WO2007026804A1 - ハニカム触媒体、及びハニカム触媒体の製造方法 - Google Patents

ハニカム触媒体、及びハニカム触媒体の製造方法 Download PDF

Info

Publication number
WO2007026804A1
WO2007026804A1 PCT/JP2006/317185 JP2006317185W WO2007026804A1 WO 2007026804 A1 WO2007026804 A1 WO 2007026804A1 JP 2006317185 W JP2006317185 W JP 2006317185W WO 2007026804 A1 WO2007026804 A1 WO 2007026804A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
cell
noble metal
partition wall
pores
Prior art date
Application number
PCT/JP2006/317185
Other languages
English (en)
French (fr)
Inventor
Yukio Miyairi
Toshio Yamada
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to JP2007533315A priority Critical patent/JP4814886B2/ja
Priority to EP06797145A priority patent/EP1920834A4/en
Publication of WO2007026804A1 publication Critical patent/WO2007026804A1/ja

Links

Classifications

    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • B01J35/30
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals

Definitions

  • honeycomb catalyst body and method for manufacturing honeycomb catalyst body
  • the present invention relates to a stationary engine for automobiles, construction machinery, and industrial use, as well as carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides contained in exhaust gas from which the power of combustion equipment etc. is also discharged.
  • CO carbon monoxide
  • HC hydrocarbons
  • the present invention relates to a catalyst body and a method for producing the same.
  • a medium-contact catalyst (a two-cam catalyst body) is used.
  • this Hercam catalyst body has a structure in which a catalyst layer 15 is supported on the surface of the partition wall 4 forming the cell 3.
  • the her cam catalyst body 60 (her cam structure 11)
  • the her cam catalyst body from one end face 2a side is used.
  • the exhaust gas is caused to flow into the cell 3 of 60, the exhaust gas is brought into contact with a catalyst layer (not shown) on the surface of the partition wall 4, and then discharged to the outside on the side force of the other end face 2b (for example, patent Reference 1).
  • the thickness of the catalyst layer on the partition wall surface is usually about several tens of ⁇ m.
  • the honeycomb catalyst body There is a tendency for the efficiency of the purification. This tendency is particularly remarkable under low temperature conditions.
  • the thickness of the catalyst layer is reduced only by increasing the surface area of the catalyst layer, and the diffusion rate of the components to be purified in the catalyst layer is increased. There is a need. Therefore, while increasing the cell density has the advantage of increasing the surface area of the catalyst layer, it also has the problem of increasing pressure loss.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-33664
  • An object of the present invention is to provide a honeycomb catalyst body that can be mounted and a method for manufacturing the honeycomb catalyst body.
  • a catalyst layer containing a noble metal is formed on the inner surface of the cell of the Hercom structure and the inner surface of the pore of the porous partition wall.
  • the inventors have found that the above-mentioned problems can be achieved by supporting the mass ratio of the noble metals contained in the respective catalyst layers within a specific numerical range, and have completed the present invention.
  • a porous partition wall having a large number of pores arranged so as to form a plurality of cells communicating between two end faces; and the cells on either end face, And a catalyst layer containing a noble metal supported in a layered manner on the inner surface of the cell and the inner surface of the pore.
  • a large number of catalyst-carrying pores through which gas can pass are formed in the partition walls, and the mass (M) of the noble metal contained in the catalyst layer carried on the inner surface of the cell and the pores.
  • the mass (M) of the noble metal contained in the catalyst layer satisfies the relationship (M) Z (M) ⁇ 4 Honeycomb catalyst body.
  • honeycomb catalyst body according to [1], wherein the amount (M) satisfies the relationship of (M) Z (M) ⁇ 6.
  • honeycomb catalyst body according to [1], wherein the amount (M) satisfies the relationship of (M) Z (M) ⁇ 10.
  • honeycomb catalyst body according to any one of [1] to [5], which is less than 75.
  • the partition wall thickness is 0.3 to 0.43 mm, the cell density is 4 to 46.5 cells Zcm 2, and the average image maximum distance of the partition wall is 250 to 500 / ⁇ . [1] to [6], wherein the partition wall has a porosity of 55 to 65%.
  • the porosity of the partition wall is 60 to 80%, and the common logarithmic standard deviation (pore diameter distribution ⁇ ) of the pore diameter distribution of the partition wall is 0.2 to 0.6.
  • a catalyst slurry containing a noble metal is applied to a honeycomb structure provided with a plugged portion so as to apply ultrasonic waves, and the inner surface of the cell and the fine structure are applied.
  • the catalyst layer containing the noble metal is supported in layers on the inner surface of the cell and the inner surface of the pores by drying.
  • the partition wall has a large number of catalyst-carrying pores through which gas can pass, and the noble metal contained in the catalyst layer supported on the inner surface of the cell. And the noble metal contained in the catalyst layer supported on the inner surface of the pores.
  • a method for manufacturing a honeycomb catalyst body is a method for manufacturing a honeycomb catalyst body.
  • the honeycomb catalyst body of the present invention has an effect that it can be mounted even in a limited space where the purification efficiency is excellent and the pressure loss is small.
  • a honeycomb catalyst body of the present invention it is possible to manufacture a hard cam catalyst body that is excellent in purification efficiency, pressure loss power, and can be mounted even in a limited space.
  • FIG. 1 is a front view schematically showing one embodiment of a honeycomb catalyst body of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing one embodiment of a honeycomb catalyst body of the present invention.
  • FIG. 3 is a partially enlarged view schematically showing an embodiment of a honeycomb catalyst body of the present invention.
  • Fig. 4 is a front view schematically showing one embodiment of a conventional honeycomb catalyst body.
  • FIG. 5 is a cross-sectional view schematically showing one embodiment of a conventional honeycomb catalyst body.
  • FIG. 6 is a partially enlarged view schematically showing one embodiment of a conventional honeycomb catalyst body.
  • FIG. 7 is a partially enlarged view of FIG.
  • FIG. 8 A graph in which the purification rate is plotted against (M) Z (M).
  • FIG. 9 is a schematic diagram for explaining a test piece used for measurement of permeability.
  • Fig. 10 is a plan view schematically showing an enlarged state of a part of the end face of the embodiment of the honeycomb structure of the present invention.
  • FIG. 11 is an SEM photograph of one embodiment of a her cam structure of the present invention.
  • FIG. 1 is a front view schematically showing one embodiment of a Hercam catalyst body of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing one embodiment of the honeycomb catalyst body of the present invention
  • FIG. 3 is a partially enlarged view schematically showing one embodiment of the hard catalyst body of the present invention.
  • the honeycomb catalyst body 1 of the present embodiment includes a porous partition wall 4 having a large number of pores, a plugging portion 10, an inner surface of the cell 3, and pores 25. Catalyst layers 5 and 15 containing a noble metal supported in layers on the inner surface.
  • the partition wall 4 is arranged so that a plurality of cells 3 communicating between the two end surfaces 2a and 2b are formed.
  • the plugging portion 10 is arranged so as to plug the cell 3 at any one of the end faces 2a and 2b.
  • the catalyst layer 5 is supported in a layered manner on the inner surface of the pores 25, and a large number of catalyst-supported pores 35 through which gas can pass are formed in the partition walls 4.
  • the catalyst layer 15 is supported in a layered manner on the inner surface of the cell 3.
  • the catalyst layers 5 and 15 contain a noble metal.
  • symbol P indicates the cell pitch
  • symbol D indicates the cell hydraulic diameter
  • symbol T indicates the partition wall thickness.
  • the Hercam catalyst body 1 of the present embodiment is supported on the inner surface of the pore 25 and the mass (M) of the noble metal contained in the catalyst layer 15 supported on the inner surface of the cell 3.
  • the mass of the precious metal (M) is (M) Z (M) ⁇ 4, preferably (M) Z (M) ⁇
  • the Hercam catalyst body 1 of the embodiment is extremely excellent in exhaust gas purification efficiency. Catalyst body.
  • the catalyst layer 15 supported on the inner surface of the cell is the catalyst-supporting partition wall 40 from the surface of the catalyst-supporting partition wall 40 including the partition walls 4 and the catalyst layers 5 and 15. 1Z10 in thickness (catalyst carrying partition wall thickness T)
  • the region up to the depth (region represented by ⁇ Zio) is assumed to be.
  • the precious metals contained in the catalyst layers 5 and 15 are gasoline engine exhaust gas purification three-way catalyst, gasoline engine or diesel engine exhaust gas catalyst, and NO selection.
  • noble metals usually contained in a catalyst such as a reducing SCR catalyst. More specifically, Pt, Rh, Pd, or a combination thereof is preferably used.
  • the “mass of noble metal contained in the catalyst layer” in the case where there are two or more kinds of noble metals is the total mass of the two or more kinds of noble metals.
  • the pressure loss that occurs when gas flows through the cell is inversely proportional to the square of the hydraulic diameter of the cell.
  • the ratio of the pressure loss that occurs when the gas passes through the partition wall (pressure loss through the partition wall) and the cell circulation pressure loss ((partition wall passage pressure loss) / (cell circulation pressure loss)) is (Diameter) 2 Z (permeability) ".
  • (cell hydraulic diameter) V (permeability)” is 2 ⁇ 10 3 or more, because the gas can easily flow uniformly over the entire partition wall 4.
  • “(cell hydraulic diameter) 2 Z (perm Ability) ”of less than 6 ⁇ 10 5 is preferable because it is difficult to increase the pressure loss of the entire Hercam catalyst body 1.
  • the "permeability” referred to in the present specification is a physical property value calculated by the following equation (1)! And represents a passage resistance when a predetermined gas passes through the material (partition). This is an index value.
  • C permeability (m 2 )
  • F gas flow rate (cm 3 Zs)
  • T sample thickness (cm)
  • V gas viscosity (dynes ⁇ sec / cm 2 )
  • D indicates the sample diameter (cm)
  • P indicates the gas pressure (PSI).
  • FIG. 9 is a schematic diagram for explaining a test piece used for measurement of permeability.
  • the shape of the test piece 100 may be a square plate or a disc shape. Room temperature air is passed through the test piece 100, and the permeability at that time is calculated by the above equation (1). It is desirable to use a fluid seal such as grease so that air does not leak from the gap between the test piece 100 and the seal formed by the remaining rib 105. Also, adjust the air flow rate so that the calculated flow velocity through the partition wall is 0.1 ⁇ : LcmZsec, and use the result measured with this air flow rate.
  • Cam Density (cell density) of the cells 3 of the catalyst body 1 is 0.25 to 46 5 Z cm 2 is preferably a (L.61 ⁇ 300Cpsi) tool 1 55-15. 5 pieces / cm 2 (10-100 cps i) are more preferred. 1. 555-12.4 pieces Zcm 2 (10-80 cpsi) is particularly preferred.
  • the cell density is less than 0.25 Zcm 2 , the contact efficiency with the exhaust gas tends to be insufficient.
  • the cell density exceeds 46.5 Zcm 2 the pressure loss tends to increase.
  • “Ji 51” is an abbreviation of “Ji 6115 per square inch”. It is a unit that represents the number of cells. lOcpsi is about 1.55 Zcm 2 .
  • the thickness of the partition wall 4 is preferably 0.15 to 7 mm (5.9 to 276 mil), and is 0.4 to 2 mm (15.7 to 78.7 mil). More preferably, it is more preferably 0.7 to 1.5 mm (27.6 to 59 mil). If the partition wall thickness T is less than 0.15 mm, the thermal shock resistance may deteriorate due to insufficient strength. On the other hand, when the partition wall thickness T exceeds 7 mm, the pressure loss tends to increase. In addition, lmil is 1/1000 inch, and is about 0.025 to 5mm.
  • the average maximum image distance of the partition wall 4 in a state where the catalyst layer 5 is supported is preferably 40 to 3000 ⁇ m. More preferably, it is more than 250 ⁇ m and more preferably not more than 500 ⁇ m.
  • the “image maximum distance average” referred to in the present specification is a physical property value measured by image analysis.
  • the maximum linear distance in the gap was measured, and the average value of the maximum linear distance measured for all fields of view was taken as the “maximum image distance average”.
  • the range of tXt of the partition walls 4 is one observation range (field of view) V, and there are 20 fields of view.
  • SEM Take a photo and analyze the image. Then, as shown in Fig. 11, in the SEM picture of 20 fields of view, measure the maximum linear distance in each field of view and take the average value.
  • the maximum straight line distance is 387 ⁇ m, 442 ⁇ m, 327 m, and 179 m, with the uppermost left edge force toward the right and the upper force toward the lower, respectively.
  • the SEM photograph shown in FIG. 11 was taken at a magnification of 50 times.
  • image analysis software can be used.
  • a product name: Paint Shop ProX manufactured by COREL can be used.
  • the magnification of the SEM photograph is not particularly limited as long as a clear image can be obtained.
  • an arbitrary magnification of 10 to L000 may be selected.
  • the porosity of the partition wall 4 in a state where the catalyst layer 5 is supported is preferably 55% or more.
  • the common logarithmic standard deviation (pore size distribution ⁇ ) of the pore size distribution of the partition walls 4 is preferably 0.1 to 0.6, more preferably 0.2 to 0.6.
  • the pore size distribution ⁇ is less than 0.1, the flow velocity through the partition wall tends to increase and the purification performance tends to deteriorate.
  • the pore size distribution ⁇ is more than 0.6, the gas tends to flow only through the large pores, so that the purification performance tends to deteriorate.
  • the value measured with a mercury porosimeter is used as the “pore size distribution” when the “common logarithmic standard deviation of the pore size distribution” is derived.
  • the common logarithmic standard deviation (sd in the following formula (5); standard deviation) is obtained using the following formulas (2) to (5).
  • the porosity of the plugging portion 10 of the Hercam catalyst body 1 of the present embodiment is preferably 55% or more, more preferably 55 to 70%, and even more preferably 55 to 65%. It is particularly preferred that By setting the porosity of the plugged portion 10 to 55% or more, the heat capacity can be reduced and the time until the catalyst reaches the activation temperature can be shortened. For this reason, the purification performance during this time can be improved.
  • the ratio (LZd) between the equivalent diameter d and the length in the cell communication direction (hereinafter sometimes referred to as “the total length L”) is not less than 0.3, Preferably less than 75. More preferably, it is 0.3 to 0.5, and particularly preferably 0.3 to 0.4. If the total length L is too long (the ratio of LZd is too large), the flow velocity passing through the wall will not be constant in the axial direction of the carrier, resulting in a distribution. That is, if a large amount of exhaust gas flows only through the partition wall near the outlet, a load is applied to the catalyst only in that portion, and the catalyst coated at other positions may not be used effectively and may be wasted.
  • the equivalent diameter d is a value obtained by “4 X cross-sectional area Z outer circumference length”.
  • cross-sectional area is the area of a cross section cut in a radial direction on a plane perpendicular to the cell communication direction
  • peripheral length of cross section means the outer peripheral length of the cross section.
  • the surface is perpendicular to the cell communication direction in the radial direction.
  • the cut cross-sectional shape is preferably a shape suitable for the internal shape of the exhaust system to be installed. Specific examples include a circle, an ellipse, an ellipse, a trapezoid, a triangle, a quadrangle, a hexagon, and a left-right asymmetrical shape. Of these, a circle, an ellipse, and an ellipse are preferable.
  • a method for manufacturing the honeycomb catalyst body of the present embodiment will be described.
  • a catalyst slurry containing a noble metal is applied to a honeycomb structure having a predetermined shape while applying ultrasonic waves, and the inner surface of the cell 3 and the inside of the pores 25 are coated. It can be produced by forming a coating layer having a catalyst slurry force on the surface and then drying. The details will be described below.
  • the honeycomb structure serving as the catalyst carrier has a large number of pores arranged so that a plurality of cells communicating between the two end faces 2a and 2b are formed.
  • a porous partition wall 4 and a plugging portion 10 arranged so as to plug the cell 3 at one of the end faces 2a and 2b are provided.
  • Preferred examples of the material constituting the Hercam structure include a material containing ceramics as a main component, a sintered metal, and the like.
  • the ceramics include silicon carbide, cordierite, alumina titanate, sialon, mullite, silicon nitride, zirconium phosphate, zirconia, Preferred examples include titanium, alumina, silica, or a combination thereof.
  • it is suitable in terms of ceramic strength and alkali resistance such as silicon carbide, cordierite, mullite, silicon nitride, and alumina.
  • oxide ceramics are preferable from the viewpoint of cost.
  • the coefficient of thermal expansion of the Hercam structure in the cell communication direction at 40 to 800 ° C is 1.0.
  • X 10 _6 Z ° is preferably less than C instrument 0 ⁇ 0. 8 X 10 _6 Z ° is rather more preferably a C, 0 to 0. In particular it 5 is X 10 _6 Z ° C preferable. If the coefficient of thermal expansion in the direction of cell communication at 40 to 800 ° C is less than 1. OX 10 _6 Z ° C, the thermal stress when exposed to high-temperature exhaust gas can be kept low, and damage due to thermal stress can be prevented. Can be prevented.
  • the Hercam structure can be manufactured, for example, according to a manufacturing method according to a conventionally known manufacturing method of a diesel particulate filter (DP F).
  • DP F diesel particulate filter
  • the honeycomb catalyst body of the present invention in which a catalyst is supported on this hammer structure has a large number of catalyst-supporting pores through which gas can pass formed in the partition walls.
  • material chemistry When the composition is adjusted appropriately, and when a porous structure is used with a pore-forming agent, the pore structure of the partition walls is adjusted by appropriately adjusting the type of pore-forming agent used, the particle diameter, the amount added, etc. can do.
  • the catalyst slurry can be prepared according to a conventionally known method. It should be noted that the catalyst slurry has thixotropic properties because the catalyst slurry penetrates into the pores of the hard cam structure and it is easy to form a coating layer on the inner surface of the pores. I like it. The presence or absence of thixotropy in the catalyst slurry can be determined by the thixotropy index. The thixotropy index of the catalyst slurry can be adjusted by adding an appropriate amount of a thixotropic agent such as erosin, bentonite, hydrogenated castor oil, calcium carbonate, aluminum silicate, or the like.
  • a thixotropic agent such as erosin, bentonite, hydrogenated castor oil, calcium carbonate, aluminum silicate, or the like.
  • the catalyst slurry is applied to the Hercam structure and Z or the catalyst slurry while applying ultrasonic vibration to form a coating layer on the inner surface of the cell and the inner surface of the pores.
  • the catalyst slurry may be applied by a method such as a suction method.
  • the Hercam structure formed with the coating layer is dried at room temperature or under heating conditions, whereby the mass (M) of the noble metal contained in the catalyst layer supported on the inner surface of the cell,
  • the mass (M) of the noble metal contained in the catalyst layer supported on the inner surface of the pore is (M
  • a honeycomb catalyst body of the present embodiment satisfying the relationship of ⁇ 4 can be manufactured.
  • the honeycomb structure is vibrated to form a coating layer on the inner surface of the pores. You may do it.
  • an optimum condition may be selected in consideration of the strength of vibration to be applied, frequency, time, and the like.
  • the decrease in the viscosity of the catalyst slurry due to vibration depends on the vibration conditions, but it is sufficient to decrease it by 30% or more compared to the state without vibration. There is a possibility that it is not preferable in forming the layer.
  • the viscosity was measured using a BL type viscometer manufactured by Toki Sangyo Co., Ltd. under the temperature conditions in the actual work process.
  • [0059] Take a part of the partition wall and process it so that there are no irregularities. Use this sample as a sample after inserting it with a ⁇ 20mm sample holder from the top and bottom to prevent gas leakage. A specific gas pressure was applied to the sample so that the downstream side was latm, and the gas was allowed to pass through. At this time, permeabilities were calculated for the gas that passed through the sample based on the following formula (1).
  • C permeability (m 2 )
  • F gas flow rate (cmVs)
  • T sample thickness
  • V gas viscosity (dynes ⁇ sec / cm 2 )
  • D is sample Diameter (cm)
  • P indicates gas pressure (PSI).
  • an apparatus such as a trade name “Capillary Flow pormeter” (manufactured by Porous Materials, Inc., model: 1100AEX) was used.
  • [Purification rate] Oxygen 7% by volume, water vapor 10% by volume, diacid-carbon 10% by volume, hydrocarbon 20 0 (number of carbon moles) ppm, and the balance of combustion gas with nitrogen power, space velocity (SV) 100 It was allowed to flow into the body of a two-cam structure or a hard cam catalyst at a temperature of 200 ° C.
  • the purification rate (%) was calculated from the hydrocarbon concentration of the combustion gas before and after the inflow.
  • the mass (M) of the noble metal contained in the catalyst layer supported on the inner surface of the cell and the catalyst layer supported on the inner surface of the pores are contained.
  • Kojiritei koji raw material prepared at a predetermined ratio so as to be 12 to 16% by mass of MgO, 12 to 25 parts by mass of graphite as a pore-forming agent, and 5 to 15 of synthetic resin Part by weight was added.
  • a clay was prepared by adding water and kneading. The prepared clay was vacuum degassed and then extrusion molded to obtain a Hercam molded body. The resulting hammer molded body was dried and then fired at a maximum temperature range of 1400 to 1430 ° C. to obtain a honeycomb sintered body.
  • the pores of the partition walls shown in Table 1 were prepared by filling a plugging agent at one end of each cell of the obtained no-cam fired body with a plugging agent so as to have a pinecone-like shape and firing again.
  • a structure (9 pieces) having a structure having a diameter of 144 mm and a total length of 152 mm was produced.
  • the pore structure of the partition walls was adjusted by appropriately adjusting the chemical composition of the cordierite-forming raw material, the particle size of the pore-forming agent, the added amount of the pore-forming agent, and the like.
  • the plugging depth of the plugged portion was 10 mm of end face force.
  • Tables 1 and 2 show the results of measuring and calculating the purification rate of the prepared two-cam catalyst bodies (Examples 1 to 14 and Comparative Examples 1 to 5). In addition, a graph plotting the purification rate against (M) Z (M)
  • Table 3 shows D) and pore volume (f)).
  • the hard cam catalyst bodies of Examples 1 to 14 are superior to the hard cam catalyst bodies of Comparative Examples 1 to 5, and have an excellent purifier ratio. It is clear that it shows performance. Industrial applicability
  • the honeycomb catalyst body of the present invention is excellent in purification efficiency and can be mounted even in a limited space where the pressure loss is small. Therefore, the Hercam catalyst body of the present invention is suitably used for purifying components to be purified contained in exhaust gas discharged from, for example, stationary engines for automobiles, construction machines, and industrial stationary engines, and combustion equipment. It is done.

Abstract

 浄化効率に優れ、圧力損失が小さく、限られた空間であっても搭載可能なハニカム触媒体を提供するものであり、二つの端面間を連通する複数のセル3が形成されるように配置された、多数の細孔25を有する多孔質の隔壁4と、セル3をいずれかの端面において目封止するように配置された目封止部と、セル3の内表面、及び細孔25の内表面に担持された、貴金属を含有する触媒層5,15とを備え、セル3の内表面に担持された触媒層5に含有される貴金属の質量(MC)と、細孔25の内表面に担持された触媒層25に含有される貴金属の質量(MP)が、(MP)/(MC)≧4の関係を満たすハニカム触媒体である。

Description

明 細 書
ハニカム触媒体、及びハニカム触媒体の製造方法
技術分野
[0001] 本発明は、自動車用、建設機械用、及び産業用定置エンジン、並びに燃焼機器等 力も排出される排ガスに含まれる一酸ィ匕炭素 (CO)、炭化水素 (HC)、窒素酸化物( NO )、及び硫黄酸化物(SO )等の被浄化成分の浄化に好適に用いられるハ-カ
X X
ム触媒体、及びその製造方法に関する。
背景技術
[0002] 現在、各種エンジン等力 排出される排ガスを浄ィ匕するために、ハ-カム構造の触 媒体 (ノ、二カム触媒体)が用いられている。このハ-カム触媒体は、図 6に示すように 、セル 3を形成する隔壁 4の表面に触媒層 15が担持された構造を有するものである。 また、図 4, 5に示すように、このハ-カム触媒体 60 (ハ-カム構造体 11)を用いて排 ガスを浄ィ匕するに際しては、一の端面 2a側からハ-カム触媒体 60のセル 3に排ガス を流入させ、隔壁 4表面の触媒層(図示せず)に排ガスを接触させ、次いで、他の端 面 2bの側力 外部へと流出させることにより行われる(例えば、特許文献 1参照)。
[0003] このようなハ-カム触媒体を用いて排ガスを浄ィ匕する場合には、排ガスから隔壁表 面の触媒層に向けての、排ガスに含まれる被浄化成分の伝達を可能な限り促進させ 、浄ィ匕効率を向上させる必要がある。排ガスの浄ィ匕効率を向上させるためには、セル の水力直径を小さくすること、及び隔壁の表面積を大きくすること等が必要である。具 体的には、単位面積当たりのセル数 (セル密度)を増加させる方法等が採用される。
[0004] ここで、排ガスから隔壁表面の触媒層に向けての被浄ィ匕成分の伝達率は、セルの 水力直径の二乗に反比例して増加することが知られている。このため、セル密度を増 カロさせるほど、被浄化成分の伝達率は向上する。し力しながら、圧力損失も、セルの 水力直径の二乗に反比例して増加する傾向にある。従って、被浄化成分の伝達率 の向上に伴って、圧力損失が増加してしまうという問題がある。
[0005] なお、隔壁表面の触媒層の厚みは、通常、約数十 μ m程度である。ここで、触媒層 内において被浄ィ匕成分が拡散する速度が不十分である場合には、ハニカム触媒体 の浄ィ匕効率が低下する傾向にある。この傾向は、特に低温条件下で顕著である。こ のため、排ガスの浄ィ匕効率を高めるためには、触媒層の表面積を増加させることだけ でなぐ触媒層の厚みを低減させて、触媒層内における被浄化成分の拡散速度を向 上させる必要がある。従って、セル密度を増カロさせると触媒層の表面積が増加すると いう利点がある一方で、やはり圧力損失が増カロしてしまうという問題がある。
[0006] 排ガスの浄ィ匕効率を高めつつ、圧力損失を低減させるためには、ハ-カム触媒体 の流入径を大きくするとともに、流通させる排ガスの流速を下げる必要がある。しかし 、ハニカム触媒体を大型化等した場合には、例えば車載用のハニカム触媒体等につ いては搭載スペースが限定されるため、搭載が困難になる場合もある。
[0007] 特許文献 1 :特開 2003— 33664号公報
発明の開示
[0008] 本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その 課題とするところは、浄化効率に優れ、圧力損失が小さぐ限られた空間であっても 搭載可能なハニカム触媒体、及びその製造方法を提供することにある。
[0009] 本発明者らは上記課題を達成すべく鋭意検討した結果、ハ-カム構造体のセルの 内表面、及び多孔質隔壁の細孔の内表面に、貴金属を含有する触媒層をそれぞれ 担持するとともに、それぞれの触媒層に含有される貴金属の質量比を特定の数値範 囲とすることによって、上記課題を達成することが可能であることを見出し、本発明を 完成するに至った。
[0010] 即ち、本発明によれば、以下に示すハ-カム触媒体、及びその製造方法が提供さ れる。
[0011] [1]二つの端面間を連通する複数のセルが形成されるように配置された、多数の細 孔を有する多孔質の隔壁と、前記セルを 、ずれかの前記端面にぉ 、て目封止するよ うに配置された目封止部と、前記セルの内表面、及び前記細孔の内表面に層状に担 持された、貴金属を含有する触媒層と、を備えるとともに、前記隔壁には、気体が通 過可能な多数の触媒担持細孔が形成され、前記セルの内表面に担持された前記触 媒層に含有される前記貴金属の質量 (M )と、前記細孔の内表面に担持された前記
C
触媒層に含有される前記貴金属の質量 (M )が、(M )Z(M )≥4の関係を満たす ハニカム触媒体。
[0012] [2]前記セルの内表面に担持された前記触媒層に含有される前記貴金属の質量( M )と、前記細孔の内表面に担持された前記触媒層に含有される前記貴金属の質
C
量 (M )が、(M ) Z (M )≥ 6の関係を満たす前記 [1]に記載のハニカム触媒体。
P P C
[0013] [3]前記セルの内表面に担持された前記触媒層に含有される前記貴金属の質量( M )と、前記細孔の内表面に担持された前記触媒層に含有される前記貴金属の質
C
量 (M )が、(M ) Z (M )≥ 10の関係を満たす前記 [1]に記載のハニカム触媒体。
P P C
[0014] [4]前記触媒層が担持された状態における前記隔壁の気孔率が、 55%以上である 前記 [1]〜 [3]の 、ずれか一項に記載のハニカム触媒体。
[0015] [5]前記目封止部の気孔率が、 55%以上である前記 [1]〜[4]のいずれかに記載 のハニカム触媒体。
[0016] [6]前記セルの連通方向の長さ(L)と等価直径 (d)との比 (LZd)が 0. 3以上、 0.
75未満である前記 [1]〜 [5]の 、ずれかに記載のハニカム触媒体。
[0017] [7]前記隔壁の厚さが 0. 3〜0. 43mmであり、セル密度が 4〜46. 5個 Zcm2であ り、前記隔壁の画像最大距離平均が 250〜500 /ζ πιであり、前記隔壁の気孔率が 5 5〜65%である前記 [ 1 ]〜 [6]の!、ずれかに記載のハ-カム触媒体。
[0018] [8]前記隔壁の気孔率が 60〜80%であり、前記隔壁の細孔径分布の常用対数標 準偏差 (細孔径分布 σ )が 0. 2〜0. 6である前記 [7]に記載のハニカム触媒体。
[0019] [9]前記隔壁の画像最大距離平均が、 250〜3000 111でぁる前記[1]又は[2]に 記載のハニカム触媒体。
[0020] [10]二つの端面間を連通する複数のセルが形成されるように配置された、多数の 細孔を有する多孔質の隔壁と、前記セルをいずれかの前記端面において目封止す るように配置された目封止部と、を備えたハニカム構造体に対して、貴金属を含有す る触媒スラリーを、超音波をかけながら塗布して、前記セルの内表面、及び前記細孔 の内表面に前記触媒スラリー力 なる塗工層を形成した後、乾燥することにより、前 記セルの内表面、及び前記細孔の内表面に、前記貴金属を含有する触媒層が層状 に担持されるとともに、前記隔壁には、気体が通過可能な多数の触媒担持細孔が形 成され、かつ、前記セルの内表面に担持された前記触媒層に含有される前記貴金属 の質量 (M )と、前記細孔の内表面に担持された前記触媒層に含有される前記貴金
C
属の質量 (M )が、(M )Z(M )≥4の関係を満たすノ、二カム触媒体を得ることを含
P P C
むハニカム触媒体の製造方法。
[0021] [11]前記触媒スラリーが、チクソトロピー性を有するものである前記 [10]に記載の ハニカム触媒体の製造方法。
[0022] 本発明のハニカム触媒体は、浄化効率に優れ、圧力損失が小さぐ限られた空間 であっても搭載可能であるという効果を奏するものである。
[0023] また、本発明のハニカム触媒体の製造方法によれば、浄化効率に優れ、圧力損失 力 、さぐ限られた空間であっても搭載可能なハ-カム触媒体を製造することができ る。
図面の簡単な説明
[0024] [図 1]本発明のハニカム触媒体の一実施形態を模式的に示す正面図である。
[図 2]本発明のハニカム触媒体の一実施形態を模式的に示す断面図である。
[図 3]本発明のハニカム触媒体の一実施形態を模式的に示す部分拡大図である。
[図 4]従来のハニカム触媒体の一実施形態を模式的に示す正面図である。
[図 5]従来のハニカム触媒体の一実施形態を模式的に示す断面図である。
[図 6]従来のハニカム触媒体の一実施形態を模式的に示す部分拡大図である。
[図 7]図 3の一部拡大図である。
[図 8] (M )Z(M )に対して、浄ィ匕率をプロットしたグラフである。
P C
[図 9]パーミアビリティーの測定に用いる試験片について説明する模式図である。
[図 10]本発明のハニカム構造体の一実施形態の端面の一部を拡大した状態を模式 的に示す平面図である。
[図 11]本発明のハ-カム構造体の一実施形態の SEM写真である。
符号の説明
[0025] 1, 11 :ハ-カム触媒体、 2a, 2b :端面、 3 :セル、 4 :隔壁、 5, 15 :触媒層、 10 :目封 止部、 20 :外壁、 25 :細孔、 35 :触媒層担持細孔、 40 :触媒担持隔壁、 100 :試験片 、 105 :リブ残り、 D:セル水力直径、 H :リブ残り高さ、 P :セルピッチ、 T, t :隔壁厚さ、 T :触媒担持隔壁厚さ、 V:観察範囲 (視野) 発明を実施するための最良の形態
[0026] 以下、本発明の実施の最良の形態について説明するが、本発明は以下の実施の 形態に限定されるものではなぐ本発明の趣旨を逸脱しない範囲で、当業者の通常 の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも 本発明の範囲に入ることが理解されるべきである。
[0027] 図 1は、本発明のハ-カム触媒体の一実施形態を模式的に示す正面図である。ま た、図 2は、本発明のハニカム触媒体の一実施形態を模式的に示す断面図であり、 図 3は、本発明のハ-カム触媒体の一実施形態を模式的に示す部分拡大図である。 図 1〜3に示すように、本実施形態のハニカム触媒体 1は、多数の細孔を有する多孔 質の隔壁 4と、目封止部 10と、セル 3の内表面、及び細孔 25の内表面に層状に担持 された、貴金属を含有する触媒層 5, 15と、を備えたものである。隔壁 4は、二つの端 面 2a, 2b間を連通する複数のセル 3が形成されるように配置されている。また、目封 止部 10は、いずれかの端面 2a, 2bにおいてセル 3を目封止するように配置されてい る。触媒層 5は、細孔 25の内表面に層状に担持されており、隔壁 4には、気体が通過 可能な多数の触媒担持細孔 35が形成されている。また、触媒層 15は、セル 3の内表 面に層状に担持されている。ここで、触媒層 5, 15には貴金属が含有されている。な お、図 1中、符号 Pはセルピッチ、符号 Dはセル水力直径、及び符号 Tは隔壁厚さを それぞれ示す。
[0028] 排ガスが流路内を流通する際における、排ガスに含まれる被浄ィ匕成分の伝達し易 さは、流路の水力直径の二乗に反比例する。ここで、セルの水力直径と、細孔の水 力直径とでは、細孔の水力直径の方が格段に小さい。このため、セル 3の内表面に 担持された触媒層 15と、細孔 25の内表面に担持された触媒層 5とでは、細孔 25の 内表面に担持された触媒層 5の方が、排ガスに含まれる被浄ィ匕成分がより伝達され 易い。従って、セル 3の内表面に担持された触媒層 15に含有される貴金属の量に比 して、細孔 25の内表面に担持された触媒層 5に含有される貴金属の量を増やすこと により、排ガスの浄ィ匕効率を向上させることができる。
[0029] ここで、本実施形態のハ-カム触媒体 1は、セル 3の内表面に担持された触媒層 15 に含有される貴金属の質量 (M )と、細孔 25の内表面に担持された触媒層 5に含有 される貴金属の質量 (M )が、(M ) Z (M )≥4の関係、好ましくは (M ) Z (M )≥
P P C P C
6の関係、更に好ましくは (M ) Z (M )≥ 10の関係を満たすものである。即ち、本実
P C
施形態のハ-カム触媒体 1は、触媒層 15に含有される貴金属の量に比して、触媒層 5に含有される貴金属の量の方が多いため、排ガス浄ィ匕効率に極めて優れた触媒体 である。
[0030] 本明細書に!/、う(M ) Z (M )の値は、ハ-カム触媒体をセルの連通方向に垂直な
P C
面で径方向に切断した断面にっ 、て元素分析を行 、、その分析結果を表す画像を 解析することにより、測定 ·算出することができる。なお、図 7に示すように、セルの内 表面に担持された触媒層 15とは、隔壁 4と触媒層 5, 15とを備えた触媒担持隔壁 40 のうち、その表面から、触媒担持隔壁 40の厚さ (触媒担持隔壁厚さ T )の 1Z10の
C
深さ部分までの領域 (τ Zioであらわされる領域)を 、うものとする。
C
[0031] 触媒層 5, 15に含有される貴金属としては、ガソリンエンジン排ガス浄ィ匕三元触媒、 ガソリンエンジン又はディーゼルエンジン排ガス净ィ匕用の酸ィ匕触媒、及び NO選択
X
還元用 SCR触媒等の触媒に通常含有される貴金属を挙げることができる。より具体 的には、 Pt、 Rh、若しくは Pd、又はこれらを組み合わせたものが好適に用いられる。 なお、貴金属の種類が二種以上である場合における「触媒層に含有される貴金属の 質量」は、二種以上の貴金属の合計の質量である。
[0032] また、本実施形態のハ-カム触媒体 1のセル水力直径 D (m)と、隔壁のパーミアビ リティー(m2)が、(セル水力直径) 2/ (パーミアビリティー) = 2 X 103以上、 6 X 105未 満、の関係を満たすことが好ましぐ(セル水力直径)2 Z (パーミアビリティー) = 5 X I 03〜1 X 105の関係を満たすことが更に好ましぐ(セル水力直径) 2/ (パーミアビリテ ィー) = 1 X 104〜5 X 104の関係を満たすことが特に好ま 、。
[0033] ガスがセル内を流通する際に生ずる圧力損失 (セル流通圧力損失)は、セルの水 力直径の二乗に反比例する。また、ガスが隔壁を通過する際に生ずる圧力損失 (隔 壁通過圧力損失)と、セル流通圧力損失との比「 (隔壁通過圧力損失) / (セル流通 圧力損失)」は、「(セル水力直径)2 Z (パーミアビリティー)」に比例する。ここで、「(セ ル水力直径) V (パーミアビリティー)」が 2 X 103以上であると、隔壁 4の全域にわた つて均一にガスが流れ易くなるために好ましい。一方、「(セル水力直径)2 Z (パーミ アビリティー)」が 6 X 105未満であると、ハ-カム触媒体 1全体の圧力損失が増大し 難くなるために好ましい。
[0034] なお、本明細書にいう「パーミアビリティー」とは、下記式(1)により算出される物性 値を! 、、所定のガスがその物(隔壁)を通過する際の通過抵抗を表す指標となる値 である。ここで、下記式(1)中、 Cはパーミアビリティー (m2)、 Fはガス流量 (cm3Zs) 、 Tは試料厚み(cm)、 Vはガス粘性 (dynes · sec/cm2)、 Dは試料直径 (cm)、 Pは ガス圧力(PSI)をそれぞれ示す。また、下記式(1)中の数値は、 13.839(PSI)=1 (atm)であり、 68947.6(dynes'secZcm2) =1 (PSI)である。
[0035] [数 1]
7tD2 (P2— 13. 8392) /13. 839X68947. 6
… (1)
[0036] 図 9は、パーミアビリティーの測定に用いる試験片について説明する模式図である。
図 9に示すように、先ず、ハ-カム触媒体から、リブ残り高さ Hが 0. 2mmとなるように 、一の隔壁 4に接続する隔壁の一部(リブ残り 105)を残した状態で、試験片 100を切 り出す。この試験片 100の形状は、角板上であっても、円板状であってもよい。この試 験片 100に室温空気を通過させ、その際のパーミアビリティーを前記式(1)により算 出する。リブ残り 105によって形成される、試験片 100とシールとの隙間から空気が漏 れないように、グリス等の流動性シールを併用することが望ましい。また、計算上の隔 壁通過流速が 0. 1〜: LcmZsecとなるように空気流量を調整し、この空気流量で計 測した結果を用いる。
[0037] 本実施形態のハ-カム触媒体 1のセル 3の密度(セル密度)は、 0. 25〜46. 5個 Z cm2(l.61〜300cpsi)であることが好ましぐ 1. 55〜15. 5個/ cm2(10〜100cps i)であることが更に好ましぐ 1. 55-12.4個 Zcm2(10〜80cpsi)であることが特に 好ましい。セル密度が 0. 25個 Zcm2未満であると、排ガスとの接触効率が不足する 傾向にある。一方、セル密度が 46. 5個 Zcm2超であると、圧力損失が増大する傾向 にある。なお、「じ 51」は「じ6115 per square inch」の略であり、 1平方インチ当りの セル数を表す単位である。 lOcpsiは、約 1. 55個 Zcm2である。
[0038] 隔壁 4の厚さ(隔壁厚さ T)は、 0. 15〜7mm (5. 9〜276mil)であることが好ましく 、 0. 4〜2mm ( 15. 7〜78. 7mil)であること力 S更に好ましく、 0. 7〜1. 5mm (27. 6 〜59mil)であることが特に好ましい。隔壁厚さ Tが 0. 15mm未満であると、強度が 不足して耐熱衝撃性が低下する場合がある。一方、隔壁厚さ Tが 7mm超であると、 圧力損失が増大する傾向にある。なお、 lmilは、 1000分の 1インチであり、約 0. 02 5mmで to 。
[0039] 触媒層 5が担持された状態、即ち、触媒担持細孔 35が形成された状態における隔 壁 4の画像最大距離平均は、 40〜3000 μ mであることが好ましぐ 50〜500 μ mで あることが更に好ましぐ 250 μ mを超えて 500 μ m以下であることが特に好ましい。 画像最大距離平均が 40 m未満であると、例えばディーゼルエンジンカゝら排出され る排ガスに含まれるカーボン微粒子等の微粒子が捕捉され易くなり、圧力損失が上 昇する傾向にある。一方、画像最大距離平均が 3000 m超であると、排ガスと触媒 層との接触面積を十分に確保し難くなる傾向にある。なお、本明細書にいう「画像最 大距離平均」は、画像解析によって測定される物性値である。具体的には、隔壁断 面の SEM写真を、隔壁厚さを「t」とした場合に、縦 X横 =t X tの視野について少な くとも 20視野観察する。次いで、観察したそれぞれの視野内で、空隙中の最大直線 距離を計測し、全ての視野について計測した最大直線距離の平均値を「画像最大距 離平均」とした。
[0040] 例えば、図 10に示す、ハニカム構造体の端面の一部を拡大した平面図においては 、隔壁 4の t X tの範囲を一つの観察範囲(視野) Vとし、 20箇所の視野について SEM 写真を撮り、画像解析する。そして、図 11に示すように、 20視野の SEM写真におい て、各視野内の最大直線距離を計測し、平均値をとる。図 11に示す 20視野の SEM 写真においては、最上段左端力も右に向かって、そして上段力も下段に向力つて、 それぞれの最大直線距離は、 387 μ m、 442 μ m、 327 m、 179 m、 275 μ m、 255 μ m、 303 μ m、 377 μ m、 350 μ m、 185 μ m、 353 μ 153 μ 332 μ m 、 245 μ m、 257 μ m、 302 μ m、 207 μ m、 465 μ m、 320 μ m、及び 301 μ mであ る。この場合、画像最大距離平均は、 301 μ mとなる。 [0041] なお、図 11に示す SEM写真は 50倍の倍率で撮影したものである。画像解析には 、市販の画像解析ソフトを用いることができ、例えば、 COREL社製、商品名: Paint Shop ProXを用いることができる。 SEM写真の倍率は、鮮明な画像が得られるよう な倍率であればよぐ例えば、 10〜: L000倍の任意の倍率を選べばよい。
[0042] 触媒層 5が担持された状態、即ち、触媒担持細孔 35が形成された状態における隔 壁 4の気孔率は、 55%以上であることが好ましい。なお、本明細書にいう「気孔率」は 、画像解析によって測定される物性値である。具体的には、隔壁断面の SEM写真を 、隔壁厚さを「t」とした場合に、縦 X横 =t X tの視野について少なくとも 5視野観察す る。観察したそれぞれの視野内で、空隙面積比率を求め、これを 3Z2乗して得た値 の、全ての視野について平均した値を「気孔率」とした。
[0043] 隔壁 4の細孔径分布の常用対数標準偏差 (細孔径分布 σ )は、 0. 1〜0. 6である こと力 S好ましく、 0. 2〜0. 6であることが更に好ましい。細孔径分布 σが 0. 1未満で あると、隔壁通過流速が増加して浄ィ匕性能が悪ィ匕する傾向にある。一方、細孔径分 布 σが 0. 6超であると、大きな細孔のみにガスが流れてしまうため浄ィ匕性能が悪ィ匕 する傾向にある。「細孔径分布の常用対数標準偏差」を導く場合の、「細孔径分布」 は、水銀ポロシメータにより測定した値を用いる。そして、得られた細孔径分布につい て下記式 (2)〜 (5)を用いて常用対数標準偏差 (下記式 (5)における sd;標準偏差) を求める。尚、下記式(3)、(4)における「f」で示される微分細孔容積は、例えば、細 孔径 Dpi以下の細孔の細孔容積 (細孔径 0〜Dplの累積)が VIであり、細孔径 Dp2 以下の細孔の細孔容積 (細孔径 0〜Dp2の累積)が V2であるとすると、微分細孔容 積 f2は、 f2=V2— VIで示される値となる。下記式(2)〜(5)において、「Dp」は細 孔径 m)、「f」は微分細孔容積 (mLZg)、「x」は細孔径 Dpの常用対数、「xav」は Xについての平均値、「s2」は Xについての分散、「sd」は Xについての標準偏差(細孔 径分布の常用対数標準偏差)をそれぞれ表す。また、下記式及び表 3中の「s」は細 孔径分布 σを示す。
[0044] [数 2] x = log Dp · · · ( 2 ) xav = ^ xf /^ f . . · ( 3 ) s 2 = 2^ " f l ^ f - xav 2 …(4 ) sd = Λ s ( 5 )
[0045] 本実施形態のハ-カム触媒体 1の目封止部 10の気孔率は、 55%以上であることが 好ましぐ 55〜70%であることが更に好ましぐ 55〜65%であることが特に好ましい。 目封止部 10の気孔率を 55%以上とすることにより、熱容量を低減させることができる とともに、触媒が活性温度に達するまでの時間を短くすることができる。このため、こ の間の浄ィ匕性能を向上させることができる。
[0046] 本実施形態のハニカム触媒体 1は、等価直径 dとセルの連通方向の長さ(以下「全 長 L」と記す場合がある)との比 (LZd)が 0. 3以上、 0. 75未満であることが好ましい 。更に好ましくは、 0. 3〜0. 5であり、特に好ましくは 0. 3〜0. 4である。全長 Lが長 すぎると (LZdの比が大きすぎると)、壁を通過する流速が担体の軸方向で一定とな らず、分布を生じてしまう。即ち、出口近傍の隔壁のみを多量の排ガスが流れてしま い、その部分のみの触媒に負荷がかかり、その他の位置にコートされた触媒が有効 に使われず、無駄になってしまう場合がある。一方、 LZdが小さすぎると、全長 Lに対 する目封じ部分の長さの比 (比率)が増カロしてしまう。この増加は、触媒担持に使用で きない部分の重量比が増加してしまうことになるため、触媒の暖気性が悪くなり、浄ィ匕 性能が悪ィ匕してしまうおそれがある。従って、 LZdの比を上記範囲とすることにより、 隔壁を通過する流速の分布が均一になり、隔壁全体が有効に使用できるので浄ィ匕 性能が向上するという利点がある。なお、等価直径 dは、「4 X断面積 Z断面の外周 長さ」によって求められる値である。ここで、「断面積」は、セルの連通方向に垂直な 面で径方向に切断した断面の面積であり、「断面の外周長さ」は上記断面の外周長 さを意味する。
[0047] また、本実施形態のハニカム触媒体 1の、セルの連通方向に垂直な面で径方向に 切断した断面の形状は、設置しょうとする排気系の内形状に適した形状であることが 好ましい。具体的には、円、楕円、長円、台形、三角形、四角形、六角形、又は左右 非対称な異形形状を挙げることができる。なかでも、円、楕円、長円が好ましい。
[0048] 次に、本実施形態のハニカム触媒体の製造方法について説明する。本実施形態 のハニカム触媒体 1は、所定形状のハニカム構造体に対して、貴金属を含有する触 媒スラリーを、超音波をかけながら塗布して、セル 3の内表面、及び細孔 25の内表面 に触媒スラリー力 なる塗工層を形成した後、乾燥することにより製造することができ る。以下、その詳細について説明する。
[0049] 触媒担体となるハニカム構造体は、図 1, 2に示すように、二つの端面 2a, 2b間を 連通する複数のセルが形成されるように配置された、多数の細孔を有する多孔質の 隔壁 4と、セル 3をいずれかの端面 2a, 2bにおいて目封止するように配置された目封 止部 10と、を備えたものである。ハ-カム構造体を構成する材料としては、セラミック スを主成分とする材料、又は焼結金属等を好適例として挙げることができる。また、ハ 二カム構造体力 セラミックスを主成分とする材料力もなるものである場合に、このセラ ミックスとしては、炭化珪素、コージエライト、アルミナタイタネート、サイアロン、ムライト 、窒化珪素、リン酸ジルコニウム、ジルコユア、チタ-ァ、アルミナ、若しくはシリカ、又 はこれらを組み合わせたものを好適例として挙げることができる。特に、炭化珪素、コ ージエライト、ムライト、窒化珪素、アルミナ等のセラミックス力 耐アルカリ特性上好適 である。なかでも酸化物系のセラミックスは、コストの点でも好ましい。
[0050] ハ-カム構造体の、 40〜800°Cにおける、セルの連通方向の熱膨張係数は、 1. 0
X 10_6Z°C未満であることが好ましぐ 0〜0. 8 X 10_6Z°Cであることが更に好まし く、 0〜0. 5 X 10_6Z°Cであることが特に好ましい。 40〜800°Cにおけるセルの連通 方向の熱膨張係数が 1. O X 10_6Z°C未満であると、高温の排ガスに晒される際の 熱応力を低く抑えることができ、熱応力による破壊を防止することができる。
[0051] ハ-カム構造体は、例えば、従来公知のディーゼルパティキュレートフィルター(DP F)の製造方法に準じた製造方法に従って、製造することができる。但し、このハ-カ ム構造体に触媒が担持された本発明のハニカム触媒体は、気体が通過可能な多数 の触媒担持細孔がその隔壁に形成されたものである。従って、例えば、材料の化学 組成を適宜調整すること、造孔剤を用いて多孔質構造とする場合には、用いる造孔 剤の種類、粒子径、添加量等を適宜調整すること等により、隔壁の細孔構造を調整 することができる。
[0052] 触媒スラリーは、従来公知の方法に従って調製することができる。なお、触媒スラリ 一は、チクソトロピー性を有するものであることが、触媒スラリーをハ-カム構造体の 細孔の内部にまで浸透させ、細孔の内表面に塗工層を形成し易くなるために好まし い。触媒スラリーのチクソトロピー性の有無は、チクソトロピー指数の大小により判断 することができる。なお、触媒スラリーのチクソトロピー指数は、エロジン、ベントナイト 、水添ヒマシ油、炭酸カルシウム、ケィ酸アルミニウム等のチクソ剤を適当量添加する こと等により調整することができる。
[0053] ハ-カム構造体及び Z又は触媒スラリーに対して、超音波による振動を与えながら 触媒スラリーを塗布し、セルの内表面、及び細孔の内表面に塗工層を形成する。超 音波による振動により粘度を低下させて触媒スラリーを塗布することにより、ハ-カム 構造体の細孔の内部にまで触媒スラリーを浸透させて、細孔の内表面に塗工層を形 成することができる。なお、触媒スラリーの塗布は、吸引法等の方法により行えばよい 。その後、塗工層が形成されたハ-カム構造体を、室温又は加熱条件下で乾燥する ことにより、セルの内表面に担持された触媒層に含有される貴金属の質量 (M )と、
C
細孔の内表面に担持された触媒層に含有される貴金属の質量 (M )が、(M
P P )Z(M
)≥4の関係を満たす、本実施形態のハニカム触媒体を製造することができる。
C
[0054] なお、吸引法等による触媒スラリーの塗布後余分なスラリーを加圧空気等によって 除去するが、除去する前にハニカム構造体に振動を与えて細孔の内表面に塗工層 を形成しても良い。触媒スラリーのチクソトロピー性は、付与する振動の強さ、周波数 、時間等を考慮し最適な条件を選択すれば良い。振動による触媒スラリーの粘度の 低下は、振動の条件にもよるが、振動が無い状態に比べ、 30%以上低下させれば 良いが、 85%以上低下させると触媒スラリーが流れ落ちてしまい、塗工層の形成に おいて好ましくなくなるおそれがある。なお、粘度は、東機産業社製の BL型粘度計を 用い、実際の作業工程における温度条件で測定した。
実施例 [0055] 以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施 例に限定されるものではない。
[0056] [画像最大距離平均]:画像解析により細孔径を測定し、画像最大距離平均を算出 した。具体的には、隔壁断面の SEM写真を、隔壁厚さを「t」とした場合に、縦 X横 = tXtの視野について少なくとも 20視野観察する。次いで、観察したそれぞれの視野 内で、空隙中の最大直線距離を計測し、全ての視野について計測した最大直線距 離の平均値を「画像最大距離平均」とした。
[0057] [細孔径分布の標準偏差( σ ) ]:水銀ポロシメータ(Micromeritics社製、商品名: Auto Pore III 型式 9405)を用いて、細孔径分布を測定し、細孔径分布の標準 偏差 (細孔径分布 σ )を算出した。
[0058] [気孔率]:画像解析によって測定した。具体的には、隔壁断面の SEM写真を、隔 壁厚さを「t」とした場合に、縦 X横 =t X tの視野にっ 、て少なくとも 5視野観察する。 観察したそれぞれの視野内で、空隙面積比率を求め、これを 3Z2乗して得た値の、 全ての視野にっ 、て平均した値を「気孔率」とした。
[0059] [パーミアビリティー]:隔壁の一部を取出し、凹凸がなくなるように加工したものを試 料とし、この試料を φ 20mmのサンプルホルダーでガス漏れのないよう上下から挟み 込んだ後、試料の下流側が latmとなるように試料に特定のガス圧をかけてガスを透 過させた。この際、試料を通過したガスについて、下記式(1)に基づいてパーミアピリ ティーを算出した。なお、下記式(1)中、 Cはパーミアビリティー (m2)、 Fはガス流量( cmVs)、 Tは試料厚み(cm)、 Vはガス粘性 (dynes · sec/cm2)、 Dは試料直径 (c m)、 Pはガス圧力(PSI)をそれぞれ示す。また、下記式(1)中の数値は、 13.839 ( PSI) =l(atm)であり、 68947.6(dynes'secZcm2) =1 (PSI)である。なお、測定 に際しては、例えば、商品名「Capillary Flow pormeter」(Porous Materials, Inc.製、型式: 1100AEX)等の装置を用いた。
[0060] [数 3]
8 FTV
TTD2 (P2- 1 3. 8 3 92) / 1 3. 8 3 9 X 6 8 94 7. 6
( 1 ) [0061] [浄化率]:酸素 7体積%、水蒸気 10体積%、二酸ィ匕炭素 10体積%、炭化水素 20 0 (カーボンモル数) ppm、及び残部が窒素力もなる燃焼ガスを、空間速度(SV) 100
Figure imgf000016_0001
温度 200°Cの条件でノ、二カム構造体内、又はハ-カム触媒体内に流入さ せた。流入前後における燃焼ガスの炭化水素濃度から、浄ィ匕率 (%)を算出した。
[0062] [浄化指数]:比較対照のハニカム触媒体を使用して、上記浄化率 (基準浄化率(% ) )を算出し、この基準浄ィ匕率に対する割合として、浄ィ匕指数 (%)を算出した。ここで 、浄ィ匕指数 = 200%とは、比較対照のハニカム触媒体の 2倍の浄化率であることを意 味する。
[0063] [ (M ) / (M;) ]:ハニカム触媒体をセルの連通方向に垂直な面で径方向に切断し
P C
、その断面について元素分析を行うことによって、セルの内表面に担持された触媒層 に含有される貴金属の質量 (M )と、細孔の内表面に担持された触媒層に含有され
C
る貴金属の質量 (M )を測定し、(M
P P )Z(M )の値を算出した。
C
[0064] (触媒スラリーの調製)
ジニトロジアンミン白金溶液を原料として使用し、白金 (Pt)を担持した γ—アルミナ 粉末 70部と、セリア粉末 30部とを混合、及び湿式粉砕することにより、貴金属として 白金 (Pt)を含有し、活性アルミナ、及び酸素吸蔵剤としてのセリアを更に含有する触 媒スラリーを調製した。
[0065] (実施例 1〜14、比較例 1〜5)
タルク、カオリン、仮焼カオリン、アルミナ、水酸ィ匕カルシウム、及びシリカのうちから 複数を組み合わせて、その化学組成力 SiO 42〜56質量0 /0、 Al O 0〜45質量0 /0
2 2 3
、及び MgO 12〜 16質量%となるように所定の割合で調合されたコージヱライトイ匕原 料 100質量部に対して、造孔剤としてグラフアイトを 12〜25質量部、及び合成樹脂 を 5〜 15質量部を添加した。更に、メチルセルロース類、及び界面活性剤をそれぞ れ適当量添加した後、水を加えて混練することにより杯土を調製した。調製した杯土 を真空脱気した後、押出成形することによりハ-カム成形体を得た。得られたハ-カ ム成形体を乾燥後、最高温度 1400〜1430°Cの温度範囲で焼成することにより、ハ 二カム焼成体を得た。得られたノヽ-カム焼成体のセルのいずれかの端部に、巿松模 様状となるように目封止剤を詰めて再度焼成することにより、表 1に示す隔壁の細孔 構造を有する、直径 144mm、全長 152mmのハ-カム構造体(9個)を作製した。な お、隔壁の細孔構造は、コージエライト化原料の化学組成、造孔剤の粒子径、造孔 剤の添加量等を適宜調整することにより調整した。また、目封止部の目封止深さは、 端面力り 10mmであった。
[0066] 吸引法により、作製したハニカム構造体の隔壁内表面、及び細孔内表面に、先に 調製した触媒スラリーのコート層を形成した。この時、ハ-カム構造体に超音波による 振動を与えた。次いで、加熱乾燥することにより、表 1、 2に示す隔壁 (触媒層つき)の 細孔構造を有するハ-カム触媒体 (実施例 1〜14、比較例 1〜5)を作製した。なお、 ハ-カム構造体 (担体) 1リットルあたりの貴金属(Pt)の量は 2gであった。また、ハニ カム構造体 (担体) 1リットルあたりの触媒スラリーのコート量は lOOgであった。
[0067] 作製したノ、二カム触媒体 (実施例 1〜14、比較例 1〜5)の浄ィ匕率を測定 '算出した 結果を表 1、 2に示す。また、(M )Z(M )に対して、浄ィ匕率をプロットしたグラフを図
P C
8に示す。
[0068] [表 1]
Figure imgf000018_0001
[0069] 実施例 13 14、比較例 4 5のハニカム触媒体の等価直径 Dと全長 Lとの比 (L/D
)を表 2に示す。
最大画
[0070] [表 2]度厚さピ壁セルピ気隔水力直リ率セ径セルチ孔ルミアティ 2ツ挣化指数細径分布孔径) (水直セル力 -- 離平均
ィ -- (mrnmmu cm. '
4 21059X.
Figure imgf000019_0001
[0071] 更に、実施例 8のハ-カム触媒体の「 σ」の算出に用いた各数値 (水銀圧、細孔径(
D)、細孔容積 (f) )を表 3に示す。
[0072] [表 3]
Figure imgf000020_0001
(考察)
表 1及び表 2に示すように実施例 1〜14のハ-カム触媒体は、比較例 1〜5のハ- カム触媒体に比して、浄ィ匕率が高ぐ優れた浄ィ匕性能を示すものであることが明らか である。 産業上の利用可能性
本発明のハニカム触媒体は、浄化効率に優れ、圧力損失が小さぐ限られた空間 であっても搭載可能なものである。従って、本発明のハ-カム触媒体は、例えば、自 動車用、建設機械用、及び産業用定置エンジン、並びに燃焼機器等から排出される 排ガスに含まれる被浄化成分の浄化に好適に用 、られる。

Claims

請求の範囲
[1] 二つの端面間を連通する複数のセルが形成されるように配置された、多数の細孔 を有する多孔質の隔壁と、
前記セルをいずれかの前記端面において目封止するように配置された目封止部と 前記セルの内表面、及び前記細孔の内表面に層状に担持された、貴金属を含有 する触媒層と、を備えるとともに、前記隔壁には、気体が通過可能な多数の触媒担持 細孔が形成され、
前記セルの内表面に担持された前記触媒層に含有される前記貴金属の質量 (M
C
)と、
前記細孔の内表面に担持された前記触媒層に含有される前記貴金属の質量 (M )
P
1S (M ) Z (M )≥4の関係を満たすハニカム触媒体。
P C
[2] 前記セルの内表面に担持された前記触媒層に含有される前記貴金属の質量 (M
C
)と、前記細孔の内表面に担持された前記触媒層に含有される前記貴金属の質量(
M )が、(M ) Z (M )≥ 6の関係を満たす請求項 1に記載のハニカム触媒体。
P P C
[3] 前記セルの内表面に担持された前記触媒層に含有される前記貴金属の質量 (M
C
)と、前記細孔の内表面に担持された前記触媒層に含有される前記貴金属の質量(
M )が、(M ) Z (M )≥ 10の関係を満たす請求項 1に記載のハニカム触媒体。
P P C
[4] 前記触媒層が担持された状態における前記隔壁の気孔率が、 55%以上である請 求項 1〜3のいずれか一項に記載のハ-カム触媒体。
[5] 前記目封止部の気孔率が、 55%以上である請求項 1〜4のいずれか一項に記載 のハニカム触媒体。
[6] 前記セルの連通方向の長さ(L)と等価直径 (d)との比 (LZd)が 0. 3以上、 0. 75 未満である請求項 1〜5のいずれか一項に記載のハニカム触媒体。
[7] 前記隔壁の厚さが 0. 3〜0. 43mmであり、セル密度が 4〜46. 5個 Zcm2であり、 前記隔壁の画像最大距離平均が 250〜500 /z mであり、前記隔壁の気孔率が 55〜 65%である請求項 1〜6のいずれか一項に記載のハ-カム触媒体。
[8] 前記隔壁の気孔率が 60〜80%であり、前記隔壁の細孔径分布の常用対数標準 偏差 (細孔径分布 σ )が 0. 2〜0. 6である請求項 7に記載のハ-カム触媒体。
[9] 前記隔壁の画像最大距離平均が、 250〜3000 μ mである請求項 1又は 2に記載 のハニカム触媒体。
[10] 二つの端面間を連通する複数のセルが形成されるように配置された、多数の細孔 を有する多孔質の隔壁と、前記セルをいずれかの前記端面において目封止するよう に配置された目封止部と、を備えたハニカム構造体に対して、
貴金属を含有する触媒スラリーを、超音波をかけながら塗布して、前記セルの内表 面、及び前記細孔の内表面に前記触媒スラリーからなる塗工層を形成した後、乾燥 することにより、
前記セルの内表面、及び前記細孔の内表面に、前記貴金属を含有する触媒層が 層状に担持されるとともに、前記隔壁には、気体が通過可能な多数の触媒担持細孔 が形成され、かつ、
前記セルの内表面に担持された前記触媒層に含有される前記貴金属の質量 (M
C
)と、
前記細孔の内表面に担持された前記触媒層に含有される前記貴金属の質量 (M )
P
力 (M )Z(M )≥4の関係を満たすノヽニカム触媒体を得ることを含むハニカム触
P C
媒体の製造方法。
[11] 前記触媒スラリーが、チクソトロピー性を有するものである請求項 10に記載のハ- カム触媒体の製造方法。
PCT/JP2006/317185 2005-08-31 2006-08-31 ハニカム触媒体、及びハニカム触媒体の製造方法 WO2007026804A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007533315A JP4814886B2 (ja) 2005-08-31 2006-08-31 ハニカム触媒体、及びハニカム触媒体の製造方法
EP06797145A EP1920834A4 (en) 2005-08-31 2006-08-31 WABENKATALYSATOR AND MANUFACTURING METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005250873 2005-08-31
JP2005-250873 2005-08-31

Publications (1)

Publication Number Publication Date
WO2007026804A1 true WO2007026804A1 (ja) 2007-03-08

Family

ID=37808887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317185 WO2007026804A1 (ja) 2005-08-31 2006-08-31 ハニカム触媒体、及びハニカム触媒体の製造方法

Country Status (4)

Country Link
US (1) US7754160B2 (ja)
EP (1) EP1920834A4 (ja)
JP (1) JP4814886B2 (ja)
WO (1) WO2007026804A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028422A1 (ja) * 2007-08-27 2009-03-05 Tokyo Roki Co. Ltd. 排ガス浄化用触媒の製造方法、及び排ガス浄化用触媒
JP2015226907A (ja) * 2009-10-28 2015-12-17 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG 内燃機関の排気ガスを清浄化する方法
WO2020031792A1 (ja) * 2018-08-09 2020-02-13 エヌ・イーケムキャット株式会社 排ガス浄化触媒の製造方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5218056B2 (ja) * 2006-08-30 2013-06-26 日立金属株式会社 セラミックハニカムフィルタ
PL2318673T3 (pl) * 2008-02-05 2020-03-31 Basf Corporation Układy obróbki emisji w silniku benzynowym mające wychwytywacze cząstek stałych
JP5328174B2 (ja) * 2008-02-20 2013-10-30 日本碍子株式会社 目封止ハニカム構造体
WO2009118869A1 (ja) * 2008-03-27 2009-10-01 イビデン株式会社 ハニカム構造体および排ガス処理装置
JP5273446B2 (ja) * 2008-05-12 2013-08-28 日産自動車株式会社 排ガス浄化用触媒及びその製造方法
JP2010167366A (ja) * 2009-01-22 2010-08-05 Ngk Insulators Ltd ハニカム触媒体
WO2010114062A1 (ja) * 2009-03-31 2010-10-07 日立金属株式会社 セラミックハニカム構造体及びその製造方法
FR2949690B1 (fr) 2009-09-04 2011-10-21 Saint Gobain Ct Recherches Filtre a particules en sic incorporant du cerium
JP5649945B2 (ja) * 2009-12-25 2015-01-07 日本碍子株式会社 表面捕集層付き担体及び触媒担持表面捕集層付き担体
US8815189B2 (en) 2010-04-19 2014-08-26 Basf Corporation Gasoline engine emissions treatment systems having particulate filters
US8323602B2 (en) * 2010-07-08 2012-12-04 Air Products And Chemicals, Inc. Treatment of flue gas from an oxyfuel combustion process
US8722000B2 (en) 2011-03-29 2014-05-13 Basf Corporation Multi-component filters for emissions control
DE102012203574A1 (de) 2011-05-31 2012-12-06 Akretia Gmbh Abgasreinigungsvorrichtung zur Verminderung von Stickoxiden im Abgasstrom von Brennkraftmaschinen
JP6200212B2 (ja) * 2012-12-03 2017-09-20 日本碍子株式会社 ハニカム触媒体
JP6381663B2 (ja) 2014-10-16 2018-08-29 株式会社キャタラー 排ガス浄化用触媒
DE102017106374A1 (de) * 2016-04-01 2017-10-05 Johnson Matthey Public Limited Company Abgasreinigungsfilter
US11305270B2 (en) * 2016-08-26 2022-04-19 N.E. Chemcat Corporation Honeycomb structure, honeycomb structure type catalyst and production methods therefor
JP6788515B2 (ja) * 2017-02-02 2020-11-25 日本碍子株式会社 目封止ハニカム構造体
JP2018159334A (ja) * 2017-03-23 2018-10-11 日本碍子株式会社 排ガス浄化装置
JP7037985B2 (ja) * 2018-03-30 2022-03-17 日本碍子株式会社 ハニカムフィルタ
JP7211893B2 (ja) * 2019-05-24 2023-01-24 トヨタ自動車株式会社 排ガス浄化装置
JP7381372B2 (ja) 2020-03-12 2023-11-15 トヨタ自動車株式会社 排ガス浄化装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09173866A (ja) * 1995-12-28 1997-07-08 Nippon Soken Inc ディーゼル排ガス浄化フィルタ
JPH09220423A (ja) * 1996-02-15 1997-08-26 Nippon Soken Inc ディーゼル排ガス浄化フィルタおよびその製造方法
JP2002221022A (ja) * 2001-01-25 2002-08-09 Toyota Motor Corp ディーゼルパティキュレートフィルタ及びその製造方法
JP2004105792A (ja) * 2002-09-13 2004-04-08 Toyota Motor Corp 排ガス浄化フィルタ触媒及びその製造方法
JP2004169636A (ja) * 2002-11-21 2004-06-17 Asahi Glass Co Ltd ディーゼルパティキュレートフィルタとその製造法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331787A (en) * 1963-02-07 1967-07-18 Engelhard Ind Inc Method of preparing an oxidation catalyst
US5212131A (en) * 1991-02-20 1993-05-18 Innovative Research Enterprises Low pressure drop filter
JPH09299811A (ja) * 1996-05-17 1997-11-25 Ngk Insulators Ltd ハニカム構造体
JP2002530175A (ja) * 1998-11-20 2002-09-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コードレス走査ヘッドの充電器を備える超音波診断イメージングシステム
JP4642955B2 (ja) * 1999-06-23 2011-03-02 イビデン株式会社 触媒担体およびその製造方法
JP2003040687A (ja) * 2000-06-30 2003-02-13 Ngk Insulators Ltd ハニカムセラミックス構造体とその製造方法
JP5189236B2 (ja) 2001-07-25 2013-04-24 日本碍子株式会社 排ガス浄化用ハニカム構造体及び排ガス浄化用ハニカム触媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09173866A (ja) * 1995-12-28 1997-07-08 Nippon Soken Inc ディーゼル排ガス浄化フィルタ
JPH09220423A (ja) * 1996-02-15 1997-08-26 Nippon Soken Inc ディーゼル排ガス浄化フィルタおよびその製造方法
JP2002221022A (ja) * 2001-01-25 2002-08-09 Toyota Motor Corp ディーゼルパティキュレートフィルタ及びその製造方法
JP2004105792A (ja) * 2002-09-13 2004-04-08 Toyota Motor Corp 排ガス浄化フィルタ触媒及びその製造方法
JP2004169636A (ja) * 2002-11-21 2004-06-17 Asahi Glass Co Ltd ディーゼルパティキュレートフィルタとその製造法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028422A1 (ja) * 2007-08-27 2009-03-05 Tokyo Roki Co. Ltd. 排ガス浄化用触媒の製造方法、及び排ガス浄化用触媒
JP5401315B2 (ja) * 2007-08-27 2014-01-29 東京濾器株式会社 排ガス浄化用触媒の製造方法、及び排ガス浄化用触媒
JP2015226907A (ja) * 2009-10-28 2015-12-17 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG 内燃機関の排気ガスを清浄化する方法
WO2020031792A1 (ja) * 2018-08-09 2020-02-13 エヌ・イーケムキャット株式会社 排ガス浄化触媒の製造方法
JP2020025898A (ja) * 2018-08-09 2020-02-20 エヌ・イーケムキャット株式会社 排ガス浄化触媒の製造方法
CN112203764A (zh) * 2018-08-09 2021-01-08 N.E.化学株式会社 废气净化催化剂的制造方法
CN112203764B (zh) * 2018-08-09 2021-08-06 N.E.化学株式会社 废气净化催化剂的制造方法

Also Published As

Publication number Publication date
JPWO2007026804A1 (ja) 2009-03-12
JP4814886B2 (ja) 2011-11-16
US7754160B2 (en) 2010-07-13
EP1920834A1 (en) 2008-05-14
US20070049492A1 (en) 2007-03-01
EP1920834A4 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
WO2007026804A1 (ja) ハニカム触媒体、及びハニカム触媒体の製造方法
JP4819814B2 (ja) ハニカム構造体、及びハニカム触媒体
WO2007026803A1 (ja) ハニカム構造体及びハニカム触媒体
JP4971166B2 (ja) ハニカム触媒体、ハニカム触媒体製造用のプレコート担体及びハニカム触媒体の製造方法
KR100680078B1 (ko) 벌집형 구조체
JP4516017B2 (ja) セラミックハニカム構造体
JP4216174B2 (ja) コート材、セラミックスハニカム構造体及びその製造方法
JP5368776B2 (ja) ハニカム構造体
JPWO2003084640A1 (ja) 排気ガス浄化用ハニカムフィルタ
JP5599747B2 (ja) ハニカム構造体及びその製造方法
WO2007052479A1 (ja) ハニカム構造体及びハニカム触媒体
JP4753785B2 (ja) ハニカム構造体
JP2006223983A (ja) ハニカム構造体
WO2007105736A1 (ja) ハニカム触媒体
JP2019177318A (ja) ハニカムフィルタ
JP2019177317A (ja) ハニカムフィルタ
JP2019177319A (ja) ハニカムフィルタ
JP4470554B2 (ja) 排ガス浄化用触媒の製造方法
JP5408865B2 (ja) ハニカム触媒体
EP2174698A1 (en) Honeycomb Structure
JP2020001032A (ja) ハニカムフィルタ
JP5242213B2 (ja) ハニカム構造体
JP5452943B2 (ja) ハニカム構造体、及びハニカム触媒体
JP5843802B2 (ja) ハニカム触媒担体
JP2021137766A (ja) 排ガス浄化装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007533315

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006797145

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE