WO2007029543A1 - 自由回転環状体型ブレーキ装置 - Google Patents

自由回転環状体型ブレーキ装置 Download PDF

Info

Publication number
WO2007029543A1
WO2007029543A1 PCT/JP2006/316883 JP2006316883W WO2007029543A1 WO 2007029543 A1 WO2007029543 A1 WO 2007029543A1 JP 2006316883 W JP2006316883 W JP 2006316883W WO 2007029543 A1 WO2007029543 A1 WO 2007029543A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating
annular
free
brake device
annular body
Prior art date
Application number
PCT/JP2006/316883
Other languages
English (en)
French (fr)
Inventor
Akira Homma
Masao Kobayashi
Original Assignee
Homma Science Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Homma Science Corporation filed Critical Homma Science Corporation
Priority to US12/064,880 priority Critical patent/US8181750B2/en
Publication of WO2007029543A1 publication Critical patent/WO2007029543A1/ja
Priority to US13/448,762 priority patent/US8376091B2/en
Priority to US13/448,727 priority patent/US8910754B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/24Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member
    • F16D55/26Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member without self-tightening action
    • F16D55/28Brakes with only one rotating disc
    • F16D55/30Brakes with only one rotating disc mechanically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/24Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member
    • F16D55/26Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member without self-tightening action
    • F16D55/36Brakes with a plurality of rotating discs all lying side by side
    • F16D55/38Brakes with a plurality of rotating discs all lying side by side mechanically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • F16D65/123Discs; Drums for disc brakes comprising an annular disc secured to a hub member; Discs characterised by means for mounting
    • F16D65/124Discs; Drums for disc brakes comprising an annular disc secured to a hub member; Discs characterised by means for mounting adapted for mounting on the wheel of a railway vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • F16D65/186Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes with full-face force-applying member, e.g. annular

Definitions

  • the present invention relates to a free-rotating toroidal brake device for braking rotation of a rotating shaft in various transportation wheels, machine tools, and the like, and more specifically, its applicable range by combining with a planetary gear mechanism.
  • This technology relates to a technology that can increase the number of parts, minimize the modification of existing machines, and enable braking of wheels and rotating shafts with smooth and low heat generation.
  • the structure of this brake device will be outlined with reference to FIG. 34.
  • the rotary shaft 1 is supported so that the first rotary body 2 that is slidable in the axial direction rotates in the direction of the axis.
  • the first gear 3 fixed to the rotary shaft 1 and rotating integrally with the second gear 6 that is rotatable on the support shaft 5 supported by the support arm 4
  • the rotary shaft 1 is supported so that the first rotary body 2 that is slidable in the axial direction rotates in the direction of the axis.
  • the first gear 3 fixed to the rotary shaft 1 and rotating integrally with the second gear 6 that is rotatable on the support shaft 5 supported by the support arm 4
  • the third gear 7 that rotates integrally with the second gear 6 on the support shaft 5 is supported on the rotary shaft 1 so as to be relatively rotatable, and meshes with the fourth gear 8.
  • a second rotating body 9 that rotates integrally with the fourth gear 8 is connected to the fourth gear 8 so that it can rotate on the rotating shaft 1.
  • the rotational speed N1 of the first rotating body 2 is equal to the rotational speed of the rotating shaft 1, but the rotational speed N2 of the second rotating body 9 is reduced by the first to fourth gears 3, 6, 7, and 8. It differs from the rotational speed N1 of the first rotating body 2 due to the action or speed-up action.
  • the first rotating body 2 is pushed in the axial direction toward the second rotating body 9, and the friction surface 2a and the second rotating body 2 are pushed.
  • a braking force acts between the first and second rotating bodies 2 and 9. This braking force acts to brake the relative rotation between the first gear 3 and the second gear 6, and when the relative rotational speed between the first gear 3 and the second gear 6 becomes zero, The first gear 3 and the second gear 6 are integrated, and the second gear 6 tries to revolve around the axis of the rotary shaft 1.
  • the brake device has a structure in which the rotation of the rotary shaft 1 is braked by the support arm 4 and the support shaft 5 which are stationary portions.
  • the magnitude of the braking force can be controlled by increasing or decreasing the friction force generated between the first and second rotating bodies 2 and 9.
  • the number of rotations of the rotating body 9 of 2 can be 1 lOOrpm.
  • the brake device can suppress heat generated by friction caused by force if the impact force generated during braking can be reduced.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-222167
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-222166
  • the brake device has the first to fourth gears 3, 6, 7, 8 and the support arm 4 as a stationary portion and the brake arm 4 for braking the rotation of the rotary shaft 1. Need a spindle 5 is doing.
  • this brake device is to be incorporated into existing transportation facilities or machine tools, it is inevitable that the structure will change significantly and the number of parts will increase.
  • an object of the present invention is to further improve the brake device according to the above-mentioned prior application, and minimize the increase in the number of parts and the modification that occur when the brake device is incorporated into an existing transportation system or machine tool.
  • Another object of the present invention is to provide a brake device having excellent performance while having a simple structure, small size, light weight and low cost.
  • the connecting means (32) that is driven to rotate by the rotating shaft (23), and fixed by the fixing means (20) among the sun gear (31), the planetary gear (34), and the ring gear (35).
  • the driven means (35a) that rotates integrally with the other one (35),
  • a first free-rotating annular body (50) disposed coaxially with the rotating shaft (23) so as to be freely displaceable in the axial direction of the rotating shaft (23) and to be rotatable about the rotating shaft (23). And a first annular member that is supported coaxially with the rotating shaft (23) and displaceably in the axial direction and rotates integrally with one of the connecting means (32) and the driven means (35a).
  • Body (60)
  • the first annular body (60) and the first free-rotating annular body (50) are connected to the axis line toward any one of the fixing means (20), the connecting means (32), and the driven means (35a). And a pushing means (70) supported by the fixing means (20), which are integrally pushed in the direction and in which these annular bodies are brought into close contact with each other and frictionally engaged with each other.
  • Ring Body brake device (100, 200, 300, 500, 600).
  • the connecting means (32) and the driven means (35a) are frictionally engaged using the first free rotating annular body (50) and the first annular body (60) and the relative rotation is braked, the connection is established. Since the relative rotation of the means (32) and the driven means (35a) with respect to the fixing means (20) can be braked, the rotation of the rotating shaft (23) can be braked via the connecting means (32).
  • the two elements (connection means and driven means) of the planetary gear mechanism that rotate relative to each other, the first free rotating annular body (50), and the first annular body are provided.
  • (60) corresponds to the first and second rotating bodies 2 and 9 in the brake device according to the prior application shown in FIG. 34, and the fixing means (20) corresponds to the support arm 4 and the support shaft 5 is doing.
  • a brake device that brakes the rotating shaft (23) can be configured by adding the pushing means (70).
  • the brake device described in claim 1 controls the rotating shaft (23) by applying braking between two rotating elements having a small relative rotational speed in the planetary gear mechanism (30). Therefore, it is possible to reduce the impact force and the amount of heat generated during braking. As a result, if a stable braking force can be obtained by suppressing fluctuations in the friction coefficient, a constant braking force can be obtained over a long period of time without the occurrence of a fade phenomenon caused by heat generated by the force.
  • the pushing means (70) integrally pushes the first free rotating annular body (50), the first annular body (60) and the second annular body (75, 76) in the axial direction. It is characterized in that it is configured to move and be brought into close contact with each other and frictionally engaged.
  • the free rotating annular brake device (100, 200, 300, 500, 600) uses the second annular body (75, 76) to connect the connecting means (32) and Since one of the driven means (35a) and the fixing means (20) are frictionally engaged with each other, the connecting means (32), the driven means (35a) and the fixing means (20) Therefore, the relative rotation between the two and the force S can more effectively brake the rotation of the rotary shaft (23).
  • the second annular body (75, 76) and the first annular body (1) are coaxial with the rotating shaft (23) and are freely displaceable in the axial direction and are rotatable about the rotating shaft (23). 60) and a second free rotating annular body (80) arranged between
  • the pushing means (70) includes the second annular body (75, 76), the second free rotating annular body (80), the first annular body (60), and the first free rotating body.
  • the annular body (50) is configured to be integrally pushed in the axial direction and brought into close contact with each other to be frictionally engaged.
  • the brake device (300) includes a second free-rotating annular body (80) between the first annular body (60) and the second annular body (75, 76). ).
  • the second free-rotating annular body (80) is provided between the first annular body (60) and the second annular body (75, 76), and thus the connecting means (32) and the follower means (35a). Any one of the connecting means (35a) and the fixing means (20) can freely rotate relative to each other. Even when the relative rotational speed difference with the fixing means (20) is large, the relative rotational speed difference can be smoothly absorbed.
  • the pushing means (70) includes the second annular body (75, 76), the third annular body (90), the second free rotating annular body (80), and the first annular body. (60) and the first free-rotating annular body (50) are integrally pushed in the axial direction so as to be brought into close contact with each other and frictionally engaged with each other.
  • the brake device (500) according to claim 4 includes a third annular body (90) that rotates integrally with the other of the connecting means (32) and the driven means (35a). Is.
  • the means described in claim 5 is the free rotating annular brake device according to any one of claims 1 to 4, wherein the first free rotating annular body (50) is arranged in the axial direction. And a plurality of annular members (51, 52, 53, 54) which are slidable with respect to each other.
  • claim 5 the brake device (100, 200, 300, 500, 600) described above is stacked on each other to form the first free-rotating annular body (50).
  • adjacent annular members can slide with each other with a small difference in rotational speed.
  • the entire first free rotating annular body (50) can smoothly absorb this large rotational speed difference. Can be collected.
  • the means described in claim 6 is the free-rotating ring-shaped brake device according to any one of claims 3 to 5, wherein the second free-rotating annular body (80) is connected to the axis.
  • a plurality of annular members (81, 82, 83, 84, 85) force that are stacked in directions and are slidable with respect to each other are formed.
  • the rotating shaft (60) is disposed between the first annular body (60) and the second annular body (75, 76).
  • the plurality of laminated annular members can slide with each other with a small rotational speed difference between adjacent annular members.
  • One of the plurality of annular members (51, 81) is a cylindrical portion (51a) coaxial with the rotating shaft (23).
  • annular member 52, 53, 54, 82, 83, 84
  • another annular member 52, 53, 54, 82, 83, 84
  • the cylindrical portion can be rotatably supported using a bearing (55, 85) with respect to the rotating shaft (23), the connecting means (32), the driven means (35a), or the fixing means (20). it can.
  • the planetary gear mechanism (30) fixes the sun gear (31) to the fixing means, and the planetary gear (34) is rotationally driven by the rotating shaft (23) to increase the speed from the ring gear (35). It is configured to take out the rotational driving force that is generated.
  • the brake device (100) according to claim 8 is provided in a planetary gear mechanism that performs a speed increasing action, for example, a transmission of an automobile, and is provided in parallel with an overdrive device.
  • the existing overdrive device can be used as it is, and the brake device of the present invention can be configured. Therefore, it is possible to incorporate the vehicle without requiring significant modification of the transmission of the automobile, and the cost is low. It can be a brake device.
  • Switching means (40) capable of selectively switching between a state in which the rotating shaft (23) is connected to the output shaft (24) and a state in which the ring gear (35) is connected to the output shaft (24); It is characterized by having added additional calories.
  • the brake device (100) includes a direct connection state in which the output shaft (24) is connected to the rotating shaft (23), and an output shaft (24) to the ring gear (35) of the planetary gear mechanism. Therefore, it can be switched to the overdrive state to which the is connected, so that it can be incorporated into a transmission of an automobile as it is and used as an overdrive device.
  • the rotation of the rotating shaft (23) can be reliably braked in both the direct connection state and the overdrive state.
  • the means described in claim 10 is the free-rotating annular body-type brake device according to claim 9, wherein the output shaft (24) includes a propeller shaft (104) and a final reduction gear ( 105) and is connected to the left and right drive wheels (106L, 106R).
  • the reduction ratio of the final reduction gear of the automobile is about 1: 3 to 1:10, a large braking force can be applied to the left and right drive wheels even if the braking force applied to the rotation of the rotating shaft is small.
  • the running stability can be improved without the braking effect being one-sided. Can do.
  • the means described in claim 11 is the free-rotating annular body-type brake device according to claims 1 to 7, wherein the planetary gear mechanism (30) is arranged inside the drive wheel of the electric vehicle.
  • the in-wheel motor (11) is configured as a speed reduction mechanism for reducing the drive output.
  • the in-wheel motor (11) disposed inside the drive wheel of the electric vehicle is generally a combination of an electric motor and a planetary gear mechanism (12) as a speed reducer.
  • the in-wheel motor itself does not have a function of braking the rotation of the drive wheel (15), and it is necessary to use a drum brake (13) as it is for a disc brake used in a conventional automobile.
  • the brake device (400) of the present invention is arranged in parallel with the planetary gear mechanism (30) of the in-wheel motor, the force that can brake the rotation of the drive wheel (15) by the in-wheel motor (11). Therefore, the disc brake or drum brake (13) can be dispensed with.
  • the weight of the disc brake or drum brake can be eliminated, so that the problem of “increase in unsprung weight”, which is a problem in in-wheel motors of electric vehicles, can be greatly improved. .
  • the means described in claim 12 is the free-wheeling annular brake device according to any one of claims 2 to 11,
  • the first annular body (60) has a large relative rotational speed difference with respect to the fixing means (20) of the connecting means (32) and the follower means (35a) so that the first annular body (60) rotates integrally with the one. It is characterized by being supported!
  • the mechanism (30) acts as a speed increasing mechanism.
  • the planetary carrier (32) is rotationally driven by the rotating shaft (23), and the ring gear (35) is driven to rotate.
  • the rotational speed of the ring gear (35) exceeds the rotational speed of the rotating shaft (23), and the planetary gear mechanism (30) acts as a speed increasing mechanism.
  • the relative rotational speed between the driven means and the fixing means is significantly higher than the relative rotational speed between the rotating shaft (23) and thus the connecting means and the fixing means.
  • the free-wheeling annular brake device (200, 240) having this structure is suitable for an application that requires sensitive brake characteristics, such as a sport vehicle.
  • the first annular body (60) is such that a relative rotational speed difference with respect to the fixing means (20) of the connecting means (32) and the driven means (35a) is small! It is characterized by being supported!
  • the planetary gear mechanism (30) functions as a speed reduction mechanism.
  • the sun gear (31) of the planetary gear mechanism (30) is fixed to be non-rotatable, the ring gear (35) is rotationally driven by the rotating shaft (23), and the planetary carrier (32) is driven to rotate.
  • the rotation speed of the planetary carrier (32) is lower than the rotation speed of the rotating shaft (23), and the planetary gear mechanism (30) acts as a speed reduction mechanism.
  • the relative rotational speed between the planetary carrier (32) and therefore the driven means and the fixing means is significantly lower than the relative rotational speed between the rotary shaft (23) and therefore the connecting means and the fixing means.
  • the brake device 250 having this structure is suitable for applications that require smooth brake characteristics, such as railway vehicles.
  • Clutch control means for controlling the operation of the clutch (601), and the clutch control means operates the clutch (601) when a signal indicating braking of the rotating shaft (23) is input.
  • the rotating shaft (23) and the connecting means (32) are configured to be connected.
  • the clutch (601) is operated until a signal representing braking is obtained by, for example, the driver of the vehicle depressing the brake pedal.
  • the rotating shaft (23) and the connecting means (32) are separated from each other.
  • the first and second annular bodies, the first and second free-rotating annular bodies, etc. are provided by the action of the urging means (602). Since they are kept in contact with each other, a braking action will occur immediately when the pushing means (70) is actuated.
  • the rotary shaft (702) is coaxial and relatively rotatable with respect to the rotary shaft (702).
  • the rotation axis (702) is rotated so that the second and third rotating bodies (705, 706) rotate at a different rotational speed from that of the first rotating body (703).
  • the second and third rotating bodies (705, 706) and the first to third free rotating annular bodies (720, 721, 722) ) Is supported by the stationary portion (20) that pushes at least one of the first rotating body (703) and the fixed body (704) in the axial direction.
  • the first to third rotating bodies (703, 705, 706) and the fixed body are caused by the action of the rotation transmission mechanism (710). (704) can be rotated relative to each other.
  • the pushing means (730) by operating the pushing means (730), the first and third rotating bodies (705 and 706) and the first to third rotating bodies are operated by the first rotating body (703) and the fixed body (704).
  • Free rotating annulus (72 0, 721, 722) are integrally clamped, and the rotation of the rotating shaft (702) can be braked by frictionally engaging each rotating body with each free rotating annular body and fixed body.
  • the stationary body (704) that does not rotate and the third rotational body (706) are frictionally engaged with each other with the third free-rotating annular body (722) sandwiched therebetween, so that the stationary body (704)
  • the stationary body (704) By adjusting the relative rotational speed between the rotating body (706) and the third rotating body (706), it is possible to change the brake characteristics when braking the rotation of the rotating shaft (702).
  • the rotational speed of the third rotating body (706) due to frictional engagement between the two is set.
  • the braking characteristics when braking the rotation of the rotating shaft (702) can be made sensitive.
  • the rotation transmission mechanism (710) is configured so that the rotation speed of the second rotation body (705) is higher than the rotation speed of the first rotation body (703) and the rotation speed of the third rotation body (706).
  • the rotational speed is configured to be higher than the rotational speed of the second rotating body (705).
  • the first rotational speed is set while the relative rotational speed between the stationary body (704) and the third rotational body (706) is set high.
  • the means described in claim 18 is the free-rotating annular body brake device described in claim 16,
  • the rotation transmission mechanism (710) is configured so that the rotation speed of the second rotation body (705) is lower than the rotation speed of the first rotation body (703) and the rotation speed of the third rotation body (706).
  • the rotational speed is configured to be lower than the rotational speed of the second rotating body (705).
  • the first rotational speed is set while the relative rotational speed between the stationary body (704) and the third rotational body (706) is set low.
  • the first to third free-rotating annular bodies are formed of a plurality of annular members that are coaxially stacked in the axial direction and are slidable with respect to each other.
  • the first to third free rotating annular bodies (720, 721, 722) are slidable with respect to each other.
  • the means described in claim 20 is similar to the free rotating annular body brake device according to any one of claims 5, 6, 18, and 19 in that the adjacent annular member among the plurality of annular members is the same. Controls the amount of sliding friction that acts between them so that they rotate at different rotational speeds. It is characterized by adding a sliding friction control means to be controlled.
  • the brake device according to claim 20 is configured so that the first rotating body (32) and the second rotating body (60) are frictionally engaged to brake the rotation of the rotating shaft ( 23), which is used for braking the rotation of the first and second rotating bodies, and is characterized by a plurality of annular members used for frictional engagement.
  • the plurality of annular members (51, 52, 53, 54) have sliding friction control means for controlling the size of the friction sliding so that adjacent annular members rotate at different rotational speeds. Is provided.
  • the first rotating body (32) rotates at lOOOrpm
  • the second rotating body (60) rotates at lOOOrpm
  • four annular members (51, 52, 53, 54) between them Is installed, the first annular member adjacent to the first rotating body (32) rotates at 1020 rpm, the second annular member rotates at 1040 rpm, and the third annular member rotates at 1060 rpm.
  • the fourth annular body that rotates and is adjacent to the second rotating body (60) can be controlled to rotate at 1080 rpm.
  • the first to third annular members are fixed to each other and rotated integrally with the first rotating body at 100 Orpm
  • the fourth annular member is rotated integrally with the second rotating body at lOOrpm. Can be prevented.
  • the sliding friction control means includes the plurality of annular members (51, 52, 53, 54). It is characterized in that the hardness of the metal material formed by forming the adjacent annular members is different between the adjacent annular members. [0051] That is, in the brake device according to claim 21, since the metal material hardness of the adjacent annular members is different, the degree of familiarity when compressed in the axial direction of the rotating shaft (23) is different. Therefore, it is possible to prevent both of them from adhering to each other and to rotate integrally, for example, by connecting a plurality of annular members (51, 51) interposed between the connecting means (32) and the first annular body (60). 52, 53, 54) can be rotated at different rotational speeds.
  • the metal material hardness of the adjacent annular member is set so that there is a difference of 2 to 10, preferably 5 to 7, in terms of HRC hardness.
  • the means described in claim 22 is the brake device described in claim 21, wherein the plurality of annular members (51, 52, 53, 54) include the annular member having high hardness and the hardness It is characterized in that it is formed by alternately arranging annular members.
  • the connecting means (32) and the first annular body (60) are arranged by alternately arranging annular bodies having high hardness and annular bodies having low hardness. Even when a plurality of annular members (51, 52, 53, 54) are interposed between the adjacent annular members, it is possible to prevent adjacent annular members from adhering to each other and rotating together.
  • the means described in claim 23 is characterized in that the force of the plurality of annular members (51, 52, 53, 54) is applied to the axis of the rotary shaft (23) over the brake device described in claim 21.
  • the annular members are arranged in descending order of the hardness in the direction.
  • the annular members are arranged in ascending order of hardness, for example, the individual rotational speeds of the plurality of annular members (51, 52, 53, 54) are connected.
  • the side force of the means (32) can be set to change in order toward the first annular body (60).
  • the sliding friction control means includes the plurality of annular members (51, 52, 53, 54). It is characterized in that it is configured by making the dimensions in the diameter direction of adjacent annular members different.
  • each annular member when compressed in the axial direction of the rotating shaft (23) is used. Is the amount of elastic deformation at the outer peripheral part or inner peripheral part different? Thus, the two members are prevented from adhering to each other and rotating together.
  • the plurality of annular members interposed between the connection means (32) and the first annular body (60) have different rotational speeds. It can be made to rotate.
  • the means described in claim 25 is the brake device described in claim 24, wherein the plurality of annular member (51, 52, 53, 54) force and the annular member having a large diametrical dimension
  • the annular members having small dimensions in the diameter direction are alternately arranged.
  • the connecting means (32) can be obtained by alternately arranging the dimension V in the diametrical direction, the ring-shaped member and the ring-shaped member having a small diametrical dimension. Even when a plurality of annular members (51, 52, 53, 54) are interposed between the first annular body (60) and the first annular body (60), the adjacent annular members are prevented from adhering to each other and rotating together. it can.
  • the means described in claim 26 is characterized in that the force of the plurality of annular members (51, 52, 53, 54) is applied to the brake device described in claim 24, and the axis of the rotating shaft (23) An annular member is arranged in the direction from the smallest dimension in the diameter direction.
  • the annular members are arranged in ascending order of the dimension in the diametrical direction. Therefore, the individual rotational force of the plurality of annular members, for example, the side force of the connecting means (32) It can be set to change in order toward the first annular body (60).
  • the sliding friction control means is adjacent to the plurality of annular members (51, 52, 53, 54). It is characterized by having different dimensions in the axial direction between the annular members.
  • the means described in claim 28 is the brake device according to claim 27, wherein the plurality of annular member (51, 52, 53, 54) force and the annular member having a large dimension in the axial direction
  • the annular members having small dimensions in the axial direction are alternately arranged.
  • the connecting means (32) and the first annular body are arranged. Even when a plurality of annular members (51, 52, 53, 54) are interposed between (60), it is possible to prevent adjacent annular members from adhering to each other and rotating together.
  • the means described in claim 29 is the brake device according to claim 27, wherein the plurality of annular member (51, 52, 53, 54) forces in the axial direction of the rotating shaft (23),
  • the annular members are arranged in ascending order of dimension in the axial direction.
  • the annular members are arranged in ascending order of dimension in the axial direction, so that the individual rotational speeds of the plurality of annular members (51, 52, 53, 54) are, for example, connected
  • the side force of the means (32) can be set to change in order toward the first annular body (60).
  • the sliding friction control means includes the plurality of annular members (51, 52, 53, 54). It is configured by making the areas of the concave portions provided in the friction sliding surfaces of the adjacent annular bodies different from each other.
  • the brake device according to claim 30 since the recessed areas of the adjacent annular members are different, the amount of elastic deformation when compressed in the axial direction of the rotating shaft (23) is different. Therefore, it is possible to prevent the two members from adhering to each other and rotate together.
  • the plurality of annular members interposed between the connection means (32) and the first annular body (60) are differently rotated. It can be rotated by a number.
  • the plurality of annular members include an annular member having a large area of the recess and an annular member having a small area of the recess. It is characterized by being arranged alternately.
  • the annular member having a large area of the recessed portion provided in the friction sliding surface thereof and the small annular member are alternately arranged.
  • the connecting means (32 ) And the first annular body (60) even when a plurality of annular members (51, 52, 53, 54) are interposed, the adjacent annular members are fixed to each other and rotate together. Can be prevented.
  • the means described in claim 32 is the brake device described in claim 30, wherein the plurality of annular member (51, 52, 53, 54) forces in the axial direction of the rotating shaft (23)
  • the annular bodies are arranged in ascending order of the area of the recesses.
  • the annular members are arranged in ascending order of the area of the recessed portion provided in the friction sliding surface, so that, for example, a plurality of annular members (51
  • the side force of the connecting means (32) can be set so as to change sequentially toward the first annular body (60).
  • the means described in claim 33 is a brake device (800, 850) for braking the rotation of the wheel (14, 852) of the transportation system,
  • Brake discs (806, 853, 854) that rotate integrally with the wheels;
  • the brake device (800, 850) according to claim 33 is used to brake the rotation of the wheel of an automobile, a railway, or an aircraft, and is combined with a free-rotating annular body in a disc brake device. It is a thing.
  • the wheel of an automobile traveling at a speed of 200 km / h and therefore the brake disc rotates at a speed of about 2000 rpm Z.
  • the relative rotational speed between the brake nod and the brake disc is 2000 rotations Z minutes.
  • the brake disc and the brake Since the free-rotating annular body is interposed between it and the door, the free-rotating annular body is rotated at a lower speed when the brake disc rotates at a rotational speed of 2000 revolutions Z. Can be rotated.
  • the relative rotational speed between the brake pad and the free rotating annular body can be 1000 revolutions Z
  • the relative rotational speed between the free rotating annular body and the brake disc can be 1000 revolutions Z.
  • the amount of heat generated in the brake pad is proportional to the square of the running speed of the vehicle, and thus the square of the relative rotational speed between the brake disc and the brake pad, so the relative rotational speed is halved. To 1Z4.
  • the frictional sliding surfaces are provided at two places between the brake pad and the free rotating annular body and between the free rotating annular body and the brake disc. Exists.
  • the braking force is twice that of a typical disc brake device. Will be obtained.
  • free rotating annular body used in the brake device according to claim 33 may have the same configuration as that described in claims 19 to 32.
  • the means described in claim 34 is the brake device according to claim 33, wherein the free rotating annular body (820, 870) force is a side surface on the brake pad (813, 814, 864, 865) side. Is a friction sliding surface and frictionally engages the other side on the opposite side surface It is characterized by having at least one annular member (82 2, 823, 872, 873) provided with a friction material (822a, 823a, 872a, 873a).
  • a friction material in other words, a brake lining exists between the brake disk and the annular member.
  • the relative rotation number of each annular member with respect to the brake disk can be controlled.
  • the means described in claim 35 is the brake device described in claim 34, wherein a plurality of the annular members (822, 823, 872, 873) are coaxially stacked in the axial direction of the brake disc.
  • the friction coefficient of each of the friction members (822a, 823a, 872a, 873a) of the plurality of annular members is higher toward the brake pad (813, 814, 864, 865). 854) is set so as to be lower.
  • the rotation speed of the brake disc is highest, and the rotation speeds of the plurality of annular members are gradually reduced as they are directed toward the brake pads. Can be configured.
  • the rotational speed of the annular member that frictionally slides with the brake pad can be significantly reduced relative to the rotational speed of the brake disc, so that the amount of heat generated in the brake pad is reduced and the brake pad wear is reduced. Can be further reduced.
  • the means described in claim 36 is the brake device according to claim 35, wherein the annular member (822, 872) that frictionally slides with the brake pad (813, 814, 864, 865) is provided.
  • the friction coefficient force of the friction material (822a, 872a) is set lower than the friction coefficient of the friction material of the brake pad (813, 814, 864, 865).
  • the brake device of claim 36 when there are a plurality of annular members between the brake disc and the brake pad, the plurality of annular members are reliably rotated by the brake pad. Can do.
  • the brake disc (806, 853, 854) is connected to the annular member (822, 823, 872, 87).
  • the friction between the brake disk generally manufactured from pig iron and the inner peripheral surface of the free rotating annular body is reduced, and the brake device is free.
  • the rotating annular body can be smoothly rotated relative to the brake disc.
  • the brake device according to claim 38 is the free-rotating annular body brake device according to any of claims 33 to 37,
  • Biasing means (826, 874) for urging the inner peripheral portion of the free rotating annular body toward the brake disc is provided.
  • the posture of the free rotating annular body (820, 870) with respect to the rotation axis of the brake disk can be stabilized.
  • the free-rotating annular bodies 820 and 870 can be held perpendicular to the rotating shaft, and the occurrence of brake judder due to the inclination can be reliably prevented.
  • the brake device of the present invention utilizes the existing planetary gear mechanism provided in the power transmission system of various transportation facilities and machine tools as it is.
  • a brake device that brakes the rotating shaft can be configured.
  • the brake device of the present invention brakes the rotating shaft by applying braking between two rotating elements having a small rotational speed difference in the planetary gear mechanism.
  • FIG. 1 is a fragmentary perspective view showing an overdrive device in which a brake device according to a first embodiment is inserted.
  • FIG. 2 A diagram schematically showing the power transmission system of an automobile incorporating the overdrive device of FIG.
  • FIG. 3 is a sectional view schematically showing the structure of the brake device shown in FIG.
  • FIG. 4 is a cross-sectional view schematically showing the operation of the brake device shown in FIG.
  • FIG. 5 is a cross-sectional view schematically showing the structure of the brake device shown in FIG.
  • FIG. 6 is a sectional view schematically showing the operation of the brake device shown in FIG.
  • FIG. 7 is a sectional view schematically showing the structure of a brake device according to a second embodiment.
  • FIG. 8 is a cross-sectional view schematically showing the operation of the brake device of the second embodiment.
  • FIG. 9 is a cross-sectional view schematically showing the structure of a first modification of the brake device according to the second embodiment.
  • FIG. 10 is a sectional view schematically showing the structure of a second modification of the brake device according to the second embodiment.
  • FIG. 11 is a cross-sectional view schematically showing the structure of a third modification of the brake device according to the second embodiment.
  • FIG. 12 is a cross-sectional view schematically showing the structure of a fourth modification of the brake device according to the second embodiment.
  • FIG. 13 is a cross-sectional view schematically showing a structure of a fifth modification of the brake device according to the second embodiment.
  • FIG. 14 is a sectional view schematically showing the structure of a brake device according to a third embodiment.
  • FIG. 15 is a cross-sectional view schematically showing a structure of a first modification of the brake device according to the third embodiment.
  • FIG. 16 is a cross-sectional view schematically showing the structure of a second modification of the brake device according to the third embodiment.
  • FIG. 17 is a cross-sectional view schematically showing a structure of a third modification of the brake device according to the third embodiment.
  • FIG. 18 is a cross-sectional view schematically showing a structure of a fourth modified example of the brake device according to the third embodiment.
  • FIG. 19 is a cross-sectional view schematically showing a structure of a fifth modification of the brake device according to the third embodiment.
  • FIG. 20 is a cross-sectional view schematically showing the structure of an in-wheel motor of an electric vehicle incorporating the brake device of the fourth embodiment.
  • FIG. 21 is a sectional view schematically showing the structure of a brake device according to a fifth embodiment.
  • ⁇ 22] A sectional view schematically showing a structure of a first modification of the brake device of the fifth embodiment.
  • ⁇ 23] A sectional view schematically showing a structure of a second modification of the brake device of the fifth embodiment.
  • FIG. 24 is a cross-sectional view schematically showing a structure of a third modified example of the brake device according to the fifth embodiment. 25] A sectional view schematically showing the structure of the fourth variation of the brake device of the fifth embodiment.
  • FIG. 26 is a cross-sectional view schematically showing the structure of a fifth modified example of the brake device according to the fifth embodiment.
  • FIG. 27 is a cross-sectional view schematically showing the structure of the brake device of the sixth embodiment.
  • ⁇ 28 A sectional side view of an essential part schematically showing the structure of the brake device of the seventh embodiment.
  • FIG. 29 is a cross-sectional side view of an essential part schematically showing the structure of a modified example of the brake device of the seventh embodiment.
  • ⁇ 30 A sectional view of the main part schematically showing the structure of the brake device of the eighth embodiment.
  • FIG. 31 is an enlarged view showing the main part of FIG.
  • ⁇ 32 A cross-sectional view of relevant parts schematically showing the structure of a modified example of the brake device of the eighth embodiment.
  • FIG. 33 is an enlarged view showing the main part of FIG. 32.
  • FIG. 35 is a cross-sectional view schematically showing the structure of a conventional in-wheel motor of an electric vehicle. Explanation of symbols
  • the same parts are denoted by the same reference numerals and redundant description is omitted, and the direction in which the axis of the rotating shaft 23 extends is referred to as the axial direction.
  • the free-rotating annular body brake device 100 of the first embodiment shown in FIG. 1 constitutes an overdrive device built in a transmission of an automobile, and a planetary gear mechanism 30 housed in a casing 20
  • the planetary gear mechanism 30 supports the sun gear 31 in a non-rotatable manner by the bottom wall 21 of the bottomed cylindrical casing (fixing means) 20, and also has a planetary carrier (connection means) on the input shaft (rotating shaft) 23 ) Speed is increased by connecting 32 and rotating multiple planetary gears 34 by the support shaft 33 installed in the bracket planetary carrier 32. The rotational driving force is extracted from the connecting portion (driven means) 35a of the ring gear 35.
  • the ring gear 35 is provided with a connecting portion 35a, and the cylindrical portion 35b is rotatably supported on the input shaft 23 by a bearing 36.
  • the switching means 40 includes a tooth 41 protruding from the rear end of the input shaft 23 and a tooth 42 extending in the axial direction protruding from the front end of the output shaft 24. And a toothed tooth 43 projecting from the rear end of the connecting portion 35a of the ring gear 35, a sleeve 44 slidable in the axial direction on these toothed teeth 41, 42, 43, and the sleeve 44 in the axial direction.
  • the reciprocating force is composed of a shifter and a force (not shown).
  • the first free-rotating annular body 50 is formed by laminating four plate-like circular annular members 51, 52, 53, 54 having substantially the same dimensions in the axial direction.
  • a cylindrical portion 51a coaxial with the input shaft 23 is connected to the inner peripheral portion of one of the annular members 51, and the bearing 55 is provided on the outer peripheral surface of the cylindrical portion 35b connected to the ring gear 35. It is supported rotatably through.
  • the other annular members 52, 53, 54 are slidably supported on the outer peripheral surface of the cylindrical portion 51a.
  • annular member 52 is not drawn in FIG.
  • the material forming the plate-like circular annular members 51, 52, 53, 54 is carbon steel or alloy steel containing nickel, chromium and molybdenum, respectively.
  • the force has slightly different HRC hardness. Yes.
  • the HRC hardness of the annular members 51 and 52 is 56 to 59
  • the HRC hardness of the annular members 53 and 54 is 52 to 55
  • the annular members 51 and 53 having high hardness and the annular portion having low hardness are provided.
  • the materials 53 and 54 are alternately arranged in the axial direction.
  • the first annular body 60 has a plurality of circumferentially arranged equal intervals that pass through the continuous portion 35a of the ring gear 35 and are slidable in the axial direction.
  • the plate-like circular annular members 61 and 62 are made of carbon steel or an alloy steel containing nickel, chromium and molybdenum in the same manner as the first free-rotating annular body 50, and its HRC hardness is 56. It is set to ⁇ 59.
  • annular member 54 having a high hardness and the annular member 62 having a low hardness are alternately arranged in the axial direction.
  • the pushing means 70 is provided on the lid 22 that closes the open end of the cylindrical casing 20, and the lid 22 is coaxial with the input shaft 23.
  • the first cam plate 71 and the first cam plate 71 which is a plate-like circular annular member rotatably supported on the outer peripheral surface of the cylindrical portion 22a.
  • a lever 72 that extends radially outward, and a second cam plate 73 that is coaxially adjacent to the first cam plate 71 and rotatably disposed on the outer peripheral surface of the cylindrical portion 22a.
  • the thick circular member 75 that is fixed to the tip of the push rod 74 coaxially with the input shaft 23 is displaced toward the first annular member 60, and is a plate that is fixed coaxially to the front surface thereof.
  • the annular member 76 is in sliding contact with the side surface of the annular member 63 of the first annular body 60.
  • annular members 75 and 76 are collectively referred to as a second annular body.
  • the annular member 76 is formed of carbon steel or alloy steel containing nickel, chromium and molybdenum in the same manner as the first free rotating annular body 50, and its HRC hardness is set to 52 to 55. . Accordingly, the annular member 63 having a high hardness and the annular member 76 having a low hardness are arranged alternately in the axial direction.
  • the rotational driving force output from the engine 101 of the automobile is the transmission 1
  • the gear is transmitted to the propeller shaft 104 via the brake device (overdrive device) 100 of the first embodiment built in the transfer case 103 connected to the transmission 102.
  • the planetary carrier 32 is rotationally driven by the input shaft 23.
  • the planetary carrier 32 and the continuous portion 35a of the ring gear 35 rotate relative to each other, and at the same time, the lid 22 of the casing 20 and the continuous portion 35a of the ring gear 35 rotate relative to each other.
  • the rotation of the pair of left and right drive wheels 106L and 106R can be braked via the output shaft 24, the propeller shaft 104, and the final speed reducer 105 connected to the input shaft 23 or the continuous portion 35a of the ring gear 35. .
  • the free-rotating annular body brake device 100 of the first embodiment is configured to directly drive or overdrive when driving the pair of left and right drive wheels 106L, 106R by the rotational driving force output by the engine 101. It functions as an overdrive device that enables traveling.
  • the brake device that brakes the rotation of the pair of left and right drive wheels 106L and 106R by operating the lever 72 of the pushing means 70. Function as.
  • a final reduction gear 105 is interposed between the pair of left and right drive wheels 106L and 106R and the output shaft 24.
  • the braking force generated by the brake device 100 is increased by the reduction ratio of about 1: 3 to 1:10 in the final reduction gear 105 and transmitted to the drive wheels 106L and 106R.
  • a braking force can be applied to each drive wheel 106L, 106R.
  • the braking force generated by the brake device 100 is equally distributed to the left and right drive wheels 106L and 106R by the differential gear mechanism built in the final reduction gear 105.
  • the force capable of braking the left and right drive wheels 106L, 106R by one brake device 100 can be omitted, and the brake devices provided individually for each drive wheel 106L, 106R can be omitted.
  • the braking device 100 of the first embodiment is a planetary gear for overdrive traveling that is originally built in a transfer case 103 of an FR vehicle (front engine front drive vehicle) as shown in FIG. Since the mechanism 30 is used, an increase in the number of parts can be minimized.
  • the first free-rotating annular body 50 is composed of a plurality of plate-like circular annular members 51, 52, 53, 54 stacked in the axial direction, and the second annular body is annular. Including the member 62, the hardness is high and the low and high are arranged alternately in the axial direction.
  • the first free-rotating annular body 50 and the first annular body 60 slide a large rotational speed difference between the planetary carrier 32 and the continuous portion 35a of the ring gear 35. Can be absorbed into.
  • each annular member 51, 52, 53, 54, 62 forces S are fixed to each other so that they can rotate freely at different speeds without rotating together.
  • the material hardness of the adjacent annular members is slightly different.
  • a plurality of annular members can be arranged so as to be arranged in the axial direction in the order of low hardness or high hardness.
  • the annular members 51, 52, 53, 54, 62 are made different in outer diameter so that the annular member having a larger outer diameter and the annular member having a smaller outer diameter are adjacent to each other. Therefore, the purpose can be achieved.
  • the annular members 51, 52, 53, 54, 62 are made to have different inner diameter dimensions so that the annular member having a larger inner diameter and the annular member having a smaller inner diameter are provided. Adjacent to each other.
  • annular members 51, 52, 53, 54, 62 can be arranged so as to be arranged in the axial direction in order of increasing or decreasing outer diameter.
  • the amount of elastic deformation of the outer peripheral portion or the inner peripheral portion of each annular member when pressed toward the planetary carrier 32 by the pressing means 70 and compressed in the axial direction is different.
  • the adjacent annular members are not fixed to each other and rotate together, so that they rotate at different rotational speeds.
  • the annular members 51, 52, 53, 54, 62 may have different axial dimensions (thicknesses) so that the thicker annular member and the thinner annular member are adjacent to each other. The goal can be achieved.
  • each of the annular members 51, 52, 53, 54, 62 can be arranged so as to be arranged in the axial direction in order of increasing or decreasing axial dimension.
  • each annular member since the amount of elastic compression deformation of each annular member is different when it is pushed toward the planetary carrier 32 by the pushing means 70 and compressed in the axial direction, the adjacent annular members are different from each other. Rotating at a different speed is different from fixing and rotating together.
  • a recess is formed in the friction sliding surface of each annular member 51, 52, 53, 54, 62, and an annular member having a large total area and a small annular member are adjacent to each other. Therefore, the purpose can be achieved.
  • the concave portion referred to here corresponds to, for example, a circular dimple provided on the surface of a golf ball, but the shape is not limited to a circular shape, and is oval, oval, rectangular, or long. It can also be a groove.
  • the area of a recessed part says the area measured on the friction sliding surface of each annular body.
  • the pushing means 70 is pushed toward the planetary carrier 32 and compressed in the axial direction, the amount of elastic deformation of the friction sliding surface of each annular member adjacent to the concave portion Since the ring members are different from each other, the adjacent annular members are not fixed and rotated together, but rotate at different rotation speeds.
  • Each of the annular members 51, 52, 53, 54, 62 can be arranged so as to be arranged in the axial direction in order of increasing or decreasing the total area of the recesses.
  • the brake device 100 according to the first embodiment described above is provided in the middle of the power transmission path from the engine 101 to the pair of left and right drive wheels 106L, 106R.
  • the brake device 200 is arranged in parallel with the rotating rotating shaft 23. It is configured to brake the rotation of this rotating shaft 23! RU
  • the brake device 200 of the second embodiment has the same structure except that the switching means 40 is omitted from the brake device 100 of the first embodiment described above, and the pushing means 70 is operated.
  • the rotation of the rotary shaft 23 can be braked and a desired braking torque can be loaded on the rotary shaft 23.
  • the first free-rotating annular body 50 is composed of a plurality of plate-like circular annular members 51, 52, 53, 54 stacked in the axial direction. Since they slide with each other with a small rotational speed difference, the heat generation amount in the entire first free rotating annular body 50 is small.
  • the plurality of plate-like circular annular members 51, 52, 53, 54 are also lubricated by the lubricating oil that lubricates the planetary gear mechanism 30, there is no possibility of overheating even if they are continuously operated for a long time.
  • the brake device 200 of the second embodiment is a machine tool that needs to repeat the driving and stopping of the rotating shaft in a complicated manner, a testing machine that must continuously absorb high torque, particularly F1. It can be suitably used as a brake device in a torque tester for a high-power engine used in a race vehicle, or a brake device built in a Shinkansen travel motor.
  • the planetary gear mechanism 30 in the above-described free rotating annular brake device 200 of the second embodiment supports the sun gear 31 in a non-rotatable manner and connects a planetary carrier (connecting means) 32 to the rotating shaft 23.
  • the planetary gear 34 is rotationally driven by the support shaft 33 that is rotated integrally with the planetary carrier 32 and rotatably supported by the planetary carrier 32 to connect the ring gear 35 (following means). The rotary driving force increased from 35a was taken out.
  • the planetary gear mechanism 30A in the free rotating annular brake device 210 of the first modified example supports the sun gear 31 in a non-rotatable manner and connects the connecting portion 35c of the ring gear 35 to the rotating shaft 23.
  • the ring gear 35 is driven to rotate, and the cylindrical connecting portion (driven means) 32a of the planetary carrier 32 is rotatably supported on the rotating shaft 23 by the bearing 37.
  • the first annular body 60 rotates at the same rotational speed as the rotation shaft 23.
  • the relative rotational speed between the first annular body 60 and the second annular bodies 75 and 76 in the free-rotating annular body brake device 210 of the first modification is the same as that of the second embodiment. It is smaller than that in the free-rotating annular brake device 200.
  • the decrease in the rotational speed of the first annular body 60 that occurs when the first annular body 60 and the second annular bodies 75 and 76 are frictionally engaged by operating the pushing means 70 is the second Since it is gentler than that in the free rotating annular brake device 200 of the embodiment, the braking characteristics when braking the rotation of the rotating shaft 23 can be made gentle.
  • Planetary gear mechanism 30B in the free rotating annular brake device 220 of the second modification example Supports the support shaft 33 of the planetary gear 34 around the rotation shaft 23 in a non-rotatable manner, connects the connecting portion 35c of the ring gear 35 to the rotation shaft 23, and drives the ring gear 35 to rotate.
  • the cylindrical connecting portion (driven means) 3 la is rotatably supported on the rotating shaft 23 by a bearing 38.
  • the first annular body 60 rotates at the same rotational speed as the rotation shaft 23.
  • the planetary gear mechanism 30C in the free rotating annular brake device 230 of the third modified example supports the support shaft 33 of the planetary gear 34 in a non-rotatable manner around the rotation shaft 23 and connects the sun gear 31 to the rotation shaft 23.
  • the ring gear 35 has a structure in which the connecting portion (driven means) 35a is rotatably supported by the bearing 36 on the connecting portion 31a.
  • the first annular body 60 rotates at a low rotational speed in the direction opposite to the rotation shaft 23.
  • the planetary gear mechanism 30D in the free rotating annular brake device 240 of the fourth modified example supports the ring gear 35 in a non-rotatable manner and connects the planetary carrier (connecting means) 32 to the rotating shaft 23 to rotate integrally.
  • the planetary gears 34 can be rotated.
  • the rotary gear 34 is driven to rotate, and the rotational driving force increased in speed is extracted from the connecting portion (driven means) 31a of the sun gear 31.
  • the first annular body 60 rotates at a rotational speed considerably higher than the rotational speed of the rotary shaft 23.
  • the planetary gear mechanism 30E in the free rotation annular body type brake device 250 of the fifth modified example supports the ring gear 35 in a non-rotatable manner and connects the connecting portion 31a of the sun gear 31 to the rotating shaft 23 so that the sun gear 31 is driven to rotate.
  • the planetary carrier (driven means) 32 is rotatably supported on the rotary shaft 23 by a bearing 39. Then, the first annular body 60 is supported by the second connecting portion 31d connected to the rotating shaft 23 so that the first annular body 60 rotates at a rotational speed equal to the rotational speed of the rotating shaft 23. .
  • the brake device 300 of the third embodiment is the same as the brake device 20 of the second embodiment described above.
  • the second free-rotating annular body 80 is added between the first annular body 60 and the second annular bodies 75 and 76.
  • the second free rotating annular body 80 has the same structure as the first free rotating annular body 50, and is substantially the same.
  • Four plate-like circular members 81, 82, 83, 84 of one dimension are stacked in the axial direction, and a cylindrical portion 81a is connected to the inner peripheral portion of one of the annular members 81.
  • the other annular members 82, 83, 84 are supported so as to be slidable and rotatable on the outer peripheral surface of the cylindrical portion 81a.
  • the setting of the hardness of the metal material forming each of the annular members 81, 82, 83, 84 is also the same as that of the first free rotating annular body 50.
  • the second free-rotating annular body 80 is composed of a plurality of plate-like circular annular members 81, 82, 83, 84 stacked in the axial direction, and is adjacent to the plate-like circular annular member. Since they slide with each other with a small difference in rotational speed, the amount of heat generated in the entire second free rotating annular body 80 is small. Further, since the plurality of plate-like circular annular members 81, 82, 83, 84 are also lubricated by the lubricating oil that lubricates the planetary gear mechanism 30, there is no possibility of overheating even if they are continuously operated for a long time.
  • the brake device 310 of the first modified example shown in FIG. 10 has the ring gear 35 connected to the rotary shaft 23 and rotates integrally with the brake device 300 of the third embodiment described above, and the planetary carrier 32 is free. To the point that rotates! It ’s different!
  • the second connecting portion (connecting means) 35c connected to the ring gear 35 is connected to the rotating shaft 23, and the ring gear 35 rotates integrally with the rotating shaft 23.
  • the planetary carrier 32 has a cylindrical portion 32a coaxial with the rotary shaft 23, and is supported by the bearing 37 so as to be rotatable with respect to the rotary shaft 23! RU
  • the continuous portion 35a of the ring gear 35 is provided on the outer peripheral surface of the cylindrical portion 32a of the planetary carrier 32 by the bearing 36, and the first and second free rotating annular bodies 50 and 80 are provided by the bearings 55 and 85, respectively. It is supported rotatably.
  • the second annular bodies 75, 76, the second free-rotating annular body 80, the first annular body 60 are operated by operating the lever 72 of the pushing means 70.
  • the first free-rotating annular body 50 is pressed against the planetary carrier 32 and frictionally slid against each other, thereby
  • the rotation of the rotary shaft 23 can be braked in exactly the same manner as the brake device 300 of the third embodiment.
  • the brake device 320 of the second modified example shown in FIG. 11 is different from the brake device 310 of the first modified example described above in that the support shaft 33 of the planetary gear 34 is fixed to the casing 20 and the sun gear 31 is connected to the rotating shaft 23. In contrast, it is free to rotate and has different points.
  • the sun gear 31 is provided with a cylindrical portion 31a coaxial with the rotary shaft 23, so that the rotary shaft 2 3 is supported rotatably by a bearing 38.
  • the sun gear 31 is provided with a vertical wall portion 31b having the same shape as the planetary carrier 32 in the brake device 310 of the first modified example.
  • the continuous portion 35a of the ring gear 35 is rotatable on the outer peripheral surface of the cylindrical portion 31a of the sun gear 31 by the bearing 36, and the first and second free-rotating annular bodies 50 and 80 by the bearings 55 and 85. It is supported.
  • the second annular bodies 75, 76, the second free-rotating annular body 80, the first annular body 60 are operated by operating the lever 72 of the pushing means 70.
  • the rotation of the rotary shaft 23 is exactly the same as the brake device 300 of the third embodiment. It is possible to brake.
  • the brake device 330 of the third modified example shown in FIG. 12 is different from the brake device 320 of the second modified example described above in that the sun gear 31 is connected to the rotary shaft 23 and rotates together, and the ring gear 35 is rotated.
  • the connecting part 35c connected to 23 is removed, but the point is different.
  • a continuous portion (connecting means) 31 c is connected to the sun gear 31, connected to the rotating shaft 23, and configured to rotate integrally with the rotating shaft 23.
  • the second annular body 75, 76, the second free rotating annular body 80, the first annular body 60, the first annular body 75 are operated by operating the lever 72 of the pushing means 70.
  • the rotating annular body 50 is pressed against the vertical wall portion 3 lb connected to the sun gear 31 and slid against each other, thereby braking the rotation of the rotary shaft 23 in exactly the same manner as the brake device 300 of the third embodiment. It can be done.
  • the brake device 340 of the fourth modification shown in FIG. 13 is different from the brake device 300 (FIG. 9) of the third embodiment described above in that the ring gear 35 is fixed to the casing 20 and the sun gear 31 is a rotating shaft 23. It is different in that it can be freely rotated around.
  • the sun gear 31 is provided with a cylindrical portion 31a coaxial with the rotary shaft 23, so that the rotary shaft 2 3 is supported rotatably by a bearing 38.
  • a thick circular plate-shaped annular portion 32 a that is coaxially adjacent to the first annular body 60 is fixed to the support shaft 33 of the planetary gear 34.
  • a continuous portion 35 d is connected to the ring gear 35 and connected to the casing 20.
  • the second annular bodies 75 and 76, the second free rotating annular body 80, and the first annular body 60 are operated by operating the lever 72 of the pushing means 70.
  • the first free-rotating annular body 50 is pressed against the annular portion 32a connected to the support shaft 33 of the planetary gear 34 and is slid relative to each other, so that the rotational shaft is exactly the same as the brake device 300 of the third embodiment. 23 rotations can be braked.
  • the brake device 350 of the fifth modified example shown in FIG. 14 is different from the brake device 340 of the fourth modified example described above in that the sun gear 31 is connected to the rotating shaft 23 and rotates integrally, and the planetary carrier 32 is rotated. It is configured so that it can rotate freely around 23!
  • the planetary carrier 32 is provided with a cylindrical portion 32 b coaxial with the rotary shaft 23 and is rotatably supported by the bearing 39 with respect to the rotary shaft 23.
  • a cylindrical circular portion 32b coaxial with the rotary shaft 23 is connected to the thick circular plate portion 32a connected to the support shaft 33 of the planetary gear 34, and is rotatably supported by the bearing 32c with respect to the rotary shaft 23.
  • first annular body 60 is supported by a vertical wall portion 31e that rotates integrally with the rotating shaft 23, and is displaced toward the first free rotating annular body 50 while rotating integrally with the rotating shaft 23. It has become possible to do.
  • the vertical wall portion 31e is provided with a cylindrical portion 31f coaxial with the rotary shaft 23, and the second free-rotating annular body 80 is rotatably supported on the outer peripheral surface via a bearing 85. .
  • the second annular bodies 75 and 76, the second free-rotating annular body 80, and the first annular body 60 are operated by operating the lever 72 of the pushing means 70.
  • the first free rotating annular body 50 is pressed against the annular portion 32a connected to the support shaft 33 of the planetary gear 34, By sliding each other, the rotation of the rotary shaft 23 can be braked in the same manner as the brake device 300 of the third embodiment.
  • the in-wheel motor disposed inside the drive wheel of the electric vehicle is a combination of the electric motor 11 and the planetary gear mechanism 12 as a speed reducer as shown in FIG.
  • the in-wheel motor itself does not incorporate a mechanical mechanism that brakes the rotation of the drive wheels, and it is necessary to use the disk brake or drum brake 13 conventionally used in automobiles as it is.
  • the drive wheels driven by the in-wheel motor of an electric vehicle including the weight of the wheel 14 and the tire 15, greatly increase their “unsprung weight”, so that the driving comfort is deteriorated.
  • the following ability to the road surface was reduced, leading to a decrease in driving performance.
  • the brake device 400 of the fourth embodiment shown in FIG. 20 is incorporated in such an in-wheel motor.
  • the brake device 400 has substantially the same structure as the brake device 350 shown in FIG. 14 except that the pushing means 70 is replaced with the electric servo S.
  • the rotational driving force output from the electric motor 11 can be decelerated by the planetary gear mechanism 30 and transmitted to the wheel 14, and the rotation of the wheel 14 can be braked when the electric vehicle travels inertially. it can.
  • the hydraulic piping necessary for the operation becomes unnecessary, so that the overall structure of the brake system can be simplified.
  • the brake device 400 is operated using the electric servo S, it is possible to simplify the body structure of the electric vehicle by simply arranging the electric wiring.
  • the brake device 400 of the fourth embodiment can be used in combination with an electric motor for driving a bullet train that is not limited to an electric vehicle.
  • the traveling speed becomes about 20 kmZh or less, and the wheel axle is braked by the disc brake device.
  • the weight of the chassis can be greatly reduced.
  • the brake device 500 of the fifth embodiment is the same as the brake device 30 of the third embodiment described above.
  • the connecting portion 32a of the planetary carrier (connecting means) 32 is extended to form a flange portion 32c extending in the radial direction, and the third annular body 90 is connected to the axis of the rotary shaft 23 by the flange portion 32c.
  • the third annular body 90 is rotated integrally with the rotary shaft 23 by supporting it so as to be displaceable in the direction!
  • the third free-rotating annular body 80 has substantially the same structure as the first annular body 60, and is slidable in the axial direction through the flange portion 32c of the planetary carrier 32.
  • annular member 504 On the outer peripheral surface of the cylindrically connected portion 32d of the planetary carrier 32, a single annular member 504 is supported so as to be slidably rotatable, and the second annular members 75, 76 and the third annular member 504 are supported. Annulus 90 and Will be able to slide smoothly.
  • the free rotating annular body brake device 500 of the fifth embodiment is configured to follow the third annular body 90 with respect to the above-described free rotating annular body brake device 300 of the third embodiment.
  • a friction sliding surface is additionally provided between the fixing means 22 and the connecting means 32c and between the connecting means 32c and the driven means 35a.
  • the brake device 510 of the first modified example shown in FIG. 22 is obtained by adding a third annular body 90 to the free rotating annular brake device 310 shown in FIG.
  • the connecting portion 32a of the planetary carrier (driven means) 32 is extended to form a radially extending flange portion 32c, and a plurality of support shafts 501 of the third annular body 90 are formed on the flange portion 32c. Is inserted so as to be displaceable in the axial direction of the rotary shaft 23 so that the third annular body 90 rotates integrally with the planetary carrier 32.
  • the planetary gear mechanism 30A acts as a speed reduction mechanism, so that the rotational speed of the planetary carrier (driven means) 32 is lower than the rotational speed of the rotating shaft 23.
  • a brake device 520 of the second modified example shown in FIG. 23 is obtained by adding a third annular body 90 to the free rotating annular brake device 320 shown in FIG.
  • the connecting portion 31a of the sun gear (driven means) 31 is extended to form a flange portion 31c extending in the radial direction, and the plurality of support shafts 501 of the third annular body 90 are rotated on the flange portion 31c.
  • the third annular body 90 is inserted so as to be displaceable in the axial direction of the shaft 23 so that the third annular body 90 rotates together with the sun gear 31.
  • the lid body 22 of the casing 20 and the flange portion 31c of the sun gear 31 are frictionally engaged, the flange portion 31c of the sun gear 31 and the connecting portion 35a of the ring gear 35 are frictionally engaged, and the connecting portion 35a of the ring gear 35 is also provided.
  • the connecting portion 31b of the sun gear 31 are frictionally engaged, so that the rotation of the rotary shaft 23 can be braked more strongly than the brake device 320 shown in FIG.
  • the planetary gear mechanism 30B acts as a reverse speed increasing mechanism, the rotational speed of the sun gear (driven means) 31 is higher than the rotational speed of the rotary shaft 23.
  • a brake device 530 of the third modified example shown in FIG. 24 is obtained by adding a third annular body 90 to the free rotating annular brake device 330 shown in FIG.
  • a connecting portion 31a of the sun gear (driven means) 31 is extended between the first free-rotating annular body 50 and the planetary gear 34 to form a flange portion 31c extending in the radial direction.
  • a plurality of support shafts 501 of the third annular body 90 are inserted into the flange portion 31c so as to be displaceable in the axial direction of the rotary shaft 23, so that the third annular body 90 rotates together with the sun gear 31. .
  • a support shaft 33 that rotatably supports the planetary gear 34 is directly fixed to the bottom wall 22 of the casing 20, and an annular member 33a corresponding to the planetary carrier 32 is fixed to the end of the support shaft 33.
  • annular members 505 and 506 similar to the annular members 52 and 53 in the first free-rotating annular body 50 are interposed between the annular member 33a and the third annular body 90.
  • the lid 22 of the casing 20 and the connecting portion 35a of the ring gear 35 are frictionally engaged, and the connecting portion 35a of the ring gear 35 and the flange portion 31c of the sun gear 31 are frictionally engaged, and the flange portion 31c of the sun gear 31 is also provided.
  • the bottom wall 22 of the casing 20 are frictionally engaged, so that the rotation of the rotary shaft 23 can be braked more strongly than the brake device 330 shown in FIG. Can do.
  • the relative rotation between the second free-rotating annular body 80 supported so as to rotate integrally with the ring gear 35 and the second annular bodies 75 and 76 supported by the casing (fixing means) 20 is achieved. Since the number is lower than that in the brake device 500 of the fifth embodiment described above, when the two annular bodies are brought into contact with each other, the third annular body 90 is slowly decelerated and the braking of the rotating shaft 23 is performed.
  • the property can be mild.
  • the relative rotational speed between the third annular body 90 supported so as to rotate integrally with the connecting portion 31c of the sun gear 31 and the casing (fixing means) 20 is the same as the brake according to the fifth embodiment described above. U, etc. in the device 500.
  • the braking characteristic of the rotating shaft 23 can be made gentle.
  • the brake device 540 of the fourth modified example shown in FIG. 25 is obtained by adding a third annular body 90 to the free rotating annular brake device 340 shown in FIG.
  • the support shaft 541 that rotatably supports the planetary gear 34 passes through the planetary carrier 32 so that it can be displaced in the axial direction of the rotation shaft 23, and the first free shaft 541
  • An annular member 542 is secured to the end of the rotating annular body 50, and an annular member 543 is secured to the opposite end, so that the third annular body 90 rotates according to the planetary carrier 32. Rotate together with shaft 23.
  • annular members 544 and 545 similar to the annular members 52 and 53 in the first free-rotating annular body 50 are interposed between the annular member 543 and the bottom wall 21 of the casing 20.
  • the third annular body 90 rotates integrally with the planetary carrier 32, and thus the rotating shaft 23. Therefore, the third annular body 90 is located between the third annular body 90 and the side wall (fixing means) 21 of the casing 20.
  • the relative number of rotations is equal to the number of rotations of the rotary shaft 23.
  • the relative rotational speed between the third annular body 90 and the lid (fixing means) 22 of the casing 20 is equal to the rotational speed of the rotary shaft 23. Equal.
  • the planetary gear mechanism 30D in the fourth modification acts as a speed increasing mechanism, the rotational speed of the sun gear (driven means) 31 is considerably higher than the rotational speed of the rotating shaft 23. Thereby, the relative rotational speed between the first annular body 60 supported so as to rotate integrally with the sun gear 31 and the lid body (fixing means) 22 of the casing 20 is also high.
  • the planetary gear mechanism 30 in the brake device 500 of the fifth embodiment described above also acts as a speed increasing mechanism, the rotational speed of the ring gear 35 is higher than the rotational speed of the rotary shaft 23.
  • the first annular body 60 that rotates integrally with the ring gear 35 rotates relative to the planetary carrier 32 that rotates integrally with the rotating shaft 23, and its relative rotational speed is so high! / ,.
  • the braking characteristics of the rotating shaft 23 can be made more sensitive to the braking device 500 of the fifth embodiment.
  • a brake device 550 of the fifth modification shown in FIG. 26 is obtained by adding a third annular body 90 to the free-rotating annular body-type brake device 350 shown in FIG.
  • the support shaft 541 that rotatably supports the planetary gear 34 passes through the planetary carrier 32 so that it can be displaced in the axial direction of the rotation shaft 23, and the first free rotation of the support shaft 5 41
  • An annular member 542 is fixed to the end on the rotating annular body 50 side, and an annular member 543 is fixed to the end on the opposite side, so that the third annular body 90 is aligned with the planetary carrier 32. I try to rotate the body.
  • annular members 544 and 545 similar to the annular members 52 and 53 in the first free-rotating annular body 50 are interposed between the annular member 543 and the bottom wall 21 of the casing 20.
  • the planetary gear mechanism 30E of the fifth modified example acts as a speed reduction mechanism, so that the third annular body 90 that rotates integrally with the planetary carrier 32 and the side wall (fixing means) 21 of the casing 20 The relative rotational speed in between is considerably lower than the rotational speed of the rotary shaft 23.
  • the relative rotational speed between the first annular body 60 that rotates integrally with the flange portion 31c of the sun gear 31 and the lid body (fixing means) 22 of the casing 20 is equal to the rotational speed of the rotary shaft 23.
  • the relative rotational speed between the third annular body 90 and the side wall (fixing means) 21 of the casing 20 is the rotation of the rotating shaft 23. Is equal to the number. Further, the relative rotational speed between the first annular body 60 that rotates integrally with the flange portion 31 c of the sun gear 31 and the lid body (fixing means) 22 of the casing 20 is considerably higher than the rotational speed of the rotary shaft 23.
  • the braking characteristic of the rotating shaft 23 can be made gentler than that of the brake device 540 of the fourth modified example.
  • the free rotating annular brake device of the present invention changes the configuration of the planetary gear mechanism and the arrangement of the annular members.
  • the braking characteristics when braking the rotation of the rotary shaft 23 can be freely changed.
  • the brake device 600 of the sixth embodiment is different from the brake device 500 of the fifth embodiment described above in clutch means. 601 and urging means 602 are added.
  • the clutch means 601 is interposed between the rotary shaft 23 and the planetary carrier 32, and connects and disconnects the transmission of the rotational driving force from the rotary shaft 23 to the planetary carrier (connecting means) 32. Have the ability.
  • the clutch 601 is disengaged until the signal indicating the braking of the rotation of the rotating shaft 23 is obtained, and the rotating shaft 23 and the planetary carrier 32 are disconnected.
  • the connection between the rotating shaft 23 and the planetary gear mechanism 30 is cut off, so that the planetary gear mechanism 30 does not act as a rotating inertial mass and does not hinder the increase or decrease in the rotational speed of the rotating shaft 23, and The friction loss inside the gear mechanism 30 is not applied to the rotating shaft 23.
  • the clutch means 601 is operated to connect the rotating shaft 23 and the planetary gear mechanism 30. It will operate as a brake device.
  • the biasing means 602 includes the second annular bodies 75 and 76, the third annular body 90, the second free rotating annular body 90, the first annular body 60, and the first free rotating annular body. These annular bodies are integrally biased in the axial direction of the rotary shaft 23 so that the bodies 50 are kept in contact with each other.
  • the free-rotating annular body brake devices of the first to sixth embodiments described above are all planetary.
  • a gear mechanism 30 was used.
  • the free rotating annular brake device 700 of the seventh embodiment uses a rotation transmission mechanism having a structure in which a plurality of spur gears or a plurality of helical gears are combined.
  • the brake device 700 of the seventh embodiment includes a rotating shaft 702 that is rotatably supported by a stationary portion 701, and a disc-like shape that rotates integrally with the rotating shaft 702.
  • a first rotating body 703 and an annular fixed body 704 that is supported by a stationary portion 701 so as to be non-rotatable so as to be displaceable in the axial direction of the rotating shaft 702 are provided.
  • first rotating body 703 and the fixed body 704 each of which is supported by a rotating shaft 702 so as to be coaxial and relatively rotatable and further displaceable in the axial direction of the rotating shaft 702.
  • the second to fourth rotating bodies 705, 706, and 707 are interposed.
  • the second to fourth rotating bodies 705, 706, and 707 are formed as spur gears having spur teeth on the outer peripheral surface thereof.
  • the rotation transmission mechanism 710 is supported by a pair of left and right support arms 711 connected to the stationary part 701, and extends in parallel with the rotation shaft 702.
  • the rotation transmission mechanism 710 is rotatably fitted on the support shaft 712. And a cylindrical gear support 713.
  • the small-diameter spur gear 714 fixed to the end of the gear support 713 meshes with the large-diameter spur gear 715 that rotates integrally with the rotation shaft 702, and the rotation of the rotation shaft 702 is caused by the gear. It can be transmitted to the support 713.
  • first to third spur gears 716, 717, 718 having different outer diameters are fixed to the gear support 713, respectively, and the outer circumferences of the second to fourth rotating bodies 705, 706, 707 are fixed. It is carved on the surface so that it can rub with the flat teeth.
  • the second to fourth rotating bodies 705, 706, and 707 can be rotated by the rotation of the rotating shaft 702.
  • the outer diameters of the second to fourth rotating bodies 705, 706, and 707 and the outer diameters of the first to third spur gears 716, 717, and 718 are the same as the number of rotations of the second rotating body 705.
  • the rotational speed of the rotating body 703 is higher and the rotational speed of the third rotating body 706 is higher than the rotational speed of the second rotating body 705.
  • the rotational speed of the fourth rotating body 707 is set to be higher than the rotational speed of the third rotating body 706.
  • first to fourth rotating bodies 703, 705, 706, 707 and the fixed body 704 the first to fourth structures having the same structure as the first free rotating annular body 50 described above are provided. Freely rotating toroids 720, 721, 722, and 723 are respectively interspersed!
  • the fixed body 704 is provided with a pushing means 730 supported by the stationary portion 701 having a structure similar to that in the brake device 100 of the first embodiment, and is indicated by an arrow P. As described above, the fixed body 704 can be pushed in the axial direction by directing the first rotating body 703.
  • the first to fourth rotating bodies 703, 705, 706, 707, and the fixed body 7 04 Rotate relative to each other.
  • the rotational speed of the second rotating body 705 is higher than the rotational speed of the first rotating body 703 and the rotational speed of the third rotating body 706.
  • the second The rotation speed of the fourth rotation body 707 is set to be higher than the rotation speed of the third rotation body 706, which is higher than the rotation speed of the rotation body 705.
  • the rotational speed of the second rotating body 705 is lower than the rotational speed of the first rotating body 703.
  • the rotational speed of the third rotating body 706 is lower than the rotational speed of the second rotating body 705, and the rotational speed of the fourth rotating body 707 is lower than the rotational speed of the third rotating body 706.
  • the configuration of the rotation transmission mechanism 710 has been changed.
  • the freely rotating annular body type brake device 800 of the eighth embodiment shown in FIG. 30 has a structure in which a freely rotating annular body is combined with a disc brake device of an automobile.
  • the hub 803 that is rotatably supported by the unit bearing 802 held by the knuckle nosing 801 is driven to rotate by the drive shaft 804, and the disk-like portion 803 a
  • the brake disk 806 and the front wheel 14 are integrally supported by the installed hub bolt 805.
  • the disc brake device 810 is a carrier that is supported by the knuckle housing 801.
  • the free-rotating annular body 820 is externally fitted on both sides of the sliding portion 806a on the outer peripheral surface of the cylindrical portion 806b of the brake disc 806. It has a cylindrical member 821 made of a sintered metal isobaric material containing a lubricating material, for example, disulfurium molybdenum.
  • first and second annular bodies 822 and 823 formed in an annular shape from a steel plate or the like are rotatably fitted on the outer peripheral surfaces of these cylindrical members 821, respectively. It is held so that it can rotate relatively coaxially and smoothly. Further, in the vicinity of the cylindrical member 821, urging means 826 incorporating a coil spring or the like are arranged, respectively, and the first and second annular bodies are directed toward the sliding portion 806a of the brake disk 806. 822 and 823 are energized.
  • the first annular body 822 has one side surface which is a sliding surface which frictionally slides with the surface of each of the brake pads 813 and 814 of the disc brake device 810.
  • the first friction lining 822a is fixed.
  • the second annular body 823 has a side surface that is a sliding surface that frictionally slides with the first friction lining 822a, and the second friction lining 823a is fixed to the other side surface. Yes.
  • the friction coefficient of the brake pads 813, 814 is higher than that of the first friction lining 822a, and the friction coefficient of the first friction lining 822a is higher than that of the second friction lining 823a.
  • the constituent material of the material is selected.
  • Friction sliding occurs at a total of six contact portions between the friction sliding surface of the annular member 823 and between the second friction lining 823a and the sliding portion 806a of the brake disc 806.
  • frictional sliding occurs only in a total of two contact portions between the brake pads 813 and 814 and the sliding portion 806a of the brake disc 806.
  • the brake device 800 of the eighth embodiment can obtain about three times the braking force.
  • the force with which the piston 812 of the disc brake device 810 presses the brake pad 814 is approximately 1Z3.
  • the first and second annular bodies 822, 823 are held so as to be rotatable relative to the brake disc 806, and the friction coefficient of the brake pads 813, 814 is the first friction lining.
  • First friction lining higher than that of 822a Since the coefficient of friction of 822a is higher than that of the second friction lining 823a, braking the rotation of the front wheel 14 by the disc brake device 810 causes the first and second annular bodies to Relative rotation occurs between 822 and 823.At this time, the relative rotational speeds between the brake disc 806, the first annular body 822, and the second annular body 823 are the brake pads 813, 814, the first and It can be changed by setting the friction coefficient of the second friction lining 822a, 823a.
  • the speed of the front wheel 14 of a vehicle traveling at a speed of 60 km / h is approximately 600 rpm.
  • the second annular body 823 The rotation speed can be set to be about 400 rotation Z minutes, and the rotation speed of the first annular body 822 can be set to about 200 rotation Z minutes.
  • the relative rotation of about 200 rotations Z is absorbed between the brake disk 806 and the second annular body 823, and the second annular body 823 is absorbed. Absorbs relative rotation of approximately 200 revolutions Z between the first annular member 822 and the first annular member 822, and absorbs approximately 200 revolutions Z of relative rotation between the first annular member 822 and the brake pads 813, 814. Yo Can be set.
  • the heat generation level is reduced to about 1Z9, so the number of friction sliding surfaces has increased three times. Even so, the amount of heat generated in the brake device 800 of the eighth embodiment can be reduced to about 1Z3, which is the heat generation level of a general disc brake device.
  • the total number of friction sliding portions is three times that of a general disc brake device. Therefore, the pressing force by the piston 814 of the disc brake device 810 is generally 1Z3.
  • the heat generation level in the brake device 800 of the eighth embodiment is further reduced by the amount required to reduce the pressing force by the piston 814.
  • the first and second annular bodies 822 which are rotatable relative to the brake disk 806 between the brake disk 806 and the brake pads 813, 814, are provided.
  • 823 By installing 823, if the total number of friction sliding surfaces can be increased and high braking power can be obtained, the relative rotational speed of each friction sliding surface with force will be reduced, and heat generated by braking will be generated.
  • the present invention provides an excellent operational effect that cannot be obtained with conventional disk brake devices.
  • the level of heat generated due to braking of the rotation of the front wheels 14 is significantly lower than that of a general disc brake device.
  • the brake disk 806 does not need to be a “ventilated disk”, and can be a “solid disk” as shown in FIG.
  • the disc brake device in the existing vehicle can be easily replaced with the brake device 800 of the eighth embodiment.
  • the free-rotating annular bodies 820 and 870 can be held perpendicular to the rotation axis, and the occurrence of brake judder due to the inclination can be reliably prevented.
  • the force of the free rotating annular body 820 having the two annular bodies 822, 823 depends on the required braking force, the rotational speed of the wheel, and the heat generation level. Needless to say, the number of annular bodies can be increased or decreased.
  • annular member without the friction linings 822a, 823a can be used.
  • the free rotating annular body in this case is the free rotating annular body 50 in each of the embodiments described above.
  • FIG. 32 Next, a modification of the brake device of the eighth embodiment will be described with reference to FIGS. 32 and 33.
  • the free-rotating annular body brake device 850 shown in Fig. 32 has a structure in which a free-rotating annular body is combined with a disc brake device for braking the rotation of the wheels of the railway vehicle.
  • a brake disc 853, 854 force S bolts and nuts 855 are integrally fixed to both sides of a wheel 852 that is externally fitted to the axle 851.
  • the caliper of the disc brake device 860 fixed to the carriage frame has a pair of arms 861, 862, and the piston 863 provided on one arm 861 and the other arm 862 respectively. Brake pads 864, 865 are installed. Then, between the brake disks 853 and 854 and the brake nodes 864 and 865, free-rotating annular bodies 870 are respectively inserted. [0219]
  • the free rotating annular body 870 is made of a self-lubricating material such as molybdenum disulfide, which is fixed coaxially to the wheel 852 by bolts and nuts 855 as shown in an enlarged view in FIG. It has an annular support member 871 made of sintered metal or the like.
  • the inner peripheral surfaces of the first and second annular bodies 872, 873 formed in an annular shape from a steel plate or the like are rotatably fitted on the outer peripheral surface of the annular support member 871, respectively, and the brake disks 853, It is held coaxially and smoothly so that it can rotate relative to the 854. Further, biasing means 874 incorporating a coil spring or the like are disposed at the tip portion of the annular support member 871, and the first and second annular bodies 872, 873 are attached to the brake discs 853, 854 by force. Each is energized.
  • the first annular body 872 has a sliding surface that frictionally slides with the surface of each of the brake pads 864 and 865 of the disc brake device 860 on the other side surface.
  • the first friction lining 872a is secured.
  • the second annular body 873 has a sliding surface that frictionally slides on one side surface with the first friction lining 872a, and the second friction lining 873a is fixed to the other side surface. Yes.
  • the constituent materials of the brake pads 864 and 865 are made so that the friction coefficient of the first friction lining 872a is higher than that of the first friction lining 872a and higher than that of the second friction lining 873a. Is selected.
  • the rotation of the wheel 852 can be reliably braked with a small calorific value.
  • each annular body can be pushed using a force electric servo or hydraulic servo that has a structure that activates the brake.
  • FR front engine rear drive
  • 4WD four-wheel drive
  • the brake devices 800 and 850 of the eighth embodiment are not limited to automobiles and railway vehicles, but can be used to brake the rotation of wheels of other transportations such as aircraft.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)
  • Retarders (AREA)

Abstract

 交通機関の車輪や工作機械の回転軸等の回転部分と静止部分との間に自由回転環状体を介装することにより、各摩擦摺動部分における相対回転数を低下させ、制動に伴う発熱量を低減させつつ制動力を高める。変速機等に内蔵されているリングギヤ35とプラネタリキャリヤ32との間に第1の自由回転環状体50および第2の環状体60を介装し、押動手段70によってこれらを押動して摩擦係合させることにより、回転軸23の回転を制動可能な自由回転環状体型ブレーキ装置を構成することができる。

Description

明 細 書
自由回転環状体型ブレーキ装置
技術分野
[0001] 本発明は、各種交通機関の車輪や工作機械等における回転軸の回転を制動する ための自由回転環状体型ブレーキ装置に関し、より詳しくは、遊星歯車機構と組み 合わせることによりその適用可能範囲をさらに拡げるとともに、部品点数の増加およ び既存の機械の改造を最小限に抑え、さらには車輪や回転軸の回転を滑らかにか つ少ない発熱量で制動可能とする技術に関する。
背景技術
[0002] 本願発明の発明者らは、自動車や鉄道車両等の各種交通機関および工作機械等 における回転軸の回転を制動するための新規な構造のブレーキ装置を開発し、先に 出願している(下記、特許文献 1, 2を参照)。
[0003] このブレーキ装置の構造にっ ヽて図 34を参照しつつ概説すると、回転軸 1には、そ の軸線方向にスライド自在な第 1の回転体 2がー体に回転するように支持されて 、る また、回転軸 1に固設されて一体に回転する第 1歯車 3には、支持腕 4に支持され た支軸 5上で回転自在な第 2歯車 6と嚙み合って 、る。
そして、支軸 5上で第 2歯車 6と一体に回転する第 3歯車 7は、回転軸 1上に相対回 転自在に支持されて 、る第 4歯車 8と嚙み合って 、る。
さらに、第 4歯車 8には一体に回転する第 2の回転体 9が連設され、回転軸 1上で回 転自在となっている。
そして、第 1の回転体 2の回転数 N1は回転軸 1の回転数に等しいが、第 2の回転体 9の回転数 N2は、第 1〜第 4歯車 3, 6, 7, 8における減速作用あるいは増速作用に よって第 1の回転体 2の回転数 N1とは異なっている。
[0004] このとき、図 34中に矢印 Pで示したように、第 1の回転体 2を第 2の回転体 9に向か つて軸線方向に押動し、その摩擦面 2aと第 2の回転体 9の摩擦面 9aとを摩擦接触さ せると、第 1および第 2の回転体 2, 9間に制動力が作用する。 この制動力は、第 1歯車 3と第 2歯車 6との間の相対回転を制動するように作用する そして、第 1歯車 3と第 2歯車 6との間の相対回転数がゼロになると、第 1歯車 3と第 2歯車 6とは一体化し、第 2歯車 6は回転軸 1の軸線回りに公転しょうとする。
ところが、第 2歯車 6は、静止部分である支持腕 4および支軸 5によって支持されて いるから、回転軸 1の軸線回りに公転することはできず、したがって回転軸 1は回転で きなくなって停止する。
すなわち、この先願に係るブレーキ装置は、静止部分である支持腕 4および支軸 5 によって回転軸 1の回転を制動する構造である。
そして、その制動力の大きさは、第 1および第 2の回転体 2, 9間に生じる摩擦力を 増減することによって制御することができる。
[0005] さらに、第 1〜第 4歯車 3, 6, 7, 8における減速比あるいは増速比を調整することに より、例えば第 1の回転体 2が lOOOrpmで回転しているときに、第 2の回転体 9の回 転数を 1 lOOrpmとすることができる。
このとき、 lOOOrpmで回転している第 1の回転体 2と静止部分である支持腕 4ある いは支軸 5との間に制動力を作用させると、 1 OOOrpmの回転数差を吸収しなければ ならな 、が、 lOOOrpmで回転して!/、る第 1の回転体 2と 1 lOOrpmで回転して!/、る第 2の回転体 9との間に制動力を作用させると、 lOOrpmの回転数差を吸収すれば良く 、制動力を作用させる際に生じる衝撃力および発熱量の大きさは後者の方が大幅に 小さい。
すなわち、この先願に係るブレーキ装置は、制動時に発生する衝撃力を緩和できる ば力りでなぐ摩擦に伴う発熱を抑制することもできるのである。
[0006] 特許文献 1 :特開 2003— 222167号公報
特許文献 2:特開 2003— 222166号公報
発明の開示
発明が解決しょうとする課題
[0007] ところで、上述した先願に係るブレーキ装置は、回転軸 1の回転を制動するために 、第 1〜第 4の歯車 3, 6, 7, 8と、静止部分としての支持腕 4および支軸 5とを必要と している。
これに伴い、既存の交通機関や工作機械等にこのブレーキ装置を組み込もうとする と、構造の大幅な変更や部品点数の増加は避けられない。
[0008] そこで本発明の目的は、上述した先願に係るブレーキ装置をさらに改良し、既存の 交通機関や工作機械等にこのブレーキ装置を組み込むときに生じる部品点数の増 加や改造を最小限に抑えることができるとともに、構造が簡単で小型軽量かつ低コス トでありながら、優れた性能を有するブレーキ装置を提供することにある。
課題を解決するための手段
[0009] 上記の課題を解決するための請求項 1に記載した手段は、
遊星歯車機構 (30)と同軸に配設された回転軸(23)の回転を制動するためのブレ ーキ装置であって、
前記遊星歯車機構 (30)を構成するサンギヤ(31)、プラネタリギヤ(34)、リングギ ャ(35)のぅちの 、ずれ力 1つを回転不能に固定する固定手段(20)と、
前記サンギヤ(31)、プラネタリギヤ(34)、リングギヤ(35)のうち前記固定手段(20 )によって固定されて ヽな 、ちののうち 、ずれか一方(34)と前記回転軸(23)とを接 続して前記回転軸(23)によって回転駆動されるようにする接続手段(32)と、 前記サンギヤ(31)、プラネタリギヤ(34)、リングギヤ(35)のうち前記固定手段(20 )によって固定されて ヽな 、ちののうち 、ずれか他方(35)と一体に回転する従動手 段(35a)と、
前記回転軸(23)と同軸で前記回転軸(23)の軸線方向に変位自在に、かつ前記 回転軸(23)の回りに回転自在に配設された第 1の自由回転環状体(50)と、 前記回転軸(23)と同軸にかつ前記軸線方向に変位自在に支持されて前記接続 手段(32)および前記従動手段(35a)のうち 、ずれか一方と一体に回転する第 1の 環状体 (60)と、
前記固定手段(20)、前記接続手段(32)、前記従動手段(35a)のいずれかに向 かって前記第 1の環状体 (60)および前記第 1の自由回転環状体(50)を前記軸線 方向に一体に押動し、これらの環状体を互いに密着させて摩擦係合させる、前記固 定手段 (20)に支持された押動手段 (70)と、を備えることを特徴とする自由回転環状 体型ブレーキ装置(100, 200, 300, 500, 600)である。
[0010] すなわち、請求項 1に記載した自由回転環状体型ブレーキ装置においては、遊星 歯車機構(30)を構成するサンギヤ(31)、プラネタリギヤ(34)、リングギヤ(35)の 3 つの要素のうち、例えばサンギヤ(31)を固定手段(20)に固定して回転不能とすると 、残りの 2つの要素(34, 35)、したがって接続手段(32)と従動手段(35a)とが相対 回転する。
そこで、第 1の自由回転環状体 (50)および第 1の環状体 (60)を用いて接続手段( 32)と従動手段 (35a)とを摩擦係合させ、その相対回転を制動すると、接続手段 (32 )および従動手段(35a)の固定手段(20)に対する相対回転を制動することができる から、接続手段(32)を介して回転軸(23)の回転を制動することができる。
言い換えると、請求項 1に記載したブレーキ装置においては、遊星歯車機構の相 対回転する 2つの要素 (接続手段および従動手段)と第 1の自由回転環状体 (50)お よび第 1の環状体 (60)とが、図 34に示した先願に係るブレーキ装置における第 1お よび第 2の回転体 2, 9に相当し、かつ固定手段(20)が支持腕 4および支軸 5に相当 している。
これにより、各種交通機関や工作機械等の動力伝達系に設けられている既存の遊 星歯車機構をそのまま活用しつつ、第 1の自由回転環状体 (50)、第 1の環状体 (60 )、および押動手段(70)とを追加することにより、その回転軸(23)を制動するブレー キ装置を構成することができる。
[0011] また、回転軸(23)とその周囲の静止部分 (20)との間で制動をかけると、相対回転 数の大きい部分を制動することになり、制動に伴って発生する衝撃力や発熱量も大 きくなる。
そして、発熱に伴って摩擦係数が変動するため、制動力の大きさを一定に保つこと が困難となる。
これに対して、請求項 1に記載したブレーキ装置は、遊星歯車機構(30)において 相対回転数の小さい 2つの回転要素間で制動をかけることによって回転軸(23)を制 動するものであるから、制動に伴って発生する衝撃力や発熱量を小さくすることがで きる。 これにより、摩擦係数の変動を抑制して安定した制動力を得ることができるば力りで なぐ発熱に伴うフェード現象の発生もなぐ長時間にわたって一定な制動力を得るこ とがでさる。
さらに、第 1の自由回転環状体 (50)および第 1の環状体 (60)の摩耗を最小限に抑 えることができる力ゝら、長 、寿命時間を確保することもできる。
[0012] また、請求項 2に記載した手段は、請求項 1に記載した自由回転環状体型ブレーキ 装置に対し、
前記回転軸(23)と同軸にかつ前記の軸線方向に変位自在に前記押動手段(70) に支持された第 2の環状体 (75, 76)を追加するとともに、
前記押動手段 (70)が、前記第 1の自由回転環状体 (50)、前記第 1の環状体 (60) および前記第 2の環状体(75, 76)を前記軸線方向に一体に押動し、互いに密着さ せて摩擦係合させるように構成したことを特徴として 、る。
[0013] すなわち、請求項 2に記載した自由回転環状体型ブレーキ装置(100, 200, 300 , 500, 600)は、第 2の環状体(75, 76)を用いて、接続手段(32)および従動手段( 35a)のうちの ヽずれか一方(35a)と固定手段(20)とを摩擦係合させるものであるか ら、接続手段(32)および従動手段(35a)と固定手段(20)との間の相対回転、した 力 Sつて回転軸(23)の回転をさらに強力に制動することができる。
[0014] また、請求項 3に記載した手段は、請求項 2に記載した自由回転環状体型ブレーキ 装置に対し、
前記回転軸(23)と同軸で前記軸線方向に変位自在に、かつ前記回転軸(23)の 回りに回転自在に、前記第 2の環状体(75, 76)と前記第 1の環状体 (60)との間に 配設された第 2の自由回転環状体 (80)を追加するとともに、
前記押動手段 (70)が、前記第 2の環状体 (75, 76)、前記第 2の自由回転環状体 (80)、前記第 1の環状体 (60)、および前記第 1の自由回転環状体(50)を前記軸線 方向に一体に押動し、互いに密着させて摩擦係合させるように構成したことを特徴と している。
[0015] すなわち、請求項 3に記載したブレーキ装置(300)は、第 1の環状体 (60)と第 2の 環状体(75 , 76)との間に第 2の自由回転環状体 (80)を配設したものである。 そして、この第 2の自由回転環状体 (80)は、第 1の環状体 (60)と第 2の環状体(75 , 76)との間、したがって接続手段(32)および従動手段(35a)のうちのいずれか一 方(35a)と固定手段(20)との間にお 、て自由に相対回転することができるから、接 続手段および従動手段のうちの 、ずれか一方(35a)と固定手段(20)との間の相対 回転速度差が大き 、場合でも、この相対回転速度差を滑らかに吸収することができ る。
さらに、第 2の自由回転環状体 (80)を介装したことによって第 1の環状体 (60)と第 2の環状体 (75, 76)との間に摩擦摺動面が追加されるから、接続手段および従動手 段のうちのいずれか一方(35a)と固定手段(20)との間における摩擦制動力が増加 することになり、接続手段(32)および従動手段(35a)の固定手段(20)に対する相 対回転、したがって回転軸(23)の回転をより一層強力に制動することができる。
[0016] また、請求項 4に記載した手段は、請求項 3に記載した自由回転環状体型ブレーキ 装置に対し、
前記回転軸(23)と同軸にかつ前記軸線方向に変位自在に支持されて、前記接続 手段(32)および前記従動手段(35a)のうち 、ずれか他方(32)と一体に回転する、 前記第 1の自由回転環状体(50)あるいは前記第 2の自由回転環状体 (80)と前記固 定手段 (20)との間に配設された第 3の環状体 (90)を追加するとともに、
前記押動手段 (70)が、前記第 2の環状体 (75, 76)、前記第 3の環状体 (90)、前 記第 2の自由回転環状体 (80)、前記第 1の環状体 (60)、および前記第 1の自由回 転環状体(50)を前記軸線方向に一体に押動し、互いに密着させて摩擦係合させる ように構成したことを特徴とする。
[0017] すなわち、請求項 4に記載したブレーキ装置(500)は、接続手段(32)および従動 手段(35a)のうち 、ずれか他方と一体に回転する第 3の環状体(90)を追加したもの である。
これにより、第 1の自由回転環状体(50)あるいは第 2の自由回転環状体 (80)と固 定手段 (20)の間に摩擦摺動面が追加されるから、接続手段および従動手段のうち のいずれか他方(32)と固定手段(20)との間における摩擦制動力が増加することに なり、接続手段(32)および従動手段(35a)の固定手段(20)に対する相対回転、し たがって回転軸(23)の回転をさらに強力に制動することができる。
[0018] また、請求項 5に記載した手段は、請求項 1〜4のいずれかに記載した自由回転環 状体型ブレーキ装置において、前記第 1の自由回転環状体(50)が、前記軸線方向 に積層されて相互に摺動自在な複数の環状部材(51, 52, 53, 54)から構成されて いることを特徴とする。
[0019] すなわち、請求項 5【こ記載したブレーキ装置(100, 200, 300, 500, 600)〖こお!/ヽ ては、第 1の自由回転環状体(50)を構成する互いに積層された複数の環状部材の うち、隣接する環状部材同士が少ない回転速度差で相互に摺動することができる。 これにより、接続手段(32)と従動手段(35a)との間の回転速度差が大きい場合で も、第 1の自由回転環状体(50)の全体として、この大きな回転速度差を滑らかに吸 収することができる。
さらに、接続手段(32)、従動手段(35a)、および固定手段(20)の 、ずれか一つと 第 1の環状体 (60)との間に多くの摩擦摺動面が追加されるから、接続手段 (32)、従 動手段(35a)、固定手段(20)の間における摩擦制動力が増加することになり、回転 軸(23)の回転をより強力に制動することができる。
[0020] また、請求項 6に記載した手段は、請求項 3〜5の 、ずれかに記載した自由回転環 状体型ブレーキ装置において、前記第 2の自由回転環状体 (80)が、前記軸線方向 に積層されて相互に摺動自在な複数の環状部材 (81, 82, 83, 84, 85)力 構成さ れていることを特徴とする。
[0021] すなわち、請求項 6に記載したブレーキ装置(300, 500, 600)においては、第 1の 環状体 (60)と第 2の環状体(75, 76)との間に、回転軸(23)の軸線方向に積層され て相互に摺動自在な複数の環状部材 (81, 82, 83, 84 :全体で見れば第 2の自由 回転環状体 (80)力介装されることになる。
そして、積層された複数の環状部材は、隣接する環状部材同士が少ない回転速度 差で相互に摺動することができる。
これにより、接続手段および従動手段のうちのいずれか一方(35a)と固定手段(20 )との間における回転速度差が大きい場合でも、第 2の自由回転環状体 (80)の全体 として、この大きな回転速度差を滑らかに吸収することができる。 さらに、第 1の環状体 (60)と第 2の環状体 (75, 76)との間に多くの摩擦摺動面が 追加されるから、接続手段(32)、従動手段(35a)、固定手段(20)の間における摩 擦制動力が増加することになり、回転軸(23)の回転をさらに強力に制動することがで きる。
[0022] また、請求項 7に記載した手段は、請求項 5または 6に記載した自由回転環状体型 ブレーキ装置において、
前記複数の環状部材の 1つ(51, 81)が前記回転軸(23)と同軸な円筒部分(51a
, 81a)を有しており、かつ他の環状部材(52, 53, 54, 82, 83, 84)が前記円筒部 分(51a, 81a)の外周面に摺動自在に外嵌されて ヽることを特徴とする。
なお、前記円筒部分は、回転軸(23)、接続手段(32)、従動手段(35a)、あるいは 固定手段(20)に対し、軸受(55, 85)を用いて回転自在に支持することができる。
[0023] すなわち、請求項 7【こ記載したブレーキ装置(100, 200, 300, 500, 600)【こよれ ば、第 1の自由回転環状体 (50)および第 2の自由回転環状体 (80)を構成する複数 の環状部材のそれぞれを、簡単な構造でかつ確実に、回転自在に支持することがで きる。
[0024] また、請求項 8に記載した手段は、請求項 1乃至 7のいずれかに記載した自由回転 環状体型ブレーキ装置において、
前記遊星歯車機構 (30)が、前記サンギヤ(31)を前記固定手段に固定し、前記プ ラネタリギヤ(34)を前記回転軸(23)によって回転駆動して、前記リングギヤ(35)か ら増速された回転駆動力を取り出すように構成されて ヽることを特徴とする。
[0025] すなわち、請求項 8に記載したブレーキ装置(100)は、増速作用を行う遊星歯車 機構、例えば自動車の変速機に設けられて 、るオーバードライブ装置に並設するも のである。
これにより、既存のオーバードライブ装置をそのまま流用して本発明のブレーキ装 置を構成することができるから、自動車の変速機等を大幅に改造する必要なしに組 み込むことが可能となり低コストなブレーキ装置とすることができる。
[0026] また、請求項 9に記載した手段は、請求項 8に記載した自由回転環状体型ブレーキ 装置に対し、 前記回転駆動力を出力する出力軸 (24)と、
前記回転軸(23)を前記出力軸(24)に接続した状態と前記リングギヤ(35)を前記 出力軸(24)に接続した状態とを選択的に切り換え可能な切換手段 (40)と、を追カロ したことを特徴としている。
[0027] すなわち、請求項 9に記載したブレーキ装置(100)は、回転軸(23)に出力軸(24) を接続した直結状態と、遊星歯車機構のリングギヤ (35)に出力軸 (24)を接続したォ 一バードライブ状態とを切り換えることができるように構成されて 、るから、そのまま自 動車の変速機に組み込んでオーバードライブ装置として用いることができる。
また、直結状態およびオーバードライブ状態のいずれにおいても、回転軸(23)の 回転を確実に制動することができる。
[0028] また、請求項 10に記載した手段は、請求項 9に記載した自由回転環状体型ブレー キ装置において、前記出力軸(24)が、自動車のプロペラシャフト(104)および終減 速機(105)を介して左右の駆動輪(106L, 106R)に接続されることを特徴としてい る。
[0029] すなわち、請求項 10に記載したブレーキ装置(100)においては、回転軸(23)の 回転に制動をかけることにより、自動車のプロペラシャフト(104)および終減速機(10 5)を介して左右の駆動輪(106L, 106R)の両方に同時にブレーキをかけることがで きる力ら、左右の駆動輪に個別にブレーキを設ける必要がない。
また、自動車の終減速機における減速比は 1 : 3〜1: 10程度であるから、回転軸の 回転にかける制動力が小さくとも、大きな制動力を左右の駆動輪に作用させることが できる。
さらに、終減速機(105)に組み込まれている差動歯車機構を介して左右の駆動輪 に等しい制動力を負荷することができるから、制動が片効きすることもなぐ走行安定 性を高めることができる。
[0030] また、請求項 11に記載した手段は、請求項 1〜7に記載した自由回転環状体型ブ レーキ装置において、前記遊星歯車機構 (30)が、電気自動車の駆動輪の内側に配 設されたインホイールモータ(11)の駆動出力を減速するための減速機構として構成 されていることを特徴とする。 [0031] すなわち、電気自動車の駆動輪の内側に配設されるインホイールモータ(11)は、 一般的に、電気モータと減速機としての遊星歯車機構(12)とを組み合わせたもので あるが、このインホイールモータ自体には駆動輪( 15)の回転を制動する機能はなく、 従来自動車に使用して 、るディスクブレーキある ヽはドラムブレーキ( 13)をそのまま 併用する必要がある。
このとき、本発明のブレーキ装置(400)をこのインホイールモータの遊星歯車機構 (30)に並設すると、インホイールモータ(11)によって駆動輪(15)の回転を制動でき ることになる力ら、ディスクブレーキあるいはドラムブレーキ(13)を不要とすることがで きる。
これに伴い、ディスクブレーキあるいはドラムブレーキの分の重量をなくすことができ るから、電気自動車のインホイールモータにおいて問題となっている「ばね下重量の 増カロ」の問題を大きく改善することができる。
[0032] また、請求項 12に記載した手段は、請求項 2乃至 11のいずれかに記載した自由回 転環状体型ブレーキ装置において、
前記第 1の環状体 (60)が、前記接続手段(32)および前記従動手段(35a)のうち 前記固定手段(20)に対する相対回転速度差が大き!/、方と一体に回転するように支 持されて!ヽることを特徴とする。
[0033] すなわち、遊星歯車機構(30)のリングギヤ(35)を回転不能に固定しつつ、回転軸
(23)によってプラネタリキヤリャ(32)を回転駆動し、サンギヤ(31)を従動回転させる と、サンギヤ(31)の回転数は回転軸(23)の回転数を大きく上回ることになり、遊星 歯車機構 (30)は増速機構として作用する。
同様に、遊星歯車機構 (30)のサンギヤ(31)を回転不能に固定しつつ、回転軸(2 3)によってプラネタリキヤリャ(32)を回転駆動し、リングギヤ(35)を従動回転させると 、リングギヤ(35)の回転数は回転軸(23)の回転数を上回ることになり、遊星歯車機 構 (30)は増速機構として作用する。
これにより、従動手段と固定手段との間の相対回転数は、回転軸(23)したがって 接続手段と固定手段との間の相対回転数よりも大幅に高くなる。
このとき、従動手段と一体に回転するように支持した第 1の環状体 (60)と固定手段 に支持されている第 2の環状体(75, 76)との間の相対回転数は力かなり高くなるか ら、両環状体を接触させると従動手段は急激に減速されることになり、回転軸(23)の 制動特性を敏感なものとすることができる。
したがって、この構造の自由回転環状体型ブレーキ装置(200, 240)は、例えばス ポーッ車両のように敏感なブレーキ特性を必要とする用途に適したものとなる。
[0034] また、請求項 13に記載した手段は、請求項 2乃至 11のいずれかに記載した自由回 転環状体型ブレーキ装置において、
前記第 1の環状体 (60)が、前記接続手段(32)および前記従動手段(35a)のうち 前記固定手段(20)に対する相対回転速度差が小さ!/、方と一体に回転するように支 持されて!ヽることを特徴とする。
[0035] すなわち、遊星歯車機構(30)のリングギヤ(35)を回転不能に固定しつつ、回転軸
(23)によってサンギヤ(31)を回転駆動し、プラネタリキヤリャ(32)を従動回転させる と、プラネタリキヤリャ(32)の回転数は回転軸(23)の回転数を大きく下回ることにな り、遊星歯車機構 (30)は減速機構として作用する。
同様に、遊星歯車機構 (30)のサンギヤ(31)を回転不能に固定しつつ、回転軸(2 3)によってリングギヤ(35)を回転駆動し、プラネタリキヤリャ(32)を従動回転させると 、プラネタリキヤリャ(32)の回転数は回転軸(23)の回転数を下回ることになり、遊星 歯車機構 (30)は減速機構として作用する。
これにより、プラネタリキヤリャ(32)したがって従動手段と固定手段との間の相対回 転数は、回転軸(23)したがって接続手段と固定手段との間の相対回転数よりも大幅 に低くなる。
このとき、従動手段と一体に回転するように支持した第 1の環状体 (60)と固定手段 に支持されている第 2の環状体(75, 76)との間の相対回転数はかなり小さくなるから 、両環状体を接触させると従動手段は緩やかに減速されることになり、回転軸(23)の 制動特性を穏やかなものとすることができる。
したがって、この構造のブレーキ装置 250は、鉄道車両のようにスムーズなブレー キ特性を必要とする用途に適したものとなる。
[0036] また、請求項 14に記載した手段は、請求項 1乃至 13のいずれかに記載した自由回 転環状体型ブレーキ装置に対し、
前記回転軸 (23)から前記接続手段 (32)への回転駆動力の伝達を断接する、前 記回転軸(23)と前記接続手段(32)との間に介装されたクラッチ(601)と、
このクラッチ(601)の作動を制御するクラッチ制御手段と、を追加するとともに、 前記クラッチ制御手段は、前記回転軸(23)の制動を表す信号が入力したときに前 記クラッチ (601)を作動させて前記回転軸(23)と前記接続手段(32)とを接続させる ように構成したことを特徴とする。
[0037] すなわち、請求項 14に記載した自由回転環状体型ブレーキ装置(600)において は、例えば車両の運転者がブレーキペダルを踏み込むことによって制動を表す信号 が得られるまでは、クラッチ(601)が切れており、回転軸(23)と接続手段(32)とは切 り離されている。
これにより、回転軸 (23)と遊星歯車機構 (30)との接続が断たれるから、遊星歯車 機構 (30)が回転慣性質量として作用して回転軸(23)の回転数の増減を妨げること 力 Sなぐかつ遊星歯車機構 (30)の内部の摩擦損失が回転軸に負荷されることもない これに対して、車両の運転者がブレーキペダルを踏み込むことによって回転軸(23 )の制動を表す信号が得られると、クラッチ (601)が作動して回転軸(23)と遊星歯車 機構 (30)を接続するから、ブレーキペダルの踏込操作にともなって押動手段(70) が作動するとことに伴い、本来のブレーキ装置として動作することになる。
[0038] また、請求項 15に記載した手段は、請求項 1乃至 14のいずれかに記載した自由回 転環状体型ブレーキ装置に対し、前記環状体が互いに接触した状態を維持するよう に前記環状体を前記軸線方向に一体に付勢する付勢手段を追加したことを特徴と する。
[0039] すなわち、請求項 15に記載したブレーキ装置(600)においては、付勢手段(602) の作用によって第 1および第 2の環状体や、第 1および第 2の自由回転環状体等が 互いに接触した状態に維持されるから、押動手段(70)を作動させると直ちにブレー キ作用が生じることになる。
なお、請求項 14に記載したクラッチ(601)を併用することにより、回転軸(23)と遊 星歯車機構 (30)との接続を断つことができるから、付勢手段が及ぼす付勢力によつ て各環状体の間にわずかに作用する摺動摩擦がブレーキ力として回転軸(23)に作 用することを確実に防止することができる。
[0040] また、請求項 16に記載した自由回転環状体型ブレーキ装置は、
静止部分(701)によって回転自在に支持された回転軸(702)と、
前記回転軸(702)と一体に回転する第 1の回転体(703)と、
前記回転軸(702)と同軸にかつ前記回転軸(702)の軸線方向に変位自在に、さ らに前記静止部分(701)によって回転不能に支持された固定体(704)と、
前記回転軸(702)に対して同軸にかつ相対回転自在に、さらに前記回転軸(702
)の軸線方向に変位自在に前記第 1の回転体( 703)と前記固定体( 704)との間に介 装された第 2および第 3の回転体(705, 706)と、
前記第 1〜第 3の回転体(703, 705, 706)と前記固定体(704)との間にそれぞれ 介装された第 1〜第 3の自由回転環状体 (720, 721, 722)と、
前記第 2および第 3の回転体 (705, 706)がそれぞれ前記第 1の回転体 (703)とは 異なる回転数で回転するように前記回転軸(702)の回転を前記第 2および第 3の回 転体(705, 706)にそれぞれ伝達する、前記静止部分(701)に支持された回転伝 達機構 (710)と、
前記第 1の回転体(703)および前記固定体(704)によって、前記第 2および第 3の 回転体(705, 706)および前記第 1〜第 3の自由回転環状体(720, 721, 722)を 一体に挟持するべぐ前記第 1の回転体 (703)および前記固定体 (704)の少なくと もいずれか一方を前記軸線方向に押動する、前記静止部分(20)に支持された押動 手段(730)と、
を備えることを特徴とする。
[0041] すなわち、請求項 16に記載した自由回転環状体型ブレーキ装置においては、回 転伝達機構(710)の作用によって、第 1〜第 3の回転体(703, 705, 706)および固 定体(704)を相対回転させることができる。
そして、押動手段(730)を作動させることにより、第 1の回転体 (703)と固定体 (70 4)によって第 2,第 3の回転体 (705, 706)および第 1〜第 3の自由回転環状体 (72 0, 721, 722)を一体に挟持し、各回転体と各自由回転環状体および固定体を摩擦 係合させることにより、回転軸(702)の回転を制動することができる。
このとき、回転しない固定体(704)と第 3の回転体(706)とが第 3の自由回転環状 体 (722)を間に挟んだ状態で互いに摩擦係合するので、固定体 (704)と第 3の回転 体(706)との間の相対回転数を調整することにより、回転軸(702)の回転を制動す るときのブレーキ特性を変化させることができる。
具体的に説明すると、固定体 (704)と第 3の回転体 (706)との間の相対回転数を 高く設定すると、両者の摩擦係合による第 3の回転体 (706)の回転数の低下が急激 なものとなる力ゝら、回転軸(702)の回転を制動するときのブレーキ特性を敏感なもの にできる。
これに対し、固定体 (704)と第 3の回転体 (706)との間の相対回転数を低く設定す ると、両者の摩擦係合による第 3の回転体(706)の回転数の低下が緩やかなものに なるから、回転軸(702)の回転を制動するときのブレーキ特性を穏やかなものにでき る。
[0042] また、請求項 17に記載した手段は、請求項 16に記載した自由回転環状体型ブレ ーキ装置において、
前記回転伝達機構 (710)が、前記第 2の回転体 (705)の回転数が前記第 1の回 転体 (703)の回転数よりも高ぐかつ前記第 3の回転体 (706)の回転数が前記第 2 の回転体(705)の回転数よりも高くなるように構成されて 、ることを特徴とする。
[0043] すなわち、請求項 17に記載した自由回転環状体型ブレーキ装置においては、固 定体 (704)と第 3の回転体 (706)との間の相対回転数を高く設定しながら、第 1の回 転体(703)と第 3の回転体(706)との間の相対回転を、第 2の回転体(705)、第 1お よび第 2の自由回転環状体(720, 721)の相対回転によって滑らかに吸収すること ができる。
これにより、摩擦係数の変動を抑制して安定した制動力を得ることができるば力りで なぐ発熱に伴うフェード現象の発生も少なく長時間にわたって一定な制動力を得る ことができ、さらには第 1〜第 3の回転体と第 1および第 2の自由回転環状体の寿命を 長くすることができる。 [0044] また、請求項 18に記載した手段は、請求項 16に記載した自由回転環状体型ブレ ーキ装置において、
前記回転伝達機構 (710)が、前記第 2の回転体 (705)の回転数が前記第 1の回 転体 (703)の回転数よりも低ぐかつ前記第 3の回転体 (706)の回転数が前記第 2 の回転体(705)の回転数よりも低くなるように構成されて 、ることを特徴とする。
[0045] すなわち、請求項 18に記載した自由回転環状体型ブレーキ装置においては、固 定体 (704)と第 3の回転体 (706)との間の相対回転数を低く設定しながら、第 1の回 転体(703)と第 3の回転体(706)との間の相対回転を、第 2の回転体(705)、第 1お よび第 2の自由回転環状体(720, 721)の相対回転によって滑らかに吸収すること ができる。
これにより、摩擦係数の変動を抑制して安定した制動力を得ることができるば力りで なぐ発熱に伴うフェード現象の発生も少なく長時間にわたって一定な制動力を得る ことができ、さらには第 1〜第 3の回転体と第 1および第 2の自由回転環状体の寿命を 長くすることができる。
[0046] また、請求項 19に記載した手段は、請求項 16乃至 18のいずれかに記載した自由 回転環状体型ブレーキ装置において、
前記第 1〜第 3の自由回転環状体が、前記軸線方向に同軸に積層されて相互に摺 動自在な複数の環状部材から構成されて ヽることを特徴とする。
[0047] すなわち、請求項 19に記載した自由回転環状体型ブレーキ装置(700, 750)に おいては、第 1〜第 3の自由回転環状体 (720, 721, 722)が互に摺動自在な複数 の環状部材カゝら構成される。
これにより、隣接する回転体同士あるいは回転体と固定体との間の相対回転数が 大きい場合でも、この大きな相対回転数を滑らかに吸収することができる。
さらに、隣接する回転体同士あるいは回転体と固定体との間に多くの摩擦摺動面 が追加されるから、回転軸(702)の回転をさらに強力に制動することができる。
[0048] また、請求項 20に記載した手段は、請求項 5, 6, 18, 19のいずれかに記載した自 由回転環状体型ブレーキ装置に、前記複数の環状部材のうち隣接する環状部材同 士が異なる回転速度で回転するようにそれらの間に作用する摺動摩擦の大きさを制 御する摺動摩擦制御手段を追加したことを特徴とする。
[0049] すなわち、請求項 20に記載したブレーキ装置は、第 1の回転体(32)と第 2の回転 体 (60)とを摩擦係合させてその相対回転を制動することにより回転軸(23)の回転を 制動するものであるが、第 1および第 2の回転体を摩擦係合させるために用いる複数 の環状部材にその特徴がある。
すなわち、複数の環状部材(51, 52, 53, 54)には、隣接する環状部材同士が異 なる回転速度で回転するようにその摩擦摺動の大きさを制御するための摺動摩擦制 御手段が設けられている。
これにより、例えば第 1の回転体(32)が lOOOrpmで回転し、第 2の回転体 (60)が l lOOrpmで回転し、両者の間に 4つの環状部材(51, 52, 53, 54)が介装されてい るときに、第 1の回転体(32)に隣接する第 1の環状部材が 1020rpmで回転し、第 2 の環状体が 1040rpmで回転し、第 3の環状体が 1060rpmで回転し、第 2の回転体( 60)に隣接する第 4の環状体が 1080rpmで回転するように制御することができる。 そして、例えば第 1〜第 3の環状部材が互いに固着して第 1の回転体と一体に 100 Orpmで回転し、第 4の環状部材が第 2の回転体と一体に l lOOrpmで回転すること を防止することができる。
したがって、第 1の回転体 (32)と第 2の回転体 (60)との間の回転数差が大きい場 合でも、複数の環状部材の全体によつてこの大きな回転速度差を滑らかに吸収でき る。
さらに、隣接する環状部材同士の回転数差を小さく保つことができるから、摺動摩 擦に伴う発熱や摩耗の発生を最大限に抑制することができる。
加えて、第 1の回転体 (32)と第 2の回転体 (60)との間に多数の摩擦摺動面を設け ることができるから、第 1の回転体と第 2の回転体とを摩擦係合させるための大きな摩 擦力を得ることができる。
[0050] また、請求項 21に記載した手段は、請求項 20に記載したブレーキ装置にぉ ヽて、 前記摺動摩擦制御手段が、前記複数の環状部材 (51, 52, 53, 54)のうち隣接す る環状部材をそれぞれ形成して ヽる金属材料の硬度を、隣接する環状部材同士に お!、て異ならせることによって構成されて 、ることを特徴とする。 [0051] すなわち、請求項 21に記載したブレーキ装置においては、隣接している環状部材 同士の金属材料硬度が異なるので、回転軸(23)の軸線方向に圧縮されたときの馴 染み具合が異なることになるから、両者が固着して一体に回転することを防止して、 例えば接続手段 (32)と第 1の環状体 (60)との間に介装された複数の環状部材 (51 , 52, 53, 54)がそれぞれ異なる回転数で回転するようにすることができる。
なお、隣接する環状部材の金属材料硬度は、 HRC硬度で 2〜10、好ましくは 5〜7 の差があるように設定する。
[0052] また、請求項 22に記載した手段は、請求項 21に記載したブレーキ装置において、 前記複数の環状部材 (51, 52, 53, 54)が、前記硬度の高い環状部材と前記硬度 の低 、環状部材とを交互に並べたものであることを特徴として 、る。
[0053] すなわち、請求項 22に記載したブレーキ装置においては、硬度の高い環状体と硬 度の低い環状体とを交互に並べることにより、例えば接続手段(32)と第 1の環状体( 60)との間に複数の環状部材(51, 52, 53, 54)を介装する場合においても、隣接 する環状部材同士が固着して一体に回転することを防止できる。
[0054] また、請求項 23に記載した手段は、請求項 21に記載したブレーキ装置にぉ ヽて、 前記複数の環状部材(51, 52, 53, 54)力 前記回転軸(23)の軸線方向に前記 硬度の低い順に前記環状部材を並べたものであることを特徴とする
[0055] すなわち、請求項 23に記載したブレーキ装置においては、硬度の低い順に環状部 材を並べるから、例えば複数の環状部材(51, 52, 53, 54)の個々の回転数が、接 続手段(32)の側力 第 1の環状体 (60)の側へと順に変化するように設定することが できる。
[0056] また、請求項 24に記載した手段は、請求項 20に記載したブレーキ装置にぉ ヽて、 前記摺動摩擦制御手段が、前記複数の環状部材 (51, 52, 53, 54)のうち隣接す る環状部材同士の直径方向の寸法を異ならせることによって構成されていることを特 徴とする。
[0057] すなわち、請求項 24に記載したブレーキ装置においては、隣接する環状部材同士 の外径寸法あるいは内径寸法が異なるので、回転軸(23)の軸線方向に圧縮された ときの各環状部材の外周部分あるいは内周部分の弾性変形量がそれぞれ異なるか ら、両者が固着して一体に回転することを防止し、例えば接続手段(32)と第 1の環 状体 (60)との間に介装された複数の環状部材がそれぞれ異なる回転数で回転する ようにすることができる。
[0058] また、請求項 25に記載した手段は、請求項 24に記載したブレーキ装置において、 前記複数の環状部材(51, 52, 53, 54)力 前記直径方向の寸法の大きい環状部 材と前記直径方向の寸法の小さい環状部材とを交互に並べたものであることを特徴 とする。
[0059] すなわち、請求項 25に記載したブレーキ装置においては、直径方向の寸法の大き V、環状部材と直径方向の寸法の小さ 、環状部材とを交互に並べることにより、例えば 接続手段(32)と第 1の環状体 (60)との間に複数の環状部材(51, 52, 53, 54)を 介装する場合においても、隣接する環状部材同士が固着して一体に回転することを 防止できる。
[0060] また、請求項 26に記載した手段は、請求項 24に記載したブレーキ装置にぉ ヽて、 前記複数の環状部材(51, 52, 53, 54)力 前記回転軸(23)の軸線方向に前記 直径方向の寸法の小さい順に環状部材を並べたものであることを特徴とする。
[0061] すなわち、請求項 26に記載したブレーキ装置においては、直径方向の寸法の小さ い順に環状部材を並べるから、複数の環状部材の個々の回転数力 例えば接続手 段(32)の側力 第 1の環状体 (60)の側へと順に変化するように設定することができ る。
[0062] また、請求項 27に記載した手段は、請求項 20に記載したブレーキ装置において、 前記摺動摩擦制御手段が、前記複数の環状部材 (51, 52, 53, 54)のうち隣接す る環状部材同士の軸線方向の寸法を異ならせることによって構成されていることを特 徴とする。
[0063] すなわち、請求項 27に記載したブレーキ装置においては、隣接する環状部材同士 の軸線方向寸法が異なるので、回転軸(23)の軸線方向に圧縮されたときの弾性変 形量が異なることになるから、両者が固着して一体に回転することを防止して、例え ば接続手段 (32)と第 1の環状体 (60)との間に介装された複数の環状部材 (51, 52 , 53, 54)がそれぞれ異なる回転数で回転するようにすることができる。 [0064] また、請求項 28に記載した手段は、請求項 27に記載したブレーキ装置において、 前記複数の環状部材(51, 52, 53, 54)力 前記軸線方向の寸法の大きい環状部 材と前記軸線方向の寸法の小さい環状部材とを交互に並べたものであることを特徴 とする。
[0065] すなわち、請求項 28に記載したブレーキ装置においては、軸線方向の厚みの大き い環状体と厚みの小さい環状体とを交互に並べるので、例えば接続手段(32)と第 1 の環状体 (60)との間に複数の環状部材(51, 52, 53, 54)を介装する場合におい ても、隣接する環状部材同士が固着して一体に回転することを防止できる。
[0066] また、請求項 29に記載した手段は、請求項 27に記載したブレーキ装置において、 前記複数の環状部材(51, 52, 53, 54)力 前記回転軸(23)の軸線方向に、前 記軸線方向の寸法の小さい順に前記環状部材を並べたものであることを特徴とする
[0067] すなわち、請求項 29に記載したブレーキ装置においては、軸線方向寸法の小さい 順に環状部材を並べるから、複数の環状部材(51, 52, 53, 54)の個々の回転数が 、例えば接続手段(32)の側力 第 1の環状体 (60)の側へと順に変化するように設 定することができる。
[0068] また、請求項 30に記載した手段は、請求項 20に記載したブレーキ装置にぉ ヽて、 前記摺動摩擦制御手段が、前記複数の環状部材 (51, 52, 53, 54)のうち隣接す る環状体同士の摩擦摺動面にそれぞれ凹設した凹部の面積を異ならせることによつ て構成されて 、ることを特徴とする。
[0069] すなわち、請求項 30に記載したブレーキ装置においては、隣接している環状部材 同士の凹部面積が異なるので、回転軸(23)の軸線方向に圧縮されたときの弾性変 形量が異なることになるから、両者が固着して一体に回転することを防止し、例えば 接続手段 (32)と第 1の環状体 (60)との間に介装された複数の環状部材がそれぞれ 異なる回転数で回転するようにすることができる。
[0070] また、請求項 31に記載した手段は、請求項 30に記載したブレーキ装置において、 前記複数の環状部材が、前記凹部の面積の大きい環状部材と前記凹部の面積の 小さい環状部材とを交互に並べたものであることを特徴とする。 [0071] すなわち、請求項 31に記載したブレーキ装置においては、その摩擦摺動面に凹設 された凹部の面積が大きい環状部材と小さい環状部材とを交互に並べるので、例え ば接続手段(32)と第 1の環状体 (60)との間に複数の環状部材(51, 52, 53, 54) を介装する場合においても、隣接する環状部材同士が固着して一体に回転すること を防止できる。
[0072] また、請求項 32に記載した手段は、請求項 30に記載したブレーキ装置において、 前記複数の環状部材(51, 52, 53, 54)力 前記回転軸(23)の軸線方向に前記 凹部の面積の小さい順に前記環状体を並べたものであることを特徴とする。
[0073] すなわち、請求項 32に記載したブレーキ装置においては、その摩擦摺動面に凹設 された凹部の面積の小さい順に環状部材を並べるから、例えば複数の環状部材(51
, 52, 53, 54)の個々の回転数力 接続手段(32)の側力 第 1の環状体 (60)の側 へと順に変化するように設定することができる。
[0074] また、請求項 33に記載した手段は、交通機関の車輪(14, 852)の回転を制動する ためのブレーキ装置(800, 850)であって、
前記車輪と一体に回転するブレーキディスク(806, 853, 854)と、
このブレーキディスクに向かってブレーキパッド(813, 814, 864, 865)を押動す る押動手段(812, 863)と、
前記ブレーキディスクと前記ブレーキパッドとの間において前記ブレーキディスクと 同軸にかつ相対回転自在に介装された自由回転環状体 (820, 870)と、を備えるこ とを特徴とする。
[0075] すなわち、請求項 33に記載したブレーキ装置(800, 850)は、自動車や、鉄道、 航空機の車輪の回転を制動するために用いられて 、るディスクブレーキ装置に自由 回転環状体を組み合わせたものである。
このとき、一般的なディスクブレーキ装置においては、例えば時速 200キロメートル Z時で走行している自動車の車輪、したがってブレーキディスクは約 2000回転 Z分 の回転数で回転しているから、この車輪の回転を制動するときのブレーキノッドとブ レーキディスクとの間の相対回転数は 2000回転 Z分である。
これに対して、本発明のブレーキ装置においては、ブレーキディスクとブレーキパッ ドとの間に自由回転環状体が相対回転自在に介装されているから、ブレーキディスク が 2000回転 Z分の回転数で回転しているときに、自由回転環状体をそれよりも低い 回転数で回転させることができる。例えば、ブレーキパッドと自由回転環状体との間 の相対回転数を 1000回転 Z分、自由回転環状体とブレーキディスクとの間の相対 回転数を 1000回転 Z分とすることもできる。
[0076] 一方、ブレーキパッドに発生する熱量は、 自動車の走行速度の 2乗、したがってブ レーキディスクとブレーキパッドとの間の相対回転数の 2乗に比例するから、相対回 転数を半減させることにより 1Z4に減少する。
これにより、フェード現象の発生を抑制することができるば力りでなぐブレーキパッ ドの摩耗ち低減させることができる。
[0077] 他方、一般的なディスクブレーキ装置においては、ブレーキパッドとブレーキデイス クとの間にし力摩擦摺動面が存在しない。
これに対して、請求項 33に記載したブレーキ装置においては、ブレーキパッドと自 由回転環状体との間、および自由回転環状体とブレーキディスクとの間の 2力所に摩 擦摺動面が存在する。
これにより、押動手段(一般的には油圧作動のピストンあるいはキヤリパ)がブレーキ ノ ッドを押動する力が一定であるとすると、一般的なディスクブレーキ装置に対して 2 倍の制動力が得られることになる。
言い換えると、必要な制動力が一定であるとすると、押動手段がブレーキパッドを押 動する力をより低減できることを意味して 、る。
したがって、ブレーキパッドに発生する熱量をさらに低減させ、かつブレーキパッド の摩耗もさらに低減させることが可能となる。
[0078] なお、請求項 33に記載したブレーキ装置に用いる自由回転環状体は、請求項 19 〜請求項 32に記載したものと同一の構成とすることができる。
し力しながら、より一層効果的な自由回転環状体が請求項 34に記載されている。 すなわち、請求項 34に記載の手段は、請求項 33に記載したブレーキ装置におい て、前記自由回転環状体(820, 870)力 前記ブレーキパッド(813, 814, 864, 8 65)の側の側面が摩擦摺動面であり、かつ反対側の側面に相手側と摩擦係合する 摩擦材(822a, 823a, 872a, 873a)が設けられた、少なくとも一つの環状部材(82 2, 823, 872, 873)を有して!/ヽることを特徴とする。
[0079] すなわち、請求項 34に記載した自由回転環状体を用いるブレーキ装置には、ブレ ーキディスクと環状部材との間に摩擦材、言い換えるとブレーキライニングが存在す る。
したがって、ブレーキノッドの摩擦材の摩擦係数と、各環状部材における摩擦材の 摩擦係数とを異ならせることにより、ブレーキディスクに対する各環状部材の相対回 転数を制御できることになる。
[0080] また、請求項 35に記載した手段は、請求項 34に記載したブレーキ装置において、 複数の前記環状部材 (822, 823, 872, 873)が前記ブレーキディスクの軸線方向 に同軸に積層されており、
かつ前記複数の環状部材の各摩擦材 (822a, 823a, 872a, 873a)の摩擦係数 は、前記ブレーキパッド(813, 814, 864, 865)の側ほど高ぐ前記ブレーキデイス ク(806, 853, 854)の側ほど低くなるように設定されていることを特徴とする。
[0081] すなわち、請求項 35に記載したブレーキ装置によれば、ブレーキディスクの回転数 が最も高ぐかつ複数の環状部材の各回転数がブレーキパッドの側に向力つて次第 に減少するように構成することができる。
これにより、ブレーキパッドと摩擦摺動する環状部材の回転数を、ブレーキディスク の回転数に対して大幅に低下させることができるから、ブレーキパッドに発生する熱 量を低減させ、かつブレーキノッドの摩耗をさらに低減させることができる。
[0082] また、請求項 36に記載した手段は、請求項 35に記載したブレーキ装置において、 前記ブレーキパッド(813, 814, 864, 865)と摩擦摺動する前記環状部材 (822, 872)における摩擦材(822a, 872a)の摩擦係数力 前記ブレーキパッド(813, 81 4, 864, 865)の摩擦材における摩擦係数より低く設定されていることを特徴とする。
[0083] すなわち、請求項 36に記載したブレーキ装置によれば、ブレーキディスクとブレー キパッドとの間に複数の環状部材が存在するときに、ブレーキパッドによって複数の 環状部材を確実に相対回転させることができる。
[0084] また、請求項 37に記載したブレーキ装置は、請求項 33乃至 36のいずれかに記載 した自由回転環状体型ブレーキ装置において、
前記ブレーキディスク(806, 853, 854)に、前記環状部材(822, 823, 872, 87
3)の内周面が摺動自在に外嵌する、自己潤滑性の材料力も製作された支持部材 (8
21, 871)が設けられていることを特徴とする。
[0085] すなわち、請求項 37に記載したブレーキ装置によれば、一般的に铸鉄から製造さ れているブレーキディスクと自由回転環状体の内周面との間の摩擦を減少させ、自 由回転環状体をブレーキディスクに対して滑らかに相対回転させることができる。
[0086] また、請求項 38に記載したブレーキ装置は、請求項 33乃至 37のいずれかに記載 した自由回転環状体型ブレーキ装置において、
前記自由回転環状体の内周部分を前記ブレーキディスクに向かって付勢する付勢 手段(826, 874)が設けられて 、ることを特徴とする。
[0087] すなわち、請求項 38に記載したブレーキ装置によれば、ブレーキディスクの回転軸 線に対する自由回転環状体 (820, 870)の姿勢を安定させることができる。
これにより、自由回転環状体 820, 870を回転軸に対して垂直に保持し、その傾斜 に起因するブレーキジャダ一の発生を確実に防止することができる。
発明の効果
[0088] 以上の説明から明らかなように、本発明のブレーキ装置は、各種交通機関や工作 機械等の動力伝達系に設けられている既存の遊星歯車機構をそのまま活用しつつ
、第 1および第 2の環状体と押動手段とを追加することにより、その回転軸を制動する ブレーキ装置を構成することができる。
これにより、部品点数の増加および既存の機械の改造を最小限に抑えることができ るから、その適用可能範囲を大きく拡げることができる。
[0089] また、本発明のブレーキ装置は、遊星歯車機構における回転数差の小さい 2つの 回転要素の間で制動をかけることによって回転軸を制動するものである。
これにより、回転軸とその周囲の静止部分との間のように、回転数差の大きい部分 の間で制動する場合に比較し、制動に伴って発生する衝撃力や発熱量を小さくする ことができる。
さらに、発熱に伴う摩擦係数の変動を抑制して安定した制動力を得ることができる ばかりでなぐ発熱に伴うフェード現象の発生もなぐ長時間にわたって一定な制動 力を得ることができ、第 1および第 2の環状体の摩耗を最小限に抑えて長い寿命時間 を確保することができるから、優れた性能を有するブレーキ装置を得ることができる。 図面の簡単な説明
[図 1]第 1実施形態のブレーキ装置を^ aみ込んだオーバードライブ装置を示す要部 破断斜視図。
[図 2]図 1のオーバードライブ装置を組み込んだ自動車の動力伝達系を模式的に示 す図。
[図 3]図 1に示したブレーキ装置の構造を模式的に示す断面図。
[図 4]図 1に示したブレーキ装置の作動を模式的に示す断面図。
[図 5]図 1に示したブレーキ装置の構造を模式的に示す断面図。
[図 6]図 1に示したブレーキ装置の作動を模式的に示す断面図。
[図 7]第 2実施形態のブレーキ装置の構造を模式的に示す断面図。
[図 8]第 2実施形態のブレーキ装置の作動を模式的に示す断面図。
[図 9]第 2実施形態のブレーキ装置の第 1変形例の構造を模式的に示す断面図。
[図 10]第 2実施形態のブレーキ装置の第 2変形例の構造を模式的に示す断面図。
[図 11]第 2実施形態のブレーキ装置の第 3変形例の構造を模式的に示す断面図。
[図 12]第 2実施形態のブレーキ装置の第 4変形例の構造を模式的に示す断面図。
[図 13]第 2実施形態のブレーキ装置の第 5変形例の構造を模式的に示す断面図。
[図 14]第 3実施形態のブレーキ装置の構造を模式的に示す断面図。
[図 15]第 3実施形態のブレーキ装置の第 1変形例の構造を模式的に示す断面図。
[図 16]第 3実施形態のブレーキ装置の第 2変形例の構造を模式的に示す断面図。
[図 17]第 3実施形態のブレーキ装置の第 3変形例の構造を模式的に示す断面図。
[図 18]第 3実施形態のブレーキ装置の第 4変形例の構造を模式的に示す断面図。
[図 19]第 3実施形態のブレーキ装置の第 5変形例の構造を模式的に示す断面図。
[図 20]第 4実施形態のブレーキ装置を組み込んだ電気自動車のインホイールモータ の構造を模式的に示す断面図。
[図 21]第 5実施形態のブレーキ装置の構造を模式的に示す断面図。 圆 22]第 5実施形態のブレーキ装置の第 1変形例の構造を模式的に示す断面図。 圆 23]第 5実施形態のブレーキ装置の第 2変形例の構造を模式的に示す断面図。
[図 24]第 5実施形態のブレーキ装置の第 3変形例の構造を模式的に示す断面図。 圆 25]第 5実施形態のブレーキ装置の第 4変形例の構造を模式的に示す断面図。
[図 26]第 5実施形態のブレーキ装置の第 5変形例の構造を模式的に示す断面図。
[図 27]第 6実施形態のブレーキ装置の構造を模式的に示す断面図。
圆 28]第 7実施形態のブレーキ装置の構造を模式的に示す要部断面側面図。
[図 29]第 7実施形態のブレーキ装置の変形例の構造を模式的に示す要部断面側面 図。
圆 30]第 8実施形態のブレーキ装置の構造を模式的に示す要部断面図。
[図 31]図 30の要部を拡大して示す図。
圆 32]第 8実施形態のブレーキ装置の変形例の構造を模式的に示す要部断面図。
[図 33]図 32の要部を拡大して示す図。
圆 34]先願に係るブレーキ装置の構造を模式的に示す側面図。
[図 35]電気自動車の従来のインホイールモータの構造を模式的に示す断面図。 符号の説明
1 回転軸
2 第 1の回転体
3, 6, 7, 8 歯車
4 支持腕
5 支軸
9 第 2の回転体
10 電気自動車の従来のインホイールモータ
11 電: ¾モータ
12 減速機構
13 ドラムブレーキ
14 ホイール
15 タイヤ ケーシング(固定手段) 入力軸(回転軸) 出力軸
遊星歯車機構
サンギヤ
プラネタリキヤリャ
支軸
プラネタリギヤ
リングギヤ
切換手段
第 1の自由回転環状体 第 1の環状体
押動手段
, 76 第 2の環状体
第 2の自由回転環状体 第 2の環状体
1電動サーボ
第 1実施形態のブレ -キ装置 第 2実施形態のブレ -キ装置 第 3実施形態のブレ -キ装置 第 4実施形態のブレ -キ装置 第 5実施形態のブレ -キ装置 第 6実施形態のブレ -キ装置 第 7実施形態のブレ -キ装置 第 8実施形態のブレ -キ装置 ブレーキディスク
ディスクブレーキ装置 ピストン 820 自由回転環状体
822, 823 環状部材
822a, 823a 摩擦ライニング
852 鉄道車両の車輪
853, 854 ブレーキディスク
860 ディスクブレーキ装置
865 ピストン
870 自由回転環状体
872, 873 環状部材
872a, 873a 摩擦ライニング
発明を実施するための最良の形態
[0092] 以下、図 1乃至図 29を参照し、本発明に係る自由回転環状体型ブレーキ装置の各 実施形態について詳細に説明する。
なお、以下の説明においては、同一の部分には同一の符号を用いて重複した説明 を省略するとともに、回転軸 23の軸線が延びる方向を軸線方向と言う。
[0093] 第 1実施形態
まず最初に図 1〜図 6を参照し、本発明による自由回転環状体型ブレーキ装置の 第 1実施形態について詳細に説明する。
[0094] 図 1に示した本第 1実施形態の自由回転環状体型ブレーキ装置 100は、自動車の 変速機に内蔵されるオーバードライブ装置を構成するもので、ケーシング 20に収納 された遊星歯車機構 30と、駆動出力の切り換えを行う切換手段 40と、遊星歯車機構 30のプラネタリキヤリャとリングギヤとを摩擦係合させるための第 1の自由回転環状体 50および第 1の環状体 60と、第 1の自由回転環状体 50および第 1の環状体 60をプ ラネタリキヤリャの側に押動して摩擦摺動させるための押動手段 70とを備えている。
[0095] 遊星歯車機構 30は、有底円筒状のケーシング(固定手段) 20の底壁 21によってサ ンギヤ 31を回転不能に支持するとともに、入力軸(回転軸) 23にプラネタリキヤリャ( 接続手段) 32を接続して回転駆動するようにし、かっこのプラネタリキヤリャ 32に植設 した支軸 33によって複数のプラネタリギヤ 34を回転自在に支持することにより、増速 された回転駆動力をリングギヤ 35の連接部分 (従動手段) 35aから取り出すように構 成されている。
なお、リングギヤ 35には連接部分 35aが連設されており、その円筒部分 35bは軸受 36によって入力軸 23上に回転自在に支持されて 、る。
[0096] 切換手段 40は、図 3に示したように、入力軸 23の後端に凸設された嚙合歯 41と、 出力軸 24の前端に凸設された軸線方向に長く延びる嚙合歯 42と、リングギヤ 35の 連接部分 35aの後端に凸設されている嚙合歯 43と、これらの嚙合歯 41, 42, 43上 で軸線方向にスライド可能なスリーブ 44と、このスリーブ 44を軸線方向に往復させる 図示されな 、シフタと力 構成されて 、る。
図 3に示したように、スリーブ 44が入力軸 23の嚙合歯 41と出力軸 24の嚙合歯との 上に位置するときには、入力軸 23と出力軸 24とが直結され、入力軸 23に入力した回 転駆動力がそのまま出力軸 24に伝達される。
これに対して、図 5に示したように、スリーブ 44がリングギヤ 35側の嚙合歯 43と出力 軸 24の嚙合歯との上に位置するときには、遊星歯車機構 30によって増速された回 転駆動力が出力軸 24に伝達される。
[0097] 第 1の自由回転環状体 50は、図 3に示したように、ほぼ同一寸法の 4枚の板状円形 環状部材 51, 52, 53, 54を軸線方向に積層して構成したもので、そのうちの 1つの 環状部材 51の内周部分には入力軸 23と同軸な円筒部分 51aが連設され、リングギ ャ 35に連設されて 、る円筒部分 35bの外周面上に軸受 55を介して回転自在に支持 されている。
そして、他の環状部材 52, 53, 54は、円筒部分 51aの外周面上に摺動回転自在 に支持されている。
なお、図示の都合上、図 1においては環状部材 52が描かれていない。
[0098] 板状円形環状部材 51, 52, 53, 54を形成している材料は、それぞれ炭素鋼、ある いはニッケル、クロム、モリブデンを含む合金鋼である力 その HRC硬度はわずかに 異なっている。
すなわち、環状部材 51, 52の HRC硬度が 56〜59であるのに対し、環状部材 53, 54の HRC硬度は 52〜55であり、硬度の高い環状部材 51, 53と硬度の低い環状部 材 53, 54とを軸線方向に交互に並べた構成となっている。
[0099] 第 1の環状体 60は、図 3に示したように、リングギヤ 35の連設部分 35aを貫通して 軸線方向にスライド自在な、円周方向に等間隔に配設された複数の支軸 61と、第 1 の自由回転環状体 50と同軸に隣接するように支軸 61の一端に固着された 1枚の板 状円形環状部材 62と、支軸 61の他端に入力軸 23と同軸に固着された 1枚の厚板円 形環状部材 63とから構成され、リングギヤ 35と一体に回転するようになっている。 なお、板状円形環状部材 61, 62は、第 1の自由回転環状体 50と同様に炭素鋼あ るいはニッケル、クロム、モリブデンを含む合金鋼から形成されており、かつその HR C硬度は 56〜59に設定されている。
これにより、硬度の高 、環状部材 54と硬度の低 、環状部材 62とが軸線方向に交 互に並んでいる。
[0100] 押動手段 70は、図 1に示したように、円筒状のケーシング 20の開放端を閉鎖して V、る蓋体 22に設けられており、入力軸 23と同軸に蓋体 22に連設されて 、る円筒部 分 22aの外周面上に回動自在に支持された板状円形環状部材である第 1のカムプ レート 71と、この第 1のカムプレート 71の外周面に接続されて半径方向外側に延びる レバー 72と、第 1のカムプレート 71と同軸に隣接して円筒部分 22aの外周面上に回 動自在に配設された第 2のカムプレート 73とを有して 、る。
[0101] レバー 72を手動によりあるいは電動サーボを用いて円周方向に揺動させて第 1の カムプレート 71を回動させると、第 2のカムプレート 73が蓋体 22の側に変位し、この 第 2のカムプレートの側面に突設されて蓋体 22を貫通している複数のプッシュロッド 7 4がケーシング 20の内側に進入する。
すると、入力軸 23と同軸にプッシュロッド 74の先端に固着されている厚板円形環状 部材 75が第 1の環状体 60の側に変位し、その前面に同軸に固着されている板状円 形環状部材 76が第 1の環状体 60の環状部材 63の側面と摺動接触する。
なお、以下の説明においては、環状部材 75, 76を合わせて第 2の環状体と呼ぶ。
[0102] また、環状部材 76は、第 1の自由回転環状体 50と同様に炭素鋼あるいはニッケル 、クロム、モリブデンを含む合金鋼から形成され、その HRC硬度は 52〜55に設定さ れている。 これにより、硬度の高 、環状部材 63と硬度の低 、環状部材 76とが軸線方向に交 互に並んでいる。
[0103] 次に図 2〜図 6を参照し、本第 1実施形態のブレーキ装置 (オーバードライブ装置)
100の作動について説明する。
[0104] 図 2に示したように、自動車のエンジン 101から出力された回転駆動力は、変速機 1
02において変速された後、変速機 102に連設されたトランスファケース 103に内蔵さ れている本第 1実施形態のブレーキ装置 (オーバードライブ装置) 100を介してプロ ペラシャフト 104に伝達される。
そして、プロペラシャフト 104に入力した回転駆動力は、終減速機 105において減 速された後に内蔵されている図示されない差動歯車機構を介して左右の駆動輪 106
L, 106Rに分配される。
[0105] このとき、図 3に示したように、切換手段 40のスリーブ 44が入力軸 23の嚙合歯 41 および出力軸 24の嚙合歯 42の上に位置すると、変速機 102から出力された回転駆 動力は、入力軸 23から出力軸 24を介してプロペラシャフト 104へと直接伝達される ( 直結走行状態)。
また、図 5に示したように、切換手段 40のスリーブ 44がリングギヤ 35側の嚙合歯 43 および出力軸 24の嚙合歯 42の上に位置すると、変速機 102から出力された回転駆 動力は遊星歯車機構 30において増速されてから出力軸 24に伝達される(オーバー ドライブ走行状態)。
[0106] これとは反対に、自動車の運転者がアクセルペダルの踏み込みを止めて自動車が 惰性で走行している状態のときには、左右一対の駆動輪 106L, 106Rが終減速機 1 05およびプロペラシャフト 104を介して出力軸 24を回転駆動する。
[0107] このとき、図 4に示したように、切換手段 40によって入力軸 23と出力軸 24とが直結 されている場合には、入力軸 23によってプラネタリキヤリャ 32が回転駆動されるので 、プラネタリキヤリャ 32とリングギヤ 35の連設部分 35aとが相対回転し、同時にケーシ ング 20の蓋体 22とリングギヤ 35の連設部分 35aとが相対回転する。
また、図 6に示したように、切換手段 40によってリンクギヤ 35の連設部分 35aと出力 軸 24とが接続されている場合には、出力軸 24によってリングギヤ 35が回転駆動され るので、リングギヤ 35の連設部分 35aとプラネタリキヤリャ 32とが相対回転し、同時に ケーシング 20の蓋体 22とリングギヤ 35の連設部分 35aとが相対回転する。
[0108] この状態において、押動手段 70のレバー 72を揺動させてプッシュロッド 74をケー シング 20の内部に進入させると、図 4および図 6に示したように、第 2の環状体 75, 7 6が第 1の環状体 60および第 1の自由回転環状体 50をプラネタリキヤリャ 32に押圧 する。
これに伴い、リングギヤ 35の連設部分 35aと一体に回転する第 1の環状体 60と、第 1の自由回転環状体 50およびプラネタリキヤリャ 32との間に摺動摩擦が発生するか ら、リングギヤ 35の連設部分 35aとプラネタリキヤリャ 32とが摩擦係合し、リングギヤ 3 5とプラネタリキヤリャ 32との相対回転が抑制される。
[0109] 同時に、リングギヤ 35の連設部分 35aと一体に回転する第 1の環状体 60と、ケーシ ング 20の蓋体 22に支持されて回転することがない第 2の環状体 75, 76との間に摺 動摩擦が発生するから、リングギヤ 35の連設部分 35aとケーシング 20とが摩擦係合 し、ケーシング 20に固定されているサンギヤ 31とリングギヤ 35との相対回転もまた抑 制される。
[0110] これにより、サンギヤ 31,プラネタリキヤリャ 32、およびリングギヤ 35の相対回転が 制動されるから、プラネタリキヤリャ 32に接続されている入力軸 23およびリングギヤ 3 5の連設部分 35aは、それぞれケーシング 20に対して相対回転することができず、そ の回転が制動される。
したがって、入力軸 23あるいはリングギヤ 35の連設部分 35aに接続される出力軸 2 4、プロペラシャフト 104、終減速機 105を介して、左右一対の駆動輪 106L, 106R の回転を制動することができる。
[0111] すなわち、本第 1実施形態の自由回転環状体型ブレーキ装置 100は、エンジン 10 1が出力する回転駆動力によって左右一対の駆動輪 106L, 106Rを駆動するときに は、直結走行あるいはオーバードライブ走行を可能とするオーバードライブ装置とし て機能する。
これに対して、自動車が惰性走行しているときには、押動手段 70のレバー 72を操 作することにより、左右一対の駆動輪 106L, 106Rの回転を制動するブレーキ装置 として機能する。
[0112] このとき、左右一対の駆動輪 106L, 106Rと出力軸 24との間には終減速機 105が 介装されている。
これにより、このブレーキ装置 100が発生させる制動力は、終減速機 105における 約 1: 3〜1: 10の減速比の分だけ増大されて各駆動輪 106L, 106Rに伝達されるか ら、大きな制動力を各駆動輪 106L, 106Rに作用させることができる。
[0113] また、このブレーキ装置 100が発生させる制動力は、終減速機 105に内蔵されてい る差動歯車機構によって左右の駆動輪 106L, 106Rに等しく分配される。
これにより、 1つのブレーキ装置 100によって左右の駆動輪 106L, 106Rを制動す ることができる力 、各駆動輪 106L, 106Rに個別に設けるブレーキ装置を省略する ことができる。
[0114] また、本第 1実施形態のブレーキ装置 100は、図 2に示したような FR車 (フロントェ ンジンフロントドライブ車)のトランスファケース 103に元々内蔵されているオーバード ライブ走行用の遊星歯車機構 30を流用するものであるから、部品点数の増加を最小 限に抑えることができる。
また、トランスファケース 103内の空きスペースに、第 1の自由回転環状体 50他の 部品を糸且み込むものであるから、このような FR車の改造を最小限に抑えることができ る。
[0115] また、左右一対の駆動輪 106L, 106Rによって入力軸 23が回転駆動される直結 走行状態においては、プラネタリキヤリャ 32とリングギヤ 35の連設部分 35aとの間の 相対回転速度が高まる。
し力しながら、第 1の自由回転環状体 50は、軸線方向に積層された複数の板状円 形環状部材 51, 52, 53, 54から構成されており、かつ第 2の環状体の環状部材 62 を含めて、硬度が高 、ものと低 、ものとが軸線方向に交互に並ぶように配設されて ヽ る。
これにより、押動手段 70によりプラネタリキヤリャ 32に向けて押動されて軸線方向に 圧縮されたときに、隣接する環状部材同士の馴染み具合がそれぞれ異なるから、隣 接する環状部材同士が固着して一体に回転することはなぐそれぞれ異なる回転数 で回転する。
[0116] したがって、第 1の自由回転環状体 50および第 1の環状体 60は、その全体として、 プラネタリキヤリャ 32とリングギヤ 35の連設部分 35aとの間の大きな回転速度差を滑 らかに吸収することができる。
さらに、隣接する環状部材同士の間に発生する摩擦熱も少ないから、第 1の自由回 転環状体 50および第 1の環状体 60の全体における発熱量も小さい。
カロえて、リングギヤ 35の連設部分 35aとプラネタリキヤリャ 32との間に多くの摩擦摺 動面が追加されるから、プラネタリキヤリャ 32とリングギヤ 35の連設部分 35aとを摩擦 係合させるための摩擦力を増大させることができる。
[0117] なお、本第 1実施形態においては、各環状部材 51, 52, 53, 54, 62力 S互いに固 着して一体に回転することなく異なる速度で自由に回転できるようにするために、隣 接する環状部材の材料硬度をわずかに異ならせている。
また、硬度の低い順あるいは硬度の高い順に軸線方向に並ぶように、複数の環状 部材を配設することもできる。
し力しながら、この目的を達成するための手段は、材料硬度に差を設けることだけ ではない。
[0118] 具体的に説明すると、各環状部材 51, 52, 53, 54, 62の外径寸法を異ならせて、 外径の大きい環状部材と外径の小さい環状部材とを隣接させることによつても、目的 を達成することができる。
なお、各環状部材の外周面を摺動自在に支持する場合には、各環状部材 51 , 52 , 53, 54, 62の内径寸法を異ならせて、内径の大きい環状部材と内径の小さい環状 部材とを隣接させる。
あるいは、外径寸法が大きい順あるいは小さい順に軸線方向に並ぶように、各環状 部材 51 , 52, 53, 54, 62を配設することもできる。
この場合には、押動手段 70によりプラネタリキヤリャ 32に向けて押動されて軸線方 向に圧縮されたときの、各環状部材の外周部分あるいは内周部分の弾性変形量が それぞれ異なるから、隣接する環状部材同士が固着して一体に回転することはなぐ それぞれ異なる回転数で回転することになる。 [0119] さらに、各環状部材 51, 52, 53, 54, 62の軸線方向寸法 (厚み)を異ならせて、厚 みの大きい環状部材と厚みの小さい環状部材とを隣接させることによつても、目的を 達成することができる。
あるいは、軸線方向寸法が大きい順あるいは小さい順に軸線方向に並ぶように、各 環状部材 51, 52, 53, 54, 62を配設することもできる。
この場合には、押動手段 70によりプラネタリキヤリャ 32に向けて押動されて軸線方 向に圧縮されたときの、各環状部材の弾性圧縮変形量がそれぞれ異なるから、隣接 する環状部材同士が固着して一体に回転することはなぐそれぞれ異なる回転数で 回転すること〖こなる。
[0120] カロえて、各環状部材 51, 52, 53, 54, 62の摩擦摺動面に凹部を凹設するとともに 、これらの凹部の総面積が大きい環状部材と小さい環状部材とを隣接させることによ つても、目的を達成することができる。
ここで言う凹部とは、例えばゴルフボールの表面に凹設されている円形のディンプ ルに相当するものであるが、その形状は円形には限定されず、楕円形、長円形、矩 形、長い溝とすることもできる。
そして、凹部の面積は、各環状体の摩擦摺動面上において計測した面積を言う。 この場合には、押動手段 70によりプラネタリキヤリャ 32に向けて押動されて軸線方 向に圧縮されたときの、各環状部材の摩擦摺動面のうち凹部に隣接する部分の弾性 変形量がそれぞれ異なるから、隣接する環状部材同士が固着して一体に回転するこ とはなぐそれぞれ異なる回転数で回転することになる。
なお、凹部の総面積が大きい順あるいは小さい順に軸線方向に並ぶように、各環 状部材 51, 52, 53, 54, 62を配設することもできる。
[0121] 第 2実施形態
次に図 7および図 8を参照し、本発明による自由回転環状体型ブレーキ装置の第 2 実施形態について説明する。
[0122] 上述した第 1実施形態のブレーキ装置 100は、エンジン 101から左右一対の駆動 輪 106L, 106Rに至る動力伝達経路の途中に設けられて ヽた。
これに対し、本第 2実施形態のブレーキ装置 200は、空転する回転軸 23に並設さ れて、この回転軸 23の回転を制動するように構成されて!、る。
[0123] すなわち、工作機械や試験機等においては、回転軸の回転を制動し、あるいはこ の回転軸に所望の制動トルクを負荷することが求められて 、る。
このとき、本第 2実施形態のブレーキ装置 200は、上述した第 1実施形態のブレー キ装置 100から切換手段 40を省いた点を除いて構造が同一であり、押動手段 70を 操作することによって回転軸 23の回転を制動し、所望の制動トルクを回転軸 23に負 荷することができる。
[0124] 特に、第 1の自由回転環状体 50は、軸線方向に積層された複数の板状円形環状 部材 51, 52, 53, 54から構成されており、隣接する板状円形環状部材同士は少な い回転速度差で互いに摺動するから、第 1の自由回転環状体 50の全体における発 熱量は小さい。
また、遊星歯車機構 30を潤滑する潤滑油により、複数の板状円形環状部材 51, 5 2, 53, 54もまた潤滑されるから、長時間にわたって連続運転しても過熱するおそれ がない。
さらに、リングギヤ 35の連設部分 35aとプラネタリキヤリャ 32との間に多くの摩擦摺 動面が形成されているため、簡単かつ小型な構造でありながら、大きな制動トルクを 回転軸に負荷することができる。
加えて、押動手段 70が各環状部材 51, 52, 53, 54, 62を軸線方向に押動する力 を微調整することにより、所望の値の制動トルクを回転軸 23に正確に負荷することが できる。
[0125] したがって、本第 2実施形態のブレーキ装置 200は、回転軸の駆動および停止を 煩雑に繰り返す必要のある工作機械や、高いトルクを連続的に吸収し続け無ければ ならない試験機、特に F1レース車両に用いる高出力エンジンのためのトルク試験機 等におけるブレーキ装置、あるいは新幹線の走行モータに内蔵されるブレーキ装置 として好適に用いることができる。
[0126] 第 1変形例
次に図 9を参照し、第 2実施形態の自由回転環状体型ブレーキ装置 200の第 1変 形形について説明する。 [0127] 上述した第 2実施形態の自由回転環状体型ブレーキ装置 200における遊星歯車 機構 30は、サンギヤ 31を回転不能に支持するとともに、回転軸 23にプラネタリキヤリ ャ (接続手段) 32を接続して一体に回転するようにし、かっこのプラネタリキヤリャ 32 に植設した支軸 33によって複数のプラネタリギヤ 34を回転自在に支持することにより プラネタリギヤ 34を回転駆動して、リングギヤ 35の連接部分 (従動手段) 35aから増 速された回転駆動力を取り出すように構成されて 、た。
そして、リングギヤ 35の連接部分 35aによって第 1の環状体 60を支持することにより 、第 1の環状体 60が回転軸 23の回転数よりも高い回転数で回転するようにして 、た これにより、押動手段 70を作動させて第 1の環状体 60と第 2の環状体 75, 76とを 摩擦係合させたときに生じる第 1の環状体 60の回転数の低下は比較的に急激であり 、回転軸 23の回転を制動するときのブレーキ特性が敏感なものになっていた。
[0128] これに対して、本第 1変形例の自由回転環状体型ブレーキ装置 210における遊星 歯車機構 30Aは、サンギヤ 31を回転不能に支持するとともに、リングギヤ 35の連接 部分 35cを回転軸 23に接続してリングギヤ 35を回転駆動するようにし、かつブラネタ リキヤリャ 32の円筒状の連接部分 (従動手段) 32aを軸受 37によって回転軸 23上に 回転自在に支持する構造となって 、る。
そして、リングギヤ 35の連接部分 35aによって第 1の環状体 60を支持することにより 、第 1の環状体 60が回転軸 23と等しい回転数で回転するようにして 、る。
[0129] これにより、本第 1変形例の自由回転環状体型ブレーキ装置 210における第 1の環 状体 60と第 2の環状体 75, 76との間の相対回転数は、第 2実施形態の自由回転環 状体型ブレーキ装置 200におけるそれよりも小さい。
したがって、押動手段 70を作動させて第 1の環状体 60と第 2の環状体 75, 76とを 摩擦係合させたときに生じる第 1の環状体 60の回転数の低下は、第 2実施形態の自 由回転環状体型ブレーキ装置 200におけるそれよりも緩やかであるから、回転軸 23 の回転を制動するときのブレーキ特性を穏やかなものにすることができる。
[0130] 第 2変形例
本第 2変形例の自由回転環状体型ブレーキ装置 220における遊星歯車機構 30B は、プラネタリギヤ 34の支軸 33を回転軸 23の周りに回転不能に支持するとともに、リ ングギヤ 35の連接部分 35cを回転軸 23に接続してリングギヤ 35を回転駆動するよう にし、かつサンギヤ 31の円筒状の連接部分 (従動手段) 3 laを軸受 38によって回転 軸 23上に回転自在に支持する構造となって 、る。
そして、リングギヤ 35の連接部分 35aによって第 1の環状体 60を支持することにより 、第 1の環状体 60が回転軸 23と等しい回転数で回転するようにして 、る。
[0131] これにより、押動手段 70を作動させて第 1の環状体 60と第 2の環状体 75, 76とを 摩擦係合させたときに生じる第 1の環状体 60の回転数の低下は、第 1変形例の自由 回転環状体型ブレーキ装置 210におけるそれと全く同じであるから、回転軸 23の回 転を制動するときのブレーキ特性を穏やかなものにすることができる。
[0132] 第 3変形例
本第 3変形例の自由回転環状体型ブレーキ装置 230における遊星歯車機構 30C は、プラネタリギヤ 34の支軸 33を回転軸 23の周りに回転不能に支持するとともに、 サンギヤ 31を回転軸 23に接続して回転駆動するようにし、かつリングギヤ 35の連接 部分 (従動手段) 35aを軸受 36によって連接部分 31a上に回転自在に支持する構造 となっている。
そして、リングギヤ 35の連接部分 35aによって第 1の環状体 60を支持することにより 、第 1の環状体 60が、回転軸 23とは反対方向に低い回転数で回転するようにしてい る。
[0133] これにより、押動手段 70を作動させて第 1の環状体 60と第 2の環状体 75, 76とを 摩擦係合させたときに生じる第 1の環状体 60の回転数の低下は、上述した第 1およ び第 2変形例におけるそれよりもさらに緩やかであるから、回転軸 23の回転を制動す るときのブレーキ特性をさらに穏やかなものにすることができる。
[0134] 第 4変形例
本第 4変形例の自由回転環状体型ブレーキ装置 240における遊星歯車機構 30D は、リングギヤ 35を回転不能に支持するとともに、回転軸 23にプラネタリキヤリャ (接 続手段) 32を接続して一体に回転するようにし、かっこのプラネタリキヤリャ 32に植設 した支軸 33によって複数のプラネタリギヤ 34を回転自在に支持することによりプラネ タリギヤ 34を回転駆動して、サンギヤ 31の連接部分 (従動手段) 31aから増速された 回転駆動力を取り出すように構成されて 、る。
そして、サンギヤ 31の連接部分 31aによって第 1の環状体 60を支持することにより 、第 1の環状体 60が回転軸 23の回転数よりもかなり高い回転数で回転するようにし ている。
[0135] これにより、押動手段 70を作動させて第 1の環状体 60と第 2の環状体 75, 76とを 摩擦係合させたときに生じる第 1の環状体 60の回転数の低下は、上述した第 2実施 形態の自由回転環状体型ブレーキ装置 200におけるそれよりもさらに急激であるか ら、回転軸 23の回転を制動するときのブレーキ特性をさらに敏感なものとすることが できる。
[0136] 第 5変形例
本第 5変形例の自由回転環状体型ブレーキ装置 250における遊星歯車機構 30E は、リングギヤ 35を回転不能に支持するとともに、サンギヤ 31の連接部分 31aを回転 軸 23に接続してサンギヤ 31が回転駆動されるようにし、かつプラネタリキヤリャ (従動 手段) 32を軸受 39によって回転軸 23上に回転自在に支持した構造となっている。 そして、回転軸 23に接続した第 2の接続部 31dによって第 1の環状体 60を支持し、 第 1の環状体 60が回転軸 23の回転数と等しい回転数で回転するようにして 、る。
[0137] これにより、押動手段 70を作動させて第 1の環状体 60と第 2の環状体 75, 76とを 摩擦係合させたときに生じる第 1の環状体 60の回転数の低下は、第 1および第 2変 形例の自由回転環状体型ブレーキ装置 210, 220におけるそれと全く同じであるか ら、回転軸 23の回転を制動するときのブレーキ特性を穏やかなものにすることができ る。
[0138] 第 3実施形態
次に図 14を参照し、第 3実施形態のブレーキ装置について説明する。
[0139] 本第 3実施形態のブレーキ装置 300は、上述した第 2実施形態のブレーキ装置 20
0に対し、第 1の環状体 60と第 2の環状体 75, 76との間に第 2の自由回転環状体 80 を追加した構造となって 、る。
[0140] 第 2の自由回転環状体 80は、第 1の自由回転環状体 50と同一構造であり、ほぼ同 一寸法の 4枚の板状円形の環状部材 81, 82, 83, 84を軸線方向に積層して構成し たもので、そのうちの 1つの環状部材 81の内周部分には円筒部分 81aが連設され、 リングギヤ 35に連設されている円筒部分 35bの外周面上に軸受 85を介して回転自 在に支持されている。
そして、他の環状部材 82, 83, 84は、円筒部分 81aの外周面上に摺動回転自在 に支持されている。
なお、各環状部材 81, 82, 83, 84を形成している金属材料の硬度の設定もまた第 1の自由回転環状体 50と同一となっている。
[0141] これにより、押動手段 70のレバー 72を揺動させてプッシュロッド 74をケーシング 20 の内部に進入させると、図 9に示したように、第 2の環状体 75, 76が、第 2の自由回 転環状体 80、第 1の環状体 60、および第 1の自由回転環状体 50をプラネタリキヤリ ャ 32に押圧する。
これに伴い、リングギヤ 35の連設部分 35aと一体に回転する第 1の環状体 60、自 由に回転できる第 1の自由回転環状体 50、およびプラネタリキヤリャ 32の間に摺動 摩擦が発生するから、リングギヤ 35の連設部分 35aとプラネタリキヤリャ 32とが摩擦 係合し、リングギヤ 35とプラネタリキヤリャ 32との相対回転が制動される。
[0142] 同時に、リングギヤ 35の連設部分 35aと一体に回転する第 1の環状体 60と、自由 に回転可能な第 2の自由回転環状体 80,およびケーシング 20の蓋体 22に支持され て回転することがない第 2の環状体 75, 76との間に摺動摩擦が発生するから、リング ギヤ 35の連設部分 35aとケーシング 20とが摩擦係合し、ケーシング 20に固定されて いるサンギヤ 31とリングギヤ 35との相対回転もまた制動される。
[0143] これにより、サンギヤ 31,プラネタリキヤリャ 32、およびリングギヤ 35の相対回転が 制動されるから、プラネタリキヤリャ 32に接続されている回転軸 23はケーシング 20に 対して相対回転することができず、その回転が制動される。
[0144] このとき、第 2の自由回転環状体 80は、軸線方向に積層された複数の板状円形環 状部材 81 , 82, 83, 84から構成されており、隣接する板状円形環状部材同士は少 ない回転速度差で互いに摺動するから、第 2の自由回転環状体 80の全体における 発熱量は小さい。 また、遊星歯車機構 30を潤滑する潤滑油により、複数の板状円形環状部材 81, 8 2, 83, 84もまた潤滑されるから、長時間にわたって連続運転しても過熱するおそれ がない。
さらに、第 1の環状体 60と第 2の環状体 75, 76との間に多くの摩擦摺動面が形成さ れているため、大きな制動トルクを回転軸 23に負荷することができる。
[0145] 次に図 15〜図 19を参照し第 3実施形態のブレーキ装置の変形例について説明す る。
[0146] 第 1変形例
図 10に示した第 1変形例のブレーキ装置 310は、上述した第 3実施形態のブレー キ装置 300に対し、リングギヤ 35が回転軸 23に接続されて一体に回転し、かつブラ ネタリキヤリャ 32が自由に回転する点にお!、て異なって!/、る。
[0147] すなわち、リングギヤ 35に連設された第 2の連設部分 (接続手段) 35cが回転軸 23 に接続され、リングギヤ 35が回転軸 23と一体に回転する。
また、プラネタリキヤリャ 32には回転軸 23と同軸な円筒部分 32aが連設され、回転 軸 23に対し軸受 37によって回転自在に支持されて!、る。
さらに、リングギヤ 35の連設部分 35aは軸受 36によって、また第 1および第 2の自 由回転環状体 50, 80は軸受 55, 85によって、それぞれプラネタリキヤリャ 32の円筒 部分 32aの外周面上に回転自在に支持されて 、る。
[0148] このような構造のブレーキ装置 310においても、押動手段 70のレバー 72を操作す して第 2の環状体 75, 76、第 2の自由回転環状体 80、第 1の環状体 60、第 1の自由 回転環状体 50をプラネタリキヤリャ 32に押圧し、相互に摩擦摺動させることにより、第
3実施形態のブレーキ装置 300と全く同様に回転軸 23の回転を制動することができ る。
[0149] 第 2変形例
図 11に示した第 2変形例のブレーキ装置 320は、上述した第 1変形例のブレーキ 装置 310に対し、プラネタリギヤ 34の支軸 33がケーシング 20に固定され、かつサン ギヤ 31が回転軸 23に対して回転自在となって 、る点が異なって 、る。
[0150] すなわち、サンギヤ 31には回転軸 23と同軸な円筒部分 31aが連設され、回転軸 2 3に対し軸受 38によって回転自在に支持されている。
また、サンギヤ 31には、第 1変形例のブレーキ装置 310におけるプラネタリキヤリャ 32と同一形状の縦壁部分 31bが連設されている。
さらに、リングギヤ 35の連設部分 35aは軸受 36によって、また第 1および第 2の自 由回転環状体 50, 80は軸受 55, 85によって、サンギヤ 31の円筒部分 31aの外周 面上に回転自在に支持されて 、る。
[0151] このような構造のブレーキ装置 320においても、押動手段 70のレバー 72を操作す して第 2の環状体 75, 76、第 2の自由回転環状体 80、第 1の環状体 60、第 1の自由 回転環状体 50をサンギヤ 31に連設した縦壁部分 3 lbに押圧し、相互に摺動させる ことにより、第 3実施形態のブレーキ装置 300と全く同様に回転軸 23の回転を制動す ることがでさる。
[0152] 第 3変形例
図 12に示した第 3変形例のブレーキ装置 330は、上述した第 2変形例のブレーキ 装置 320に対し、サンギヤ 31が回転軸 23に接続されて一体に回転し、かつリングギ ャ 35を回転軸 23に接続して ヽた連設部分 35cが除かれて 、る点が異なって 、る。
[0153] すなわち、サンギヤ 31には連設部分 (接続手段) 31cが連設されて回転軸 23に接 続され、回転軸 23と一体に回転するように構成されて 、る。
このような構造のブレーキ装置 330においても、押動手段 70のレバー 72を操作す して第 2の環状体 75, 76、第 2の自由回転環状体 80、第 1の環状体 60、第 1の自由 回転環状体 50をサンギヤ 31に連設した縦壁部分 3 lbに押圧し、相互に摺動させる ことにより、第 3実施形態のブレーキ装置 300と全く同様に回転軸 23の回転を制動す ることがでさる。
[0154] 第 4変形例
図 13に示した第 4変形例のブレーキ装置 340は、上述した第 3実施形態のブレー キ装置 300 (図 9)に対し、リングギヤ 35がケーシング 20に固定され、かつサンギヤ 3 1が回転軸 23の回りで自由に回転できるように構成されている点において異なって いる。
[0155] すなわち、サンギヤ 31には回転軸 23と同軸な円筒部分 31aが連設され、回転軸 2 3に対し軸受 38によって回転自在に支持されている。
また、プラネタリギヤ 34の支軸 33には、第 1の環状体 60と同軸に隣接する厚板円 形環状部分 32aが固着されて 、る。
さらに、リングギヤ 35には連設部分 35dが連設されて、ケーシング 20に接続されて いる。
[0156] このような構造のブレーキ装置 340においても、押動手段 70のレバー 72を操作す して第 2の環状体 75, 76、第 2の自由回転環状体 80、第 1の環状体 60、第 1の自由 回転環状体 50をプラネタリギヤ 34の支軸 33に連設した環状部分 32aに押圧し、相 互に摺動させることにより、第 3実施形態のブレーキ装置 300と全く同様に回転軸 23 の回転を制動することができる。
[0157] 第 5変形例
図 14に示した第 5変形例のブレーキ装置 350は、上述した第 4変形例のブレーキ 装置 340に対し、サンギヤ 31が回転軸 23に接続されて一体に回転し、かつブラネタ リキヤリャ 32が回転軸 23の回りで自由に回転できるように構成されて 、る点にお!、て 異なっている。
[0158] すなわち、プラネタリキヤリャ 32には、回転軸 23と同軸な円筒部分 32bが連設され 、回転軸 23に対し軸受 39によって回転自在に支持されている。
また、プラネタリギヤ 34の支軸 33に連設されている厚板円形環状部分 32aには、 回転軸 23と同軸な円筒部分 32bが連設され、回転軸 23に対し軸受 32cによって回 転自在に支持されている。
さらに、第 1の環状体 60は、回転軸 23と一体に回転する縦壁部分 31eによって支 持されて、回転軸 23と一体に回転しつつ、第 1の自由回転環状体 50の側に変位で きるようになつている。
カロえて、縦壁部分 31eには回転軸 23と同軸な円筒部分 31fが連設され、その外周 面上に軸受 85を介して第 2の自由回転環状体 80が回転自在に支持されて 、る。
[0159] このような構造のブレーキ装置 350においても、押動手段 70のレバー 72を操作す して第 2の環状体 75, 76、第 2の自由回転環状体 80、第 1の環状体 60、第 1の自由 回転環状体 50をプラネタリギヤ 34の支軸 33に連設した環状部分 32aに押圧し、相 互に摺動させることにより、第 3実施形態のブレーキ装置 300と全く同様に回転軸 23 の回転を制動することができる。
[0160] 第 4実施形態
次に図 20および図 35を参照し、本発明に係る遊星歯車機構に並設するブレーキ 装置の第 4実施形態について説明する。
[0161] 一般的に、電気自動車の駆動輪の内側に配設されるインホイールモータは、図 35 に示したように電気モータ 11と減速機としての遊星歯車機構と 12を組み合わせたも のであるが、このインホイールモータ自体には駆動輪の回転を制動する機械的な機 構が組み込まれておらず、自動車に従来使用しているディスクブレーキあるいはドラ ムブレーキ 13をそのまま併用する必要があった。
これにより、電気自動車のインホイールモータで駆動される駆動輪は、ホイール 14 およびタイヤ 15の重量を含めると、その「ばね下重量」が大幅に増加するため、乗り 心地が悪化するば力りでなぐ路面に対する追従性が低下して駆動性能の低下につ ながっていた。
[0162] このとき、図 20に示した第 4実施形態のブレーキ装置 400は、このようなインホイ一 ルモータに組み込んだものである。
このブレーキ装置 400は、押動手段 70が電動サーボ Sに置き換えられている点を 除き、図 14に示したブレーキ装置 350とほぼ同一の構造を有している。
これにより、電気モータ 11が出力する回転駆動力を遊星歯車機構 30によって減速 してホイール 14に伝達することができるとともに、電気自動車が惰性走行するときに は、ホイール 14の回転を制動することができる。
[0163] したがって、本第 4実施形態のブレーキ装置 400を電気自動車のインホイールモー タに組み込むと、ディスクブレーキあるいはドラムブレーキ 13を併用する必要が無く なるから、その分の重量を排除して、電気自動車のインホイールモータにおいて問題 となっている「ばね下重量」増加の問題を大きく改善することができる。
また、ディスクブレーキあるいはドラムブレーキの併用を止めると、その作動に必要 な油圧配管も不要となるから、ブレーキシステムの全体構造を簡略ィ匕することができ る。 特に、電動サーボ Sを用いてブレーキ装置 400を作動させる場合には、電気配線を 配設するだけで良 ヽから、電気自動車の車体構造を簡略ィ匕することもできる。
さらに、ディスクブレーキあるいはドラムブレーキが無くなると、このブレーキ装置 40 に対する外径の制約が無くなるから、電気モータ 11をホイール 14の側に寄せること が可能となる。
[0164] 力!]えて、本第 4実施形態のブレーキ装置 400は、電気自動車ばかりでなぐ新幹線 の駆動用の電気モータにも併用することができる。
すなわち、新幹線の場合には、走行速度が約 20kmZh以下となってカゝらディスク ブレーキ装置によって車輪軸を制動するようになって!/、る。
したがって、現在、新幹線の車輪軸に設けられているディスクブレーキ装置を、本 第 4実施形態のブレーキ装置 400に置き換えれば、車台重量を大幅に減少させるこ とがでさる。
[0165] 第 5実施形態
次に図 21を参照し、第 5実施形態のブレーキ装置について説明する。
[0166] 本第 5実施形態のブレーキ装置 500は、上述した第 3実施形態のブレーキ装置 30
0に対し、第 3の環状体 90を追加した構造となって 、る。
これに伴い、プラネタリキヤリャ (接続手段) 32の連接部分 32aを延設して半径方向 に延びるフランジ部 32cを形成するとともに、このフランジ部 32cによって第 3の環状 体 90を回転軸 23の軸線方向に変位自在に支持して、第 3の環状体 90が回転軸 23 と一体に回転するようにして!/、る。
[0167] 第 3の自由回転環状体 80は、第 1の環状体 60とほぼ同じ構造であり、プラネタリキ ャリャ 32のフランジ部 32cを貫通して軸線方向にスライド自在な、円周方向に等間隔 に配設された複数の支軸 501と、第 2の自由回転環状体 80と同軸に隣接するように 支軸 501の一端に固着された 1枚の環状部材 502と、支軸 501の他端に固着された もう 1枚の環状部材 503とを有しており、プラネタリキヤリャ 32と一体に回転するように なっている。
なお、プラネタリキヤリャ 32の円筒状連設部分 32dの外周面上には、 1枚の環状部 材 504が摺動回転自在に支持されており、第 2の環状体 75, 76と第 3の環状体 90と が滑らかに摺動できるようになって 、る。
[0168] これにより、押動手段 70のレバー 72を揺動させてプッシュロッド 74をケーシング 20 の内部に進入させると、図 21に示したように、第 2の環状体 75, 76が、第 3の環状体 90、第 2の自由回転環状体 80、第 1の環状体 60、および第 1の自由回転環状体 50 をプラネタリキヤリャ 32に押圧する。
すると、ケーシング 20の蓋体 22とプラネタリキヤリャ 32のフランジ部 32cとが摩擦係 合するとともに、プラネタリキヤリャ 32のフランジ部 32cとリングギヤ 35の連接部分 35 aとが摩擦係合し、かつリングギヤ 35の連接部分 35aとプラネタリキヤリャ 32とが摩擦 係合する。
[0169] すなわち、本第 5実施形態の自由回転環状体型ブレーキ装置 500は、前述した第 3実施形態の自由回転環状体型ブレーキ装置 300に対して第 3の環状体 90を追カロ することにより、固定手段 22と接続手段 32cとの間、および接続手段 32cと従動手段 35aとの間に摩擦摺動面を追カ卩したものである。
したがって、第 3実施形態の自由回転環状体型ブレーキ装置 300よりもさらに強力 に回転軸 23の回転を制動することができる。
[0170] 次に図 22〜図 26を参照し、第 5実施形態のブレーキ装置の各変形例について説 明する。
[0171] 第 1変形例
図 22に示した第 1変形例のブレーキ装置 510は、図 15に示した自由回転環状体 型ブレーキ装置 310に第 3の環状体 90を追カ卩したものである。
これに伴い、プラネタリキヤリャ (従動手段) 32の連接部分 32aを延設して半径方向 に延びるフランジ部 32cを形成するとともに、このフランジ部 32cに第 3の環状体 90の 複数の支軸 501を回転軸 23の軸線方向に変位自在に挿通し、第 3の環状体 90がプ ラネタリキヤリャ 32と一体に回転するようにして 、る。
[0172] これにより、押動手段 70のレバー 72を揺動させてプッシュロッド 74をケーシング 20 の内部に進入させると、図 22に示したように、第 2の環状体 75, 76が、第 3の環状体 90、第 2の自由回転環状体 80、第 1の環状体 60、および第 1の自由回転環状体 50 をプラネタリキヤリャ 32に押圧する。 すると、ケーシング 20の蓋体 22とプラネタリキヤリャ 32のフランジ部 32cとが摩擦係 合するとともに、プラネタリキヤリャ 32のフランジ部 32cとリングギヤ 35の連接部分 35 aとが摩擦係合し、かつリングギヤ 35の連接部分 35aとプラネタリキヤリャ 32とが摩擦 係合するから、図 15に示したブレーキ装置 310よりもさらに強力に回転軸 23の回転 を制動することができる。
[0173] このとき、遊星歯車機構 30Aは減速機構として作用するから、プラネタリキヤリャ (従 動手段) 32の回転数は回転軸 23の回転数よりも低 、。
これにより、プラネタリキヤリャ 32と一体に回転するように支持した第 3の環状体 90と ケーシング(固定手段) 20に支持されている第 2の環状体 75, 76との間の相対回転 数は、上述した第 5実施形態のブレーキ装置 500におけるそれよりも低くなるから、両 環状体を接触させると第 3の環状体 90は緩やかに減速されることになり、回転軸 23 の制動特性は穏やかなものとすることができる。
[0174] 第 2変形例
図 23に示した第 2変形例のブレーキ装置 520は、図 16に示した自由回転環状体 型ブレーキ装置 320に第 3の環状体 90を追カ卩したものである。
これに伴い、サンギヤ (従動手段) 31の連接部分 31aを延設して半径方向に延びる フランジ部 31cを形成するとともに、このフランジ部 31cに第 3の環状体 90の複数の 支軸 501を回転軸 23の軸線方向に変位自在に挿通し、第 3の環状体 90がサンギヤ 31と一体に回転するようにして 、る。
[0175] これにより、押動手段 70のレバー 72を揺動させてプッシュロッド 74をケーシング 20 の内部に進入させると、図 23に示したように、第 2の環状体 75, 76が、第 3の環状体 90、第 2の自由回転環状体 80、第 1の環状体 60、および第 1の自由回転環状体 50 をサンギヤ 31の連接部分 3 lbに押圧する。
すると、ケーシング 20の蓋体 22とサンギヤ 31のフランジ部 31cとが摩擦係合すると ともに、サンギヤ 31のフランジ部 31cとリングギヤ 35の連接部分 35aとが摩擦係合し 、かつリングギヤ 35の連接部分 35aとサンギヤ 31の連接部分 31bとが摩擦係合する から、図 16に示したブレーキ装置 320よりもさらに強力に回転軸 23の回転を制動す ることがでさる。 [0176] このとき、遊星歯車機構 30Bは逆転増速機構として作用するから、サンギヤ (従動 手段) 31の回転数は回転軸 23の回転数よりも高い。
これにより、サンギヤ 31の連接部分 31cと一体に回転するように支持した第 3の環 状体 90とケーシング(固定手段) 20に支持されている第 2の環状体 75, 76との間の 相対回転数は、上述した第 5実施形態のブレーキ装置 500におけるそれよりも高くな るから、両環状体を接触させると第 3の環状体 90が急激に減速されることになり、回 転軸 23の制動特性は敏感なものとすることができる。
[0177] 第 3変形例
図 24に示した第 3変形例のブレーキ装置 530は、図 17に示した自由回転環状体 型ブレーキ装置 330に第 3の環状体 90を追カ卩したものである。
これに伴い、第 1の自由回転環状体 50とプラネタリギヤ 34との間において、サンギ ャ(従動手段) 31の連接部分 31aを延設して半径方向に延びるフランジ部 31cを形 成するとともに、このフランジ部 31cに第 3の環状体 90の複数の支軸 501を回転軸 2 3の軸線方向に変位自在に挿通し、第 3の環状体 90がサンギヤ 31と一体に回転す るようにしている。
また、プラネタリギヤ 34を回転自在に支持している支軸 33がケーシング 20の底壁 2 2に直接固定されており、かつその先端にプラネタリキヤリャ 32に相当する環状部材 33aがー体に固着されて!、る。
さらに、この環状部材 33aと第 3の環状体 90との間には、第 1の自由回転環状体 50 における環状部材 52, 53と同様な環状部材 505, 506が介装されている。
[0178] これにより、押動手段 70のレバー 72を揺動させてプッシュロッド 74をケーシング 20 の内部に進入させると、図 24に示したように、第 2の環状体 75, 76が、第 2の自由回 転環状体 80、第 1の環状体 60、第 1の自由回転環状体 50、および第 3の環状体 90 をプラネタリキヤリャ 32に相当する環状部材 33aに押圧する。
すると、ケーシング 20の蓋体 22とリングギヤ 35の連接部分 35aとが摩擦係合すると ともに、リングギヤ 35の連接部分 35aとサンギヤ 31のフランジ部 31cとが摩擦係合し 、かつサンギヤ 31のフランジ部 31cとケーシング 20の底壁 22とが摩擦係合するから 、図 17に示したブレーキ装置 330よりもさらに強力に回転軸 23の回転を制動すること ができる。
[0179] このとき、遊星歯車機構 30Cは逆転減速機構として作用するから、リングギヤ (従動 手段) 35の回転数は回転軸 23の回転数よりもかなり低い。
これにより、リングギヤ 35と一体に回転するように支持した第 2の自由回転環状体 8 0とケーシング(固定手段) 20に支持されている第 2の環状体 75, 76との間の相対回 転数は、上述した第 5実施形態のブレーキ装置 500におけるそれよりも低くなるから、 両環状体を接触させると第 3の環状体 90は緩やかに減速されることになり、回転軸 2 3の制動特性は穏やかなものとすることができる。
一方、サンギヤ 31の連接部分 31cと一体に回転するように支持した第 3の環状体 9 0とケーシング(固定手段) 20との間の相対回転数は、上述した第 5実施形態のブレ ーキ装置 500におけるそれに等 U、。
したがって、本第 3変形例の自由回転環状体型ブレーキ装置 530の全体で見ると、 回転軸 23の制動特性を穏やかなものとすることができる。
[0180] 第 4変形例
図 25に示した第 4変形例のブレーキ装置 540は、図 18に示した自由回転環状体 型ブレーキ装置 340に第 3の環状体 90を追カ卩したものである。
これに伴い、プラネタリギヤ 34を回転自在に支持している支軸 541がプラネタリキヤ リャ 32を貫通して回転軸 23の軸線方向に変位できるようにするととともに、この支軸 5 41の第 1の自由回転環状体 50側の端部には環状部材 542を固着し、かつ反対側の 端部には環状部材 543を固着して、この第 3の環状体 90がプラネタリキヤリャ 32、し たがって回転軸 23と一体に回転するようにして 、る。
さらに、環状部材 543とケーシング 20の底壁 21との間には、第 1の自由回転環状 体 50における環状部材 52, 53と同様な環状部材 544, 545が介装されている。
[0181] これにより、押動手段 70のレバー 72を揺動させてプッシュロッド 74をケーシング 20 の内部に進入させると、図 25に示したように、第 2の環状体 75, 76が、第 2の自由回 転環状体 80、第 1の環状体 60、第 1の自由回転環状体 50、および第 3の環状体 90 をケーシング 20の底壁 21に押圧する。
すると、ケーシング 20の蓋体 22とサンギヤ 31のフランジ部 31cとが摩擦係合すると ともに、サンギヤ 31のフランジ部 31cとプラネタリキヤリャ 32とが摩擦係合し、さらにプ ラネタリキヤリャ 32とケーシング 20の底壁 21とが摩擦係合するから、図 18に示したブ レーキ装置 340よりもさらに強力に回転軸 23の回転を制動することができる。。
[0182] このとき、第 3の環状体 90はプラネタリキヤリャ 32、したがって回転軸 23と一体に回 転するので、第 3の環状体 90とケーシング 20の側壁(固定手段) 21との間の相対回 転数は回転軸 23の回転数に等 、。
また、上述した第 5実施形態のブレーキ装置 500においても、第 3の環状体 90とケ 一シング 20の蓋体(固定手段) 22との間の相対回転数は、回転軸 23の回転数に等 しい。
[0183] 一方、本第 4変形例における遊星歯車機構 30Dは増速機構として作用するから、 サンギヤ(従動手段) 31の回転数は回転軸 23の回転数よりもかなり高い。これにより 、サンギヤ 31と一体に回転するように支持されている第 1の環状体 60とケーシング 2 0の蓋体(固定手段) 22との間の相対回転数もまた力なり高い。
これに対して、上述した第 5実施形態のブレーキ装置 500における遊星歯車機構 3 0もまた増速機構として作用するため、リングギヤ 35の回転数は回転軸 23の回転数 よりも高い。しかしながら、リングギヤ 35と一体に回転する第 1の環状体 60は、回転軸 23と一体に回転するプラネタリキヤリャ 32に対して相対回転するものであり、その相 対回転数はそれほど高くな!/、。
したがって、本第 4変形例の自由回転環状体型ブレーキ装置 540の全体で見ると、 回転軸 23の制動特性は第 5実施形態のブレーキ装置 500に対してより敏感なものと することができる。
[0184] 第 5変形例
図 26に示した第 5変形例のブレーキ装置 550は、図 19に示した自由回転環状体 型ブレーキ装置 350に第 3の環状体 90を追カ卩したものである。
これに伴い、プラネタリギヤ 34を回転自在に支持している支軸 541がプラネタリキヤ リャ 32を貫通して回転軸 23の軸線方向に変位できるようにするととともに、この支軸 5 41の第 1の自由回転環状体 50側の端部には環状部材 542を固着し、かつ反対側の 端部には環状部材 543を固着して、この第 3の環状体 90がプラネタリキヤリャ 32と一 体に回転するようにしている。
さらに、環状部材 543とケーシング 20の底壁 21との間には、第 1の自由回転環状 体 50における環状部材 52, 53と同様な環状部材 544, 545が介装されている。
[0185] これにより、押動手段 70のレバー 72を揺動させてプッシュロッド 74をケーシング 20 の内部に進入させると、図 26に示したように、第 2の環状体 75, 76が、第 2の自由回 転環状体 80、第 1の環状体 60、第 1の自由回転環状体 50、および第 3の環状体 90 をケーシング 20の底壁 21に押圧する。
すると、ケーシング 20の蓋体 22とサンギヤ 31のフランジ部 31cとが摩擦係合すると ともに、サンギヤ 31のフランジ部 31cとプラネタリキヤリャ 32とが摩擦係合し、さらにプ ラネタリキヤリャ 32とケーシング 20の底壁 21とが摩擦係合するから、図 19に示したブ レーキ装置 350よりもさらに強力に回転軸 23の回転を制動することができる。
[0186] このとき、本第 5変形例の遊星歯車機構 30Eは減速機構として作用するので、ブラ ネタリキヤリャ 32と一体に回転する第 3の環状体 90とケーシング 20の側壁(固定手段 ) 21との間の相対回転数は、回転軸 23の回転数よりもかなり低い。
また、サンギヤ 31のフランジ部 31cと一体に回転する第 1の環状体 60と、ケーシン グ 20の蓋体(固定手段) 22との間の相対回転数は、回転軸 23の回転数に等しい。
[0187] これに対して、上述した第 4変形例のブレーキ装置 540においては、第 3の環状体 90とケーシング 20の側壁(固定手段) 21との間の相対回転数が回転軸 23の回転数 に等しい。さらに、サンギヤ 31のフランジ部 31cと一体に回転する第 1の環状体 60と ケーシング 20の蓋体(固定手段) 22との間の相対回転数は、回転軸 23の回転数より もかなり高い。
したがって、本第 5変形例の自由回転環状体型ブレーキ装置 550の全体で見ると、 回転軸 23の制動特性は第 4変形例のブレーキ装置 540よりも穏やかなものとすること ができる。
[0188] すなわち、第 5実施形態およびその第 1〜第 4変形例に示したように、本発明の自 由回転環状体型ブレーキ装置は、遊星歯車機構の構成および各環状体の配置を変 えることにより、回転軸 23の回転を制動するときのブレーキ特性を自在に変更するこ とができるのである。 [0189] 第 6実施形態
次に図 27を参照し、第 6実施形態の自由回転環状体型ブレーキ装置について説 明すると、本第 6実施形態のブレーキ装置 600は、上述した第 5実施形態のブレーキ 装置 500に対し、クラッチ手段 601および付勢手段 602を追加したものである。
[0190] クラッチ手段 601は、回転軸 23とプラネタリキヤリャ 32との間に介装されており、回 転軸 23からプラネタリキヤリャ (接続手段) 32への回転駆動力の伝達を断接する機 能を有している。
そして、回転軸 23の回転の制動を表す信号が得られるまでは、クラッチ 601が切れ ており、回転軸 23とプラネタリキヤリャ 32とは切り離されている。
これ〖こより、回転軸 23と遊星歯車機構 30との接続が断たれるから、遊星歯車機構 3 0が回転慣性質量として作用して回転軸 23の回転数の増減を妨げることがなく、かつ 遊星歯車機構 30の内部の摩擦損失が回転軸 23に負荷されることもない。
これに対して、回転軸 23の制動を表す信号が得られると、クラッチ手段 601が作動 して回転軸 23と遊星歯車機構 30とを接続するから、押動手段 70の作動に連動し、 本来のブレーキ装置として動作することになる。
[0191] また、付勢手段 602は、第 2の環状体 75, 76、第 3の環状体 90,第 2の自由回転 環状体 90、第 1の環状体 60、および第 1の自由回転環状体 50が、互いに接触した 状態を維持するようにこれらの環状体を回転軸 23の軸線方向に一体に付勢するよう になっている。
これにより、押動手段 70のレバー 72を揺動させてプッシュロッド 74をケーシング 20 の内部に進入させると、各環状体が直ちに摩擦係合してブレーキ作用が生じさせる。 なお、クラッチ手段 601が設けられているため、各環状体の間にわずかに作用して いる摺動摩擦がブレーキ力として回転軸 23に作用することを確実に防止することが できる。
[0192] 第 7実施形態
次に図 28および図 29を参照し、第 7実施形態の自由回転環状体型ブレーキ装置 について説明する。
[0193] 上述した第 1〜第 6実施形態の自由回転環状体型ブレーキ装置は、いずれも遊星 歯車機構 30を用いるものであった。
これに対し、本第 7実施形態の自由回転環状体型ブレーキ装置 700は、複数の平 歯車あるいは複数のはすば歯車を組み合わせた構造の回転伝達機構を用いるもの である。
[0194] 具体的に説明すると、本第 7実施形態のブレーキ装置 700は、静止部分 701によつ て回転自在に支持された回転軸 702、この回転軸 702と一体に回転する円板状の 第 1の回転体 703、および回転軸 702と同軸にかつ回転軸 702の軸線方向に変位 自在に静止部分 701によって回転不能に支持された環状の固定体 704を備えて ヽ る。
また、第 1の回転体 703と固定体 704との間には、回転軸 702に対して同軸にかつ 相対回転自在に、さらに回転軸 702の軸線方向に変位自在に支持されたそれぞれ 円板状の第 2〜第 4の回転体 705, 706, 707が介装されている。
なお、第 2〜第 4の回転体 705, 706, 707は、その外周面に平歯を有する平歯車 として形成されている。
[0195] 回転伝達機構 710は、静止部分 701に連結された左右一対の支持腕 711によって 支持されて回転軸 702と平行に延びる支軸 712と、この支軸 712上に回転自在に外 嵌された筒状の歯車支持体 713とを有している。
そして、この歯車支持体 713の端部に固定されている小径の平歯車 714は、回転 軸 702と一体に回転する大径の平歯車 715と嚙み合っており、回転軸 702の回転を 歯車支持体 713に伝達できるようになって 、る。
[0196] さらに、歯車支持体 713には外径の異なる第 1〜第 3の平歯車 716, 717, 718が それぞれ固定されており、第 2〜第 4の回転体 705, 706, 707の外周面に刻設され て 、る平歯と嚙み合うようになって 、る。
これにより、回転軸 702の回転によって、第 2〜第 4の回転体 705, 706, 707を回 転させることができる。
なお、第 2〜第 4の回転体 705, 706, 707の外径および第 1〜第 3の平歯車 716, 717, 718の外径は、第 2の回転体 705の回転数が第 1の回転体 703の回転数よりも 高ぐかつ第 3の回転体 706の回転数が第 2の回転体 705の回転数よりも高ぐさらに 第 4の回転体 707の回転数が第 3の回転体 706の回転数よりも高くなるように設定さ れている。
[0197] また、第 1〜第 4の回転体 703, 705, 706, 707と固定体 704との間には、前述し た第 1の自由回転環状体 50と同一構造の第 1〜第 4の自由回転環状体 720, 721, 722, 723力それぞれ介装されて!/、る。
これにより、第 1の回転体 703と固定体 704との間の相対回転数は、各回転体と各 自由回転環状体との間の摩擦摺動によって滑らかに吸収することができる。
[0198] さらに、固定体 704には、第 1実施形態のブレーキ装置 100におけるものと同様な 構造の、静止部分 701に支持された押動手段 730が並設されており、矢印 Pで示し たように、固定体 704を第 1の回転体 703に向力つて軸線方向に押動できるようにな つている。
[0199] すなわち、本第 7実施形態の自由回転環状体型ブレーキ装置 700においては、回 転軸 702が回転すると、第 1〜第 4の回転体 703, 705, 706, 707、および固定体 7 04がそれぞれ相対回転する。
そして、押動手段 730を作動させることにより固定体 704を第 1の回転体 703に向 力つて押動すると、第 1の回転体 703と固定体 704とによって第 2〜第 4の回転体 70 5, 706, 707および第 1〜第 4の白由回転環状体 720, 721, 722, 723を一体に挟 持し、各回転体と各自由回転環状体および固定体とを一体に摩擦係合させて回転 軸 702の回転を制動することができる。
このとき、各回転体 703, 705, 706, 707および固定体 704の間の相対回転は、 各自由回転環状体 720, 721, 722, 723との摩擦摺動によって滑らかに吸収するこ とがでさる。
これにより、摩擦係数の変動を抑制して安定した制動力を得ることができるば力りで なぐ発熱に伴うフェード現象の発生も少なく長時間にわたって一定な制動力を得る ことができ、さらには第 1〜第 4の回転体と第 1〜第 4の自由回転環状体の寿命を長く することができる。
[0200] さらに、本第 7実施形態のブレーキ装置 700においては、第 2の回転体 705の回転 数が第 1の回転体 703の回転数よりも高ぐかつ第 3の回転体 706の回転数が第 2の 回転体 705の回転数よりも高ぐさらに第 4の回転体 707の回転数が第 3の回転体 70 6の回転数よりも高くなるように設定されて!、る。
これにより、第 4の自由回転環状体 723を介して第 4の回転体 707と固定体 704と を摩擦係合させると、第 4の回転体 707の回転数の低下が急激なものとなるから、回 転軸 702の回転を制動するときのブレーキ特性を敏感なものとすることができる。
[0201] これに対して、図 29に示した変形例の自由回転環状体型ブレーキ装置 750におい ては、第 2の回転体 705の回転数が第 1の回転体 703の回転数よりも低ぐかつ第 3 の回転体 706の回転数が第 2の回転体 705の回転数よりも低く、さらに第 4の回転体 707の回転数が第 3の回転体 706の回転数よりも低くなるように、回転伝達機構 710 の構成が変更されている。
これにより、第 4の自由回転環状体 723を介して第 4の回転体 707と固定体 704と を摩擦係合させたときの、第 4の回転体 707の回転数の低下を緩やかなものとするこ とができるから、回転軸 702の回転を制動するときのブレーキ特性を穏やかなものと することができる。
[0202] 第 8実施形態
次に図 30〜図 34を参照し、第 8実施形態の自由回転環状体型ブレーキ装置につ いて説明する。
[0203] 図 30に示した本第 8実施形態の自由回転環状体型ブレーキ装置 800は、自動車 のディスクブレーキ装置に自由回転環状体を組み合わせた構造となって 、る。
具体的に説明すると、ナックルノヽウジング 801に保持されているユニット軸受 802に より回転自在に支持されているハブ 803は、駆動軸 804によって回転駆動されるとと もに、その円盤状部分 803aに植設されているハブボルト 805によってブレーキデイス ク 806および前輪 14を一体に支持して 、る。
[0204] 前輪 14の回転は、ブレーキディスク 806の摺動部分 806aを、ディスクブレーキ装 置 810を用いて車軸の軸線方向に締め付けることにより制動される。
ディスクブレーキ装置 810は、ナックルハウジング 801に支持されているキヤリパ 81
1と、このキヤリパ 811の先端部分 81 laおよびピストン 812にそれぞれ取り付けられた ブレーキパッド 813, 814とを有している。 一般的なディスクブレーキ装置においては、ブレーキパッド 813, 814とブレーキデ イスク 806の摺動部分 806aの両側面とが直接的に摩擦摺動するが、本第 8実施形 態のブレーキ装置 800においては、ブレーキパッド 813, 814とブレーキディスク 806 の摺動部分 806aとの間に、自由回転環状体 820がそれぞれ介装されている。
[0205] 自由回転環状体 820は、図 31に拡大して示したように、ブレーキディスク 806の円 筒状部分 806bの外周面のうち摺動部分 806aの両側近傍にそれぞれ外嵌された、 自己潤滑性材料、例えば二硫ィ匕モリブデンを含有している焼結金属等力 製造され た筒状部材 821を有して ヽる。
そして、これらの筒状部材 821の外周面には、鋼板等から円環状に形成された第 1 および第 2の環状体 822, 823の内周面がそれぞれ回転自在に外嵌され、ブレーキ ディスク 806に対して同軸にかつ滑らかに相対回転できるように保持されている。 また、筒状部材 821の近傍には、コイルばね等を内蔵した付勢手段 826がそれぞ れ配設され、ブレーキディスク 806の摺動部分 806aに向力つて第 1および第 2の環 状体 822, 823を付勢している。
[0206] 第 1の環状体 822は、その一方の側面がディスクブレーキ装置 810のブレーキパッ ド 813, 814の表面とそれぞれ摩擦摺動する摺動面となっているが、その他方の側面 には第 1の摩擦ライニング 822aが固着されている。
第 2の環状体 823は、その一方の側面が第 1の摩擦ライニング 822aと摩擦摺動す る摺動面となっている力 その他方の側面には第 2の摩擦ライニング 823aが固着さ れている。
このとき、ブレーキパッド 813, 814の摩擦係数が第 1の摩擦ライニング 822aのそれ より高く、かつ第 1の摩擦ライニング 822aの摩擦係数が第 2の摩擦ライニング 823aの それより高くなるように、それぞれ摩擦材の構成材料が選択されている。
[0207] これにより、ディスクブレーキ装置 810によって前輪 14の回転を制動すると、ブレー キパッド 813, 814と第 1の環状体 822の摩擦摺動面との間、第 1の摩擦ライニング 8 22aと第 2の環状体 823の摩擦摺動面との間、および第 2の摩擦ライニング 823aとブ レーキディスク 806の摺動部分 806aとの間の、合計 6つの接触部分に摩擦摺動が発 生する。 これに対して、一般的なディスクブレーキ装置においては、ブレーキパッド 813, 81 4とブレーキディスク 806の摺動部分 806aとの間の合計 2つの接触部分に摩擦摺動 が発生するにすぎない。
したがって、ディスクブレーキ装置 810のピストン 812がブレーキパッド 814を押圧 する力が等しい場合、本第 8実施形態のブレーキ装置 800においては、約 3倍の制 動力を得ることができる。
言い換えると、同一の制動力を得る場合には、ディスクブレーキ装置 810のピストン 812がブレーキパッド 814を押圧する力は概ね 1Z3で済むことになる。
[0208] また、第 1および第 2の環状体 822, 823は、ブレーキディスク 806に対して相対回 転自在に保持されており、かつブレーキパッド 813, 814の摩擦係数が第 1の摩擦ラ イニング 822aのそれより高ぐさらに第 1の摩擦ライニング 822aの摩擦係数が第 2の 摩擦ライニング 823aのそれより高いから、ディスクブレーキ装置 810によって前輪 14 の回転を制動すると、第 1および第 2の環状体 822, 823の間には相対回転が生じる このとき、ブレーキディスク 806,第 1の環状体 822,第 2の環状体 823の間の各相 対回転数は、ブレーキパッド 813, 814、第 1および第 2の摩擦ライニング 822a, 823 aの摩擦係数の設定によって変化させることができる。
例えば、時速 60キロメートルの速度で走行している車両の前輪 14の回転数は約 6 00回転 Z分である力、ディスクブレーキ装置 810によって前輪 14を制動するときに、 第 2の環状体 823の回転数が約 400回転 Z分、第 1の環状体 822の回転数が約 20 0回転 Z分となるように設定することができる。
[0209] さらに説明すると、一般的なディスクブレーキ装置においては、ブレーキディスク 80 6とブレーキパッド 813, 814との間で、約 600回転 Z分の相対回転を吸収しなけれ ばならない。
これに対して、本第 8実施形態のブレーキ装置 800においては、ブレーキディスク 8 06と第 2の環状体 823との間で約 200回転 Z分の相対回転を吸収し、第 2の環状体 823と第 1の環状体 822との間で約 200回転 Z分の相対回転を吸収し、第 1の環状 体 822とブレーキパッド 813, 814との間で約 200回転 Z分の相対回転を吸収するよ うに設定することができる。
[0210] このとき、ディスクブレーキ装置 810のピストン 814による押圧力が一定であると、摩 擦摺動に伴う発熱レベルは、概ね相対回転数の 2乗に比例する。
したがって、相対回転数が約 600回転 Z分の場合と約 200回転 Z分の場合では、 発熱レベルは約 1Z9に減少するから、摩擦摺動面の数が 3倍に増えていることを勘 案しても、本第 8実施形態のブレーキ装置 800における発熱量は、一般的なディスク ブレーキ装置における発熱レベルの約 1Z3に減少させることができる。
[0211] 力!]えて、本第 8実施形態のブレーキ装置 800においては、その摩擦摺動部分の合 計の数が一般的なディスクブレーキ装置におけるそれの 3倍であることから、等しい 制動力を得るためには、ディスクブレーキ装置 810のピストン 814による押圧力は概 ね 1Z3で済むことになる。
したがって、ピストン 814による押圧力が小さくて済む分だけ、本第 8実施形態のブ レーキ装置 800における発熱レベルはさらに低下することになる。
これにより、発熱に伴うフェード現象の発生を抑制することができるば力りでなぐブ レーキノ ッド 813, 814や第 1および第 2の摩擦ライニング 822a, 823aの摩耗も減少 させることがでさる。
[0212] すなわち、本第 8実施形態のブレーキ装置は、ブレーキディスク 806とブレーキパッ ド 813, 814との間に、ブレーキディスク 806に対して相対回転自在な第 1および第 2 の環状体 822, 823を介装したことにより、摩擦摺動面の合計数を増加させて高い制 動力を得ることができるば力りでなぐ各摩擦摺動面における相対回転数を低下させ て制動に伴う発熱を抑制することができるという、従来のディスクブレーキ装置におい ては到底得ることができない優れた作用効果を奏するものである。
[0213] また、本第 8実施形態のブレーキ装置 800においては、前輪 14の回転の制動に伴 つて発生する発熱のレベルが一般的なディスクブレーキ装置よりも大幅に低い。 これにより、ブレーキディスク 806を「ベンチレーテッド ·ディスク」とする必要がなく、 図 30に示したような「ソリッド 'ディスク」とすることができる。
この場合、ブレーキディスクの軸線方向の厚みが大幅に減少するから、余ったスぺ ースに自由回転環状体 820のためのスペースとして確保することができる。 これにより、既存の車両におけるディスクブレーキ装置を、本第 8実施形態のブレー キ装置 800に容易に置き換えることができる。
[0214] さらに、本第 8実施形態のブレーキ装置 800, 850においては、自由回転環状体 8
20, 870の内周部分に付勢手段 826, 874がそれぞれ設けられているから、自由回 転環状体 820の姿勢を安定させることができる。
これにより、 自由回転環状体 820, 870を回転軸に対して垂直に保持し、その傾斜 に起因するブレーキジャダ一の発生を確実に防止することができる。
[0215] なお、本第 8実施形態のブレーキ装置においては、 自由回転環状体 820が 2つの 環状体 822, 823を有している力 必要とする制動力、車輪の回転数、発熱レベルに 応じて環状体の数を増減できることは言うまでもな 、。
[0216] さらに、本第 8実施形態のブレーキ装置 800を適用する車両の重量や走行速度に よっては、摩擦ライニング 822a, 823aを持たない環状部材を用いることができる。 この場合の自由回転環状体は、前述した各実施形態における自由回転環状体 50
, 80とほぼ同様の構造とすることができることは、この分野の当業者に取っては自明 なことである。
[0217] 変形例
次に図 32および図 33を参照し、第 8実施形態のブレーキ装置の変形例について 説明する。
[0218] 図 32に示した自由回転環状体型ブレーキ装置 850は、鉄道車両の車輪の回転 を制動するためのディスクブレーキ装置に自由回転環状体を組み合わせた構造とな つている。
車軸 851に外嵌されている車輪 852の両側面には、ブレーキディスク 853, 854力 S ボルトナット 855によって一体に固定されている。
また、台車枠に固定されているディスクブレーキ装置 860のキヤリパーは一対のァ ーム 861, 862を有しており、その一方のアーム 861に設けられているピストン 863と 他方のアーム 862にはそれぞれブレーキパッド 864, 865が取り付けられている。 そして、ブレーキディスク 853, 854とブレーキノ ッド 864, 865との間に、自由回転 環状体 870がそれぞれ介装されて ヽる。 [0219] 自由回転環状体 870は、図 33に拡大して示したように、ボルトナット 855によって車 輪 852に対して同軸に固定されている、自己潤滑性材料、例えば二硫ィ匕モリブデン を含有して!/、る焼結金属等から製造された環状支持部材 871を有して 、る。
そして、環状支持部材 871の外周面には、鋼板等から円環状に形成された第 1お よび第 2の環状体 872, 873の内周面がそれぞれ回転自在に外嵌され、ブレーキデ イスク 853, 854に対して同軸にかつ滑らかに相対回転できるように保持されて 、る。 さらに、環状支持部材 871の先端部分には、コイルばね等を内蔵した付勢手段 87 4がそれぞれ配設され、ブレーキディスク 853, 854に向力つて第 1および第 2の環状 体 872, 873をそれぞれ付勢している。
[0220] 第 1の環状体 872は、その一方の側面がディスクブレーキ装置 860のブレーキパッ ド 864, 865の表面とそれぞれ摩擦摺動する摺動面となっているが、その他方の側面 には第 1の摩擦ライニング 872aが固着されている。
第 2の環状体 873は、その一方の側面が第 1の摩擦ライニング 872aと摩擦摺動す る摺動面となっている力 その他方の側面には第 2の摩擦ライニング 873aが固着さ れている。
そして、ブレーキパッド 864, 865の摩擦係数が第 1の摩擦ライニング 872aのそれ より高ぐ第 1の摩擦ライニング 872aの摩擦係数が第 2の摩擦ライニング 873aのそれ より高くなるように、それぞれ構成材料が選択されている。
[0221] これにより、ディスクブレーキ装置 860によって車輪 852の回転を制動すると、ブレ ーキパッド 864, 865と第 1の環状体 872との各接触面、第 1の摩擦ライニング 872a と第 2の環状体 873との各接触面、および第 2の摩擦ライニング 873aとブレーキディ スク 853, 854と接触面の合計 6つの接触面において摩擦摺動が発生する。
したがって、上述したブレーキ装置 850と全く同様に、少ない発熱量で車輪 852の 回転を確実に制動することができる。
[0222] 以上、本発明に係る自由回転環状体型ブレーキ装置の各実施形態つ!/、て詳しく説 明したが、本発明は上述した実施形態によって限定されるものではなぐ種々の変更 が可能であることは言うまでもない。
例えば、上述した第 1実施形態のブレーキ装置 100においては、レバー 72を揺動 させることによりブレーキを作動させる構造となっている力 電動サーボあるいは油圧 サーボを用いて各環状体を押動することができることは言うまでもない。
さらに、上述した第 1実施形態においては、いわゆる FR (フロントエンジンリアドライ ブ)車を例にとって説明して 、るが、 FF (フロントエンジンフロントドライブ)車や 4WD ( 4輪駆動)車に本発明を適用できることは言うまでもない。
カロえて、第 8実施形態のブレーキ装置 800, 850は、自動車や鉄道車両に限定さ れず、他の交通機関、例えば航空機の車輪の回転を制動するために用いることもで きる。

Claims

請求の範囲
[1] 遊星歯車機構と同軸に配設された回転軸の回転を制動するためのブレーキ装置 であって、
前記遊星歯車機構を構成するサンギヤ、プラネタリギヤ、リングギヤのうちのいずれ 力 1つを回転不能に固定する固定手段と、
前記サンギヤ、プラネタリギヤ、リングギヤのうち前記固定手段によって固定されて
V、な 、もののうち 、ずれか一方と前記回転軸とを接続して前記回転軸によって回転 駆動されるようにする接続手段と、
前記サンギヤ、プラネタリギヤ、リングギヤのうち前記固定手段によって固定されて
V、な 、もののうち 、ずれ力他方と一体に回転する従動手段と、
前記回転軸と同軸で前記回転軸の軸線方向に変位自在に、かつ前記回転軸の回 りに回転自在に配設された第 1の自由回転環状体と、
前記回転軸と同軸にかつ前記軸線方向に変位自在に支持されて前記接続手段お よび前記従動手段のうちいずれか一方と一体に回転する第 1の環状体と、
前記固定手段、前記接続手段、前記従動手段のいずれかに向かって前記第 1の 環状体および前記第 1の自由回転環状体を前記軸線方向に一体に押動し、これら の環状体を互いに密着させて摩擦係合させる、前記固定手段に支持された押動手 段と、
を備えることを特徴とする自由回転環状体型ブレーキ装置。
[2] 前記回転軸と同軸にかつ前記の軸線方向に変位自在に前記押動手段に支持され た第 2の環状体をさらに備え、
前記押動手段は、前記第 1の自由回転環状体、前記第 1の環状体および前記第 2 の環状体を前記軸線方向に一体に押動し、互いに密着させて摩擦係合させることを 特徴とする請求項 1に記載した自由回転環状体型ブレーキ装置。
[3] 前記回転軸と同軸で前記軸線方向に変位自在に、かつ前記回転軸の回りに回転 自在に、前記第 2の環状体と前記第 1の環状体との間に配設された第 2の自由回転 環状体をさらに備え、
前記押動手段は、前記第 2の環状体、前記第 2の自由回転環状体、前記第 1の環 状体、および前記第 1の自由回転環状体を前記軸線方向に一体に押動し、互いに 密着させて摩擦係合させることを特徴とする請求項 2に記載した自由回転環状体型 ブレーキ装置。
[4] 前記回転軸と同軸にかつ前記軸線方向に変位自在に支持されて、前記接続手段 および前記従動手段のうちいずれか他方と一体に回転する、前記第 1の自由回転環 状体あるいは前記第 2の自由回転環状体と前記固定手段との間に配設された第 3の 環状体をさらに備え、 前記押動手段は、前記第 2の環状体、前記第 3の環状体、前 記第 2の自由回転環状体、前記第 1の環状体、および前記第 1の自由回転環状体を 前記軸線方向に一体に押動し、互いに密着させて摩擦係合させることを特徴とする 請求項 3に記載した自由回転環状体型ブレーキ装置。
[5] 前記第 1の自由回転環状体は、前記軸線方向に同軸に積層されて相互に摺動自 在な複数の環状部材から構成されて 、ることを特徴とする請求項 1乃至 4の 、ずれか に記載した自由回転環状体型ブレーキ装置。
[6] 前記第 2の自由回転環状体は、前記軸線方向に同軸に積層されて相互に摺動自 在な複数の環状部材から構成されて!、ることを特徴とする請求項 3乃至 5の 、ずれか に記載した自由回転環状体型ブレーキ装置。
[7] 前記複数の環状部材の 1つが前記回転軸と同軸な円筒部分を有しており、かつ他 の環状部材が前記円筒部分の外周面に摺動自在に外嵌されていることを特徴とする 請求項 5または 6に記載した自由回転環状体型ブレーキ装置。
[8] 前記遊星歯車機構は、前記サンギヤを前記固定手段に固定し、前記プラネタリギ ャを前記回転軸によって回転駆動して、前記リングギヤ力 増速された回転駆動力 を取り出すように構成されて 、ることを特徴とする請求項 1乃至 7の 、ずれかに記載し た自由回転環状体型ブレーキ装置。
[9] 前記回転駆動力を出力する出力軸と、
前記回転軸を前記出力軸に接続した直結状態と前記リングギヤを前記出力軸に接 続した増速状態とを選択的に切り換え可能な切換手段と、
をさらに備えることを特徴とする請求項 8に記載した自由回転環状体型ブレーキ装置
[10] 前記出力軸が、自動車のプロペラシャフトおよび終減速機を介して左右の駆動輪 に接続されて ヽることを特徴とする請求項 9に記載した自由回転環状体型ブレーキ 装置。
[11] 前記遊星歯車機構が、電気自動車の駆動輪の内側に配設されたインホイールモ ータの駆動出力を減速するための減速機構として構成されていることを特徴とする請 求項 1乃至 7のいずれかに記載した自由回転環状体型ブレーキ装置。
[12] 前記第 1の環状体は、前記接続手段および前記従動手段のうち前記固定手段に 対する相対回転速度差が大き 、方と一体に回転するように支持されて 、ることを特 徴とする請求項 2乃至 11のいずれかに記載した自由回転環状体型ブレーキ装置。
[13] 前記第 1の環状体は、前記接続手段および前記従動手段のうち前記固定手段に 対する相対回転速度差が小さ 、方と一体に回転するように支持されて 、ることを特徴 とする請求項 2乃至 11のいずれかに記載した自由回転環状体型ブレーキ装置。
[14] 前記回転軸から前記接続手段への回転駆動力の伝達を断接する、前記回転軸と 前記接続手段との間に介装されたクラッチと、
このクラッチの作動を制御するクラッチ制御手段と、をさらに備え、
前記クラッチ制御手段は、前記回転軸の制動を表す信号が入力したときに前記クラ ツチを作動させて前記回転軸と前記接続手段とを接続させることを特徴とする請求項 1乃至 13の 、ずれかに記載した自由回転環状体型ブレーキ装置。
[15] 前記環状体が互いに接触した状態を維持するように前記環状体を前記軸線方向 に一体に付勢する付勢手段をさらに備えることを特徴とする請求項 1乃至 14のいず れかに記載した自由回転環状体型ブレーキ装置。
[16] 静止部分によって回転自在に支持された回転軸と、
前記回転軸と一体に回転する第 1の回転体と、
前記回転軸と同軸にかつ前記回転軸の軸線方向に変位自在に、さらに前記静止 部分によって回転不能に支持された固定体と、
前記回転軸に対して同軸にかつ相対回転自在に、さらに前記回転軸の軸線方向 に変位自在に前記第 1の回転体と前記固定体との間に介装された第 2および第 3の 回転体と、 前記第 1〜第 3の回転体と前記固定体との間にそれぞれ介装された第 1〜第 3の自 由回転環状体と、
前記第 2および第 3の回転体がそれぞれ前記第 1の回転体とは異なる回転数で回 転するように前記回転軸の回転を前記第 2および第 3の回転体にそれぞれ伝達する 、前記静止部分に支持された回転伝達機構と、
前記第 1の回転体および前記固定体によって、前記第 1〜第 3の回転体および前 記第 1〜第 3の自由回転環状体を一体に挟持するべぐ前記第 1の回転体および前 記固定体の少なくともいずれか一方を前記軸線方向に押動する、前記静止部分に 支持された押動手段と、
を備えることを特徴とする自由回転環状体型ブレーキ装置。
[17] 前記回転伝達機構は、前記第 2の回転体の回転数が前記第 1の回転体の回転数 よりも高ぐかつ前記第 3の回転体の回転数が前記第 2の回転体の回転数よりも高く なるように構成されて 、ることを特徴とする請求項 16に記載した自由回転環状体型 ブレーキ装置。
[18] 前記回転伝達機構は、前記第 2の回転体の回転数が前記第 1の回転体の回転数 よりも低ぐかつ前記第 3の回転体の回転数が前記第 2の回転体の回転数よりも低く なるように構成されて 、ることを特徴とする請求項 16に記載した自由回転環状体型 ブレーキ装置。
[19] 前記第 1〜第 3の自由回転環状体は、前記軸線方向に同軸に積層されて相互に 摺動自在な複数の環状部材から構成されていることを特徴とする請求項 16乃至 18 の!ヽずれかに記載した自由回転環状体型ブレーキ装置。
[20] 前記複数の環状部材のうち隣接する環状部材同士が異なる回転速度で回転する ようにそれらの間に作用する摺動摩擦の大きさを制御する摺動摩擦制御手段をさら に備えることを特徴とする請求項 5, 6, 18, 19のいずれかに記載した自由回転環状 体型ブレーキ装置。
[21] 前記摺動摩擦制御手段は、前記複数の環状部材のうち隣接する環状部材をそれ ぞれ形成して!/、る金属材料の硬度を異ならせることによって構成されて 、ることを特 徴とする請求項 20に記載した自由回転環状体型ブレーキ装置。
[22] 前記複数の環状部材は、前記硬度の高!、環状部材と前記硬度の低!、環状部材と を交互に並べたものであることを特徴とする請求項 21に記載した自由回転環状体型 ブレーキ装置。
[23] 前記複数の環状部材は、前記回転軸の軸線方向に前記硬度の低!、順に前記環 状部材を並べたものであることを特徴とする請求項 21に記載した自由回転環状体型 ブレーキ装置。
[24] 前記摺動摩擦制御手段は、前記複数の環状部材のうち隣接する環状部材同士の 直径方向の寸法を異ならせることによって構成されていることを特徴とする請求項 20 に記載した自由回転環状体型ブレーキ装置。
[25] 前記複数の環状部材は、前記直径方向の寸法の大きい環状部材と前記直径方向 の寸法の小さい環状部材とを交互に並べたものであることを特徴とする請求項 24に 記載した自由回転環状体型ブレーキ装置。
[26] 前記複数の環状部材は、前記回転軸の軸線方向に前記直径方向の寸法の小さい 順に前記環状体を並べたものであることを特徴とする請求項 24に記載した自由回転 環状体型ブレーキ装置。
[27] 前記摺動摩擦制御手段は、前記複数の環状部材のうち隣接する環状部材同士の 軸線方向の寸法を異ならせることによって構成されていることを特徴とする請求項 20 に記載した自由回転環状体型ブレーキ装置。
[28] 前記複数の環状体部材は、前記軸線方向の寸法の大き!、環状部材と前記軸線方 向の寸法の小さい環状部材とを交互に並べたものであることを特徴とする請求項 27 に記載した自由回転環状体型ブレーキ装置。
[29] 前記複数の環状部材は、前記回転軸の軸線方向に前記軸線方向の寸法の小さい 順に前記環状体を並べたものであることを特徴とする請求項 27に記載した自由回転 環状体型ブレーキ装置。
[30] 前記摺動摩擦制御手段は、前記複数の環状体部材のうち隣接する環状部材同士 の摩擦摺動面にそれぞれ凹設した凹部の面積を異ならせることによって構成されて
V、ることを特徴とする請求項 20に記載した自由回転環状体型ブレーキ装置。
[31] 前記複数の環状部材は、前記凹部の面積の大きい環状部材と前記凹部の面積の 小さい環状部材とを交互に並べたものであることを特徴とする請求項 30に記載した 自由回転環状体型ブレーキ装置。
[32] 前記複数の環状部材は、前記回転軸の軸線方向に前記凹部の面積の小さい順に 前記環状部材を並べたものであることを特徴とする請求項 30に記載した自由回転環 状体型ブレーキ装置。
[33] 交通機関の車輪と一体に回転するブレーキディスクと、
このブレーキディスクに向力つてブレーキパッドを押動する押動手段と、 前記ブレーキディスクと前記ブレーキパッドとの間において前記ブレーキディスクと 同軸にかつ相対回転自在に介装された自由回転環状体と、
を備えることを特徴とする自由回転環状体型ブレーキ装置。
[34] 前記自由回転環状体は、前記ブレーキパッドの側の側面が摩擦摺動面であり、か つ反対側の側面に相手側と摩擦係合する摩擦材が設けられた、少なくとも一つの環 状部材を有して 、ることを特徴とする請求項 33に記載した自由回転環状体型ブレー キ装置。
[35] 複数の前記環状部材が前記ブレーキディスクの軸線方向に同軸に積層されており かつ前記複数の環状部材の各摩擦材の摩擦係数は、前記ブレーキパッドの側ほど 高く、前記ブレーキディスクの側ほど低くなるように設定されて 、る、
ことを特徴とする請求項 34に記載した自由回転環状体型ブレーキ装置。
[36] 前記ブレーキパッドと摩擦摺動する前記環状部材における摩擦材の摩擦係数は、 前記ブレーキパッドの摩擦材における摩擦係数より低く設定されていることを特徴と する請求項 35に記載した自由回転環状体型ブレーキ装置。
[37] 前記ブレーキディスクには、前記環状部材の内周面が摺動自在に外嵌する、自己 潤滑性の材料カゝら製作された支持部材が設けられていることを特徴とする請求項 33 乃至 36の ヽずれかに記載した自由回転環状体型ブレーキ装置。
[38] 前記自由回転環状体の内周部分を前記ブレーキディスクに向かって付勢する付勢 手段が設けられて 、ることを特徴とする請求項 33乃至 37の 、ずれかに記載した自 由回転環状体型ブレーキ装置。
PCT/JP2006/316883 2005-09-02 2006-08-28 自由回転環状体型ブレーキ装置 WO2007029543A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/064,880 US8181750B2 (en) 2005-09-02 2006-08-28 Floating-disk type brake system
US13/448,762 US8376091B2 (en) 2005-09-02 2012-04-17 Floating-disk type brake system
US13/448,727 US8910754B2 (en) 2005-09-02 2012-04-17 Floating-disk type brake system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005255209 2005-09-02
JP2005-255209 2005-09-02
JP2006-045550 2006-02-22
JP2006045550 2006-02-22
JP2006-143272 2006-05-23
JP2006143272A JP5627827B2 (ja) 2005-09-02 2006-05-23 自由回転環状体型ブレーキ装置

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/064,880 A-371-Of-International US8181750B2 (en) 2005-09-02 2006-08-28 Floating-disk type brake system
US13/448,727 Division US8910754B2 (en) 2005-09-02 2012-04-17 Floating-disk type brake system
US13/448,762 Continuation US8376091B2 (en) 2005-09-02 2012-04-17 Floating-disk type brake system

Publications (1)

Publication Number Publication Date
WO2007029543A1 true WO2007029543A1 (ja) 2007-03-15

Family

ID=37835664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316883 WO2007029543A1 (ja) 2005-09-02 2006-08-28 自由回転環状体型ブレーキ装置

Country Status (3)

Country Link
US (3) US8181750B2 (ja)
JP (1) JP5627827B2 (ja)
WO (1) WO2007029543A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015093463A1 (ja) * 2013-12-16 2017-03-16 アイシン精機株式会社 摺動部材

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5117278B2 (ja) * 2008-05-14 2013-01-16 ホンマ科学株式会社 自由回転環状体型動力伝達制動装置
US10093506B2 (en) * 2013-07-01 2018-10-09 Bobst Mex Sa Braking device for a tape reel
US9353811B2 (en) 2013-11-13 2016-05-31 Akebono Brake Industry Co., Ltd Electric park brake for a multiple piston caliper
US9476469B2 (en) 2014-01-22 2016-10-25 Akebono Brake Industry Co., Ltd Electric drum or drum-in-hat park brake
US9587692B2 (en) 2015-04-01 2017-03-07 Akebono Brake Industry Co., Ltd Differential for a parking brake assembly
JP6384407B2 (ja) * 2015-06-18 2018-09-05 マツダ株式会社 最終減速装置のダンパ配設構造
US9772029B2 (en) 2015-07-09 2017-09-26 Akebono Brake Industry Co., Ltd. Planetary carrier with spring clutch
US9989114B2 (en) * 2016-06-24 2018-06-05 Akebono Brake Industry Co., Ltd Power transfer mechanism for a parking brake assembly
KR102588934B1 (ko) * 2018-07-31 2023-10-16 현대자동차주식회사 차량의 파워트레인
US11339842B2 (en) 2019-03-26 2022-05-24 Akebono Brake Industry Co., Ltd. Brake system with torque distributing assembly
CN113353038B (zh) * 2021-06-22 2022-06-14 长春工程学院 基于大数据的智能无人驾驶汽车动力补偿系统
JP7425025B2 (ja) 2021-07-30 2024-01-30 株式会社オリジン 制動装置
KR102622464B1 (ko) * 2021-12-06 2024-01-08 씨스톤 테크놀로지스(주) 동력 전달 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123153U (ja) * 1990-03-27 1991-12-16
JPH0742757A (ja) * 1993-07-28 1995-02-10 Kubota Corp クラッチ又はブレーキ
JPH0752664A (ja) * 1993-08-11 1995-02-28 Mitsubishi Electric Corp インホイールモータ
JP2003222166A (ja) * 2002-01-29 2003-08-08 Honma Kagaku Kk 回転体用のブレーキ装置,自動車,鉄道車両,航空機,工作機械及び乗り物用のブレーキ装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1961326A (en) * 1931-06-15 1934-06-05 William B Barnes Freewheel control
US2953040A (en) * 1955-01-26 1960-09-20 Gen Motors Corp Transmission
US3221853A (en) * 1962-08-29 1965-12-07 Raybestos Manhattan Inc Friction devices
GB1365251A (en) * 1971-07-13 1974-08-29 Nissan Motor Automatic power transmission
US4037694A (en) * 1975-07-21 1977-07-26 Rockwell International Corporation Drive axle outer end with brake and gearing
DE3012791C2 (de) * 1980-04-02 1983-08-04 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen Druckmittelbetätigte Reibscheibenkupplung oder -bremse
FR2512144A1 (fr) * 1981-08-25 1983-03-04 Lucas Ind Plc Perfectionnements apportes aux freins a disques de forte capacite, notamment pour les poids lourds
JPS63501441A (ja) * 1985-11-26 1988-06-02 ヨツト エム フオイト ゲ−エムベ−ハ− デイスククラツチ
JP3599123B2 (ja) * 1994-06-22 2004-12-08 本田技研工業株式会社 トランスミッション用油圧ブレーキ
US20020117363A1 (en) * 2001-02-26 2002-08-29 Meritor Heavy Vehicle Systems, Llc Combination floating and fixed rotor for a multi disc brake
JP4150191B2 (ja) 2002-01-29 2008-09-17 ホンマ科学株式会社 回転体用のブレーキ装置,自動車,鉄道車両,航空機,工作機械及び乗り物用のブレーキ装置
US6962243B2 (en) * 2002-10-07 2005-11-08 Delphi Technologies, Inc. Multi-disc brake system
DE10345321A1 (de) * 2003-09-30 2005-04-14 Deere & Company, Moline Kupplungs- und Bremseinheit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123153U (ja) * 1990-03-27 1991-12-16
JPH0742757A (ja) * 1993-07-28 1995-02-10 Kubota Corp クラッチ又はブレーキ
JPH0752664A (ja) * 1993-08-11 1995-02-28 Mitsubishi Electric Corp インホイールモータ
JP2003222166A (ja) * 2002-01-29 2003-08-08 Honma Kagaku Kk 回転体用のブレーキ装置,自動車,鉄道車両,航空機,工作機械及び乗り物用のブレーキ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015093463A1 (ja) * 2013-12-16 2017-03-16 アイシン精機株式会社 摺動部材

Also Published As

Publication number Publication date
JP2007255695A (ja) 2007-10-04
US20090242336A1 (en) 2009-10-01
US8376091B2 (en) 2013-02-19
US8181750B2 (en) 2012-05-22
JP5627827B2 (ja) 2014-11-19
US8910754B2 (en) 2014-12-16
US20120199424A1 (en) 2012-08-09
US20120199425A1 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
WO2007029543A1 (ja) 自由回転環状体型ブレーキ装置
CN100540351C (zh) 电动式车轮驱动装置
US9182021B2 (en) Electric linear motion actuator and electric disk brake system
US7083538B2 (en) Power transmission with electromechanical actuator
KR20000068589A (ko) 차량용 유성 트랜스미션
WO2013157644A1 (ja) 摩擦ブレーキ装置
WO2017122739A1 (ja) 電動ブレーキ装置
US5613587A (en) Transfer case friction plate synchronizer
JP6659364B2 (ja) 電動ブレーキ装置
US6098763A (en) Electrically-operated disc brake assemblies for vehicles
JP2000503746A (ja) 多円板軸継手装置、これを備えた自動変速装置、及びその製造方法
US5927418A (en) Power transmission device in a fluid pressure accumulating hybrid vehicle
JPS583141B2 (ja) 自動車用多段遊星歯車伝導装置
US6699153B2 (en) Electrically-actuated braking clutch for transmission
KR101332349B1 (ko) 차량용 인휠구동 시스템
CN210554153U (zh) 车辆用动力传递装置
JP5946399B2 (ja) 電動式ディスクブレーキ装置
KR101941731B1 (ko) 멀티 프리 디스크식 클러치
CN107387590B (zh) 一种可状态保持的离合装置
JP2012192765A (ja) モータ式車両駆動装置
JP5117278B2 (ja) 自由回転環状体型動力伝達制動装置
JP3477506B2 (ja) オンオフ式トルクリミッタ
JP2024523298A (ja) ロック可能な差動ギア
CN101131185B (zh) 离合器盘装置
JPS59155630A (ja) 車両の動力伝達系「ねじ」り振動吸収装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12064880

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06783112

Country of ref document: EP

Kind code of ref document: A1