WO2007033576A1 - Matériau luminescent à longue rémanence et son procédé de préparation - Google Patents

Matériau luminescent à longue rémanence et son procédé de préparation Download PDF

Info

Publication number
WO2007033576A1
WO2007033576A1 PCT/CN2006/002276 CN2006002276W WO2007033576A1 WO 2007033576 A1 WO2007033576 A1 WO 2007033576A1 CN 2006002276 W CN2006002276 W CN 2006002276W WO 2007033576 A1 WO2007033576 A1 WO 2007033576A1
Authority
WO
WIPO (PCT)
Prior art keywords
long
luminescent
luminescent material
molar
lasting
Prior art date
Application number
PCT/CN2006/002276
Other languages
English (en)
French (fr)
Inventor
Xixian Luo
Wei Xia
Zhiguo Xiao
Jingjie Yu
Jinxia Duan
Qi Chai
Original Assignee
Dalian Luminglight Science And Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Luminglight Science And Technology Co., Ltd. filed Critical Dalian Luminglight Science And Technology Co., Ltd.
Priority to EP06775593A priority Critical patent/EP1939266B1/en
Priority to AT06775593T priority patent/ATE517965T1/de
Priority to JP2008531510A priority patent/JP5039706B2/ja
Priority to KR1020087009642A priority patent/KR101223501B1/ko
Publication of WO2007033576A1 publication Critical patent/WO2007033576A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/55Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing beryllium, magnesium, alkali metals or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/886Chalcogenides with rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7737Phosphates
    • C09K11/7738Phosphates with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/774Borates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7795Phosphates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7795Phosphates
    • C09K11/7796Phosphates with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7797Borates

Definitions

  • the present invention is a long-lasting luminescent material, and more particularly to a composite aluminate luminescent material containing sulfur and/or selenium, or containing sulfur and/or selenium and phosphorus elements and activator ions, and a process for producing the same.
  • the afterglow time is short: the afterglow time of the long-lasting luminescent material of the prior art aluminate system is said to be more than 24 hours, and the measurement method is based on the luminance of the final luminous intensity equivalent to 0.3 mcd/m 2 . In fact, under this luminance, the recognition ability of the human eye is very weak, which has great limitations for the application of long afterglow luminescent materials. 2. Poor application performance: The high luminance of the luminescent material is not equal to the high brightness of the luminescent material, and the brightness of the luminescent product largely depends on the compatibility of the luminescent material and the Shield for preparing the luminescent material. Many luminescent materials are not used in applications, and in practical applications, most of the luminescent materials are used in the manufacture of articles.
  • the inventors have done a lot of development work on long afterglow luminescent materials, and the main direction of the research is to improve the afterglow time, luminous intensity, and low light conditions of long afterglow luminescent materials and their products. Absorbance and a variety of luminescent colors. After long-term practice and a large number of basic experiments, the inventors found that: the S and / or Se elements are partially substituted for the oxygen element in the divalent europium-activated aluminate, and the P element can be selectively introduced to form a novel composite aluminate.
  • the salt structure can significantly improve the illuminating brightness and afterglow time of the luminescent material, greatly improve the application performance of the luminescent material in the product, and improve the illuminating brightness and afterglow time of the illuminating product. Especially in terms of light absorption speed and afterglow time under low light, the present invention has incomparable superiority to other long afterglow luminescent materials.
  • the present invention also develops a novel long-lasting luminescent material which exhibits a new variety and a new luminescent color which is not possessed by a technical single aluminate system or a sulfide system long afterglow luminescent material.
  • the invention is a long-lasting luminescent material of a novel system after the aluminate system and the long afterglow luminescent material of the silicate system.
  • This is a composite aluminate luminescent material containing sulfur and/or selenium, or containing sulfur and/or selenium and phosphorus elements and activator ions.
  • the invention provides a novel long afterglow luminescent material with various colors, wide light and wide range, excellent stability, high afterglow intensity and long afterglow time, fast absorption speed under low light conditions and excellent luminescent property of luminescent materials and Production method.
  • the main chemical composition of the long afterglow luminescent material of the present invention can be expressed by the formula (1): aMO 'bM, (SpSe!-p ) -c A1 2 0 3 - d B 2 0 3 -eP 2 0 5 : x Eu -y Ln (1)
  • M is selected from the group consisting of one or more of Sr, Ca, Ba, Mg; M, a combination of one or more elements selected from the group consisting of Sr, Ca, Ba; Ln is Nd, Dy , Ho, Tm, La> Ce, Er, Pr, Bi, Sm combination of one or more elements;
  • a, b, c, d, e, x, y is the molar coefficient, 0.5 ⁇ a ⁇ 6.0; 0.0001 ⁇ b ⁇ 2.0; 0.5
  • the long-emitting phosphorescent material wherein M in the formula (1) is selected from a combination of one or more elements of Sr, Ca, Mg; M, one selected from the group consisting of Sr, Ca a combination of two or two elements; Ln is a combination of one or more of Nd, Dy, Tm, La, Pr, Sm, Ce; the material emits 420 ⁇ 650 nm under short-wave excitation of less than 500 nm
  • the spectrum with a peak value of 440 ⁇ 620nm, can exhibit long-lasting luminescence of blue-violet, blue-green, yellow-green, composite white, red, etc., and can also have long-lasting luminescent materials with fast absorption characteristics.
  • e 0 in the general formula (1) introduces a sulfur and/or selenium element partially substituted oxygen element in the long afterglow luminescent material.
  • e ⁇ 0 introduces a sulfur and/or selenium element in the long afterglow luminescent material to partially replace the oxygen element, and the introduction can be performed as The component can in turn be used as an additive for the phosphorus element.
  • the molar coefficient coefficient in the general formula (1) is: 0.5 ⁇ a ⁇ 6.0; 0.0001 ⁇ b ⁇ 0.1; 0.5 ⁇ c ⁇ 6.6; 0 ⁇ d ⁇ 1.0; 0 ⁇ e ⁇ 1.0; 0.001 ⁇ x ⁇ 0.1; 0.001 ⁇ y ⁇ 0.2; 0 ⁇ ⁇ ⁇ 1.0, where 0 ⁇ 5 ⁇ (a + b)
  • the molar content of the Sr element is 3.5 times or more the sum of the molar contents of the Ca element and the Mg element; or the mole of the Sr element The content is 3.5 times or more of the molar content of the Ca element or the Mg element; the luminescent color after the excitation is yellow-green.
  • the molar coefficient in the general formula (1) ranges from: 0.5 ⁇ a ⁇ 6.0; 0.0001 ⁇ b ⁇ 0.1 ; 0.75 ⁇ c ⁇ 9.0 ; 0 ⁇ d ⁇ 1.0 ; 0 ⁇ e ⁇ 1.0 ; 0.001 ⁇ x ⁇ 0.1 ; 0.001 ⁇ y ⁇ 0.2 ; 0 ⁇ ⁇ ⁇ 1.0, where 0 ⁇ 5 ⁇ (a + b)
  • the molar coefficient in the general formula (1) ranges from: 0.5 ⁇ a ⁇ 6.0; 0.0001 ⁇ b ⁇ 0.1 ; 0.5 ⁇ c ⁇ 6.6 ; 0 ⁇ d ⁇ 1.0 ; 0 ⁇ e ⁇ 1.0 ; 0.001 ⁇ x ⁇ 0.1 ; 0.001 ⁇ y ⁇ 0.2 ; 0 ⁇ ⁇ ⁇ 1.0, where 0.5 ⁇ (a + b)
  • the molar coefficient in the formula (1) is 0.01 ⁇ X ⁇ 0.25; 0.01 ⁇ y ⁇ 0.3; and has fast absorption characteristics.
  • the sulfur and/or selenium element partially replaces the position of the oxygen element, and the defects formed form a crystal luminescent center, which greatly improves the luminescent property of the luminescent material and the application performance of the product; phosphorus and sulfur and / or selenium element used together, the phosphorus element partially replaces the aluminum element, not only improves the luminescence properties of the long afterglow luminescent material, but also makes the luminescent material powder loose and brittle, reducing wear and loss of wear.
  • the raw material used is a compound representing each element in the formula (1), and the sulfur and/or selenium element may also be a simple substance of sulfur and/or selenium as a raw material, and the molar ratio of the elements is:
  • the manufacturing process of the invention is a high temperature solid phase reaction method.
  • the raw materials of each element are pressed
  • the molar ratio was weighed, finely ground and uniformly mixed to prepare a mixture, which was placed in a crucible container.
  • a reducing atmosphere is hydrogen, ammonia, nitrogen and hydrogen or carbon particles
  • the production method of the present invention is an oxidation and reduction two-stage reaction.
  • This manufacturing method facilitates the diffusion of rare earth activator ions in the long afterglow luminescent material and is prone to grain growth of the long afterglow luminescent material.
  • the atmosphere containing not more than 10% hydrogen sulfide (H 2 S) in the reducing atmosphere can reduce the volatilization of sulfur and/or selenium in the raw material of the product of the present invention during the high-temperature reaction, and is advantageous for preparing the present invention.
  • a new composite sulfur and/or selenium aluminate long afterglow luminescent material can reduce the volatilization of sulfur and/or selenium in the raw material of the product of the present invention during the high-temperature reaction.
  • a small amount (not more than 30% by weight of the raw material) of other compounds such as «1, NH 4 F, ( ⁇ ,) 2 HP0 4 , glucose, urea, Li 2 C0 3 may be added to the raw material.
  • SrF 2 , CaF 2 , CaS0 4 , SrS, CaS, SrS0 4 , SrHP0 4 or CaHP0 4 participate in the solid phase reaction. After sintering, it is cooled, pulverized, and sieved, and sieved into various sizes of materials according to the requirements of use.
  • the method for measuring the luminescence intensity and afterglow of the sample in the invention is divided into two types: one is a powder sample, and the luminescent property of the luminescent powder is detected; the other is to make a powder sample into a luminescent film to detect the luminescent property of the luminescent article. .
  • the powder sample was tested by placing the sample in a circular sample with a diameter of 50 rara and a depth of 5 rara.
  • the matte was placed in the dark room for more than 24 hours, and the sample was taken out under a standard D65 source ⁇ illuminance for 5 minutes, and then charged with photoelectricity.
  • the luminescence luminance measuring device of the multiplier tube detects its luminescence intensity as a function of time, and is marked as "powder routine test". (For fast-lighting powder samples with fast light absorption characteristics under low light conditions, the measurement is to place the sample in a circular sample dish with a diameter of 50 mm and a depth of 5 legs, and place the extinction in the dark room for more than 24 hours, and take it out to the standard.
  • D65 light source 251x excitation for 15 minutes then use An illuminating luminance measuring device having a photomultiplier tube detects its illuminating intensity as a function of time, and is marked as "powder weak light test".
  • the comparative samples of the prior art were excited under the same conditions to compare the samples to 100, and the relative afterglow intensity of the samples was obtained.
  • the powder sample is made into a luminescent film, and the luminescent property of the luminescent article is tested by uniformly mixing the powder sample and the transparent resin paste in a weight ratio of 1:1, and uniformly coating the plastic film into a film by a film applicator.
  • the layer thickness is about 0.3 ⁇ 0. 002rara coating, rounded after drying, diameter 54mm, coating standard is 200 ⁇ 2 grams per square meter of luminescent powder. (In the following examples, all sample film preparation processes are the same, the standard is the same.)
  • the sample film is placed in the dark room for 50 hours or more, and taken out and placed in a standard D65 light source for 5 minutes, then re-installed.
  • An illuminating luminance measuring device having a photomultiplier tube detects its illuminating intensity as a function of time, and is marked as "membrane conventional test".
  • the measurement is to place the sample film in the dark room for more than 24 hours, and take it out under the 251x illumination of a standard D65 source for 15 minutes, then The luminescence intensity measured by time is detected by a luminescence luminance measuring device equipped with a photomultiplier tube, which is marked as "membrane weak light test”.
  • the comparative sample film of the prior art is excited under the same conditions. The relative afterglow intensity of the sample film was determined by comparing the sample film to 100.
  • the powder of the comparative sample and the sample of each example is prepared according to the prior art and the technique of the present invention, respectively, and the corresponding luminescent film is prepared according to the luminescent film preparation technology described above. Made under the same conditions.
  • the powder and luminescent films of all the samples were tested according to the corresponding powder or luminescent film detection methods described above, and the comparative luminance values of all the samples were the illuminance values at 10 minutes after the cessation of the excitation.
  • the excitation and emission spectra of the material were tested using an F- 4500 fluorescence spectrometer.
  • the invention combines the fast light absorption characteristics of a simple sulfide or sulfur oxide system luminescent material, and the long afterglow time of a simple aluminate system luminescent material, and invents a novel system luminescent material of a novel composite aluminate structure.
  • the new system luminescent material of the invention Compared with the existing luminescent materials technology of various systems, it has the outstanding advantages:
  • the luminescence brightness of the luminescent material is significantly improved, and the afterglow time is obviously prolonged.
  • the luminescent material of the invention has a maximum luminescence time of 90 hours when it reaches a luminance of 0.3 mcd/m 2 . the above;
  • the luminescent material of the invention has good compatibility with the organic material, and the luminescent product produced is significantly improved in luminous intensity and afterglow time compared with the prior art;
  • the luminescent material of the present invention has various luminescent colors, including blue-violet, blue-green, yellow-green, red, and composite white light;
  • the luminescent material of the invention has the fast light absorbing property, can absorb energy quickly under the condition of being 40 times weaker than the normal light source, and keeps the luminescence and the attenuation is slow;
  • the luminescent material of the present invention has a wide excitation and emission spectrum and has a wider range of practical applications.
  • Figure 1 is an emission spectrum of luminescent powders of Examples 1, 5, and 7 and Comparative Sample A.
  • Figure 3 is a graph comparing the emission spectra of the luminescent powder of Example 27 and its corresponding comparative sample.
  • Figure 5 is a spectrum diagram of Example 58.
  • Figure 6 is an emission spectrum of Example 58.
  • Fig. 7 is an excitation light spectrum of the luminescent powder of Example 63.
  • Figure 8 is an emission spectrum of the luminescent powder of Example 63.
  • Fig. 9 is a graph showing the relationship between the luminance of the light-emitting film of Example 63 and the corresponding comparative-like light-emitting film after the excitation was stopped and the luminance afterglow time.
  • Sulfur (S) and selenium (Se) belong to the same family in the periodic table, and their elemental or compound effects are similar in long-lasting luminescent materials, so they are only expressed in individual examples, and do not represent sulfur elements and selenium elements in the present invention.
  • the application in the application is limited by the embodiment.
  • the invention includes a long afterglow luminescent material having a luminescent color of yellow-green color and a preparation method thereof. The following description will be made by way of Examples 1 to 19.
  • the raw materials of the above composition were sufficiently ball-milled, placed in a crucible, placed in an electric furnace, and sintered at 900 ° C for 10 hours in an oxidizing atmosphere. After cooling, the crucible was removed, and the sintered body to be crucible was removed. After naturally cooling to room temperature, it is sintered in a furnace containing a mixture of 95% hydrogen, 3% nitrogen and 2% hydrogen peroxide. The furnace temperature is raised from 400 ° C to 1400 ° in 10 hours. C, and sintered at 1400 ° C for 5 hours.
  • Example 1 The luminescent material SrO ⁇ 0. 002 SrS ⁇ A1 2 0 3 ⁇ 0. 02B 2 0 3 ' 0. 01P 2 O 5 : 0. 004 Eu 0 in the present invention is referred to as Example 1.
  • a long-lasting luminescent material of Examples 2-7 having a yellow-green luminescent color was prepared by the same method as the luminescent material of Preparation Example 1 as compared with the prior art (SrO - A1A ⁇ 0. 02B 2 0 3 : 0. 004 Eu ) Comparison of long afterglow luminescent materials.
  • the material compositions of Examples 1 to 7 are listed in Table 1.
  • Table 1 shows the composition of each luminescent material. And the corresponding luminescent powder and the luminescent film are stopped at 10 minutes after the excitation, relative to the comparative sample A indicated as 100 The relative brightness of the brightness of the powder and luminescent film.
  • Figure 1 illustrates emission spectra of luminescent powders of Example 157 and Comparative Sample A. The ordinate represents the relative brightness of each sample. It can be clearly seen from the results of Table 1 and FIG. 1 that the novel composite aluminate material of the present invention has a slightly red shift in the emission spectrum compared with the yellow-green long afterglow luminescent material of the prior art, but the luminance is significantly enhanced. . In particular, the blending performance of the long afterglow luminescent material and the organic material is remarkably improved.
  • the long afterglow luminescent materials of Examples 8-12 having different molar contents of cerium and different molar contents of cerium were prepared by the same method as in the preparation of the luminescent material of Example 1, and the corresponding comparative samples were prepared according to the prior art and using the same
  • the powder conventional test and the film conventional test method measure the luminosity of these luminescent powders and luminescent films at 10 minutes after the start of the excitation.
  • the results of the various examples and comparative examples and their relative brightness are listed in Table 2.
  • the influence of different molar content of cerium and different molar content of cerium on the long afterglow luminescent material has been the consensus in the industry, which can make the brightness of the powder and luminescent film of the long afterglow luminescent material different.
  • a novel composite aluminate structure is formed.
  • the relative brightness of all of the sample samples was higher than that of the comparative samples prepared in the prior art.
  • Fig. 2 is a graph showing the relationship between the luminescence brightness and the luminescence afterglow time of the luminescent powder of Example 10 and its corresponding comparative sample after the excitation was stopped.
  • the luminescent material of Example 10 has a continual luminescence performance that greatly exceeds that of the luminescent powder of its corresponding comparative sample. And as time goes on, the performance of this slow decay is more obvious.
  • the afterglow duration of the luminescence of Example 10 at a luminance of 0.3 mcd/m 2 can reach 70 hours.
  • ruthenium was prepared as a main activator with different molar contents of other elements such as Nd, Dy, Ho, Tra, La, Ce, Er, Pr, Bi, Sm as auxiliary activators.
  • corresponding comparative samples were prepared in the prior art, and the luminescent brightness of these luminescent powders and luminescent films at 10 minutes after the excitation was stopped was measured.
  • Table 3 The results for each of the examples and comparative samples and their relative brightness are listed in Table 3. (The following examples do not represent activators and auxiliary stimulating The combination of active agents is limited to this. )
  • the invention also includes a blue-green long-lasting luminescent material and a preparation method thereof.
  • the following description will be made by way of Examples 20 to 40.
  • Example 20
  • the raw materials of the above composition were sufficiently ball-milled, placed in a crucible, placed in an electric furnace, and sintered at 1000 ° C for 20 hours in an oxidizing atmosphere. After cooling, the crucible was taken out, and the sintered body to be crucible was naturally cooled to room temperature, and then It is sintered in a furnace containing 54% hydrogen, 41% nitrogen and 5% hydrogen sulfide. The furnace temperature is raised from 400 °C to 1550 °C in 18 hours, and at 1550 °C. Insulation sintering for 8 hours.
  • the furnace temperature was lowered to 200 ° C in 6 hours, and the crucible was taken out, and the sintered body to be crucible was naturally cooled to room temperature, pulverized, ground by a ball mill, and sieved by a 325 mesh sieve to obtain luminescent particles.
  • the luminescent material in the present invention is 4Sr0 ⁇ 0. 005 SrS ⁇ 7A1 2 0 3 ⁇ 0. 1B 2 0 3 ⁇ 0. 01 P 2 0 5 : 0. 008 Eu.
  • the material was labeled as Example 20.
  • a long afterglow luminescent material of Examples 21 - 26 having a cyan luminescent color was prepared by the same method as the luminescent material of Preparation Example 20, and a comparative sample B prepared by the prior art ( 4SrO ⁇ 7 ⁇ 1 2 0 3 ⁇ 0. 1B 2 ) 0 3 : 0. 008 Eu ) Long afterglow luminescent material comparison.
  • the compositions of Examples 20-26 are listed in Table 4. The same test method was used to measure the luminance of the luminescent powder and the luminescent film at 10 minutes after the excitation was stopped. The results of the various examples and comparative examples and their relative brightness are listed in Table 4.
  • the long afterglow luminescent materials of Examples 27-35 of different molar contents of cerium and different molar contents of cerium were prepared by the same method as the luminescent material of Preparation Example 20, and the corresponding comparative long-lasting luminescent materials according to the prior art were used.
  • the luminescent brightness of these luminescent powders and luminescent films at 10 minutes after the cessation of excitation was measured.
  • the results of the various examples and comparative examples and their relative brightness are listed in Table 5.
  • Figure 3 is a graph showing the comparison of emission spectra of the luminescent powder of Example 27 and its corresponding comparative sample. It can be seen from the emission spectrum that the sulfur compound is separately added, so that the emission wavelength of the blue-green luminescent material of Example 27 is slightly red-shifted with respect to the emission wavelength of the comparative sample, and has little effect on the change of the luminescent color, but passes through the spectrum. The relative brightness and the comparison of the relative brightness of the powder and the film can easily lead to the conclusion that the luminescence intensity is greatly enhanced. table 5
  • ruthenium was prepared as a main activator with different molar contents of other elements such as Nd, Dy, Ho, Tm, La, Ce, Er, Pr, Bi, Sm as auxiliary activators.
  • Examples 32 - 40 of the long-lasting luminescent materials were prepared according to the prior art, and the corresponding comparative long-lasting luminescent materials were prepared, and the luminescent brightness of these luminescent powders and luminescent films at 10 minutes after the termination of the excitation was measured by the same test method.
  • the results of the compositions of the various examples and comparative examples and their relative brightness are listed in Table 6.
  • the present invention also includes a long afterglow luminescent material having a luminescent color of blue-violet and a method of preparing the same. The following description will be made by way of Examples 41 to 54. .
  • the raw materials of the above composition were sufficiently ball-milled, placed in a crucible, placed in an electric furnace, and sintered at 700 ° C for 10 hours in an oxidizing atmosphere. After cooling, the crucible was taken out, and the sintered body to be crucible was naturally cooled to room temperature, and then It was sintered in a furnace which was mixed with 95% hydrogen, 3% nitrogen and 2% hydrogen sulfide, and the furnace temperature was raised from 400 ° C to 1300 ° C in 10 hours, and at 1300. Insulation and sintering at C for 5 hours.
  • the luminescent material CaO ⁇ 0. 005 in the present invention CaS ⁇ A1 2 0 3 ⁇ 0. 02B 2 O 3 ⁇ 0. 005P 2 0 5 : 0. 005 Eu. This material was marked as Example 41.
  • a long afterglow luminescent material of Examples 42 to 43 having a blue-violet luminescent color was prepared by the same method as in the preparation of Example 41 luminescent material, compared with the prior art C (CaO ⁇ ⁇ 1 2 0 3 ⁇ 0. 02B 2 O 3 : 0. 005 Eu ) Long afterglow luminescent material.
  • the test methods of the examples and comparative luminescent powders and luminescent films were carried out using conventional powder testing and conventional film testing methods.
  • the composition and test results of the examples and comparative samples are listed in Table 7.
  • the present invention can prepare a blue-violet luminescent long afterglow luminescent material, and the novel composite aluminate structure causes the blue-violet long afterglow material prepared by the present invention to emit light in comparison with the blue-violet long afterglow luminescent material prepared by the prior art.
  • the brightness is significantly enhanced and the brightness of the product is higher.
  • a long afterglow luminescent material of Examples 44-46 having different molar contents of cerium and different molar contents of cerium was prepared by the same method as in the preparation of the luminescent material of Example 41, and the corresponding comparative long afterglow luminescent material according to the prior art
  • the luminescent brightness of these luminescent powders and luminescent films at 10 minutes after the cessation of excitation was measured by the same test method.
  • the composition of each of the examples and comparative examples and their relatives are listed in Table 8. The result of brightness.
  • Figure 4 is a graph showing the emission spectra of the luminescent film article of Example 44 and its corresponding comparative luminescent film article. Analysis of this figure demonstrates that the blue-violet light-emitting long afterglow material of the novel system of the present invention has a higher luminous intensity than the existing purple long-growth luminescent material.
  • ruthenium was prepared as a main activator with different molar contents of other elements such as Nd, Dy, Ho, Tm, La, Ce, Er, Pr, Bi, Sm as auxiliary activators.
  • the long-lasting luminescent materials of Examples 47 to 54 were prepared according to the prior art, and the corresponding comparative long-lasting luminescent materials were prepared, and the luminescent brightness of these luminescent powders and luminescent films at 10 minutes after the termination of the excitation was measured by the same test method.
  • the results of the various example samples and comparative samples and their relative brightness are listed in Table 9. - ⁇ - ⁇ ° ⁇ ⁇ — ⁇
  • the raw materials of the above composition were sufficiently ball-milled, placed in a crucible, placed in an electric furnace, and sintered at 800 ° C for 10 hours in an oxidizing atmosphere. After cooling, the crucible was taken out, and the sintered body to be crucible was naturally cooled to room temperature, and then It was sintered in a furnace equipped with 100% hydrogen gas, the furnace temperature was raised from 400 ° C to 1450 ° C in 6 hours, and sintered at 1450 ° C for 2 hours.
  • the furnace temperature was lowered to 200 ° C in 6 hours, and the crucible was taken out, and the sintered body to be crucible was naturally cooled to room temperature, pulverized, ground by a ball mill, and sieved by a 325 mesh sieve to obtain luminescent particles.
  • the luminescent material (Sr. 5 Ca., 5 ) 0 ⁇ 0 ⁇ 0001 CaS ⁇ ⁇ 1 2 0 3 ⁇ 0 ⁇ 02 ⁇ 2 ⁇ 3 ⁇ 0. 02 ⁇ 2 0 5 : 0. 005 Eu ⁇ 0 . 03 Nd. This material was labeled as Example 55.
  • a long-lasting luminescent material of Examples 56 to 57 in which the luminescent color was a composite white light was prepared by the same method as in the preparation of the luminescent material of Example 55. Its composition is listed in Table 10. Since there is no long afterglow luminescent material capable of emitting white light in the prior art, no sample can be compared. Table 10
  • the molar ratio of the Sr element to the A1 element and the molar content of the activator ion can be obtained as a long afterglow material having a strong emission peak at 590 to 620 nra and having a red luminescent color.
  • the raw materials of the above composition were sufficiently ball-milled, placed in a crucible, placed in an electric furnace, and sintered at 1100 ° C for 2 hours in an oxidizing atmosphere. After cooling, the crucible was taken out, and the crucible was taken out. The sintered body is naturally cooled to room temperature, and then sintered in a furnace containing 88% of hydrogen, 2% of nitrogen and 10% of hydrogen sulfide. The furnace temperature rises from 400 ° C in 8 hours. It was kept at 1100 ° C and sintered at 1100 ° C for 3 hours.
  • the furnace temperature was lowered to 200 ° C in 6 hours, the crucible was taken out, and the sintered body to be crucible was naturally cooled to room temperature, pulverized, ground by a ball mill, and sieved by 325 mesh sieve to obtain luminescent particles.
  • the luminescent material in the present invention (4.6 SrO ⁇ 0. 3 SrS ⁇ 2A1 2 0 3 ⁇ 0. 02B 2 O 3 ⁇ 0. 2 P 2 0 5 : 0. 16Eu ⁇ 0. 0003Tm ). This material was labeled as Example 58.
  • a long luminescent material of Examples 59-62 having a luminescent color of red was prepared by the same method as used for the preparation of the luminescent material of Example 58. Its composition is listed in Table 11.
  • the emission peak of Example 58 is located at about 615 nm, exhibiting red afterglow luminescence.
  • the red long luminescent material of the present invention has better chemical stability and temperature resistance.
  • the raw materials of the above composition were sufficiently ball-milled, placed in a crucible, placed in an electric furnace, and sintered at 800 ° C for 8 hours in an oxidizing atmosphere. After cooling, the crucible was taken out, and the sintered body to be crucible was naturally cooled to room temperature, and then It is sintered in a furnace containing a mixture of 90% hydrogen, 5% nitrogen and 5% hydrogen sulfide. The furnace temperature is raised from 400 ° C to 1450 ° C in 4 hours, and at 1450 ° C Insulation and sintering for 3 hours.
  • the luminescent material having the fast light absorbing property in the luminescent color of the present invention is yellow-green
  • Example 63 SrO ⁇ 0. 006 SrS ⁇ 0. 95A1 2 0 3 . 0. 02B 2 0 3 ⁇ 0. 02 P 2 0 5 : 0. 05 Eu ⁇ 0.03 Dy D This material is referred to as Example 63.
  • the raw materials of the above composition were sufficiently ball-milled, placed in a crucible, placed in an electric furnace, and sintered at 1000 ° C for 20 hours in an oxidizing atmosphere. After cooling, the crucible was taken out, and the sintered body to be crucible was naturally cooled to room temperature, and then It is sintered in a furnace containing a mixture of 62% hydrogen, 33% nitrogen and 5% hydrogen sulfide. The furnace temperature is raised from 400 ° C to 1550 ° C in 18 hours, and at 1550 ° C. Insulation sintering for 8 hours. After that, the furnace temperature dropped to 200 within 6 hours.
  • the raw materials of the above composition were sufficiently ball-milled, placed in a crucible, placed in an electric furnace, and sintered at 700 ° C for 10 hours in an oxidizing atmosphere. After cooling, the crucible was taken out, and the sintered body to be crucible was naturally cooled to room temperature, and then It is sintered in a furnace with a mixture of 95% hydrogen, 3% nitrogen and 2% hydrogen sulfide. The furnace temperature is raised from 400 ° C to 1300 ° C in 10 hours, and at 1300 ° C. Insulation sintering for 5 hours.
  • the furnace temperature was lowered to 200 ° C in 6 hours, the crucible was taken out, and the sintered body to be crucible was naturally cooled to room temperature, pulverized, ground by a ball mill, and sieved by a 250 mesh sieve to obtain luminescent particles.
  • the luminescent material CaO ⁇ 0. 005 CaS ⁇ 0. 98A1 2 0 3 ⁇ 0. 01B 2 O 3 ⁇ 0. 005P 2 O 5 : 0. 05 Eu ⁇ 0. 02Nd 2 0 3o Example 65.
  • Table 12 shows the results of the composition and luminance detection of the powders and film articles of Examples 63-65 and the corresponding prior art samples.
  • the powder and film luminance tests of all samples were tested by the weak light test and the film weak light test, respectively.
  • Example 7 and 8 are excitation and emission spectra of the luminescent powder of Example 63, respectively. It can be seen from the figure that the excitation spectrum of the luminescent powder of this embodiment is very wide, and the emitted light is in the range of yellow-green light, which is very suitable for indicating use under low-light illumination.
  • Figure 9 is a graph showing the decay of the luminance of the luminescent film of Example 63 and its corresponding comparative luminescent film after excitation for 15 minutes under the illumination of a standard D65 source 251 X with the luminescence time. It can be clearly seen from the curve comparison that the initial brightness and the 60-minute brightness of the product of Example 63 at 1 minute are much higher than that of the comparative sample after the same weak light source «_, and the afterglow time reaches the comparative sample 2 More than double. Further, it has been confirmed that the embodiment of the present invention has a strong fast light absorbing ability under low light conditions, and the attenuation is slow.
  • the present invention contains a sulfur- and/or selenium element, or a composite aluminate structure of sulfur and/or selenium elements and phosphorus elements, and has a fast light-absorbing property, as in the prior art. Compared with the long afterglow luminescent material, it has a remarkable fast absorption characteristic, and the decay speed is very slow.
  • CaSO, SrS, CaS, SrS0 4 , SrHP0 4 or CaHP0 4 can increase the luminosity of the material to varying degrees, as exemplified below.
  • the raw materials of the above composition were sufficiently ball-milled, placed in a crucible, placed in an electric furnace, and sintered at 1000 ° C for 2 hours in an oxidizing atmosphere. After cooling, the crucible was taken out, and the sintered body to be crucible was naturally cooled to room temperature and then capped. Then, it was buried in a crucible filled with carbon particles and placed in a furnace. The furnace temperature was raised from 400 ° C to 1200 ° C in 8 hours, and sintered at 1200 Torr for 3 hours.
  • Example 66 This material was labeled as Example 66.
  • CaHP0 4 has such characteristics.
  • the raw materials of the above composition were sufficiently ball-milled, placed in a crucible, placed in an electric furnace, and sintered at 1000 ° C for 15 hours in an oxidizing atmosphere. After cooling, the crucible was taken out, and the sintered body to be crucible was naturally cooled to room temperature, and then It was sintered in a furnace equipped with a gas of 100% ammonia gas, the furnace temperature was raised from 400 ° C to 1450 ° C in 8 hours, and sintered at 10 ° C for 10 hours. After that, the furnace temperature is lowered to 200 ° C in 8 hours, and the crucible is removed. After the sintered body in the crucible is naturally cooled to room temperature, it is pulverized and ground by a ball mill. The luminescent particles were sieved using a 325 mesh sieve. This material was marked as Example 67. After testing, the resulting material improved in both afterglow brightness and attenuation speed. The comparison results are shown in Table 14.
  • the raw materials of the above composition were sufficiently ball-milled, placed in a crucible, placed in an electric furnace, and sintered at 700 ° C for 10 hours in an oxidizing atmosphere. After cooling, the crucible was taken out, and the sintered body to be crucible was naturally cooled to room temperature, and then It was sintered in a furnace equipped with 100% hydrogen gas, the furnace temperature was raised from 400 ° C to 1300 ° C in 10 hours, and sintered at 1300 ° C for 5 hours. After that, the furnace temperature is lowered to 200 ° C in 6 hours, and the crucible is taken out. After the sintered body in the crucible is naturally cooled to room temperature, it is pulverized and ground by a ball mill. The luminescent particles were sieved using a 325 mesh sieve. This material was labeled as Example 68. After testing, the resulting material improved in both afterglow brightness and attenuation speed. The comparison results are shown in Table 15.
  • the product of the invention can be widely used in various long-lasting illuminating products indoors and outdoors, as an indication sign and decorative landscaping of night or dark conditions, the material can be combined with media such as paint, plastic, rubber, ink, etc., in construction, transportation , decoration, daily necessities, watches, fishing gear, toys and other fields, especially in the production of long-lasting safety products, such as: warnings, orders, escape route signs, have a good purpose.
  • media such as paint, plastic, rubber, ink, etc.
  • decoration such as daily necessities, watches, fishing gear, toys and other fields, especially in the production of long-lasting safety products, such as: warnings, orders, escape route signs, have a good purpose.
  • These materials in the present invention can also be used for white LEDs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Description

长余辉发光材料及其制造方法 技术领域
本发明是长佘辉发光材料, 特别涉及的是含有硫和 /或硒, 或者 含有硫和 /或硒和磷元素以及激活剂离子的复合铝酸盐发光材料及 其制造方法。
背景技术 ' 传统的 ZnS系列长余辉发光材料自 19世纪发明以来,经过不断 的改进, 已形成几个典型的产品, 如: ZnS: Cu (绿色发光), ( CaSr ) S: Bi (蓝色发光), ( ZnCd ) S: Cu (黄橙发光), 并应用于某些商业 领域, 但这类材料的缺点是稳定性差, 在空气中易分解, 在阳光照 射下易变灰至黑, 发光余辉时间短, 一般在 0. 5-2小时以内, 且发 光亮度较低, 不能满足实际应用的要求。 为提高材料的发光亮度, 延长余辉时间, 人们先后在这类材料中添加了 Co、 Ra、 H3等放射性 元素, 制成具有放射性的发光长余辉材料, 虽然材料可持续发光并 曾应用于航空仪表、 钟表等领域, 但是由于放射性的污染且价格昂 贵, 使用范围受到极大限制。
九十年代初, 发明了铝酸盐体系的长余辉发光材料, 如中国专 利 ZL92110744 , ZL98109570. 4 , ZL95118116. 5 , 美 国 专利 US5376303, US5424006 所示, 其发光亮度、 长余辉性能、 稳定性均 显著优于上述的硫化物系列产品, 已开始在生活用品、 安全标识、 钟表等方面得到应用。 但是在实际应用中, 上述铝酸盐体系的长余 辉发光材料还存在一定的不足。 比如:
1.余辉时间短: 现有技术的铝酸盐体系的长余辉发光材料的余 辉时间均称达到 24小时以上,该测量方式是以最终发光强度相当于 0. 3mcd/m2的辉度推算。 实际上, 在这种辉度下, 人眼的识别能力很 弱, 对于长余辉发光材料的应用具有很大的局限性。 2.应用性能差: 发光材料的辉度高不等于发光材料制成的制品 的辉度高, 发光制品的辉度很大程度上取决于发光材料与制备发光 材料制品的介盾的配伍性能。 很多发光材料的制品在应用中达不到 使用要求, 而在实际应用中, 发光材料大部分是制成制品使用。
3.不能实现快速吸光: 现有技术制备的长余辉发光材料在弱光 照明条件下的吸光速度慢, 很难达到饱和度, 从而导致发光材料以 及发光制品的发光强度和佘辉时间不能很好的满足实际应用中的要 求。
4. 发光颜色单一: 发光颜色少, 如果要实现多种颜色(发射光 谱峰值波长 440 ~ 620nm )必须要不同体系的发光材料来实现。 还没 有同一体系的发光材料实现多种颜色的发光。
发明内容
针对以上现有技术的不足, 本发明人在长余辉发光材料方面做 了大量的开发工作, 课题攻关的主要方向是提高长余辉发光材料及 其制品的余辉时间、 发光强度、 弱光条件下快速吸光性能和多种发 光颜色。 经过长期的实践和大量基础实验, 本发明人发现: 分别用 S和 /或 Se元素部分取代二价铕激活的铝酸盐中的氧元素, 还可以 选择性引入 P元素, 形成新型复合铝酸盐结构, 能够显箸提高发光 材料的发光亮度和余辉时间, 极大的改善发光材料在制品中的应用 性能, 提高发光制品的发光亮度和余辉时间。 尤其在弱光下的吸光 速度和余辉时间方面, 本发明具有其它长余辉发光材料不可比拟的 优越性。 本发明还开发出现有技术单一铝酸盐体系或者硫化物体系 长余辉发光材料所不具备的新品种、 新发光颜色的新型长余辉发光 材料。
本发明是继铝酸盐体系、 硅酸盐体系长余辉发光材料之后, 又 一种新型体系的长余辉发光材料。 这就是含有硫和 /或硒, 或者含有 硫和 /或硒和磷元素以及激活剂离子的复合铝酸盐发光材料。 本发明提供一种颜色多样、 光傅范围宽, 稳定性优良, 余辉强 度高且余辉时间超长, 在弱光条件下具有快速吸光速度, 发光材料 制品发光性能优良的新型长余辉发光材料及其制造方法。
本发明长余辉发光材料主要的化学组成可用式 ( 1 )表示: aMO 'bM, (SpSe!-p ) -c A1203 - d B203 -eP205: x Eu -y Ln (1 ) 其中 M选自 Sr, Ca, Ba, Mg中的一种或多种元素的组合; M, 选自 Sr, Ca, Ba中的一种或多种元素的组合; Ln为 Nd、 Dy、 Ho、 Tm、 La> Ce、 Er、 Pr、 Bi、 Sm中一种或多种元素的组合; a、 b、 c、 d、 e、 x、 y为摩尔系数, 0.5 < a < 6.0; 0.0001 < b < 2.0 ; 0.5
< c 9.0 ; 0 < d < 1.0 ; 0 e < 1.0 ; 0.00001 < x
< 0.25 ; 0.00001 < y < 0.3 ; 0 < β < 1.0,其中 0.5 < (a + b) < 6.0, 0 < (d + e) < 1.0。
根据本发明一种优选方案的长佘辉发光材料, 其中通式( 1 )中 M选自 Sr, Ca, Mg 中的一种或多种元素的组合; M, 选自 Sr, Ca 中的一种或两种元素的組合; Ln 为 Nd、 Dy、 Tm、 La、 Pr、 Sm、 Ce 中一种或多种元素的组合; 该材料在 5 OOnm以下短波光激发下, 发 出 420 ~ 650nm的发射光谱, 峰值为 440 ~ 620nm, 可呈现蓝紫、 蓝 绿、 黄绿、 复合白光、 红色等发光颜色的长余辉发光, 还可以具有 快速吸光特性的长余辉发光材料。
根据本发明一种优选方案的长余辉发光材料, 在通式(1 ) 中 e = 0 在长余辉发光材料中引入硫和 /或硒元素部分取代氧元素的格 位。
根据本发明一种优选方案的长余辉发光材料, 在通式(1 ) 中 e ≠ 0 在长余辉发光材料中引入硫和 /或硒元素部分取代氧元素的格 位, 同时引入既可以做为组分又可以作为添加剂使用的磷元素。
根据本发明一种优选方案的长余辉发光材料, 在通式( 1 )中摩 尔系数系数范围是: 0.5 < a < 6.0; 0.0001 < b < 0.1 ; 0.5 < c < 6.6 ; 0 < d < 1.0 ; 0 < e < 1.0 ; 0.001 < x < 0.1 ; 0.001 < y < 0.2 ; 0 < β < 1.0, 其中 0· 5 < (a + b)
< 6.0, 0 < (d + e) < 1.0, (a + b)/c = 0.8-1.2; Sr 元素的 摩尔含量是 Ca元素与 Mg元素摩尔含量之和的 3.5倍以上; 或者 Sr 元素的摩尔含量是 Ca元素或 Mg元素摩尔含量的 3.5倍以上; 激发 后的发光颜色为黄绿色。
根据本发明一种优选方案的长余辉发光材料, 在通式( 1 )中摩 尔系数的范围是: 0.5 < a < 6.0; 0.0001 < b < 0.1 ; 0.75 < c < 9.0 ; 0 < d < 1.0 ; 0 < e < 1.0 ; 0.001 < x < 0.1 ; 0.001 < y < 0.2 ; 0 < β < 1.0, 其中 0· 5 < (a + b)
< 6.0, 0 < (d + e) < 1.0, c/(a + b) =1.5-1.9; 激发后的发 光颜色为蓝绿色。
根据本发明一种优选方案的长余辉发光材料, 在通式( 1 )中摩 尔系数的范围是: 0.5 < a < 6.0; 0.0001 < b < 0.1 ; 0.5 < c < 6.6 ; 0 < d < 1.0 ; 0 < e < 1.0 ; 0.001 < x < 0.1 ; 0.001 < y < 0.2 ; 0 < β < 1.0, 其中 0.5 < (a + b) 6.0, 0 < (d + e) < 1.0, (a + b)/c = 0.8-1.2; Ca 元素的 摩尔含量是 Sr元素与 Mg元素摩尔含量之和的 3.5倍以上; 或者 Ca 元素的摩尔含量是 Sr元素或 Mg元素摩尔含量的 3.5倍以上; 激发 后的发光颜色为蓝紫色。
根据本发明一种优选方案的长余辉发光材料, 在通式( 1 )中摩 尔系数的范围是: 0.5 < a < 6.0; 0.0001 < b < 0.1 ; 0.5 < c < 6.6 ; 0 < d < 1.0 ; 0 < e < 1.0 ; 0.001 < x < 0.1 ; 0.001 < y < 0.2 ; 0 < β < 1.0, 其中 0.5 < (a + b)
< 6.0, 0 < (d + e) < 1.0, (a + b)/c = 0.9-1.1; Ca 元素的 摩尔含量与 Sr元素摩尔含量的比值在 0.6~ 1.5之间; 激发后的发 光颜色为白色。 根据本发明一种优选方案的长佘辉发光材料, 在通式( 1 )中摩 尔系数的范围是: 0.5 < a <6.0; 0.01 < b < 1.5 ; 0.5 < c < 3.5 ; 0 < d < 1.0 ; 0 < e < 1.0 ; 0.001 < x < 0.2 ; 0.00001 < y < 0.2 ; 0 < β < 1.0, 其中 0.5 < (a + b) < 6.0, 0 < (d + e) < 1.0, (a + b)/c = 2.0- 3.3; 激发后的发光 颜色为红色。
根据本发明一种优选方案的长余辉发光材料, 在通式( 1 )中摩 尔系数范围是: 0.01 < X < 0.25 ; 0.01 < y < 0.3 ; 具有快 速吸光特性。
本发明的长余辉发光材料化学组成中,硫和 /或硒元素部分取代 氧元素的格位, 形成的缺陷产生晶体发光中心, 大大改善发光材料 的发光性能和制品应用性能; 磷元素与硫和 /或硒元素配合使用, 磷 元素部分取代铝元素, 不仅改善长余辉发光材料的发光性能, 而且 使发光材料的粉体疏松易碎, 减少磨损亮度损失。
制造本发明的长余辉发光材料时, 所用原料为表示式( 1 )中各 元素的化合物, 硫和 /或硒元素也可以使用硫单质和 /或硒单质为原 料, 其元素摩尔配比为:
M: 0.5-6;
M': 0.0001 - 2.0;
S: 0.0001 - 2.0;
Se: 0.0001 - 2.0;
Al: 1.0~ 18;
B: 0-2.0;
P: 0-2.0;
Eu: 0.00001 - 0.25;
Ln: 0.00001 - 0.3;
本发明制作工艺为高温固相反应法。 将各元素的化合物原料按 摩尔配比称取, 研细并混合均匀, 制得混合物料, 装入坩埚容器中。 先在氧化气氛下 700-110(TC烧结 2 ~ 20小时, 再于还原气氛下(还 原气氛为氢气、 氨气、 氮气和氢气或碳粒存在下, 也可以在上述气 氛下, 还含有不超过 10 %的硫化氢(H2S ) ), 根据炉体容量和物料重 量和物料种类及配方的不同在 1100-1550°C烧成温度下,烧结 2 ~ 30 小时。
本发明的制造方法为氧化、 还原二段式反应。 这种制造方法有 利于稀土激活剂离子在长余辉发光材料中的扩散, 而且易于长余辉 发光材料的晶粒长大。 另外, 在还原气氛中含有不超过 10 %的硫化 氢(H2S ) ) 气氛, 可以减少本发明的产品在高温反应过程中原料里 硫和 /或硒元素的挥发, 有利于制备本发明的新型复合硫和 /或硒的 铝酸盐长余辉发光材料。
为了提高材料的品质, 可在原料中加入少量(不超过原料重量 30 % )的其他化合物, 如 «1, NH4F, (ΝΗ,) 2HP04, 葡萄糖, 脲素, Li2C03, SrF2, CaF2, CaS04, SrS, CaS, SrS04, SrHP04或 CaHP04参与 固相反应。 烧结后, 经冷却、 粉碎、 过筛工序, 根据使用要求, 筛 分成各级粒径材料。
本发明对样品进行发光强度和余辉的测量方法分两种: 一种是 粉末状的样品, 检测发光粉的发光性能; 一种是将粉末状的样品制 成发光膜, 检测发光制品的发光性能。
粉末状样品的测试是将样品置于直径 50rara、 深 5rara的圆形试样 中,在暗室放置消光 24小时以上,取出置于标准 D65光源 Ι ΟΟΟΙχ 照度下激发 5分钟后, 再用装有光电倍增管的发光辉度测定装置检 测其随时间变化的发光强度一一标记为 "粉常规测试"。 (对于弱光 条件下具有快速吸光特性的快速发光粉末状样品, 其测量是将样品 置于直径 50mm、 深 5腿的圆形试样皿中, 在暗室放置消光 24小时 以上, 取出置于标准 D65光源 251x照度下激发 15分钟后, 再用装 有光电倍增管的发光辉度测定装置检测其随时间变化的发光强度一 一标记为 "粉弱光测试"。)测试的同时, 对现有技术的比较样品在 同一条件下激发, 以比较样品为 100, 求取样品的相对余辉强度。
将粉末状的样品制成发光膜, 检测发光制品的发光性能的测试 是将粉末状样品与透明树脂糊按照 1: 1的重量比例混合均匀后, 用 涂膜器在塑料薄膜均匀的涂布成一层厚度约为 0. 3 ± 0. 002rara 的涂 层, 烘干后切圆, 直径 54mm, 涂布标准为每平方米上发光粉的重量 为 200 ± 2克。 (在后面的实施例中, 所有的样品膜制备过程都是如 此, 标准同一。 )将样品膜在暗室放置消光 24小时以上, 取出置于 标准 D65光源 ΙΟΟΟΙχ照度下激发 5分钟后,再用装有光电倍增管的 发光辉度测定装置检测其随时间变化的发光强度一一标记为 "膜常 规测试"。 (对于使用弱光条件下具有快速吸光特性的快速发光粉末 制成的样品膜, 其测量是将样品膜在暗室放置消光 24小时以上,取 出置于标准 D65光源 251x照度下激发 15分钟后, 再用装有光电倍 增管的发光辉度测定装置检测其随时间变化的发光强度一一标记为 "膜弱光测试"。)测试的同时, 对现有技术的比较样品膜在同一条 件下激发, 以比较样品膜为 100, 求取样品膜的相对余辉强度。
在本发明实施例的样品与比较样品的测试比较中, 比较样品与 各实施例样品的粉末体分别按照现有技术和本发明的技术制备, 相 应的发光膜按照前面所述的发光膜制备技术在同一条件下制作。 对 于所有样品的粉末体和发光膜的测试均按照前面所述的相应粉末体 或发光膜检测方法进行测试, 所有样品的比较辉度值均为激发停止 后 10分钟时的发光强度值。
材料的激发光谱和发射光谱采用 F - 4500荧光光谱仪测试。 本发明结合了单纯硫化物或者硫氧化物体系发光材料的快速吸 光特性, 以及单纯铝酸盐体系发光材料余辉时间较长的特性, 发明 了新型复合铝酸盐结构的新体系发光材料。 本发明的新体系发光材 料与现有的各种体系的发光材料技术相比, 具有的突出优点是:
1. 发光材料的粉体发光亮度显著提高, 余辉时间明显延长, 采用德国发光材料检测标准 DIN67510检测,本发明的发光材料达到 0. 3mcd/m2的辉度时最长发光时间可以持续 90小时以上;
2. 采用本发明的发光材料与有机材料的配伍性能好, 制成的 发光制品在发光强度和余辉时间方面均比现有技术显著提高;
3. 本发明的发光材料发光颜色多种多样, 包括蓝紫色、 蓝绿 色、 黄绿色、 红色以及复合白光等多种发光颜色;
4. 本发明发光材料具有快速吸光特性, 即使在弱于正常光源 40倍的条件下也能够快速吸收能量, 并保持发光而且衰减缓慢;
5. 本发明的发光材料激发和发射光谱宽, 具有更广泛的实际 应用领域。
附图说明
图 1 实施例 1、 5、 7和比较样 A的发光粉末的发射光谱图。
( a ) SrO · A1203 · 0. 02 B203: 0. 004 Eu
( b ) SrO■ 0; 003 SrS · 0. 001 SrSe · A1203 · 0. 02 B203: 0. 004 Eu
( c ) SrO · 0. 005 SrSe · A1203 · 0. 02 B203: 0. 004 Eu
( d ) SrO■ 0. 002 SrS · A1203 · 0. 02 B203 · 0. 01P2O5: 0. 004 Eu 图 2 实施例 10与其对应的比较样品的发光粉末在激发停止后 发光亮度和发光余辉时间的关系比较图。
( a ) SrO ·0. 01 SrS ·Α1203 ·0. 05Β2Ο3 · 0. 1Ρ205: 0. 005 Eu ·0. OlDy
( b ) SrO · A1203 · 0. 05B2O3: 0. 005 Eu · 0. OlDy
图 3 实施例 27的发光粉末和其相应的比较样的发射光谱比较 图。
( a ) 4SrO · 7A1203 · 0. 3B203: 0. 00001 Eu · 0. OOOOlDy
( b ) 4SrO · 0. 005 SrS · 7A1203 · 0. 3B203 · 0. 02P2O5: 0. 00001 Eu · 0. OOOOlDy 图 4 实施例 44的发光膜制品与其对应的比较样发光膜制品的 发射光谱比较图。
( a ) CaO■ A1203 · 0. 05B2O3: 0. 001 Eu · 0. 0015 Nd
( b ) CaO - 0. 01 CaS ·Α1203 · 0. 05B2O3 · 0. 02P2O5: 0. 001 Eu ·0· 0015
Nd
图 5 实施例 58的^^光谱图。
图 6 实施例 58的发射光谱图。
图 7 实施例 63的发光粉的激发光图谱。
图 8 实施例 63的发光粉的发射光图谱。
图 9 实施例 63的发光膜与其对应的比较样发光膜在激发停止 后发光亮度和发光余辉时间的关系比较图。 具体实施方式
下面叙述本发明的实施例。 需要指出的是本发明并不受这些实 施例的限制。 在元素周期表中硫(S )和硒(Se )同属一族, 其单质 或化合物在长余辉发光材料中的应用效果类似, 所以只以个别实施 例表述, 不代表硫元素和硒元素在本发明中的应用受到实施例的限 制。
本发明包括一种发光颜色为黄绿色的长余辉发光材料及其制备 方法。 以下通过实施例 1 ~ 19进行说明。
原料 重量 ( g )
SrC03 147. 63
A1203 101. 96
H3B03 2. 47
SrS 0. 24
(NH4) 2HP04 2. 64
Eu203 0. 7 将上述组成的各原料充分球磨混合, 装入坩埚后,放入电炉中, 在 900°C下氧化气氛下烧结 10小时, 冷却后取出坩埚, 待坩埚中的 烧结体自然冷却至室温后, 再将其放入通有 95%的氢气、 3%的氮气 和 2 %的疏化氢混合气体的炉中烧结, 炉温在 10小时内从 400°C升 至 1400°C, 并在 1400°C下保温烧结 5小时。 之后, 在 6小时内炉温 降至 200°C, 取出坩埚, 待坩埚中的烧结体自然冷却至室温后, 粉 碎、 用球磨机进行研磨, 再利用 325 目规格的筛子进行发光颗粒筛 分 , 得 到 本 发 明 中 的 发 光 材 料 SrO · 0. 002 SrS · A1203 · 0. 02B203 ' 0. 01P2O5: 0. 004 Eu0 将该材料标记为实施例 1。
实施例 1—7
通过使用与制备实施例 1发光材料相同的方法制备具有黄绿色 发光颜色的实施例 2-7的长余辉发光材料同现有技术制备的比较样 A ( SrO - A1A · 0. 02B203: 0. 004 Eu )长余辉发光材料比较。 实施 例 1 ~ 7的材料組成列于表 1中。在表 1和本说明书后面的实施例表 格中, "比较实施例" 为相应按照现有技术制备的长余辉发光材料, 均缩写为 "比较样,,。表 1给出了各发光材料的组成以及对应的发光 粉末和发光膜停止激发后 10分钟时相对于表示为 100的比较样 A的 粉末和发光膜发光亮度的相对亮度。
图 1说明了实施例 1 5 7和比较样 A的发光粉末的发射光谱 图。 纵坐标代表的是各样品的相对亮度。 从表 1和图 1的结果可以 明显看出, 本发明的新型复合铝酸盐材料与现有技术的黄绿色长余 辉发光材料相比较, 发射光谱的峰值略有红移, 但是发光亮度显著 增强。 特别是对长余辉发光材料与有机材料的配合性能显著提高。
Figure imgf000013_0001
Figure imgf000013_0002
实施例 8— 12
通过使用与制备实施例 1发光材料相同的方法制备不同摩尔含 量的铕与不同摩尔含量的镝的实施例 8—12的长余辉发光材料, 其 对应的比较样按照现有技术制备, 并采用相同的粉常规测试和膜常 规测试方法测定这些发光粉末和发光膜在停止激发后 10 分钟时的 发光亮度。 表 2中列出了各实施例和比较样以及它们的相对亮度的 结果。 不同摩尔含量的铕与不同摩尔含量的镝的加入, 对长余辉发 光材料的影响已经是行业内的共识, 可以使长余辉发光材料的粉末 体和发光膜亮度不同。 本发明中由于硫和 /或硒元素的加入, 或者是 硫和 /或硒元素和磷元素的共同引入, 形成新型复合铝酸盐结构, 使 得所有实施例样品的相对亮度均高于现有技术制备的比较样品。 图 2说明的是实施例 10与其对应的比较样品的发光粉末在激发 停止后发光亮度和发光余辉时间的关系比较。 从图可以看出, 实施 例 10 的发光材料的持续发光性能大大超过与其对应的比较样品的 发光粉。 而且随着时间的延长, 这种緩慢衰减的性能体现的越明显。 实施例 10的发光达到 0. 3mcd/m2的辉度时的余辉持续时间可以达到 70小时。
Figure imgf000014_0001
Figure imgf000014_0002
实施例 13— 19
通过使用与制备实施例 1发光材料相同的方法制备铕作为主激 活剂与不同摩尔含量的其他元素如 Nd、 Dy、 Ho、 Tra、 La、 Ce、 Er、 Pr、 Bi、 Sm作为辅助激活剂的实施例 13 - 19的长余辉发光材料, 分别以现有技术制备对应的比较样, 并测定这些发光粉末和发光膜 在停止激发后 10分钟时的发光亮度。表 3中列出了各实施样和比较 样以及它们的相对亮度的结果。(以下实施例不代表激活剂和辅助激 活剂的组合形式限制如此。 )
Figure imgf000015_0001
本发明还包括一种蓝绿光的长余辉发光材料及其制备方法。 以 下通过实施例 20 ~ 40进行说明。 实施例 20
Figure imgf000016_0001
将上述組成的各原料充分球磨混合, 装入坩埚后,放入电炉中, 在 1000°C下氧化气氛下烧结 20小时, 冷却后取出坩埚, 待坩埚中 的烧结体自然冷却至室温后, 再将其放入通有 54%的氢气、 41%的氮 气和 5 %的硫化氢混合气体的炉中烧结, 炉温在 18小时内从 400°C 升至 1550°C , 并在 1550°C下保温烧结 8小时。 之后, 在 6小时内炉 温降至 200°C, 取出坩埚, 待坩埚中的烧结体自然冷却至室温后, 粉碎、 用球磨机进行研磨, 再利用 325 目规格的筛子进行发光颗粒 筛 分 , 得 到 本 发 明 中 的 发 光 材 料 4Sr0 · 0. 005 SrS · 7A1203 · 0. 1B203■ 0. 01 P205: 0. 008 Eu。 4夺该材料标记为实施 例 20。
实施例 20 - 26
通过使用与制备实施例 20发光材料相同的方法制备具有蓝绿色 发光颜色的实施例 21 - 26 的长余辉发光材料同现有技术制备的比 较样 B ( 4SrO · 7Α1203 · 0. 1B203: 0. 008 Eu )长余辉发光材料比较。 实施例 20—26的组成列于表 4中。并采用相同的测试方法测定这些 发光粉末和发光膜在停止激发后 10分钟时的发光亮度。表 4中列出 了各实施例和比较样以及它们的相对亮度的结果。
从表 4可以明显的看出, 根据本发明可以制备发蓝绿光的长余 辉发光材料, 并且可以得到比现有技术制备的蓝绿色长余辉发光材 料发光亮度高的长余辉材料。 粉末 发光膜 实施例号 实施例組成
相对亮度 相对亮度
4Sr0 · 0. 005 SrS · 7A1203 · 0. 1B203 ·
20 126 131
0. 01P205: 0. 008 Eu
21 o o 102 105 o
4SrO · 0. 005 SrS · 7A1203 · 0. 1B203 ·
22 139 144
0. 005P2O5: 0. 008 Eu
4SrO · 0. OOOlCaSe · 7A1203 ·
23 103 105
0. 9P205: 0. 008 Eu
4SrO■ 0. 005 SrSe · 7A1203 ·
24 122 123
0. 1B203: 0. 008 Eu
4SrO · 0. 007 SrS · 0. 003 SrSe · 7A1203 ·
25 113 116
0. IB2O3: 0. 008 Eu
4SrO · 0. 007 CaS · 0. 003
26 119 119
CaSe · 7A1203 · 0. 1B203 · 0. 5P205: 0. 008 Eu
比较样 B 4SrO · 7AI2O3 · 0. IB2O3: 0. 008 Eu 100 100 实施例 27 - 35
通过使用与制备实施例 20发光材料相同的方法制备不同摩尔 含量的铕与不同摩尔含量的镝的实施例 27 - 35的长余辉发光材料, 其对应的比较样的长余辉发光材料按照现有技术制备, 并测定这些 发光粉末和发光膜在停止激发后 10分钟时的发光亮度。表 5中列出 了各实施例和比较样以及它们的相对亮度的结果。
图 3给出实施例 27的发光粉末和其相应的比较样的发射光谱比 较图。 从该发射图谱可以看出, 单独加入硫化合物, 使实施例 27的 蓝绿色发光材料的发射波长相对于比较样品的发射波长稍许红移, 对发光颜色的变化影响不大, 而通过光谱图中的相对亮度和粉末以 及膜的相对亮度比较结果可以轻易得出发光强度大大加强的结论。 表 5
Figure imgf000018_0001
实施例 32 - 40
通过使用与制备实施例 20发光材料相同的方法制备铕作为主 激活剂与不同摩尔含量的其他元素如 Nd、 Dy、 Ho、 Tm、 La、 Ce、 Er、 Pr、 Bi、 Sm作为辅助激活剂的实施例 32 - 40的长余辉发光材料, 按照现有技术制备对应的比较样的长余辉发光材料, 并采用相同的 测试方法测定这些发光粉末和发光膜在停止激发后 10 分钟时的发 光亮度。 表 6中列出了各实施例和比较样的組成以及它们的相对亮 度的结果。 从这些结果中发现, 在引入硫和 /或硒元素、 或者是硫和 /或硒元素和磷元素后的复合铝酸盐中,不同摩尔含量的辅助激活剂 的加入, 可以在不同程度上提高发光粉末以及对应的发光膜的发光 亮度, 使各实施例的发光粉末和发光膜的相对亮度均有明显提高。 (以下实施例不代表激活剂和辅助激活剂的组合形式限制如此。 )
Figure imgf000019_0001
粉末相对 发光膜相 实施例号 实施例組成
亮度 对亮度
). 6Sr0 · 0. 015 SrS · 0. 92A1203 · 0. 01B2O3:
32 106 107
0. 005Eu■ 0. 0005 Nd
0. 6SrO · 0. 92Ah03 · 0. 01B2O3:
比较样 32 100 100
0. 005Eu · 0. 0005 Nd
4. 2SrO · 0. 05 SrS · 7A1203■ 0. 5B203■ 0. 05P205:
33 115 118
0. 005Eu · 0. 004Dy · 0. 0005 Nd
4. 2SrO · 7A1203 · 0. 5B203:
比较样 33 100 100
0. 005Bu · 0. 004Dy · 0. 0005 Nd
( 2. 6SrO · 0. 3Ca 0 ) · 0. 001 SrSe · 0. 001
34 SrS · 5A1203 · 0. 4B203 · 0. 1P205: 125 128
0. 005Eu■ 0. 004Dy■ 0. 0005Ho
( 2. 6SrO - 0. 3Ca 0 ) · 5A1203 · 0. 4B20,:
比较样 34 100 100
0. 005Eu · 0. 004Dy · 0. 0005 Ho
( 3. 4SrO · 0. lMgO ) · 0. 04SrS · 0. 02CaS■
35 6AI2O3 · 0. 2B203: 110 109
0. 005Eu · 0. 004Dy · 0. 0005 Tm
( 3. 44SrO · 0. lMgO · 0. 02CaO ) · 6A1203 · 0. 2B203:
比较样 35 100 100
0. 005Eu · 0. 004Dy · 0. 0005Tm
3. 7 SrO · 0. ISrS · 5. 8AI2O3■ 0. 4B203 · 0. 1P205:
36 98 103
0. 005Eu · 0. 004Dy · 0. 0005La
3. 7 SrO · 5. 8AI2O3■ 0. 4B203:
比较样 36 100 100
0. 005Eu · 0. 004Dy · 0. 0005La
4. 36SrO■ 0. 2SrS · 8. OAI2O3■ 0. 8B203 · 0. 02P2O5:
37 100 103
0. 005Eu■ 0. 004Dy · 0. 0005 Er
4. 56SrO · 8. OAI2O3 · 0. 8B203:
比较样 37 100 100
0. 005Eu · 0. 004Dy · 0. 0005Er
(3. 8SrO ' 0. ICaO · 0. lMgO) ■ 0. OOlSrSe · 0. 02CaS
38 7AI2O3 · 0. 4B203: 115 120
0. 005Eu · 0. 004Dv · 0. 0005Sm (3. 8Sr0 · 0. ICaO · 0. lMgO ) · 7A1203■ 0. 4B203:
比较样 38 100 100
0. 005Eu · 0. 004Dy · 0. 0005Sm
3. 7SrO · 0. 07CaSe · 7A1203 ' 0. 5B203 · 0. 5 P205:
39 108 109
0. 005Eu · 0. 004Dy, 0. 0005Ce
(3. 7SrO · 0. 07Ca 0 ) ■ 7A1203 ' 0. 5¾03:
比较样 39 100 100
0. 005Eu · 0. 004Dy · 0. 0005Ce
4SrO · 0. 02 SrS · 7. 05A1203 · 0. 45B203 · 0. 05 P205:
40 130 133
0. 005Eu · 0. 005 Nd · 0. 004 Pr
4SrO · 7. 05A1203 · 0. 45B203:
比较样 40 100 100
0. 005Eu · 0. 005 Nd · 0. 004 Pr 本发明还包括一种发光颜色为蓝紫色的长余辉发光材料及其制 备方法。 以下通过实施例 41 ~ 54进行说明。。
实施例 41
Figure imgf000020_0001
将上述组成的各原料充分球磨混合, 装入坩埚后, 放入电炉中, 在 700°C下氧化气氛下烧结 10小时, 冷却后取出坩埚, 待坩埚中的 烧结体自然冷却至室温后, 再将其放入通有 95%的氢气、 3%的氮气 和 2 %的硫化氢混合气体的炉中烧结, 炉温在 10小时内从 400°C升 至 1300°C, 并在 1300。C下保温烧结 5小时。 之后, 在 6小时内炉温 降至 200°C , 取出坩堝, 待坩埚中的烧结体自然冷却至室温后, 粉 碎、 用球磨机进行研磨, 再利用 250 目规格的篩子进行发光颗粒筛 分 , 得 到 本 发 明 中 的 发 光 材 料 CaO · 0. 005 CaS■ A1203 · 0. 02B2O3 · 0. 005P205: 0. 005 Eu。 将该材料标记为实施 例 41。
实施例 41 - 43
通过使用与制备实施例 41 发光材料相同的方法制备具有蓝紫 色发光颜色的实施例 42 - 43的长余辉发光材料同现有技术比较样 C ( CaO · Α1203 · 0. 02B2O3: 0. 005 Eu ) 的长余辉发光材料。 实施例和 比较样的发光粉末和发光膜的测试方法采用常规粉测试和常规膜测 试方法。 实施例与比较样品的组成和测试结果列于表 7中。
通过表 7可以知道, 本发明可以制备蓝紫色发光的长余辉发光 材料, 并且新型复合铝酸盐结构导致本发明制备的蓝紫色长余辉材 料较现有技术制备的蓝紫色长余辉发光材料在发光亮度上有明显增 强, 制品亮度更高。
表 7
Figure imgf000021_0001
实施例 44― 46
通过使用与制备实施例 41 发光材料相同的方法制备不同摩尔 含量的铕与不同摩尔含量的钕的实施例 44 - 46的长余辉发光材料, 其对应的比较样的长余辉发光材料按照现有技术制备, 并采用相同 的测试方法测定这些发光粉末和发光膜在停止激发后 10 分钟时的 发光亮度。 表 8中列出了各实施例和比较样的组成以及它们的相对 亮度的结果。
图 4显示的是实施例 44的发光膜制品与其对应的比较样发光膜 制品的发射光谱比较图。 分析此图可以证明, 本发明新体系的蓝紫 色发光长余辉材料同现有紫色长佘辉发光材料相比, 其发光材料制 品的发光强度更高。
Figure imgf000022_0001
Figure imgf000022_0002
实施例 47 - 54
通过使用与制备实施例 41 发光材料相同的方法制备铕作为主 激活剂与不同摩尔含量的其他元素如 Nd、 Dy、 Ho、 Tm、 La、 Ce、 Er、 Pr、 Bi、 Sm作为辅助激活剂的实施例 47 - 54 的长余辉发光材料, 按照现有技术制备对应的比较样的长余辉发光材料, 并采用相同的 测试方法测定这些发光粉末和发光膜在停止激发后 10 分钟时的发 光亮度。 表 9 中列出了各实施例样品和比较样以及它们的相对亮度 的结果。 -\τ- ^^^土 ° 神 寺 令 ¥ ^—^
Figure imgf000023_0001
9Z.2200/9003N3/X3d 9LS 0/L00Z OAV 例 55 ~ 57叙述该材料的组成、 性能以及制备方法。
实施例 55
Figure imgf000024_0001
将上述组成的各原料充分球磨混合, 装入坩埚后,放入电炉中, 在 800°C下氧化气氛下烧结 10小时, 冷却后取出坩埚, 待坩埚中的 烧结体自然冷却至室温后, 再将其放入通有 100%的氢气气体的炉中 烧结, 炉温在 6小时内从 400°C升至 1450°C , 并在 1450°C下保温烧 结 2小时。 之后, 在 6小时内炉温降至 200°C, 取出坩埚, 待坩埚 中的烧结体自然冷却至室温后, 粉碎、 用球磨机进行研磨, 再利用 325 目规格的筛子进行发光颗粒筛分, 得到本发明目中的发光材料 ( Sr。.5Ca。,5 )0 ·0· 0001 CaS ·Α1203 ·0· 02Β2Ο3 ·0. 02 Ρ205: 0. 005 Eu ·0. 03 Nd。 将该材料标记为实施例 55。
实施例 55 - 57
通过使用与制备实施例 55 发光材料相同的方法制备发光颜色 为复合白光的实施例 56 - 57 的长余辉发光材料。 其组成列于表 10 中。 由于在现有技术中尚无能够发出白光的长余辉发光材料, 因此 没有可以比较样品。 表 10
Figure imgf000025_0001
本发明中还有一个新的发现, 在分别引入硫和 /或硒元素, 或者 是硫和 /或硒元素和磷元素的共同引入的条件下, 改变基质的组成, 即在一定的范围内调整 Sr元素和 A1元素的摩尔比例以及激活剂离 子的摩尔含量,可以得到在 590 ~ 620nra处具有很强发射峰的发光颜 色为红色的长余辉材料。
下面以实施例 58 ~ 62对本发明加以说明。
实施例 58
Figure imgf000025_0002
将上述组成的各原料充分球磨混合, 装入坩埚后, 放入电炉 中, 在 1100°C下氧化气氛下烧结 2小时, 冷却后取出坩埚, 待坩埚 中的烧结体自然冷却至室温后, 再将其放入通有 88%的氢气、 2%的 氮气和 10 %的硫化氢混合气体的炉中烧结, 炉温在 8小时内从 400 °C升至 1100°C, 并在 1100'C下保温烧结 3小时。 之后, 在 6小时内 炉温降至 200°C , 取出坩埚, 待坩埚中的烧结体自然冷却至室温后, 粉碎、 用球磨机进行研磨, 再利用 325 目规格的筛子进行发光颗粒 筛 分 , 得到 本发 明 中 的 发光材料 ( 4. 5 SrO · 0. 3 SrS · 2A1203 · 0. 02B2O3 · 0. 2 P205: 0. 16Eu · 0. 0003Tm )。 将该材料 标记为实施例 58。
实施例 58 - 62
通过使用与用于制备实施例 58 发光材料相同的方法制备发光 颜色为红色的实施例 59—62的长佘辉发光材料。 其组成列于表 11 中。
图 6中明确显示实施例 58的发射峰位于 615nm左右,呈现红色 余辉发光。与传统的红色长余辉发光材料 SrS -CaS · 0. 02Β2Ο3: 0. 004 Eu相比, 本发明的红色长佘辉发光材料具有更好的化学稳定性和耐 温性。
表 11
实施例
实施例组成
58 4. 5 SrO · 0. 3 SrS · 2 A1203 · 0. 02 B203 · 0. 2 P205: 0. 16 Eu · 0. 0003 Tm
59 0. 6 SrO · 0. 7 SrS■ 0. 5 A1203 · 0. 02 B203 · 0. 02 P205 : 0. 008 Eu · 0. OOOlDy
6. 0 SrO · 1. 5 SrS · 3. 0 A1203 · 1. 0 P205:
60
0. 25 Eu · 0. 05 Tm · 0. 001 Pr
61 3. 0 SrO · 2. 0 SrS · 2. 5 Al203 · 0. 02 B203: 0. 015Eu · 0. OOOlCe
2. 5 SrO · 0. 4 SrS ' 0. ISrSe · 1. 0 A1203 · 0. 02 B203 · 0. 02 P205:
62
0. 04 Eu · 0. 005Nd 本发明的另一个新的发现, 在引入硫和 /或硒元素、或者是硫和 /或硒元素和磷元素的复合铝酸盐结构中,调整碱土金属元素和铝元 素的摩尔比例, 以及稀土激活剂离子的含量, 可以使不同发光颜色 的长余辉发光材料具有明显快速吸光的特性。 业内人士共识, 具有 快速吸光特性的发光材料, 衰减速度必然极快。 从而在实际应用领 域收到很大的限制。 本发明很好地解决这一矛盾技术难题, 在使长 余辉发光材料具有快速吸光的特性同时, 具有显箸的緩慢衰减的特 性。
下面以实施例 63 ~ 65对本发明加以说明。
实施例 63
Figure imgf000027_0001
将上述组成的各原料充分球磨混合, 装入坩埚后, 放入电炉中, 在 800°C下氧化气氛下烧结 8 小时, 冷却后取出坩埚, 待坩埚中的 烧结体自然冷却至室温后, 再将其放入通有 90%的氢气、 5%的氮气 和 5 %的硫化氢混合气体的炉中烧结,炉温在 4小时内从 400°C升至 1450°C, 并在 1450°C下保温烧结 3小时。 之后, 在 6小时内炉温降 至 200°C, 取出坩埚, 待坩埚中的烧结体自然冷却至室温后, 粉碎、 用球磨机进行研磨, 再利用 325 目规格的筛子进行发光颗粒筛分, 得到本发明中的发光颜色是黄绿色的具有快速吸光性能的发光材料
SrO · 0. 006 SrS · 0. 95A1203 . 0. 02B203 · 0. 02 P205: 0. 05 Eu · 0. 03 DyD 将该材料标记为实施例 63。
实施例 64
Figure imgf000028_0001
将上述组成的各原料充分球磨混合, 装入坩埚后,放入电炉中, 在 1000°C下氧化气氛下烧结 20小时, 冷却后取出坩埚, 待坩埚中 的烧结体自然冷却至室温后, 再将其放入通有 62%的氢气、 33%的氮 气和 5 %的硫化氢混合气体的炉中烧结, 炉温在 18小时内从 400°C 升至 1550°C, 并在 1550°C下保温烧结 8小时。 之后, 在 6小时内炉 温降至 200。C , 取出坩埚, 待坩埚中的烧结体自然冷却至室温后, 粉碎、 用球磨机进行研磨, 再利用 325 目规格的筛子进行发光颗粒 筛分, 得到本发明中的发光颜色为蓝绿色的具有快速吸光特性的发 光材料 4. 5SrO · 0. 003 SrS · 6. 9A1203 · 0. 5B203 · 0. 01 P205: 0. 15 Eu · 0. 20Dy。 将该材料标记为实施例 64。 实施例 65
Figure imgf000029_0001
将上述组成的各原料充分球磨混合, 装入坩埚后, 放入电炉中, 在 700°C下氧化气氛下烧结 10小时, 冷却后取出坩埚, 待坩埚中的 烧结体自然冷却至室温后, 再将其放入通有 95%的氢气、 3%的氮气 和 2 %的硫化氢混合气体的炉中烧结, 炉温在 10小时内从 400°C升 至 1300°C , 并在 1300°C下保温烧结 5小时。 之后, 在 6小时内炉温 降至 200°C , 取出坩埚, 待坩埚中的烧结体自然冷却至室温后, 粉 碎、 用球磨机进行研磨, 再利用 250 目规格的筛子进行发光颗粒筛 分 , 得 到 本 发 明 中 的 发 光 材 料 CaO · 0. 005 CaS · 0. 98A1203 · 0. 01B2O3 · 0. 005P2O5: 0. 05 Eu · 0. 02Nd203o 将该材 料标记为实施例 65。
表 12为实施例 63-65和对应的现有技术比较样的粉末体和膜 制品的组成和辉度检测对比结果。 所有样品的粉体和膜辉度测试分 别采用粉弱光测试和膜弱光测试方法。
表 12
Figure imgf000030_0001
图 7和 8分别是实施例 63的发光粉的激发和发射图谱。从图可 以看出, 该实施例发光粉的激发光谱非常宽, 发射光讲在黄绿光的 范围内, 非常适合在弱光照明奈件下的指示用途。
图 9是实施例 63的发光膜与其对应的比较样发光膜在标准 D65 光源 251 X照度下激发 15分钟后的发光亮度随发光时间的衰减曲线。 通过曲线对比能够明显看出在同样的弱光源«_后,实施例 63的制 品在 1分钟时的起始亮度和 60分钟亮度都远远高于比较样制品,而 且余辉时间达到比较样的 2倍以上。 进而证明本发明的实施例在弱 光条件下具有强快速吸光能力, 而且衰减緩慢。
结合表 12以及图 7 - 9 , 本发明含有硫和 /或硒元素、 或者是硫 和 /或硒元素和磷元素的复合铝酸盐结构的具有快速吸光特性的发 光材料, 同现在已有技术的长余辉发光材料相比, 具有显著的快速 吸光特性, 同时衰减速度非常緩慢。
本发明中发现在长余辉发光材料制备过程中加入占原料重量 0 ~ 30 %的肌 Cl, NH4F, (肌)巢,葡萄糖,脲素, Li2C03, SrF2, CaF2, 6
CaSO,, SrS, CaS, SrS04, SrHP04或 CaHP04等可以在不同程度上提高 材料的发光亮度, 下面举例说明。
实施例 66
按照 SrO · 0. 001 SrS · Α1α03■ 0. 02Β2Ο3: 0. 005 Eu, 0. OlDy的 化学組成配料, 外加 30 % ( WT ) 的脲素。 具体含量如下:
Figure imgf000031_0001
将上述组成的各原料充分球磨混合, 装入坩埚后,放入电炉中, 在 1000°C下氧化气氛下烧结 2小时, 冷却后取出坩埚, 待坩埚中的 烧结体自然冷却至室温后加盖, 再将其埋入装有碳粒的坩埚中加盖 放入炉内, 炉温在 8小时内从 400°C升至 1200°C, 并在 1200Ό下保 温烧结 3小时。 之后, 在 4小时内炉温降至 200°C , 取出坩埚, 待 坩埚中的烧结体自然冷却至室温后, 粉碎、 用球磨机进行研磨, 再 利用 325 目规格的筛子进行发光颗粒筛分。 将该材料标记为实施例 66。
经过 X - ray分析, 并未发现有新的晶相产生,但是所得材料在 佘辉亮度和衰减速度减緩方面均有提高。 对比结果见表 13。
粉末 发光膜 实施例号 实施例組成
相对亮度 相对亮度
SrO ·0.001 SrS ·Α1203 ·0.02Β2Ο3: 0.005
66 108 110
Eu · 0. OlDy + 30% (FT)脲素
SrO ·0.001 SrS ·Α1203 ·0.02Β2Ο3: 0.005
比较样 66 100 100
Eu · 0, OlDy
实猃证明, NH4C1、 NH4F (N¾)2HP04、 葡萄糖、 脲素、 SrHP04
CaHP04均具有此类特性。
实施例 67
按照 4SrO · 7Α1203 · 0.04B2O3 · 0.02 P205: 0.005 Eu, 0. OOlDy 的元素组成配料, 外加 1% (WT)的硫酸钙。 具体含量如下:
Figure imgf000032_0001
将上述組成的各原料充分球磨混合, 装入坩埚后,放入电炉中, 在 1000°C下氧化气氛下烧结 15 小时, 冷却后取出坩埚, 待坩埚中 的烧结体自然冷却至室温后, 再将其放入通有 100%氨气气体的炉 中烧结, 炉温在 8小时内从 400°C升至 1450°C, 并在 l^O'C下保温 烧结 10小时。 之后, 在 8小时内炉温降至 200°C, 取出坩埚, 待坩 埚中的烧结体自然冷却至室温后, 粉碎、 用球磨机进行研磨, 再利 用 325目规格的筛子进行发光颗粒筛分。将该材料标记为实施例 67。 经过测试,所得材料在余辉亮度和衰减速度減緩方面均有提高。 对比结果见表 14。
Figure imgf000033_0001
实验证明, SrS、 CaS、 SrS04均具有此类特性。
实施例 68
按照 CaO ·0. OOlCaS ·Α1203 ·0. 01Β203 ·0. 02 Ρ205: 0. 002 Eu ·0. 005Nd 的元素組成配料, 外加 10 % (WT)的氟化钙。 具体含量如下:
Figure imgf000033_0002
将上述组成的各原料充分球磨混合, 装入坩埚后,放入电炉中, 在 700°C下氧化气氛下烧结 10小时, 冷却后取出坩埚, 待坩埚中的 烧结体自然冷却至室温后, 再将其放入通有 100 %氢气气体的炉中 烧结, 炉温在 10小时内从 400°C升至 1300°C, 并在 1300°C下保温 烧结 5小时。 之后, 在 6小时内炉温降至 200°C, 取出坩埚, 待坩 埚中的烧结体自然冷却至室温后, 粉碎、 用球磨机进行研磨, 再利 用 325目规格的筛子进行发光颗粒筛分。将该材料标记为实施例 68。 经过测试,所得材料在余辉亮度和衰减速度减緩方面均有提高。 对比结果见表 15。
Figure imgf000034_0001
实验证明, Li2C03、 SrF2均具有此类特性。
工业应用 本发明产品可广泛用于室内外的各种长余晖发光制品, 作为夜 间或黑暗条件的指示标识和装饰美化, 该材料可与涂料、 塑料、 橡 胶、 油墨等介质结合, 在建筑、 交通、 装修装饰、 日用品、 钟表、 渔具、 玩具等领域, 尤其是长余晖安全制品生产方面, 例如: 警示、 命令、 逃生路线标识, 具有较好的用途。,本发明中的这些材料也可 用于白光 LED。

Claims

权 利 要 求
1. 一种长余辉发光材料, 其特征在于含有硫和 /或硒, 或者含有 硫和 /或硒和磷元素以及激活剂离子的复合铝酸盐发光材料,其主要 的化学组成表示式为:
a M0 · b M, ( SpSei-p ) · c A1203 · d B203 · e P205: x Eu · y Ln 其中 M选自 Sr, Ca, Ba, Mg中的一种或多种元素的组合; M, 选 自 Sr, Ca, Ba中的一种或多种元素的组合; Ln为 Nd、 Dy、 Ho、 Tm、 La、 Ce、 Er、 Pr、 Bi、 Sm中一种或多种元素的组合; a、 b、 c、 d、 e、 x、 y为摩尔系数, 0.5 < a < 6.0; 0.0001 < b < 2.0 ; 0.5 < c < 9.0 ; 0 < d < 1.0 ; 0 < e < l.0 ; 0.00001 < x < 0.25 ; 0.00001 < y < 0.3 ; 0 < β < 1.0,其中 0.5 < (a + b) < 6.0, 0 < (d + e) < 1.0。
2. 根据权利要求 1所述的长余辉发光材料, 其特征为化学组成 表示式中的 M选自 Sr, Ca, Mg中的一种或多种元素的组合; M, 选 自 Sr , Ca中的一种或两种元素的组合; Ln为 Nd、 Dy、 Tm、 La、 Pr、 Sm、 Ce中一种或多种元素的组合, 该材料在 500nm以下短波光激发 下, 发出 420 ~ 650nm的发射光谱, 峰值为 440 ~ 620nm, 可呈现蓝 紫、 蓝绿、 黄绿、 复合白光、 红光发光颜色的长余辉发光, 还可以 具有快速吸光特性的长余辉发光材料。
3. 根据权利要求 1或 2所述的长余辉发光材料, 其特征为化学 组成表示式中 e = 0, M, 选自 Sr, Ca中的一种或两种元素的组合。
4. 根据权利要求 1或 2所述的长余辉发光材料, 其特征为化学 组成表示式中 e≠0, 其中 M, 选自 Sr, Ca中的一种或两种元素的组 合。
5. 根据权利要求 1或 2所述的一种长余辉发光材料, 其特征在 于所述的摩尔系数的范围是: 0.5 < a < 6.0; 0.0001 < b <
0.1 ; 0.5 < c < 6.6 ; 0 < d < 1.0 ; 0 e < 1.0 ; 0.001
< x < 0.1 ; 0.001 < y 0.2 ; 0 < β < 1.0,其中 0.5 < (a + b) < 6.0, 0 < (d + e) < 1.0, (a + b) /c = 0.8 ~ 1.2; Sr 元素的摩尔含量是 Ca元素和 Mg元素摩尔含量之和的 3.5倍以上; 或者 Sr元素的摩尔含量是 Ca元素或 Mg元素摩尔含量的 3.5倍以上; 激发后的发光颜色为黄绿色。
6. 根据权利要求 1或 1所述的一种长佘辉发光材料, 其特征在 于所述的摩尔系数的范围是: 0.5 < a < 6.0; 0.0001 < b < 0.1 ; 0.75 < c < 9.0 ; 0 < d < 1.0 ; 0 < e < 1.0 ; 0.001 < X < 0.1 ; 0.001 < y < 0.2 ; 0 < β < 1.0, 其中 0.5 < (a + b) < 6.0, 0 < (d + e) < 1.0, c/(a + b) = 1.5~ 1.9; 激发后的发光颜色为蓝绿色。
7. 根据权利要求 1或 2所述的一种长余辉发光材料, 其特征在 于所述的摩尔系数的范围是: 0.5 < a < 6.0; 0.0001 < b < 0.1 ; 0.5 < c < 6.6 ; 0 < d < 1.0 ; 0 < e < 1.0 ; 0.001
< x < 0.1 ; 0.001 < y < 0.2 ; 0 < β < 1.0,其中 0· 5 < (a + b) < 6.0, 0 < (d + e) < 1.0, (a + b) /c = 0.8 ~ 1.2; Ca 元素的摩尔含量是 Sr元素和 Mg元素摩尔含量之和的 3.5倍以上; 或者 Ca元素的摩尔含量是 Sr元素或 Mg元素摩尔含量的 3.5倍以上; 激发后的发光颜色为蓝紫色。
8. 根据权利要求 1或 2所述的一种长余辉发光材料, 其特征在 于所述的摩尔系数的范围是: 0.5 < a < 6.0; 0.0001 < b < 0.1 ; 0.5 < c < 6.6 ; 0 < d < 1.0 ; 0 < e < 1.0 ; 0.001
< x < 0.1 ; 0.001 < y < 0.2 ; 0 < β < 1.0,其中 0· 5 < (a + b) < 6.0, 0 < (d + e) < 1.0, (a + b) /c = 0.9 - 1.1; Ca 元素的摩尔含量与 Sr元素摩尔含量的比值在 0.6 ~ 1.5之间; 激发 后的发光颜色为复合白色。
9. 根据权利要求 1或 2所述的一种长余辉发光材料, 其特征在 于所述的摩尔系数的范围是: 0.5 < a <6.0; 0.01 < b <1.5 ; 0.5 < c < 3.5 ; 0 < d < 1.0 ; 0 < e < 1.0 ; 0.001 < X 0.2 ; 0.00001 < y < 0.2 ; 0 < β 1.0, 其中 0· 5 < (a + b) < 6.0, 0 < (d + e) < 1.0, (a + b) /c = 2.0 ~ 3.3; 激 发后的发光颜色为红色。
10. 根据权利要求 1或 2所述的一种长余辉发光材料,其特征在 于所述的摩尔系数范围是: 0.01 < X < 0.25 ; 0.01 y < 0.3 ; 具有快速吸光特性。
11. 一种长余辉发光材料的制作方法,其特征在于所用原料为下 列各元素的化合物, 其中硫、硒元素可以使用硫单质和 /或硒单质为 原料,其元素按照下述表示式 a MO -bM' (SpSei-p ) -c A1203 -dB203 -e P205: x Eu · y Ln 的摩尔配比为:
M: 0.5-6;
M': 0.0001 - 2.0;
S: 0.0001 - 2.0;
Se: 0.0001 - 2.0;
Al: 1.0- 18;
B: 0-2.0;
P: 0-2.0;
Eu: 0.00001 - 0.25;
Ln: 0.00001 - 0.30 制作工艺为高温固相反应法,将各元素的原料按摩尔配比称取, 混合均匀, 先在氧化气氛下 700-1100°C烧结 2~20小时, 再于还原 气氛下 1100- 1550°C烧结 2~ 30小时, 冷却后, 粉碎, 过筛而成。
12.根据权利要求 11中所述的长余辉发光材料的制作方法, 其特征 为所述的还原气氛为氢气、 氨气、 氮气和氢气或碳粒存在下。
13. 根据权利要求 12中所述的长余辉发光材料的制作方法, 其 特征为所述的还原气氛含有不超过 10 %的 H2S。
14. 根据权利要求 11 中所述的长余辉发光材料的制作方法, 其 特征为可在混合原料中加入占原料重量 0 ~ 30 %的 NH4C1, NH4F, (NH4) 2HP04, 葡萄糖, 脲素, Li2C03, SrF2, CaF2, CaS04, SrS, CaS, SrS04, 8]:1^04或 CaHP04参与固相反应。
PCT/CN2006/002276 2005-09-23 2006-09-04 Matériau luminescent à longue rémanence et son procédé de préparation WO2007033576A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06775593A EP1939266B1 (en) 2005-09-23 2006-09-04 Long-afterglow luminescent material and its preparation method
AT06775593T ATE517965T1 (de) 2005-09-23 2006-09-04 Lang nachglühender leuchtstoff und herstellungsverfahren dafür
JP2008531510A JP5039706B2 (ja) 2005-09-23 2006-09-04 長残光性発光材料及びこの製造方法
KR1020087009642A KR101223501B1 (ko) 2005-09-23 2006-09-04 장잔광성 발광 재료 및 이의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200510106004 2005-09-23
CN200510106004.9 2005-09-23
CNB2006100709634A CN100560688C (zh) 2005-09-23 2006-03-29 长余辉发光材料及其制造方法
CN200610070963.4 2006-03-29

Publications (1)

Publication Number Publication Date
WO2007033576A1 true WO2007033576A1 (fr) 2007-03-29

Family

ID=37888543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/002276 WO2007033576A1 (fr) 2005-09-23 2006-09-04 Matériau luminescent à longue rémanence et son procédé de préparation

Country Status (7)

Country Link
US (1) US7686979B2 (zh)
EP (1) EP1939266B1 (zh)
JP (1) JP5039706B2 (zh)
KR (1) KR101223501B1 (zh)
CN (1) CN100560688C (zh)
AT (1) ATE517965T1 (zh)
WO (1) WO2007033576A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115838594A (zh) * 2021-09-21 2023-03-24 纳米及先进材料研发院有限公司 长余辉的红光发光磷光体及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100485013C (zh) * 2005-07-01 2009-05-06 四川新力光源有限公司 一种复合基质长余辉荧光材料及其制备方法
CN101586017B (zh) * 2009-05-18 2013-07-10 广东三和化工科技有限公司 蓄能发光型硅酮密封胶
CN101705095B (zh) * 2009-09-21 2011-08-10 四川新力光源有限公司 黄光余辉材料及其制备方法和使用它的led照明装置
CN103612449A (zh) * 2013-11-15 2014-03-05 英利能源(中国)有限公司 绝缘发光材料及包括其的太阳能电池背板和太阳能电池组件
CN113493687A (zh) * 2021-06-14 2021-10-12 西北工业大学 一种Sm3+和Eu3+共掺杂长余辉发光材料及制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1053807A (zh) * 1991-03-09 1991-08-14 复旦大学 长余辉磷光材料及其制备
CN1084535A (zh) 1992-09-19 1994-03-30 杨丽馨 夜光涂料
US5376303A (en) 1994-06-10 1994-12-27 Nichia Chemical Industries, Ltd. Long Decay phoaphors
US5424006A (en) 1993-04-28 1995-06-13 Nemoto & Co., Ltd. Phosphorescent phosphor
CN1132777A (zh) 1994-11-01 1996-10-09 根本特殊化学株式会社 夜光性荧光体
JPH08269448A (ja) * 1995-03-30 1996-10-15 Nichia Chem Ind Ltd 残光性蛍光体
CN1199078A (zh) 1997-05-09 1998-11-18 株式会社小原 长余辉荧光物质
JPH11256151A (ja) * 1998-03-06 1999-09-21 Lead:Kk 蓄光性複合材とその製造方法
CN1233641A (zh) * 1998-04-27 1999-11-03 中国科学院长春物理研究所 稀土激活的碱土金属硼铝酸盐长余辉荧光体
WO2002083814A1 (en) * 2001-04-18 2002-10-24 Shandong Lunbo Ind. & Comm. Group Co Limited Alkali earth aluminate-silicate photoluminescent pigment which is activated by rare-earth elements
WO2005044946A1 (ja) * 2003-11-06 2005-05-19 Nemoto & Co., Ltd. 蓄光性蛍光体及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69937993C5 (de) * 1998-09-28 2019-01-10 Koninklijke Philips N.V. Beleuchtungsanordnung
JP4244265B2 (ja) * 2000-07-03 2009-03-25 化成オプトニクス株式会社 アルミン酸塩蛍光体、蛍光体ペースト組成物並びに真空紫外線励起発光装置
JP2002201468A (ja) * 2000-07-07 2002-07-19 Tdk Corp 蛍光体薄膜その製造方法、およびelパネル
AU2003218840A1 (en) 2002-04-17 2003-11-03 Ifire Technology Inc. Oxygen substituted barium thioaluminate phosphor materials
JP2005232414A (ja) * 2004-02-23 2005-09-02 Ishihara Sangyo Kaisha Ltd アルミン酸ストロンチウム系蓄光粉末及びその製造方法
JP2005344094A (ja) * 2004-05-31 2005-12-15 Kojundo Chem Lab Co Ltd アルカリ土類チオアルミネート系蛍光体の製造法。
US7812522B2 (en) * 2004-07-22 2010-10-12 Ifire Ip Corporation Aluminum oxide and aluminum oxynitride layers for use with phosphors for electroluminescent displays

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1053807A (zh) * 1991-03-09 1991-08-14 复旦大学 长余辉磷光材料及其制备
CN1084535A (zh) 1992-09-19 1994-03-30 杨丽馨 夜光涂料
US5424006A (en) 1993-04-28 1995-06-13 Nemoto & Co., Ltd. Phosphorescent phosphor
US5376303A (en) 1994-06-10 1994-12-27 Nichia Chemical Industries, Ltd. Long Decay phoaphors
CN1132777A (zh) 1994-11-01 1996-10-09 根本特殊化学株式会社 夜光性荧光体
JPH08269448A (ja) * 1995-03-30 1996-10-15 Nichia Chem Ind Ltd 残光性蛍光体
CN1199078A (zh) 1997-05-09 1998-11-18 株式会社小原 长余辉荧光物质
JPH11256151A (ja) * 1998-03-06 1999-09-21 Lead:Kk 蓄光性複合材とその製造方法
CN1233641A (zh) * 1998-04-27 1999-11-03 中国科学院长春物理研究所 稀土激活的碱土金属硼铝酸盐长余辉荧光体
WO2002083814A1 (en) * 2001-04-18 2002-10-24 Shandong Lunbo Ind. & Comm. Group Co Limited Alkali earth aluminate-silicate photoluminescent pigment which is activated by rare-earth elements
WO2005044946A1 (ja) * 2003-11-06 2005-05-19 Nemoto & Co., Ltd. 蓄光性蛍光体及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115838594A (zh) * 2021-09-21 2023-03-24 纳米及先进材料研发院有限公司 长余辉的红光发光磷光体及其制备方法
CN115838594B (zh) * 2021-09-21 2024-01-26 纳米及先进材料研发院有限公司 长余辉的红光发光磷光体及其制备方法

Also Published As

Publication number Publication date
EP1939266B1 (en) 2011-07-27
CN100560688C (zh) 2009-11-18
JP2009509009A (ja) 2009-03-05
EP1939266A1 (en) 2008-07-02
US20070069181A1 (en) 2007-03-29
ATE517965T1 (de) 2011-08-15
JP5039706B2 (ja) 2012-10-03
EP1939266A4 (en) 2010-09-29
CN1935936A (zh) 2007-03-28
US7686979B2 (en) 2010-03-30
KR101223501B1 (ko) 2013-01-21
KR20080056230A (ko) 2008-06-20

Similar Documents

Publication Publication Date Title
JP5410966B2 (ja) ケイ酸塩蛍光体、及びケイ酸塩蛍光体を用いた発光デバイス
JP5331981B2 (ja) 複数の発光ピークを有するケイ酸塩ベースの発光材料、当該発光材料を調製するための方法、及び当該発光材料を用いた発光デバイス
US7109648B2 (en) Light emitting device having thio-selenide fluorescent phosphor
US8329062B2 (en) Waterproof multiple rare-earth co-activated long-afterglow luminescent material
WO2005017062A2 (en) Light emitting devices having sulfoselenide fluorescent phosphors
CN114437724B (zh) 一种镓酸盐基多色长余辉发光材料及其制备方法
WO2007033576A1 (fr) Matériau luminescent à longue rémanence et son procédé de préparation
CN103160278A (zh) 一种红色长余辉发光材料及其制备方法
KR101717241B1 (ko) 질화물 적색 발광재료, 그것을 포함한 발광체 및 발광소자
US3577350A (en) Europium and manganese activated sodium or potassium aluminate phosphors
JPH08151573A (ja) 残光性蛍光体
CN111100634A (zh) 一种长余辉荧光材料及其制备方法
CN107722972B (zh) 一种绿色长余辉发光材料及其制备方法
CN102399554B (zh) 氮化物红色发光材料、包括其的发光件以及发光器件
JPH09272867A (ja) アルミン酸塩蛍光体及びその製造方法
CN101570688B (zh) 一种红色发光的发光材料以及使用其的发光装置
JP3268761B2 (ja) 耐熱・耐候性に優れた高輝度・長残光性アルミン酸塩蓄光体
CN104910916B (zh) 一种发光颜色可调的新型磷灰石结构发光材料及其应用
US20090173915A1 (en) Light-storing phosphor
JP2000063823A (ja) 高輝度アルミン酸ストロンチウム蓄光体
ES2369616T3 (es) Material luminiscente de prolongada persistencia lumínica, y su método de preparación.
CN111171810B (zh) 二价铕掺杂的硅氮化物红色长余辉发光材料及制备方法
CN117186884A (zh) 红色荧光材料、其制备方法及应用
KR20090066344A (ko) 스펙트럼 겹침이 큰 두 종류 이상의 축광재료를 화학적으로혼합하여 만든 고 휘도 장 잔광 축광재료
CN103952152A (zh) 一种黄色长余辉发光材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008531510

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006775593

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087009642

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006775593

Country of ref document: EP