WO2007034953A1 - アシフルオルフェンに対する耐性を付与する活性を有するプロトポルフィリノーゲンオキシダーゼ及びその遺伝子 - Google Patents

アシフルオルフェンに対する耐性を付与する活性を有するプロトポルフィリノーゲンオキシダーゼ及びその遺伝子 Download PDF

Info

Publication number
WO2007034953A1
WO2007034953A1 PCT/JP2006/319001 JP2006319001W WO2007034953A1 WO 2007034953 A1 WO2007034953 A1 WO 2007034953A1 JP 2006319001 W JP2006319001 W JP 2006319001W WO 2007034953 A1 WO2007034953 A1 WO 2007034953A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
protein
protoporphyrinogenoxidase
activity
transformant
Prior art date
Application number
PCT/JP2006/319001
Other languages
English (en)
French (fr)
Inventor
Ayumi Tanaka
Ryouichi Tanaka
Kazushige Kato
Takako Fukagawa
Original Assignee
Nippon Soda Co., Ltd.
Hokkaido University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co., Ltd., Hokkaido University filed Critical Nippon Soda Co., Ltd.
Priority to US12/088,141 priority Critical patent/US8129589B2/en
Priority to CN2006800355661A priority patent/CN101278049B/zh
Priority to EP06810526A priority patent/EP1930434B1/en
Priority to BRPI0616416-1A priority patent/BRPI0616416A2/pt
Priority to JP2007536588A priority patent/JPWO2007034953A1/ja
Publication of WO2007034953A1 publication Critical patent/WO2007034953A1/ja
Priority to US13/358,564 priority patent/US8580940B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/58Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes

Definitions

  • Protoporphyrininogenidase having activity to confer resistance to acylfluorene and its gene
  • the present invention relates to a protoporphyrinogen oxidase having an activity of imparting metamorphosis to ACIFLUORFEN, particularly a cyanobacterial protoporphyrinogen oxidase, its gene, and a trait incorporating the gene.
  • a protoporphyrinogen oxidase having an activity of imparting metamorphosis to ACIFLUORFEN, particularly a cyanobacterial protoporphyrinogen oxidase, its gene, and a trait incorporating the gene.
  • Protoporphyrinogenoxidase is an enzyme that catalyzes the final reaction of heme and chlorophyll synthesis, that is, the synthesis of protoporphyrin IX by taking six electrons from protoporphyrinogen IX. .
  • Heme as a cofactor for hemoproteins such as hemoglobin and cytochrome, is an indispensable molecule for defense against respiration, energy metabolism, and oxygen stress.
  • the heme synthesis pathway is common to microorganisms, plants, and animals, and is a pathway for synthesizing heme using ⁇ -end minolevulinic acid as a precursor.
  • protoporphyrinogenoxidase In plants, heme and chlorophyll are synthesized by ⁇ -aminolevulinic acid as a precursor to protoporphyrin IX, and protoporphyrinogenoxidase also plays a regulatory role in these two synthetic pathways. It is thought that it bears.
  • This protoporphyrinogenoxidase enzyme which is responsible for the chlorophyll metabolic system in terrestrial plants, is a target enzyme for diphenyl ether (hereinafter sometimes abbreviated as DPE) herbicides.
  • protoporphyrinogenoxidase When the activity of protoporphyrinogenoxidase is inhibited by a DPE herbicide, the enzyme substrate, protobolph linogenogen IX, accumulates in the chloroplast, and finally protoporphyrinogen IX leaks into the cytosol where it is oxidized by peroxidase to yield protoporphyrin IX.
  • Protoporphyrin IX Force When exposed to light and oxygen, protoporphyrin IX can generate singlet oxygen and yet another reactive oxygen species. Plant cells die rapidly as a result of lipid peroxidation and the membrane damage that this entails (Lee et a 1., 1993, Plant Physiol, 102, 881). On the other hand, cyanobacteria grow even in the presence of DPE herbicides. It was known that it was possible, but its factors and mechanisms were completely unknown.
  • the protoporphyrinogenoxidase gene has already been isolated in several organisms.
  • tobacco PPX1 gene (Genbank accession Y13465), PPX2 gene (Genbank accession Y13466), Arabidopsis PPOX gene (Genbank accession D8 3139), Bacillus subtilis HemY gene (Genbank accession M97208), mouse PPX gene (Genbank accession D45185), PPX gene of human (Genbank accession D3 8537), PPX gene of Saccharomyces cerevisiae (Genbank accession Z71381), hemG gene of Escherichia coli (Genbank accession X68660), etc. are known.
  • Patent Document 1 discloses that protoporphyrinogenoxidase derived from Bacillus subtilis that imparts resistance to DPE herbicides is expressed in plants. Disclosed are methods and transgenic plants expressing the protoporphyrinogenidase.
  • Patent Document 2 is a gene having a length of 1.7 kbp that can be obtained from an Arabidopsis thaliana plant as a gene for an enzyme protein of a porphyrin biosynthesis system suitable for plant breeding, and has a 5 ′ end. To 1.
  • Patent Document 3 discloses a simple method for evaluating the ability to inhibit protoporphyrinogenoxidase activity derived from rat or corn worm (1) lack of growth ability based on protoporphyrinogenoxidase activity.
  • a host cell is introduced with a promoter capable of functioning in the host cell and a DNA fragment in which the protoporphyrinogenoxidase gene is operably linked, and the protoporphyrin present in the DNA fragment is introduced.
  • a transformant expressing the nogenoxidase gene is cultured in a medium substantially free of a compound that complements the deficiency in growth ability based on the protoporphyrinogenase activity in the presence or absence of the test compound. Feeding and measuring the degree of growth of the transformant under each condition, (2) based on the difference in the degree of growth Determining the growth inhibition degree of the transformant by contact with a test compound, and determining the ability of the test compound to inhibit protoporphyrinogenoxidase activity. A method characterized by this is disclosed.
  • Patent Document 1 Japanese Patent Application No. 9-107833
  • Patent Document 2 JP-A-9-140381
  • Patent Document 3 Japanese Patent Application No. 11-346787
  • Non-patent document 1 Dmitrii V. Vavilin, Wim (Wim FJ Vermaas) “Regulation of t he tetrapyrrole biosynthetic pathway leading to heme and chlorophyll in plants and cyanobacteria (Tetra leading to heme and chlorophyll in plants and cyanobacteria) Regulation of pyrrole biosynthetic pathway) ”Physiologia Plantarum 115, 9th, 2002
  • An object of the present invention is to provide a protoporphyrinogen oxidase having an activity conferring acylfluorene resistance, a gene thereof, a transformant incorporating the gene, and the like.
  • the present inventors tried complementary screening using protoporphyrinogenidase-deficient Escherichia coli for the purpose of isolating protoporphyrinogenoxidase derived from cyanobacteria.
  • This method searches for a complementary gene by introducing a cyanobacterial genome fragment into Escherichia coli lacking protoporphyrinogenoxidase, This is a method for identifying genes involved in acid IX of Gen IX. Different vectors were used.
  • the protoporphyrinogenoxidase gene from Arabidopsis thaliana tobacco was isolated using the same method. The outline of the complementary screening is shown below.
  • cyanobacteria Synecocystis PCC6803 force DNA was obtained.
  • a ⁇ ST vector manufactured by STRATEGENE
  • the genome sequence of the cyanobacteria was examined for the six restriction enzyme sequences contained in the vector cloning site.
  • Xbal, Spel, and EcoRI were considered suitable for library construction. Therefore, a phage library was prepared based on these three types of restriction enzyme treatment.
  • the prepared library was introduced into Escherichia coli deficient in protoporphyrinogenidase and the protoporphyrinogenoxidase activity of the transformant was examined. It ’s nasty. This result suggests that the cyanobacterial protoporphyrinogenoxidase had unfortunately had these three restriction enzyme sequences, and that the cyanobacterial promoter could work well. It was.
  • Tsp5091 is a 4-base recognition restriction enzyme.
  • the three restriction enzymes (EcoRI, Spel, and Xbal) used in the previous library construction recognize 6 bases, and fragments that are too large are inevitably generated.
  • the full-length protoporphyrinogen oxidase gene cannot be cloned if the recognition sequences for these restriction enzymes are present in the gene sequence of the cyanobacterium protoporphyrinogenoxidase.
  • the present inventors have intensively studied to solve the above problems, and as a result, the cyanobacteria mutant using transposon is based on the knowledge that cyanobacteria has resistance to acifluorfen.
  • screening we first isolated a vorifirinogen oxidase from the cyanobacteria (Synecocystis PCC6 803) and confirmed that the borfurinogen oxidase has activity to confer aciflufen resistance.
  • the present invention was completed by identifying and identifying the gene.
  • the gene screening method using the above-mentioned transposon can find proteins derived from other species homologous to known proteins, such as cyanobacterial Borfylinogen oxidase, in gene databases of other species.
  • the inventor has obtained knowledge that it is effective as a method for isolating genes in cases where it cannot, and has completed the present invention.
  • the present invention provides (1) protoporphyrinogenoxidase, which has an activity of imparting resistance to acylfluorene to an organism and is derived from cyanobacteria, and (2) orchid Algae power A cyanobacteria belonging to the genus Synecocystis, characterized in that the protoporphyrinogenoxidase described in (1) above, or (3) the organism is a plant described in (1) or above (2) relates to the described protoporphyrinogenoxidase
  • the present invention also provides (4) a protein shown in any one of (a) to (c) below, (a) a protein consisting of the amino acid sequence shown in SEQ ID NO: 2, and (b) shown in SEQ ID NO: 2.
  • Protopol characterized by having an amino acid sequence ability in which one or several amino acids are deleted, substituted or added in the amino acid sequence, and having an activity to confer resistance to acifluorfen to an organism.
  • a protein having phyllogenogenidase activity (c) having a homology to the amino acid sequence shown in SEQ ID NO: 2 of 20% or more, and having an activity of imparting resistance to acifluorfen to an organism.
  • a protein derived from cyanobacteria which relates to the protein according to (4) above.
  • the present invention also provides (6) the protoporphyrinogenoxy according to any one of (1) to (3) above. Or a protoporphyrino gene oxidase gene DNA encoding the protein described in (4) or (5) above, or (7) the protoporphyrino gene oxidase gene shown in (d) or (e) below DNA, (d) Protoporphyrinogenoxidase gene DNA having the nucleotide sequence shown in SEQ ID NO: 1, (e) One or several bases deleted, substituted or added in the nucleotide sequence shown in SEQ ID NO: 1 A protoporphyrinogenoxidase gene encoding a protein having protoporphyrinogenoxidase activity, characterized in that it has an activity to confer resistance to acifluorfen on an organism.
  • Protoporphyrinogenidase gene DNA encoding a protein having protoporphyrinogenoxidase activity, characterized in that it has the activity of redisducing and conferring resistance to acifluorfen to an organism, (9 A protein having protoporphyrinogen oxidase activity is derived from cyanobacteria (7) or (8). .
  • the present invention also relates to (10) a recombinant vector into which the protoporphyrinogen oxidase gene DNA described in any of (6) to (9) above is incorporated.
  • the present invention provides (11) a transformant in which the recombinant vector described in (10) above is introduced, and (12) the transformant has resistance to acifluolfen.
  • the transformant according to (11) above characterized by having (13) the transformant according to (11) or (12) above, wherein the transformant is a microorganism, (14 The transformant according to (11) or (12) above, wherein the transformant is a plant, or (15) the transformant according to (14) above, wherein the photosynthetic ability is improved About.
  • the present invention also provides (16) a method for evaluating the ability to inhibit the activity of protovorphinogenogenase using the transformant according to any one of (11) to (15) above, (17) The present invention relates to a method for screening a protoporphyrinogenoxidase inhibitor using the transformant according to any one of (11) to (16).
  • the present invention provides (18) a cyanobacterial protoporphyrinogen comprising the following steps (f) to (j): (F) a step of introducing a Arabidopsis thaliana protoporphyrinogen oxidase gene into a cyanobacterium; (g) a step of destroying a cyanobacterium gene using a transposon; (h) a protoporphyrin Selecting a strain in which the nogenoxidase gene is disrupted; (i) identifying the disrupted protoporphyrinogenoxidase gene; (j) isolating the disrupted protoporphyrinogenoxidase gene.
  • steps (f) to (j) comprising the following steps (f) to (j): (F) a step of introducing a Arabidopsis thaliana protoporphyrinogen oxidase gene into a cyanobacterium; (g) a step of destroying a cyanobacterium
  • the present invention also relates to (19) a method of using the protein described in (4) or (5) above as protoporphyrinogenoxidase, or (20) the protein described in (4) or (5) above. Is converted to protoporphyrin IX by artificial contact with protovorphinogen IX, or (21) a protoporphyrinogenoxidase of the DNA according to any one of (6) to (9) above (22) Artificial expression of any of the DNAs described in (6) to (9) above, and contacting the expression product with protoporphyrinogen IX to produce protobolphyrin IX It relates to the method of conversion.
  • the present invention further includes (23) a method for isolating a gene encoding a protein having a predetermined function in a specific organism, comprising the following steps 1) to 5): 1) A process for producing a transformant by introducing a gene encoding a protein complementary to a predetermined function from an organism into a specific organism; 2) The transformant gene is randomly destroyed by mutation treatment etc.
  • Step of producing a mutant strain 3) having a predetermined function by using a drug that acts on a protein that complements a predetermined function and does not act on a protein having the predetermined function, or by changing the culture conditions
  • a step of selecting a mutant strain in which a gene encoding a protein is disrupted 4) a step of identifying a gene encoding a protein having a disrupted predetermined function; 5) a tongue having a disrupted predetermined function Isolating a gene which codes a click quality relates.
  • the present invention also provides (24) the method for isolating a gene according to (23) above, wherein the mutation treatment is a mutation treatment using a transposon;
  • a protein having a predetermined function acting on a protein complementary to the predetermined function The method for isolating a gene according to (25) above, wherein the drug is acifluorphene, and (27) a protein having a predetermined function in a specific organism is a cyanobacteria. It is related with the isolation method of the gene of the said (25) or (26) description characterized by being protoporphyrinogen oxidase of this.
  • FIG. 1 Alignment of the amino acid sequence shown in SEQ ID NO: 2 with the amino acid sequence encoded by a gene of unknown function derived from cyanobacteria.
  • FIG. 2 Alignment between the amino acid sequence shown in SEQ ID NO: 2 and the amino acid sequence encoded by a gene of unknown function derived from another organism.
  • FIG. 3 A diagram showing a slrl790 gene disruption construct (pslrl790SKM 6.4 kb) of a cine system.
  • FIG. 4 is a diagram showing a chromatogram of protopolyphyllin IX concerning a sample of protoporphyrin IX (A), an extract of a gene disruption strain of slrl790 (C), and an extract of a wild strain (B).
  • FIG. 5 is a diagram showing an outline of pBI121.
  • FIG. 6 is a diagram showing an outline of pBIslrl790.
  • the protoporphyrinogen oxidase of the present invention has an activity of imparting to organisms resistance to acylfluorene.
  • protoporphyrinogen oxidase having an activity to confer resistance to acifluorfen on a living organism means that the protoporphyrinogen oxidase is introduced into an appropriate organism and the enzyme is introduced into the organism. It means a protoporphyrinogenoxidase that, when appropriately expressed in an organism, improves the resistance of that organism to acifluorfen.
  • the LC50 value of the organism for 48 hours after introduction of the enzyme is greater than that before introduction of the enzyme. You can check by checking to see if it has improved.
  • the organism is a plant, for example, when a specific amount of acylfluorene is applied to the cultivated soil of the plant, the enzyme is expressed as compared with the plant before appropriately expressing the enzyme in the plant. Enzyme Acifluorine is necessary to confirm that the degree of yellowing, browning or withering of plants that have been appropriately expressed in the plant is reduced, or to produce the same degree of yellowing, browning or withering.
  • the application rate per unit area of the plant is confirmed to increase in the plant in which the enzyme is appropriately expressed in the plant, compared with the plant before the enzyme is appropriately expressed in the plant. It is possible to investigate whether the tolerance to acifluolfen has improved.
  • the degree of improvement in resistance to acifluolfen is not particularly limited, but the LC50 value of acifluorfen for the organism after 48 hours, or the same degree of yellowing, browning or wilt. It is preferable that the application rate per unit area of aciflulfene required for the treatment is improved by 1.1 times or more compared with that before introducing the enzyme into the organism. It is more preferable to improve more than 2 times. It is most preferable to improve more than 3 times.
  • the "protoporphyrinogenoxidase having the activity of conferring resistance to acifluorfen” on the organism of the present invention is such that the protoporphyrinogenase itself is resistant to acifluorfen.
  • protobolph linogenogenidase itself has resistance to acylfluorene means the ratio of protoporphyrinogenoxidase in a suitable solvent containing 1 ⁇ of acifluorfen. Vigorous activity means that it is 1/50 or more, preferably 1/20 or more, more preferably 1/10 or more of the specific activity of protophorinogenogenase in the absence of acylfluorene.
  • protoporphyrinogen oxidase activity refers to the enzyme activity that oxidizes protoporphyrinogen IX to produce protoporphyrin IX.
  • the specific activity of protoporphyrinogenoxidase of a protein can be easily confirmed by contacting the protein with protoporphyrinogen IX in an appropriate buffer or salt solution and examining the amount of protoporphyrin IX produced. can do.
  • the “organism” in “having the activity of imparting resistance to acifluorfen” to the organism is not particularly limited and may be a plant or a microorganism, but is preferably a plant. Among them, Arabidopsis thaliana, tobacco, corn, rice, wheat (such as wheat and barley), and potato (such as potato) are preferable.
  • the protoporphyrinogenoxidase of the present invention is resistant to acifluorfen. As long as it has the activity of imparting sex to organisms, it may not be derived from cyanobacteria, but may be derived from cyanobacteria.
  • the cyanobacteria are not particularly limited, and examples thereof include cyanobacteria belonging to the genus Synecocystis, Anabena, Groebacter, Prochlorococcus, Synecococcus, Rhodopseudomonas, etc., and more specifically, Synechocystis PCC6803, Examples include Cannabena PCC7120, Glopactor violaceus PCC7421, Prochlorococcus marinas SS 120, Prochlorococcus marinas MIT9313, Prochlorococcus marinas MED ED4, Synecococcus WH8102, Rhodosciudomonas pulse tris, and the like. Of these, Synechocystis PCC6803, which is preferred to cyanobacteria belonging to the genus Synecocystis, is more preferred.
  • protoporphyrinogenoxidase derived from cyanobacteria is the same as the protoporphyrinogenoxidase actually present in cyanobacteria, and is identical to that of protoporphyrinogenoxidase. As long as it is used, it is meant to include protoporphyrinogenoxidase expressed by microorganisms other than cyanobacteria using techniques such as transformation.
  • the protein of the present invention includes (1) a protein comprising the amino acid sequence represented by SEQ ID NO: 2, (2) an amino acid sequence represented by SEQ ID NO: 2, amino acid numbers 1 to 34 and 48 to 176 of SEQ ID NO: 2. 1 or several amino acids are deleted, substituted or substituted in any amino acid sequence of the amino acid sequence described and the amino acid sequence of amino acid numbers 1 to 34 and 48 to 193 of SEQ ID NO: 2.
  • amino acid sequence of SEQ ID NO: 2 The amino acid sequence of SEQ ID NO: 2, the amino acid sequence of amino acid numbers 1-34 and 48-176, and the amino acid sequence of SEQ ID NO: 2 of amino acid numbers 1-34 and 48-193, amino A protein having a homology to a sequence of 20% or more, an activity that imparts resistance to acifluorfen to an organism, and a protoporphyrinogenidase activity .
  • these proteins of the present invention may be collectively referred to as “the present protein”.
  • the protein (2) of the present invention comprises the amino acid sequence represented by SEQ ID NO: 2, The amino acid sequence described in amino acid numbers 1 to 34 and 48 to 176, and the amino acid sequence described in amino acid numbers 1 to 34 and 48 to 193 of SEQ ID NO: 2! /, which contains an amino acid sequence in which one or several amino acids have been deleted, substituted or added, and has an activity to confer resistance to acifluorfen to an organism, and is also a protoporphyrininogen oxidase It is not particularly limited as long as it is a protein having activity, but in the amino acid sequence shown in SEQ ID NO: 2, one or several amino acids have been deleted, substituted, or added, and it has an amino acid sequence ability.
  • a protein having an activity to confer resistance to an organism and having a protoporphyrinogenoxidase activity, or the amino acid sequence of amino acid numbers 1 to 34 and 48 to 176 of SEQ ID NO: 2 An amino acid sequence comprising one or several amino acids deleted, substituted or added, and corresponding to the amino acid sequence of amino acid numbers 1 to 34
  • the amino acid sequence of amino acid numbers 1-34 and 48-193 of SEQ ID NO: 2 An amino acid sequence corresponding to the amino acid sequence of amino acid numbers 1 to 34 and an amino acid sequence of amino acid numbers 48 to 193, including an amino acid sequence in which one or several amino acids are deleted, substituted or added
  • amino acid sequence in which one or several amino acids are deleted, substituted or added is, for example, 1 to 20, preferably 1 to 15, more preferably 1 to: LO, further preferably 1 to It means an amino acid sequence in which any number of amino acids, most preferably 1 to 3, is deleted, substituted or added.
  • protoporphyrinogenoxidase activity means having an enzyme activity for producing protoporphyrin IX by acidifying protophorphyrinogen IX. Whether a protein has protoporphyrinogenoxidase activity can be easily confirmed by contacting the protein with protoporphyrinogen IX in an appropriate buffer or salt solution and examining the production of protoporphyrin IX. Can do.
  • a protein having an activity that imparts resistance to acifluorfen to an organism means that the protein is introduced into an appropriate organism and the protein is appropriately expressed in the organism. In some cases, it refers to a protein that increases the resistance of the organism to acifluorfen. Whether the organism's tolerance to acifluorfen is improved, for example, after the introduction of the protein, the LC50 value of acifluorfen after 48 hours against the organism is 1S. It can be examined by checking for improved power. In particular, when the organism is a plant, for example, when a specific amount of acylfluorene is applied to the soil for cultivating the plant, the protein is compared with the plant before appropriately expressing the protein in the plant.
  • the degree of improvement in resistance to acifluolfen is not particularly limited, but the LC50 value of acifluorfen for the organism after 48 hours, or the same degree of yellowing, browning or withering, is caused.
  • the "protein having the activity of imparting resistance to acylfluorene to an organism” has the ability of the protein itself to have resistance to acylfluorene. It is also included.
  • “the protein itself has resistance to acylfluorene” means that the specific activity of the protein (protoporphyrinogenoxidase in a suitable solvent containing 1 ⁇ of acylfluorene). Force) (in terms of activity) must be at least 1/50, preferably at least 1/20, more preferably at least 1/10 of the specific activity (with respect to protoporphyrinogenoxidase activity) in the absence of cyifluorfen. means.
  • protoporphyrinogenoxidase activity refers to an enzyme activity that oxidizes protophorphyrinogen IX to produce protoporphyrin IX.
  • the specific activity of a protein (with respect to protoporphyrinogenoxidase activity) can be determined by contacting the protein with protoporphyrinogen IX in an appropriate buffer or salt solution, and examining the amount of protoporphyrin IX produced. And can be easily confirmed.
  • the “living product” in “having an activity of imparting resistance to acifluorfen” to an organism is not particularly limited, but a plant that is preferred by plants and microorganisms is particularly preferable.
  • the protein (3) of the present invention comprises the amino acid sequence shown in SEQ ID NO: 2 (slrl790), the amino acid sequences of SEQ ID NO: 2, amino acid numbers 1-34 and 48-176, and SEQ ID NO: 2, amino acid numbers 1 to The homology to any one of the amino acid sequences of 34 and 48 to 193 is 20% or more, and has an activity to confer resistance to acifluorfen on a living organism, and protoporphyrinogeno Although it is not particularly limited as long as it is a protein having xidase activity, the amino acid sequence shown in SEQ ID NO: 2, the amino acid sequence shown in amino acid numbers 1-34 and 48-176 of SEQ ID NO: 2, and the amino acid of SEQ ID NO: 2 Its homology to any one of the amino acid sequences of numbers 1-34 and 48-193 is preferably 45% or more, more preferably 54% or more.
  • the homology power of amino acid sequences o to p and q to r is not less than%” means the amino acid sequence of amino acid numbers o to p and the amino acids of amino acid numbers q to r. 10 to 16, preferably 12 to 14, more preferably 13 between the amino acid sequence of amino acid numbers o to p and the amino acid sequence of amino acid numbers q to r. This means that the homology is at least 3% with respect to the amino acid sequence having any amino acid sequence.
  • Synecocysty Similar to the protein encoded by the slrl790 gene of Synecocystis PCC6803 (amino acid sequence of SEQ ID NO: 2), the proteins encoded by these genes other than the slrl790 gene of PCC6803 confer resistance to acifluorfen. It is expected to be an active protoporphyrinogenoxidase. From the alignment of FIG.
  • the protoporphyrinogenoxidase of the present invention is the amino acid sequence shown in SEQ ID NO: 2 or the base sequence shown in SEQ ID NO: 1, amino acid numbers 1 to 34 of SEQ ID NO: 2 and 48-193 amino acid sequences (base sequences 1-102 and 142-582 of SEQ ID NO: 1), in particular, amino acids 1-34 and 48-176 of SEQ ID NO: 2 It is expected that the sequences of these parts, which are highly conserved in the sequences (base sequences 1 to 102 and 142 to 528 of SEQ ID NO: 1), play an important role in the properties of the enzyme. .
  • genes derived from organisms other than cyanobacteria among the genes shown in the BLAST search as genes encoding an amino acid sequence having high homology with the amino acid sequence shown in SEQ ID NO: 2 are shown in Table 2 below. Show. The expression products of these genes are also included in the present protein.
  • Synecocystis PC Similar to the protein encoded by the slrl790 gene of the Cinecosystem PCC6803 (amino acid sequence of SEQ ID NO: 2), the proteins encoded by these genes other than the C6803 slrl790 gene also have the activity to confer resistance to acifluolfen. It is expected to be protopol phyllinogen oxidase.
  • the present invention also relates to a method of using the above protein as a protoporphyrinogenoxidase.
  • “use as a protoporphyrinogen oxidase” means, for example, a reaction in which the present protein is artificially brought into contact with the substrate protoporphyrinogen IX in vitro or in vivo to produce a reaction product protoporphyrin IX.
  • This finding is a completely new finding that has been revealed for the first time by the present invention when the protein has protoporphyrinogen oxidase activity.
  • “artificial contact” means to make an artificial contact in vitro or in vivo.
  • non-artificial contact in cyanobacteria cells is not included.
  • the protoporphyrinogenidase gene DNA of the present invention is (1) a protoporphyrinogenidase gene DNA encoding the protoporphyrinogenase of the present invention or the present protein, (2) SEQ ID NO: 1 (3) nucleotide sequence of SEQ ID NO: 1, nucleotide sequences of SEQ ID NO: 1, nucleotide sequences 1-102 and 142-528, and SEQ ID NO: 1 In any one of the nucleotide sequences of the nucleotide numbers 1 to 102 and 142 to 582, the nucleotide sequence includes one or several bases deleted, substituted or added, and has resistance to acifluotige.
  • Protoporphy encoding a protein having a protoporphyrinogenoxidase activity, characterized by having an activity imparted to an organism DNA gene, and (4) the nucleotide sequence of SEQ ID NO: 1, the nucleotide sequences of SEQ ID NO: 1, nucleotide numbers 1 to 102 and 142 to 528, and the nucleotide numbers of SEQ ID NO: 1 to 102 And hybridizing under stringent conditions with DNA consisting of a sequence complementary to any one of the nucleotide sequences described in 142 to 582, and having an activity of imparting resistance to acilfotige to an organism.
  • Protopo Protoporphyrinogenidase gene DNA which encodes a protein having ruphyrinogenoxidase activity, is a protoporphyrinogenoxidase gene DNA.
  • protoporphyrinogenoxidase gene DNAs of the present invention may be collectively referred to as “the present gene DNA”.
  • the DNA (2) of the present invention comprises the base sequence shown in SEQ ID NO: 1, the base sequences shown in base numbers 1-102 and 142-528 of SEQ ID NO: 1, and the base numbers 1-102 of SEQ ID NO: 1. And any one of the nucleotide sequences described in 142 to 582, which includes a nucleotide sequence in which one or several bases are deleted, substituted or added, and imparts resistance to acifluorfen to an organism. It is not particularly limited as long as it is a protoporphyrinogen oxidase gene DNA encoding a protein having protoporphyrinogen oxidase activity, which is characterized by having an activity!
  • the sequence comprises a nucleotide sequence in which one or several bases are deleted, substituted or added, and has an activity to confer resistance to acifluorfen to an organism.
  • Protoporphyrinogenoxidase gene DNA encoding a protein having porphyrinogenidase activity, or one or several bases in the nucleotide sequences set forth in nucleotide numbers 1-102 and 142-528 of SEQ ID NO: 1 30 to between the base sequence corresponding to the base sequence of the base numbers 1 to 102 and the base sequence corresponding to the base sequences of the base numbers 142 to 528, including the base sequence deleted, substituted or added 48 (however, limited to a multiple of 3), preferably 36 to 42 (however, limited to a multiple of 3), more preferably 39, a base sequence having an arbitrary base sequence, and further to acifluorfen
  • Protoporphyrinogen oxidase gene encoding a protein having protoporphyrinogenoxidase activity characterized
  • base sequence in which one or several bases are deleted, substituted or added is, for example, 1 to 20, preferably 1 to 15, more preferably 1 to 10, more preferably Means a base sequence in which any number of 1 to 5 and most preferably 1 to 3 bases are deleted, substituted or added.
  • DNA consisting of a base sequence in which one or several bases have been deleted, substituted or added is known to those skilled in the art such as chemical synthesis, genetic engineering techniques, mutagenesis, etc. It can also be produced by any method. Specifically, the DNA consisting of the base sequence shown in SEQ ID NO: 1 is mutated using a method of contacting with a drug that is a mutagen, a method of irradiating with ultraviolet rays, a genetic engineering method, etc. Mutant DNA can be obtained by introducing. Site-specific mutagenesis, which is one of the genetic engineering methods, is a technique that can introduce a specific mutation at a specific position.
  • DNA that hybridizes under stringent conditions means using a nucleic acid such as DNA or RNA as a probe, colony 'hybridization method, plaque hybridization method, or Southern blot hybridization. This means DNA obtained by using the session method, etc., specifically, the presence of 0.7 to 1.0M NaCl using a colony or plaque-derived DNA or a filter immobilizing the DNA fragment. After hybridization at 65 ° C, use 0.1 to 2 times the SSC solution (the composition of the SSC solution of 1 time concentration is 150 mM sodium chloride, 15 mM sodium quenate). DNA that can be identified can be raised by washing the filter at 65 ° C. Nobridization can be performed according to the method described in Molecular Cloning 2nd edition.
  • the DNA that can be hybridized under stringent conditions can include DNA having a certain degree of homology with the base sequence of the DNA used as the probe.
  • Base sequence base sequence described in base numbers 1-102 and 142-528 of SEQ ID NO: 1, and any one of base sequences described in base numbers 1-102 and 142-582 of SEQ ID NO: 1 60% or more, preferably 70% or more, more preferably 80% or more, further preferably 90% or more, particularly preferably 95% or more, and most preferably 98% or more. be able to.
  • the homology of the base sequences described in the base acid numbers s to t and u to v is not less than 3%
  • DNA that can be hybridized under stringent conditions the amino acid sequence shown in SEQ ID NO: 2, the amino acid sequences of SEQ ID NO: 2, amino acid numbers 1-34 and 48-176, and SEQ ID NO: 20% or more, preferably 45% or more, more preferably 54% or more, still more preferably 65% or more, with respect to any one of the amino acid sequences of amino acid numbers 1 to 34 and 48 to 193 of 2.
  • a DNA encoding an amino acid sequence having a homology of 80% or more, more preferably 90% or more, and most preferably 95% or more is more preferable.
  • the present invention also relates to a method of using the above DNA as a protoporphyrinogenoxidase gene.
  • “use as a protoporphyrinogenoxidase gene” means, for example, that the present DNA is artificially expressed in vitro or in vivo, and its expression product, protoporphyrinogenoxidase, is converted into the substrate protoporphyrinogenase. This means that it is used in the reaction to produce the reaction product protoporphyrin IX by contacting with IX, and the DNA expression product is protoporphyrinogenoxidase.
  • the discovery of activity is a completely new finding that has been revealed for the first time by the present invention.
  • this DNA By using this DNA as a protoporphyrinogenoxidase gene, for example, it is possible to confer acifluorfen resistance to an organism that does not have resistance to acifluorfen.
  • the term “artificial expression” in the method of artificially expressing the DNA of the present invention and converting the expression product to protoporphyrinogen IX by contacting it with protoporphyrinogen IX is in vitro or in vivo. In other words, it does not include non-artificial expression in cyanobacteria cells.
  • the method for isolating the present protein and the present gene DNA is not particularly limited, and may be obtained by a generally known method such as a molecular genetic method or an enzymological method.
  • a molecular genetic method or an enzymological method.
  • the step of introducing the Arabidopsis thaliana protovorphylinogenoxidase gene into cyanobacteria (G) a step of disrupting a cyanobacterial gene using a transposon; (h) a step of selecting a strain in which the protoporphyrinogen oxidase gene is disrupted; (i) a disrupted protoporphyrinogen Identifying the oxidase gene; (j) isolating the disrupted protoporphyrinogen oxidase gene; It is preferred, to use a method of isolating a no Gen O Kis
  • the organism as a collection source has resistance to acifluorphene, and may be an organism, but preferably has resistance to acifluorfen. .
  • the protoporphyrinogenoxidase gene derived from the organism close to the organism should be transferred so that the organism can grow even if the protoporphyrinogenoxidase of the organism to be collected is deficient. It is introduced into the organism as the source of collection, and the protoporphyrinogenoxidase gene derived from the nearby organism is expressed in the organism as the source of collection. A protoporphyrinogenoxidase derived from a closely related organism is used if it has been confirmed that it is not resistant to acifluorfen. Next, the source organism is treated with a mutagen using transposon, and the resulting mutant is screened with acifluorfen (diphenyl ether herbicide). .
  • acifluorfen diphenyl ether herbicide
  • the organism from which the source is collected has resistance to acifluorfen.
  • Protoporphyrinogenoxidase derived from its close relatives does not exhibit tolerance to acifluorfen. Therefore, a collection source (protoporphyrinogenoxidase-deficient strain) into which a protobolphylinogenoxidase gene derived from a related organism or the like has been introduced is sensitive to acifluorfen. Therefore, a mutant strain that grows normally when not treated with acifluorfen and showed sensitivity to acifluorfen when treated with acifluorfen is selected.
  • a gene can be identified by analyzing the insertion position of a transposon for a strain showing sensitivity to acifluorfen by the method described in Example 3. In this way, a gene encoding a protoporphyrinogenoxidase exhibiting metamorphosis to the source-derived cashofluorene can be isolated.
  • the organism used as a source for collecting the protoporphyrinogenidase gene preferably has an enzyme having a low homology with an existing protoporphyrinogenoxidase gene.
  • the gene showing low homology with the existing protoporphyrinogenoxidase of the present invention is specifically a gene whose homology at the amino acid level with respect to tobacco PPX1 gene (Genbank accession Y13465) is less than 20%. Means.
  • the organism used as a source for collecting the protoporphyrinogenoxidase gene is Synechocystis (Synechocystis) due to its availability and ease of use, which is preferred to cyanobacteria preferred by prokaryotes. Most preferred is the glucose metabolite of sp. PCC6803).
  • These strains are readily available from, for example, the Pasteur Institute. The culture conditions of this strain can be carried out by a generally known method. However, BG11 medium [Hihara Y, et al. Plant Physiol (199 8) 117: pp.l205] is recommended to adjust TES—KOH (pH-8.2) to a final concentration of 5 mM.
  • the method for obtaining and preparing the gene DNA is not particularly limited.
  • the nucleotide sequence information shown in SEQ ID NO: 1 disclosed in the present specification or the amino acid shown in SEQ ID NO: 2 Prepare appropriate probes and primers based on the acid sequence information, and use them to isolate the gene of interest from the genome DNA library of organisms such as Synechocystis PCC6803 and other cyanobacteria. It can be prepared by chemical synthesis.
  • both genomic DNA acquisition and cloning can be performed according to conventional methods. Examples of methods for screening the gene DNA in the genomic DNA library include methods commonly used by those skilled in the art, such as the method described in Molecular Cloning Second Edition.
  • a mutated gene or a homologous gene a DNA fragment having the base sequence shown in SEQ ID NO: 1 or a part thereof is used, and the homology is higher than that of other organisms and has a base sequence.
  • DNA can be isolated by screening under appropriate conditions. In addition, it can be prepared by the above-described method for producing mutant DNA.
  • the recombinant vector of the present invention is not particularly limited as long as it is a recombinant vector in which the gene DNA is incorporated.
  • the recombinant vector of the present invention appropriately introduces the gene DNA into an expression vector.
  • a structure in which the present gene DNA is connected downstream of an appropriate promoter can be preferably exemplified.
  • the expression vector is preferably one that can replicate autonomously in the host cell, or one that can be integrated into the chromosome of the host cell.
  • the promoter, terminator, etc. involved in the expression of the gene of the present invention are preferred. Can be suitably used.
  • Examples of expression vectors for bacteria include pUCM strains such as pUC118 (Takara Shuzo), pUC19 (Gene, 33, 103 (1985)), and pGEM strains such as pGEMEX-Promega), pKK223-2
  • pUCM strains such as pUC118 (Takara Shuzo), pUC19 (Gene, 33, 103 (1985)
  • pGEM strains such as pGEMEX-Promega
  • pKK223-2 Known or commercially available products such as (manufactured by Pharmacia), pBluescriptll SK (+), pBluescriptll SK (manufactured by XStratagene) can be exemplified.
  • bacterial promoters examples include T7 phage promoter, trp promoter (P trp), lac promoter (P lac), recA promoter, ⁇ PL promoter, ⁇ PR promoter, lpp promoter, PSE promoter, SP01 promoter SP02 promoter, penP promoter and the like.
  • pIG121-Hm Plant Cell Report, 15, 809-814 (1995)
  • pBI121 EMBO J. 6, 3901-3907 (1987)
  • pLAN411 Plant Cell Reports 10 (1991) 286-290
  • plant promoters include cauliflower mosaic winoles 35S promoter (Mol. Gen. Genet (1990) 220, 389-392).
  • promoters of maize-derived alcohol dehydrogenase Maydica 35 (1990) 353-357
  • Arabidopsis-derived IRE gene promoter Japanese Patent Laid-Open No. 2000-270873
  • the transformant of the present invention is not particularly limited as long as it is a transformant into which the above-described recombinant vector of the present invention has been introduced.
  • the host include microorganisms such as bacteria, plants, animals, and the like. The ability to be able to use microorganisms and plants are preferred.
  • the bacteria include Escherichia bacteria, Syudnocardia bacteria, Streptomyces bacteria, Bacillus bacteria, Streptococcus bacteria, Staphylococcus bacteria, and the like.
  • Specific examples of plants include Arabidopsis thaliana, tobacco, corn, rice, wheat (such as wheat and barley), and potato (such as potato).
  • a method for introducing the above-described recombinant vector of the present invention into a host microorganism a method described in many standard laboratory manuals such as Molecular Cloning 2nd edition, for example, electoral position, It can be carried out by transduction or transformation.
  • Examples of the method for introducing the recombinant vector of the present invention into a plant include a particle gun method, an elect mouth position method, an agrobatterium method and the like.
  • a transformant into which the recombinant vector of the present invention has been introduced preferably a transformed plant, is considered to have resistance to acifluorfen.
  • a transformant having resistance to acifluorfen refers to a transformant having improved resistance to acifluorfen compared to before introducing the recombinant vector of the present invention. means .
  • the resistance of the transformant to acifluolfen has been determined by the combination of acifulfen with the LC50 value after 48 hours for the transformant compared to before the introduction of the recombinant vector. It can be investigated by checking whether the power has improved after the introduction of the replacement vector.
  • the recombinant vector is compared with the plant before appropriately expressing the recombinant vector in the plant.
  • Plant the recombinant vector It is confirmed that the degree of yellowing, browning or withering of plants properly expressed in the plant is reduced, and the degree of acifluorfen necessary to produce the same degree of yellowing, browning or withering Application rate per unit area It was confirmed that the recombinant vector increased in plants that appropriately expressed the recombinant vector in the plant compared to the plant before the recombinant vector was appropriately expressed in the plant.
  • the degree of improvement in resistance to acifluorfen is not particularly limited, it is necessary to cause the LC50 value of acifluorfen to the organism after 48 hours, or the same degree of yellowing, browning or withering. It is preferable that the application rate per unit area of acifluorfen is increased by 1.1 times or more compared with that before introducing the recombinant vector into the organism. It is more preferable to improve more than 2 times. It is most preferable to improve more than 3 times.
  • the present protein is produced and accumulated in the culture, and further, the present protein is collected from the culture to obtain the present protein. It can be manufactured in large quantities.
  • the transformant for cultivation purposes survives, but the weeds sensitive to acifluorfen die and are selectively It is possible to grow transformants for cultivation purposes.
  • the photosynthetic ability of the transformed plant of the present invention may not be improved, it is preferred that the photosynthetic ability is improved, and the ability of photosynthetic improvement in the presence of acifluorfen is improved. More preferably, it is.
  • the transformant of the present invention can be expected to improve photosynthetic ability because a large amount of protoporphyrinogenoxidase is expressed. Whether or not the photosynthetic ability is improved can be confirmed by comparing the photosynthetic ability of the host plant before the introduction of the recombinant vector of the present invention with the photosynthetic ability of the transformed plant after the introduction.
  • the transformant of the present invention is evaluated for its ability to inhibit protoporphyrinogenoxidase. Can be used in the method.
  • the evaluation method is not particularly limited. For example, (1) a host of the transformant is cultured in the presence of a test substance, and a growth curve is recorded; (2) the transformant is the same as (1) And a growth curve is recorded by culturing in the presence of the test substance; (3) an evaluation method comprising comparing the growth curves recorded in step (1) and step (2).
  • the transformant of the present invention can also be used in a screening method for a protoporphyrinogenase inhibitor.
  • Examples of the screening method include the same methods as the above evaluation methods.
  • Acifluorfen is a kind of diphenyl ether herbicide. This protein has the activity to confer resistance to acifluorfen on organisms! Therefore, it is considered that it has the activity to confer resistance to other diphenyl ether herbicides with similar mechanism of action. The same is considered to be true for the present protophyllinogenoxidase and the transformant of the present invention.
  • the method for isolating this gene includes the following steps 1) to 5), and includes proteins derived from other species homologous to known proteins (for example, protoporphyrinogenoxidase derived from Arabidopsis thaliana) (for example, cyanobacteria) Protoporphylogenogen Oxidase) Power This is particularly effective as a method for isolating genes that cannot be found in gene databases of other species.
  • a gene encoding a protein having a predetermined function is destroyed by using a drug that acts on a protein that complements the predetermined function and does not act on the protein having the predetermined function, or by changing the culture conditions. For selecting mutant strains
  • a step of isolating a gene encoding a disrupted protein having a predetermined function [0067]
  • cells are treated with drugs such as ethylmethanesulfonate (EMS), N-methyl-N-trow N-trosoguanidine (NTG), and 2,6-diaminopurine (DAP).
  • drugs such as ethylmethanesulfonate (EMS), N-methyl-N-trow N-trosoguanidine (NTG), and 2,6-diaminopurine (DAP).
  • EMS ethylmethanesulfonate
  • NTG N-methyl-N-trow N-trosoguanidine
  • DAP 2,6-diaminopurine
  • Mutation treatment and mutation treatment in which cells are treated with ultraviolet rays can also be mentioned, and preferred examples include mutation treatment using transposome capable of introducing gene-level mutation.
  • the transposome is a complex of transposon and transposase that can easily introduce gene-level mutations into many microorganisms (Hoffinan, LM, Jendrisak, JJ, Meis, RJ, oryshin, IY and Rezhikof, bW Genetica, 108, 19-24 (2000)) 0
  • a method using a transposome a method using EZ :: TN TM: -2 ⁇ np Transposome (manufactured by EPICENTRE) or the like is known.
  • a gene-disrupted strain can be selected, for example, by a resistance marker for a specific antibiotic introduced by a transposon.
  • the gene-disrupted strain thus obtained is further screened with a drug that acts on a protein that complements a predetermined function and does not act on a protein having a predetermined function, or by changing the culture conditions and screening. It is possible to select a mutant strain in which a gene encoding a functional protein is disrupted by the introduction of a transposon.
  • the nucleotide sequence adjacent to this transposon can be determined, for example, by the chain termination method (Sanger F.S. et al, Proc. Natl. Acad. Sci., USA 75: 5463-5467 (1977)).
  • chain termination method Sanger F.S. et al, Proc. Natl. Acad. Sci., USA 75: 5463-5467 (1977).
  • drug that acts on a protein complementary to a predetermined function and does not act on a protein having a predetermined function refers to a protoporphyrinogen oxidase derived from Arabidopsis thaliana and a progenitor derived from cyanobacteria.
  • a protoporphyrinogen oxidase derived from Arabidopsis thaliana and a progenitor derived from cyanobacteria.
  • Preferable examples include ashifluorfen (diphenyl ether type), pyraflufenethyl (phenol birazole type), and flumioxazin (dicarboximide type) which do not act on toporphyrinogenoxidase.
  • ALA aminolevulinic acid
  • ALA is: 1) Glutamic acid plus dartamyl-tRNA A step in which a dartamyl tRNA is produced by the action of a nontase, 2) a step in which a glutamyl tRNA reductase acts on the produced dartamyl tRNA to produce glutamic acid 1-semialdehyde, and 3) a glutamic acid 1-semialdehyde containing glutamic acid 1 semialdehyde aminomutase is included.
  • Agrobacterium bacteria synthesize ALA with "C4 type", and if the existence of the enzyme ALA synthase is known but the gene has not been identified, plant-derived dartamyl tRN A synthase, Mutants that co-infect the genes encoding glutamyl tRNA reductase and glutamate 1 semialdehyde aminomutase into agrobacterium and randomly destroy the gene of transformed agrobacterium with transposon etc. From the mutant strains, a mutant strain that grows in the absence of the glutamic acid 1 semialdehyde aminomutase inhibitor gabaculin and dies in the presence of gearpacrin is selected, and the selected mutant strain is selected.
  • the original ALA synthase gene By analyzing the insertion position of the transposon tag, The original ALA synthase gene can be identified. Therefore, it acts on a glutamic acid 1 semialdehyde aminomutase derived from a plant or E. coli as the above-mentioned “drug that acts on a protein complementary to a predetermined function and does not act on a protein having a predetermined function”. Mention may be made of gear bacrine which does not act on bacterial ⁇ -aminolevulinic acid (ALA) synthase.
  • ALA ⁇ -aminolevulinic acid
  • the gene-disrupted strain is usually cultured.
  • when selecting mutants that show a difference in growth by culturing under light for example, when selecting according to pH conditions, gene-disrupted strains should be selected under normal and high pH (or low pH) conditions.
  • a method of selecting mutant strains that are cultured in the above culture and have a difference in growth can be exemplified.
  • the vector can be used for transformation into cyanobacteria, and pFSlO with kanamycin resistance was used [Jansson, et al. Methods Enzymol (1998) 297: ppl66] G
  • This pFSlO vector was combined with the restriction enzyme Ndel.
  • the recombinant vector was prepared by digestion with Hindi and ligation with the PCR product of the above-described protoporphyrinogenoxidase gene.
  • This recombinant vector was transformed into E. coli CFM109) by the heat shock method and selected on an LB agar medium containing kanamycin. The appearing colonies were cultured in an LB liquid medium containing kanamycin, and the culture plasmid was purified.
  • Subsequent mutagen treatment using transposon uses kanamycin resistance as a selectable marker. Therefore, it is necessary to remove the kanamycin resistance gene and introduce another antibiotic resistance gene (chloramphee-chol resistance gene).
  • Xbal.f SEQ ID NO: 7
  • Pyrobest Taq polymerase Secondary PCR was performed using (Takara). PCR was performed for 25 cycles of denaturation (98 ° C, 10 seconds), filing (50 ° C, 45 seconds), and extension (72 ° C, 90 seconds). The PCR product obtained by the PCR and containing the culamb fuechol resistance gene was cleaved with the restriction enzyme Xbal.
  • the aforementioned recombinant vector in which the Arabidopsis thaliana protoporphyrinogenoxidase gene and the pFSlO vector were ligated was also digested with the restriction enzyme Xbal, the kanamycin resistance gene was removed, and then the chloramphene- A new recombinant vector was obtained by ligation with the call resistance gene fragment.
  • This recombinant vector was transformed into E. coli (JM109) by the same method as described above, and selected on an LB agar medium containing chloramphecoal. The appearing colonies were cultured in LB liquid medium containing chloramphee-coal, and the plasmid was purified from the culture.
  • Synechocystis PCC6803 was transformed with this plasmid to produce a Synechosystemis (hereinafter sometimes referred to as “AT strain”) in which Arabidopsis thaliana-derived protoporphyrinogenoxidase was expressed.
  • AT strain a Synechosystemis
  • the method for transformation of Synechocystis PCC6803 was in accordance with the method of literature [Williams JG. Methods Enzymol (1998) 167: pp766].
  • the genome extracted from Synecocystis PCC6803 was subjected to limited digestion with Tsp5091, and a genomic plasmid library was prepared using the Lambda Zap II vector kit (Stratagene). Using EZ :: TNTM KAN-2> Insertion Kit (Epicentre), a transposon was inserted in vitro into a genomic plasmid library. The transposon insertion method followed the manual disclosed by Epicentre. Using the Synechocystis genomic plasmid library inserted with this transposon tag, the AT strain was transformed by homologous recombination to express Arabidopsis thaliana-derived protoporphyrinogenoxidase and then cine systemis mutation The body was made.
  • the cyanobacterial protoporphyrinogenoxidase deficiency was selected from the cinecosystemis mutants produced in Example 2. Screening for damaged stocks was performed. Specifically, the procedure was as follows.
  • a BG11 agar medium containing acifluorfen to a final concentration of 500 M is inoculated with the cine system mutant prepared in Example 2 and irradiated with continuous fluorescent light (light intensity 30 mol s-lm-2). ) Under static culture at 30 ° C for 2 weeks. In addition, the same culture was performed using BG11 agar medium containing no acifluorfen! /. Based on the results of these cultures, nine strains were selected as mutants that could grow in the absence of acifluorfen. Of these nine strains, the strain with the highest degree of inhibition of growth in the presence of acifluorfen was named 3216 strain, and the insertion position of the transposon tag was analyzed as described below. A transposon tag was inserted at a position predicted to be the transcriptional regulatory region of protein sir 1790.
  • transposon used has a kanamycin resistance gene introduced as a tag, it is selected using this antibiotic resistance.
  • DNA is obtained from the mutant strain and fragmented using a restriction enzyme sequence not included in the kanamycin resistance gene. Cut the vector that does not have the kanamycin resistance gene with the same restriction enzyme that cleaved the DNA. They are ligated and transformed into E. coli, and the plasmid is purified and analyzed for the clones grown on the medium containing kanamycin.
  • DNA is obtained from the mutant strain, and contained in the transposon tag, it is fragmented using a restriction enzyme sequence. This is self-ligated (circularized), and a PCR primer is designed on the outside of the transposon tag and a PCR reaction is performed. The sequence is analyzed using the amplified PCR product.
  • the cyanobacterial mutant (3216 strain) was cultured in BG11 liquid medium at 30 ° C for 12 days in the light. After cultivation, the cells were collected and extracted using the SDS method to obtain about 800 g of cyanobacteria mutant DNA. Obtained.
  • EcoRl and Sacl were used as restriction enzymes, respectively, and the cyanobacterial mutant DNA and vector (PUC118) were cleaved. After the restriction enzyme treatment, the fragmented cyanobacterial mutant DNA was purified on a spin column. The vector was treated with Al force phosphatase to prevent self-ligation.
  • the average fragment length obtained by digestion with the above three restriction enzymes was 6 kb for EcoR 1 and 10 kb for Sacl.
  • the molar ratio of the insert Z vector was adjusted to 3Z 1 and 9Z 1 and ligated at 12 ° C for 16 hours.
  • a part of the ligation solution was transformed into E. coli CFM109) by the heat shock method and selected on an LB agar medium containing kanamycin. As a result, no colonies were observed on the LB agar medium containing kanamycin.
  • Self-ligation was performed at 12 ° C for 16 hours using the DNA fragment purified with a spin column.
  • Two sets of primers were designed to be directed to the outside of the transposon tag.
  • the 2nd PCR primer was the sequence primer included in the kit.
  • 1st PCR was performed using the self-ligated genomic fragment as a template. 1st PCR conditions were 98 ° C for 10 seconds (denaturation), 55 ° C for 30 seconds (annealing), 72 ° C for 7 minutes (extension) for 30 cycles using EX taq polymerase (manufactured by Takara). It was performed at 0.5 ⁇ .
  • the final concentration of the template was examined in three stages: 50-fold dilution, 250-fold dilution, and 1250-fold dilution.
  • 51 PCR products were taken and confirmed by agarose gel electrophoresis. As a result of electrophoresis, a specific band was amplified around 7 kb only when a template cut with EcoRl was used.
  • the 1st PCR product was purified on a spin column and used as a 2nd PCR template.
  • 2nd PCR conditions are 98 ° C for 10 seconds (denaturation), 60 ° C for 30 seconds (annealing), 72 ° C for 5 minutes (extension), then 98 ° C for 10 seconds (denaturation), 58 ° C for 30 seconds (annealing), 72 Using EX taq polymerase (Takara) at 20 ° C for 5 minutes at 20 ° C (extension), the primer concentration was 0.5 ⁇ each.
  • plasmids 1 and 2 showed bands around 5 kb, 3 kb (vector), and 1.8 kb. The total size of the band derived from the insert was about 7 kb, and was judged to be the target clone. It is possible that plasmids 1 and 2 were formed with a concatemer that was not circular in the first ligation stage, as the three bands, including those derived from the vector, were observed by EcoRl treatment. Since there was no problem in sequence analysis, sequencing reaction was performed for plasmid 1.
  • the nucleotide sequence of plasmid 1 was analyzed by the cycle sequence by dideoxy method.
  • KAN-2FP1 and KAN-2RP1 used in 2nd PCR were used as sequencing primers. Since the sequence primer used anneals with the DNA region of the transposon tag, the beginning of the sequence data obtained is the DNA region of the transposon tag.
  • the inverted repeat sequence is a 19 bp Transposon Mosaic End Transposase recognition sequence that can be found at the contact point between the target DNA of the transposon-inserted clone and the transposon tag, and this sequence can be used as a marker for identifying the target and the transposon tag.
  • Transposon insertion catalyzed by transposase also generates a 9-bp target site overlap sequence to protect the side of the inserted transposon.
  • the transposon tag is inserted between the 256677th T force and the 256685th G of the cyanobacterial genome (Mosaic end sequence and 9-bp overlapping sequence confirmation). Was confirmed. This position is not included in the ORF region, but was thought to be a transcriptional regulatory region of the putative protein slrl790 (256698-257279, 193aa) downstream.
  • slrl790 gene 600 bp from Synechocystis genome 256698 to 257279
  • a recombinant vector with a kanamycin resistance gene inserted into the code region of slrl790
  • the gene was disrupted using the slrl790 gene of Synechosystem PCC6803. Since transformation of cyanobacteria performed by homologous recombination, sequence upstream 700bp and downstream 600bp of s Lrl790 gene (1. 9 kbp from Synechocystis genomic 255,999 257,920) to design primers based.
  • the DNA extracted from Synechocystis PCC6803 is in a saddle shape, and the primers Slrl 790 km EcoRlf (SEQ ID NO: 8), primer Sir 1790 km Hind3 r (SEQ ID NO: 9), and TaKaRa EX Taq polymerase (manufactured by Takara) are used.
  • a PCR product was obtained by amplifying a sequence containing 700 bp upstream and 600 bp downstream of the slrl790 gene by the PCR used. PCR was performed for 28 cycles of denaturation (98.C, 10 seconds), annealing (55.C, 30 seconds), and extension (72.C, 120 seconds). The obtained PCR product was ligated to pGEM-T Easy vector (Promega).
  • a vector ligated with a sequence containing the slrl790 gene was transformed into E. coli (JM 109) by the heat shock method and selected on an LB agar medium containing ampicillin. The appearing colonies were cultured in LB liquid medium containing ampicillin, and the plasmid (pslrl790S) was purified from the culture. Next, the kanamycin resistance gene (1.3 kbp) contained in the transposon tag is made into a saddle type, primer Km Nhel f (SEQ ID NO: 10), primer Km N hel r (SEQ ID NO: 11), and TaKaRa EX Taq polymerase having a Nhel site.
  • a PCR product containing the kanamycin resistance gene was amplified by PCR using (Takara). PCR was performed with 28 cycles of denaturation (98 ° C, 10 seconds), annealing (58 ° C, 30 seconds), and extension (72 ° C, 80 seconds). The obtained PCR product was cleaved with Nhel, and it was ligated to the Nhe 1 site in the middle of the slrl790 gene in the vector. This was transformed into E. coli CFM109) by the heat shock method and selected on LB agar medium containing kanamycin. LB solution containing kanamycin The plasmid (pslrl790SKM) was also purified by culturing it in a body medium.
  • protoporphyrinogen oxidase If protoporphyrinogen oxidase is destroyed, the substrate protoporphyrinogen IX is expected to accumulate. Protoporphyrinogen IX is very unstable, so in the air during the extraction process. Protoporphyrinogen oxidase is destroyed by measuring the amount of protoporphyrin IX after extraction in air because it reacts with oxygen and is easily oxidized to protoporphyrin IX. It is possible to judge whether or not The protoporphyrin IX content of the slrl790 gene-disrupted strain was measured by the following method.
  • the sir 1790 gene disrupted strain obtained in Example 4 was irradiated continuously with a white fluorescent lamp (light intensity 30 mol s—under aeration at 30 ° C for 1 week.
  • BG 11 Cultivation was performed in 50 ml of a liquid medium to obtain a culture solution, from which the pigment containing protoporphyrin IX was extracted using 90% acetone to obtain a pigment extract.
  • HPLC HPLC
  • PBI121 (Introduction of cyanobacterial protoporphyrinogenoxidase slrl790 into Arabidopsis thaliana) was used as an expression vector for plants. A schematic diagram of pBI121 is shown in FIG.
  • the plant protoporphyrinogenoxidase is an enzyme present in chloroplasts and mitochondria, but this time the chloroplasts of Arabidopsis chlorophyll a oxygenase (CAO, Genbank accession BT002075) are expressed so that slrl790 is expressed in chloroplasts.
  • a translocation signal was introduced linked to the slrl 790 gene.
  • TargetP http: ruminal w.cbs.d tu.dk/services/TargetP/
  • C AO-derived chloroplast translocation signal (0.2 kbp) is a primer Ba mSma CAO fr. (Sequence) having the restriction enzyme BamHl and Sacl recognition sites, respectively, using the Arabidopsis cDNA obtained in Example 1 as a saddle type. No. 12), Sac CAO rev. (SEQ ID NO: 13) and KOD-Plus-polymerase (TOYOBO) were used for amplification by PCR. PCR was performed for 30 cycles of denaturation (94 ° C, 15 seconds), annealing (55 ° C, 30 seconds), and extension (68 ° C, 15 seconds).
  • the PCR product thus obtained was ligated to a pTA2 vector having ampicillin metabolite (TOYOBO, TA cloning vector for KD-Plus-, 2.9 kbp), followed by heat-shock method (JM109). ) And selected on LB agar medium containing ampicillin. The colonies that appeared were cultured in an LB liquid medium containing ampicillin, and the plasmid (pTACAO) was purified. The plasmid pTACAO was cleaved with the restriction enzymes BamHl and Sacl, the chloroplast transfer signal derived from CAO was excised, and purified by gel recovery.
  • TOYOBO ampicillin metabolite
  • JM109 heat-shock method
  • this purified CAO-derived chloroplast transfer signal was ligated to the pBI121 vector from which the GUS gene had been previously removed. This was transformed into Escherichia coli CFM109) by the heat shock method and then selected on an LB agar medium containing kanamycin. The appearing colonies were cultured in LB liquid medium containing kanamycin, and the plasmid (pBICAO, 13. lkbp) was purified. pBICAO was cleaved with the restriction enzyme Sac 1, and after CIP treatment to prevent self-ligation, the vector fragment was purified by gel recovery.
  • the slrl790 gene (0.6 kbp) is a cocoon-shaped genome extracted from cine system, and has primers Sac slrl790fr. (SEQ ID NO: 14) and Sac sir 1790 r ev. No. 15) and KOD-Plus-polymerase (TOYOBO) were used for PCR amplification. PCR was performed for 30 cycles of denaturation (94 ° C, 15 seconds), annealing (55 ° C, 30 seconds), and extension (68 ° C, 35 seconds). The PCR product thus obtained was ligated to a pTA2 vector having ampicillin resistance, transformed into E.
  • Arabidopsis thaliana was transformed by the in planta method using Agrobacterium tumefaciens C58 strain into which pBIslr 1790 was introduced by the freezing method.
  • the seeds obtained were sterilized and sown in a medium of Murashige—Skoog [T. Murashige and F. Skoog Physiol. Plant (1962) 15: pp473] containing 35 ppm kanamycin and 0.6% agar. As a result, an open transformant was obtained (sir type). This transformant was transplanted into soil and cultivated in the growth chamber to obtain second generation seeds.
  • PCR was performed for 40 cycles of denaturation (95 ° C, 30 seconds), annealing (55 ° C, 45 seconds), and extension (72 ° C, 60 seconds).
  • Acifluorfen was prepared by mixing and dissolving dimethylformamide and polyoxyethylene sorbitan surfactant to make the active ingredient 4%. This was diluted with water so that the concentration of acylfluorene was 10 M in the final, and using a micropipette, the Arabidopsis thaliana wild strain grown in a growth chamber to about 1-2 cm in height and the gene transfer were confirmed. Each 5 ⁇ l drop was treated on the leaves of transformed Arabidopsis sir.
  • the AT strain obtained in Example 1 and the AT ⁇ sir 1790 strain in which the slrl790 gene of the AT strain was disrupted by the method of Example 4 were used.
  • the BG11 liquid medium is used as the medium, and the chloramphenicol resistance gene is introduced into the AT strain at the same time as the protoporphyrinogenoxidase in order to suppress gene deletion and reversion.
  • AT ⁇ slrl790 strain had a kanamycin resistance gene introduced at the time of gene disruption, kanamycin was added to a final concentration of 25 ⁇ g / ml.
  • pI50 value —log (50% activity inhibition treatment concentration (M))
  • a 200 cm 2 pot was filled with soil, seeds of Inubu were sown on the surface, lightly soiled, and grown in a greenhouse until the plant height was ⁇ 10 cm.
  • the diluted water of each test compound was sprayed onto the leaves of Inubu with a small sprayer in an amount equivalent to 1000 liters ha so that the prescribed amount was achieved.
  • the plants were grown in a greenhouse, and after 2 weeks of treatment, the herbicidal effect of Inubu was investigated according to the following survey criteria and expressed in terms of herbicidal index. The results are shown in the table below.
  • the AT ⁇ srlrl790 strain is also sensitive to agents other than the diphenyl ether type protoporphyrinogenoxidase inhibitor, acifluorfen, and exhibits general inhibitory activity on protoporphyrinogen oxidase inhibitors. Indicated.
  • the tendency of the pI50 value of each test compound against the AT A slrl790 strain reflects the respective foliage treatment activity, and it can be said that it is effective for evaluation of the ability to inhibit protobolinogenogenase.
  • the protoporphyrinogenoxidase of the present invention has a structure significantly different from the known enzyme, it can be expected to be applied to the selection of a novel protoporphyrinogenoxidase-inhibiting herbicide. Moreover, the protoporphyrinogenoxidase of the present invention can be expected to be applied to breeding photosynthetic plants having resistance to protoporphyrinogenidase-inhibiting herbicides or to breeding plants having resistance to stress environmental conditions. Furthermore, according to the gene isolation method of the present invention, the protein power derived from other species homologous to a known protein can be found even if it cannot be found in the gene database of other species. It is possible to provide an effective method capable of isolating genes of various species.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Cultivation Of Plants (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

アシフルオルフェン耐性を付与する活性を有するプロトポルフィリノーゲンオキシダーゼ、及びその遺伝子等を提供するものである。シロイヌナズナのプロトポルフィリノーゲンオキシダーゼ遺伝子をラン藻に導入し、トランスポゾンを用いてラン藻の遺伝子を破壊して、プロトポルフィリノーゲンオキシダーゼ遺伝子が破壊された株を選抜し、破壊されたプロトポルフィリノーゲンオキシダーゼ遺伝子を特定し、破壊されたプロトポルフィリノーゲンオキシダーゼ遺伝子を単離することにより、ラン藻のプロトポルフィリノーゲンオキシダーゼ遺伝子を同定する。この手法は、ラン藻由来のポルフィリノーゲンオキシダーゼなど、既知のタンパク質と相同な他の生物種由来のタンパク質が、他の生物種の遺伝子データベースでは見い出すことができない場合の遺伝子の単離手法として有効である。

Description

明 細 書
アシフルオルフエンに対する耐性を付与する活性を有するプロトポルフィ リノ一ゲンォキシダーゼ及びその遺伝子
技術分野
[0001] 本発明は、アシフルォルフェン (ACIFLUORFEN)に対する而性を付与する活性を 有するプロトポルフイリノーゲンォキシダーゼ、特にラン藻のプロトポルフイリノーゲン ォキシダーゼ及びその遺伝子並びに該遺伝子を組み込んだ形質転換体等に関する
背景技術
[0002] プロトポルフイリノーゲンォキシダーゼは、ヘムおよびクロロフィル合成の最終段階 の反応、すなわちプロトポルフイリノーゲン IXから 6個の電子を奪ってプロトポルフイリ ン IXを合成する反応を触媒する酵素である。ヘムはヘモグロビン、シトクロムなどのへ ムタンパク質の補因子として、呼吸やエネルギー代謝、酸素ストレスに対する防御に 不可欠な分子である。ヘム合成経路は微生物、植物、動物に共通して存在し、 δ -了 ミノレブリン酸を前駆体としてヘムを合成する経路である。また、植物においてはヘム およびクロロフィルは、 δ -アミノレブリン酸を前駆体としてプロトポルフィリン IXまで共 通の経路で合成されており、プロトポルフイリノーゲンォキシダーゼはこの 2つの合成 経路の調節的な役割も担って 、ると考えられて 、る。陸上植物にお!、てクロロフィル 代謝系を担うこのプロトポルフイリノーゲンォキシダーゼ酵素は、ジフエ-ルエーテル (以下 DPEと略することがある)系除草剤の標的酵素となる。 DPE系除草剤によって プロトポルフイリノーゲンォキシダーゼの活性が阻害されると、該酵素の基質であるプ ロトボルフイリノーゲン IXが葉緑体中に蓄積していき、ついにはプロトポルフイリノーゲ ン IXが細胞質ゾル中に漏れ、そこでペルォキシダーゼによりそれが酸化されてプロト ポルフィリン IXを生じる。プロトポルフィリン IX力 光と酸素にさらされると、プロトポルフ ィリン IXは一重項酸素及びさらに別の反応性酸素種を生成させ得る。脂質の過酸ィ匕 及びこれが必然的に伴う膜損傷の結果として、植物細胞は急速に死亡する(Lee et a 1., 1993, Plant Physiol, 102, 881)。一方、ラン藻では DPE系除草剤存在下でも生育 が可能であることが知られて 、たが、その要因やメカニズムは全く知られて 、なかつ た。
[0003] プロトポルフイリノーゲンォキシダーゼ遺伝子は!、くつかの生物ですでに単離され ている。例えば、タバコの PPX1遺伝子(Genbank accession Y13465)、 PPX2遺伝子( Genbank accession Y13466)、シロイヌナズナの PPOX遺伝子(Genbank accession D8 3139)、バチルスサブチリスの HemY遺伝子(Genbank accession M97208)、マウスの PPX遺伝子(Genbank accession D45185)、ヒトの PPX遺伝子(Genbank accession D3 8537)、サッカロマイセスセレピシェの PPX遺伝子(Genbank accession Z71381)、ェ シエリヒアコリの hemG遺伝子(Genbank accession X68660)などが知られている。
[0004] プロトポルフイリノーゲンォキシダーゼの利用法として、例えば特許文献 1は、 DPE 系除草剤に対する抵抗性を付与する枯草菌(Bacillus subtilis)に由来するプロトポル フイリノーゲンォキシダーゼを植物体内で発現させる方法、及び該プロトポルフィリノ 一ゲンォキシダーゼを発現するトランスジエニック植物を開示している。また、例えば 特許文献 2は、植物の育種に適するポルフィリン生合成系の酵素タンパク質の遺伝 子として、シロイヌナズナ(Arabidopsis thaliana)植物から得られうる 1. 7kbpの長さを 有する遺伝子であり、 5'末端から 1. 3kbpの部位に制限酵素 EcoRIの認識塩基配列 5 -GAATTC-3'が存在することを特徴とするプロトポルフイリノーゲンォキシダーゼ 遺伝子を開示している。さらに、例えば特許文献 3は、ラット又はコナミドリムシ由来の プロトポルフイリノーゲンォキシダーゼ活性阻害能を評価するための簡便な方法とし て(1)プロトポルフイリノーゲンォキシダーゼ活性に基づく増殖能の欠損した宿主細 胞に、宿主細胞内で機能可能なプロモーター、およびプロトポルフイリノーゲンォキシ ダーゼ遺伝子が機能可能な形で結合されてなる DNA断片が導入されてなり、前記 DNA断片に存在するプロトポルフイリノーゲンォキシダーゼ遺伝子を発現する形質 転換体を、被験化合物の存在下または非存在下に、プロトポルフイリノーゲンォキシ ダーゼ活性に基づく増殖能の欠損を補完する化合物を実質的に含まない培地で培 養して各条件下における該形質転換体の増殖度を測定する工程、(2)該増殖度の 差異に基づき被験化合物の接触による前記形質転換体の増殖阻害度を求め、被験 化合物のプロトポルフイリノーゲンォキシダーゼ活性阻害能を判定する工程、を含む ことを特徴とする方法を開示して 、る。
[0005] 一方、ラン藻では、その遺伝子データベースの解析から、大腸菌 hemK類似遺伝子 がプロトポルフイリノーゲンォキシダーゼであると推定されて 、たが、ラン藻の該 hemK 類似遺伝子は、プロトポルフイリノーゲンォキシダーゼでは無 、ことがその後実際に 明ら力となった。しかし、ラン藻の遺伝子データベースには、これまでに同定されてい る他の生物種のプロトポルフイリノーゲンォキシダーゼと相同なタンパク質はラン藻で は見い出されておらず、ラン藻のプロトポルフイリノーゲンォキシダーゼは未だに単離 されていな力つた(例えば非特許文献 1参照)。
[0006] 特許文献 1 :特願平 9— 107833号公報
特許文献 2 :特開平 9— 140381号公報
特許文献 3:特願平 11― 346787号公報
非特許文献 1:ドミトリ (Dmitrii V.Vavilin) ,ウィム (Wim F. J. Vermaas)「Regulation of t he tetrapyrrole biosynthetic pathway leading to heme and chlorophyll in plants and c yanobacteria (植物とラン藻におけるヘムおよびクロロフィルへと導くテトラピロール生 合成経路の調節)」 Physiologia Plantarum第 115卷、第 9頁、 2002年
発明の開示
発明が解決しょうとする課題
[0007] 上述のように、他の生物種由来の既知のプロトポルフイリノーゲンォキシダーゼと相 同なタンパク質は、ラン藻の遺伝子データベースでは見い出すことができず、ラン藻 のプロトポルフイリノーゲンォキシダーゼはこれまで単離されて 、なかった。本発明の 課題は、アシフルオルフエン耐性を付与する活性を有するプロトポルフイリノーゲンォ キシダーゼ、及びその遺伝子、並びに該遺伝子を組み込んだ形質転換体等を提供 することにある。
課題を解決するための手段
[0008] 本発明者らは、ラン藻由来のプロトポルフイリノーゲンォキシダーゼの単離を目的と して、プロトポルフイリノーゲンォキシダーゼ欠損大腸菌を用いた相補的スクリーニン グを試みた。この方法は、プロトポルフイリノーゲンォキシダーゼを欠損した大腸菌に ラン藻ゲノム断片を導入して相補する遺伝子を探索し、ラン藻のプロトポルフイリノー ゲン IXの酸ィ匕に関与する遺伝子を特定する方法である。使用したベクターは異なる 力 シロイヌナズナゃタバコ由来のプロトポルフイリノーゲンォキシダーゼ遺伝子は同 様の方法を用 、て単離された。前記相補的スクリ一ユングの概略を以下に示す。
[0009] まず、ラン藻(シネコシスティス PCC6803)力 DNAを取得した。 DNAライブラリー の作製の際にはファージベクターとして λ ΖΑΡΠベクター(STRATEGENE社製)を用 いた。該ラン藻の全塩基配列は既に報告されているので (約 3,500kb)、ベクターの マルチクロー-ングサイトに含まれる 6種の制限酵素配列につ 、て、該ラン藻のゲノ ム配列を調べたところ Xbal、 Spel、 EcoRIの 3種類がライブラリー作製に適していると 考えられた。そこで、この 3種類の制限酵素処理を基本としてファージライブラリーを 作製した。作製したライブラリーをプロトポルフイリノーゲンォキシダーゼ欠損大腸菌 に導入し、その形質転換体のプロトポルフイリノーゲンォキシダーゼ活性を調べること によって、相補試験を行った力 明らかな相補性を示すものは認められなカゝつた。こ の結果より、該ラン藻のプロトポルフイリノーゲンォキシダーゼがこの 3種類の制限酵 素配列を運悪く持っていた力 該ラン藻のプロモーターがうまく働かな力つた等いくつ かの可能性が考えられた。
[0010] そこで、新たに制限酵素 Tsp5091を用いた限定分解でライブラリーを作製し再度検 討した。 Tsp5091は 4塩基認識の制限酵素である。前回のライブラリー作製に用いた 3 種類の制限酵素 (EcoRI、 Spel、 Xbal)は 6塩基認識であり、サイズの大き過ぎる断片が どうしても生じる。また、ラン藻プロトポルフイリノーゲンォキシダーゼの遺伝子配列内 にこれら制限酵素の認識配列が存在した場合、完全長のプロトポルフイリノーゲンォ キシダーゼ遺伝子をクロー-ングできない。一方、 4塩基認識の制限酵素を用いて D
NAを完全に切断すると、数百 bpの細かい断片が大量にできてしまう。この問題を解 決するために、 4塩基認識の制限酵素で不完全に DNAを切断する方法(限定分解) を用いてライブラリーを作製した。そのライブラリーを用いたが、大腸菌のプロトポルフ イリノーゲンォキシダーゼ欠損能を相補することはできな力つた。
[0011] 次に、プラスミドの状態にすれば生育復帰が認められる力もしれないと考え、 Tsp50 91ラン藻ゲノムファージライブラリ一につ 、て大量のプラスミドの切り出しを行!、、 Tsp5 091ラン藻ゲノムプラスミドライブラリーを作製して検討したが顕著に生育復帰するクロ ーンは認められなかった。このことより、ラン藻プロトポルフイリノーゲンォキシダーゼ が大腸菌のプロトポルフイリノーゲンォキシダーゼ欠損を相補しな 、か、または相補し て ヽても非常に軽微である可能性が考えられた。
[0012] そこで、本発明者らは、上記課題を解決するために、鋭意検討した結果、ラン藻が アシフルオルフエンに対する耐性を有すると ヽぅ知見に基づき、トランスポゾンを利用 したラン藻変異体スクリーニングを利用することにより、ラン藻 (シネコシスティス PCC6 803)由来のボルフイリノーゲンォキシダーゼを初めて単離し、そのボルフイリノーゲン ォキシダーゼがアシフルォルフェン耐性を付与する活性を有して 、ることを見 、出す と共に、その遺伝子を同定することにより、本発明を完成するに至った。また、上記ト ランスポゾンを利用した遺伝子スクリーニングの手法は、ラン藻由来のボルフイリノー ゲンォキシダーゼなど、既知のタンパク質と相同な他の生物種由来のタンパク質が、 他の生物種の遺伝子データベースでは見い出すことができない場合の遺伝子の単 離手法として有効であるとの知見を得て、本発明を完成するに至った。
[0013] すなわち本発明は、(1)アシフルオルフエンに対する耐性を生物に付与する活性を 有し、かつラン藻由来であることを特徴とするプロトポルフイリノーゲンォキシダーゼや 、(2)ラン藻力 シネコシスティス属に属するラン藻であることを特徴とする上記(1)記 載のプロトポルフイリノーゲンォキシダーゼや、(3)生物が、植物であることを特徴とす る上記(1)又は(2)記載のプロトポルフイリノーゲンォキシダーゼに関する。
[0014] また本発明は、(4)下記 (a)〜(c)のいずれかに示すタンパク質、(a)配列番号 2に 示されるアミノ酸配列からなるタンパク質、 (b)配列番号 2に示されるアミノ酸配列に おいて、 1若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列力もなり 、かつアシフルォルフェンに対する耐性を生物に付与する活性を有することを特徴と する、プロトポルフイリノーゲンォキシダーゼ活性を有するタンパク質、(c)配列番号 2 に示されるアミノ酸配列に対する相同性が 20%以上であり、かつアシフルォルフェン に対する耐性を生物に付与する活性を有することを特徴とする、プロトポルフイリノー ゲンォキシダーゼ活性を有するタンパク質や、(5)ラン藻由来であることを特徴とする 上記 (4)記載のタンパク質に関する。
[0015] また本発明は、(6)上記(1)〜(3)のいずれか記載のプロトポルフイリノーゲンォキ シダーゼ、又は上記 (4)若しくは(5)記載のタンパク質をコードするプロトポルフィリノ 一ゲンォキシダーゼ遺伝子 DN Aや、 (7)下記(d)又は(e)に示すプロトポルフィリノ 一ゲンォキシダーゼ遺伝子 DNA、 (d)配列番号 1に示される塩基配列力 なるプロ トポルフイリノーゲンォキシダーゼ遺伝子 DNA、 (e)配列番号 1に示される塩基配列 において、 1若しくは数個の塩基が欠失、置換又は付加された塩基配列からなり、か つアシフルォルフェンに対する耐性を生物に付与する活性を有することを特徴とする 、プロトポルフイリノーゲンォキシダーゼ活性を有するタンパク質をコードするプロトポ ルフイリノーゲンォキシダーゼ遺伝子 DNAや、 (8)配列番号 1に示される塩基配列 に対して相補的な配列力もなる DNAとストリンジェントな条件下でノヽイブリダィズし、 かつアシフルォルフェンに対する耐性を生物に付与する活性を有することを特徴と する、プロトポルフイリノーゲンォキシダーゼ活性を有するタンパク質をコードするプロ トポルフイリノーゲンォキシダーゼ遺伝子 DNAや、(9)プロトポルフイリノーゲンォキ シダーゼ活性を有するタンパク質が、ラン藻に由来することを特徴とする上記(7)又 は(8)の 、ずれか記載のプロトポルフイリノーゲンォキシダーゼ遺伝子 DNAに関す る。
[0016] また本発明は、(10)上記(6)〜(9)のいずれか記載のプロトポルフイリノーゲンォキ シダーゼ遺伝子 DNAが組み込まれた組換えベクターに関する。
[0017] また本発明は、(11)上記(10)記載の組換えベクターが導入されたことを特徴とす る形質転換体や、(12)形質転換体が、アシフルオルフエンに対する耐性を有するこ とを特徴とする上記(11)記載の形質転換体や、 (13)形質転換体が微生物であるこ とを特徴とする上記(11)又は(12)記載の形質転換体や、(14)形質転換体が植物 であることを特徴とする上記(11)又は(12)記載の形質転換体や、 (15)光合成能が 向上したことを特徴とする上記(14)記載の形質転換体に関する。
[0018] また本発明は、(16)上記(11)〜(15)のいずれか記載の形質転換体を用いた、プ ロトボルフイリノーゲンォキシダーゼ阻害活性能の評価方法や、(17)上記(11)〜(1 6)の 、ずれか記載の形質転換体を用いた、プロトポルフイリノーゲンォキシダーゼ阻 害剤のスクリーニング方法に関する。
[0019] また本発明は、(18)以下の(f)〜 (j)の工程を含む、ラン藻のプロトポルフイリノーゲ ンォキシダーゼ遺伝子の単離方法、 (f)シロイヌナズナのプロトポルフイリノーゲンォ キシダーゼ遺伝子をラン藻に導入する工程;(g)トランスポゾンを用いてラン藻の遺伝 子を破壊する工程; (h)プロトポルフイリノーゲンォキシダーゼ遺伝子が破壊された株 を選抜する工程; (i)破壊されたプロトポルフイリノーゲンォキシダーゼ遺伝子を特定 する工程;(j)破壊されたプロトポルフイリノーゲンォキシダーゼ遺伝子を単離するェ 程;に関する。
[0020] また本発明は、(19)上記 (4)又は(5)記載のタンパク質の、プロトポルフイリノーゲ ンォキシダーゼとしての使用方法や、(20)上記 (4)又は(5)記載のタンパク質を、プ ロトボルフイリノーゲン IXと人為的に接触させてプロトポルフィリン IXに転換する方法 や、(21)上記(6)〜(9)のいずれか記載の DNAの、プロトポルフイリノーゲンォキシ ダーゼ遺伝子としての使用方法や、 (22)上記(6)〜(9)の 、ずれか記載の DNAを 人為的に発現させ、その発現産物を、プロトポルフイリノーゲン IXと接触させてプロト ボルフイリン IXに転換する方法に関する。
[0021] さらに本発明は、(23)以下の 1)〜5)の工程を含む、特定生物における所定の機 能を有するタンパク質をコードする遺伝子の単離方法、 1)特定生物以外の他の生物 から所定の機能を相補するタンパク質をコードする遺伝子を、特定生物に導入して 形質転換体を作製する工程; 2)形質転換体の遺伝子を変異処理等によりランダムに 破壊して形質転換体の変異株を作製する工程; 3)所定の機能を相補するタンパク質 に作用し、所定の機能を有するタンパク質に作用しない薬剤を用いて、あるいは、培 養条件を変化させることにより、所定の機能を有するタンパク質をコードする遺伝子が 破壊された変異株を選抜する工程; 4)破壊された所定の機能を有するタンパク質を コードする遺伝子を特定する工程; 5)破壊された所定の機能を有するタンパク質をコ ードする遺伝子を単離する工程、に関する。
[0022] また本発明は、(24)変異処理が、トランスポゾンを用いた変異処理であることを特 徴とする上記(23)記載の遺伝子の単離方法や、 (25)特定生物以外の他の生物か ら所定の機能を相補するタンパク質力 シロイヌナズナのプロトポルフイリノーゲンォ キシダーゼであることを特徴とする上記(23)又は(24)記載の遺伝子の単離方法や
、(26)所定の機能を相補するタンパク質に作用し、所定の機能を有するタンパク質 に作用しな 、薬剤が、アシフルオルフエンであることを特徴とする上記(25)記載の遺 伝子の単離方法や、(27)特定生物における所定の機能を有するタンパク質が、ラン 藻のプロトポルフイリノーゲンォキシダーゼであることを特徴とする上記(25)又は(26 )記載の遺伝子の単離方法に関する。
図面の簡単な説明
[0023] [図 1]配列番号 2に示されるアミノ酸配列と、ラン藻由来の機能未知の遺伝子がコード するアミノ酸配列とのアラインメント。
[図 2]配列番号 2に示されるアミノ酸配列と、他の生物由来の機能未知の遺伝子がコ ードするアミノ酸配列とのアラインメント。
[図 3]シネコシステイスの slrl790遺伝子破壊用コンストラクト(pslrl790SKM 6. 4kb) を示す図である。
[図 4]プロトポリフィリン IXのサンプル (A)、 slrl790の遺伝子破壊株の抽出液 (C)、お よび野生株の抽出液 (B)に関する、プロトポリフィリン IXのクロマトグラムを示す図であ る。
[図 5]pBI121の概略を示す図である。
[図 6]pBIslrl790の概略を示す図である。
発明を実施するための最良の形態
[0024] 本発明のプロトポルフイリノーゲンォキシダーゼは、アシフルオルフエンに対する耐 性を生物に付与する活性を有する。ここで、 「アシフルオルフエンに対する耐性を生 物に付与する活性を有するプロトポルフイリノーゲンォキシダーゼ」とは、適当な生物 中に、そのプロトポルフイリノーゲンォキシダーゼを導入し、該酵素をその生物中で適 当に発現させた場合に、その生物のアシフルオルフエンに対する耐性が向上するよ うなプロトポルフイリノーゲンォキシダーゼを意味する。その生物のアシフルオルフエ ンに対する耐性が向上したかどうかは、例えば、アシフルオルフエンの、その生物に 対する 48時間後の LC50値が、該酵素を導入する前に比べて、該酵素を導入した 後に向上したかどうかを確認することによって調べることができる。また、特に生物が 植物であるときは、例えば、特定量のアシフルオルフエンを植物の栽培土壌に施用し た場合に、前記酵素を植物中で適当に発現させる前の植物に比べて、前記酵素を 植物中で適当に発現させた植物が黄化、褐変若しくは枯ィ匕する程度が低減すること を確認したり、同程度の黄化、褐変若しくは枯ィ匕を生じさせるのに必要なアシフルォ ルフ ンの単位面積当たりの施用量力 前記酵素を植物中で適当に発現させる前の 植物に比べて、前記酵素を植物中で適当に発現させた植物において増加することを 確認するなどして、その植物のアシフルオルフエンに対する耐性が向上したかどうか を調べることができる。なお、アシフルオルフエンに対する耐性の向上の程度は特に 制限されないが、アシフルオルフエンの、その生物に対する 48時間後の LC50値、 又は同程度の黄化、褐変若しくは枯ィ匕を生じさせるのに必要なアシフルオルフエンの 単位面積当たりの施用量が、その生物に該酵素を導入する前に比べて 1. 1倍以上 に向上することが好ましぐ 1. 5倍以上に向上することがより好ましぐ 2倍以上に向 上することがさらに好ましぐ 3倍以上に向上することが最も好ましい。
[0025] また、本発明の「アシフルオルフエンに対する耐性を生物に付与する活性を有する プロトポルフイリノーゲンォキシダーゼ」には、該プロトポルフィリノ一ゲンォキシダーゼ 自体が、アシフルオルフエンに対する耐性を有している場合も含まれる。ここで、「プ ロトボルフイリノーゲンォキシダーゼ自体力 アシフルオルフエンに対する耐性を有し ている」とは、 1 μ Μのアシフルオルフエンを含む適当な溶媒中におけるプロトポルフ イリノーゲンォキシダーゼの比活性力 アシフルオルフエン非存在下におけるプロトポ ルフイリノーゲンォキシダーゼの比活性の 50分の 1以上、好ましくは 20分の 1以上、 より好ましくは 10分の 1以上であることを意味する。ここで「プロトポルフイリノーゲンォ キシダーゼ活性」とは、プロトポルフイリノーゲン IXを酸化してプロトポルフィリン IXを生 成する酵素活性を ヽぅ。あるタンパク質のプロトポルフイリノーゲンォキシダーゼ比活 性は、そのタンパク質とプロトポルフイリノーゲン IXを適当なバッファー又は塩溶液中 で接触させ、プロトポルフィリン IXの生成量を調べたりするなどして容易に確認するこ とができる。また、「アシフルオルフエンに対する耐性を生物に付与する活性を有する 」における「生物」は、特に制限されず、植物であっても微生物であってもよいが、植 物であることが好ましぐ中でもシロイヌナズナ、タバコ、トウモロコシ、イネ、ムギ類(コ ムギ、ォォムギ等)、ィモ類 (ジャガイモ等)であることが好ましい。
[0026] 本発明のプロトポルフイリノーゲンォキシダーゼは、アシフルオルフエンに対する耐 性を生物に付与する活性を有している限り、ラン藻由来でなくてもよいが、ラン藻由来 であってもよい。ラン藻は特に制限されないが、例えば、シネコシスティス属、アナべ ナ属、グロェォバクター属、プロクロロコッカス属、シネココッカス属、ロドシュードモナ ス属等に属するラン藻が挙げられ、より具体的には、シネコシスティス PCC6803、ァ ナベナ PCC7120、グロェォパクタービオラセウス PCC7421、プロクロロコッカスマ リナス SS 120、プロクロロコッカスマリナス MIT9313、プロクロロコッカスマリナス M ED4、シネココッカス WH8102、ロドシユードモナスパルストリス等が挙げられる。こ れらのうち、シネコシスティス属に属するラン藻が好ましぐシネコシスティス PCC680 3がより好ましい。
[0027] 本発明において、「ラン藻に由来するプロトポルフイリノーゲンォキシダーゼ」とは、 実際にラン藻に存在するプロトポルフイリノーゲンォキシダーゼのほ力、そのプロトポ ルフイリノーゲンォキシダーゼと同一である限り、形質転換等の手法を用いてラン藻 以外の微生物等によって発現されたプロトポルフイリノーゲンォキシダーゼも含む意 味で用いられる。
[0028] 本発明のタンパク質は、(1)配列番号 2に示されるアミノ酸配列からなるタンパク質 、(2)配列番号 2に示されるアミノ酸配列、配列番号 2のアミノ酸番号 1〜34及び 48 〜 176に記載のアミノ酸配列、並びに配列番号 2のアミノ酸番号 1〜34及び 48〜 19 3に記載のアミノ酸配列の 、ずれかのアミノ酸配列にお 、て、 1若しくは数個のァミノ 酸が欠失、置換又は付加されたアミノ酸配列を含み、かつアシフルオルフエンに対す る耐性を生物に付与する活性を有し、かつプロトポルフイリノーゲンォキシダーゼ活 性を有するタンパク質、及び、(3)配列番号 2に示されるアミノ酸配列、配列番号 2の アミノ酸番号 1〜34及び 48〜176に記載のアミノ酸配列、並びに配列番号 2のァミノ 酸番号 1〜34及び 48〜 193に記載のアミノ酸配列の!/、ずれかのアミノ酸配列に対 する相同性が 20%以上であり、かつアシフルオルフエンに対する耐性を生物に付与 する活性を有し、かつプロトポルフイリノーゲンォキシダーゼ活性を有するタンパク質 、のいずれかに示すタンパク質である。以下、これらの本発明のタンパク質を総称し て「本件タンパク質」と 、うことがある。
[0029] 本発明の上記タンパク質(2)は、配列番号 2に示されるアミノ酸配列、配列番号 2の アミノ酸番号 1〜34及び 48〜176に記載のアミノ酸配列、並びに配列番号 2のァミノ 酸番号 1〜34及び 48〜 193に記載のアミノ酸配列の!/、ずれかのアミノ酸配列にお!/ヽ て、 1若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列を含み、かつ アシフルォルフェンに対する耐性を生物に付与する活性を有し、かつプロトポルフィ リノ一ゲンォキシダーゼ活性を有するタンパク質であれば特に制限されな 、が、配列 番号 2に示されるアミノ酸配列において、 1若しくは数個のアミノ酸が欠失、置換又は 付加されたアミノ酸配列力もなり、かつアシフルオルフエンに対する耐性を生物に付 与する活性を有し、かつプロトポルフイリノーゲンォキシダーゼ活性を有するタンパク 質や、配列番号 2のアミノ酸番号 1〜34及び 48〜 176に記載のアミノ酸配列にお!/ヽ て、 1若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列を含み、かつ 該アミノ酸番号 1〜34のアミノ酸配列に対応するアミノ酸配列と、該アミノ酸番号 48〜 176のアミノ酸配列に対応するアミノ酸配列との間に 10〜 16個、好ましくは 12〜 14 個、より好ましくは 13個の任意のアミノ酸配列を有するアミノ酸配列力もなり、さらにァ シフルオルフエンに対する耐性を生物に付与する活性を有し、かつプロトポルフィリノ 一ゲンォキシダーゼ活性を有するタンパク質や、配列番号 2のアミノ酸番号 1〜 34及 び 48〜 193に記載のアミノ酸配列において、 1若しくは数個のアミノ酸が欠失、置換 又は付加されたアミノ酸配列を含み、かつ該アミノ酸番号 1〜34のアミノ酸配列に対 応するアミノ酸配列と、該アミノ酸番号 48〜 193のアミノ酸配列に対応するアミノ酸と の間に 10〜16個、好ましくは 12〜14個、より好ましくは 13個の任意のアミノ酸配列 を有するアミノ酸配列力 なり、さらにアシフルオルフエンに対する耐性を生物に付与 する活性を有し、かつプロトポルフイリノーゲンォキシダーゼ活性を有するタンパク質 が好ましく挙げられる。ここで、アミノ酸番号 m〜nのアミノ酸配列に対応するアミノ酸 配列とは、アミノ酸番号 m〜nのアミノ酸配列において、 1若しくは数個のアミノ酸が欠 失、置換又は付加されたアミノ酸配列のことを意味する。
上記「1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列」とは 、例えば 1〜20個、好ましくは 1〜15個、より好ましくは 1〜: LO個、さらに好ましくは 1 〜5個、最も好ましくは 1〜3個の任意の数のアミノ酸が欠失、置換若しくは付加され たアミノ酸配列を意味する。 [0031] 本発明にお 、て「プロトポルフイリノーゲンォキシダーゼ活性を有する」とは、プロト ボルフイリノーゲン IXを酸ィ匕してプロトポルフィリン IXを生成する酵素活性を有すること を 、う。あるタンパク質がプロトポルフイリノーゲンォキシダーゼ活性を有するかどうか は、そのタンパク質とプロトポルフイリノーゲン IXを適当なバッファー又は塩溶液中で 接触させ、プロトポルフィリン IXの生成を調べることで容易に確認することができる。
[0032] また、「アシフルオルフエンに対する耐性を生物に付与する活性を有するタンパク質 」とは、適当な生物中に、そのタンパク質を導入し、そのタンパク質をその生物中で適 当に発現させた場合に、その生物のアシフルオルフエンに対する耐性が向上するよ うなタンパク質を意味する。その生物のアシフルオルフエンに対する耐性が向上した かどうかは、例えば、アシフルオルフエンの、その生物に対する 48時間後の LC50値 1S そのタンパク質を導入する前に比べて、そのタンパク質を導入した後に向上した 力どうかを確認することによって調べることができる。また、特に生物が植物であるとき は、例えば、特定量のアシフルオルフエンを植物の栽培土壌に施用した場合に、前 記タンパク質を植物中で適当に発現させる前の植物に比べて、前記タンパク質を植 物中で適当に発現させた植物が黄化、褐変若しくは枯ィ匕する程度が低減することを 確認したり、同程度の黄化、褐変若しくは枯ィ匕を生じさせるのに必要なアシフルオル フェンの単位面積当たりの施用量力 前記タンパク質を植物中で適当に発現させる 前の植物に比べて、前記タンパク質を植物中で適当に発現させた植物において増 加することを確認するなどして、その植物のアシフルオルフエンに対する耐性が向上 したかどうかを調べることができる。なお、アシフルオルフエンに対する耐性の向上の 程度は特に制限されないが、アシフルオルフエンの、その生物に対する 48時間後の LC50値、又は同程度の黄化、褐変若しくは枯ィ匕を生じさせるのに必要なアシフルォ ルフェンの単位面積当たりの施用量力 その生物にそのタンパク質を導入する前に 比べて 1. 1倍以上に向上することが好ましぐ 1. 5倍以上に向上することがより好まし ぐ 2倍以上に向上することがさらに好ましぐ 3倍以上に向上することが最も好ましい
[0033] また、本発明の「アシフルオルフエンに対する耐性を生物に付与する活性を有する タンパク質」には、そのタンパク質自体力 アシフルオルフエンに対する耐性を有して いる場合も含まれる。ここで、「そのタンパク質自体力 アシフルオルフエンに対する 耐性を有している」とは、 1 μ Μのアシフルオルフエンを含む適当な溶媒中における そのタンパク質の比活性 (プロトポルフイリノーゲンォキシダーゼ活性に関する)力 ァ シフルオルフエン非存在下における比活性 (プロトポルフイリノーゲンォキシダーゼ活 性に関する)の 50分の 1以上、好ましくは 20分の 1以上、より好ましくは 10分の 1以上 であることを意味する。ここで「プロトポルフイリノーゲンォキシダーゼ活性」とは、プロト ボルフイリノーゲン IXを酸化してプロトポルフィリン IXを生成する酵素活性を 、う。ある タンパク質の比活性 (プロトポルフイリノーゲンォキシダーゼ活性に関する)は、そのタ ンパク質とプロトポルフイリノーゲン IXを適当なバッファー又は塩溶液中で接触させ、 プロトポルフィリン IXの生成量を調べたりするなどして容易に確認することができる。ま た、「アシフルオルフエンに対する耐性を生物に付与する活性を有する」における「生 物」は、特に制限されないが、植物及び微生物が好ましぐ植物が特に好ましい。 本発明の上記タンパク(3)は、配列番号 2に示されるアミノ酸配列(slrl790)、配列 番号 2のアミノ酸番号 1〜34及び 48〜176に記載のアミノ酸配列、並びに配列番号 2のアミノ酸番号 1〜34及び 48〜193に記載のアミノ酸配列のいずれかのアミノ酸配 列に対する相同性が 20%以上であり、かつアシフルオルフエンに対する耐性を生物 に付与する活性を有し、かつプロトポルフイリノーゲンォキシダーゼ活性を有するタン パク質である限り特に制限されないが、配列番号 2に示されるアミノ酸配列、配列番 号 2のアミノ酸番号 1〜34及び 48〜176に記載のアミノ酸配列、並びに配列番号 2 のアミノ酸番号 1〜34及び 48〜193に記載のアミノ酸配列のいずれかのアミノ酸配 列に対するその相同性は、 45%以上であることが好ましぐ 54%以上であることがよ り好ましぐ 65%以上であることがさらに好ましぐ 80%以上であることがより好ましぐ 90%以上であることがさらに好ましぐ 95%以上であることが最も好ましい。ここで、 本発明にお 、て「アミノ酸番号 o〜p及び q〜rに記載のアミノ酸配列に対する相同性 力 %以上」とは、アミノ酸番号 o〜pのアミノ酸配列とアミノ酸番号 q〜rのアミノ酸配 列とをこの順に有し、かつアミノ酸番号 o〜pのアミノ酸配列とアミノ酸番号 q〜rのアミ ノ酸配列との間に 10〜16個、好ましくは 12〜14個、より好ましくは 13個の任意のァ ミノ酸配列を有するアミノ酸配列に対する相同性カ¾%以上であることを意味する。上 記タンパク(3)における「アシフルオルフエンに対する耐性を生物に付与する活性を 有するタンパク質」、及び「アシフルオルフエンに対する耐性を生物に付与する活性 を有するタンパク質」並びにそれらの好ましい態様は、上記タンパク(2)におけるそれ らのタンパク質と同様の意味である。
[0035] なお、本発明の配列番号 2に示されるアミノ酸配列と相同性の高いタンパク質を BL ASTで検索したところ、配列番号 2に示されるアミノ酸配列と相同性の高いアミノ酸配 列をコードする機能未知の遺伝子がいくつ力示された。そのうち、ラン藻由来の機能 未知の遺伝子を以下の表 1に示す。また、その遺伝子がコードするアミノ酸配列と、 本発明の配列番号 2に示されるアミノ酸配列との相同性(%)も表 1に示す。これらも、 本件タンパク質に含まれる。なお、本発明の配列番号 2に示されるアミノ酸配列は、 後述の実施例に記載されて 、るように、シネコシスティス PCC6803由来の slrl 790遺 伝子にコードされるアミノ酸配列であることが本発明者らによって明ら力となったもの である。
[0036] [表 1]
Figure imgf000015_0001
[0037] また、表 1に示した遺伝子がコードするアミノ酸配列のアラインメントを以下の図 1に 示す。
[0038] 図 1のアラインメントでは、 7遺伝子すべてで共通するアミノ酸の下にアスタリスクを 付している。また、 4〜6遺伝子で共通するアミノ酸の下にはドットを付している。表 1 及び図 1から分かるように、シネコシスティス PCC6803以外の 7種のラン藻のこれら のアミノ酸配列は、シネコシスティス PCC6803の slrl790遺伝子がコードするアミノ酸 と相同性が高ぐさらに特定の領域がよく保存されている。したがって、シネコシスティ ス PCC6803の slrl790遺伝子以外のこれらの遺伝子がコードするタンパクも、シネコ システィス PCC6803の slrl790遺伝子がコードするタンパク(配列番号 2のアミノ酸配 列)と同様に、アシフルオルフエンに対する耐性を生物に付与する活性を有するプロ トポルフイリノーゲンォキシダーゼであると予想される。なお、図 1のアラインメントから 、本発明のプロトポルフイリノーゲンォキシダーゼは、配列番号 2に示されるアミノ酸 配列又は配列番号 1に示される塩基配列の中でも、配列番号 2のアミノ酸番号 1〜3 4及び 48〜193に記載のアミノ酸配列(配列番号 1の塩基番号 1〜102及び 142〜5 82に記載の塩基配列)、特に、配列番号 2のアミノ酸番号 1〜34及び 48〜176に記 載のアミノ酸配列(配列番号 1の塩基番号 1〜102及び 142〜528に記載の塩基配 列)の保存性が高ぐこれらの部分の配列が該酵素の性質に重要な役割を果たして いることが予想される。
[0039] また、配列番号 2に示されるアミノ酸配列と相同性の高いアミノ酸配列をコードする 遺伝子として BLAST検索で示された遺伝子のうち、ラン藻以外の生物由来の遺伝 子を以下の表 2に示す。これら遺伝子の発現産物も、本件タンパク質に含まれる。
[0040] [表 2]
Figure imgf000016_0001
[0041] また、表 2に示した遺伝子がコードするアミノ酸配列のアラインメントを以下の図 2に 示す。
[0042] 図 2のアラインメントでは、 5遺伝子すべてで共通するアミノ酸の下にアスタリスクを 付している。また、 3遺伝子で共通するアミノ酸の下にはドットを付している。表 2及び 図 2から分かるように、シネコシスティス PCC6803以外の 4種の生物のこれらのァミノ 酸配列は、シネコシスティス PCC6803の slrl790遺伝子がコードするアミノ酸と相同 性が高ぐさらに特定の領域がよく保存されている。したがって、シネコシスティス PC C6803の slrl790遺伝子以外のこれらの遺伝子がコードするタンパクも、シネコシステ イス PCC6803の slrl790遺伝子がコードするタンパク(配列番号 2のアミノ酸配列)と 同様に、アシフルオルフエンに対する耐性を生物に付与する活性を有するプロトポル フイリノーゲンォキシダーゼであると予想される。
[0043] 本発明はまた、上記の本件タンパク質のプロトポルフイリノーゲンォキシダーゼとし ての使用方法に関する。ここで、「プロトポルフイリノーゲンォキシダーゼとしての使用 」とは、例えば、本件タンパク質を、インビトロ又はインビボにおいて基質プロトポルフ イリノーゲン IXと人為的に接触させて、反応生成物プロトポルフィリン IXが生成する反 応に使用することなど意味し、本件タンパク質がプロトポルフイリノーゲンォキシダー ゼ活性を有すると 、う知見は本発明によりはじめて明らかにされた全く新 、知見で ある。また本発明の本件タンパク質をプロトポルフイリノーゲン IXと人為的に接触させ てプロトポルフィリン IXに転換する方法における「人為的に接触させる」とは、インビト 口又はインビボにおいて人為的に接触させることを意味し、例えば、ラン藻細胞内に おける非人為的な接触は含まれな 、。
[0044] 本発明のプロトポルフイリノーゲンォキシダーゼ遺伝子 DNAは、(1)本発明のプロ トポルフイリノーゲンォキシダーゼ又は本件タンパク質をコードするプロトポルフィリノ 一ゲンォキシダーゼ遺伝子 DNA、 (2)配列番号 1に示される塩基配列からなるプロト ボルフイリノーゲンォキシダーゼ遺伝子 DNA、(3)配列番号 1の塩基配列、配列番 号 1の塩基番号 1〜102及び 142〜528に記載の塩基配列、並びに配列番号 1の塩 基番号 1〜102及び 142〜582に記載の塩基配列のいずれかの塩基配列において 、 1若しくは数個の塩基が欠失、置換又は付加された塩基配列を含み、かつアシフル オルフエンに対する耐性を生物に付与する活性を有することを特徴とする、プロトポ ルフイリノーゲンォキシダーゼ活性を有するタンパク質をコードするプロトポルフィリノ 一ゲンォキシダーゼ遺伝子 DNA、及び、(4)配列番号 1の塩基配列、配列番号 1の 塩基番号 1〜102及び 142〜528に記載の塩基配列、並びに配列番号 1の塩基番 号 1〜102及び 142〜582に記載の塩基配列のいずれかの塩基配列に対して相補 的な配列からなる DNAとストリンジェントな条件下でハイブリダィズし、かつアシフル オルフエンに対する耐性を生物に付与する活性を有することを特徴とする、プロトポ ルフイリノーゲンォキシダーゼ活性を有するタンパク質をコードするプロトポルフィリノ 一ゲンォキシダーゼ遺伝子 DNA、の!、ずれかのプロトポルフイリノーゲンォキシダー ゼ遺伝子 DNAである。これらの本発明のプロトポルフイリノーゲンォキシダーゼ遺伝 子 DNAを総称して「本件遺伝子 DNA」 t\ヽぅことがある。
本発明の上記 DNA(2)は、配列番号 1に示される塩基配列、配列番号 1の塩基番 号 1〜102及び 142〜528に記載の塩基配列、並びに配列番号 1の塩基番号 1〜1 02及び 142〜582に記載の塩基配列のいずれかの塩基配列において、 1若しくは 数個の塩基が欠失、置換又は付加された塩基配列を含み、かつアシフルォルフェン に対する耐性を生物に付与する活性を有することを特徴とする、プロトポルフイリノー ゲンォキシダーゼ活性を有するタンパク質をコードするプロトポルフイリノーゲンォキ シダーゼ遺伝子 DNAであれば特に制限されな!ヽが、配列番号 1に示される塩基配 列において、 1若しくは数個の塩基が欠失、置換又は付加された塩基配列からなり、 かつアシフルォルフェンに対する耐性を生物に付与する活性を有することを特徴と する、プロトポルフイリノーゲンォキシダーゼ活性を有するタンパク質をコードするプロ トポルフイリノーゲンォキシダーゼ遺伝子 DNAや、配列番号 1の塩基番号 1〜102及 び 142〜528に記載の塩基配列において、 1若しくは数個の塩基が欠失、置換又は 付加された塩基配列を含み、かつ該塩基番号 1〜102の塩基配列に対応する塩基 配列と、該塩基番号 142〜528の塩基配列に対応する塩基配列との間に 30〜48 ( 但し 3の倍数に限る)個、好ましくは 36〜42 (但し 3の倍数に限る)個、より好ましくは 3 9個の任意の塩基配列を有する塩基配列力 なり、さらにアシフルオルフ ンに対す る耐性を生物に付与する活性を有することを特徴とする、プロトポルフイリノーゲンォ キシダーゼ活性を有するタンパク質をコードするプロトポルフイリノーゲンォキシダー ゼ遺伝子 DNAや、配列番号 1の塩基番号 1〜102及び 142〜582に記載の塩基配 列において、 1若しくは数個の塩基が欠失、置換又は付加された塩基配列を含み、 かつ該塩基番号 1〜: L02の塩基配列に対応する塩基配列と、該塩基番号 142〜58 2の塩基配列に対応する塩基配列との間に 30〜48 (但し 3の倍数に限る)個、好まし くは 36〜42 (但し 3の倍数に限る)個、より好ましくは 39個の任意の塩基配列を有す る塩基配列カゝらなり、さらにアシフルオルフエンに対する耐性を生物に付与する活性 を有することを特徴とする、プロトポルフイリノーゲンォキシダーゼ活性を有するタンパ ク質をコードするプロトポルフイリノーゲンォキシダーゼ遺伝子 DNAが好ましく挙げら れる。ここで、塩基番号 m〜nの塩基配列に対応する塩基配列とは、塩基番号 m〜n の塩基配列において、 1若しくは数個の塩基が欠失、置換又は付加された塩基配列 のことを意味する。
[0046] 上記「1若しくは数個の塩基が欠失、置換若しくは付加された塩基配列」とは、例え ば 1〜20個、好ましくは 1〜15個、より好ましくは 1〜10個、さらに好ましくは 1〜5個 、最も好ましくは 1〜3個の任意の数の塩基が欠失、置換若しくは付加された塩基配 列を意味する。
[0047] 例えば、これら 1若しくは数個の塩基が欠失、置換若しくは付加された塩基配列か らなる DNA (変異 DNA)は、化学合成、遺伝子工学的手法、突然変異誘発などの 当業者に既知の任意の方法により作製することもできる。具体的には、配列番号 1に 示される塩基配列からなる DNAに対し、変異原となる薬剤と接触作用させる方法、 紫外線を照射する方法、遺伝子工学的な手法等を用いて、これら DNAに変異を導 入することにより、変異 DNAを取得することができる。遺伝子工学的手法の一つであ る部位特異的変異誘発法は特定の位置に特定の変異を導入できる手法であること 力ら 用であり、 Molecular Cloning: A Laboratory Manual, 2nd Ecu, Cold Spring Har bor Laboratory Press, Cold Spring Harbor, N.Y., 1989 (以後、モレキュラークロー- ング第 2版と略す)等に記載の方法に準じて行うことができる。この変異 DNAを適切 な発現系を用いて発現させることにより、 1若しくは数個のアミノ酸が欠失、置換若しく は付加されたアミノ酸配列力もなるタンパク質を得ることができる。
[0048] 上記「ストリンジェントな条件でハイブリダィズする DNA」とは、 DNA又は RNAなど の核酸をプローブとして使用し、コロニ一'ハイブリダィゼーシヨン法、プラークハイブ リダィゼーシヨン法、あるいはサザンブロットハイブリダィゼーシヨン法等を用いること により得られる DNAを意味し、具体的には、コロニーあるいはプラーク由来の DNA または該 DNAの断片を固定化したフィルターを用いて、 0. 7〜1. 0Mの NaCl存在 下、 65°Cでハイブリダィゼーシヨンを行った後、 0. 1〜2倍程度の SSC溶液(1倍濃 度の SSC溶液の組成は、 150mM塩化ナトリウム、 15mMクェン酸ナトリウム)を用い 、 65°C条件下でフィルターを洗浄することにより同定できる DNAをあげることができ る。ノ、イブリダィゼーシヨンは、モレキュラークローユング第 2版等に記載されている方 法に準じて行うことができる。
[0049] 例えば、ストリンジェントな条件下でハイブリダィズすることができる DNAとしては、 プローブとして使用する DNAの塩基配列と一定以上の相同性を有する DNAを挙げ ることができ、例えば、配列番号 1の塩基配列、配列番号 1の塩基番号 1〜102及び 142〜528に記載の塩基配列、並びに配列番号 1の塩基番号 1〜102及び 142〜5 82に記載の塩基配列のいずれかの塩基配列に対して 60%以上、好ましくは 70%以 上、より好ましくは 80%以上、さらに好ましくは 90%以上、特に好ましくは 95%以上、 最も好ましくは 98%以上の相同性を有する DNAを好適に例示することができる。ここ で、本発明にお 、て「塩基酸番号 s〜t及び u〜vに記載の塩基配列に対する相同性 カ¾%以上」とは、塩基番号 s〜tの塩基配列と塩基番号 u〜vの塩基配列とをこの順 に有し、かつ塩基番号 s〜tの塩基配列と塩基番号 u〜vの塩基配列との間に 30〜4 8 (但し 3の倍数に限る)個、好ましくは 36〜42 (但し 3の倍数に限る)個、より好ましく は 39個の任意の塩基配列を有する塩基配列に対する相同性カ¾%以上であること を意味する。また、ストリンジェントな条件下でノヽイブリダィズすることができる DNAと して、配列番号 2に示されるアミノ酸配列、配列番号 2のアミノ酸番号 1〜34及び 48 〜 176に記載のアミノ酸配列、並びに配列番号 2のアミノ酸番号 1〜34及び 48〜 19 3に記載のアミノ酸配列のいずれかのアミノ酸配列に対して 20%以上、好ましくは 45 %以上、より好ましくは 54%以上、さらに好ましくは 65%以上、より好ましくは 80%以 上、さらに好ましくは 90%以上、最も好ましくは 95%以上の相同性を有するアミノ酸 配列をコードする DNAを好適に例示することができる。
[0050] 本発明はまた、上記の本件 DNAのプロトポルフイリノーゲンォキシダーゼ遺伝子と しての使用方法に関する。ここで、「プロトポルフイリノーゲンォキシダーゼ遺伝子とし ての使用」とは、例えば、本件 DNAをインビトロ又はインビボにおいて人為的に発現 させ、その発現産物であるプロトポルフイリノーゲンォキシダーゼを、基質プロトポルフ イリノーゲン IXと接触させて反応生成物プロトポルフィリン IXを生成させる反応に使用 することなど意味し、本件 DNAの発現産物がプロトポルフイリノーゲンォキシダーゼ 活性を有すると 、う知見は本発明によりはじめて明らかにされた全く新し 、知見であ る。本件 DNAのプロトポルフイリノーゲンォキシダーゼ遺伝子として使用することによ り、例えば、アシフルオルフエンに対して耐性を有していない生物に、アシフルオルフ ェン耐性を付与することができる。また本発明の本件 DNAを人為的に発現させ、そ の発現産物を、プロトポルフイリノーゲン IXと接触させてプロトポルフィリン IXに転換す る方法における「人為的に発現させ」とは、インビトロ又はインビボにおいて人為的に 発現させることを意味し、例えば、ラン藻細胞内における非人為的な発現は含まれな い。
[0051] 本件タンパク質、本件遺伝子 DNAの単離方法は特に制限されず、分子遺伝学的 方法、酵素学的方法など一般に知られている方法で得られたものであってもよいが、 既知のプロトポルフイリノーゲンォキシダーゼとの相同性が低いプロトポルフイリノーゲ ンォキシダーゼをコードする遺伝子 DNAを単離する場合は、(f)シロイヌナズナのプ ロトボルフイリノーゲンォキシダーゼ遺伝子をラン藻に導入する工程;(g)トランスポゾ ンを用いてラン藻の遺伝子を破壊する工程;(h)プロトポルフイリノーゲンォキシダー ゼ遺伝子が破壊された株を選抜する工程; (i)破壊されたプロトポルフイリノーゲンォ キシダーゼ遺伝子を特定する工程;(j)破壊されたプロトポルフイリノーゲンォキシダ ーゼ遺伝子を単離する工程を含む、プロトポルフイリノーゲンォキシダーゼ遺伝子の 単離方法を用いるのが好ま 、。
[0052] 採取源となる生物としては、アシフルオルフエンに対して耐性を有して 、な 、生物 であってもよいが、アシフルオルフエンに対して耐性を有していることが好ましい。以 下、アシフルォルフェンに対して耐性を有して ヽる生物を採取源とした場合の方法を 述べ。。
採取源となる生物のプロトポルフイリノーゲンォキシダーゼが欠損しても、その生物が 生育できるように、変異原処理前に、その生物の近縁の生物等に由来するプロトポル フイリノーゲンォキシダーゼ遺伝子を採取源となる生物にあらカゝじめ導入し、その近 縁の生物等に由来するプロトポルフイリノーゲンォキシダーゼ遺伝子を、採取源とな る生物内で発現させる。なお、その近縁の生物由来のプロトポルフイリノーゲンォキシ ダーゼは、アシフルオルフエンに耐性を示さな 、ことが確認されて 、るものを用いる。 次に、採取源となるその生物に対して、トランスポゾンを利用した変異原処理を行い、 得られた変異体にっ 、てアシフルオルフエン(ジフエ-ルエーテル系除草剤)を用い たスクリーニングを行う。採取源となる生物はアシフルオルフエンに耐性を示す力 そ の近縁の生物等に由来するプロトポルフイリノーゲンォキシダーゼはアシフルオルフ ェンに耐性を示さない (感受性を示す)。従って、その近縁の生物等に由来するプロト ボルフイリノーゲンォキシダーゼ遺伝子を導入した採取源 (プロトポルフイリノーゲンォ キシダーゼ欠損株)は、アシフルオルフエンに感受性を示す。そこで、アシフルオルフ ェン処理しな 、場合は通常に生育し、アシフルオルフエン処理した場合にアシフルォ ルフェン感受性を示した変異株を選抜する。例えば、実施例 3に記載の方法等により 、アシフルオルフエンに感受性を示した株について、トランスポゾンの挿入位置を解 析することによって遺伝子を特定することができる。このようにして、採取源由来のァ シフルオルフエンに而性を示すプロトポルフイリノーゲンォキシダーゼをコードする遺 伝子を単離することができる。
[0053] 本発明にお 、てプロトポルフイリノーゲンォキシダーゼ遺伝子の採取源として使用 する生物は、既存のプロトポルフイリノーゲンォキシダーゼと低い相同性を示す酵素 を有するものが好まし 、。本発明の既存のプロトポルフイリノーゲンォキシダーゼと低 い相同性を示す遺伝子とは、具体的には例えばタバコ PPX1遺伝子(Genbank acces sion Y13465)に対するアミノ酸レベルでの相同性が 20%未満である遺伝子を意味す る。本発明にお 、てプロトポルフイリノーゲンォキシダーゼ遺伝子の採取源として使 用する生物としては、原核生物が好ましぐラン藻がより好ましぐ入手の容易さや扱 い易さなどからシネコシステイス(Synechocystis sp. PCC6803)のグルコース而性株が 最も好ましい。これらの菌株は、例えばパスツール研究所(Institute Pasteur)より容易 に入手できる。この株の培養条件は、一般的に知られている方法によって行うことが できるが、一定の光の存在下、 30°Cで BG11培地 [Hihara Y, et al. Plant Physiol(199 8) 117:pp.l205]に TES— KOH(pH-8.2)を最終 5mMとなるように調整して行うのが望 ましい。
[0054] 本件遺伝子 DNAの取得方法や調製方法は特に限定されるものでなぐ本明細書 中に開示した配列番号 1に示される塩基配列情報又は配列番号 2に示されるァミノ 酸配列情報に基づいて適当なプローブやプライマーを調製し、それらを用いて例え ばシネコシスティス PCC6803やそれ以外のラン藻等の生物のゲノム DNAライブラリ 一等から目的の遺伝子を単離したり、常法に従って化学合成により調製することがで きる。また、ゲノム DNAの取得とそのクローユングなどはいずれも常法に従って実施 することができる。本件遺伝子 DNAをゲノム DNAライブラリ一力ゝらスクリーニングする 方法は、例えば、モレキュラークローユング第 2版に記載の方法等、当業者により常 用される方法を挙げることができる。また、変異遺伝子又は相同遺伝子としては、配 列番号 1に示される塩基配列又はその一部を有する DNA断片を利用し、他の生物 体等より、該 DNAとホモロジ一が高 、塩基配列をもつ DNAを適当な条件下でスクリ 一-ングすることにより単離することができる。その他、前述の変異 DNAの作製方法 により調製することちできる。
[0055] 本発明の組換えベクターとしては、本件遺伝子 DNAが組み込まれた組換えべクタ 一であれば特に制限されず、本発明の組換えベクターは、本件遺伝子 DNAを発現 ベクターに適切に導入することにより構築することができる。例えば、本件遺伝子 DN Aを適当なプロモーターの下流につないだ構造物を好適に例示することができる。発 現ベクターとしては、宿主細胞において自立複製可能であるものや、あるいは宿主細 胞の染色体中へ組込み可能であるものが好ましぐまた、本発明の遺伝子の発現に 関与するプロモーター、ターミネータ一等の制御配列及び転写制御因子の遺伝子を 含有して!/、るものを好適に使用することができる。
[0056] 細菌用の発現ベクターとしては、例えば、 pUC118(宝酒造社製)、 pUC19 [Gene,33, 103(1985)〕等の pUC系統や pGEMEX- Promega社製)等の pGEM系統、 pKK223- 2( Pharmacia社製)、 pBluescriptll SK(+)、 pBluescriptll SK(- XStratagene社製)等の公知 又は市販のものを例示することができる。
また、細菌用のプロモーターとしては、例えば、 T7ファージプロモーター、 trpプロモ 一ター (P trp), lacプロモーター (P lac), recAプロモーター、 λ PLプロモーター、 λ PR プロモーター、 lppプロモーター、 PSEプロモーター、 SP01プロモーター、 SP02プロモ 一ター、 penPプロモーター等を挙げることができる。
[0057] 植物細胞用の発現ベクターとしては、例えば、 pIG121-Hm [Plant Cell Report, 15, 809-814(1995)]、 pBI121 [EMBO J. 6, 3901—3907(1987)〕、 pLAN411や pLAN421 (Pla nt Cell Reports 10(1991) 286-290)を例示することができる。また、植物用のプロモー ターとしては、例えば、カリフラワーモザイクウイノレス 35Sプロモーター(Mol. Gen. Ge net (1990) 220, 389- 392)等が挙げられる。また、トウモロコシ由来アルコール脱水素 酵素のプロモーター(Maydica 35 (1990) 353-357)、シロイヌナズナ由来 IRE遺伝子 のプロモーター(特開 2000— 270873号公報)等を例示することができる。
[0058] 本発明の形質転換体としては、上記本発明の組換えベクターが導入された形質転 換体であれば特に制限されず、宿主としては、細菌等の微生物や、植物、動物など を挙げることができる力 微生物や植物が好ましい。細菌として、具体的には、例えば ェシエリヒア属細菌、シユードノカルディア属細菌、ストレプトミセス属細菌、バチルス 属細菌、ストレプトコッカス属細菌、スタフイロコッカス属細菌等を挙げることができる。 また、植物として、具体的には、シロイヌナズナ、タバコ、トウモロコシ、イネ、ムギ類 (コ ムギ、ォォムギ等)、ィモ類 (ジャガイモ等)等を挙げることができる。
[0059] 上記本発明の組換えベクターを宿主微生物に導入する方法としては、モレキュラー クロー-ング第 2版など多くの標準的な実験室マニュアルに記載されている方法、例 えば、エレクト口ポレーシヨン、形質導入、形質転換等により行うことができる。また、上 記本発明の組換えベクターを植物に導入する方法としては、パーティクルガン法、ェ レクト口ポレーシヨン法、ァグロバタテリゥム法等を挙げることができる。
[0060] 本発明の組換えベクターが導入された形質転換体、好ましくは形質転換植物は、 アシフルオルフエンに対する耐性を有していると考えられる。ここで、 「アシフルオルフ ェンに対する耐性を有して ヽる形質転換体」とは、本発明の組換えベクターを導入す る前に比べて、アシフルオルフエンに対する耐性が向上した形質転換体を意味する 。その形質転換体のアシフルオルフエンに対する耐性が向上したかどうかは、アシフ ルォルフェンの、その形質転換体に対する 48時間後の LC50値力 その組換えべク ターを導入する前に比べて、その組換えベクターを導入した後に向上した力どうかを 確認することによって調べることができる。また、特に生物が植物であるときは、例え ば、特定量のアシフルオルフエンを植物の栽培土壌に施用した場合に、前記組換え ベクターを植物中で適当に発現させる前の植物に比べて、前記組換えベクターを植 物中で適当に発現させた植物が黄化、褐変若しくは枯ィ匕する程度が低減することを 確認したり、同程度の黄化、褐変若しくは枯ィ匕を生じさせるのに必要なアシフルオル フェンの単位面積当たりの施用量力 前記組換えベクターを植物中で適当に発現さ せる前の植物に比べて、前記組換えベクターを植物中で適当に発現させた植物に お!、て増加することを確認するなどして、その植物のアシフルオルフエンに対する耐 性が向上したかどうかを調べることができる。なお、アシフルオルフエンに対する耐性 の向上の程度は特に制限されないが、アシフルオルフ ンの、その生物に対する 48 時間後の LC50値、又は同程度の黄化、褐変若しくは枯ィ匕を生じさせるのに必要な アシフルオルフエンの単位面積当たりの施用量が、その生物にその組換えベクター を導入する前に比べて 1. 1倍以上に向上することが好ましぐ 1. 5倍以上に向上す ることがより好ましぐ 2倍以上に向上することがさらに好ましぐ 3倍以上に向上するこ とが最も好ましい。
[0061] 例えば、本発明の形質転換体を適当な培地で培養することによって、本件タンパク 質を培養物中に生成蓄積させ、さらに、該培養物から本件タンパク質を採取すること により、本件タンパク質を大量に製造することが可能である。また、形質転難物の 場合、農薬'除草剤としてのアシフルオルフエンを撒布したとき、栽培目的の形質転 ^¾物は生存するが、アシフルオルフエン感受性の雑草は死滅し、選択的に栽培目 的の形質転^ ¾物を育成することができる。
[0062] 本発明の形質転換植物は、光合成能が向上していなくてもよいが、光合成能が向 上して 、ることが好ましく、アシフルオルフエン存在下での光合成能が向上して 、るこ とがより好ましい。本発明の形質転,物は、プロトポルフイリノーゲンォキシダーゼ が多く発現することから光合成能が向上することが期待できる。光合成能が向上して いるかどうかは、本発明の組換えベクターを導入する前の宿主植物の光合成能と、 導入後の形質転換植物の光合成能を比較することにより、確認することができる。ここ で、光合成能が向上しているかどうかは、光合成蒸散測定装置による測定値から算 出された光合成速度を比較したり、一定期間同条件で培養した後の植物体の乾燥 重量を比較するなどして確認することができる。
[0063] 本発明の形質転換体は、プロトポルフイリノーゲンォキシダーゼ阻害活性能の評価 方法に使用することができる。該評価方法は特に制限されないが、例えば、(1)該形 質転換体の宿主を被検物質存在下で培養して生育曲線を記録し;(2)該形質転換 体を(1)と同様の被検物質存在下で培養して生育曲線を記録し;(3)段階(1)と段階 (2)で記録した生育曲線を比較することを含む評価方法が挙げられる。
[0064] また、本発明の形質転換体は、プロトポルフイリノーゲンォキシダーゼ阻害剤のスク リーニング方法にも使用することができる。該スクリーニング方法としては、例えば、上 記の評価方法と同様の方法が挙げられる。
[0065] なお、アシフルオルフエンは、ジフエ-ルエーテル系除草剤の 1種である。本件タン ノ ク質は、アシフルオルフエンに対する耐性を生物に付与する活性を有して!/、るので 、作用機作が類似している他のジフヱ-ルエーテル系除草剤に対する耐性を、その 生物に付与する活性についても有していると考えられる。同様のことが、本件プロトポ ルフイリノーゲンォキシダーゼ及び本発明の形質転換体についても当てはまると考え られる。
[0066] 次に、本発明の特定生物 (例えば、ラン藻)における所定の機能を有するタンパク 質 (例えば、プロトポルフイリノーゲンォキシダーゼ)をコードする遺伝子の単離方法 について説明する。この遺伝子の単離方法は以下の 1)〜5)の工程を含み、既知の タンパク質(例えば、シロイヌナズナ由来のプロトポルフイリノーゲンォキシダーゼ)と 相同な他の生物種由来のタンパク質 (例えば、ラン藻由来のプロトポルフイリノーゲン ォキシダーゼ)力 他の生物種の遺伝子データベースでは見い出すことができない 場合の遺伝子の単離手法として特に有効である。
1)特定生物以外の他の生物から所定の機能を相補するタンパク質をコードする遺伝 子を、特定生物に導入して形質転換体を作製する工程
2)形質転換体の遺伝子をランダムに破壊して形質転換体の変異株を作製する工程
3)所定の機能を相補するタンパク質に作用し、所定の機能を有するタンパク質に作 用しない薬剤を用いて、あるいは、培養条件を変化させることにより、所定の機能を 有するタンパク質をコードする遺伝子が破壊された変異株を選抜する工程
4)破壊された所定の機能を有するタンパク質をコードする遺伝子を特定する工程
5)破壊された所定の機能を有するタンパク質をコードする遺伝子を単離する工程 [0067] 上記変異処理として、ェチルメタンスルホネート(EMS)、 N—メチルー N -トロー N -トロソグァ-ジン(NTG) , 2,6-ジァミノプリン(DAP)等の薬剤を用 、て細胞 を処理する変異処理や、紫外線を用いて細胞を処理する変異処理を挙げることもで きるが、遺伝子レベルの変異を導入できるトランスポソームを用いる変異処理を好適 に例示することができる。トランスポソームはトランスポゾンとトランスポゼースの複合体 であり、多くの微生物に遺伝子レベルの変異を容易に導入できるものである(Hoffina n, L.M., Jendrisak, J.J., Meis, R.J., し oryshin, I.Y. and Rezhikof, b.W. Genetica, 108 , 19-24 (2000) ) 0例えば、トランスポソームを用いる方法として、 EZ::TN™く ΚΑΝ-2ΧΓ np Transposome (EPICENTRE社製)などを用いる方法が知られて 、る。
[0068] トランスポゾンを用いる突然変異誘発法は、遺伝子解析の強力なツールとして当技 術分野で公知である。遺伝子破壊株は例えばトランスポゾンによって導入された特定 の抗生物質に対する耐性マーカーなどによって選抜することができる。
こうして得られた遺伝子破壊株についてさらに、所定の機能を相補するタンパク質に 作用し、所定の機能を有するタンパク質に作用しない薬剤を用いて、あるいは、培養 条件を変化させ、スクリーニングすることにより、所定の機能を有するタンパク質をコ ードする遺伝子がトランスポゾンの導入により破壊された変異株を選抜することができ る。このトランスポゾンに隣接するヌクレオチド配列は、例えばチェーンターミネーショ ン法(Sanger F.S. et al, Proc.Natl.Acad.Sci.,USAゝ 75:5463- 5467 (1977) )によって決 定することができる。このようにトランスポゾンタグの挿入位置の解析を行うことにより、 破壊された所定の機能を有するタンパク質をコードする遺伝子を特定することができ る。
[0069] 上記「所定の機能を相補するタンパク質に作用し、所定の機能を有するタンパク質 に作用しない薬剤」としては、シロイヌナズナ由来のプロトポルフイリノーゲンォキシダ ーゼに作用し、ラン藻由来のプロトポルフイリノーゲンォキシダーゼに作用しないァシ フルオルフエン(ジフエ-ルエーテル系)、ピラフルフェンェチル(フエ-ルビラゾール 系)、フルミオキサジン (ジカルボキシイミド系)を好適に挙げることができる。
[0070] ところで、ヘムとクロロフィルは共通した前駆体である δ アミノレブリン酸 (ALA)か ら合成される。植物や大腸菌等では ALAは、 1)グルタミン酸にダルタミル— tRNAシ ンターゼが作用しダルタミル tRNAが生成するステップ、 2)生成したダルタミル t RNAにグルタミル tRNAレダクターゼが作用しグルタミン酸 1ーセミアルデヒドが生 成するステップ、 3)生成したグルタミン酸 1ーセミアルデヒドにグルタミン酸 1セミアル デヒドアミノムターゼを含む 3段階の反応" C5型"で合成される力 動物ゃァグロバタ テリア属細菌ではスクシ-ル CoAとグリシンに ALAシンターゼが作用して ALAが生 成する 1段階の反応" C4型"で合成される。上記のように、ァグロバクテリア属細菌は "C4型"で ALAを合成し、その酵素 ALAシンターゼの存在自体は既知であるがその 遺伝子が同定されていない場合、植物由来のダルタミル tRN Aシンターゼ、グルタ ミル tRN Aレダクターゼ及びグルタミン酸 1セミアルデヒドアミノムターゼをコードす る遺伝子をァグロバクテリア属細菌にコ 'インフエクシヨンし、形質転換ァグロバタテリ ァ属細菌の遺伝子をトランスポゾン等によってランダムに破壊して変異株を作製し、 その変異株の中から、グルタミン酸 1セミアルデヒドアミノムターゼ阻害剤であるするギ ャバクリンの非存在下で生育し、ギヤパクリンの存在下で死滅する変異株を選抜し、 当該選抜した変異株のトランスポゾンタグの挿入位置の解析を行うことにより、ァグロ ノ クテリア属細菌由来の ALAシンターゼ遺伝子を同定することができる。したがって 、前記「所定の機能を相補するタンパク質に作用し、所定の機能を有するタンパク質 に作用しない薬剤」として、植物や大腸菌由来のグルタミン酸 1セミアルデヒドアミノム ターゼに作用し、動物ゃァグロバクテリア属細菌由来の δ アミノレブリン酸 (ALA) シンターゼに作用しないギヤバクリンを挙げることができる。
また、培養条件を変化させることにより、所定の機能を有するタンパク質をコードする 遺伝子が破壊された変異株を選抜する方法としては、例えば、温度条件により選抜 する場合は、遺伝子破壊株を通常の培養温度と高温 (もしくは低温)で培養して生育 に差が認められる変異株を選抜する方法や、例えば、光条件により選抜する場合は 、遺伝子破壊株を通常の光条件と強光下 (もしくは弱光下)で培養して生育に差が認 められる変異株を選抜する方法や、例えば、 pH条件により選抜する場合は、遺伝子 破壊株を通常の pH条件と高 pH (もしくは低 pH)条件下で培養し生育に差が認めら れる変異株を選抜する方法などを例示することができる。
以下、実施例により本発明をさらに詳細に説明するが、本発明の技術的範囲は、こ れらの実施例により限定されるものではない。
実施例 1
[0072] (ラン藻へのシロイヌナズナ由来プロトポルフイリノーゲンォキシダーゼ遺伝子の導入) シロイヌナズナのロゼット葉から、 RNeasy RNA extraction kit (Qiagen社製)を用いて 全 RNAを抽出した。得られた全 RNAからポリ (A)+mRNAを常法によって精製した 。得られたポリ (A)+mRNAを铸型とし、 ReverTra- Plus- Kit (TOYOBO社製)を用い て、 cDNAを合成した。合成した cDNAを铸型とし、制限酵素 Asel部位を持つプライ マー ATHPPOX.Aself (配列番号 3)及びプライマー ATHPPOX.r (配列番号 4)並びに TaKaRaLA Taqポリメラーゼ(Takara社製)を用いて、シロイヌナズナのプロトポルフイリ ノーゲンォキシダーゼ遺伝子(1.6kbp)を PCRで増幅した後、その PCR産物を Aselで 切断した。 PCRは、変性(94°C、 30秒)、アニーリング(52°C、 45秒)、伸長(72°C、 1 20秒)を 28サイクル行った。
[0073] ベクターは、ラン藻への形質転換に利用でき、カナマイシン耐性を持つ pFSlOを使 用した [Jansson, et al. Methods Enzymol (1998) 297:ppl66]Gこの pFSlOベクターを制 限酵素 Ndelと Hindiで切断し、前述のプロトポルフイリノーゲンォキシダーゼ遺伝子の PCR産物と連結し、組換えベクターを作製した。この組換えベクターをヒートショック 法で大腸菌 CFM109)に形質転換し、カナマイシンを含む LB寒天培地で選抜した。 現れたコロニーを、カナマイシンを含む LB液体培地で培養し、その培養物カゝらプラス ミドを精製した。後の工程であるトランスポゾンを用いた変異原処理ではカナマイシン 耐性を選択マーカーとして利用する。そのためカナマイシン耐性遺伝子を除去し、新 たに別の抗生物質耐性遺伝子 (クロラムフエ-コール耐性遺伝子)を導入する必要が ある。
[0074] pFSlOベクターを铸型とし、 Xbal部位を持つプライマー Chloram.r (配列番号 5)とプ ライマー SPE2Xbal.r (配列番号 6)並びに Pyrobest Taqポリメラーゼ(Takara社製)を 用いて一次 PCRを行った。 PCRは、変性(98°C、 10秒)、アニーリング(55°C、 45秒 )、伸長(72°C、 30秒、)を 25サイクノレ行った。この PCRにより、約 500bpの PCR産物 が得られた。次に、クロラムフエ-コール耐性遺伝子を铸型とし、先ほど得られた PC R産物及びプライマー Chloram. Xbal.f (配列番号 7)並びに Pyrobest Taqポリメラーゼ (Takara社製)を用いて二次 PCRを行った。 PCRは、変性(98°C、 10秒)、ァユーリン グ(50°C、 45秒)、伸長(72°C、 90秒)を 25サイクル行った。該 PCRにより得られたク 口ラムフエ-コール耐性遺伝子を含む PCR産物を、制限酵素 Xbalで切断した。
[0075] 一方、シロイヌナズナのプロトポルフイリノーゲンォキシダーゼ遺伝子と pFSlOベクタ 一とを連結した前述の組換えベクターも制限酵素 Xbalで切断し、カナマイシン耐性 遺伝子を除去後、前述の Xbalで切断したクロラムフエ-コール耐性遺伝子断片と連 結し、新たな組換えベクターを得た。この組換えベクターを、前述と同様の方法で大 腸菌 (JM109)に形質転換し、クロラムフエ-コールを含む LB寒天培地で選抜した。 現れたコロニーを、クロラムフエ-コールを含む LB液体培地で培養し、その培養物か らプラスミドを精製した。このプラスミドでシネコシスティス PCC6803を形質転換し、シ ロイヌナズナ由来プロトポルフイリノーゲンォキシダーゼを発現させたシネコシステイス (以下「AT株」と呼ぶことがある)を作製した。なお、シネコシスティス PCC6803の形 質転換の方法は、文献 [Williams JG. Methods Enzymol (1998) 167:pp766]の方法に 従った o
実施例 2
[0076] (トランスポゾンを利用したラン藻変異体の作製)
シネコシスティス PCC6803から抽出したゲノムを Tsp5091で限定分解し、ラムダ'ザ ップ IIベクターキット(Stratagene社製)を用いて、ゲノムプラスミドライブラリーを作製し た。 EZ::TNTMく KAN— 2〉 Insertion Kit (Epicentre社製)を用いて、ゲノムプラスミドライ ブラリーに対してトランスポゾンを in vitroで挿入した。トランスポゾンの挿入方法は、 E picentre社が開示するマニュアルに従った。このトランスポゾンタグの挿入されたシネ コシスティスゲノムプラスミドライブラリーを用いて、 AT株に対し相同組み換えによる 形質転換を行 ヽ、シロイヌナズナ由来プロトポルフイリノーゲンォキシダーゼを発現さ せた上でのシネコシステイス変異体を作製した。
実施例 3
[0077] (ラン藻プロトポルフイリノーゲンォキシダーゼ欠損株のスクリーニング)
アシフルォルフェンに対する感受性を選択マーカーとして用いて、実施例 2で作製 したシネコシステイス変異体の中から、ラン藻プロトポルフイリノーゲンォキシダーゼ欠 損株のスクリーニングを行った。具体的には、以下のような手順で行った。
アシフルオルフエンを終濃度 500 Mとなるように含む BG11寒天培地に、実施例 2で作製したシネコシステイス変異体を接種し、白色蛍光灯による連続光照射 (光強 度 30 mol s-lm-2)下、 30°Cで 2週間、静置培養を行った。また、同様の培養を、 アシフルオルフエンを含まな!/、BG11寒天培地を用いて行った。これらの培養の結果 を踏まえ、アシフルオルフエン非存在下では生育する力 アシフルオルフエン存在下 では死滅する変異体として 9株が選抜された。この 9株のうち、アシフルオルフエン存 在下での生育の阻害の程度が最も高力つた菌株を 3216株と命名し、以下に説明す るように、トランスポゾンタグの挿入位置を解析したところ、タンパク質 sir 1790の転写 調節領域と推定される位置にトランスポゾンタグが挿入されていた。
(ラン藻変異体の遺伝子解析)
トランスポゾンタグ挿入位置を確認する方法として 2パターンを想定した。
(1)使用したトランスポゾンはタグとしてカナマイシン耐性遺伝子が導入されて 、るの で、この抗生物質耐性を利用して選抜する。
具体的には、変異株より DNAを取得し、カナマイシン耐性遺伝子に含まれていない 制限酵素配列を利用して DNAを断片化する。 DNAを切断した同様の制限酵素で カナマイシン耐性遺伝子を持たな ヽベクターを切断する。それらを連結させて大腸菌 へ形質転換し、カナマイシンを含んだ培地上で生育してきたクローンにつ 、てプラス ミドを精製し、シーケンスを解析する。
(2) inverse PCR法を用いる。(1)と同じく変異株より DNAを取得し、トランスポゾンタ グに含まれて 、な 、制限酵素配列を利用して断片化する。これをセルフライゲーショ ンさせ (環状ィ匕させる)、トランスポゾンタグの外側に向力 プライマーを設計して PCR 反応を行 、、増幅した PCR産物にっ 、てシーケンスを解析する。
まずは(1)に示した抗生物質耐性を利用した方法で検討した。
(1)カナマイシン耐性を利用した検討
<ラン藻変異体 DNA抽出 >
ラン藻変異体(3216株)を BG11液体培地にて 30°C、明所にて 12日間培養した。培 養終了後、集菌し SDS法を用いて抽出したところ約 800 gのラン藻変異体 DNAを 得た。
<制限酵素による切断 >
制限酵素としては EcoRl、 Saclをそれぞれ用い、ラン藻変異体 DNAおよびベクター( PUC118)を切断した。制限酵素処理終了後、断片化したラン藻変異体 DNAはスピ ンカラムにて精製した。ベクターに関してはセルフライゲーシヨンを防ぐためにアル力 リフォスファターゼ処理を行った。
<ライゲーシヨン >
データベース力 上記の 3種類の制限酵素で切断すると得られる平均断片長は EcoR 1では 6kb、 Saclでは 10kbであった。平均断片長を参考にインサート Zベクターのモ ル比を 3Z 1と 9Z 1に調整し 12°C、 16時間でライゲーションした。
<大腸菌への形質転換 >
ライゲーシヨン液の一部を用いてヒートショック法にて大腸菌 CFM109)に形質転換し 、カナマイシンを含む LB寒天培地で選抜した。その結果、カナマイシンを含む LB寒 天培地ではコロニーは認められなかつた。
また、ライゲーシヨンの際のインサート Zベクターの混合比率をインサート大過剰にし ても同様の結果であった。抗生物質耐性を利用した選抜方法は理論的には可能な はずであるが、今回の場合、例えはインサート zベクター比の条件が合わな力つた等 の問題が考えられる。条件検討の余地はあった力 (2)で示した inverse PCR法で検 討すること〖こした。
(2) inverse PCR法を利用した検討
表現型の強力つた 3216株について検討した。 DNA取得は上記と同様の方法で行 い、制限酵素としては EcoRl、 Kpnlを用いた。制限酵素処理終了後、 DNA断片をス ピンカラムにて精製した。
<セルフライゲーシヨン >
スピンカラムにて精製した DNA断片を用いて 12°C、 16時間でセルフライゲーシヨン させた。
< 1stおよび 2nd PCR>
inverse PCR法の場合、非特異的なバンドの増幅させてしまう懸念があつたので、 PC R反応は 2段階に分けて行うことにした。
プライマーはトランスポゾンタグの外側に向力うプライマーを 2組設計した。
なお、 2nd PCRのプライマーはキット付属のシーケンスプライマーを使用した。
(1st PCR用プライマー)
ΚΑΝ-2-fr (配列番号 17)
ΚΑΝ-2-rev (配列番号 18)
(2nd PCR用プライマー)
KAN-2FP1 (配列番号 19)
KAN-2RP1 (配列番号 20)
セルフライゲーシヨンさせたゲノム断片をテンプレートとして 1st PCRを行った。 1st PC R条件は 98°C10秒 (変性)、 55°C30秒 (アニーリング)、 72°C7分 (伸長)を 30サイク ルで EX taq polymerase(Takara社製)を使用し、プライマー濃度は最終各 0. 5 μ Μで 行った。
テンプレートの最終濃度は上記ライゲーシヨン液 50倍希釈、 250倍希釈、 1250倍希 釈の 3段階で検討した。 PCR産物を 5 1取り、ァガロースゲル電気泳動で確認した。 電気泳動の結果、 EcoRlで切断したテンプレートを用いた場合のみ 7kb付近に特異 的なバンドの増幅が認められた。プライマー除去のため、 1st PCR産物をスピンカラム にて精製し、 2nd PCRのテンプレートとした。
2nd PCR条件は 98°C10秒(変性)、 60°C30秒(アニーリング)、 72°C5分(伸長)を 3 サイクルした後、 98°C10秒 (変性)、 58°C30秒 (アニーリング)、 72°C5分 (伸長)を 2 0サイクルで EX taq polymerase(Takara社製)を使用し、プライマー濃度は最終各 0. 5 μ Μで行った。
PCR産物を 5 μ 1取り、ァガロースゲル電気泳動で確認した。
その結果、プライマー設計の通り、 1st PCR産物より数百 bp低い位置にバンドの増幅 は認められた力 同時に非特異的なバンドの増幅も認められた。
く TAクロー-ングおよびプラスミドの精製 >
2nd PCRの条件検討を行った力 非特異的なバンドの増幅を抑えることができなかつ たので 1st PCRで特異的に増幅した 7kb付近のバンドについてゲル回収を行った。こ れをインサートとして TAクロー-ング (pGEM-T Easyベクター使用、 Promega社製)を 行い、ヒートショック法にて大腸菌 CFM109)に形質転換し、アンピシリンを含む LB寒 天培地で選抜した。プレート上に現れたコロニーを 4つ選抜し、アンピシリンを含む L B液体培地で培養し、ミニプレップ法にてプラスミドの精製を行った。 pGEM-T Easy ベクターは EcoRl処理により、インサートの切り出しができるので精製したプラスミドを EcoRl処理し、ァガロースゲル電気泳動で確認した。
電気泳動の結果、プラスミド 1および 2は 5kb、 3kb (ベクター)、 1. 8kb付近にバンド が認められた。インサート由来のバンドの合計サイズは 7kb程度であり、 目的のクロー ンであると判断した。プラスミド 1および 2について EcoRl処理でベクター由来も含め 切断されたバンドが 3つ認められたのは、最初のライゲーシヨンの段階で環状ではな ぐコンカテマ一を形成した可能性が考えられる。シーケンス解析には問題がないの でプラスミド 1につ 、てシーケンス反応を行った。
<シーケンス >
プラスミド 1につ ヽてジデォキシ法によるサイクルシーケンスで塩基配列を解析した。 シーケンスプライマーとしては 2nd PCRで用いた KAN- 2FP1および KAN- 2RP1を使 用した。使用したシーケンスプライマーはトランスポゾンタグの DNA領域とァニール するため、得られるシーケンスデータの始めの部分はトランスポゾンタグの DNA領域 となる。 inverted repeatシーケンスはトランスポゾン挿入クローンのターゲット DNAとト ランスポゾンタグの接点で見つかる 19bp Transposon Mosaic End Transposase認識配 列であり、このシーケンスはターゲットとトランスポゾンタグを識別する目印にできる。 また、 Transposaseによって触媒されるトランスポゾン挿入は、挿入したトランスポゾン の側面を守るために 9-bpのターゲットサイト重複配列を生成する。
これらを参考にして得られたシーケンスを解析するとトランスポゾンタグはラン藻ゲノム の 256677番目の T力ら 256685番目の Gの間(Mosaic end配列および 9- bp重複配 列確認)に挿入されていることが確認できた。この位置は ORF領域には含まれていな いが、下流にある推定タンパク質 slrl790(256698-257279, 193aa)の転写調節領域で あると考えられた。
アシフルオルフ ン非存在下では成育する力 アシフルオルフ ン存在下では死 滅する 9変異株のうち、 3216株以外の 8株についても、同様の解析をおこなったとこ ろ、いずれの株も 3216株と同様の遺伝子(slrl790)にトランスポゾンタグが挿入され ていた。
実施例 4
[0080] (推定タンパク質 slrl 790の遺伝子破壊株の作製)
slrl790遺伝子(シネコシスティスゲノム 256698から 257279の 600bp)がプロトポルフィ リノ一ゲンォキシダーゼをコードしているのかどうかを確認するために、 slrl790のコー ド領域にカナマイシン耐性遺伝子を挿入した組換えベクターを用いて、シネコシステ イス PCC6803の slrl790遺伝子にっ 、て遺伝子破壊を行った。ラン藻の形質転換は 相同組換えで行うので、 slrl790遺伝子の上流 700bpおよび下流 600bpの配列(シ ネコシスティスゲノム 255999から 257920の 1. 9kbp)をもとにプライマーを設計した。シ ネコシスティス PCC6803から抽出した DNAを铸型とし、それらのプライマー Slrl 790 km EcoRl f (配列番号 8)及びプライマー Sir 1790 km Hind3 r (配列番号 9)、並びに T aKaRa EX Taqポリメラーゼ(Takara社製)を用いた PCRにより、 slrl790遺伝子の上流 700bpおよび下流 600bpの配列を含む配列を増幅させ、 PCR産物を得た。 PCRは 、変性(98。C、 10秒)、アニーリング(55。C、 30秒)、伸長(72。C、 120秒)を 28サイク ル行った。得られた PCR産物を pGEM- T Easyベクター(Promega社製)に連結した。
[0081] slrl790遺伝子を含む配列が連結されたベクターをヒートショック法にて大腸菌 (JM 109)に形質転換し、アンピシリンを含む LB寒天培地で選抜した。現れたコロニーを 、アンピシリンを含む LB液体培地で培養し、その培養物からプラスミド (pslrl790S)を 精製した。次に、トランスポゾンタグに含まれるカナマイシン耐性遺伝子(1. 3kbp)を 铸型とし、 Nhel部位を持つプライマー Km Nhel f (配列番号 10)及びプライマー Km N hel r (配列番号 11)並びに TaKaRa EX Taqポリメラーゼ(Takara社製)を用いた PCR により、カナマイシン耐性遺伝子を含む PCR産物を増幅させた。 PCRは、変性(98 。C、 10秒)、アニーリング(58°C、 30秒)、伸長(72°C、 80秒)を 28サイクル行った。 得られた PCR産物を Nhelで切断し、それを、ベクター内の slrl790遺伝子中流の Nhe 1部位に連結した。これをヒートショック法にて大腸菌 CFM109)に形質転換し、カナマ イシンを含む LB寒天培地で選抜した。現れたコロニーを、カナマイシンを含む LB液 体培地で培養し、その培養物力もプラスミド (pslrl790SKM)を精製した。 slrl790遺伝 子破壊用のこのコンストラクトを図 3に示す。シネコシスティス PCC6803を、この pslrl 790SKMで形質転換し、その形質転換体を、カナマイシンを含む BG 11寒天培地で 培養して、 sir 1790遺伝子破壊株を選抜した。なお、シネコシスティス PCC6803の形 質転換の方法は、文献 [Williams JG. Methods Enzymol (1998) 167:pp766]の方法に 従った o
実施例 5
[0082] (推定タンパク質 slrl 790の遺伝子破壊株の解析)
プロトポルフイリノーゲンォキシダーゼが破壊された場合、基質であるプロトポルフィ リノ一ゲン IXが蓄積することが予想される力 プロトポルフイリノーゲン IXは非常に不 安定であるために、抽出過程において空気中の酸素と反応し容易にプロトポルフイリ ン IXに酸ィ匕されるため、空気中で抽出操作を行った後のプロトポルフィリン IXの量を 測定することによって、プロトポルフイリノーゲンォキシダーゼが破壊されたどうかを判 定することができる。 slrl790の遺伝子破壊株についてのプロトポルフィリン IX量の測 定は以下のような方法で行った。
[0083] 実施例 4で得られた sir 1790遺伝子破壊株を試験管を用いて、白色蛍光灯による連 続光照射(光強度 30 mol s— 下、 30°Cで 1週間、通気した BG 11液体培地 50 mlで培養し、培養液を得た。得られた培養液から、 90%アセトンを用いて、プロトポ ルフィリン IXを含む色素を抽出し、色素抽出液を得た。この色素抽出液を HPLCにセ ットし、 1. 2mlZ分のフローレート、カラムオーブン 40°Cの条件下、ォクチルシリカ力 ラム (Waters Symmetry C8(l 50 X 4. 6mm》及びメタノール(溶出剤)を用いて HPL C分析を行った(ポンプ LC- 10ATVP及びオートサンプラー SIL-10ADVPは (株)島津 製作所社製)。プロトポルフィリン IXのモニタリングは、励起波長 405nm、蛍光波長 6 33nmで行った (蛍光検出器 RF— 10AXL は (株)島津製作所社製)。その結果を図 4 の C)に示す。また、 slrl790遺伝子破壊株の代わりに、その遺伝子破壊を行っていな ぃシネコシスティス PCC6803を用いて同様の解析を行った結果を図 4の B)に示す。 また、プロトポルフィリン IXのサンプルのクロマトグラムを図 4の A)に示す。
[0084] 図 4の結果から、 slrl790遺伝子破壊株では、その遺伝子破壊を行って ヽな 、株に 比べて、 20倍以上のプロトポルフィリン IXの蓄積が認められた。このことと、ラン藻の プロトポルフイリノーゲン IXあるいはプロトポリフィリン IXの代謝に関与する酵素のうち 、同定されていないのはプロトポルフイリノーゲンォキシダーゼのみであることとを考え 合わせると、 slrl790がプロトポルフイリノーゲンォキシダーゼをコードしていることが明 らカとなった。なお、 slrl790は、既知のプロトポルフイリノーゲンォキシダーゼとの相 同性は極めて低い。 slrl790に対する、既知のプロトポルフイリノーゲンォキシダーゼ のアミノ酸レベルでの相同性を以下の表 3に示す。
[表 3]
Figure imgf000037_0001
実施例 6
[0086] (ラン藻プロトポルフイリノーゲンォキシダーゼ slrl790のシロイヌナズナヘの導入) 植物用発現ベクターとして PBI121を使用した。 pBI121の概略図を図 5に示す。
植物のプロトポルフイリノーゲンォキシダーゼは葉緑体、ミトコンドリアに存在する酵素 であるが、今回は slrl790が葉緑体で発現するようにシロイヌナズナ由来クロロフィル a ォキシゲナーゼ (CAO, Genbank accession BT002075)の葉緑体移行シグナルを slrl 790遺伝子に連結して導入した。移行シグナルの予測は、 TargetP(http:〃胃 w.cbs.d tu.dk/services/TargetP/)を利用した。具体的には以下のような手順で行った。
[0087] pBI121ベクター(14. 8kbp)を制限酵素 BamHlおよび Saclを用いて GUS遺伝子( 1. 9kbp)を除き、残りのベクター部分(12. 9kbp)をゲル回収にて精製した。また、 C AO由来の葉緑体移行シグナル (0. 2kbp)は、実施例 1で得られたシロイヌナナズナ cDNAを铸型として、制限酵素 BamHl、 Sacl認識部位をそれぞれ持つプライマー Ba mSma CAO fr. (配列番号 12)と Sac CAO rev. (配列番号 13)並びに KOD- Plus-ポリメ ラーゼ (TOYOBO社製)を用いて PCRで増幅させた。 PCRは、変性(94°C、 15秒)、 アニーリング(55°C、 30秒)、伸長(68°C、 15秒)を 30サイクル行った。
[0088] こうして得た PCR産物を、アンピシリン而性を持つ pTA2ベクター(TOYOBO社製、 K OD- Plus-用 TAクローユングベクター、 2. 9kbp)へ連結後、ヒートショック法にて大腸 菌 (JM109)に形質転換し、アンピシリンを含む LB寒天培地で選抜した。現れたコロ ニーをアンピシリンを含む LB液体培地で培養し、プラスミド (pTACAO)を精製した。 プラスミド pTACAOを制限酵素 BamHlおよび Saclを用いて切断し、 CAO由来の葉緑 体移行シグナルの切り出しを行い、ゲル回収にて精製した。この精製した CAO由来 の葉緑体移行シグナルをインサートとして、先に GUS遺伝子を除去した pBI121ベタ ターに連結した。これをヒートショック法にて大腸菌 CFM109)に形質転換後、カナマ イシンを含む LB寒天培地で選抜した。現れたコロニーをカナマイシンを含む LB液体 培地で培養し、プラスミド (pBICAO、 13. lkbp)を精製した。 pBICAOは制限酵素 Sac 1にて切断し、セルフライゲーシヨンを防ぐため CIP処理後、ゲル回収にてベクター断 片を精製した。
[0089] 次に slrl790遺伝子(0. 6kbp)はシネコシステイスから抽出したゲノムを铸型とし、制 限酵素 Sacl認識部位を持つプライマー、 Sac slrl790fr. (配列番号 14)と Sac sir 1790 r ev. (配列番号 15)並びに KOD- Plus-ポリメラーゼ(TOYOBO社製)を用いて PCRで 増幅させた。 PCRは、変性(94°C、 15秒)、アニーリング(55°C、 30秒)、伸長(68°C 、 35秒)を 30サイクル行った。こうして得た PCR産物をアンピシリン耐性を持つ pTA2 ベクターへ連結後、ヒートショック法にて大腸菌 C1M109)に形質転換し、アンピシリン を含む LB寒天培地で選抜した。現れたコロニーをアンピシリンを含む LB液体培地で 培養し、プラスミド (pTAslrl790Sac)を精製した。プラスミド pTAslrl790Sacを制限酵素 Saclを用いて切断し、 slrl790遺伝子の切り出しを行い、ゲル回収にて精製した。この 精製した slrl790遺伝子をインサートとして、先に制限酵素 Saclにて切断した pBICAO に連結した。これをヒートショック法にて大腸菌 CFM109)に形質転換後、カナマイシ ンを含む LB寒天培地で選抜した。現れたコロニーをカナマイシンを含む LB液体培 地で培養し、プラスミド(pBIslr 1790、 13. 6kbp)を精製した。 pBIslrl790の概略図を 図 6に示す。
[0090] 次に凍結法にて pBIslr 1790を導入した Agrobacterium tumefaciens C58株を用いて 、 in planta法にてシロイヌナズナを形質転換した。
まず、 pBIslr 1790を保持した Agrobacterium tumefaciens C58株の菌体濃度が OD60 0 = 0. 8 - 1. 0付近となるように 300mLの形質転換ノ ッファー(5% sucrose, 0. 0 2% SilwetL- 77)に懸濁した。次ぎに、蕾の付いたポット植えのシロイヌナズナの 地上部を前記懸濁液に 30秒間浸漬し、その後、各ポットをビニール袋で 2日間覆つ た。覆いを取った後、さらに栽培を続け、種子を得た。栽培はグロースチャンバ一(24 h明、温度 22°C、光強度 mols— lm— 2)内で行った。得られた種子を殺菌し、 35ppmのカナマイシン、 0. 6%の寒天を含む 1/2濃度の Murashige— Skoogの培地 [T. Murashige and F. Skoog Physiol.Plant(1962) 15: pp473]に播種し、开質転換体 を得た (sir系)。この形質転換体を土に移植し、グロースチャンバ一内で栽培し、 2世 代目の種子を得た。
実施例 7
[0091] (形質転換体のアシフルオルフ ンに対する耐性効果)
アシフルオルフ ンに対する耐性効果は形質転換体 2世代目のうち、遺伝子導入 が確認できたものについてアシフルオルフエンに対する耐性を検討した。
遺伝子導入の有無については以下の手法により確認した。
[0092] グロースチャンバ一内で草丈 1 2cm程度まで生育させた形質転換シロイヌナズナ sir系より、葉を直径 2mm程度それぞれの形質転換体より回収し、ゲノム DNAを抽出 した。このゲノム DNAを铸型とし、導入した遺伝子の N末端および C末端とァニール するプライマー AtCAO-tra-up (配列番号 16)と Sac sir 1790 rev. (配列番号 15)並び に Taq DNA polymerase (SIGMA社製)を用いて PCRで増幅させ、ァガロースゲル電 気泳動にてバンドの有無を確認した。 PCRは、変性(95°C、 30秒)、アニーリング(5 5°C、 45秒)、伸長(72°C、 60秒)を 40サイクル行った。 [0093] 遺伝子導入が確認できた形質転換体について、アシフルオルフエンに対する耐性 効果を検討した。アシフルオルフエンはジメチルホルムアミドおよびポリオキシェチレ ンソルビタン系界面活性剤を混合、溶解して有効成分 4%となるように乳剤を作成し た。これをアシフルオルフエン濃度が最終 10 Mとなるように水で希釈し、マイクロピ ペットを用いて、グロースチャンバ一内で草丈 1— 2cm程度まで生育させたシロイヌ ナズナ野生株および遺伝子導入を確認した形質転換シロイヌナズナ sir系の葉面に それぞれ 5 μ 1滴下処理した。
調査は薬液処理 7日後まで継続して行 、、壊死の程度を目視にて評価した (0— 5の 6段階評価、 0は影響なし)。処理 7曰後の結果を表 4に示した。その結果、シロイヌナ ズナ野生株と比較して、 slrl790を導入したシロイヌナズナはアシフルオルフエンに対 する耐性が確認できた。
[0094] [表 4] 表 4 s l r l 790導入シロイヌナズナのアシフルオルフ v ォス耐件^平 (^理 7日後) アシフ ^ル" "フエ ~~
¾=====_ 10 M処理
シロイヌナズナ野生株
s i r 52 1
s i r 146 i 完全枯死を 5、 影響なしを 0として 0-5の 6段階で目視にて評価した。 実施例 8
[0095] (プロトポルフイリノーゲンォキシダーゼ阻害剤の阻害能試験)
実施例 1で得られた AT株および実施例 4の方法で AT株の slrl790遺伝子を破壊し た AT Δ sir 1790株を用いた。培地は前記の BG11液体培地を使用し、遺伝子の欠落 および復帰変異を抑えるため、 AT株にはプロトポルフイリノーゲンォキシダーゼと同 時にクロラムフエ二コール耐性遺伝子も導入してあるのでクロラムフエ二コールを、 AT Δ slrl790株はその遺伝子破壊の際にカナマイシン耐性遺伝子を導入して るので カナマイシンをそれぞれ最終 25 μ g/mlとなるように添カ卩した。 BG11液体培地で振 とう前培養を行った増殖期の AT株、 AT Δ sir 1790株を集菌し、抗生物質を加えた新 たな BG11液体培地に A730が 0. 1となるように懸濁して検討に用いた。 [0096] 披験化合物の原体を DMSOに溶解し、各ゥエルに最終薬剤処理濃度が 1. 0 X 10 _4Mから 1. 0 Χ 10_9· 5Μとなるように添加した (最終 DMSO濃度 0. 5%)。試験は 9 6穴プレート 1ゥエルあたり 100 μ 1スケールで実施し、培養温度 30°C、光強度 10001 uxの条件下で振とう培養した。試験開始 6日後に濁度を測定し、溶媒処理区と比較 して pI50値を算出した。
pI50値 =—log (50%活性阻害処理濃度 (M) )
[0097] (除草処理活性)
200cm2のポットに土壌を充填し、表層にィヌビュの種子を播き、軽く覆土後、草丈 力 〜 10cmになるまで温室内で生育させた。各披験化合物の水希釈液を所定の薬 量になるように、 1000リットル ha散布量相当量で小型噴霧器にてィヌビュの茎葉 部に散布した。温室内で育成させ、処理 2週間後にィヌビュの除草効果を下記の調 查基準に従って調査し、殺草指数で表した。結果を以下の表に示す。
[0098] [表 5] 調査基準
Figure imgf000041_0001
※し 3 , 5 , 7、 9の数値は、 各々 0と 2、 2と 4、 4と 6、 6と 8、 8と 1 0の中間 の値を示す。
[0099] [表 6」
Figure imgf000041_0002
[0100] [表 7] 披験化合物
Figure imgf000042_0001
[0101] AT Δ slrl790株はジフエ-ルエーテル系型プロトポルフイリノーゲンォキシダーゼ阻 害剤であるアシフルオルフエン以外の剤にも感受性を示し、プロトポルフイリノーゲン ォキシダーゼ阻害剤全般的に阻害活性を示した。また、各披験化合物の AT A slrl79 0株に対する pI50値の傾向はそれぞれの茎葉処理活性を反映するものであり、プロト ボルフイリノーゲンォキシダーゼ阻害活性能の評価に有効であるといえる。
実施例 9
[0102] (プロトポルフイリノーゲンォキシダーゼ阻害剤に特異的な化合物スクリーニング法) 上記の実施例カゝらプロトポルフイリノーゲンォキシダーゼ阻害剤は AT株に感受性 を示さず、 AT A slrl790株には感受性を示した。一方、非プロトポルフイリノーゲン阻 害剤用 AT株および AT Δ slrl 790株の両方にも同程度の阻害活性を示した。このよう に AT株と AT Δ slrl790株の化合物に対する阻害能を比較することにより、各披験化 合物のプロトポルフイリノーゲンォキシダーゼ阻害能を判定する。 産業条の利用可能性
[0103] 本発明のプロトポルフイリノーゲンォキシダーゼは既知の該酵素とかなり異なる構造 を有するため、新規なプロトポルフイリノーゲンォキシダーゼ阻害除草剤の選抜への 応用が期待できる。また、本発明のプロトポルフイリノーゲンォキシダーゼは、プロトポ ルフイリノーゲンォキシダーゼ阻害除草剤に対する耐性を有する光合成植物の育種 若しくはストレス環境条件に抵抗性を有する植物の育種への応用が期待できる。さら に、本発明の遺伝子の単離方法によると、既知のタンパク質と相同な他の生物種由 来のタンパク質力 他の生物種の遺伝子データベースでは見い出すことができな ヽ 場合であっても、他の生物種の遺伝子を単離することができる有効手法を提供するこ とができる。

Claims

請求の範囲
[1] アシフルオルフエンに対する耐性を生物に付与する活性を有し、かつラン藻由来で あることを特徴とするプロトポルフイリノーゲンォキシダーゼ。
[2] ラン藻が、シネコシスティス属に属するラン藻であることを特徴とする請求項 1記載の プロトポルフイリノーゲンォキシダーゼ。
[3] 生物が、植物であることを特徴とする請求項 1又は 2記載のプロトポルフイリノーゲン ォキシダーゼ。
[4] 下記 (a)〜(c)のいずれかに示すタンパク質。
(a)配列番号 2に示されるアミノ酸配列からなるタンパク質
(b)配列番号 2に示されるアミノ酸配列において、 1若しくは数個のアミノ酸が欠失、 置換又は付加されたアミノ酸配列カゝらなり、かつアシフルオルフエンに対する耐性を 生物に付与する活性を有することを特徴とする、プロトポルフイリノーゲンォキシダー ゼ活性を有するタンパク質
(c)配列番号 2に示されるアミノ酸配列に対する相同性が 20%以上であり、かつァシ フルオルフエンに対する耐性を生物に付与する活性を有することを特徴とする、プロ トポルフイリノーゲンォキシダーゼ活性を有するタンパク質
[5] ラン藻由来であることを特徴とする請求項 4記載のタンパク質。
[6] 請求項 1〜3のいずれか記載のプロトポルフイリノーゲンォキシダーゼ、又は請求項 4 若しくは 5記載のタンパク質をコードするプロトポルフイリノーゲンォキシダーゼ遺伝子
DNA0
[7] 下記(d)又は(e)に示すプロトポルフイリノーゲンォキシダーゼ遺伝子 DNA。
(d)配列番号 1に示される塩基配列からなるプロトポルフイリノーゲンォキシダーゼ遺 伝子 DNA
(e)配列番号 1に示される塩基配列において、 1若しくは数個の塩基が欠失、置換 又は付加された塩基配列力もなり、かつアシフルオルフエンに対する耐性を生物に 付与する活性を有し、かつプロトポルフイリノーゲンォキシダーゼ活性を有するタンパ ク質をコードするプロトポルフイリノーゲンォキシダーゼ遺伝子 DNA
[8] 配列番号 1に示される塩基配列に対して相補的な配列力 なる DNAとストリンジ ン トな条件下でノヽイブリダィズし、かつアシフルオルフエンに対する耐性を生物に付与 する活性を有し、かつプロトポルフイリノーゲンォキシダーゼ活性を有するタンパク質 をコードするプロトポルフイリノーゲンォキシダーゼ遺伝子 DNA。
[9] プロトポルフイリノーゲンォキシダーゼ活性を有するタンパク質力 ラン藻に由来する ことを特徴とする請求項 7又は 8のいずれか記載のプロトポルフイリノーゲンォキシダ ーゼ遺伝子 DNA。
[10] 請求項 6〜9の!、ずれか記載のプロトポルフイリノーゲンォキシダーゼ遺伝子 DNAが 組み込まれた組換えベクター。
[11] 請求項 10記載の組換えベクターが導入されたことを特徴とする形質転換体。
[12] 形質転換体が、アシフルオルフ ンに対する耐性を有することを特徴とする請求項 1
1記載の形質転換体。
[13] 形質転換体が微生物であることを特徴とする請求項 11又は 12記載の形質転換体。
[14] 形質転換体が植物であることを特徴とする請求項 11又は 12記載の形質転換体。
[15] 光合成能が向上したことを特徴とする請求項 14記載の形質転換体。
[16] 請求項 11〜15のいずれか記載の形質転換体を用いた、プロトポルフイリノーゲンォ キシダーゼ阻害活性能の評価方法。
[17] 請求項 11〜16のいずれか記載の形質転換体を用いた、プロトポルフイリノーゲンォ キシダーゼ阻害剤のスクリーニング方法。
[18] 以下の(f)〜 (j)の工程を含む、ラン藻のプロトポルフイリノーゲンォキシダーゼ遺伝 子の単離方法。
(f)シロイヌナズナのプロトポルフイリノーゲンォキシダーゼ遺伝子をラン藻に導入す る工程
(g)トランスポゾンを用いてラン藻の遺伝子を破壊する工程
(h)プロトポルフイリノーゲンォキシダーゼ遺伝子が破壊された株を選抜する工程
(i)破壊されたプロトポルフイリノーゲンォキシダーゼ遺伝子を特定する工程
(j)破壊されたプロトポルフイリノーゲンォキシダーゼ遺伝子を単離する工程
[19] 請求項 4又は 5記載のタンパク質の、プロトポルフイリノーゲンォキシダーゼとしての使 用方法。
[20] 請求項 4又は 5記載のタンパク質を、プロトポルフイリノーゲン IXと人為的に接触させ てプロトポルフイリン IXに転換する方法。
[21] 請求項 6〜9のいずれか記載の DNAの、プロトポルフイリノーゲンォキシダーゼ遺伝 子としての使用方法。
[22] 請求項 6〜9のいずれか記載の DNAを人為的に発現させ、その発現産物を、プロト ボルフイリノーゲン IXと接触させてプロトポルフィリン IXに転換する方法。
[23] 以下の 1)〜5)の工程を含む、特定生物における所定の機能を有するタンパク質をコ ードする遺伝子の単離方法。
1)特定生物以外の他の生物から所定の機能を相補するタンパク質をコードする遺伝 子を、特定生物に導入して形質転換体を作製する工程
2)形質転換体の遺伝子をランダムに破壊して形質転換体の変異株を作製する工程
3)所定の機能を相補するタンパク質に作用し、所定の機能を有するタンパク質に作 用しない薬剤を用いて、あるいは、培養条件を変化させることにより、所定の機能を 有するタンパク質をコードする遺伝子が破壊された変異株を選抜する工程
4)破壊された所定の機能を有するタンパク質をコードする遺伝子を特定する工程
5)破壊された所定の機能を有するタンパク質をコードする遺伝子を単離する工程
[24] 変異処理が、トランスポゾンを用いた変異処理であることを特徴とする請求項 23記載 の遺伝子の単離方法。
[25] 特定生物以外の他の生物から所定の機能を相補するタンパク質が、シロイヌナズナ のプロトポルフイリノーゲンォキシダーゼであることを特徴とする請求項 23又は 24記 載の遺伝子の単離方法。
[26] 所定の機能を相補するタンパク質に作用し、所定の機能を有するタンパク質に作用 しな 、薬剤が、アシフルオルフエンであることを特徴とする請求項 25記載の遺伝子の 単離方法。
[27] 特定生物における所定の機能を有するタンパク質が、ラン藻のプロトポルフイリノーゲ ンォキシダーゼであることを特徴とする請求項 25又は 26記載の遺伝子の単離方法。
PCT/JP2006/319001 2005-09-26 2006-09-25 アシフルオルフェンに対する耐性を付与する活性を有するプロトポルフィリノーゲンオキシダーゼ及びその遺伝子 WO2007034953A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/088,141 US8129589B2 (en) 2005-09-26 2006-09-25 Protoporphyrinogen oxidase having activity of imparting resistance against acifluorfen and gene thereof
CN2006800355661A CN101278049B (zh) 2005-09-26 2006-09-25 具有给予对三氟羧草醚的抗性的活性的原卟啉原氧化酶及其基因
EP06810526A EP1930434B1 (en) 2005-09-26 2006-09-25 Protoporphyrinogen oxidase having activity of imparting resistance against acifluorfen and gene thereof
BRPI0616416-1A BRPI0616416A2 (pt) 2005-09-26 2006-09-25 protoporfirinogênio oxidase tendo atividade de conferir resistência contra acifluorfen e gene da mesma
JP2007536588A JPWO2007034953A1 (ja) 2005-09-26 2006-09-25 アシフルオルフェンに対する耐性を付与する活性を有するプロトポルフィリノーゲンオキシダーゼ及びその遺伝子
US13/358,564 US8580940B2 (en) 2005-09-26 2012-01-26 Photoporphyrinogen oxidase having activity of imparting resistance against acifluorfen and gene thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-278942 2005-09-26
JP2005278942 2005-09-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/088,141 A-371-Of-International US8129589B2 (en) 2005-09-26 2006-09-25 Protoporphyrinogen oxidase having activity of imparting resistance against acifluorfen and gene thereof
US13/358,564 Division US8580940B2 (en) 2005-09-26 2012-01-26 Photoporphyrinogen oxidase having activity of imparting resistance against acifluorfen and gene thereof

Publications (1)

Publication Number Publication Date
WO2007034953A1 true WO2007034953A1 (ja) 2007-03-29

Family

ID=37888995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319001 WO2007034953A1 (ja) 2005-09-26 2006-09-25 アシフルオルフェンに対する耐性を付与する活性を有するプロトポルフィリノーゲンオキシダーゼ及びその遺伝子

Country Status (7)

Country Link
US (2) US8129589B2 (ja)
EP (1) EP1930434B1 (ja)
JP (1) JPWO2007034953A1 (ja)
KR (1) KR20080050618A (ja)
CN (2) CN102021189B (ja)
BR (1) BRPI0616416A2 (ja)
WO (1) WO2007034953A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA121371C2 (uk) 2010-12-16 2020-05-25 Басф Агро Б. В. Стійка до гербіцидів трансгенна рослина, яка містить мутантну протопорфіриногеноксидазу
AR091489A1 (es) 2012-06-19 2015-02-11 Basf Se Plantas que tienen una mayor tolerancia a herbicidas inhibidores de la protoporfirinogeno oxidasa (ppo)
US10041087B2 (en) 2012-06-19 2018-08-07 BASF Agro B.V. Plants having increased tolerance to herbicides
BR112016002851B1 (pt) 2013-08-12 2022-02-22 BASF Agro B.V. Molécula de ácido nucleico, constructo de ácido nucleico, vetor, polipeptídeo ppo, método para controlar vegetação indesejada e uso do ácido nucleico
UA123757C2 (uk) 2013-08-12 2021-06-02 Басф Агро Б. В. Мутована протопорфіриногеноксидаза, що надає рослинам стійкості до ппо-інгібуючого гербіциду
KR101827545B1 (ko) * 2014-12-16 2018-02-08 주식회사 팜한농 프로토포르피리노겐 옥시다아제를 이용한 식물 및/또는 조류의 제초제 저항성 부여 또는 증진 방법
CA3024985A1 (en) 2016-06-16 2017-12-21 Farmhannong Co., Ltd. Methods and compositions for conferring and/or enhancing herbicide tolerance using protoporphyrinogen oxidase or variant thereof
CN111423990B (zh) * 2020-04-10 2021-08-27 科稷达隆(北京)生物技术有限公司 一种乙氧氟草醚敏感型酵母菌及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107833A (ja) * 1995-10-11 1997-04-28 Jinro Ltd 除草剤に対して抵抗性のあるトランスジェニック植物
JP2000312586A (ja) * 1998-04-30 2000-11-14 Sumitomo Chem Co Ltd 雑草防除剤耐性の付与方法
WO2000071699A1 (fr) * 1999-05-25 2000-11-30 National Institute Of Agrobiological Sciences Procede de disruption genique utilisant un retrotransposon du tabac

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140381A (ja) 1995-11-20 1997-06-03 Sumitomo Chem Co Ltd 植物由来のプロトポルフィリノーゲンオキシダーゼ遺伝子
JPH11346787A (ja) 1998-04-10 1999-12-21 Sumitomo Chem Co Ltd プロトポルフィリノ―ゲンオキシダ―ゼ活性阻害能評価方法
AU753020B2 (en) * 1998-04-30 2002-10-03 Sumitomo Chemical Company, Limited Method for giving resistance to weed control compounds to plants
JP2000270873A (ja) 1999-03-25 2000-10-03 Seibutsu Bunshi Kogaku Kenkyusho:Kk シロイヌナズナの根毛の伸長を制御するire遺伝子
WO2001036606A2 (de) * 1999-11-16 2001-05-25 Basf Plant Science Gmbh Protoporphyrinogen-ix-oxidase und seine verwendung
US20040019066A1 (en) * 2002-05-06 2004-01-29 Institut Pasteur Methionine salvage pathway in bacillus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107833A (ja) * 1995-10-11 1997-04-28 Jinro Ltd 除草剤に対して抵抗性のあるトランスジェニック植物
JP2000312586A (ja) * 1998-04-30 2000-11-14 Sumitomo Chem Co Ltd 雑草防除剤耐性の付与方法
WO2000071699A1 (fr) * 1999-05-25 2000-11-30 National Institute Of Agrobiological Sciences Procede de disruption genique utilisant un retrotransposon du tabac

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KANEKO T. ET AL.: "Sequence Analysis of the Genome of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC6803. II. Sequence Determination of the Entire Genome and Assignment of Potential Protein-coding Regions", DNA RESEARCH, vol. 3, 1996, pages 109 - 136, XP002084893 *
KUMAR A. ET AL.: "High-Throughput Methods for the Large-Scale Analysis of Gene Function by Transposon Tagging", METHODS IN ENZYMOLOGY, vol. 328, 2000, pages 550 - 574, XP009080085 *
See also references of EP1930434A4 *
VAVILIN D.V. ET AL.: "Regulation of the tetrapyrrole biosynthetic pathway leading to heme and chlorophyll in plants and cyanobacteria", PHYSIOLOGIA PLANTARUM, vol. 115, 2002, pages 9 - 24, XP003010782 *

Also Published As

Publication number Publication date
BRPI0616416A2 (pt) 2011-06-21
US8580940B2 (en) 2013-11-12
CN102021189A (zh) 2011-04-20
US8129589B2 (en) 2012-03-06
CN101278049A (zh) 2008-10-01
US20090216004A1 (en) 2009-08-27
EP1930434A4 (en) 2009-04-01
EP1930434A1 (en) 2008-06-11
CN102021189B (zh) 2013-02-20
EP1930434B1 (en) 2012-02-22
CN101278049B (zh) 2011-11-30
JPWO2007034953A1 (ja) 2009-04-02
US20120184727A1 (en) 2012-07-19
KR20080050618A (ko) 2008-06-09

Similar Documents

Publication Publication Date Title
JP6375398B2 (ja) Alsインヒビター除草剤耐性ベータ・ブルガリス突然変異体
CA2074854C (en) Imidazolinone resistant ahas mutants
US8580940B2 (en) Photoporphyrinogen oxidase having activity of imparting resistance against acifluorfen and gene thereof
KR101920503B1 (ko) 변이된 프로토포르피리노겐 ix 산화효소(ppx) 유전자
CN103796507B (zh) 乙酰辅酶a羧化酶除草剂抗性植物
MXPA06002155A (es) Plantas de arroz que tienen una tolerancia incrementada a los herbicidas de imidazolinona.
WO2019024534A1 (zh) 使植物具有除草剂抗性的水稻als突变型蛋白及其应用
US7586023B1 (en) Methods of conferring ppo-inhibiting herbicide resistance to plants by gene manipulation
AU2019466501A1 (en) Mutant hydroxyphenylpyruvate dioxygenase polypeptide, encoding gene thereof and use thereof
CN107090447A (zh) 使植物具有除草剂抗性的水稻als突变型蛋白、基因及其应用
US20200340007A1 (en) Clals protein, its coding gene and use in predicting the herbicide resistance of watermelon
WO2016060843A1 (en) Herbicide tolerance genes and methods of use thereof
US20210024949A1 (en) Herbicide-resistance gene and application thereof in plant breeding
EP3110832B1 (fr) Plantes a rendement accru et methode d&#39;obtention de telles plantes
JP6540936B2 (ja) 赤かび病抵抗性植物、その作製方法及びその利用
KR20010082509A (ko) 식물로부터 유래된 리보플라빈 생합성 유전자 및 이의 용도
CN114616333A (zh) 非生物胁迫耐性植物和方法
CN111373035A (zh) 油菜抗三唑嘧啶磺酰胺类除草剂基因及其应用
JP2002253071A (ja) 細胞膜プロトン−atpアーゼ遺伝子破壊植物体及びその使用方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680035566.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007536588

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006810526

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087009304

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12088141

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0616416

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080326