 obtained in the apparatus of FIG.
  • FIG. 3 shows a fluctuation signal corresponding to the fluctuation of light from the measurement point P2 obtained in the apparatus of FIG.
  • FIG. 4 shows a flowchart of analysis processing by the data analysis unit of FIG.
  • FIG. 5 shows the channel structure and values.
  • Figure 6 shows the channel structure and values when the bin time is 2 ⁇ s.
  • FIG. 7 shows the data reconstruction of measurement point P1 and measurement point ⁇ 2 in the continuous signal of FIGS.
  • FIG. 8 shows the product-sum calculation between the data at the measurement point P1 in the continuous signals of FIG. 2 and FIG.
  • FIG. 9 shows the product-sum calculation between the data at measurement point P1 and measurement point ⁇ 2 in the continuous signal of FIG. 2 and FIG.
  • FIG. 10 schematically shows an optical signal analyzing apparatus according to the second embodiment of the present invention.
  • FIG. 11 shows a time-series mixed signal including fluctuation signals corresponding to fluctuations of light from measurement point P1 and measurement point ⁇ 2 obtained by the apparatus of FIG.
  • FIG. 12 shows a time-division signal at the measurement point P1 extracted from the time-series mixed signal force in FIG.
  • FIG. 13 shows a time-division signal at measurement point 2 extracted from the time-series mixed signal in FIG.
  • FIG. 14A shows a part of a flowchart of analysis processing by the data analysis unit of FIG.
  • FIG. 14B shows a part of a flowchart of analysis processing by the data analysis unit of FIG.
  • FIG. 15 shows mixed data of measurement point ⁇ 1 and measurement point ⁇ 2 corresponding to the time-series mixed signal in FIG.
  • FIG. 16 shows the divided data of the measurement point P1 corresponding to the time division signal of FIG.
  • FIG. 17 shows a division weight coefficient of measurement point ⁇ 1 corresponding to the division data of FIG.
  • Figure 18 shows the data tape obtained by reconstructing the divided data at measurement point P1 and measurement point ⁇ 2. Is shown.
  • FIG. 19 shows a weighting coefficient table obtained by reconstructing the division weighting coefficients of the measurement point P1 and the measurement point P2.
  • FIG. 20 shows a product-sum calculation between data at measurement point P1.
  • FIG. 21 shows a product-sum calculation between data at measurement point P1 and measurement point P2.
  • FIG. 1 schematically shows an optical signal analyzing apparatus according to a first embodiment of the present invention.
  • the optical signal analysis apparatus 100 includes a plurality of light irradiation units LI, L2,..., Ln, a plurality of light detection units D1, D2,.
  • Each of the light irradiators LI, L2,..., Ln has a light source 12, a collimating lens 14, a condenser lens 16, and the like.
  • the light irradiation units LI, L2,..., Ln continuously irradiate different measurement points PI, P2,.
  • Each of the light detection units Dl, D2,..., Dn includes a condenser lens 22, a pinhole 24, an imaging lens 26, a light detector 28, and the like.
  • the light detection units D1, D2,..., Dn receive light emitted from the measurement points PI, P2,. More specifically, the pinholes 24 are respectively arranged at positions conjugate to the measurement points PI, P2,..., Pn, and the imaging lens 26 respectively images the images of the pinholes 24 to the photodetectors 28. Project to. Accordingly, only the light emitted from the measurement points PI, P2,..., Pn is selectively incident on the photodetector 28, respectively.
  • Each of the photodetectors 28 outputs continuous measurement data reflecting the intensity of incident light, that is, a fluctuation signal corresponding to the fluctuation of light from the measurement points PI, P2,..., Pn.
  • the light detection units Dl, D2,..., Dn are light detection means for detecting light emitted from the measurement points PI, P2,. Is configured.
  • the light irradiators LI, L2,..., Ln constitute excitation light irradiating means for continuously irradiating the measurement points PI, P2,.
  • the data analysis unit 32 is composed of, for example, a personal computer, and autocorrelation functions and cross-correlation functions for a plurality of fluctuation signals respectively output from the plurality of photodetectors 28. Estimate the number. In other words, the data analysis unit 32 estimates the autocorrelation function at each of the measurement points PI, P2,..., Pn, and the cross-correlation function between the two measurement points PI, P2,. Estimate That is, the data analysis unit 32 uses the fluctuation signal corresponding to the fluctuation of light from the measurement points PI, P2, ..., Pn detected by the light detection parts Dl, D2, ..., Dn, respectively.
  • the data analysis unit 3 2 displays and stores the analysis result.
  • the point-to-point correlation calculation uses continuous data (continuous signal) at two independent measurement points among the continuous data (continuous signal) at multiple measurement points PI, P2, ⁇ , Pn. Continuous data (signals) are measured at different measurement points, and the correlation between the vector directions between the two points is observed directly from changes in molecular movement.
  • Fig. 2 shows the fluctuation signal corresponding to the fluctuation of light from the measurement point
  • Fig. 3 shows the fluctuation signal corresponding to the fluctuation of light at the measurement point.
  • digital data at two measurement points P1 and P2 that is, light fluctuation signals at two measurement points P1 and P2 are acquired.
  • the acquired digital data at the two measurement points P1 and P2 can be displayed as continuous signals as shown in Fig. 2 and Fig. 3 by the force interpolation method used for direct calculation.
  • step S2 It is determined whether or not acquired data exists. If Yes, the process proceeds to step S2, and if No, the process proceeds to imaging determination step S14.
  • Multiple ⁇ method plot ⁇ value (channel value) and number of channels are calculated.
  • the number of channels is determined by the total number of read data.
  • the specific calculation method is as shown in Fig. 5. In other words, the first 16
  • Figure 5 shows typical channel values with the bin time ⁇ as the reference value.
  • Figure 6 shows the channel values when the bin time is ⁇ ⁇ ⁇ ⁇ s.
  • the first 16 channels are divided into 0 stages, and thereafter, each of the 8 channels is divided into 1 stage, 2 stages, and so on.
  • the increment (reference value) of the channel value of each stage is 2 ⁇ ⁇ , where ⁇ is the number of stages.
  • the increment of the 0th channel value is ⁇ ,
  • the increment of the Yannel value is 4 ⁇ .
  • the number of channels for correlation value calculation is calculated based on the bin time and the total number of read data. For example, if data is measured for 32 seconds with a bin time of 2 seconds, the total number of channels for calculation is approximately 176.
  • step S4 data reconstruction of measurement point P1 is performed, and in step S5, data reconstruction of measurement point ⁇ 2 is performed.
  • the data of the first channel for each channel with a different reference value (increment) is calculated.
  • the sequence of all read data is the 0th row of data columns, and two adjacent ones are added together, and the sequence is the first row of data sequences. To do. Thereafter, the same operation is repeated to create the second data column, the third data column, and so on. This operation is continued until a data string having the same number of rows as the number of channels is obtained. in this way In the data table obtained in this way, each row of data corresponds to a channel of each level. For example, the data in the 2nd row and the 0th column correspond to the channel in the 2nd row and the 0th column.
  • PI P2 is used to calculate the data sum of each variable at each channel value position in the multiple ⁇ method.
  • the product-sum calculation is performed on the 0th column data at measurement point P1 and the data at measurement point ⁇ 2.
  • the data of the channel position having the same reference value (increment) at measurement point ⁇ 2 is multiplied by the data in column 0 of measurement point P1, and the sum is calculated.
  • the data string at measurement point P1 and the data string at measurement point ⁇ 2 corresponding to the channel at each stage are the first data in the data string at measurement point P1 and each data in the data string at measurement point ⁇ 2. Find the sum of products.
  • Step S 14 Completion of calculation and imaging determination If yes, go to step S15 for total correlation calculation, and if no, return to step S1 for data acquisition.
  • step S14 When data reading is complete (or if step S14 is Yes), based on the above calculation results, the autocorrelation function of each of the two measurement points P1 and P2 is estimated and the two measurement points P1 and P2 are The cross-correlation function between points is estimated.
  • the correlation function is estimated using different analytical formulas for the correlation directions P1 ⁇ P2, P1 ⁇ P1, and P2 ⁇ P2.
  • mlF OSum ( ⁇ ) represents the sum of the data in the 0th column of each stage, mlF Su
  • P v P m ( ⁇ ) represents the sum of channel data of each multiple ⁇ system.
  • um ( ⁇ ) indicates the product-sum calculation of the 0th column data and each channel data
  • mlN Sum ( ⁇ v ⁇ indicates the total number of product-sum calculations.
  • the subscript ⁇ is P1 or ⁇ 2, Corresponds to the data to be calculated, that is, data at measurement point P1 or data at measurement point ⁇ 2.
  • processing such as curve display of the cross-correlation function between points is performed.
  • the cross-correlation function is estimated for two different measurement points P1 and P2.
  • the correlation is high, it can be estimated that the probability that the same molecule will move from measurement point P1 to measurement point P2 is high.
  • the correlation is low, the molecule passing through measurement point P1 It can be estimated that there is much molecular movement in the other direction with a low probability of passing through P2. That is, according to the optical analyzer of this embodiment, the movement of molecules between the two measurement points P1 and P2 can be observed. It is also possible to estimate the molecular transfer vector by examining the correlation between two sets of two measurement points.
  • FIG. 10 schematically shows an optical signal analyzing apparatus according to the second embodiment of the present invention.
  • the optical signal analysis device 200 includes a single light irradiation unit L, a single light detection unit D, and a data analysis unit 32.
  • the light irradiator L includes a light source 12, a collimator lens 14, a condenser lens 16, a scanner 18, and the like.
  • the light irradiation part L is an excitation light irradiation means for irradiating the measurement points PI, P2,..., Pn with excitation light in a time-sharing manner. Irradiate excitation light to different measurement points PI, P2, ..., Pn.
  • the light detection unit D includes a condenser lens 22, a pinhole 24, an imaging lens 26, a light detector 28, and the like.
  • the light detection unit D is a light detection means for detecting light emitted from the measurement points PI, P2,..., Pn in the sample in a time-sharing manner, and is emitted from the measurement points PI, P2,.
  • the received light is received in time series.
  • the configuration of the light detection unit D is the same as any one of the light detection units Dl, D 2,..., Dn in the first embodiment.
  • the data analysis unit 32 is configured by a personal computer, for example, and estimates the autocorrelation function at each of the measurement points PI, P2, ⁇ , Pn based on the fluctuation signal output from the photodetector 28. At the same time, the cross-correlation function between the two measurement points PI, P2, ⁇ , Pn is estimated. In other words, the data analysis unit 32 detects the time division by the light detection unit D. Molecules such as the transfer vectors of molecules between the two measurement points PI, P2,..., Pn using the fluctuation signal corresponding to the fluctuation of light from the measurement points PI, P2,. Construct an analysis means to analyze the interaction.
  • the data of the light detection unit D force is time-series mixed data in which data at two measurement points P1 and P2 are alternately mixed.
  • P1 and P2 in Fig. 11 indicate the data measurement ranges at measurement points P1 and P2, respectively.
  • this data includes measurement point P1 and measurement point P2 data alternately, and can be divided by time.
  • the time series mixed data in fact, in addition to the data measurement range of measurement point P1 and measurement point P2, there is also a measurement range during switching between measurement points P1 and P2.
  • the time-series mixed data is sent to the data analysis unit 32, and is divided into data for each measurement point and processed. That is, the data analysis unit 32 extracts time-division data at the measurement point P1 shown in FIG. 12 and time-division data at the measurement point P2 shown in FIG. 13 from the time-series mixed data in FIG. For time-division data at measurement point P1, only the fluorescence intensity during the period in which the scanner 18 stops the excitation light beam at measurement point P1 is extracted as measurement point P1 data, and data for other periods is zero.
  • the data analysis unit 32 generates two pseudo signals or pseudo data corresponding to the respective lights from the measurement point P1 and the measurement point P2 based on the fluctuation signal output from the photodetector 28. .
  • This pseudo signal or pseudo data is interpolated by a signal having a predetermined value during a period in which a signal generated by time division detection is missing.
  • data of two different measurement points is extracted from the time-series mixed data of two measurement points.
  • the point-to-point correlation calculation is performed using the conventional general-purpose method, information table method or multiple ⁇ method.
  • data of the cross correlation function between multiple ⁇ methods using weighting factors is used.
  • data analysis two measurement points are repeatedly measured. By dividing the measured measurement data into a data table and a weighting coefficient table for each measurement point in time series, only the data and weighting coefficient corresponding to each measurement point are extracted, and the autocorrelation function is calculated.
  • autocorrelation and cross-correlation between points are calculated using the data of each measurement point and the data of the two measurement points in the weighting factor and the weighting factor. Observe the interaction between different parts (two points) of the cell, not just by observing the reaction.
  • the data and weighting coefficient calculation channel uses the octave method, and the data and weighting coefficient calculation is limited to a few! Realize the result plot.
  • the data average value and weight coefficient average value corresponding to different delay times are calculated.
  • one piece of data or the weighting factor is used as the minimum calculation unit.
  • Time series measurement data at two measurement points P1 and P2 is acquired as measurement data for the sample.
  • the continuous signal obtained by the interpolation method of the acquired time-series mixed data is as shown in Fig. 11.
  • step S2 It is determined whether or not acquired data exists. If Yes, the process proceeds to step S2, and if No, the process proceeds to step S18 for imaging determination.
  • Multiple ⁇ method plot ⁇ value (channel value) and number of channels are calculated.
  • the number of channels is determined by the total number of read data.
  • the first 16 channel values are set as 0 values, and the subsequent channel values are set to values that increase by a factor of 3 times in the bin time.
  • the first 16 channels are divided into 0 stages, and thereafter, every 8 channels are divided into 1 stage, 2 stages, and so on.
  • the increment (reference value) of the channel value of each stage is 2 ⁇ ⁇ , where ⁇ is the number of stages.
  • the increment of the 0th channel value is ⁇ ,
  • the increment of the Yannel value is 4 ⁇ .
  • the number of channels for calculation is determined by the bin time value and the total number of read data.
  • Identify measurement points That is, the number of measurement points and the measurement point number measured simultaneously are determined. If the measurement point is that at step S4, the input data is processed as valid data at measurement point P1 after step S6, and the data at measurement point ⁇ 2 is processed as zero at step S5. If the measurement point is ⁇ 2 in step S4, the input data is processed as valid data for measurement point ⁇ 2 after step S6, and the data at measurement point P1 is processed as a exit in step S5. In the case other than measurement point P1 and ⁇ 2, the data of measurement point P1 is similarly interpolated as zero in step S5.
  • the data is divided for each measurement point.
  • time-series mixed data in which data from multiple measurement points are mixed is obtained.
  • the time-series mixed data is divided into data for each measurement point. For example, if data measurement is performed in the order of ⁇ 1 ⁇ ⁇ 2 ⁇ ⁇ 1 as shown in Fig. 11 at measurement points P1 and ⁇ 2, two measurement data of Pl and ⁇ 2 are arranged in time series in the measured data. This data is compared to a specific data table as shown in Fig. 15, and the data division method for each measurement point is explained. At measurement point P1, first, only the data at measurement point ⁇ 1 is extracted as the mixed data force.
  • weighting factor is divided for each measurement point.
  • the measurement data includes a portion representing the measurement point position of the data in addition to the portion representing the data size. This part is also divided for each measurement point.
  • the sequence of all read data is defined as the 0th row of data columns, and the adjacent two of them are added together to form the sequence of data as the first row of data. To do. Thereafter, the same operation is repeated to create the second data column, the third data column, and so on. This operation is continued until a data string having the same number of rows as the number of channels is obtained.
  • the data in each row corresponds to the channel in each stage. For example, the data in the 2nd row and the 0th column correspond to the channel in the 2nd row and the 0th column.
  • step S8 Perform weight coefficient reconstruction.
  • the weighting coefficient of the first channel for each channel with a different reference value (increment) is calculated.
  • the sum calculation process is performed for each measurement point using the division weight coefficient table for measurement point P1 and measurement point P2.
  • the weight coefficient table changes as the sum calculation process progresses, and channel weight coefficients with new reference values (increments) are formed one after another (Fig. 19) to form a new weight coefficient form. .
  • the sequence of all the weighting factors is the weighting factor sequence in the 0th row, and two adjacent ones are added together to obtain the weighting in the 1st row.
  • a coefficient sequence Thereafter, the same operation is repeated to create the second weighting factor sequence, the third weighting factor sequence, and so on. This operation is continued until a weight coefficient sequence having the same number of rows as the number of stages of channels is obtained. In the weight coefficient table obtained in this way, the weight coefficient of each row corresponds to the channel of each stage.
  • a product-sum calculation between data is performed for P1. That is, as shown in FIG. 20, the data of the channel position having the same reference value (increment) at the measurement point P1 is multiplied by the 0th column data, and the sum is calculated. In other words, the sum of products of the first data and each of the other data is obtained in the data string of the measurement point P1 corresponding to the channel of each stage. Next, the product-sum calculation between the data is performed on the extracted data I at measurement point P2.
  • the same processing is performed at the measurement point P2, and the weight coefficient of the channel position having the same reference value (increment) at the measurement point P2 is multiplied by the 0th column data, and the sum is calculated.
  • the sum of the product of the first data in the data sequence and each weighting factor in the weighting factor sequence is obtained for the data sequence and the weighting factor sequence at the measurement point P1 corresponding to the channel of each stage.
  • V in other words, V for the data string and the weighting coefficient string at the measurement point P2 corresponding to the channel of each stage, and the sum of the products of the first weighting coefficient in the weighting coefficient string and each data in the data string is obtained. .
  • the data of the channel position of the measurement point P2 having the same reference value (increment) is multiplied by the 0th column data of the measurement point P1, and the sum is calculated.
  • the data string at the measurement point P1 and the data string at the measurement point P2 corresponding to the channel at each stage are used as the first data in the data string at the measurement point P1 and the data string at the measurement point P2. Find the sum of products.
  • the product-sum calculation between the weight coefficients is performed. That is, the channel position weighting coefficient of the measurement point P2 having the same reference value (increment) is multiplied by the weighting coefficient in the 0th column of the measurement point P1, and the sum is calculated.
  • the weighting factor sequence at the measurement point P1 and the weighting factor sequence at the measurement point P2 corresponding to the channel of each stage are used as the first weighting factor sequence at the measurement point P1 and the weighting factor sequence at the measurement point P2.
  • the sum of products with each of the weighting factors is obtained.
  • the sum of products of the 0th column weighting coefficient and the data at measurement point P2 is calculated. That is, the data of the channel position of the measurement point P2 having the same reference value (increment) is multiplied by the weighting coefficient in the 0th column of the measurement point P1, and the sum is calculated.
  • the first data of the data string of measurement point P2 and the weighting coefficient of the weighting coefficient string of measurement point P1 Find the sum of products.
  • step S21 When data reading is completed (when step S21 is Yes), based on the above calculation results, the estimation of the autocorrelation function of each of the two measurement points P1 and P2 and the two measurement points P1 and P2 The cross-correlation function between points is estimated.
  • the correlation function is estimated using different analytical formulas for the correlation directions P1 ⁇ P2 and P1 ⁇ P1 and P2 ⁇ P2.
  • Equation 6 [0074] In each of the equations (4) to (6), mlF R Sum ( ⁇ ) represents a product-sum calculation between data, mlW
  • V Sum ( ⁇ ) represents a product-sum calculation of weighting factors.
  • MlF V Sum ( ⁇ ) is the 0th column
  • MlW R Sum ( ⁇ ) is the 0th column weighting factor and data
  • is the delay time during normal correlation calculation.
  • Equation (6) is based on the following cross-correlation analysis equation (7).
  • the cross-correlation analysis equation (7) is derived by applying weights to the general-purpose cross-correlation function (8).
  • processing such as curve display of the cross-correlation function between points is performed.
  • the cross-correlation function is estimated for two different measurement points P1 and P2.
  • the correlation is high, it can be estimated that the probability that the same molecule moves from measurement point P1 to measurement point P2 is high.
  • the correlation is low, the molecule passing through measurement point P1 is the measurement point. It can be estimated that there is much molecular movement in the other direction with a low probability of passing through P2. That is, the light of this embodiment
  • the movement of molecules between the two measuring points PI and P2 can be observed. It is also possible to estimate the molecular transfer vector by examining the correlation between two sets of two measurement points.
  • a single light irradiator scans the light beam intermittently to irradiate a plurality of measurement points with excitation light, and a single light detector D detects fluorescence generated by a plurality of measurement point forces. is doing. That is, the same optical system is used for a plurality of measurement points. For this reason, there is no error due to inconsistencies in the measurement area, irradiation intensity, signal transmission system, etc.
  • the measurement start time error is zero because the data of two different measurement points are also derived from the same measurement signal power.
  • a high-performance, low-cost optical signal analysis device is provided.
  • the optical signal analysis device detects fluorescence
  • the detection target light is not limited to fluorescence, such as phosphorescence, reflected light, scattered light, and light. It may be academic luminescence or bioluminescence.
  • a force that employs a correlation function analysis method instead of this, a photo counting histogram method or a coincidence analysis method may be applied.
  • the light detection unit D is measured by the single light detector 28 at the measurement point P1 in the sample.
  • the optical signal analysis apparatus and optical signal analysis method which can observe the movement of the molecule

Abstract

 光信号解析装置100は、複数の光照射部L1,L2,・・・,Lnと、複数の光検出部D1,D2,・・・,Dnと、データ解析部32とを備えている。光照射部L1,L2,・・・,Lnは、それぞれ、試料S内の異なる測定点P1,P2,・・・,Pnに励起光を照射する。光検出部D1,D2,・・・,Dnは、それぞれ、測定点P1,P2,・・・,Pnから発せられた光を受光し、測定点P1,P2,・・・,Pnからの光の揺らぎに対応する揺らぎ信号を出力する。データ解析部32は、光検出部D1,D2,・・・,Dnからそれぞれ出力される揺らぎ信号に基づいて、測定点P1,P2,・・・,Pn間の点間相互相関関数の推定を行なう。

Description

明 細 書
光信号解析装置および光信号解析方法
技術分野
[0001] 本発明は、光信号解析装置および光信号解析方法に関する。
背景技術
[0002] 例 は、 Newし oncept inし orrelator Design , Klaus ¾ch- tzel, Inst. Phys. Conf. S er. No. 77, P175, 1985と" Noise on Multiple- Tau Photon Correlation Data", Klaus S ch-tzel, SPIE Vol. 1430, P109, Photon Correlation Spectroscopy: Multicomponent S ystems, 1991と〃 Photon Correlation Measurements at Large Lag Times", Klaus Sch- tzel et al, Journal of Modern Optics, Vol. 35, No.4, P711, 1988は、光信号解析方 法を開示している。これらの光信号解析方法において、自己相関関数や相互相関関 数などを推定する場合には、一回の測定で一個所だけの測定点から得た蛍光の強 度の連続測定データ (連続測定信号)を用いるか、複数の測定点を時間で繰り返し 切り替えながら測定した複数点時系列混合データ (複数点時系列混合信号)を用い る。解析アルゴリズムとしては、マルチプルて方式の計算手法またはテーブル検索方 式がある。測定点が一個所だけの場合、一般方式または単一測定点マルチプルて 方式というアルゴリズムを解析に用いる。つまり、単一測定点マルチプル τ方式の計 算手法は、チャンネル計算やデータ再構成などのデータ処理過程を経て測定点に おける自己相関関数または相互相関関数を推定する。また、一回に複数の測定点を 測定する場合、一般方式またはテーブル検索方式と 、うアルゴリズムを解析に用いる 。つまり、テーブル検索方式は、測定点ごとのデータの時分割、測定点の位置情報 をテーブルィヒした位置情報によるデータ高速処理を経て同時に複数測定点におけ るそれぞれの自己相関関数または相互相関関数を推定する。
[0003] 堀川嘉明、「統計解析を用いた一分子蛍光分析一生体分子間相互作用の解析に 向けて」、分光研究、第 53卷第 3号、 158— 164、 2004年は、フォトカウンティングヒ ストグラム法を開示して ヽる。
[0004] 間瀬一彦、永園充、田中慎一郎、長岡伸一、「電子 イオン'コインシデンス分光法 を用いた表面分子の内殻電子励起に由来するイオン脱離の研究」、放射光、 10、 37 5— 391、 1997年は、コインシデンス解析法を開示している。
発明の開示
[0005] しかし、一点の測定点における自己相関関数と相互相関関数の推定は、分子のミ クロ領域による比較的小さ 、拡散速度を有する分子拡散を観察するものである。実 際の応用において、例えば分子が細胞の核膜を通過する場合、分子拡散速度は遅 ぐ拡散時間は長い。また、シグナルの伝達、ある方向への分子移動の影響などは、 一点のみの観察による自己相関相互相関では観察不可能である。
[0006] つまり、従来技術では、観察領域は一点の測定点(コンフォカボリューム)に限定さ れている。また、二点またはそれ以上の複数点間における分子の移動は観察できな い。さらに、遅い分子拡散は観察不可能である。
[0007] 本発明は、このような実状を考慮して提案したものであり、その目的は、二点間にお ける分子の移動を観察し得る光信号解析装置および光信号解析方法を提供するこ とである。
[0008] 本発明による光信号解析装置は、試料内の複数の測定点から発せられる光を検出 する光検出手段と、前記光検出手段により検出された前記複数の測定点からの光の 揺らぎにそれぞれ対応する複数の揺らぎ信号を利用して前記複数の測定点の二つ の間における分子相互作用を解析する解析手段とを備えている。
[0009] 本発明による光信号解析方法は、試料内の複数の測定点力 発せられる光を検出 する光検出工程と、前記複数の測定点力 の光の揺らぎにそれぞれ対応する複数の 揺らぎ信号を利用して前記複数の測定点の二つの間における分子相互作用を解析 する解析工程とを有して!/ヽる。
図面の簡単な説明
[0010] [図 1]図 1は、本発明の第一実施形態による光信号解析装置を概略的に示している。
[図 2]図 2は、図 1の装置において得られる測定点 P1からの光の揺らぎに対応する摇 らぎ信号を示している。
[図 3]図 3は、図 1の装置において得られる測定点 P2からの光の揺らぎに対応する摇 らぎ信号を示している。 [図 4]図 4は、図 1のデータ解析部による解析処理のフローチャートを示している。
[図 5]図 5は、チャンネルの構造と値を示している。
[図 6]図 6は、ビンタイムが 2 μ秒のときのチャンネルの構造と値を示している。
[図 7]図 7は、図 2と図 3の連続信号における測定点 P1と測定点 Ρ2のデータ再構成を 示している。
[図 8]図 8は、図 2と図 3の連続信号における測定点 P1のデータ間の積和計算を示し ている。
[図 9]図 9は、図 2と図 3の連続信号における測定点 P1と測定点 Ρ2のデータ間の積和 計算を示している。
[図 10]図 10は、本発明の第二実施形態による光信号解析装置を概略的に示してい る。
[図 11]図 11は、図 10の装置にぉ 、て得られる測定点 P1と測定点 Ρ2からの光の揺ら ぎに対応する揺らぎ信号を含む時系列混在信号を示している。
[図 12]図 12は、図 11の時系列混在信号力 抽出した測定点 P1の時分割信号を示 している。
[図 13]図 13は、図 11の時系列混在信号カゝら抽出した測定点 Ρ2の時分割信号を示 している。
[図 14A]図 14Aは、図 10のデータ解析部による解析処理のフローチャートの一部を 示している。
[図 14B]図 14Bは、図 10のデータ解析部による解析処理のフローチャートの一部を 示している。
[図 15]図 15は、図 11の時系列混在信号に対応する測定点 Ρ 1と測定点 Ρ2の混合デ ータを示している。
[図 16]図 16は、図 12の時分割信号に対応する測定点 P1の分割データを示している
[図 17]図 17は、図 16の分割データに対応する測定点 Ρ 1の分割重み係数を示して いる。
[図 18]図 18は、測定点 P1と測定点 Ρ2の分割データを再構成して得たデータテープ ルを示している。
[図 19]図 19は、測定点 P 1と測定点 P2の分割重み係数を再構成して得た重み係数 テーブルを示している。
[図 20]図 20は、測定点 P1のデータ間の積和計算を示している。
[図 21]図 21は、測定点 P1と測定点 P2のデータ間の積和計算を示している。
発明を実施するための最良の形態
[0011] 以下、図面を参照しながら本発明の実施形態について説明する。
[0012] <第一実施形態 >
図 1は、本発明の第一実施形態による光信号解析装置を概略的に示している。光 信号解析装置 100は、複数の光照射部 LI, L2, ···, Lnと、複数の光検出部 D1, D2, ···, Dnと、データ解析部 32とを備えている。
[0013] 光照射部 LI, L2, ···, Lnのおのおのは光源 12とコリメートレンズ 14と集光レンズ 16などを有している。光照射部 LI, L2, ···, Lnは、それぞれ、試料 S内の異なる測 定点 PI, P2, ···, Pnに励起光を連続的に照射する。
[0014] 光検出部 Dl, D2, ···, Dnのおのおのは集光レンズ 22とピンホール 24と結像レ ンズ 26と光検出器 28などを有している。光検出部 Dl, D2, ···, Dnは、それぞれ、 測定点 PI, P2, ···, Pnから発せられた光を受光する。より詳しくは、ピンホール 24 は、それぞれ、測定点 PI, P2, ···, Pnと共役な位置に配置されており、結像レンズ 26は、それぞれ、ピンホール 24の像を光検出器 28に投影する。従って光検出器 28 には、それぞれ、測定点 PI, P2, ···, Pnから発せられた光だけが選択的に入射す る。光検出器 28は、それぞれ、入射した光の強度を反映した連続測定データすなわ ち測定点 PI, P2, ···, Pnからの光の揺らぎに対応する揺らぎ信号を出力する。
[0015] これまでの説明から分かるように、光検出部 Dl, D2, · · ·, Dnは、試料内の測定点 PI, P2, ···, Pnから発せられる光を検出する光検出手段を構成している。また光照 射部 LI, L2, ···, Lnは、測定点 PI, P2, ···, Pnにそれぞれ励起光を連続的に 照射する励起光照射手段を構成して!/ヽる。
[0016] データ解析部 32は例えばパーソナルコンピューターで構成され、複数の光検出器 28からそれぞれ出力される複数の揺らぎ信号に対して自己相関関数と相互相関関 数を推定する。すなわちデータ解析部 32は、測定点 PI, P2, · · · , Pnのそれぞれに おける自己相関関数の推定を行なうとともに、測定点 PI, P2, · · · , Pnの二つの間 の相互相関関数の推定を行なう。つまり、データ解析部 32は光検出部 Dl, D2, · · · , Dnによりそれぞれ検出された測定点 PI, P2, · · · , Pnからの光の揺らぎに対応す る揺らぎ信号を利用して測定点 PI, P2, · · · , Pnの二つの間における分子の移動べ タトルなどの分子相互作用を解析する解析手段を構成している。またデータ解析部 3 2は解析結果を表示したり記憶したりする。点間相関演算に使われるのは、複数の測 定点 PI, P2, · · · , Pnの連続データ (連続信号)中、独立した二つの測定点の連続 データ (連続信号)である。異なる測定点において、それぞれ連続したデータ (信号) を測定し、二点間ベクトル方向の相関関係を直接分子移動の変化から観察する。
[0017] 以下では、その一例として、測定点 P1と測定点 P2の二つの測定点についての解 祈について述べる。図 2は測定点からの光の揺らぎに対応する揺らぎ信号を示し、図 3は測定点力もの光の揺らぎに対応する揺らぎ信号を示している。
[0018] 以下、データ解析部 32による解析処理について図 4のフローチャートに沿って説明 する。
[0019] [ステップ SO]
試料についての測定データとして、二つの測定点 P1と P2におけるデジタルデータ すなわち二つの測定点 P1と P2の光の揺らぎ信号を取得する。取得した二つの測定 点 P1と P2のデジタルデータは直接計算に用いられる力 補間方法により図 2と図 3 に示した通りの連続信号で表示することができる。
[0020] [ステップ S1]
取得データが存在するか否かを判断し、 Yesの場合はステップ S2に進み、 Noの場 合はイメージング判断ステップ S14に入る。
[0021] [ステップ S 2]
読み込みデータ数をカウントする。このデータ総数は、チャンネル計算、総合計算 などに用いる。
[0022] [ステップ S3]
マルチプル τ方式のプロット τ値(チャンネル値)とチャンネル数などを計算する。 マルチプル τ方式は読み込んだデータの総数によりチャンネル数を決める。具体的 な計算方法は図 5に示す通りである。つまり、ビンタイムて を基準値として最初の 16
0
個のチャンネル値とし、以降の 8個ごとのチャンネル値はビンタイム τ 力 ¾倍に増える
0
値を基準値とする。図 5は、ビンタイム τ を基準値とする一般的なチャンネル値を示
0
し、図 6は、ビンタイム τ Ι λ μ秒の場合のチャンネル値を示している。
0
[0023] 別の言い方をすれば、最初の 16個のチャンネルを 0段とし、それ以降、 8個のチヤ ンネルごとに 1段、 2段、 · · ·と分ける。各段のチャンネル値の増分 (基準値)は、段の 数を ηとして、 2η τ とする。例えば、 0段のチャンネル値の増分は τ であり、 2段のチ
0 0
ヤンネル値の増分は 4 τ である。
0
[0024] ここでわ力るように、相関値計算用のチャンネル数は、ビンタイムと読み込んだデー タの総数に基づいて算出される。例えば、ビンタイム 2 秒で 32秒間データを測定し た場合、計算用の総チャンネル数は約 176である。
[0025] [ステップ S4と S5]
ステップ S4では測定点 P1のデータ再構成を行な 、、ステップ S5では測定点 Ρ2の データ再構成を行なう。つまり、基準値 (増分)が異なる各チャンネルの最初チャンネ ルのデータを計算する。測定点 P1と測定点 Ρ2の測定データ I と I に対して、和計
PI Ρ2
算処理を行なう。チャンネル 16以降の遅延時間ては、 8チャンネルごとに基準値 (増 分)を 2倍に増しているため(ステップ S3を参照)、各チャンネルのデータは基準値( 増分)が 2倍に増える前の二つのデータ和力もなる。具体的なデータの変化は図 7の 通りである。二つの測定点 P1と Ρ2において、それぞれの和計算の処理を行なうこと により、取得データから次々と新 、基準値 (増分)を有するチャンネルのデータが形 成され、新しいデータ形態が構成される。しかし、実際のデータ再構成処理では、最 初チャンネル以外のチャンネルのデータは、最初チャンネルのデータを移動させるこ とで構成される。
[0026] 別の言 、方をすれば、読み込んだすべてのデータの並びを 0行目のデータ列とし、 そのうちの隣接する二つずつを足し算して、その並びを 1行目のデータ列とする。そ れ以降、同様の操作に繰り返して、 2行目のデータ列、 3行目のデータ列、 · · ·を作る 。この操作は、チャンネルの段数と同じ行数のデータ列を得るまで続ける。このように して得られたデータテーブルにおいて、各行のデータは、それぞれ、各段のチャンネ ルに対応している。例えば、 2行 0列目のデータは、 2段 0列目のチャンネルに対応し ている。
[0027] [ステップ S6と S7]
データの総和を計算する。つまり、測定点 P1と測定点 P2の測定データ I と I に対
PI P2 して、マルチプル τ方式の各チャンネル値位置におけるそれぞれ変数のデータ総和 を計算する。
[0028] [ステップ S8と S9]
同じ測定点におけるデータ間の積和計算を行なう。つまり、測定点 P1と測定点 Ρ2 の測定データ I と I に対して、測定点 P1の場合、図 8に示されるように、同じ基準値
PI Ρ2
(増分)を有するチャンネル位置のデータと 0列目データとの掛け算をし、その和を算 出する。言い換えれば、図 5に示される各段のチャンネルに対応する測定点 P1のデ ータ列において、最初のデータとほかの各データとの積の和を求める。また、測定点 Ρ2に対しても同様な計算処理を行なう。
[0029] [ステップ S10と S11]
同じ測定点におけるデータ積和計算の回数をカウントする。つまり、データ積和計 算の回数のカウントは、ステップ S8と S9の計算と同時に行なう。
[0030] [ステップ S 12]
異なる測定点間のデータの積和計算を行なう。つまり、測定点 P1の 0列目データと 測定点 Ρ2のデータとの積和計算を行なう。図 9に示されるように、測定点 Ρ2の同じ基 準値 (増分)を有するチャンネル位置のデータと測定点 P1の 0列目のデータとの掛け 算をし、その和を算出する。言い換えれば、各段のチャンネルに対応する測定点 P1 のデータ列と測定点 Ρ2のデータ列にぉ 、て、測定点 P1のデータ列の最初のデータ と測定点 Ρ2のデータ列の各データとの積の和を求める。
[0031] [ステップ S 13]
異なる測定点間のデータ積和計算の回数をカウントする。つまり、データ積和計算 の回数のカウントは、ステップ S12の計算と同時に行なう。
[0032] [ステップ S 14] 演算終了およびイメージング判断を行なう。 Yesの場合には総合相関計算のステツ プ S 15に入り、 Noの場合にはデータ取得判断のステップ S 1に戻る。
[0033] [ステップ S 15]
データの読み込みが終了した場合 (またはステップ S14が Yesの場合)、上述した 諸計算結果に基づいて、二つの測定点 P1と P2のそれぞれの自己相関関数の推定 と二つの測定点 P1と P2の間の点間相互相関関数の推定とを行なう。つまり、 P1→P 2と P1→P1と P2→P2の各相関方向に対してそれぞれ異なる解析式を用いて相関 関数を推定する。
[0034] 例えば、?1→?1に対しては(38 * 310) 7 (360 * 36)の計算式を用ぃ、 P2→P2 に対しては(S9 * SI 1) Z (S70 * S7)の計算式を用い、 P1→P2に対しては(S 12 * S 13) Z (S60 * S6)の計算式を用いる。ここで、 S60と S70はそれぞれ各基準値( 増分)チャンネル位置のデータ総和を示す。
[0035] これらの解析式はそれぞれ下記の(1)式〜(3)式のように表現できる。
[数 1]
Figure imgf000010_0001
[数 2]
Figure imgf000010_0002
[数 3]
Figure imgf000010_0003
(1)式〜(3)式中、 mlF OSum ( τ )は各段 0列目データの総和を示し、 mlF Su
P v P m ( τ )は各マルチプル τ方式のチャンネルデータの総和を示す。また、 mlF R S
P P
um ( τ )は 0列目データと各チャンネルデータとの積和計算を示し、 mlN Sum ( τ v ΡΡ は積和計算の総回数を示す。ここで、添字の Ρは P1または Ρ2であり、計算対象の データすなわち測定点 P1のデータまたは測定点 Ρ2のデータに対応している。 [0037] [ステップ SI 6]
各最終計算結果に基づいて、点間相互相関関数のカーブ表示などの処理を行な
[0038] これまでの説明からわ力るように、本実施形態の光分析装置では、異なる二つの測 定点 P1と P2に対して相互相関関数の推定を行なっている。 P1→P2への解析結果 において、相関が高ければ、同一分子が測定点 P1から測定点 P2へ移動する確率 が高いと推定でき、逆に相関が低ければ測定点 P1を通った分子が測定点 P2を通る 確率が低ぐその他方向への分子移動が多いと推定できる。つまり、本実施形態の光 分析装置によれば、二つの測定点 P1と P2の間における分子の移動を観察できる。 また、複数セットの二つの測定点間の相関性を検討することで、分子移動のベクトル を推定することが可能である。
[0039] <第二実施形態 >
図 10は、本発明の第二実施形態による光信号解析装置を概略的に示している。光 信号解析装置 200は、単一の光照射部 Lと、単一の光検出部 Dと、データ解析部 32 とを備えている。
[0040] 光照射部 Lは光源 12とコリメートレンズ 14と集光レンズ 16とスキャナー 18などを有 している。光照射部 Lは、測定点 PI, P2, · · · , Pnに励起光を時分割に照射する励 起光照射手段であり、スキャナー 18により光ビームを間欠的に走査し、試料 S内の異 なる測定点 PI, P2, · · · , Pnに励起光を照射する。
[0041] 光検出部 Dは集光レンズ 22とピンホール 24と結像レンズ 26と光検出器 28などを有 している。光検出部 Dは、試料内の測定点 PI, P2, · · · , Pnから発せられる光を時 分割に検出する光検出手段であり、測定点 PI, P2, · · · , Pnから発せられた光を時 系列的に受光する。光検出部 Dの構成は、第一実施形態における光検出部 Dl, D 2, · · · , Dnのいずれかと同じである。
[0042] データ解析部 32は例えばパーソナルコンピューターで構成され、光検出器 28から 出力される揺らぎ信号に基づいて、測定点 PI, P2, · · · , Pnのそれぞれにおける自 己相関関数の推定を行なうとともに、測定点 PI, P2, · · · , Pnの二つの間の相互相 関関数の推定を行なう。つまり、データ解析部 32は光検出部 Dにより時分割に検出 された測定点 PI, P2, · · · , Pnからの光の揺らぎに対応する揺らぎ信号を利用して 測定点 PI, P2, · · · , Pnの二つの間における分子の移動ベクトルなどの分子相互作 用を解析する解析手段を構成して ヽる。
[0043] 以下では、その一例として、測定点 P1と測定点 P2の二つの測定点についての解 祈について述べる。光照射部 Lは、二つの測定点 P1と P2に対して、短時間で切り替 えながら励起光を照射する。従って、光検出部 D力ものデータは、図 11に示されるよ うに、二つの測定点 P1と P2におけるデータが交互に混在している時系列混在デー タとなる。図 11中の P1と P2はそれぞれ測定点 P1と測定点 P2のデータ測定範囲を 示している。つまり、このデータには、測定点 P1と測定点 P2のデータが交互に含ま れていて、時間で分割することができる。時系列混在データには、実際には、測定点 P1と測定点 P2のデータ測定範囲のほかに、測定点 P1と P2を切り替える間の測定範 囲も存在する力 図 11では省略している。
[0044] この時系列混在データはデータ解析部 32に送られ、測定点ごとのデータに分割さ れ処理される。つまり、データ解析部 32は、図 11の時系列混在データから、図 12〖こ 示される測定点 P1の時分割データと、図 13に示される測定点 P2の時分割データと を抽出する。測定点 P1の時分割データについては、スキャナー 18が励起光ビーム を測定点 P1に静止させている期間の蛍光強度だけを抽出して測定点 P1のデータと し、その以外の期間のデータはゼロとする。同様に、測定点 P2の信号については、 スキャナー 18が励起光ビームを測定点 P2に静止させている期間の蛍光強度だけを 抽出して測定点 P2のデータとし、その以外の期間のデータはゼロとする。このように してデータ解析部 32は、光検出器 28から出力される揺らぎ信号に基づいて、測定点 P1と測定点 P2からのそれぞれの光に対応する二つの擬似信号または擬似データを 生成する。この擬似信号または擬似データは、時分割の検出によって発生する信号 が欠落する期間が所定値の信号によって補間されている。
[0045] つまり、二つの測定点の時系列混在データから、二つの異なる測定点のデータを 抽出する。この二つの異なる測定点の抽出データにおいて、従来通りの汎用方式、 情報テーブル方式またはマルチプル τ方式を用いて点間相関演算を行なう。
[0046] 本実施形態では、重み係数を用いたマルチプル τ方式点間相互相関関数のデー タ解析において、二つの測定点を繰り返し測定する。測定した測定データを時系列 で測定点ごとにデータテーブルと重み係数テーブルに分割することにより、各測定点 に相当するデータと重み係数だけを抽出して、自己相関関数の計算を行なう。ここで 、抽出した各測定点のデータと重み係数中の二つの測定点のデータと重み係数を 用いて自己相関と点間相互相関計算を行ない、計算結果により、同時に二点のそれ ぞれ細胞反応を観察するだけではなぐ細胞の異なる部位 (二点)間の相互作用など を観察する。
[0047] 相関関数の演算を行なう際、データと重み係数の計算用チャンネルはオクターブ 方式を用い、データと重み係数の計算を数少な!、有限個のチャンネルの結果に制 限し、同間隔の計算結果のプロットを実現する。さらに、先に異なる τ領域において、 異なる遅延時間相当分のデータ平均値と重み係数平均値を計算する。なお、抽出さ れた測定点のデータと重み係数による諸処理は、 1つのデータあるいは重み係数を 計算最小単位とする。
[0048] 以下、具体例として、マルチプル τ方式について、図 14Aと図 14Bのフローチヤ一 トに 、つて説明する。
[0049] [ステップ SO]
試料についての測定データとして、二つの測定点 P1と P2における時系列測定デ ータを取得する。取得した時系列混在データの補間方法による連続信号は図 11に 示した通りである。
[0050] [ステップ S1]
取得データが存在するか否かを判断し、 Yesの場合はステップ S2に進み、 Noの場 合はイメージング判断のステップ S 18に入る。
[0051] [ステップ S 2]
読み込みデータ数をカウントする。このデータ総数は、チャンネル計算、総合計算 などに用いる。
[0052] [ステップ S3]
マルチプル τ方式のプロット τ値(チャンネル値)とチャンネル数などを計算する。 マルチプル τ方式は読み込んだデータの総数によりチャンネル数を決める。具体的 な計算方法は第一実施形態の図 5に示した通りである。つまり、ビンタイム τ を基準
0 値として最初の 16個のチャンネル値とし、以降の 8個ごとのチャンネル値はビンタイム て 力 ¾倍に増える値を基準値とする。
0
[0053] 別の言い方をすれば、最初の 16個のチャンネルを 0段とし、それ以降、 8個のチヤ ンネルごとに 1段、 2段、 · · ·と分ける。各段のチャンネル値の増分 (基準値)は、段の 数を ηとして、 2η τ とする。例えば、 0段のチャンネル値の増分は τ であり、 2段のチ
0 0
ヤンネル値の増分は 4 τ である。
0
[0054] ここでわ力るように、計算用のチャンネル数は、ビンタイム値と読み込んだデータの 総数によって決まる。
[0055] [ステップ S4と S5]
測定点の識別を行なう。つまり、同時に測定した測定点数と測定点番号を判断する 。ステップ S4で測定点がその場合には、入力データが測定点 P1の有効なデータと してステップ S6以降で処理され、測定点 Ρ2のデータはステップ S5でゼロとして処理 される。また、ステップ S4で測定点が Ρ2の場合には、入力データが測定点 Ρ2の有 効なデータとしてステップ S6以降で処理され、測定点 P1のデータはステップ S5でゼ 口として処理される。また、測定点 P1と Ρ2以外の場合には、同様に測定点 P1のデー タはステップ S5でゼロとして補間処理される。
[0056] [ステップ S6]
データ抽出を行なう。つまり、測定点ごとにデータを分割する。複数測定点におい て、測定点を時系列で切り替えながら測定した場合、複数測定点のデータが混在し ている時系列混在データが得られる。ここで、時系列混在データを測定点ごとのデー タに分割する。例えば、測定点 P1と Ρ2において、図 11のような Ρ1→Ρ2→Ρ1の順に データ測定が行われた場合、測定したデータには Pl、 Ρ2の二つの測定データが時 系列で配列される。このデータを図 15のような具体的なデータ表に例え、測定点ごと のデータ分割方法を説明する。測定点 P1において、まず、混在データ力も測定点 Ρ 1のデータだけを抽出する。次に、そのほかの測定点(測定点 Ρ2)に相当する位置に はデータ 0を埋め込む。その結果、図 16に示される測定点 P1の分割データテープ ルが作成される。同様に、測定点 Ρ2に対して、異なる分割データテーブルを作成す る。つまり、光検出器 28から出力される揺らぎ信号に基づいて二つの測定点 PIと P2 力 のそれぞれの光に対応する二つの擬似データが生成される。この擬似データは 、時分割の検出によって発生する信号が欠落する期間が所定値のデータによって補 間されている。その結果、二つの測定点 P1と P2に対して、二枚の分割データテープ ルが構成される。
[0057] [ステップ S7]
時分割の検出によって発生する信号またはデータが欠落する期間の解析結果に 対する影響を防止するため、信号またはデータが欠落する期間と、それ以外の期間 との間で異なる重み付けを行なう。このための重み係数テーブルを作成する。つまり 、測定点ごとに重み係数の分割を行なう。複数測定点において、測定点を時系列で 切り替えながら測定した場合、測定データには、データの大きさを表す部分のほかに データの測定点位置を表す部分が含まれて 、る。この部分も測定点ごとに分割する 力 複数測定点測定のマルチプル τ方式では重み係数として計算に用いる。二つの 測定点 P1と Ρ2に対してデータ測定が行われた場合、データ数 1個(重み係数 = 1) で表す。まず、データ信号の分割と同様に、測定点 P1に対する重み係数だけを抽出 する。次に、その他の測定点に相当する位置には 0という重み係数を埋め込む。その 結果、図 17に示される測定点 P1の分割重み係数テーブルが作成される。同様に、 測定点 Ρ2に対して、それぞれの異なる分割重み係数テーブルを作成する。つまり、 二つの測定点 P1と Ρ2に対して、二枚の分割重み係数テーブルが構成される。
[0058] [ステップ S8]
データ再構成を行なう。つまり、基準値 (増分)が異なる各チャンネルの最初チャン ネルのデータを計算する。測定点 P1と測定点 Ρ2の分割データテーブルにより、測定 点ごとに和計算処理を行なう。チャンネル 16以降の遅延時間ては、 8チャンネルごと に基準値 (増分)を 2倍に増して 、るため(第一実施形態のステップ S4と S5を参照)、 各チャンネルのデータは基準値 (増分)が 2倍に増える前の二つのデータ和からなる 。具体的なデータの変化は図 18の通りである。二つの測定点 P1と Ρ2において、そ れぞれの和計算の処理を行なうことにより、データ分割テーブルから次々と新しい基 準値 (増分)を有するチャンネルのデータが形成され、新 、データ形態が構成され る。
[0059] 別の言 、方をすれば、読み込んだすべてのデータの並びを 0行目のデータ列とし、 そのうちの隣接する二つずつを足し算して、その並びを 1行目のデータ列とする。そ れ以降、同様の操作に繰り返して、 2行目のデータ列、 3行目のデータ列、 · · ·を作る 。この操作は、チャンネルの段数と同じ行数のデータ列を得るまで続ける。このように して得られたデータテーブルにおいて、各行のデータは、それぞれ、各段のチャンネ ルに対応している。例えば、 2行 0列目のデータは、 2段 0列目のチャンネルに対応し ている。
[0060] [ステップ S9]
重み係数再構成を行なう。つまり、基準値 (増分)が異なる各チャンネルの最初チヤ ンネルの重み係数を計算する。測定点 P1と測定点 P2の分割重み係数テーブルによ り、測定点ごとに和計算処理を行なう。重み係数テーブルの変化はステップ S8と同 様に、和計算処理の経過とともに、次々と新しい基準値 (増分)を有するチャンネルの 重み係数が形成され (図 19)、新しい重み係数形態が構成される。
[0061] 別の言!、方をすれば、すべての重み係数の並びを 0行目の重み係数列とし、そのう ちの隣接する二つずつを足し算して、その並びを 1行目の重み係数列とする。それ 以降、同様の操作に繰り返して、 2行目の重み係数列、 3行目の重み係数列、…を 作る。この操作は、チャンネルの段数と同じ行数の重み係数列を得るまで続ける。こ のようにして得られた重み係数テーブルにおいて、各行の重み係数は、それぞれ、 各段のチャンネルに対応して 、る。
[0062] [ステップ S 10]
測定点 P1の抽出データ I
P1に対して、データ間の積和計算を行なう。つまり、図 20 に示されるように、測定点 P1の同じ基準値 (増分)を有するチャンネル位置のデータ と 0列目データとの掛け算をし、その和を算出する。言い換えれば、各段のチャンネ ルに対応する測定点 P1のデータ列において、最初のデータとほかの各データとの積 の和を求める。次に、測定点 P2の抽出データ I に対して、データ間の積和計算を行
P2
なう。つまり、同様な処理を測定点 P2において行ない、測定点 P2の同じ基準値 (増 分)を有するチャンネル位置のデータと 0列目データとの掛け算をし、その和を算出 する。言い換えれば、各段のチャンネルに対応する測定点 P2のデータ列において、 最初のデータとほかの各データとの積の和を求める。
[0063] [ステップ S 11]
測定点 P1の抽出重み係数 W に対して、重み係数間の積和計算を行なう。つまり
P1
、測定点 P1の同じ基準値 (増分)を有するチャンネル位置の重み係数と 0列目重み 係数との掛け算をし、その和を算出する。言い換えれば、各段のチャンネルに対応す る測定点 P1の重み係数列において、最初の重み係数とほかの各重み係数との積の 和を求める。次に、測定点 P2の抽出重み係数 W に対して、重み係数間の積和計
P2
算を行なう。つまり、同様な処理を測定点 P2において行ない、測定点 P2の同じ基準 値 (増分)を有するチャンネル位置の重み係数と 0列目重み係数との掛け算をし、そ の和を算出する。言い換えれば、各段のチャンネルに対応する測定点 P2の重み係 数列において、最初の重み係数とほかの各重み係数との積の和を求める。
[0064] [ステップ S 12]
測定点 P1の抽出データ I と重み係数 W に対して、 0列目データと重み係数との
PI P1
積和計算を行なう。つまり、測定点 P1の同じ基準値 (増分)を有するチャンネル位置 の重み係数と 0列目データとの掛け算をし、その和を算出する。言い換えれば、各段 のチャンネルに対応する測定点 P1のデータ列と重み係数列にぉ 、て、データ列の 最初のデータと重み係数列の各重み係数との積の和を求める。次に、測定点 P2の 抽出データ I と重み係数 W に対して、データと重み係数との積和計算を行なう。つ
P2 P2
まり、同様な処理を測定点 P2において行ない、測定点 P2の同じ基準値 (増分)を有 するチャンネル位置の重み係数と 0列目データとの掛け算をし、その和を算出する。 言 、換えれば、各段のチャンネルに対応する測定点 P1のデータ列と重み係数列に お!、て、データ列の最初のデータと重み係数列の各重み係数との積の和を求める。
[0065] [ステップ S 13]
測定点 P1の抽出重み係数 W とデータ I に対して、 0列目重み係数とデータとの
PI P1
積和計算を行なう。つまり、測定点 P1の同じ基準値 (増分)を有するチャンネル位置 のデータと 0列目重み係数との掛け算をし、その和を算出する。言い換えれば、各段 のチャンネルに対応する測定点 P1のデータ列と重み係数列にぉ 、て、重み係数列 の最初の重み係数とデータ列の各データとの積の和を求める。次に、測定点 P2の抽 出重み係数 W とデータ I に対して、重み係数とデータとの積和計算を行なう。つま
P2 P2
り、同様な処理を測定点 P2において行ない、測定点 P2の同じ基準値 (増分)を有す るチャンネル位置のデータと 0列目重み係数との掛け算をし、その和を算出する。言 V、換えれば、各段のチャンネルに対応する測定点 P2のデータ列と重み係数列にお V、て、重み係数列の最初の重み係数とデータ列の各データとの積の和を求める。
[0066] [ステップ S 14]
測定点 P1と測定点 P2の抽出データ I と I に対して、二つの測定点 P1と P2のデ
PI P2
ータ間の積和計算を行なう。つまり、図 21に示されるように、同じ基準値 (増分)を有 する測定点 P2のチャンネル位置のデータと測定点 P1の 0列目データとの掛け算をし 、その和を算出する。言い換えれば、各段のチャンネルに対応する測定点 P1のデー タ列と測定点 P2のデータ列にぉ 、て、測定点 P1のデータ列の最初のデータと測定 点 P2のデータ列の各データとの積の和を求める。
[0067] [ステップ S 15]
測定点 P1と測定点 P2の抽出重み係数 W 、W に対して、二つの測定点 PIと P2
PI P2
の重み係数間の積和計算を行なう。つまり、同じ基準値 (増分)を有する測定点 P2の チャンネル位置の重み係数と測定点 P1の 0列目の重み係数との掛け算をし、その和 を算出する。言い換えれば、各段のチャンネルに対応する測定点 P1の重み係数列 と測定点 P2の重み係数列にぉ 、て、測定点 P1の重み係数列の最初の重み係数と 測定点 P2の重み係数列の各重み係数との積の和を求める。
[0068] [ステップ S 16]
測定点 P1の抽出データ I と測定点 P2の重み係数 W に対して、測定点 P1の 0列
PI P2
目データと測定点 P2の重み係数間の積和計算を行なう。つまり、同じ基準値 (増分) を有する測定点 P2のチャンネル位置の重み係数と測定点 P1の 0列目のデータとの 掛け算をし、その和を算出する。言い換えれば、各段のチャンネルに対応する測定 点 P1のデータ列と測定点 P2の重み係数列にぉ 、て、測定点 P1のデータ列の最初 のデータと測定点 P2の重み係数列の各重み係数との積の和を求める。
[0069] [ステップ S 17] 測定点 PIの抽出重み係数 W と測定点 P2の抽出データ I に対して、測定点 P1
PI P2
の 0列目重み係数と測定点 P2のデータとの積和計算を行なう。つまり、同じ基準値( 増分)を有する測定点 P2のチャンネル位置のデータと測定点 P1の 0列目の重み係 数との掛け算をし、その和を算出する。言い換えれば、各段のチャンネルに対応する 測定点 P2のデータ列と測定点 P1の重み係数列において、測定点 P2のデータ列の 最初のデータと測定点 P1の重み係数列の各重み係数との積の和を求める。
[0070] [ステップ S 18]
演算終了とイメージングの判断を行なう。 Yesの場合には総合相関計算に入り、 No の場合にはデータ取得ステップ S 1に戻る。
[0071] [ステップ S 19]
データの読み込みが終了した場合 (ステップ S21が Yesの場合)、上述した諸計算 結果に基づいて、二つの測定点 P1と P2のおのおのの自己相関関数の推定と二つ の測定点 P1と P2の間の点間相互相関関数の推定とを行なう。つまり、 P1→P2と P1 →P 1と P2→P2の各相関方向に対してそれぞれ異なる解析式を用 、て相関関数を 推定する。
[0072] 例えば、 P1→P1と P2→P2に対しては(S10 * S11) Z (S12 * S13)の計算式を 用い、?1→?2に対しては(314 * 315) 7 (316 * 317)の計算式を用ぃる。
[0073] これらの解析式はそれぞれ下記の(4)式〜(6)式のように表現できる。
[数 4]
Figure imgf000019_0001
[数 5]
Figure imgf000019_0002
[数 6]
Figure imgf000019_0003
[0074] (4)式〜(6)式の各式中、 mlF R Sum ( τ )はデータ間の積和計算を示し、 mlW
P P
V Sum ( τ )は重み係数の積和計算を示す。また、 mlF V Sum ( τ )は 0列目デ
Ρ Ρ Ρ Ρ
ータと重み係数の積和計算を示し、 mlW R Sum ( τ )は 0列目重み係数とデータ
Ρ Ρ
の積和計算を示す。ここで、添字の Ρは P1または Ρ2であり、計算対象のデータすな わち測定点 P1のデータまたは測定点 Ρ2のデータに対応している。また、 τ = τ v 0
+ τで、 τ は点間の距離による遅延時間 τ Ρと点間の測定開始時間差による遅延
0 0
時間 τ Μ力らなるもので、 τは通常相関演算時の遅延時間である。
0
[0075] (6)式は、下記の(7)式の相互相関解析式に基づいている。また(7)式の相互相関 解析式は、(8)式の汎用相互相関関数に対して重み付けを適用することにより導出 される。(8)式は、 Ν :Ν =Ν であれば(9)式と表現できる。
[数 7]
Figure imgf000020_0001
[数 8]
Figure imgf000020_0002
[数 9]
Figure imgf000020_0003
[0076] [ステップ S 20]
各最終計算結果に基づいて、点間相互相関関数のカーブ表示などの処理を行な
[0077] これまでの説明からわ力るように、本実施形態の光分析装置では、異なる二つの測 定点 P1と P2に対して相互相関関数の推定を行なっている。 P1→P2への解析結果 において、相関が高ければ、同一分子が測定点 P1から測定点 P2へ移動する確率 が高いと推定でき、逆に相関が低ければ測定点 P1を通った分子が測定点 P2を通る 確率が低ぐその他方向への分子移動が多いと推定できる。つまり、本実施形態の光 分析装置によれば、二つの測定点 PIと P2の間における分子の移動を観察できる。 また、複数セットの二つの測定点間の相関性を検討することで、分子移動のベクトル を推定することが可能である。
[0078] また、計算結果のプロットは 1個の読み込みデータを単位とするため、今までの汎 用方式のような大量データの計算完了を待つ必要がなぐ随時データの読み込み、 計算を中止させ、リアルタイムに描画することが可能である。また、各計測データを元 に計算した結果を理論式にフィッティングすることにより、分子の並進拡散時間、分子 数などのパラメータの値を求めることができる。
[0079] さらに、単一の光照射部により光ビームを間欠的に走査して複数の測定点に励起 光を照射し、複数の測定点力 発生する蛍光を単一の光検出部 Dにより検出してい る。つまり、複数の測定点に対して同一光学系を用いている。このため、測定領域、 照射強度、信号伝送システムなどの不一致による誤差がない。また、二つの異なる測 定点のデータは同一測定信号力も由来するため、測定開始時間誤差がゼロである。 さらに、必要なハードウェアが 1セットで済むため、高性能で低コストの光信号解析装 置が提供される。
[0080] カロえて、相関関数の計算には、平均した数少ないデータと重み係数だけを用いる ため、計算に要する時間が短い。
[0081] これまで、図面を参照しながら本発明の実施形態を述べた力 本発明は、これらの 実施形態に限定されるものではなぐその要旨を逸脱しない範囲において様々な変 形や変更が施されてもよい。
[0082] 例えば、上述した実施形態による光信号解析装置は蛍光を検出しているが、検出 対象光は蛍光に限定されるものではなぐほかの光、例えば燐光や反射光や散乱光 やィ匕学発光や生物発光などであってもよ 、。
[0083] また、上述した実施形態では、相関関数解析法を採用している力 これに代えて、 フォトカウンティングヒストグラム法やコインシデンス解析法を適用しもよい。
[0084] 第二実施形態では、光検出部 Dは単一の光検出器 28によって試料内の測定点 P1
, P2, · · · , Pnから発せられる光を時分割に検出している力 試料内の測定点 PI, P
2, · · · , Pnから発せられる光をそれぞれ受光する複数の光検出器を有していてもよ い。
産業上の利用可能性
本発明によれば、二点間における分子の移動を観察し得る光信号解析装置および 光信号解析方法が提供される。

Claims

請求の範囲
[I] 試料内の複数の測定点から発せられる光を検出する光検出手段と、
前記光検出手段により検出された前記複数の測定点力 の光の揺らぎにそれぞれ 対応する複数の揺らぎ信号を利用して前記複数の測定点の二つの間における分子 相互作用を解析する解析手段とを具備することを特徴とする光信号解析装置。
[2] 前記光検出手段により検出される光は、蛍光 ·燐光 ·反射光 ·散乱光,化学発光,生 物発光の 、ずれかであることを特徴とする請求項 1に記載の光信号解析装置。
[3] 励起光を前記複数の測定点に照射する励起光照射手段をさらに有することを特徴 とする請求項 1に記載の光信号解析装置。
[4] 前記励起光照射手段は、前記複数の測定点にそれぞれ励起光を連続的に照射す る複数の光照射部を有することを特徴とする請求項 3に記載の光信号解析装置。
[5] 前記光検出手段は、前記複数の測定点から発せられる光をそれぞれ受光する複 数の光検出部を有することを特徴とする請求項 1〜請求項 3のいずれかひとつに記 載の光信号解析装置。
[6] 前記解析手段は、前記二つの測定点における前記二つの揺らぎ信号に基づいて 相互相関関数を推定することを特徴とする請求項 5に記載の光信号解析装置。
[7] 前記励起光照射手段は、単一の光照射部で構成されることを特徴とする請求項 1
〜請求項 3の ヽずれかひとつに記載の光信号解析装置。
[8] 前記光照射部は、前記複数の測定点に励起光を時分割に照射することを特徴とす る請求項 7に記載の光信号解析装置。
[9] 前記光検出手段は、単一の光検出部で構成されることを特徴とする請求項 1〜請 求項 3の 、ずれかひとつに記載の光信号解析装置。
[10] 前記光検出部は、前記複数の測定点力 の光を時分割に検出することを特徴とす る請求項 9に記載の光信号解析装置。
[II] 前記解析手段は、前記光検出手段により検出された前記揺らぎ信号に基づいて、 前記複数の測定点からの光にそれぞれ対応する複数の擬似信号または擬似データ を生成することを特徴とする請求項 7〜請求項 10のいずれかひとつに記載の光信号 解析装置。
[12] 前記解析手段は、前記時分割の検出によって信号またはデータが欠落する期間、 前記擬似信号または擬似データを、所定値の信号またはデータによって補間するこ とを特徴とする請求項 11に記載の光信号解析装置。
[13] 前記解析手段は、前記複数の擬似信号または擬似データの二つの間の相互相関 関数を推定することを特徴とする請求項 11に記載の光信号解析装置。
[14] 前記解析手段は、前記相互相関関数を推定するにあたり、前記時分割の検出によ つて信号またはデータが欠落する期間の解析結果に対する影響を防止する影響防 止手段をさらに有することを特徴とする請求項 13に記載の光信号解析装置。
[15] 前記影響防止手段は、前記時分割の検出によって信号またはデータが欠落する期 間と、それ以外の期間との間で異なる重み付けを行うことを特徴とする請求項 14に記 載の光信号解析装置。
[16] 試料内の複数の測定点力 発せられる光を検出する光検出工程と、
前記複数の測定点力 の光の揺らぎにそれぞれ対応する複数の揺らぎ信号を利用 して前記複数の測定点の二つの間における分子相互作用を解析する解析工程とを 有することを特徴とする光信号解析方法。
[17] 前記光検出工程において検出される光は、蛍光 ·燐光 ·反射光 ·散乱光 '化学発光
•生物発光のいずれかであることを特徴とする請求項 16に記載の光信号解析方法。
[18] 前記複数の測定点に励起光を照射する励起光照射工程をさらに有することを特徴 とする請求項 16に記載の光信号解析方法。
[19] 前記励起光照射工程において、前記複数の測定点に励起光を連続的に照射する ことを特徴とする請求項 18に記載の光信号解析方法。
[20] 前記光検出工程において、前記複数の測定点から発せられる光をそれぞれ複数 の光検出部で検出することを特徴とする請求項 16〜請求項 18のいずれかひとつに 記載の光信号解析方法。
[21] 前記解析工程は、前記二つの測定点に対応する二つの揺らぎ信号に基づいて相 互相関関数を推定することを特徴とする請求項 20に記載の光信号解析方法。
[22] 前記励起光照射工程において、前記複数の測定点に励起光を時分割に照射する ことを特徴とする請求項 18に記載の光信号解析方法。
[23] 前記光検出工程において、前記複数の測定点力 の光を時分割に検出することを 特徴とする請求項 18に記載の光信号解析方法。
[24] 前記解析工程にお!、て、前記複数の揺らぎ信号に基づ 、て、前記複数の測定点 からの光にそれぞれ対応する複数の擬似信号または擬似データを生成することを特 徴とする請求項 22または請求項 23に記載の光信号解析方法。
[25] 前記解析工程において、前記時分割の検出によって信号またはデータが欠落する 期間、前記擬似信号または擬似データを、所定値の信号またはデータによって補間 することを特徴とする請求項 24に記載の光信号解析方法。
[26] 前記解析工程において、前記複数の擬似信号または擬似データの二つの間の相 互相関関数を推定することを特徴とする請求項 24に記載の光信号解析方法。
[27] 前記解析工程は、前記相互相関関数を推定するにあたり、前記時分割検出によつ て信号またはデータが欠落する期間の解析結果に対する影響を防止する影響防止 工程をさらに有することを特徴とする請求項 26に記載の光信号解析方法。
[28] 影響防止工程は、前記時分割の検出によって信号またはデータが欠落する期間と
、それ以外の期間との間で異なる重み付けを行うことを特徴とする請求項 27に記載 の光信号解析方法。
PCT/JP2006/319133 2005-09-27 2006-09-27 光信号解析装置および光信号解析方法 WO2007037253A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007537634A JP4740952B2 (ja) 2005-09-27 2006-09-27 光信号解析装置および光信号解析方法
EP06810624A EP1939607A1 (en) 2005-09-27 2006-09-27 Optical signal analyzing apparatus and optical signal analyzing method
US12/055,763 US8130383B2 (en) 2005-09-27 2008-03-26 Optical signal analysis apparatus and optical signal analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-279987 2005-09-27
JP2005279987 2005-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/055,763 Continuation US8130383B2 (en) 2005-09-27 2008-03-26 Optical signal analysis apparatus and optical signal analysis method

Publications (1)

Publication Number Publication Date
WO2007037253A1 true WO2007037253A1 (ja) 2007-04-05

Family

ID=37899677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319133 WO2007037253A1 (ja) 2005-09-27 2006-09-27 光信号解析装置および光信号解析方法

Country Status (4)

Country Link
US (1) US8130383B2 (ja)
EP (1) EP1939607A1 (ja)
JP (1) JP4740952B2 (ja)
WO (1) WO2007037253A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190730A (ja) * 2009-02-18 2010-09-02 Olympus Corp 相関分光分析方法及び相関分光分析装置
JP2011017677A (ja) * 2009-07-10 2011-01-27 Olympus Corp 画像解析方法および画像解析装置
WO2011162113A1 (ja) * 2010-06-22 2011-12-29 株式会社日立ハイテクノロジーズ 自動分析装置
JP2012008055A (ja) * 2010-06-25 2012-01-12 Olympus Corp 画像解析方法および画像解析装置
WO2013073244A1 (ja) * 2011-11-16 2013-05-23 ソニー株式会社 生体計測装置、生体計測方法、プログラムおよび記録媒体
US9330338B2 (en) 2010-10-29 2016-05-03 Olympus Corporation Image analysis method and image analysis device
US9378434B2 (en) 2010-10-29 2016-06-28 Olympus Corporation Image analysis method and image analysis device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5508808B2 (ja) * 2009-10-15 2014-06-04 オリンパス株式会社 画像解析方法および画像解析装置
JP5216051B2 (ja) * 2010-06-23 2013-06-19 株式会社日立ハイテクノロジーズ 自動分析装置および自動分析方法
JP6134210B2 (ja) * 2013-06-19 2017-05-24 株式会社日立ハイテクノロジーズ 自動分析装置及び自動分析方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004187581A (ja) * 2002-12-11 2004-07-08 Olympus Corp 標的核酸の多型決定方法
JP2004361087A (ja) * 2003-05-30 2004-12-24 Olympus Corp 生体分子解析装置
JP2005017282A (ja) * 2003-05-30 2005-01-20 Olympus Corp 受光ユニットおよびそれを含む測定装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ270599A0 (en) * 1999-09-08 1999-09-30 Varian Australia Pty Ltd Spectrophotometer apparatus and phosphorescence measurement
AU2003244122A1 (en) * 2002-06-21 2004-01-06 Olympus Corporation Biomolecule analyzer
JP3984132B2 (ja) * 2002-09-17 2007-10-03 オリンパス株式会社 蛍光分光分析装置
JP3999701B2 (ja) * 2003-05-30 2007-10-31 オリンパス株式会社 分光分析装置
EP1582858A1 (de) * 2004-03-29 2005-10-05 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zur Anregung der Moleküle von einem ersten Zustand in einen zweiten Zustand mit einem optischen Signal
JP4615941B2 (ja) * 2004-09-10 2011-01-19 オリンパス株式会社 光信号解析方法
WO2006049180A1 (ja) * 2004-11-01 2006-05-11 Olympus Corporation 発光測定装置及び発光測定方法
DE102005027896B4 (de) * 2005-06-16 2012-03-15 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zum optischen Messen einer Probe
JP4830087B2 (ja) * 2005-09-27 2011-12-07 国立大学法人北海道大学 光信号解析装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004187581A (ja) * 2002-12-11 2004-07-08 Olympus Corp 標的核酸の多型決定方法
JP2004361087A (ja) * 2003-05-30 2004-12-24 Olympus Corp 生体分子解析装置
JP2005017282A (ja) * 2003-05-30 2005-01-20 Olympus Corp 受光ユニットおよびそれを含む測定装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190730A (ja) * 2009-02-18 2010-09-02 Olympus Corp 相関分光分析方法及び相関分光分析装置
JP2011017677A (ja) * 2009-07-10 2011-01-27 Olympus Corp 画像解析方法および画像解析装置
WO2011162113A1 (ja) * 2010-06-22 2011-12-29 株式会社日立ハイテクノロジーズ 自動分析装置
JP2012007896A (ja) * 2010-06-22 2012-01-12 Hitachi High-Technologies Corp 自動分析装置
JP2012008055A (ja) * 2010-06-25 2012-01-12 Olympus Corp 画像解析方法および画像解析装置
US8908993B2 (en) 2010-06-25 2014-12-09 Olympus Corporation Image analysis method and image analysis apparatus
US9383570B2 (en) 2010-06-25 2016-07-05 Olympus Corporation Image analysis method and image analysis apparatus
US9330338B2 (en) 2010-10-29 2016-05-03 Olympus Corporation Image analysis method and image analysis device
US9378434B2 (en) 2010-10-29 2016-06-28 Olympus Corporation Image analysis method and image analysis device
WO2013073244A1 (ja) * 2011-11-16 2013-05-23 ソニー株式会社 生体計測装置、生体計測方法、プログラムおよび記録媒体
JP2013104850A (ja) * 2011-11-16 2013-05-30 Sony Corp 生体計測装置、生体計測方法、プログラムおよび記録媒体
US10052024B2 (en) 2011-11-16 2018-08-21 Sony Corporation Biometric device, biometric method, program, and recording medium

Also Published As

Publication number Publication date
EP1939607A1 (en) 2008-07-02
US8130383B2 (en) 2012-03-06
JP4740952B2 (ja) 2011-08-03
JPWO2007037253A1 (ja) 2009-04-09
US20080306713A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
WO2007037253A1 (ja) 光信号解析装置および光信号解析方法
JP5265408B2 (ja) 相関分光分析方法及び相関分光分析装置
JP5139885B2 (ja) 蛍光解析装置及び解析方法
JP2002071567A (ja) 高速高スループット分光計および方法
WO2003050518A2 (en) System and method for time correlated multi-photon counting measurements
Iskhakov et al. Intensity correlations of thermal light: Noise reduction measurements and new ghost imaging protocols
Wiseman Image correlation spectroscopy: principles and applications
JP4830087B2 (ja) 光信号解析装置
US10845311B2 (en) Fluorescence lifetime measurement apparatus and method capable of finding two or more fluorescence lifetime components by computing least square error through virtual fluorescence distribution model from signal collected in analog mean delay method
CN110987898A (zh) 一种空间外差偏移拉曼光谱检测装置及其检测方法
JP3984132B2 (ja) 蛍光分光分析装置
JP4615941B2 (ja) 光信号解析方法
US11280736B2 (en) Fluorescence lifetime measurement device for analyzing multi-exponential decay function type experimental data at high speed and measurement method therefor
Barlow et al. Fortnightly fluctuations in the O− C diagram of CS 1246
Schrangl et al. Kinetic analysis of single molecule FRET transitions without trajectories
US20120175505A1 (en) Method and Device for Scanning-Microscopy Imaging of a Specimen
JP2014038043A (ja) 分光測定方法
KR101185786B1 (ko) 단층촬영용 x선 현미경 시스템
JP2007218794A (ja) 分光装置
Rigler et al. High order autocorrelation in fluorescence correlation spectroscopy
Skakun et al. Initial guesses generation for fluorescence intensity distribution analysis
Berger Testing of micro-fluidic systems for Raman spectroscopic measurements on biological cells
CN116089781A (zh) 一种三元波动相关光谱产生方法及装置
JP4715996B2 (ja) 分光分析装置および分光分析方法
JP2011179912A (ja) 試料評価方法および試料評価装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007537634

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006810624

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE