WO2007032489A1 - 温度保護回路、電源装置、電子機器 - Google Patents

温度保護回路、電源装置、電子機器 Download PDF

Info

Publication number
WO2007032489A1
WO2007032489A1 PCT/JP2006/318405 JP2006318405W WO2007032489A1 WO 2007032489 A1 WO2007032489 A1 WO 2007032489A1 JP 2006318405 W JP2006318405 W JP 2006318405W WO 2007032489 A1 WO2007032489 A1 WO 2007032489A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
threshold
monitoring target
signal
target temperature
Prior art date
Application number
PCT/JP2006/318405
Other languages
English (en)
French (fr)
Inventor
Yuzo Ide
Yuichi Aoki
Masaaki Fujii
Hirokazu Oki
Original Assignee
Rohm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd. filed Critical Rohm Co., Ltd.
Priority to EP06810197A priority Critical patent/EP1933439A1/en
Priority to CN200680034081.0A priority patent/CN101268596B/zh
Priority to US12/066,855 priority patent/US7961446B2/en
Publication of WO2007032489A1 publication Critical patent/WO2007032489A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a temperature protection circuit, and a power supply device and an electronic apparatus provided with the temperature protection circuit, and particularly relates to improvement in accuracy and safety of the temperature protection function.
  • IC integrated circuit
  • thermal shutdown circuit a temperature protection circuit mounted as a means for preventing the destruction of the power transistor that is a heat source (see, for example, Patent Documents 1 and 2 by the applicant of the present application).
  • Patent Document 2 Japanese Patent Publication No. 6-16540
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-140094
  • Patent Document 4 Japanese Patent Application Laid-Open No. 6-61414
  • an IC equipped with the above-described conventional temperature protection circuit can detect and shut off abnormal heat generation of the IC due to malfunction or overload, and prevent destruction of the IC.
  • the temperature to be monitored by the temperature protection circuit reaches a predetermined threshold temperature
  • the driving of the IC is immediately shut off. Therefore, if the monitored temperature fluctuates frequently depending on the original operation of the IC (ie, pulse driving of the load), such as when applied to a power supply IC or motor drive IC, an unintended shutdown is performed by the temperature protection circuit.
  • the operation may occur, and there is a problem that the operating temperature range of the IC becomes unnecessarily narrow.
  • the present invention provides a temperature protection capable of performing a highly accurate and safe temperature protection operation without unnecessarily narrowing the operating temperature range of an IC to be protected. It is an object to provide a circuit, and a power supply device and an electronic device including the circuit. Means for solving the problem
  • the temperature protection circuit according to the present invention that achieves the above object compares the monitoring target temperature with a plurality of threshold temperature values, respectively, and the monitoring target temperature is a threshold temperature over a predetermined confirmation period.
  • the first configuration described above is a concept that includes a mode in which a binary threshold temperature is provided rather than only a mode in which a threshold temperature of three or more values is provided (embodiment to be described later). is there .
  • the confirmation period corresponding to the lower threshold temperature is set longer than the confirmation period corresponding to the higher threshold temperature.
  • the temperature protection circuit having the first configuration includes a heat generation detection means for generating a heat generation detection voltage whose voltage level varies according to the monitored temperature; and based on the heat generation detection voltage, An alarm signal generating means for generating an alarm signal for notifying when the temperature to be monitored has reached the first threshold temperature; and based on the alarm signal, the temperature to be monitored is the first threshold temperature.
  • suppression signal generating means for generating a suppression signal for suppressing the drive of the protection target circuit continuously or stepwise according to the monitoring target temperature; When it is determined that the monitoring target temperature has reached the second threshold temperature higher than the first threshold temperature, a first cutoff signal is generated to cut off the drive of the protection target circuit.
  • First cutoff signal generating means When the monitored temperature on the basis of the voltage is determined to have reached the third threshold temperature higher than the second threshold temperature, including the protected circuit, temperature protection circuits (and A second cutoff signal generating means for generating a second cutoff signal for shutting off the drive of all the circuits except for the circuits required for operation) (second configuration) .
  • second configuration By adopting such a configuration, it is possible to know the temperature state of the chip before shutdown by monitoring alarm signals and suppression signals, making it possible to easily design the IC thermal.
  • this configuration since the drive of the circuit to be protected is gradually suppressed, and finally the shutdown operation is performed, it is possible to suppress the occurrence of noise and surge that cause IC destruction. Become.
  • the alarm signal generation unit is configured to monitor the monitoring target temperature when the monitoring target temperature is maintained at a first threshold temperature or higher over a first confirmation period.
  • the first cut-off signal generating means determines that the target temperature has reached the first threshold temperature, and the first cutoff signal generating means is equal to or higher than the second threshold temperature over a second confirmation period in which the monitored temperature is shorter than the first confirmation period.
  • the second cutoff signal generation means determines that the monitoring target temperature has reached the third threshold temperature. It is preferable to adopt a configuration (third configuration) that immediately determines that the temperature to be monitored has reached the third threshold temperature.
  • the alarm signal generating means generates a heat generation detection voltage corresponding to the monitoring target temperature and a first threshold value voltage corresponding to the first threshold temperature.
  • a first comparison unit that is enabled when the monitored temperature is higher than the first threshold temperature; and the output logic of the first comparison unit is turned on for the first confirmation period.
  • a first enable limiter which is enabled for the first time when the output logic force is enabled when the output signal of the first enable limiter is maintained, and the output signal of the first enable limiter is used as the alarm signal.
  • the first cutoff signal generation means compares the heat generation detection voltage corresponding to the monitoring target temperature with the second threshold voltage corresponding to the second threshold temperature, and the monitoring target temperature is the second threshold value.
  • a second comparison unit that is enabled; a second comparison unit that is enabled only when the output logic of the second comparison unit is maintained in an enabled state for the second confirmation period. And an output of the second enable restriction unit as the first cutoff signal, and the second cutoff signal generating means is configured to detect the temperature to be monitored. The corresponding heat generation detection voltage is compared with the third threshold voltage corresponding to the third threshold temperature, and when the temperature to be monitored exceeds the third threshold temperature, the output logic force S is enabled.
  • a comparator that latches the output logic enable of the third comparator, and outputs an output signal of the latch as the blocking signal (first 4 configuration).
  • the suppression signal generation unit and the first cutoff signal generation unit may be operable according to an output logic of the alarm signal.
  • the second cutoff signal generating means may be configured to determine whether or not the second cutoff signal generation means can operate according to the output logic of the first cutoff signal (fifth configuration). With such a configuration, unnecessary circuit operations can be suppressed and power consumption can be reduced.
  • the power supply device includes a temperature protection circuit having any one of the second to fifth configurations, and means for generating a predetermined output voltage from an input voltage, wherein the suppression signal And a power supply circuit that suppresses the output current according to the cut-off signal and cuts off the drive according to the cut-off signal (sixth configuration).
  • an electronic apparatus is an electronic apparatus including a power supply device including the sixth component and a system circuit that uses an output voltage of the power supply device as a power supply.
  • the system circuit has a configuration (seventh configuration) that shuts off its own drive before the power supply from the power supply device is cut off in response to the alarm signal. With such a configuration, it is possible to provide an electronic device capable of performing a safer temperature protection operation as the entire system.
  • FIG. 1 is a block diagram showing an outline of an electronic device according to the present invention.
  • FIG. 2 is a diagram showing an example of a temperature protection operation.
  • FIG. 3 is a diagram for explaining an example of an enable restriction operation.
  • a power supply IC that supplies power to a system circuit (such as a microcomputer) of an electronic device as a mounting target of the temperature protection circuit according to the present invention.
  • FIG. 1 is a block diagram showing a schematic configuration of an electronic device according to the present invention.
  • an electronic device includes a power supply ICl that generates a predetermined output voltage Vo from an input voltage Vi, and a system circuit 2 that uses the output voltage Vo of the power supply IC1 as a power supply.
  • the power supply IC1 is formed by integrating the temperature protection circuit 10 and the power supply circuit 20. This is a semiconductor integrated circuit device.
  • the temperature protection circuit 10 uses the input voltage Vi supplied via the external terminal T1 as a drive voltage, and the forward drop voltage between the base emitters of the bipolar transistor and the forward drop voltage of the diode are at ambient temperature.
  • Various temperature protection signals (alarm signal Sann, suppression signal Slmt, first and second cut-off signals Stsdl, Stsd2) are generated by utilizing the characteristic that they vary depending on each other.
  • the alarm signal Sarm is generated when the monitoring target temperature Tj (the heat generation temperature of the power transistor constituting the power supply circuit 20) has reached the first threshold temperature Tthl (for example, 150 ° C). 2 is a signal for notifying that effect. More specifically, the alarm signal Sarm is enabled (for example, a noise level) when it is determined that the monitored temperature Tj has reached the first threshold temperature Tthl, and it is determined that it has been reached. It is a binary signal that is sometimes disabled (eg, low level).
  • the suppression signal Slmt continuously drives the power supply circuit 20 (the upper limit value of the output current) according to the monitoring target temperature Tj. Or it is a signal to suppress in stages (see Fig. 2).
  • the first cutoff signal Stsdl is configured to drive the power supply circuit 20 when it is determined that the monitoring target temperature Tj has reached a second threshold temperature Tth2 (for example, 175 ° C) higher than the first threshold temperature Tthl. This is a signal to shut off (see Fig. 2). More specifically, the first cutoff signal Stsdl is enabled (eg, high level) when the monitored temperature Tj is determined to have reached the second threshold temperature Tth2, and is determined not to have reached. It is a binary signal that is disabled (eg, low level) when the monitoring target temperature Tj has reached a second threshold temperature Tth2 (for example, 175 ° C) higher than the first threshold temperature Tthl. This is a signal to shut off (see Fig. 2). More specifically, the first cutoff signal Stsdl is enabled (eg, high level) when the monitored temperature Tj is determined to have reached the second threshold temperature Tth2, and is determined not to have reached. It is a binary signal that is disabled (eg, low level) when
  • the second cutoff signal Stsd2 includes the power supply circuit 20 when it is determined that the monitored temperature Tj has reached a third threshold temperature Tth3 (for example, 200 ° C) higher than the second threshold temperature Tth2. This signal is used to cut off the drive of all internal circuits (not shown) except for the temperature protection circuit 10 (and circuits necessary for its operation). More specifically, the second cutoff signal Stsd2 is enabled (eg, high level) when the monitored temperature Tj is determined to have reached the third threshold temperature Tth3, and is determined not to have reached. It is a binary signal that is sometimes disabled (eg, low level).
  • a corresponding temperature protection operation is performed depending on which threshold temperature the temperature Tj to be monitored has reached, and the power supply IC1 caused by abnormal heat generation It is possible to prevent the breakdown (particularly, the breakdown of the power transistor constituting the power supply circuit 20).
  • the alarm signal Sarm and the suppression signal Slmt it is possible to know the chip temperature state of the power supply IC1 before shutdown, so that the thermal design of the power supply IC1 can be easily performed.
  • the power supply circuit 20 converts the input voltage Vi supplied via the external terminal T1 into a desired output voltage V o, and applies the system voltage 2 and external load (not shown) from the external terminal T2 It is a direct current conversion means that supplies the output voltage Vo.
  • the power supply circuit 20 has a function of receiving the suppression signal Slmt from the temperature protection circuit 10 and suppressing the driving (upper limit value of the output current) continuously or stepwise (FIG. 2).
  • This configuration suppresses abnormal heat generation of the power supply IC1 as a preliminary temperature protection operation before the monitored temperature Tj rises to such an extent that the drive of the power supply IC1 must be shut down. can do. Therefore, it is possible to perform a safer temperature protection operation and the output will not be sharply turned off by the shutdown operation in the event of abnormal heat generation, which will be described later. It is possible to safely stop the operation of the power supply IC1.
  • the power supply circuit 20 receives the first cutoff signal Stsdl from the temperature protection circuit 10, recognizes whether or not the abnormal heat is generated according to the enable / disable, Power supply output operation prohibition Z has a function to control Z permission (see Figure 2). With such a configuration, if the abnormal temperature rise continues even with the suppression control of the output current by the suppression signal Slmt, the drive of the power supply circuit 20 is shut down, and the IC caused by abnormal heat generation It is possible to prevent the destruction of the battery.
  • all internal circuits including the power supply circuit 20 except the temperature protection circuit 10 (and circuits necessary for its operation) are connected to the second cutoff signal Stsd2 from the temperature protection circuit 10.
  • the drive of the power supply circuit 20 is shut down. It is equipped with a function that recognizes whether or not the abnormal heat generation continues even after it is turned on, and controls the prohibition of Z movement. With this configuration, if the abnormal temperature rise continues even with the power supply cutoff control by the first cutoff signal Stsdl, all operations of the power supply IC1 are completely performed except for the temperature protection operation. By shutting down, it is possible to prevent IC destruction and thermal runaway due to abnormal heat generation, and eventually smoke and fire of electronic equipment.
  • the system circuit 2 is a device that shuts off its drive before the power supply from the power supply IC1 is cut off in response to the enable of the alarm signal Sarm input through the external terminal T3. It has a function. More specifically, the system circuit 2 can be a microcomputer or the like, and the system circuit 2 initializes and retains memory data in response to the alarm signal Sarm being enabled. It has a function to start. By adopting such a configuration, even when abnormal heat generation is detected, the entire system can be shut down normally before the power supply is shut off by the temperature protection circuit 10. As a whole, safer high temperature protection operation can be performed.
  • the above-described temperature protection circuit 10 is provided in the vicinity of the power supply circuit 20 (particularly, its power transistor) that is to be monitored for overheating.
  • the junction temperature (monitoring target temperature Tj) of the power transistor serving as a heat generation source it becomes possible to directly detect the junction temperature (monitoring target temperature Tj) of the power transistor serving as a heat generation source and perform a highly accurate temperature protection operation.
  • the alarm signal Sarm, the suppression signal Slmt, and the first cutoff signal Stsdl described above are all automatic return types having hysteresis at the first and second threshold temperatures Tthl and Tth2.
  • the second shut-off signal Stsd2 is set to be enabled, and after that, it is a latch type that does not return to disabled unless a predetermined reset signal (such as a power-on reset signal) is input. Yes.
  • FIG. 3 is a diagram for explaining an example of the enable restriction operation.
  • the temperature protection circuit 10 of the present embodiment includes a heat generation detection means 11, an alarm signal generation means 12, a suppression signal generation means 13, a first cutoff signal generation means 14, Second cutoff signal generation means 15.
  • the heat generation detection means 11 is characterized in that the forward drop voltage between the base emitters of the bipolar transistor and the forward drop voltage of the diode fluctuate depending on the ambient temperature (a negative of about 2 [mVZ ° C]). This is a means of generating a heat generation detection voltage Va (a voltage signal with a lower voltage level as the monitored temperature Tj is higher V) using the temperature characteristics of
  • the alarm signal generation means 12 includes a first comparison unit 121 and a first enable restriction unit 122, and the monitoring target temperature Tj reaches the first threshold temperature Tthl based on the heat generation detection voltage Va. This is a means for generating an alarm signal Sarm when it is determined that the alarm has occurred.
  • the first comparison unit 121 compares the heat generation detection voltage Va corresponding to the monitoring target temperature Tj with the first threshold voltage Vthl corresponding to the first threshold temperature Tthl, and according to the relative level of both voltages.
  • the comparison signal S1 whose output logic is changed is generated.
  • the comparison signal S1 is disabled (low level) when the heat generation detection voltage Va is higher than the first threshold voltage Vthl, and conversely, it is enabled (high level) when the former is lower than the latter.
  • the comparison signal S1 is a signal that is enabled when the monitoring target temperature Tj reaches the first threshold temperature Tthl.
  • the first enable restriction unit 122 enables the logic of the alarm signal Sarm only when the logic of the comparison signal S1 is maintained in the enabled state for the first confirmation period tl. is there. Conversely, even if the comparison signal S1 is temporarily enabled, the alarm signal Sarm remains disabled unless the enabled state is maintained for the first confirmation period tl. (See Figure 3 (a)). That is, in the alarm signal generation means 12, when the monitoring target temperature Tj is maintained at the first threshold temperature Tthl or more over the first confirmation period tl, the monitoring target temperature Tj becomes the first threshold temperature Tth 1. It is judged that it has reached.
  • the suppression signal generation means 13 determines that the monitoring target temperature Tj has reached the first threshold temperature Tthl based on the alarm signal Sarm, and then drives the power supply circuit 20 according to the monitoring target temperature Tj (output current). This is a means for generating a suppression signal Slmt for suppressing the upper limit value) continuously or stepwise.
  • the suppression signal generation means 13 an amplifier or the like that amplifies and outputs a differential voltage between the heat generation detection voltage Va and the first threshold voltage Vthl may be used.
  • the suppression signal generating means 13 is configured to determine whether or not the operation is possible according to the output logic of the alarm signal Sarm, more specifically, until the alarm signal Sarm is enabled. The operation is stopped. With this configuration, unnecessary circuit operation can be suppressed and power consumption can be reduced.
  • the first cutoff signal generation means 14 includes a second comparison unit 141 and a second enable restriction unit 142, and the monitoring target temperature Tj is set to the first threshold temperature Tthl based on the heat generation detection voltage Va. This is a means for generating the first cutoff signal Stsdl when it is determined that the second threshold temperature Tth2 that is higher than the first threshold temperature T2 is reached.
  • the second comparison unit 141 compares the heat generation detection voltage Va corresponding to the monitoring target temperature Tj with the second threshold voltage Vth2 corresponding to the second threshold temperature Tth2, and according to the relative level of both voltages.
  • the comparison signal S2 whose output logic is changed is generated.
  • the comparison signal S2 is disabled (low level) when the heat generation detection voltage Va is higher than the second threshold voltage Vth2, and conversely, it is enabled (high level) when the former is lower than the latter.
  • the That is, the comparison signal S2 is a signal that is enabled when the monitoring target temperature Tj reaches the second threshold temperature Tth2.
  • the second enable restriction unit 142 does not detect the first cut-off signal Sts until the logic of the comparison signal S2 is maintained in the enabled state for the second confirmation period t2 shorter than the first confirmation period tl. Enables the logic of dl. Conversely, even if the comparison signal S2 is temporarily enabled, the first cut-off signal Stsdl is disabled unless the enabled state is maintained for the second confirmation period t2. (See Figure 3 (b)).
  • the first cutoff signal generating means 14 is configured to determine whether or not the operation is possible according to the output logic of the alarm signal Sarm. With such a configuration, unnecessary circuit operations can be suppressed and power consumption can be reduced.
  • the second shut-off signal generating means 15 includes a third comparison unit 151 and a latch unit 152, and a third target temperature Tj is higher than the second threshold temperature Tth2 based on the heat generation detection voltage Va. This is means for generating the second cutoff signal Stsd2 when it is determined that the threshold temperature Tth3 has been reached.
  • the third comparison unit 151 compares the heat generation detection voltage Va corresponding to the monitoring target temperature Tj with the third threshold voltage Vth3 corresponding to the third threshold temperature Tth3, and according to the relative level of both voltages.
  • the comparison signal S3 whose output logic is changed is generated.
  • the comparison signal S3 is disabled (low level) when the heat generation detection voltage Va is higher than the third threshold voltage Vth3, and conversely, it is enabled (high level) when the former is lower than the latter.
  • the That is, the comparison signal S3 is a signal that is enabled when the monitoring target temperature Tj reaches the third threshold temperature Tth3.
  • the latch unit 152 latches the enable of the comparison signal S3, and thereafter sends out the output signal of the logic as the second cutoff signal Stsd2 until a predetermined reset signal is input (FIG. 3 (c)). reference).
  • the second cut-off signal generating means 15 is not provided with an enable restriction unit, and the comparison signal S3 is directly input to the latch unit 152. That is, in the second cutoff signal generation means 15, when the monitoring target temperature Tj reaches the third threshold temperature Tth3, it is immediately determined that the monitoring target temperature has reached the third threshold temperature Tth3.
  • the second cutoff signal generation means 15 is configured to determine whether or not its operation is possible according to the output logic of the first cutoff signal Stsdl. More specifically, the first cutoff signal Stsdl is not the same as the first cutoff signal Stsdl. The operation is stopped until it is enabled. With such a configuration, unnecessary circuit operations can be suppressed and power consumption can be reduced.
  • the temperature protection circuit 10 of the present embodiment compares the monitoring target temperature Tj with the plurality of threshold temperatures Tthl to Tth3, and the monitoring target temperature Tj is over a predetermined confirmation period.
  • the temperature protection signals (alarm signal S a rm, suppression signal Slmt, first and second cutoff signals Stsdl, Stsd2) corresponding to the threshold temperature at which the monitored temperature Tj is determined to reach any threshold temperature And a means for generating the structure.
  • the monitoring target temperature Tj fluctuates frequently according to the original operation of the power supply IC1 (that is, the pulse drive of the power transistor constituting the power supply circuit 20).
  • the threshold temperature on the low temperature side which is not so urgent, the above-described confirmation period is set to be long, so that the possibility of an unintentional shutdown operation by the temperature protection circuit 10 is reduced.
  • the monitored temperature Tj is considered to reach a higher threshold temperature, so the above confirmation period is set shorter and the shutdown operation is performed without delay. Accordingly, it is possible to perform a highly accurate and safe temperature protection operation without unnecessarily narrowing the operating temperature range of the power supply IC1.
  • the power protection IC that supplies power to a system circuit (such as a microcomputer) of an electronic device is taken as an example of the temperature protection circuit according to the present invention. It can be widely mounted on other semiconductor integrated circuit devices such as motor drive ICs that are not limited to this.
  • the configuration in which the single heat generation detection means 11 is shared by the temperature protection signal generation units 12 to 15 has been described as an example.
  • the configuration of the present invention is not limited thereto.
  • a plurality of heat generation detection means may be provided for each temperature protection signal generation means without being limited thereto.
  • the present invention can be suitably used, for example, as an optimization technique for the temperature protection operation of an electronic device that uses a power supply IC equipped with a temperature protection circuit as a power source for a microcomputer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Protection Of Static Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

 本発明に係る温度保護回路は、監視対象温度と複数の閾値温度とを各々比較し、前記監視対象温度が所定の確認期間に亘ってある閾値温度以上に維持されたときに前記監視対象温度が当該閾値温度に達したと判断する手段と;前記監視対象温度と比較される閾値温度が低いほど、確認期間を長く設定する手段と;前記監視対象温度がいずれの閾値温度まで達したと判断されたかによって、各々対応する温度保護信号(Sarm、Slmt、Stsd1、Stsd2)を生成する手段と;を有して成る構成としている。このような構成とすることにより、保護対象となるICの動作温度範囲を不必要に狭めることなく、より高精度で安全性の高い温度保護動作を行うことが可能となる。

Description

明 細 書
温度保護回路、電源装置、電子機器
技術分野
[0001] 本発明は、温度保護回路、並びに、これを備えた電源装置及び電子機器に関する ものであり、特にその温度保護機能の精度向上や安全性向上に関するものである。 背景技術
[0002] 従来より、電源装置やモータ駆動装置など、パワートランジスタを駆動する半導体 集積回路装置(以下、 IC [Integrated Circuit]と呼ぶ)の多くは、その異常発熱に起 因する ICの破壊 (特に、発熱源であるパワートランジスタの破壊)を防止する手段とし て、温度保護回路 ( 、わゆるサーマルシャットダウン回路)を搭載して成る (例えば、 本願出願人による特許文献 1、 2を参照)。
[0003] その他、本願発明に関連する従来技術としては、複数のパワー素子毎に異常発熱 の検出を行い、異常発熱が検出されたパワー素子については、その駆動を停止する 一方、当該異常発熱の影響を受けると考えられる他のパワー素子については、その 閾値温度を一時的に高めることで、正常動作中のパワー素子まで停止させないよう にした温度保護装置 (特許文献 3を参照)や、温度検出回路と温度設定回路の温度 の変化による出力の変化係数の違いによって設定温度以外の温度で温度検出回路 と温度設定回路の出力差を大きくすることで、検出精度の高い温度異常信号を出力 することが可能な温度異常検出回路 (特許文献 4を参照)が開示'提案されている。 特許文献 1:特開 2004— 253936号公報
特許文献 2:特公平 6 - 16540号公報
特許文献 3 :特開 2004— 140094号公報
特許文献 4:特開平 6 - 61414号公報
発明の開示
発明が解決しょうとする課題
[0004] 確かに、上記従来の温度保護回路を搭載した ICであれば、誤動作や過負荷による ICの異常発熱を検知 ·遮断して、 ICの破壊を未然に防止することが可能である。 [0005] しカゝしながら、上記従来の温度保護回路を搭載した ICでは、温度保護回路の監視 対象温度が所定の閾値温度に達した時点で、 ICの駆動が即時遮断されていた。そ のため、電源 ICやモータ駆動 ICへの適用時など、 ICの本来動作(すなわち負荷の パルス駆動)に応じて監視対象温度が高頻度に変動する場合には、温度保護回路 によって意図しないシャットダウン動作が行われるおそれもあり、 ICの動作温度範囲 が不必要に狭くなる、という課題があった。
[0006] また、従来の温度保護回路を搭載した ICでは、チップの温度状態を事前に知ること ができないまま、異常発熱時のシャットダウン動作によってその出力が急峻にオフさ れるため、 ICの熱設計が困難である上、当該 ICを組み込んだアプリケーションによつ ては、温度保護回路で異常発熱が検出された際に、システム全体のシャットダウンを 安全に行うことができないおそれがあった。例えば、上記従来の温度保護回路を搭 載した電源 ICをマイクロコンピュータの電源として用いる電子機器において、温度保 護回路によって電源 ICの駆動がシャットダウンされた場合、マイクロコンピュータは、 その初期化やメモリデータの保持を完了し得ないまま、電源供給を絶たれてしまうこと になり、結果としてシステム全体のシャットダウンを正常に行うことができなくなつてい た。
[0007] さらに、従来の温度保護回路を搭載した ICでは、シャットダウン動作時にノイズゃサ ージが発生し易ぐ特に、 ICの駆動対象力 ンダクタンス成分を有する L負荷であつ た場合には、当該 L負荷に生じる逆起電圧が ICのシャットダウン動作時に跳ね上がり 、 ICの耐圧を超えてこれを破壊に至らしめる、というおそれがあった。
[0008] 本発明は、上記の問題点に鑑み、保護対象となる ICの動作温度範囲を不必要に 狭めることなぐより高精度で安全性の高い温度保護動作を行うことが可能な温度保 護回路、並びに、これを備えた電源装置及び電子機器を提供することを目的とする。 課題を解決するための手段
[0009] 上記目的を達成すベぐ本発明に係る温度保護回路は、監視対象温度と複数の閾 値温度とを各々比較し、前記監視対象温度が所定の確認期間に亘つてある閾値温 度以上に維持されたときに、前記監視対象温度が当該閾値温度に達したと判断する 手段と;前記監視対象温度と比較される閾値温度が低いほど、前記確認期間を長く 設定する手段と;前記監視対象温度が!、ずれの閾値温度まで達したと判断されたか によって、各々対応する温度保護信号を生成する手段と;を有して成る構成 (第 1の 構成)としている。
[0010] なお、上記第 1の構成は、 3値以上の閾値温度を設けた形態 (後述する実施形態) のみを想定したものではなぐ 2値の閾値温度を設けた形態をも包含する概念である 。すなわち、 2値の閾値温度を設けた形態の場合、より低い方の閾値温度に対応す る確認期間は、より高い方の閾値温度に対応する確認期間よりも長く設定されること になる。
[0011] このような構成とすることにより、電源 ICやモータ駆動 ICへの適用時など、 ICの本 来動作 (すなわち負荷のパルス駆動)に応じて監視対象温度が高頻度に変動する場 合であっても、さほど緊急度の高くない低温側の閾値温度については、上記の確認 期間が長く設定されるため、温度保護回路によって意図しないシャットダウン動作が 行われるおそれは少なくなる。一方、明らかな異常発熱が生じている場合には、監視 対象温度がより高 、閾値温度に達すると考えられるため、上記の確認期間はより短く 設定され、遅滞なくシャットダウン動作が行われる。従って、保護対象となる ICの動作 温度範囲を不必要に狭めることなぐより高精度で安全性の高い温度保護動作を行う ことが可能となる。
[0012] なお、上記第 1の構成から成る温度保護回路は、前記監視対象温度に応じてその 電圧レベルが変動する発熱検出電圧を生成する発熱検出手段と;前記発熱検出電 圧に基づいて前記監視対象温度が第 1閾値温度に達したと判断したときに、その旨 を報知するための警報信号を生成する警報信号生成手段と;前記警報信号に基づ いて前記監視対象温度が第 1閾値温度に達したと判断して以後、前記監視対象温 度に応じて保護対象回路の駆動を連続的或いは段階的に抑制するための抑制信号 を生成する抑制信号生成手段と;前記発熱検出電圧に基づ!/、て前記監視対象温度 が第 1閾値温度よりも高い第 2閾値温度に達したと判断したときに、前記保護対象回 路の駆動を遮断するための第 1遮断信号を生成する第 1遮断信号生成手段と;前記 発熱検出電圧に基づいて前記監視対象温度が第 2閾値温度よりも高い第 3閾値温 度に達したと判断したときに、前記保護対象回路を含め、温度保護回路 (及びその 動作に必要な諸回路)を除く全ての回路の駆動を遮断するための第 2遮断信号を生 成する第 2遮断信号生成手段と;を有して成る構成 (第 2の構成)にするとよい。このよ うな構成とすることにより、警報信号や抑制信号を監視することで、シャットダウン前に チップの温度状態を知ることができるので、 ICの熱設計を容易に行うことが可能とな る。また、本構成であれば、保護対象回路の駆動が徐々に抑制された後、最終的に シャットダウン動作に移行されるため、 IC破壊の原因となるノイズやサージの発生を 抑制することが可能となる。
[0013] また、上記第 2の構成から成る温度保護回路において、前記警報信号生成手段は 、前記監視対象温度が第 1確認期間に亘つて第 1閾値温度以上に維持されたときに 、前記監視対象温度が第 1閾値温度に達したと判断するものであり、第 1遮断信号生 成手段は、前記監視対象温度が第 1確認期間よりも短い第 2確認期間に亘つて第 2 閾値温度以上に維持されたときに、前記監視対象温度が第 2閾値温度に達したと判 断するものであり、第 2遮断信号生成手段は、前記監視対象温度が第 3閾値温度に 達した時点で、即時に前記監視対象温度が第 3閾値温度に達したと判断するもので ある構成 (第 3の構成)にするとよい。
[0014] また、上記第 3の構成から成る温度保護回路においては、前記警報信号生成手段 は、前記監視対象温度に相当する発熱検出電圧と第 1閾値温度に相当する第 1閾 値電圧とを比較し、前記監視対象温度が第 1閾値温度を上回っているときにその出 力論理力 ネーブルとされる第 1比較部と;第 1比較部の出力論理が第 1確認期間に 亘つてイネ一ブル状態に維持されたときに初めてその出力論理力イネ一ブルとされる 第 1ィネーブル制限部と;を有して成るものであって、第 1ィネーブル制限部の出力信 号を前記警報信号として送出するものであり、第 1遮断信号生成手段は、前記監視 対象温度に相当する発熱検出電圧と第 2閾値温度に相当する第 2閾値電圧とを比 較し、前記監視対象温度が第 2閾値温度を上回っているときにその出力論理力 Sイネ 一ブルとされる第 2比較部と;第 2比較部の出力論理が第 2確認期間に亘つてイネ一 ブル状態に維持されたときに初めてその出力論理力 Sイネ一ブルとされる第 2イネーブ ル制限部と;を有して成るものであって、第 2ィネーブル制限部の出力信号を第 1遮 断信号として送出するものであり、第 2遮断信号生成手段は、前記監視対象温度に 相当する発熱検出電圧と第 3閾値温度に相当する第 3閾値電圧とを比較し、前記監 視対象温度が第 3閾値温度を上回っているときにその出力論理力 Sイネ一ブルとされ る第 3比較部と;第 3比較部の出力論理のィネーブルをラッチするラッチ部と;を有し て成るものであって、前記ラッチ部の出力信号を前記遮断信号として送出するもので ある構成 (第 4の構成)にするとよい。
[0015] また、上記第 2〜第 4いずれかの構成から成る温度保護回路において、前記抑制 信号生成手段及び第 1遮断信号生成手段は、前記警報信号の出力論理に応じてそ の動作可否が決定されるものであり、第 2遮断信号生成手段は、第 1遮断信号の出 力論理に応じてその動作可否が決定されるものである構成 (第 5の構成)にするとよ い。このような構成とすることにより、不要な回路動作を抑えて、消費電力の低減を図 ることが可能となる。
[0016] また、本発明に係る電源装置は、上記第 2〜第 5 、ずれかの構成から成る温度保 護回路と;入力電圧から所定の出力電圧を生成する手段であって、前記抑制信号に 応じてその出力電流が抑制され、前記遮断信号に応じてその駆動が遮断される電源 回路と;を有して成る構成 (第 6の構成)とされて 、る。このような構成とすること〖こより、 その動作温度範囲を不必要に狭めることなぐより高精度で安全性の高い温度保護 動作を行うことが可能な電源装置を提供することができる。
[0017] また、本発明に係る電子機器は、上記第 6の構成カゝら成る電源装置と、前記電源装 置の出力電圧を電源とするシステム回路と、を有して成る電子機器であって、前記シ ステム回路は、前記警報信号に応じて、前記電源装置からの電源供給が遮断される よりも先に、自身の駆動を遮断するものである構成 (第 7の構成)としている。このよう な構成とすることにより、システム全体として、より安全性の高い温度保護動作を行う ことが可能な電子機器を提供することができる。
発明の効果
[0018] 上記したように、本発明によれば、保護対象となる ICの動作温度範囲を不必要に 狭めることなぐより高精度で安全性の高い温度保護動作を行うことができ、延いては 、システム全体として、より安全性の高い温度保護動作を行うことが可能となる。
図面の簡単な説明 [0019] [図 1]は、本発明に係る電子機器の概略を示すブロック図である。
[図 2]は、温度保護動作の一例を示す図である。
[図 3]は、ィネーブル制限動作の一例を説明するための図である。
符号の説明
[0020] 1 電源 IC
2 システム回路(マイクロコンピュータなど)
10 温度保護回路
11 発熱検出手段
12 警報信号生成手段
121 第 1比較部(150°C検出用)
122 第 1ィネーブル制限部
13 抑制信号生成手段
14 第 1遮断信号生成手段
141 第 2比較部(175°C検出用)
142 第 2ィネーブル制限部
15 第 2遮断信号生成手段
151 第 3比較部(200°C検出用)
152 ラッチ部
20 電源回路
T1〜T3 外部端子
発明を実施するための最良の形態
[0021] 以下では、本発明に係る温度保護回路の搭載対象として、電子機器のシステム回 路 (マイクロコンピュータなど)に電源供給を行う電源 ICを例に挙げて、詳細な説明を 行う。
[0022] 図 1は、本発明に係る電子機器の概略構成を示すブロック図である。
[0023] 本図に示す通り、本発明に係る電子機器は、入力電圧 Viから所定の出力電圧 Vo を生成する電源 IClと、該電源 IC1の出力電圧 Voを電源とするシステム回路 2と、を 有して成る。なお、電源 IC1は、温度保護回路 10と、電源回路 20と、を集積化して成 る半導体集積回路装置である。
[0024] 温度保護回路 10は、外部端子 T1を介して供給される入力電圧 Viを駆動電圧とし 、バイポーラトランジスタのベース 'ェミッタ間の順方向降下電圧やダイオードの順方 向降下電圧が周囲温度に依存して変動するという特性を利用して、種々の温度保護 信号 (警報信号 Sann、抑制信号 Slmt、第 1、第 2遮断信号 Stsdl、 Stsd2)を生成 する構成とされている。
[0025] 警報信号 Sarmは、監視対象温度 Tj (電源回路 20を構成するパワートランジスタの 発熱温度)が第 1閾値温度 Tthl (例えば 150°C)に達したと判断されたときに、システ ム回路 2に対して、その旨を報知するための信号である。より具体的に述べると、警報 信号 Sarmは、監視対象温度 Tjが第 1閾値温度 Tthlに達したと判断されたときにィ ネーブル (例えばノヽィレベル)とされ、達して 、な 、と判断されたときにディセーブル ( 例えばローレベル)とされる 2値信号である。
[0026] 抑制信号 Slmtは、監視対象温度 Tjが第 1閾値温度 Tthlに達したと判断されて以 後、監視対象温度 Tjに応じて電源回路 20の駆動(出力電流の上限値)を連続的或 いは段階的に抑制するための信号である(図 2を参照)。
[0027] 第 1遮断信号 Stsdlは、監視対象温度 Tjが第 1閾値温度 Tthlよりも高い第 2閾値 温度 Tth2 (例えば 175°C)に達したと判断されたときに、電源回路 20の駆動を遮断 するための信号である(図 2を参照)。より具体的に述べると、第 1遮断信号 Stsdlは、 監視対象温度 Tjが第 2閾値温度 Tth2に達したと判断されたときにイネ一ブル (例え ばハイレベル)とされ、達していないと判断されたときにディセーブル(例えばローレ ベル)とされる 2値信号である。
[0028] 第 2遮断信号 Stsd2は、監視対象温度 Tjが第 2閾値温度 Tth2よりも高い第 3閾値 温度 Tth3 (例えば 200°C)に達したと判断されたときに、電源回路 20を含めて、温度 保護回路 10 (及び、その動作に必要な諸回路)を除く全ての内部回路(図示せず)の 駆動を遮断するための信号である。より具体的に述べると、第 2遮断信号 Stsd2は、 監視対象温度 Tjが第 3閾値温度 Tth3に達したと判断されたときにィネーブル (例え ばハイレベル)とされ、達していないと判断されたときにディセーブル(例えばローレ ベル)とされる 2値信号である。 [0029] このような温度保護回路 10を具備することにより、監視対象温度 Tjがいずれの閾値 温度まで達したと判断されたかによって、各々対応する温度保護動作を行い、異常 発熱に起因する電源 IC1の破壊 (特に、電源回路 20を構成するパワートランジスタの 破壊)を未然に防止することが可能となる。また、警報信号 Sarmや抑制信号 Slmtを 監視することで、シャットダウン前に電源 IC1のチップ温度状態を知ることができるの で、電源 IC1の熱設計を容易に行うことが可能となる。
[0030] なお、温度保護回路 10の内部構成及び動作については、後ほど詳細な説明を行
[0031] 電源回路 20は、外部端子 T1を介して供給される入力電圧 Viを所望の出力電圧 V oに変換し、外部端子 T2からシステム回路 2や外部負荷 (不図示)に対して、当該出 力電圧 Voを供給する直流変換手段である。
[0032] また、電源回路 20は、温度保護回路 10から抑制信号 Slmtの入力を受けて、その 駆動(出力電流の上限値)を連続的或いは段階的に抑制する機能を具備している( 図 2を参照)。このような構成とすることにより、電源 IC1の駆動をシャットダウンしなけ ればならないほど監視対象温度 Tjが上昇してしまう前に、予備的な温度保護動作と して、電源 IC1の異常発熱を抑制することができる。従って、より安全性の高い温度 保護動作を行うことが可能となる上、後述する異常発熱時のシャットダウン動作によつ ても、その出力が急峻にオフされることがなくなるので、種々の不具合 (ノイズゃサー ジの発生)を回避し、電源 IC1の駆動を安全に停止することが可能となる。
[0033] また、電源回路 20は、温度保護回路 10から第 1遮断信号 Stsdlの入力を受け、そ のイネ一ブル/ディセーブルに応じて異常発熱が生じて 、る力否かを認識し、電源 出力動作の禁止 Z許可を制御する機能を具備している(図 2を参照)。このような構 成とすることにより、抑制信号 Slmtによる出力電流の抑制制御をもってしても、異常 な温度上昇が続く場合には、電源回路 20の駆動をシャットダウンして、異常発熱に 起因する ICの破壊を未然に防止することが可能となる。
[0034] また、電源回路 20を含めて、温度保護回路 10 (及び、その動作に必要な諸回路) を除く全ての内部回路 (不図示)は、温度保護回路 10から第 2遮断信号 Stsd2の入 力を受け、そのィネーブル Zディセーブルに応じて、電源回路 20の駆動がシャットダ ゥンされた後も異常発熱が継続して 、る力否かを認識し、その動作の禁止 Z許可を 制御する機能を具備している。このような構成とすることにより、第 1遮断信号 Stsdl による電源供給の遮断制御をもってしても、異常な温度上昇が続く場合には、温度 保護動作を除いて、電源 IC1の全動作を完全にシャットダウンし、異常発熱に起因す る ICの破壊や熱暴走、延いては、電子機器の発煙や発火を未然に防止することが 可能となる。
[0035] システム回路 2は、外部端子 T3を介して入力される警報信号 Sarmのイネ一ブルに 応じて、電源 IC1からの電源供給が遮断されるよりも先に、自身の駆動を遮断する機 能を具備している。より具体的に述べると、システム回路 2としては、マイクロコンピュ ータなどを挙げることができ、当該システム回路 2は、警報信号 Sarmのイネ一ブルに 応じて、その初期化やメモリデータの保持を開始する機能を具備している。このような 構成とすることにより、異常発熱が検出された際にも、温度保護回路 10による電源供 給の遮断に先立って、システム全体のシャットダウンを正常に行うことができるので、 電子機器のシステム全体として、より安全性の高 ヽ温度保護動作を行うことが可能と なる。
[0036] なお、上記した温度保護回路 10は、過熱監視対象である電源回路 20 (特にそのパ ワートランジスタ)の近傍に設けられている。このような構成とすることにより、発熱源と なるパワートランジスタの接合温度 (監視対象温度 Tj)を直接的に検出し、高精度の 温度保護動作を行うことが可能となる。
[0037] また、上記した警報信号 Sarm、抑制信号 Slmt、及び、第 1遮断信号 Stsdlは、い ずれも、第 1、第 2閾値温度 Tthl、 Tth2にヒステリシスを有する自動復帰式とされて いる。このような方式を採用することにより、監視対象温度 Tjが下がれば、外部からの 復帰信号を待つことなぐ迅速に電源 IC1の駆動を自発復帰させることが可能となる 。一方、第 2遮断信号 Stsd2については、ー且ィネーブルとされて以後は、所定のリ セット信号 (パワーオンリセット信号など)が入力されない限り、ディセーブルに復帰さ れることのないラッチ式とされている。このような方式を採用することにより、電源 IC1 の熱暴走や発煙、発火のおそれがある閾値温度 Tth3にまで監視対象温度 Tjが上 昇した場合には、電源 IC1やその周辺回路に何らかの異常が生じている蓋然性が高 いことに鑑み、その原因が解消されて所定のリセット信号が入力されるまで、確実に 電源 IC1の駆動をシャットダウンしておくことが可能となる。また、上記の各方式を採 用することにより、各温度保護信号の論理発振を抑制することも可能となる。
[0038] 以下、先出した図 1及び図 2のほか、図 3を参照しながら、温度保護回路 10の回路 構成及び動作について、より具体的かつ詳細な説明を行う。なお、図 3は、イネーブ ル制限動作の一例を説明するための図である。
[0039] 図 1に示すように、本実施形態の温度保護回路 10は、発熱検出手段 11と、警報信 号生成手段 12と、抑制信号生成手段 13と、第 1遮断信号生成手段 14と、第 2遮断 信号生成手段 15と、を有して成る。
[0040] 発熱検出手段 11は、バイポーラトランジスタのベース'ェミッタ間の順方向降下電 圧やダイオードの順方向降下電圧が周囲温度に依存して変動するという特性 (約 2[mVZ°C]の負の温度特性)を利用して、発熱検出電圧 Va (監視対象温度 Tjが高 V、ほど、電圧レベルが低下して 、く電圧信号)を生成する手段である。
[0041] 警報信号生成手段 12は、第 1比較部 121と、第 1ィネーブル制限部 122と、を有し て成り、発熱検出電圧 Vaに基づいて監視対象温度 Tjが第 1閾値温度 Tthlに達した と判断したときに、警報信号 Sarmを生成する手段である。
[0042] 第 1比較部 121は、監視対象温度 Tjに相当する発熱検出電圧 Vaと、第 1閾値温度 Tthlに相当する第 1閾値電圧 Vthlとを比較し、両電圧の相対的な高低に応じて、 その出力論理が変遷される比較信号 S1を生成する。なお、比較信号 S1は、発熱検 出電圧 Vaが第 1閾値電圧 Vthlよりも高ければディセーブル状態(ローレベル)とされ 、逆に、前者が後者よりも低ければィネーブル状態 (ハイレベル)とされる。すなわち、 比較信号 S 1は、監視対象温度 Tjが第 1閾値温度 Tthlに達したときにイネ一ブルと される信号となる。
[0043] 第 1ィネーブル制限部 122は、比較信号 S1の論理が第 1確認期間 tlに亘つてイネ 一ブル状態に維持されたときに初めて、警報信号 Sarmの論理をイネ一ブルとするも のである。逆に言えば、比較信号 S1が一時的にイネ一ブルとされたとしても、そのィ ネーブル状態が第 1確認期間 tlに亘つて維持されない限り、警報信号 Sarmはディ セーブルとされたままとなる(図 3 (a)を参照)。 [0044] すなわち、警報信号生成手段 12では、監視対象温度 Tjが第 1確認期間 tlに亘っ て第 1閾値温度 Tthl以上に維持されたときに、監視対象温度 Tjが第 1閾値温度 Tth 1に達したと判断される。
[0045] 抑制信号生成手段 13は、警報信号 Sarmに基づいて監視対象温度 Tjが第 1閾値 温度 Tthlに達したと判断して以後、監視対象温度 Tjに応じて電源回路 20の駆動( 出力電流の上限値)を連続的或いは段階的に抑制するための抑制信号 Slmtを生成 する手段である。なお、抑制信号生成手段 13としては、発熱検出電圧 Vaが第 1閾値 電圧 Vthlとの差分電圧を増幅して出力するアンプ等を用いればよい。このような抑 制信号生成部 13で得られる抑制信号 Slmtを用いて、電源回路 20の出力電流制御 を行うことにより、先出の図 2で示した予備的な温度保護動作を容易に実現すること が可能となる。
[0046] また、抑制信号生成手段 13は、警報信号 Sarmの出力論理に応じてその動作可否 が決定される構成、より具体的に述べると、上記の警報信号 Sarmがイネ一ブルとさ れるまで、その動作を停止される構成とされている。このような構成とすること〖こより、 不要な回路動作を抑えて、消費電力の低減を図ることが可能となる。
[0047] 第 1遮断信号生成手段 14は、第 2比較部 141と、第 2ィネーブル制限部 142と、を 有して成り、発熱検出電圧 Vaに基づいて監視対象温度 Tjが第 1閾値温度 Tthlより も高い第 2閾値温度 Tth2に達したと判断したときに、第 1遮断信号 Stsdlを生成する 手段である。
[0048] 第 2比較部 141は、監視対象温度 Tjに相当する発熱検出電圧 Vaと、第 2閾値温度 Tth2に相当する第 2閾値電圧 Vth2とを比較し、両電圧の相対的な高低に応じて、 その出力論理が変遷される比較信号 S2を生成する。なお、比較信号 S2は、発熱検 出電圧 Vaが第 2閾値電圧 Vth2よりも高ければディセーブル状態(ローレベル)とされ 、逆に、前者が後者よりも低ければィネーブル状態 (ハイレベル)とされる。すなわち、 比較信号 S2は、監視対象温度 Tjが第 2閾値温度 Tth2に達したときにイネ一ブルと される信号となる。
[0049] 第 2ィネーブル制限部 142は、比較信号 S2の論理が第 1確認期間 tlよりも短い第 2確認期間 t2に亘つてイネ一ブル状態に維持されたときに初めて、第 1遮断信号 Sts dlの論理をイネ一ブルとするものである。逆に言えば、比較信号 S2が一時的にイネ 一ブルとされたとしても、そのイネ一ブル状態が第 2確認期間 t2に亘つて維持されな い限り、第 1遮断信号 Stsdlはディセーブルとされたままとなる(図 3 (b)を参照)。
[0050] すなわち、第 1遮断信号生成手段 14では、監視対象温度 Tjが第 1確認期間 tlより も短い第 2確認期間 t2に亘つて第 2閾値温度 Tth2以上に維持されたときに、監視対 象温度 Tjが第 2閾値温度 Tth2に達したと判断される。
[0051] なお、第 1遮断信号生成手段 14は、抑制信号生成手段 13と同様、警報信号 Sarm の出力論理に応じてその動作可否が決定される構成とされて 、る。このような構成と することにより、不要な回路動作を抑えて、消費電力の低減を図ることが可能となる。
[0052] 第 2遮断信号生成手段 15は、第 3比較部 151とラッチ部 152を有して成り、発熱検 出電圧 Vaに基づいて監視対象温度 Tjが第 2閾値温度 Tth2よりも高い第 3閾値温度 Tth3に達したと判断したときに、第 2遮断信号 Stsd2を生成する手段である。
[0053] 第 3比較部 151は、監視対象温度 Tjに相当する発熱検出電圧 Vaと、第 3閾値温度 Tth3に相当する第 3閾値電圧 Vth3とを比較し、両電圧の相対的な高低に応じて、 その出力論理が変遷される比較信号 S3を生成する。なお、比較信号 S3は、発熱検 出電圧 Vaが第 3閾値電圧 Vth3よりも高ければディセーブル状態(ローレベル)とされ 、逆に、前者が後者よりも低ければィネーブル状態 (ハイレベル)とされる。すなわち、 比較信号 S3は、監視対象温度 Tjが第 3閾値温度 Tth3に達したときにイネ一ブルと される信号となる。
[0054] ラッチ部 152は、比較信号 S3のィネーブルをラッチし、以後、所定のリセット信号が 入力されるまで、当該論理の出力信号を第 2遮断信号 Stsd2として送出する(図 3 (c )を参照)。
[0055] なお、第 2遮断信号生成手段 15には、ィネーブル制限部が設けられておらず、比 較信号 S3は、ラッチ部 152に直接入力されている。すなわち、第 2遮断信号生成手 段 15では、監視対象温度 Tjが第 3閾値温度 Tth3に達した時点で、即時に監視対象 温度 が第 3閾値温度 Tth3に達したと判断される。
[0056] また、第 2遮断信号生成手段 15は、第 1遮断信号 Stsdlの出力論理に応じてその 動作可否が決定される構成、より具体的に述べると、上記の第 1遮断信号 Stsdlがィ ネーブルとされるまで、その動作を停止される構成とされている。このような構成とす ることにより、不要な回路動作を抑えて、消費電力の低減を図ることが可能となる。
[0057] 上記したように、本実施形態の温度保護回路 10は、監視対象温度 Tjと複数の閾値 温度 Tthl〜Tth3とを各々比較し、監視対象温度 Tjが所定の確認期間に亘つてあ る閾値温度以上に維持されたときに、監視対象温度 Tjが当該閾値温度に達したと判 断する手段と;監視対象温度 Tjと比較される閾値温度が低いほど、前記確認期間を 長く設定する手段と;監視対象温度 Tjがいずれの閾値温度まで達したと判断された カゝによって、各々対応する温度保護信号 (警報信号 Sarm、抑制信号 Slmt、第 1、第 2遮断信号 Stsdl、 Stsd2)を生成する手段と;を有して成る構成として 、る。
[0058] このような構成とすることにより、電源 IC1の本来動作 (すなわち、電源回路 20を構 成するパワートランジスタのパルス駆動)に応じて監視対象温度 Tjが高頻度に変動 する場合であっても、さほど緊急度の高くない低温側の閾値温度については、上記 の確認期間が長く設定されるため、温度保護回路 10によって意図しないシャットダウ ン動作が行われるおそれは少なくなる。一方、明らかな異常発熱が生じている場合に は、監視対象温度 Tjがより高い閾値温度に達すると考えられるため、上記の確認期 間はより短く設定され、遅滞なくシャットダウン動作が行われる。従って、電源 IC1の 動作温度範囲を不必要に狭めることなぐより高精度で安全性の高い温度保護動作 を行うことが可能となる。
[0059] なお、上記の実施形態では、本発明に係る温度保護回路の搭載対象として、電子 機器のシステム回路 (マイクロコンピュータなど)に電源供給を行う電源 ICを例に挙げ たが、その搭載対象はこれに限定されるものではなぐモータ駆動 ICなど、他の半導 体集積回路装置にも広く搭載することが可能である。
[0060] また、本発明の構成は、上記実施形態のほか、発明の主旨を逸脱しない範囲で種 々の変更をカ卩えることが可能である。
[0061] 例えば、上記の実施形態では、単一の発熱検出手段 11を各温度保護信号生成手 段 12〜15で共用する構成を例示して説明を行ったが、本発明の構成はこれに限定 されるものではなぐ各温度保護信号生成手段毎に複数の発熱検出手段を設けても よい。 産業上の利用可能性
本発明は、例えば、温度保護回路を搭載した電源 ICをマイクロコンピュータの電源 として用いる電子機器につき、その温度保護動作の最適化技術として好適に利用す ることがでさる。

Claims

請求の範囲
[1] 監視対象温度と複数の閾値温度とを各々比較し、前記監視対象温度が所定の確 認期間に亘つてある閾値温度以上に維持されたときに、前記監視対象温度が当該 閾値温度に達したと判断する手段と;前記監視対象温度と比較される閾値温度が低 いほど、前記確認期間を長く設定する手段と;前記監視対象温度がいずれの閾値温 度まで達したと判断されたかによって、各々対応する温度保護信号を生成する手段 と;を有して成ることを特徴とする温度保護回路。
[2] 前記監視対象温度に応じてその電圧レベルが変動する発熱検出電圧を生成する 発熱検出手段と;前記発熱検出電圧に基づいて前記監視対象温度が第 1閾値温度 に達したと判断したときに、その旨を報知するための警報信号を生成する警報信号 生成手段と;前記警報信号に基づいて前記監視対象温度が第 1閾値温度に達したと 判断して以後、前記監視対象温度に応じて保護対象回路の駆動を連続的或いは段 階的に抑制するための抑制信号を生成する抑制信号生成手段と;前記発熱検出電 圧に基づいて前記監視対象温度が第 1閾値温度よりも高い第 2閾値温度に達したと 判断したときに、前記保護対象回路の駆動を遮断するための第 1遮断信号を生成す る第 1遮断信号生成手段と;前記発熱検出電圧に基づいて前記監視対象温度が第 2閾値温度よりも高い第 3閾値温度に達したと判断したときに、前記保護対象回路を 含め、温度保護回路を除く全ての回路の駆動を遮断するための第 2遮断信号を生成 する第 2遮断信号生成手段と;を有して成ることを特徴とする請求項 1に記載の温度 保護回路。
[3] 前記警報信号生成手段は、前記監視対象温度が第 1確認期間に亘つて第 1閾値 温度以上に維持されたときに、前記監視対象温度が第 1閾値温度に達したと判断す るものであり、第 1遮断信号生成手段は、前記監視対象温度が第 1確認期間よりも短 い第 2確認期間に亘つて第 2閾値温度以上に維持されたときに、前記監視対象温度 が第 2閾値温度に達したと判断するものであり、第 2遮断信号生成手段は、前記監視 対象温度が第 3閾値温度に達した時点で、即時に前記監視対象温度が第 3閾値温 度に達したと判断するものであることを特徴とする請求項 2に記載の温度保護回路。
[4] 前記警報信号生成手段は、前記監視対象温度に相当する発熱検出電圧と第 1閾 値温度に相当する第 1閾値電圧とを比較し、前記監視対象温度が第 1閾値温度を上 回っているときにその出力論理力 ネーブルとされる第 1比較部と;第 1比較部の出 力論理が第 1確認期間に亘つてイネ一ブル状態に維持されたときに初めてその出力 論理力 ネーブルとされる第 1ィネーブル制限部と;を有して成るものであって、第 1ィ ネーブル制限部の出力信号を前記警報信号として送出するものであり、
第 1遮断信号生成手段は、前記監視対象温度に相当する発熱検出電圧と第 2閾 値温度に相当する第 2閾値電圧とを比較し、前記監視対象温度が第 2閾値温度を上 回っているときにその出力論理力 ネーブルとされる第 2比較部と;第 2比較部の出 力論理が第 2確認期間に亘つてイネ一ブル状態に維持されたときに初めてその出力 論理力 ネーブルとされる第 2ィネーブル制限部と;を有して成るものであって、第 2ィ ネーブル制限部の出力信号を第 1遮断信号として送出するものであり、
第 2遮断信号生成手段は、前記監視対象温度に相当する発熱検出電圧と第 3閾 値温度に相当する第 3閾値電圧とを比較し、前記監視対象温度が第 3閾値温度を上 回っているときにその出力論理力 ネーブルとされる第 3比較部と;第 3比較部の出 力論理のィネーブルをラッチするラッチ部と;を有して成るものであって、前記ラッチ 部の出力信号を前記遮断信号として送出するものであることを特徴とする請求項 3に 記載の温度保護回路。
[5] 前記抑制信号生成手段及び第 1遮断信号生成手段は、前記警報信号の出力論理 に応じてその動作可否が決定されるものであり、第 2遮断信号生成手段は、第 1遮断 信号の出力論理に応じてその動作可否が決定されるものであることを特徴とする請 求項 2に記載の温度保護回路。
[6] 請求項 2〜請求項 5のいずれかに記載の温度保護回路と;入力電圧から所定の出 力電圧を生成する手段であって、前記抑制信号に応じてその出力電流が抑制され、 前記遮断信号に応じてその駆動が遮断される電源回路と;を有して成ることを特徴と する電源装置。
[7] 請求項 6に記載の電源装置と、前記電源装置の出力電圧を電源とするシステム回 路と、を有して成る電子機器であって、前記システム回路は、前記警報信号に応じて 、前記電源装置力もの電源供給が遮断されるよりも先に、自身の駆動を遮断するもの であることを特徴とする電子機器。
PCT/JP2006/318405 2005-09-16 2006-09-15 温度保護回路、電源装置、電子機器 WO2007032489A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06810197A EP1933439A1 (en) 2005-09-16 2006-09-15 Temperature protection circuit, power supply, and electronic device
CN200680034081.0A CN101268596B (zh) 2005-09-16 2006-09-15 温度保护电路、电源和电子设备
US12/066,855 US7961446B2 (en) 2005-09-16 2006-09-15 Temperature protection circuit, power supply, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005269499A JP2007082365A (ja) 2005-09-16 2005-09-16 温度保護回路、電源装置、電子機器
JP2005-269499 2005-09-16

Publications (1)

Publication Number Publication Date
WO2007032489A1 true WO2007032489A1 (ja) 2007-03-22

Family

ID=37865073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318405 WO2007032489A1 (ja) 2005-09-16 2006-09-15 温度保護回路、電源装置、電子機器

Country Status (5)

Country Link
US (1) US7961446B2 (ja)
EP (1) EP1933439A1 (ja)
JP (1) JP2007082365A (ja)
CN (1) CN101268596B (ja)
WO (1) WO2007032489A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009106911A3 (en) * 2008-02-27 2009-10-22 Osram Gesellschaft mit beschränkter Haftung A method of protection from over-temperature and corresponding arrangement
US8699196B2 (en) 2008-12-18 2014-04-15 Huawei Device Co., Ltd. Thermal protection control method and system

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080159352A1 (en) * 2006-12-27 2008-07-03 Dhananjay Adhikari Temperature calculation based on non-uniform leakage power
JP2009138521A (ja) * 2007-12-03 2009-06-25 Sanden Corp 電動圧縮機の制御方法
US8197127B2 (en) * 2008-09-08 2012-06-12 Infineon Technologies Austria Ag Ultra low current consumption comparator for thermal shutdown
JP5247359B2 (ja) * 2008-11-04 2013-07-24 ローム株式会社 半導体装置
CN101662324B (zh) * 2009-09-24 2012-12-19 中兴通讯股份有限公司 一种保护单板的方法及装置
CN101997302B (zh) * 2010-08-13 2014-03-19 乌云翔 大功率变流器的电力电子器件温度过高的保护方法
US9324646B2 (en) 2010-12-13 2016-04-26 Infineon Technologies America Corp. Open source power quad flat no-lead (PQFN) package
US9711437B2 (en) 2010-12-13 2017-07-18 Infineon Technologies Americas Corp. Semiconductor package having multi-phase power inverter with internal temperature sensor
US9659845B2 (en) 2010-12-13 2017-05-23 Infineon Technologies Americas Corp. Power quad flat no-lead (PQFN) package in a single shunt inverter circuit
US9362215B2 (en) 2010-12-13 2016-06-07 Infineon Technologies Americas Corp. Power quad flat no-lead (PQFN) semiconductor package with leadframe islands for multi-phase power inverter
US9443795B2 (en) 2010-12-13 2016-09-13 Infineon Technologies Americas Corp. Power quad flat no-lead (PQFN) package having bootstrap diodes on a common integrated circuit (IC)
US8587101B2 (en) 2010-12-13 2013-11-19 International Rectifier Corporation Multi-chip module (MCM) power quad flat no-lead (PQFN) semiconductor package utilizing a leadframe for electrical interconnections
US9449957B2 (en) 2010-12-13 2016-09-20 Infineon Technologies Americas Corp. Control and driver circuits on a power quad flat no-lead (PQFN) leadframe
US9355995B2 (en) 2010-12-13 2016-05-31 Infineon Technologies Americas Corp. Semiconductor packages utilizing leadframe panels with grooves in connecting bars
US9524928B2 (en) 2010-12-13 2016-12-20 Infineon Technologies Americas Corp. Power quad flat no-lead (PQFN) package having control and driver circuits
US9620954B2 (en) * 2010-12-13 2017-04-11 Infineon Technologies Americas Corp. Semiconductor package having an over-temperature protection circuit utilizing multiple temperature threshold values
DE102011001050B4 (de) * 2011-03-03 2019-03-28 Halla Visteon Climate Control Corporation 95 Temperatur-Schutzschaltung für Versorgungsspannungs-Schaltkreise von elektrischen Einrichtungen
US8947064B2 (en) * 2011-09-20 2015-02-03 Infineon Technologies Austria Ag System and method for driving an electronic switch dependent on temperature
CN102393765B (zh) * 2011-10-26 2013-09-18 迈普通信技术股份有限公司 温度保护设计方法、及温度保护测试方法
DE102012008999B3 (de) * 2012-05-04 2013-10-10 HKR Seuffer Automotive GmbH & Co. KG Verfahren zur Steuerung einer Leistungszufuhr und Vorrichtung
EP2779228B1 (en) * 2013-03-13 2020-09-16 Infineon Technologies Americas Corp. Semiconductor package having an over-temperature protection circuit utilizing multiple temperature threshold values
KR102039350B1 (ko) * 2013-05-03 2019-11-27 삼성전자주식회사 무선 전력 수신기에서 비정상 상태를 제어하기 위한 방법
JP6187093B2 (ja) * 2013-09-26 2017-08-30 株式会社ジェイテクト 電力変換装置
JP6402567B2 (ja) 2014-10-03 2018-10-10 セイコーエプソン株式会社 回路装置及び電子機器
JP6256292B2 (ja) * 2014-10-22 2018-01-10 株式会社デンソー 温度保護装置
JP6180465B2 (ja) * 2015-06-23 2017-08-16 三菱電機株式会社 電力供給システム
CN107271755B (zh) * 2017-06-09 2020-02-18 合肥远见电力科技有限公司 一种管型母线智能检测系统
US11493967B2 (en) * 2018-06-01 2022-11-08 Interdigital Madison Patent Holdings, Sas Thermal shutdown with hysteresis
CN110289594B (zh) * 2019-06-17 2021-08-03 深圳市波若波罗科技有限公司 一种电子设备的过热保护系统、方法及装置
CN110932241A (zh) * 2019-11-21 2020-03-27 珠海格力电器股份有限公司 具有多路输出通道的芯片的过载保护方法、装置和电路
CN115373443B (zh) * 2022-08-26 2024-04-05 深圳市广通远驰科技有限公司 温度控制方法、装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412481U (ja) * 1987-07-10 1989-01-23
JPH1093010A (ja) * 1996-07-25 1998-04-10 Konami Co Ltd 半導体集積回路基板の過熱保護装置
JPH10117428A (ja) * 1996-10-14 1998-05-06 Nishishiba Electric Co Ltd 電力変換装置の冷却装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US587026A (en) 1897-07-27 Process of manufacturing filaments and mantles for incandescent gas-lighting
JPS6412481A (en) 1987-07-06 1989-01-17 Hitachi Ltd Forming/cutting method for flat type multicore cable and its device
DE4207481A1 (de) 1992-03-10 1993-09-16 Bayer Ag Liposomale wirkstoff-formulierungen und verfahren zu ihrer herstellung
JPH0661414A (ja) 1992-08-05 1994-03-04 Hitachi Ltd 半導体集積回路装置の温度異常検出回路
US5870267A (en) * 1996-07-25 1999-02-09 Konami Co., Ltd. Semiconductor integrated circuit device with overheating protector and method of protecting semiconductor integrated circuit against overheating
FR2759504B1 (fr) * 1997-02-10 1999-03-26 Schneider Electric Sa Relais et procede de protection
US5943206A (en) * 1997-08-19 1999-08-24 Advanced Micro Devices, Inc. Chip temperature protection using delay lines
US6351360B1 (en) * 1999-09-20 2002-02-26 National Semiconductor Corporation Apparatus for selective shutdown of devices of an integrated circuit in response to thermal fault detection
US6222761B1 (en) * 2000-07-17 2001-04-24 Microchip Technology Incorporated Method for minimizing program disturb in a memory cell
JP4033749B2 (ja) * 2002-10-03 2008-01-16 大阪瓦斯株式会社 異常判定方法,および電子機器
JP4178904B2 (ja) 2002-10-16 2008-11-12 アンデン株式会社 パワー素子の温度保護装置
JP3995043B2 (ja) 2003-02-19 2007-10-24 ローム株式会社 熱保護機能付き半導体集積回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412481U (ja) * 1987-07-10 1989-01-23
JPH1093010A (ja) * 1996-07-25 1998-04-10 Konami Co Ltd 半導体集積回路基板の過熱保護装置
JPH10117428A (ja) * 1996-10-14 1998-05-06 Nishishiba Electric Co Ltd 電力変換装置の冷却装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009106911A3 (en) * 2008-02-27 2009-10-22 Osram Gesellschaft mit beschränkter Haftung A method of protection from over-temperature and corresponding arrangement
US8514528B2 (en) 2008-02-27 2013-08-20 Osram Gesellschaft Mit Beschraenkter Haftung Method of protection from over-temperature and corresponding arrangement
US8699196B2 (en) 2008-12-18 2014-04-15 Huawei Device Co., Ltd. Thermal protection control method and system

Also Published As

Publication number Publication date
JP2007082365A (ja) 2007-03-29
EP1933439A1 (en) 2008-06-18
US7961446B2 (en) 2011-06-14
CN101268596B (zh) 2010-12-01
US20090262468A1 (en) 2009-10-22
CN101268596A (zh) 2008-09-17

Similar Documents

Publication Publication Date Title
WO2007032489A1 (ja) 温度保護回路、電源装置、電子機器
KR101639488B1 (ko) 암 쇼트 방지를 위한 게이트 구동 회로 및 방법
US8254075B2 (en) Semiconductor device and circuit protection method
US7885048B2 (en) Semiconductor device and an electronic apparatus incorporating the semiconductor device
US20200343715A1 (en) Drive device, power supply system, and method of testing drive device
JP2008058134A (ja) モータ異常検出装置及び方法
JP4477607B2 (ja) 内燃機関用点火装置
JP2009002226A (ja) ロック復帰制御装置及びロック復帰制御方法
JP2005287284A (ja) 負荷駆動装置及び負荷駆動制御方法
KR101951040B1 (ko) 인버터 igbt 게이트구동장치
US5638246A (en) Semiconductor device having a protection circuit, and electronic system including the same
JP2004052683A (ja) 内燃機関用点火装置
JP3585105B2 (ja) 過熱保護機能付き半導体装置の制御回路
JP4776968B2 (ja) 温度保護回路、半導体集積回路装置、電源装置、電気機器
US20060198074A1 (en) Semiconductor integrated-circuit unit with temperature protective circuit
JP2007019728A (ja) 電力供給制御装置
JP2007336665A (ja) ゲート駆動装置およびそれを備えた電力変換装置
JP4735432B2 (ja) 分析装置の保護回路
JP2006302951A (ja) 温度保護回路、電源装置、電子機器
JP4651100B2 (ja) 電力供給制御装置
JP7132197B2 (ja) 保護回路、半導体装置及び方法
JP2014060581A (ja) 負荷駆動回路
JP2006287209A (ja) 熱保護回路及びこれを備えた半導体集積回路装置
JP2021169799A (ja) 内燃機関の点火装置
JP5293083B2 (ja) 半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680034081.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006810197

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12066855

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE