WO2007105736A1 - ハニカム触媒体 - Google Patents

ハニカム触媒体 Download PDF

Info

Publication number
WO2007105736A1
WO2007105736A1 PCT/JP2007/055001 JP2007055001W WO2007105736A1 WO 2007105736 A1 WO2007105736 A1 WO 2007105736A1 JP 2007055001 W JP2007055001 W JP 2007055001W WO 2007105736 A1 WO2007105736 A1 WO 2007105736A1
Authority
WO
WIPO (PCT)
Prior art keywords
plugged
cell
catalyst body
catalyst
hercam
Prior art date
Application number
PCT/JP2007/055001
Other languages
English (en)
French (fr)
Inventor
Yukio Miyairi
Naomi Noda
Shinichi Miwa
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to JP2008505170A priority Critical patent/JP5202298B2/ja
Priority to EP07738472A priority patent/EP1997556A4/en
Publication of WO2007105736A1 publication Critical patent/WO2007105736A1/ja
Priority to US12/206,524 priority patent/US20090047188A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2459Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a honeycomb cam body in which internal stress is dispersed and is not easily damaged and has excellent long-term reliability.
  • FIG. 8 to FIG. 10 are diagrams schematically showing an example of a conventional catalytic converter.
  • FIG. 8 is a front view (view of the end face), and
  • FIG. 9 is a cross-sectional view showing a cross section in the direction (axial direction) along the cell.
  • FIG. 10 is a partially enlarged view showing the partition wall in a cross section in the direction along the cell, and is an explanatory diagram for showing the catalyst layer.
  • the catalytic converter 60 shown in FIGS. 8 to 10 has a cylindrical outer shape represented by an outer wall 20 and an internal structure composed of a nose-cam structure 11 having a her-cam structure. .
  • the exhaust gas flows into one end surface 2a side force cell 3 of the catalytic converter 60, and flows out from the other end surface 2b side.
  • the catalyst layer 15 has a structure in which a noble metal is supported in fine pores of an oxide (alumina, ceria, zirconium oxide, etc.) coating layer.
  • the catalytic converter 60 since the exhaust gas flows in parallel with the catalyst layer 15, the catalyst layer having a large diffusion distance that must be moved for the component to be purified of the exhaust gas to reach the catalyst layer 15 is large. As a result, it is difficult to reach the components to be purified in Fig. 15, resulting in low purification efficiency. Therefore, the catalytic converter 60 is improved by reducing the hydraulic diameter of the cell 3 and increasing the surface area of the partition wall 4 to improve the purification efficiency. As a concrete means In general, a method is adopted in which the number of cells 3 per unit area (cell density) is increased, the distance between the exhaust gas and the catalyst layer 15 is reduced, and the area where the exhaust gas contacts the catalyst layer 15 is increased. Is done.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-33664
  • the porosity of the partition wall is increased to ensure air permeability, and the cell inlet and outlet are alternately sealed.
  • a configuration is considered in which exhaust gas passes through the partition walls and a catalyst layer is formed in the pores inside the partition walls.
  • FIG. 11 to FIG. 13 are diagrams schematically showing an example of such a catalytic converter.
  • Fig. 11 is a front view (view of the end face), and
  • Fig. 12 is a cross-sectional view showing a cross section in the direction along the cell (axial direction).
  • FIG. 13 is a partially enlarged view showing a partition wall in an enlarged manner in a cross section in the direction along the cell, and is an explanatory diagram for showing a catalyst layer.
  • the catalytic converter 50 shown in FIGS. 11 to 13 has a cylindrical outer shape represented by the outer wall 20, and the inner structure is composed of a no-cam structure 1 (base material) having a double cam structure. Is.
  • Exhaust gas also flows into the cell 3 on one end face 2a side of the catalyst converter 50, and since there is a plugging part 10, the side force on the other end face 2b cannot flow out to the outside in the same cell 3. After passing through the partition wall 4 and entering the adjacent cell 3, it flows out from the other end face 2b side to the outside.
  • the component to be purified contained in the exhaust gas comes into contact with the catalyst layer 5 (omitted in FIGS. 11 and 12) provided on the surface (pore forming surface) that forms the pores 25 inside the partition wall 4.
  • the catalyst layer 5 has a structure in which a catalytically active component such as a noble metal is supported in fine pores of a coating layer of an oxide (alumina, ceria, zirconium, zeolite, etc.).
  • the thin and uniform catalyst layer 5 is supported on the pore-forming surface. If it is possible to reduce the distance between the exhaust gas and the catalyst layer 5, it is possible to increase the contact area between the exhaust gas and the catalyst layer 5, and the purification efficiency is greatly improved.
  • the exhaust gas flows more in the cell 3 located in the center of the catalytic converter 50 than in the cell 3 on the outer wall 20 side, it is provided on the pore forming surface of the partition wall 4 located in the center. It was confirmed that the catalyst layer 5 caused more severe thermal degradation.
  • the present invention has been made on the basis of the above research results in view of the above-mentioned circumstances, and in order to prevent the occurrence of cracks in the catalytic converter, thermal stress is dispersed, and the vicinity of the inlet and the outlet It is an object of the present invention to provide a catalytic converter in which local high-temperature defects are suppressed. In order to achieve this object, the present invention provides the following means.
  • a porous partition wall having a large number of pores arranged so as to form a plurality of cells communicating between the two end faces, and the two end faces.
  • a plurality of plugged portions each having a predetermined length, which are arranged so as to plug a plurality of cells, respectively, inside the cell, and on the surface of the partition wall forming the pores
  • a catalyst layer containing a catalyst supported in layers, and a plurality of plugged portions having a predetermined length have a variation in the surface position on the cell inner side perpendicular to the cell communication direction.
  • a catalyst body is provided.
  • the surface position on the inner side of the cell perpendicular to the cell communication direction refers to a plurality of plugging portions having a predetermined length that plug the cell and are in contact with the partition walls. No It is the position of the two faces, the face on the inner side of the cell.
  • the inner side of the cell is the back side of the cell as viewed from the end surface, and means the center side in the cell communication direction. Cell communication direction That there is variation in the surface position inside the cell perpendicular to the surface does not contact the partition wall of the plugging portion
  • variation in the surface position inside the cell of the position of two surfaces is pointed out.
  • the variation in the surface position means that the surface positions of the plurality of plugged portions are different from each other. In many cases, among the two surfaces of the plurality of plugged portions having a predetermined length that are not in contact with the partition walls, the surface of the surface outside the cell is aligned with the end surface of the honeycomb catalyst body.
  • the force with which the cell is plugged in this state In the Hercam catalyst body according to the present invention, the surface position on the outside of the cell may vary.
  • having a variation means being scattered or not uniform.
  • the variation in the present invention means a state that is not uniform but uneven, and is intentionally formed.
  • the cross-sectional shape of the cell plugged by the plugging portion that is, the cross-sectional shape cut by a plane perpendicular to the cell communication direction
  • the shape is not limited and may be a shape suitable for the application. Specifically, a circle, an ellipse, an ellipse, a trapezoid, a triangle, a quadrangle, a hexagon, or a left-right asymmetric irregular shape can be adopted.
  • the arrangement positions of the plurality of plugged portions have variations.
  • the arrangement position of the plugging portion is This is the position of the plugging portion in the cell communicating between the two end faces. If the arrangement position of the plugging portion is changed, the surface position of the plugging portion also changes. Therefore, according to this aspect, the plurality of plugging portions having a predetermined length are arranged on the cell inner side perpendicular to the cell communication direction. It is possible to cause variations in the surface position.
  • the lengths of the plurality of plugged portions have variations.
  • the length of the plugged portion is the length of the plugged portion in the cell communication direction.
  • the end surface force This is the dimension corresponding to the depth of the plugged part toward the inside of the cell. If the length of the plugged portion is changed, the surface position of the plugged portion also changes. Therefore, according to this aspect, a plurality of plugged portions having a predetermined length are on the cell inner side perpendicular to the cell communication direction. The surface position can be varied. Multiple The arrangement position and the length of the plugging part both have variations! / ,!
  • the maximum value of the lengths of the plurality of plugged portions having variations
  • the difference from the minimum value is preferably lmm or more and 10mm or less. If it is less than 1 mm, the cracking suppression effect is small. If it exceeds 10 mm, the stress concentration at the maximum and minimum parts will increase and cracks will easily occur, and variations in pressure loss will increase, making it difficult to control the engine. More preferably, it is 1.5 mm or more and 5 mm or less. 1. If it is 5 mm or more and 5 mm or less, exhaust gas temperature fluctuations such as mounting directly under the engine will intensify, and sufficient cracking suppression effects can be obtained even in the environment.
  • the variations in the lengths of the plurality of plugged portions have a standard deviation (Sigma). ) Is preferably 0.5 mm or more and 10 mm or less (however, the number of data is 20 or more). If it is less than 0.5 mm, the crack generation suppressing effect is insufficient. If it exceeds 10 mm, the stress concentration at the maximum and minimum parts will increase and cracks will easily occur, and variations in pressure loss will increase, making it difficult to control the engine. A more preferable standard deviation is 1. Omm or more and 2. Omm or less. 1. If it is Omm or more and 2. Omm or less, a sufficient crack generation suppressing effect can be obtained for any outer shape of the Hercam catalyst body.
  • the number of adjacent plugged cell sets as one set (a pair) of plugged cell sets is any of the two end faces. It is preferable that 18 sets or more exist in one end face or both end faces.
  • the “adjacent pluggings” also have variations of the present invention, but the present invention is not limited to this. For example It may be arranged in the same plane position.
  • a honeycomb catalyst body having a plugged portion in which adjacent cells are both plugged, which is on a plane perpendicular to the cell communication direction.
  • the number of plugged portions in the state where only adjacent plugged portions are not plugged is A, and by adding a plugged portion, the above adjacent cells are
  • B when the plugged portion is in a state of having a plugged portion! /
  • the excess plugging rate power required for BZAX 100 is 5%. It is preferably less than 30%. If it is less than 5%, the temperature rise suppressing effect is insufficient, and local deterioration of the catalyst cannot be prevented.
  • the increase in pressure loss becomes significant. More preferably, the excess plugging rate is 10% or more and 25% or less. This is because if it is 10% or more and 25% or less, the post-degradation purification efficiency and pressure loss are well balanced.
  • An example of a state in which adjacent cells are configured only by plugged portions that are not plugged is a state in which a checkerboard pattern is obtained when a plane perpendicular to the cell communication direction is viewed. I can do it.
  • the catalyst is selected from the group consisting of a carrier coat that also has active alumina force, and Pt, Rh, and Pd that are dispersed and supported inside the carrier coat. It is preferred to have one or more precious metals and one or more compounds selected from the group consisting of acid cerium, acid zirconia, and silica, contained in the carrier coat.
  • the total amount of the noble metal is preferably 0.17 g or more and 7.07 g or less per liter of the Hercam catalyst body.
  • the above-mentioned catalyst is equivalent to a gasoline engine exhaust gas purification three-way catalyst.
  • the Hercam catalyst body according to the present invention is used as an oxidation catalyst for purifying gasoline engine or diesel engine exhaust gas. And SCR for NO selective reduction
  • the porous partition walls are formed of a material mainly composed of ceramics, and the ceramics are silicon carbide, cordierite, alumina titanate, sialon, mullite, nitriding. It is preferably at least one selected from the group consisting of silicon, zirconium phosphate, zirconium oxide, titania, alumina, and silica.
  • ceramics such as silicon carbide, cordierite, mullite, silicon nitride, and alumina are preferable because they are excellent in alkali resistance.
  • acid ceramics can be manufactured at low cost. It is preferable in that it can be produced.
  • the average maximum image distance of the partition walls in a state where the catalyst layer is supported is 30 ⁇ m or more and 400 ⁇ m or less, and the porosity force is 0% or more and 65% or less. It is preferable that Below 30 m and below Z or 40%, the pressure drop problem becomes serious. On the other hand, if it exceeds 400 m and Z or more than 65%, there will be a problem in the strength of the Hercam catalyst body.
  • the average maximum image distance is 30 to 150 m with a focus on strength when the partition wall thickness is thin (500 m or less).
  • the partition wall thickness is thick (100 ⁇ m or more) Therefore, it is preferable to set the pressure loss to 100 to 400 m in consideration of pressure loss. In addition, when particulate matter such as soot is contained in the exhaust gas, it is preferable to set it to 200 / zm or more from the viewpoint of preventing the clogging of the pores.
  • the thermal expansion characteristics of the hard-catalyst body suddenly change at the plane perpendicular to the direction of cell communication, including the corresponding surface position on the inner side of the cell. Concentration of stress due to the difference is likely to occur, and the probability of breakage increases during use. According to the present invention, such a problem can be avoided.
  • the Hercam catalyst body according to the present invention preferably has a variation in the arrangement positions of the plurality of plugged portions, according to the preferred embodiment, and thereby the plurality of plugged portions.
  • the surface position on the inner side of the cell perpendicular to the direction of cell communication varies. If the length of the plugged portion is made substantially constant, the surface position on the cell outer side perpendicular to the cell communication direction will not be aligned with the end surface. A pocket is formed.
  • the present invention When the Hercam catalyst body is used as a catalytic converter, the exhaust gas that has entered the pocket on the inlet side from one end face side does not flow out of the side force on the other end face through the same cell. Since the exhaust gas enters the pocket and collides with the plugging portion and the pressure in the pocket rises, the exhaust gas passes through the partition wall forming the pocket due to the pressure. In the process, the components to be purified contained in the exhaust gas are decomposed in contact with the catalyst layer provided on the surface (pore forming surface) that forms the pores inside the partition wall, so that the exhaust gas is Purified.
  • the exhaust gas flows in the adjacent (not pocket) cell, so there is no pressure inside the cell without the pocket.
  • a gradient occurs and the pressure is higher than the outlet at a position slightly upstream (inlet side) from the outlet.
  • this pressure difference which is lower than that of the cell without the pocket, creates a flow from the cell without the pocket through the partition toward the pocket.
  • the component to be purified contained in the exhaust gas is decomposed in contact with the catalyst layer provided on the pore-forming surface (pore-forming surface) inside the partition wall, thereby exhaust gas. Is purified.
  • the plugging portion is formed to be aligned with the end face, and the length of the plugging portion is changed to cause variation in the surface position on the cell inner side perpendicular to the cell communication direction, the plugging portion Depending on the length of the plug, the proportion of the partition walls that cannot be used due to the presence of the plugging portion may become so large that it cannot be ignored, but the arrangement position of the plugging portion with a substantially constant length varies.
  • the partition wall can be used effectively if it is applied (changed) so as to cause variations in the surface position inside the cell perpendicular to the cell communication direction.
  • the number power of a plugged cell set in which one set of adjacent cells plugged together is one of two end faces. Since there are 18 or more pairs on one end face or both end faces, local temperature rise of the partition walls can be prevented. This is because in a state where any of the adjacent cells is not plugged, the exhaust gas flows in from the cell without the plugged portion, and a certain amount of exhaust gas passes through the partition wall or comes into contact with the partition wall. This is because when the adjacent cells are plugged together, the ratio of the mass of the partition wall to the amount of exhaust gas can be increased in that portion.
  • the Hercam catalyst body according to the present invention is preferable! / Since the rate is 5% or more and less than 30%, the pressure loss does not increase.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment of a Hercam catalyst body according to the present invention.
  • FIG. 2 is a view schematically showing another embodiment of the honeycomb catalyst body according to the present invention, and is a view showing a part of the front surface (a view showing an end face).
  • FIG. 3 is a view schematically showing another embodiment of a honeycomb catalyst body according to the present invention, and is a view showing a part of the front surface (a view showing an end face).
  • FIG. 4 is a view schematically showing another embodiment of a honeycomb catalyst body according to the present invention, and is a view showing a part of the front surface (a view showing an end face).
  • FIG. 5 is a view schematically showing another embodiment of the Hercam catalyst body according to the present invention, and is a cross-sectional view showing a cross section in the direction (axial direction) along the cell.
  • FIG. 6 is a view schematically showing another embodiment of the honeycomb catalyst body according to the present invention, and is a cross-sectional view showing an enlarged part near the end face.
  • FIG. 7 is a view schematically showing another embodiment of a honeycomb catalyst body according to the present invention, and is a cross-sectional view showing an enlarged part near the end face.
  • FIG. 8 is a front view schematically showing an example of a catalytic converter.
  • FIG. 9 is a cross-sectional view schematically showing an example of a catalytic converter.
  • FIG. 10 is a partially enlarged view schematically showing an example of a catalytic converter.
  • FIG. 11 is a front view schematically showing an example of a catalytic converter.
  • FIG. 12 is a cross-sectional view schematically showing an example of a catalytic converter.
  • FIG. 13 is a partially enlarged view schematically showing an example of a catalytic converter.
  • FIG. 14 is a plan view schematically showing an enlarged state of a part of the end face of the one embodiment of the hard cam structure according to the present invention.
  • FIG. 15 is an SEM photograph of one embodiment of a her cam structure according to the present invention.
  • FIG. 1 is a diagram schematically showing one embodiment of a honeycomb catalyst body according to the present invention, and a sectional view showing a section in a direction (axial direction) along a cell.
  • a honeycomb catalytic medium 100 shown in FIG. 1 has a cylindrical outer shape represented by an outer wall, and is composed of a two-cam structure (base material) having a honeycomb structure inside.
  • the Hercam catalyst body 100 includes a porous partition wall 4 having a large number of pores arranged so as to form a plurality of cells 3 communicating between the two end faces 2a and 2b.
  • porous partition walls 4 are formed of a material mainly composed of cordierite, and the average maximum image distance of the partition walls 4 with the catalyst layer supported is 40 ⁇ m. The porosity is 50%.
  • the Hercam catalyst body 100 includes a carrier coat made of activated alumina, a noble metal Pt dispersed and supported inside the carrier coat, and a carrier coat.
  • the present invention employs a catalyst having acid / cerium and acid / zirconium present, and can be used as a catalytic converter for gasoline engine exhaust gas purification. In this case, the exhaust gas of the gasoline engine flows into the cell 3 from the end face 2a side as shown by the arrow in FIG.
  • the plugging portion 10 plugging portion 10 (plugging portion 10a ⁇ : LOg)
  • the side force of the other end face 2b cannot flow out, and after passing through the partition wall 4 and entering the adjacent cell 3, the side force of the other end face 2b also flows out.
  • the components to be purified contained in the exhaust gas are decomposed in contact with the catalyst layer provided on the pore-forming surface (pore forming surface) inside the partition wall 4, thereby purifying the exhaust gas. Is done.
  • the Her-cam catalyst body 100 has variations in the length of the plurality of plugging portions 10 (plugging portions 10a to LOg) (the length in the communication direction of the cells 3).
  • the surface positions of the plurality of plugged portions 10 (plugged portions 10a to LOg) on the inner side of the cell 3 perpendicular to the communication direction of the cell 3 vary.
  • the Hercam catalyst body 100 differs from the catalytic converter 50 described above (see FIG. 12) in this respect. That is, as shown in FIG. 1, the plurality of plugged portions 10a to 10g are positions of two surfaces not in contact with the respective partition walls 4, and the positions of the surfaces on the inner side of the cell 3 are It is not the same position. As a whole, the positions are not uniform and scattered.
  • the surface position of the inner side of the cell 3 perpendicular to the communication direction of the cell 3 in the plugging portion 10a is the inner side of the cell 3 perpendicular to the communication direction of the cell 3 in the force plugging portion 10b existing on the XX cross section.
  • the surface position of is present on the YY section and is different from the plugged portion 10a.
  • the plugging portions 10c to 10g also have different surface position forces on the inner side of the cell 3 perpendicular to the communication direction of the cell 3.
  • the range of tXt of the partition walls 4 is one observation range (field of view) V, and 20 fields of view are shown.
  • SEM Take a photo and analyze the image. Then, as shown in Fig. 15, in the SEM photograph of 20 fields of view, the maximum linear distance in each field of view is measured and the average value is taken. SEM with 20 fields of view shown in Figure 15 In the photograph, the maximum straight line distance is 387 ⁇ m, 442 ⁇ m, 327 m, 179 m, 275 ⁇ m, 255 ⁇ m with the uppermost left edge force toward the right and the upper force toward the lower, respectively.
  • the average maximum image distance is 301 ⁇ m.
  • the SEM photograph shown in FIG. 15 was taken at a magnification of 50 times.
  • image analysis software for image analysis, commercially available image analysis software can be used, for example, a product name: Paint Shop ProX, manufactured by COREL, can be used.
  • the magnification of the SEM photograph is not particularly limited as long as a clear image can be obtained. For example, an arbitrary magnification of 10 to L000 may be selected.
  • FIGS. 5 to 7 are views schematically showing another embodiment of the honeycomb catalyst body according to the present invention.
  • FIG. 5 is a cross-sectional view showing a cross section in the direction along the cell (axial direction)
  • FIGS. 6 and 7 are cross-sectional views showing an enlarged portion near the end face.
  • the heart cam catalyst body 200 shown in FIGS. 5 to 7 is similar to the honeycomb catalyst body 100 described above, the outer shape represented by the outer wall is a cylindrical shape, and the internal structure forms a honeycomb structure. It is composed of a cam structure (base material).
  • the Hercam catalyst body 200 includes a porous partition wall 4 having a large number of pores arranged so as to form a plurality of cells 3 communicating between the two end faces 2a and 2b.
  • porous partition walls 4 are formed of a material mainly composed of silicon carbide, and the average maximum image distance of the partition walls 4 in a state where the catalyst layer is supported is 50 ⁇ m and the porosity is 60%.
  • Hercam catalyst body 200 is a carrier that also has activated alumina force.
  • a catalyst having a coating, noble metals Pt and Rh dispersed and supported inside the carrier coat, and cerium oxide contained in the carrier coat is used as a catalytic converter for gasoline engine exhaust gas purification. I can do it.
  • the exhaust gas of the gasoline engine flows into the cell 3 from the one end face 2a side as shown by the arrow in FIG. 5, and the plugging portion 10 (plugging portions 101! To 101 exist).
  • the side force of the other end face 2b cannot flow out.
  • the other end face 2b side Force flows out.
  • the components to be purified contained in the exhaust gas are decomposed in contact with the catalyst layer provided on the pore-forming surface (pore-forming surface) inside the partition wall 4, whereby the exhaust gas is Purified.
  • the Hercam catalyst body 200 has variations in the arrangement positions of the plurality of plugged portions 10 (plugged portions 10a to 10g) (the positions of the plugged portions 10 in the cell 3). Therefore, the surface positions of the plurality of plugged portions 10 (plugged portions 10h ⁇ : L01) on the inner side of the cell 3 perpendicular to the communication direction of the cell 3 vary.
  • the Hercam catalyst body 200 is different in this respect from the catalytic converter 50 described above (see FIG. 12). That is, as shown in FIG. 5, a plurality of plugged portions 101! ⁇ 101 are the positions of the two surfaces not in contact with the respective partition walls 4, and the position of the surface on the inner side of the cell 3 is the same as the position of the surface on the outer side of the cell 3.
  • both the positions are not uniform and scattered.
  • the surface position on the inner side of the cell 3 perpendicular to the direction of cell 3 communication in the plugged portion 10 h exists on the QQ cross section
  • the surface position on the outer side of the cell 3 exists on the PP cross section.
  • the surface position inside cell 3 perpendicular to the direction of cell 3 communication at stop 10i is on the SS cross section
  • the surface position outside cell 3 is on the RR cross section. That is, it is different from the plugged portion 10h.
  • the surface position on the inner side of the cell 3 and the surface position on the outer side of the cell 3 are different from each other perpendicular to the communication direction of the cell 3.
  • the plugged portions 101 are arranged in order to vary the arrangement positions of the plurality of plugged portions 10 (plugged portions 10h to: L01).
  • Individual placement position force of ⁇ 101 It is the inner part of cell 3 (the back side when viewed from end faces 2a and 2b), and is not aligned with end faces 2a and 2b. Therefore, unlike the her cam catalyst body 100, the her cam catalyst body 200 is formed with an inlet side pocket 30 on the end face 2a side and an outlet side pocket 40 on the end face 2b side. Po The kets 30 and 40 are a part of the cell 3 that has reached a dead end at the plugging portion 10. FIG.
  • FIG. 6 shows that the side force of one end face 2a also passes through the partition wall 4 forming the exhaust gas force pocket 30 that has entered the pocket 30 on the inlet side.
  • FIG. 7 shows a state in which the exhaust gas passes through the partition wall 4 forming the pocket 40 in the pocket 40 on the exhaust gas outlet side which is the other end face 2 b side.
  • FIG. 2 to Fig. 4 are diagrams schematically showing another embodiment of the honeycomb catalyst body according to the present invention, each showing a part of the front surface (a diagram showing an end face). .
  • FIGS. 2 to 4 show examples of arrangement of adjacent cells that are plugged together in one plane (here, the end face) perpendicular to the cell communication direction.
  • the Hercam catalyst bodies 310, 320, and 330 shown in FIG. 2 to FIG. 4 have a cylindrical outer shape represented by the outer wall and have an internal structure similar to the aforementioned insect worm medium 100, 200. It is composed of a nonicam structure (base material) having a honeycomb structure.
  • the Hercam catalyst body 310, 320, 330 is a porous partition wall 4 having a large number of pores arranged so as to form a plurality of cells 3 communicating between two end faces.
  • a plurality of plugging portions 10 having a predetermined length arranged so as to plug the cells 3 and the surface (pore forming surface) of the partition wall 4 forming pores And a catalyst layer containing a catalyst supported in a layer form.
  • the number of cells of the honeycomb catalyst body 100, 200 already described is on the order of several tens of Zcm 2 , and the number of cells of the honeycomb cam bodies 310, 320, 330 is the same, and some of them are shown in FIGS. It is represented. For example, in a cylindrical Hercam catalyst body having a diameter of 100 mm, the number of cells is several hundred to several thousand.
  • Hercam catalyst body 310 there are 20 sets of plugged cell sets, each set of adjacent cells 3 plugged together, indicated by arrows on the end face shown in FIG. To do.
  • C In the two-cam catalyst body 320, there are 18 sets of plugged cell sets, each set of adjacent cells 3 that are both plugged as indicated by arrows on the end face shown in FIG. .
  • the hammer catalyst body 330 there are 67 sets of plugged cell sets, each set of adjacent cells 3 plugged together, indicated by arrows on the end face shown in FIG.
  • the force described in the embodiment of the her-cam catalyst body according to the present invention is a method for producing a conventionally known diesel particulate filter (DPF).
  • a hard cam structure is prepared, and the obtained two-cam structure is conventionally known. It can be produced by loading a catalyst according to a method according to the above method. Specifically, first, a catalyst slurry containing a catalyst is prepared, and the catalyst slurry is coated on the pore forming surfaces of the partition walls of the honeycomb structure by a method such as a suction method. Thereafter, the honeycomb catalyst body according to the present invention is obtained by drying at room temperature or under heating conditions.
  • a pore-forming agent 12 to 25 parts by mass of graphite and 5 to 15 parts by mass of synthetic resin were added to 100 parts by mass of the combined cordiery toy koji raw material. Furthermore, after adding appropriate amounts of methylcelluloses and surfactants, a clay was prepared by adding water and kneading. The prepared clay was vacuum degassed and then extruded to obtain a honeycomb formed body. The obtained honeycomb formed body was dried and then fired at a maximum temperature of 1400 to 1430 ° C. to obtain a honeycomb fired body.
  • Example 1 By plugging a plugging agent in a checkered pattern at either end of the cells of the obtained honeycomb fired body and firing again, the diameter was 105.7 mm, the length was 114.2 mm, and the volume was 1 liter. , Partition thickness 17mil (0.432mm), cell density 100 cells Z square inch (15.5 cells Z square centimeters), with plugged portions plugged with cells, Examples 1-8, comparison A hard cam structure according to Example 1 was fabricated. The pores of the partition walls were formed by appropriately adjusting the combination and mixing ratio of the cordierite forming raw material, the particle size of the cordierite forming raw material, the particle size of the pore forming agent, the amount of the pore forming agent added, and the like. In addition, the length of the plugging portion (depth of the end face force) was varied by adjusting the amount of plugging agent packed in the cell. The average length of the plugged portions was 8 mm in all of Examples 1 to 8 and Comparative Example 1.
  • Example 9 The length of the plugging portion is constant (3 mm), and at the stage of filling the plugging agent so that the surface position on the cell inner side is the same as in Example 1, The plugging agent was pressed into Therefore, for example, a cell whose inner surface has an end face force of 8 mm has a pocket with a length of 5 mm from the end face.
  • a mixture containing activated (gamma) alumina and ceria as an oxygen storage agent (specific surface area of 50 m 2 / g by BET method, initial pulverized particle size of 50) was wet crushed using a ball mill, The average crushed particle size was 5.
  • the mass of active (gamma) alumina and ceria per liter of Hercum structure is 10 Og
  • the amount of Pt per liter of Hercam structure is lg
  • 1 liter of Hercam structure The amount of Rh per torr was 0.2g.
  • the honeycomb catalyst bodies of Examples 1 to 9 are superior in thermal shock resistance with a higher fracture temperature than the honeycomb catalyst body of Comparative Example 1. It is clear that it shows sex. In Examples 2 to 6, low pressure loss can be realized at the same time, and in particular, Examples 3 to 6 can maintain low pressure loss even after engine endurance test without pore blockage due to particulate matter in engine endurance test. done. Further, when compared with the honeycomb catalyst bodies of Examples 12 and 13, the Harcam catalyst bodies of Examples 10 and 11 are excellent in purification rate and have a small pressure loss. Furthermore, the purification rate of the Hercam catalyst body of Example 14 was improved as compared with Example 11 having no pocket.
  • [Surface position of plugged portion] The surface position inside the cell was measured by inserting a thin round bar from the end surface leading to the surface (that is, the end surface far from the plugged portion). Specifically, first, a round bar that is slightly thinner than the cell is inserted into the end surface force that leads to the inner side of the cell, and the tip of the bar is Measure the depth of the inner side of the cell by the length of the rod in the inside of the hard cam catalyst when it stops at the inner side of the plugged part. Next, the total length force of the honeycomb catalyst body is subtracted from the depth to calculate the distance from the other end surface (i.e., the end surface close to the plugged portion), and thereby the surface position of the plugged portion is calculated. Identified. The diameter of the round bar (insertion bar) was 60% of the length of one side of the cell. A round bar (insertion bar) with a tip shape similar to the cross section was used.
  • thermo shock test Breakdown Temperature Repeated thermal shock test using a method in which combustion gas generated by a propane gas burner and room temperature air are alternately flowed into a Hercam catalyst body. A test was conducted to check the occurrence. Heating conditions are gas flow rate 1. ONm 3 Zmin, 10 minutes, cooling conditions are gas flow rate 0.5Nm 3 Zmin, 10 minutes, and the temperature of the central part of the honeycomb catalyst body is 0.5 mm diameter with a sheathed thermocouple. The temperature at which cracking occurred first was measured as the “thermal shock test breakdown temperature”.
  • [0063] [Excess plugging rate]: When the number of checkered plugged portions is A and the number of added plugged portions is B, the value obtained by BZA X 100 is “excess plugged”. The “seal rate”. [0064] [Purification rate]: Oxygen 7% by volume, water vapor 10% by volume, diacid carbon 10% by volume, hydrocarbon 20 0 ppm (carbon moles) ppm, and the balance of combustion gas with nitrogen power, space velocity (SV) 100 It was allowed to flow into the Hercam catalyst body at a temperature of 200 ° C.
  • the purification rate (%) is calculated from the hydrocarbon concentration of the combustion gas before and after the inflow, and the initial purification rate of Example 10 is set to 1, and after the engine durability test of Example 10 and Examples 11 to 14 The relative purification rate after the initial test and after the engine durability test was determined.
  • the Hercam catalyst body according to the present invention is incorporated and used as a catalytic converter in, for example, an exhaust gas treatment system in various industrial fields that require purification of components to be purified contained in exhaust gas.
  • an exhaust gas treatment system in various industrial fields that require purification of components to be purified contained in exhaust gas.
  • it is effectively used in industrial fields such as the automobile industry, machine industry, and ceramic industry that require exhaust gas purification such as internal combustion engines and combustion equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 所定の長さを有する複数の目封止部10の、セル3の連通方向に垂直なセル内部側の面位置に、ばらつきを有するハニカム触媒体100である。このハニカム触媒体100を用いた触媒コンバータは、熱応力が分散され、入口及び出口の近傍での局所的な高温化が抑制されたものとなり、クラックが発生し難い。

Description

明 細 書
ハニカム触媒体
技術分野
[0001] 本発明は、内部応力の分散が図られていて、破損し難く長期にわたる信頼性に優 れるハ二カム触媒体に関する。
背景技術
[0002] 自動車用、建設機械用、及び産業用のエンジン、並びに燃焼機器等から排出され る排気ガスに含まれる、一酸化炭素 (CO)、炭化水素 (HC)、窒素酸化物 (NO )、
X
硫黄酸化物 (so X )等の被浄化成分を浄化するため、触媒担体の上に浄化用の触媒 を担持した触媒コンバータが使用されている(先行文献として、例えば、特許文献 1を 参照)。
[0003] 図 8〜図 10は、従来の触媒コンバータの一例を、模式的に示す図である。図 8は、 正面図 (端面を見た図)であり、図 9は、セルに沿った方向(軸方向)の断面を表す断 面図である。図 10は、セルに沿った方向の断面において隔壁を拡大して示す部分 拡大図であり、触媒層を示すための説明用の図である。図 8〜図 10に示される触媒 コンバータ 60は、外壁 20で表される外形が円柱状であり、内部の構造がハ-カム構 造をなすノヽ-カム構造体 11で構成されるものである。排気ガスは、触媒コンバータ 6 0の一の端面 2a側力 セル 3に流入し、他の端面 2bの側から外部へと流出する。こ の過程で、排気ガスに含まれる被浄ィ匕成分が、隔壁 4の表面に設けられた触媒層 15 (図 8及び図 9において省略)に接触して分解されることにより、排気ガスは浄ィ匕される 。触媒層 15は、酸化物(アルミナ、セリア、ジルコユア等)のコート層の微細な気孔の 中に貴金属を担持する構造を有するものである。
[0004] この触媒コンバータ 60は、排気ガスが触媒層 15と平行に流れることから、排気ガス の被浄ィ匕成分が触媒層 15に達するために移動しなければならない拡散距離が大き ぐ触媒層 15に被浄ィ匕成分が達し難い結果、浄ィ匕効率が低いという問題を抱えてい る。そのため、触媒コンバータ 60に対しては、セル 3の水力直径を小さくし、隔壁 4の 表面積を大きくして、浄ィ匕効率の向上を図る改善策が施される。具体的な手段として は、通常、単位面積当りのセル 3の数 (セル密度)を増加させ、排気ガスと触媒層 15と の距離を小さくするとともに、排気ガスが触媒層 15に接触する面積を大きくする方法 が採用される。
特許文献 1:特開 2003 - 33664号公報
発明の開示
[0005] そして、近時では、触媒コンバータの浄ィ匕効率を更に向上させるために、隔壁の気 孔率を増加させて通気性を確保した上で、セルの入口と出口を交互に目封じして排 気ガスが隔壁を通過する構造とし、隔壁の内部の気孔に触媒層を形成する態様が考 えられている。
[0006] 図 11〜図 13は、そのような触媒コンバータの一例を、模式的に示す図である。図 1 1は、正面図(端面を見た図)であり、図 12は、セルに沿った方向(軸方向)の断面を 表す断面図である。図 13は、セルに沿った方向の断面において隔壁を拡大して示 す部分拡大図であり、触媒層を示すための説明用の図である。図 11〜図 13に示さ れる触媒コンバータ 50は、外壁 20で表される外形が円柱状であり、内部の構造がハ 二カム構造をなすノヽ-カム構造体 1 (基材)で構成されるものである。排気ガスは、触 媒コンバータ 50の一の端面 2a側力もセル 3に流入し、目封止部 10があることから同 じセル 3においては他の端面 2bの側力 外部へ流出することは出来ず、隔壁 4を通 過し隣接するセル 3に入った後に、他の端面 2bの側から外部へと流出する。この過 程で、排気ガスに含まれる被浄化成分が隔壁 4の内部の気孔 25を形成する面 (気孔 形成面)に設けられた触媒層 5 (図 11及び図 12において省略)に接触して分解され ることにより、排気ガスは浄ィ匕される。触媒層 5は、酸化物(アルミナ、セリア、ジルコ- ァ、ゼォライト等)のコート層の微細な気孔の中に貴金属等の触媒活性成分を担持す る構造を有するものである。
[0007] 触媒コンバータ 50では、排気ガスが、セル 3に比較して水力直径が小さい隔壁 4の 気孔 25の中を通過することになるため、気孔形成面に薄く均一な触媒層 5を担持す ることが出来れば、排気ガスと触媒層 5との距離は、より小さくなり、排気ガスと触媒層 5とが接触する面積を増やすことが可能であり、浄ィ匕効率が大幅に向上する。
[0008] しかし、触媒コンバータ 50には、使用していると隔壁 4にクラックを生じ、破損に至る 場合があった。そこで、この対策を図るべくクラックについて解析が進められた結果、 端面 2a, 2bの近傍に、即ち、排気ガスの入口と出口の近傍に、クラックが生じ易いこ とが突き止められた。そして、更に研究が進められた結果、触媒層 5と、それが設けら れる隔壁 4 (ハニカム構造体 1 (基材))と、では熱膨張係数が大きく異なるので、気孔 形成面 (気孔)が存在せず触媒層 5の少ない目封止部 10に接する隔壁 4の一の部分 と、その直近の気孔形成面 (気孔)に多くの触媒層 5が設けられた隔壁 4の他の部分 と、の間に大きな熱膨張差が生じることが、クラック発生の主な原因であることがわか つた。又、この研究を通じて、隔壁 4を通過する排気ガスの量力 触媒コンバータ 50 の入口又は出口の近傍に集中し易ぐその部分に位置する触媒層 5の熱劣化が激し いことが確認され、このことが、上記熱膨張差によるクラックの発生を助長していること がわかった。更に、触媒コンバータ 50の中心部に位置するセル 3の方が外壁 20側の セル 3に比較して排気ガスが多量に流れるため、中心部に位置する隔壁 4の気孔形 成面に設けられた触媒層 5が、より激しい熱劣化を起こしていることが確認された。
[0009] 本発明は、上述の事情に鑑みて、以上の研究成果に基づいてなされたものであり、 触媒コンバータにおけるクラックの発生を防止するために、熱応力が分散され、入口 及び出口の近傍での局所的な高温ィ匕が抑制された触媒コンバータを提供することを 目的とする。この目的を達成するため、本発明は以下の手段を提供する。
[0010] 即ち、先ず、本発明によれば、二つの端面の間を連通する複数のセルが形成され るように配置された、多数の気孔を有する多孔質の隔壁と、二つの端面のうちの何れ か又はセルの内部にお 、て、複数のセルをそれぞれ目封止するように配置された、 所定の長さを有する複数の目封止部と、隔壁の、気孔を形成する表面に層状に担持 された、触媒を含有する触媒層と、を具備し、所定の長さを有する複数の目封止部の 、セルの連通方向に垂直なセル内部側の面位置にばらつきを有するハニカム触媒 体が提供される。
[0011] セルの連通方向に垂直なセル内部側の面位置(つらいち又はめんいち)とは、セル を目封止する、所定の長さを有する複数の目封止部の、隔壁に接しない 2つの面の 位置であって、セル内部側の方の面の位置である。セルの内部側とは、端面からみ てセルの奥の方の側であり、セルの連通方向の中心側を意味する。セルの連通方向 に垂直なセル内部側の面位置にばらつきを有するとは、目封止部の隔壁に接しない
2つの面の位置のうちのセルの内部側の面位置にばらつきを有する状態を指す。面 位置にばらつきを有するとは、複数の目封止部の当該面位置が相互に異なることを 意味する。多くの場合、所定の長さを有する複数の目封止部の、隔壁に接しない 2つ の面のうち、セル外部側の方の面は、その面位置が、ハニカム触媒体の端面と揃つ た状態でセルが目封止される力 本発明に係るハ-カム触媒体では、このセル外部 側の面位置がばらついていてもよい。尚、本明細書において、ばらつきを有するとは 、ばらついていること、均一ではないこと、を意味する。又、本発明におけるばらつき は、一様ではなく不揃いである状態であって、意図して形成された状態を意味する。
[0012] 本発明に係るハ-カム触媒体にお!、て、目封止部で目封止されるセルの断面形状 、即ち、セルの連通方向に垂直な面で切断した断面の形状は、限定されず、用途に 適した形状とすればよい。具体的には、円、楕円、長円、台形、三角形、四角形、六 角形、又は左右非対称な異形形状を採用することが出来る。
[0013] 本発明に係るハ-カム触媒体においては、複数の目封止部の配置位置にばらつき を有することが好ましい。
[0014] 目封止部は、ハ-カム触媒体の二つの端面のうちの何れか又はセルの内部におい てセルを目封止するものであるから、目封止部の配置位置とは、二つの端面の間を 連通するセルにおける目封止部の位置である。目封止部の配置位置を変えれば、目 封止部の面位置も変わるから、この態様によって、所定の長さを有する複数の目封 止部の、セルの連通方向に垂直なセル内部側の面位置にばらつきを生じさせること が出来る。
[0015] 本発明に係るハ-カム触媒体においては、複数の目封止部の長さにばらつきを有 することが好ましい。
[0016] 目封止部の長さとは、セルの連通方向の目封止部の長さであり、二つの端面のうち の何れかに配置される目封止部の場合には、端面力 セルの内部に向けた、目封止 部の深さに相当する寸法である。目封止部の長さを変えれば、目封止部の面位置も 変わるから、この態様によって、所定の長さを有する複数の目封止部の、セルの連通 方向に垂直なセル内部側の面位置にばらつきを生じさせることが出来る。尚、複数の 目封止部の配置位置及び長さが、ともにばらつきを有して!/、てもよ!/、。
[0017] 本発明に係るハ-カム触媒体において、複数の目封止部の長さにばらつきを有す る場合には、ばらつきを有する複数の目封止部の長さの、最大値と最小値との差が、 lmm以上 10mm以下であることが好まし 、。 1mm未満ではクラック発生抑制効果が 小さい。 10mm超では 最大部、最小部への応力集中が反って大きくなり、クラック発 生し易くなるとともに、圧損のバラツキも増加しエンジン制御がし難くなる問題を生じる 。より好ましくは、 1. 5mm以上 5mm以下である。 1. 5mm以上 5mm以下であれば、 エンジン直下搭載等の排気ガス温変動が激し 、環境でも、十分なクラック発生抑制 効果を得ることが出来る。
[0018] 本発明に係るハ-カム触媒体においては、複数の目封止部の長さにばらつきを有 する場合には、複数の目封止部の長さのばらつきが、標準偏差 (シグマ)として 0. 5 mm以上 10mm以下(但し、データ数 20以上)であることが好ましい。 0. 5mm未満 では、クラック発生抑制効果が不十分である。 10mm超では、最大部、最小部への 応力集中が反って大きくなり、クラック発生し易くなるとともに、圧損のバラツキも増加 しエンジン制御がし難くなる問題を生じる。より好ましい標準偏差は、 1. Omm以上 2 . Omm以下である。 1. Omm以上 2. Omm以下であれば、ハ-カム触媒体の如何な る外形状に対しても、十分なクラック発生抑制効果を得ることが出来る。
[0019] 本発明に係るハ-カム触媒体においては、ともに目封止されている隣接するセルを 1組とする(一対とする)目封止セル組の数力 二つの端面のうちの何れか一の端面 又は両方の端面において、 18組以上存在することが好ましい。隣接するセルに同じ 面位置で、ともに目封止を施すことにより、ハ-カム触媒体全体で見たときに、当該隣 接セル部分にはガスが流入し難くなるため、結果的に、当該隣接セル部分の温度が 上がり難くなる。従って、力かる隣接目封止をノヽ-カム触媒体中央部等の実使用時 に最も温度が上がり易い部分に設けておくことにより、当該部分の局所的触媒熱劣 化や溶損を抑止することが出来る。目封止セル組の数が 18組未満であると、昇温抑 制効果が不十分であり、触媒の局所的劣化を防止出来ない。尚、隣接するセルをセ ルの連通方向に垂直な一平面においてともに目封止する場合、当該「隣接する目封 止」同士も、本願発明のばらつきを有することが好ましいが、これに限られず、例えば 全く同じ面位置に配設されて 、てもよ 、。
[0020] 本発明に係るハ-カム触媒体においては、隣接するセルがともに目封止されている 目封止部を有するハニカム触媒体であって、セルの連通方向に垂直な一平面にお いて、隣接するセルが目封止されていない目封止部のみで構成される状態における 目封止部の数を Aとし、 目封止部を追加することによって、上記隣接するセルがとも に目封止されて!/、る目封止部を有する状態としたときの、上記追加した目封止部の 数を Bとした場合に、 BZAX 100で求められる過剰目封止率力 5%以上 30%未満 であることが好ましい。 5%未満であると、昇温抑制効果が不足し、触媒の局所的劣 化を防止出来ない。一方、 30%以上では、圧力損失の増大が顕著となる。より好まし くは、過剰目封止率は 10%以上 25%以下である。 10%以上 25%以下では、劣化 後浄ィ匕効率と圧力損失が良好にバランスするからである。尚、隣接するセルが目封 止されていない目封止部のみで構成される状態の一例として、セルの連通方向に垂 直な一平面をみたときに、市松模様となる状態を挙げることが出来る。
[0021] 本発明に係るハ-カム触媒体においては、触媒が、活性アルミナ力もなる担体コー トと、担体コートの内部に分散担持される、 Pt、 Rh、及び Pdからなる群より選択される 一以上の貴金属と、担体コートに含有される、酸ィ匕セリウム、酸ィ匕ジルコユア、及びシ リカからなる群より選択される一以上の化合物と、を有することが好ま 、。
[0022] 貴金属の合計量は、ハ-カム触媒体の体積 1リットルあたり、 0. 17g以上 7. 07g以 下とすることが好ましい。尚、上記触媒は、ガソリンエンジン排気ガス浄ィ匕三元触媒に 相当するものである力 本発明に係るハ-カム触媒体は、触媒として、ガソリンェンジ ン又はディーゼルエンジン排気ガス浄化用の酸化触媒や、 NO選択還元用 SCR触
X
媒、 NO吸蔵触媒等も採用出来る。
X
[0023] 本発明に係るハ-カム触媒体においては、多孔質の隔壁が、セラミックスを主成分 とする材料で形成され、そのセラミックスが、炭化珪素、コージエライト、アルミナタイタ ネート、サイアロン、ムライト、窒化珪素、リン酸ジルコニウム、ジルコユア、チタ二了、 アルミナ、及びシリカからなる群より選択される少なくとも一種であることが好ましい。
[0024] 特に、炭化珪素、コージエライト、ムライト、窒化珪素、アルミナ等のセラミックスが、 耐アルカリ性に優れるため、好適である。又、酸ィ匕物系のセラミックスは、低コストで生 産可能な点で好ましい。
[0025] 本発明に係るハ-カム触媒体においては、触媒層が担持された状態における隔壁 の画像最大距離平均が 30 μ m以上 400 μ m以下であり、気孔率力 0%以上 65% 以下であることが好ましい。 30 m未満及び Z又は 40%未満では、圧力損失の問 題が深刻となる。一方、 400 m超及び Z又は 65%超では、ハ-カム触媒体の強度 に問題を生じる。更に、画像最大距離平均は、隔壁厚さが薄い場合 (500 m以下) には、強度を重視して 30〜 150 mとすることが好ましぐ隔壁厚さが厚い場合(100 μ m以上)には、圧力損失を重視して 100〜400 mとすることが好ましい。又、排気 ガスにスート等の粒子状物質が含まれる場合には、気孔の閉塞を防止する観点から 、 200 /z m以上とすること力 S好まし!/、。
[0026] 次に、本発明によれば、上記した何れかのハ-カム触媒体を触媒コンバータとして 用いた排気ガス処理システムが提供される。
[0027] 本発明に係るハ-カム触媒体は、複数のセルをそれぞれ目封止するように配置さ れた複数の目封止部の、セルの連通方向に垂直なセル内部側の面位置にばらつき を有するものであるので、応力が、セルの連通方向に垂直な一つの面に集中されず 、分散される。そのため、応力値が低下し、破損の確率を低減することが可能である。 例えば、目封止部の配置位置及び長さが均一であると、複数の目封止部におけるセ ルの連通方向に垂直なセル内部側の面位置が全て揃ってしまう。そうすると、セルの 内部側の揃った当該面位置を含みセルの連通方向に垂直な面を境にして、ハ-カ ム触媒体における熱膨張特性が急激に変ることになり、その面に熱膨張差による応 力の集中が生じ易ぐ使用時に破損に至る確率が増加してしまう。本発明によれば、 このような問題を回避出来る。
[0028] 本発明に係るハ-カム触媒体は、その好ま U、態様にぉ 、て、複数の目封止部の 配置位置にばらつきを有し、そのことによって、複数の目封止部の、セルの連通方向 に垂直なセル内部側の面位置に、ばらつきを生じさせている。そして、目封止部の長 さを概ね一定にした場合には、セルの連通方向に垂直なセル外部側の面位置が端 面に揃わなくなることから、必然的に、二つの端面の側において、ポケットが形成され る。このポケットは、目封止部で行き止まりとなったセルの一部分であるから、本発明 に係るハ-カム触媒体を触媒コンバータとして使用した際に、一の端面の側から入口 側のポケットに入った排気ガスは、そのまま同じセルを経て他の端面の側力 外部へ 流出されないが、排気ガスがポケットに入り目封止部に衝突してポケット内の圧力が 上昇することから、その圧力によって、排気ガスがポケットを形成する隔壁を通過する 。そして、その過程で、排気ガスに含まれる被浄化成分が隔壁の内部の気孔を形成 する面 (気孔形成面)に設けられた触媒層に接触して分解され、これによつて排気ガ スは浄ィ匕される。又、他の端面の側である排気ガスの出口側のポケットでは、隣接す る(ポケットではない)セルに、排気ガスの流れが生じていることから、ポケットのないセ ルの内部には圧力勾配が生じ、出口より僅かでも上流側 (入口側)の位置では圧力 が出口より高い。一方、ポケットの中は出口と同じ圧力であるので、ポケットのないセ ルに比較して圧力が低ぐこの圧力差によって、ポケットのないセルから、ポケットに 向けて隔壁を通過する流れが生じる。そして、その過程で、排気ガスに含まれる被浄 化成分が隔壁の内部の気孔を形成する面 (気孔形成面)に設けられた触媒層に接 触して分解され、これによつて排気ガスは浄化される。 目封止部を端面に揃えて形成 し、 目封止部の長さを変えて、セルの連通方向に垂直なセル内部側の面位置にばら つきを生じさせる場合には、 目封止部の長さによっては、 目封止部の存在によって使 用出来ない隔壁の占める割合が無視出来ない程に大きくなるおそれがあるが、長さ が概ね一定の目封止部の配置位置をばらつ力せて (変えて)、セルの連通方向に垂 直なセル内部側の面位置にばらつきを生じさせる態様であれば、隔壁を有効に使用 することが可能である。
[0029] 本発明に係るハ-カム触媒体は、その好ましい態様において、ともに目封止されて いる隣接するセルを 1組とする目封止セル組の数力 二つの端面のうちの何れか一 の端面又は両方の端面において、 18組以上存在するので、局所的な隔壁の高温化 を防止することが出来る。これは、隣接するセルの何れかが目封止されていない状態 では、 目封止部の存在しないセルより排気ガスが流入し、隔壁に一定以上の量の排 気ガスが通過したり、接触したりする力 隣接するセルをともに目封止すると、その部 分において、排気ガス量に対する隔壁の質量の比率を高められるからである。
[0030] 一方、本発明に係るハ-カム触媒体は、その好まし!/、態様にぉ 、て、過剰目封止 率が 5%以上 30%未満であるので、圧力損失は大きくならない。
図面の簡単な説明
[0031] [図 1]本発明に係るハ-カム触媒体の一の実施形態を模式的に示す断面図である。
[図 2]本発明に係るハニカム触媒体の他の実施形態を模式的に示す図であり、正面 の一部を表した図(端面を表した図)である。
[図 3]本発明に係るハニカム触媒体の他の実施形態を模式的に示す図であり、正面 の一部を表した図(端面を表した図)である。
[図 4]本発明に係るハニカム触媒体の他の実施形態を模式的に示す図であり、正面 の一部を表した図(端面を表した図)である。
[図 5]本発明に係るハ-カム触媒体の他の実施形態を模式的に示す図であり、セル に沿った方向(軸方向)の断面を表す断面図である。
[図 6]本発明に係るハニカム触媒体の他の実施形態を模式的に示す図であり、端面 近傍の一部分を拡大して示す断面図である。
[図 7]本発明に係るハニカム触媒体の他の実施形態を模式的に示す図であり、端面 近傍の一部分を拡大して示す断面図である。
[図 8]触媒コンバータの一例を模式的に示す正面図である。
[図 9]触媒コンバータの一例を模式的に示す断面図である。
[図 10]触媒コンバータの一例を模式的に示す部分拡大図である。
[図 11]触媒コンバータの一例を模式的に示す正面図である。
[図 12]触媒コンバータの一例を模式的に示す断面図である。
[図 13]触媒コンバータの一例を模式的に示す部分拡大図である。
[図 14]本発明に係るハ-カム構造体の一の実施形態の端面の一部を拡大した状態 を模式的に示す平面図である。
[図 15]本発明に係るハ-カム構造体の一の実施形態の SEM写真である。
符号の説明
[0032] 1, 11 ハ-カム構造体
100, 200, 310, 320, 330 ノヽ-カム触媒体
2a 端面 2b 端面
3 セル
4 隔壁
5 触媒層
20 外壁
25 気孔
50, 60 触媒コンバータ
発明を実施するための最良の形態
[0033] 以下、本発明について、適宜、図面を参酌しながら、実施の形態を説明するが、本 発明はこれらに限定されて解釈されるべきものではない。本発明に係る要旨を損な わない範囲で、当業者の知識に基づいて、種々の変更、修正、改良、置換を力卩ぇ得 るものである。例えば、図面は、好適な本発明に係る実施の形態を表すものであるが 、本発明は図面に表される態様や図面に示される情報により制限されない。本発明 を実施し又は検証する上では、本明細書中に記述されたものと同様の手段若しくは 均等な手段が適用され得るが、好適な手段は、以下に記述される手段である。
[0034] 図 1は、本発明に係るハニカム触媒体の一の実施形態を模式的に示す図であり、 セルに沿った方向(軸方向)の断面を表す断面図である。図 1に示されるハニカム触 媒体 100は、外壁で表される外形が円柱状であり、内部の構造がハニカム構造をな すノ、二カム構造体 (基材)で構成されるものである。具体的には、ハ-カム触媒体 10 0は、二つの端面 2a, 2bの間を連通する複数のセル 3が形成されるように配置された 、多数の気孔を有する多孔質の隔壁 4と、二つの端面 2a, 2bにおいて、セル 3を目 封止するように配置された、所定の長さを有する複数の目封止部 10 (図 1に示される 断面には目封止部 10a〜: LOgが存在する)と、隔壁 4の、気孔を形成する表面 (気孔 形成面)に層状に担持された、触媒を含有する触媒層と、を具備するものである。
[0035] ハ-カム触媒体 100では、コージエライトを主成分とする材料で多孔質の隔壁 4が 形成されており、触媒層が担持された状態における隔壁 4の画像最大距離平均は、 40 μ mであり、気孔率は 50%である。ハ-カム触媒体 100は、活性アルミナからなる 担体コートと、その担体コートの内部に分散担持された貴金属 Ptと、担体コートに含 有された酸ィ匕セリウム及び酸ィ匕ジルコニウムと、を有する触媒を採用し、ガソリンェン ジン排気ガス浄ィ匕用の触媒コンバータとして使用することが出来る。この場合に、ガソ リンエンジンの排気ガスは、図 1の矢印で示されるように、一の端面 2a側からセル 3に 流入し、目封止部 10 (目封止部 10a〜: LOg)があることから、同じセル 3においては他 の端面 2bの側力も外部へ流出することは出来ず、隔壁 4を通過し隣接するセル 3に 入った後に、他の端面 2bの側力も外部へと流出する。この過程で、排気ガスに含ま れる被浄化成分が隔壁 4の内部の気孔を形成する面 (気孔形成面)に設けられた触 媒層に接触して分解され、これによつて排気ガスは浄化される。
[0036] ハ-カム触媒体 100は、複数の目封止部 10 (目封止部 10a〜: LOg)の長さ(セル 3 の連通方向の長さ)にばらつきを有し、それによつて、複数の目封止部 10 (目封止部 10a〜: LOg)の、セル 3の連通方向に垂直なセル 3内部側の面位置にばらつきが生じ ている。ハ-カム触媒体 100は、この点で、既述の触媒コンバータ 50 (図 12を参照) とは異なる。即ち、図 1に示されるように、複数の目封止部 10a〜10gは、それぞれの 隔壁 4に接しない 2つの面の位置であって、セル 3の内部側の方の面の位置が、同じ 位置ではない。全体として当該位置が均一ではなぐばらついている。例えば、目封 止部 10aにおけるセル 3の連通方向に垂直なセル 3内部側の面位置は、 XX断面上 に存在する力 目封止部 10bにおけるセル 3の連通方向に垂直なセル 3内部側の面 位置は、 YY断面上に存在し、目封止部 10aとは異なる。同様に、目封止部 10c〜l 0gも、セル 3の連通方向に垂直なセル 3内部側の面位置力 それぞれ異なっている。
[0037] 尚、本明細書にいう「画像最大距離平均」は、画像解析によって測定される物性値 である。具体的には、隔壁断面の SEM写真を、隔壁の厚さを「t」とした場合に、縦 X 横 =t x tの視野について少なくとも 20視野観察する。次いで、観察したそれぞれの 視野内で、空隙中の最大直線距離を計測し、全ての視野について計測した最大直 線距離の平均値を「画像最大距離平均」とした。
[0038] 例えば、図 14に示す、ハニカム構造体の端面の一部を拡大した平面図においては 、隔壁 4の t X tの範囲を一つの観察範囲(視野) Vとし、 20箇所の視野について SEM 写真を撮り、画像解析する。そして、図 15に示すように、 20視野の SEM写真におい て、各視野内の最大直線距離を計測し、平均値をとる。図 15に示す 20視野の SEM 写真においては、最上段左端力も右に向かって、そして上段力も下段に向力つて、 それぞれの最大直線距離は、 387 μ m、 442 μ m、 327 m、 179 m、 275 μ m、 255 μ m、 303 μ m、 377 μ m、 350 μ m、 185 μ m、 353 μ 153 μ 332 μ m 、 245 μ m、 257 μ m、 302 μ m、 207 μ m、 465 μ m、 320 μ m、及び 301 μ mであ る。この場合、画像最大距離平均は、 301 μ mとなる。
[0039] 尚、図 15に示す SEM写真は、 50倍の倍率で撮影したものである。画像解析には、 市販の画像解析ソフトを用いることが出来、例えば、 COREL社製、商品名: Paint Shop ProXを用いることが可能である。 SEM写真の倍率は、鮮明な画像が得られ るような倍率であればよぐ例えば、 10〜: L000倍の任意の倍率を選べばよい。
[0040] 又、本明細書に!/ヽぅ気孔率は、画像解析によって測定される物性値である。具体的 には、隔壁の断面の SEM写真を、隔壁厚さを「t」とした場合に、縦 X横 =t X tの視 野について少なくとも 5視野観察する。観察したそれぞれの視野内で、空隙面積比 率を求め、これを 3Z2乗して得た値の、全ての視野について平均した値を「気孔率」 とした。
[0041] 図 5〜図 7は、本発明に係るハニカム触媒体の他の実施形態を模式的に示す図で ある。図 5は、セルに沿った方向(軸方向)の断面を表す断面図であり、図 6及び図 7 は、端面近傍の一部分を拡大して示す断面図である。図 5〜図 7に示されるハ-カム 触媒体 200は、既述のハニカム触媒体 100と同様に、外壁で表される外形が円柱状 であり、内部の構造がハニカム構造をなすノ、二カム構造体 (基材)で構成されるもの である。具体的には、ハ-カム触媒体 200は、二つの端面 2a, 2bの間を連通する複 数のセル 3が形成されるように配置された、多数の気孔を有する多孔質の隔壁 4と、 二つの端面 2a, 2bにおいて、セル 3を目封止するように配置された、所定の長さを有 する複数の目封止部 10 (図 5に示される断面には目封止部 101!〜 101が存在する)と 、隔壁 4の、気孔を形成する表面 (気孔形成面)に層状に担持された、触媒を含有す る触媒層と、を具備するものである。
[0042] ハ-カム触媒体 200では、炭化珪素を主成分とする材料で多孔質の隔壁 4が形成 されており、触媒層が担持された状態における隔壁 4の画像最大距離平均は、 50 ^ mであり、気孔率は 60%である。ハ-カム触媒体 200は、活性アルミナ力もなる担体 コートと、その担体コートの内部に分散担持された貴金属 Pt及び Rhと、担体コートに 含有された酸化セリウムと、を有する触媒を採用し、ガソリンエンジン排気ガス浄ィ匕用 の触媒コンバータとして使用することが出来る。この場合に、ガソリンエンジンの排気 ガスは、図 5の矢印で示されるように、一の端面 2a側からセル 3に流入し、 目封止部 1 0 (目封止部 101!〜 101が存在する)があることから、同じセル 3においては他の端面 2 bの側力 外部へ流出することは出来ず、隔壁 4を通過し隣接するセル 3に入った後 に、他の端面 2bの側力 外部へと流出する。この過程で、排気ガスに含まれる被浄 化成分が隔壁 4の内部の気孔を形成する面 (気孔形成面)に設けられた触媒層に接 触して分解され、これによつて排気ガスは浄ィ匕される。
[0043] ハ-カム触媒体 200は、複数の目封止部 10 (目封止部 10a〜10g)の配置位置 (セ ル 3における目封止部 10の位置)にばらつきを有し、それによつて、複数の目封止部 10 (目封止部 10h〜: L01)の、セル 3の連通方向に垂直なセル 3内部側の面位置に ばらつきが生じている。ハ-カム触媒体 200は、この点で、既述の触媒コンバータ 50 (図 12を参照)とは異なる。即ち、図 5に示されるように、複数の目封止部 101!〜 101 は、それぞれの隔壁 4に接しない 2つの面の位置であって、セル 3の内部側の方の面 の位置が、同じ位置ではなぐセル 3の外部側の方の面の位置も、同じ位置ではない 。全体として当該両方の位置が均一ではなぐばらついている。例えば、 目封止部 10 hにおけるセル 3の連通方向に垂直なセル 3内部側の面位置は QQ断面上に存在し 、セル 3外部側の面位置は PP断面上に存在するが、 目封止部 10iにおけるセル 3の 連通方向に垂直なセル 3内部側の面位置は SS断面上に存在し、セル 3外部側の面 位置は RR断面上に存在する。即ち、 目封止部 10hとは異なる。同様に、 目封止部 1 0j〜101も、セル 3の連通方向に垂直なセル 3内部側の面位置及びセル 3外部側の 面位置が、それぞれ異なっている。
[0044] ハニカム触媒体 200では、複数の目封止部 10 (目封止部 10h〜: L01)の配置位置 にばらつきを持たせるため、 目封止部 101!〜 101の個々の配置位置力 セル 3の内 部(端面 2a, 2bからみて奥の方)になっていて、端面 2a, 2bに揃っていない。そのた め、ハ-カム触媒体 200には、ハ-カム触媒体 100とは異なり、端面 2a側において 入口側のポケット 30、端面 2b側において出口側のポケット 40が形成されている。ポ ケット 30, 40は、目封止部 10で行き止まりとなったセル 3の一部分である。図 6には、 一の端面 2aの側力も入口側のポケット 30に入った排気ガス力 ポケット 30を形成す る隔壁 4を通過する様子が表されている。又、図 7には、他の端面 2bの側である排気 ガスの出口側のポケット 40において、排気ガスがポケット 40を形成する隔壁 4を通過 する様子が表されている。
[0045] 図 2〜図 4は、本発明に係るハニカム触媒体の他の実施形態を模式的に示す図で あり、それぞれ、正面の一部を表した図(端面を表した図)である。具体的には、図 2 〜図 4は、セルの連通方向に垂直な一平面 (ここでは端面)において、ともに目封止 されている隣接するセルの配置例を表している。図 2〜図 4に示されるハ-カム触媒 体 310, 320, 330は、既述のノヽニカム虫媒体 100, 200と同様に、外壁で表される 外形が円柱状であり、内部の構造がハニカム構造をなすノヽニカム構造体 (基材)で構 成されるものである。具体的には、ハ-カム触媒体 310, 320, 330は、二つの端面 の間を連通する複数のセル 3が形成されるように配置された、多数の気孔を有する多 孔質の隔壁 4と、二つの端面において、セル 3を目封止するように配置された、所定 の長さを有する複数の目封止部 10と、隔壁 4の、気孔を形成する表面 (気孔形成面) に層状に担持された、触媒を含有する触媒層と、を具備するものである。既述のハニ カム触媒体 100, 200のセル数が数十 Zcm2オーダーであり、ハ-カム触媒体 310, 320, 330のセル数も同様であり、その一部が図 2〜図 4に表されている。例えば、直 径が 100mmの円柱状のハ-カム触媒体では、セル数は数百〜数千となる。
[0046] ハ-カム触媒体 310では、図 2で示される端面において矢印で示される、ともに目 封止されている隣接するセル 3を 1組とする目封止セル組の数力 20組存在する。ハ 二カム触媒体 320では、図 3で示される端面において矢印で示される、とも〖こ目封止 されている隣接するセル 3を 1組とする目封止セル組の数力 18組存在する。ハ-カ ム触媒体 330では、図 4で示される端面において矢印で示される、ともに目封止され ている隣接するセル 3を 1組とする目封止セル組の数力 67組存在する。
[0047] 以上、本発明に係るハ-カム触媒体の実施形態につ!、て説明した力 本発明に係 るハ-カム触媒体は、従来公知のディーゼルパティキュレートフィルタ(DPF)の製造 方法に準拠して、ハ-カム構造体を作製し、得られたノ、二カム構造体に、従来公知 の方法に準じた方法に従って、触媒を担持することによって、製造することが可能で ある。具体的には、先ず、触媒を含有する触媒スラリーを調製し、その触媒スラリーを 、吸引法等の方法により、ハニカム構造体の隔壁の気孔形成面にコートする。その後 、室温又は加熱条件下で乾燥することにより、本発明に係るハニカム触媒体が得られ る。
実施例
[0048] (実施例 1〜8、比較例 1)タルク、カオリン、仮焼カオリン、アルミナ、水酸化アルミ- ゥム、及びシリカのうち力 複数を組み合わせて、その化学組成力 SiO 42〜56
2 質 量%、 Al O 0〜45質量%、及び Mg012〜16質量%となるように所定の割合で調
2 3
合されたコージエラィトイ匕原料 100質量部に対して、造孔剤としてグラフアイトを 12〜 25質量部、及び合成樹脂を 5〜 15質量部を添加した。更に、メチルセルロース類、 及び界面活性剤をそれぞれ適当量添加した後、水を加えて混練することにより杯土 を調製した。調製した杯土を真空脱気した後、押出成形することによりハニカム成形 体を得た。得られたハニカム成形体を乾燥後、最高温度 1400〜1430°Cの温度範 囲で焼成することにより、ハニカム焼成体を得た。得られたハニカム焼成体のセルの 何れかの端部に、市松模様状となるように目封止剤を詰めて再度焼成することにより 、直径 105. 7mm、長さ 114. 2mm、体積 1リットル、隔壁の厚さ 17mil (0. 432mm )、セル密度 100セル Z平方インチ(15. 5セル Z平方センチ)、セルを目封止した目 封止部を備えた、実施例 1〜8、比較例 1に係わるハ-カム構造体を作製した。尚、 隔壁の気孔は、コージエライト化原料の組み合わせ及び混合比、コージエライト化原 料の粒子径、造孔剤の粒子径、造孔剤の添加量等を、適宜、調整して形成した。又 、目封止部の長さ (端面力 の深さ)はセルに詰める目封止剤の量を調整することに よって、ばらつかせた。尚、平均の目封止部の長さは、実施例 1〜8及び比較例 1の 全てにお ヽて 8mmであった。
[0049] (実施例 9)目封止部の長さは一定(3mm)とし、セル内部側の面位置が実施例 1と 同じとなるよう、目封止剤を詰める段階で、セル内部側に向力つて目封止剤を圧入し た。従って、例えば、セル内部側の面位置が端面力 8mmの位置にあるセルは、端 面から 5mm長さのポケットを有することとなった。 [0050] 次に、活性 (ガンマ)アルミナ及び酸素吸蔵剤としてのセリアを含む混合物(BET法 による比表面積 50m2/g、初期解砕粒子径 50 )をボールミルを使用して湿式解砕 し、平均解砕粒子径 5 にした。そして、 Pt、 Rhを含む溶液により、湿式解砕した混 合物の微細な気孔の中に Pt、 Rhを担持させて、 Pt、 Rhが担持された平均解砕粒子 径 5 の活性 (ガンマ)アルミナを含む触媒スラリーを得た。そして、吸引法により、先 に得られたハ-カム構造体の隔壁の表面及び気孔形成面に、調製した触媒スラリー のコート層を形成した。次いで、加熱乾燥することにより、ハ-カム触媒体を作製した 。尚、ハ-カム構造体 1リットルあたりの活性 (ガンマ)アルミナ及びセリアの質量は 10 Ogであり、ハ-カム構造体 1リットルあたりの Ptの量は lgであり、ハ-カム構造体 1リツ トルあたりの Rhの量は 0. 2gであった。
[0051] 作製したハニカム触媒体 (実施例 1〜9、比較例 1)の熱衝撃試験破壊温度、並び にエンジン耐久試験前及びエンジン耐久試験後の圧力損失 (相対値)を測定した結 果を、触媒担持前の隔壁の画像最大距離平均及び隔壁の気孔率、触媒担持後の 隔壁の画像最大距離平均及び隔壁の気孔率、目封止部の長さの最大値と最小値と の差、目封止部の長さの標準偏差 (データ数 30)とともに、表 1に示す。
[0052] [表 1]
Figure imgf000019_0002
Figure imgf000019_0001
を追加して、市松模様状の元の目封止部に隣接する目封止部を設けることにより、実 施例 10〜 13に係わるハ-カム構造体を得た。又、実施例 9のハ-カム構造体に、同 様に目封止部を追加して、実施例 14に係わるハ-カム構造体を得た。追加した目封 止部は、全て、端面から 8mmの長さにわたって配設した。これらの点を除いて、上記 した実施例 1〜9及び比較例 1と、同じ手段で、同じハニカム触媒体を作製した。
[0054] 作製したハ-カム触媒体 (実施例 10〜14)の初期及びエンジン耐久試験後の浄化 率湘対値)、及び圧力損失湘対値)を測定 '算出した結果を、過剰目封止率ととも に、表 2に示す。
[0055] [表 2]
Figure imgf000020_0001
[0056] (考察)表 1, 2に示されるように、実施例 1〜9のハニカム触媒体は、比較例 1のハ 二カム触媒体に比して、破壊温度が高ぐ優れた耐熱衝撃性を示すものであることが 明らかである。実施例 2〜6は低圧力損失も同時実現し、中でも、実施例 3〜6はェン ジン耐久試験での粒子状物質による気孔閉塞がなぐエンジン耐久試験後も低圧力 損失を維持することが出来た。又、実施例 10, 11のハ-カム触媒体は、実施例 12, 13のハニカム触媒体と比較した場合に、浄化率に優れ、圧力損失が小さい。更に、 実施例 14のハ-カム触媒体は、ポケットのない実施例 11に比較して、浄化率が向上 した。
[0057] 尚、実施例における試験 *評価の内容とその方法は、以下の通りである。
[0058] [目封止部の面位置]:セル内部側の面位置は、当該面に通じる端面 (即ち、 目封 止部から遠い側の端面)から細い丸棒を差し込んで測定した。具体的には、先ず、セ ルよりひとまわり細い丸棒を、セル内部側面に通じる端面力 差し込み、棒の先端が 目封止部のセル内部側面に当たって止まったときに、ハ-カム触媒体内に入ってい る棒の長さで、当該端面力ものセル内部側面の深さを測定する。次に、ハニカム触媒 体の全長力 当該深さを差し引くことにより、他端面 (即ち、目封止部に近い端面)か らの距離を算出し、これによつて目封止部の面位置を特定した。尚、丸棒 (差し込み 棒)の径は、セルの一辺の長さの 60%とした。又、丸棒 (差し込み棒)は、断面と同態 様の先端形状のものを用いた。
[0059] [目封止部の長さ] :目封止部が端面に配設されている場合には、上述した方法で 求める、端面力もの距離が、目封止部の長さとなる。一方、目封止部が端面ではなく 内部に配設されている場合には、上述した方法と同様にして、 1つの目封止部に対し 、両端面力 の深さをそれぞれ測定し、ハ-カム触媒体の全長力 両深さを差し引く ことによって、目封止部の長さを算出した。
[0060] [画像最大距離平均]:画像解析により気孔径を測定し、画像最大距離平均を算出 した。具体的には、隔壁の断面の SEM写真を、隔壁厚さを「t」とした場合に、縦 X横 = t X tの視野について少なくとも 20視野観察する。次いで、観察したそれぞれの視 野内で、空隙中の最大直線距離を計測し、全ての視野について計測した最大直線 距離の平均値を「画像最大距離平均」とした。
[0061] [気孔率]:画像解析によって測定した。具体的には、隔壁の断面の SEM写真を、 隔壁厚さを「t」とした場合に、縦 X横 =t X tの視野にっ 、て少なくとも 5視野観察す る。観察したそれぞれの視野内で、空隙面積比率を求め、これを 3Z2乗して得た値 の、全ての視野について平均した値を「気孔率」とした。
[0062] [熱衝撃試験破壊温度]:プロパンガスパーナによって生成された燃焼ガスと常温 空気とを、交互にハ-カム触媒体に流す方法による、繰り返し熱衝撃試験を実施し、 試験後のクラック発生有無を調べる試験を行った。加熱条件は、ガス流量 1. ONm3 Zmin、 10分間とし、冷却条件は、ガス流量 0. 5Nm3Zmin、 10分間とし、ハニカム 触媒体の中央部の温度を径 0. 5mmのシース熱電対により計測し、クラックが最初に 発生した温度を「熱衝撃試験破壊温度」とした。
[0063] [過剰目封止率]:市松模様状の目封止部の数を Aとし、追加した目封止部の数を Bとしたとき、 BZA X 100で求められる値を「過剰目封止率」とした。 [0064] [浄化率]:酸素 7体積%、水蒸気 10体積%、二酸ィ匕炭素 10体積%、炭化水素 20 0 (カーボンモル数) ppm、及び残部が窒素力もなる燃焼ガスを、空間速度(SV) 100
Figure imgf000022_0001
温度 200°Cの条件でハ-カム触媒体内に流入させた。流入前後における 燃焼ガスの炭化水素濃度から、浄ィ匕率 (%)を算出し、実施例 10の初期の浄ィ匕率を 1として、実施例 10のエンジン耐久試験後並びに実施例 11〜14の初期及びェンジ ン耐久試験後の、相対的な浄ィ匕率を求めた。
[0065] [圧力損失]:室温条件下、 0. 5m3Zminの流速でエアーをノヽニカム触媒体内に流 通させ、圧力損失を測定し、実施例 10の圧力損失を 1として、実施例 1〜9、実施例 1 1〜14、及び比較例 1の相対的な圧力損失を求めた。
[0066] [エンジン耐久試験]: V6、 3. 5Lの台上ガソリンエンジンの排気ラインに、触媒付セ ラミック構造体を搭載し、 90kmZhr定速で 200時間連続運転した。
産業上の利用可能性
[0067] 本発明に係るハ-カム触媒体は、排気ガスに含まれる被浄化成分の浄化を必要と する各種産業分野において、例えば、排気ガス処理システムに触媒コンバータとして 組み込まれ、利用される。特に、内燃機関、燃焼機器等力ゝらの排気ガスの浄ィ匕を必 要とする自動車産業、機械産業、窯業等の産業分野において、有効に利用される。

Claims

請求の範囲
[1] 二つの端面の間を連通する複数のセルが形成されるように配置された、多数の気 孔を有する多孔質の隔壁と、
前記二つの端面のうちの何れか又は前記セルの内部において、前記複数のセル をそれぞれ目封止するように配置された、所定の長さを有する複数の目封止部と、 前記隔壁の、前記気孔を形成する表面に層状に担持された、触媒を含有する触媒 層と、
を具備し、前記所定の長さを有する複数の目封止部の、前記セルの連通方向に垂 直なセル内部側の面位置にばらつきを有するハニカム触媒体。
[2] 前記複数の目封止部の配置位置にばらつきを有する請求項 1に記載のハニカム触 媒体。
[3] 前記複数の目封止部の長さにばらつきを有する請求項 1又は 2に記載のハ-カム 触媒体。
[4] ばらつきを有する前記複数の目封止部の長さの、最大値と最小値との差力 lmm 以上 10mm以下である請求項 3に記載のハ-カム触媒体。
[5] 前記複数の目封止部の長さのばらつきが、標準偏差として 0. 5mm以上 10mm以 下 (但し、データ数 20以上)である請求項 3又は 4に記載のハ-カム触媒体。
[6] ともに目封止されて ヽるセルを形成する隔壁を共有する形で隣接するセルを 1組と する目封止セル組の数が、前記二つの端面のうちの何れか一の端面又は両方の端 面において、 18組以上存在する請求項 1〜5の何れか一項に記載のハ-カム触媒 体。
[7] 隣接するセルがともに目封止されている目封止部を有するハ-カム触媒体であつ て、
セルの連通方向に垂直な一平面にぉ 、て、隣接するセルが目封止されて 、な ヽ目 封止部のみで構成される状態における目封止部の数を Aとし、目封止部を追加する こと〖こよって、前記隣接するセルがともに目封止されている目封止部を有する状態と したときの、前記追加した目封止部の数を Bとした場合に、 B/AX 100で求められる 過剰目封止率が、 5%以上 30%未満である請求項 1〜6の何れか一項に記載のハ 二カム触媒体。
[8] 前記触媒が、
活性アルミナ力 なる担体コートと、
前記担体コートの内部に分散担持される、 Pt、 Rh、及び Pdからなる群より選択され る一以上の貴金属と、
前記担体コートに含有される、酸ィ匕セリウム、酸ィ匕ジルコユア、及びシリカからなる 群より選択される一以上の化合物と、
を有する請求項 1〜7の何れか一項に記載のハニカム触媒体。
[9] 前記多孔質の隔壁が、セラミックスを主成分とする材料で形成され、そのセラミック スカ 炭化珪素、コージエライト、アルミナタイタネート、サイアロン、ムライト、窒化珪素 、リン酸ジルコニウム、ジルコユア、チタ-ァ、アルミナ、及びシリカからなる群より選択 される少なくとも一種である請求項 1〜8の何れか一項に記載のハニカム触媒体。
[10] 前記触媒層が担持された状態における前記隔壁の画像最大距離平均が 30 μ m以 上 400 μ m以下であり、気孔率力 0%以上 65%以下である請求項 1〜9の何れか 一項に記載のハ-カム触媒体。
[11] 請求項 1〜10の何れかに記載のハ-カム触媒体を触媒コンバータとして用いた排 気ガス処理システム。
PCT/JP2007/055001 2006-03-13 2007-03-13 ハニカム触媒体 WO2007105736A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008505170A JP5202298B2 (ja) 2006-03-13 2007-03-13 ハニカム触媒体および排気ガス処理システム
EP07738472A EP1997556A4 (en) 2006-03-13 2007-03-13 A CATALYST STRUCTURE OF A HONEYCOMB
US12/206,524 US20090047188A1 (en) 2006-03-13 2008-09-08 Honeycomb catalyst structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-067562 2006-03-13
JP2006067562 2006-03-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/206,524 Continuation US20090047188A1 (en) 2006-03-13 2008-09-08 Honeycomb catalyst structure

Publications (1)

Publication Number Publication Date
WO2007105736A1 true WO2007105736A1 (ja) 2007-09-20

Family

ID=38509555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055001 WO2007105736A1 (ja) 2006-03-13 2007-03-13 ハニカム触媒体

Country Status (4)

Country Link
US (1) US20090047188A1 (ja)
EP (1) EP1997556A4 (ja)
JP (1) JP5202298B2 (ja)
WO (1) WO2007105736A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008052837A1 (de) * 2006-11-03 2008-05-08 Robert Bosch Gmbh Filterelement, insbesondere zur filterung von abgasen einer brennkraftmaschine
JP2012081415A (ja) * 2010-10-12 2012-04-26 Sumitomo Chemical Co Ltd チタン酸アルミニウム質ハニカム構造体
JP2013519191A (ja) * 2010-02-02 2013-05-23 ミクロテク エス.アール.エル. X線管
JP2014104421A (ja) * 2012-11-27 2014-06-09 Ngk Insulators Ltd ハニカム触媒体
GB2593810A (en) * 2020-03-02 2021-10-06 Diesekt3 Ltd Components and assemblies for treating exhaust emissions

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009100097A2 (en) 2008-02-05 2009-08-13 Basf Catalysts Llc Gasoline engine emissions treatment systems having particulate traps
EP2130573B2 (en) * 2007-03-28 2018-06-27 NGK Insulators, Ltd. Plugged honeycomb structure
GB0903642D0 (en) * 2009-02-27 2009-09-30 Bae Systems Plc Electroless metal deposition for micron scale structures
JP5654998B2 (ja) * 2009-09-29 2015-01-14 日本碍子株式会社 ハニカム構造体の製造方法
US20110076443A1 (en) 2009-09-30 2011-03-31 Ngk Insulators, Ltd. Honeycomb structure and method for manufacturing the same
US8815189B2 (en) 2010-04-19 2014-08-26 Basf Corporation Gasoline engine emissions treatment systems having particulate filters
US20130085062A1 (en) * 2011-09-30 2013-04-04 Uchicago Argonne, Llc Novel formulation of hexa-aluminates for reforming fuels
JP6200212B2 (ja) * 2012-12-03 2017-09-20 日本碍子株式会社 ハニカム触媒体
US9181838B2 (en) 2014-04-07 2015-11-10 Ford Global Technologies, Llc Temperature maintenance and regulation of vehicle exhaust catalyst systems with phase change materials
US9566552B2 (en) 2014-04-07 2017-02-14 Ford Global Technologies, Llc Temperature maintenance and regulation of vehicle exhaust catalyst systems with phase change materials
JP6174517B2 (ja) * 2014-05-02 2017-08-02 日本碍子株式会社 ハニカム構造体
DE102018104140A1 (de) 2018-02-23 2019-08-29 Volkswagen Aktiengesellschaft Partikelfilter für einen Verbrennungsmotor sowie Verfahren zur Herstellung eines solchen Partikelfilters
JP7217190B2 (ja) * 2019-03-29 2023-02-02 日本碍子株式会社 ハニカムフィルタ
JP7332530B2 (ja) * 2020-04-21 2023-08-23 トヨタ自動車株式会社 排ガス浄化装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033664A (ja) 2001-07-25 2003-02-04 Ngk Insulators Ltd 排ガス浄化用ハニカム構造体及び排ガス浄化用ハニカム触媒体
JP2003254034A (ja) * 2002-02-26 2003-09-10 Ngk Insulators Ltd ハニカムフィルタ
JP2003269132A (ja) * 2002-03-13 2003-09-25 Ngk Insulators Ltd 排ガス浄化用フィルター
JP2004251266A (ja) * 2002-03-29 2004-09-09 Hitachi Metals Ltd セラミックハニカムフィルタ及び排気ガス浄化方法
JP2005262210A (ja) * 2004-02-18 2005-09-29 Hitachi Metals Ltd セラミックハニカムフィルタ及び排気ガス浄化装置
JP2005296936A (ja) * 2004-02-12 2005-10-27 Hitachi Metals Ltd セラミックハニカムフィルタ及び排気ガス浄化装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3012167B2 (ja) * 1995-04-12 2000-02-21 日本碍子株式会社 排ガス浄化フィルタおよびそれを用いた排ガス浄化装置
JPH1076141A (ja) * 1996-09-02 1998-03-24 Toyota Motor Corp 排気ガス浄化用触媒
US7107763B2 (en) * 2002-03-29 2006-09-19 Hitachi Metals, Ltd. Ceramic honeycomb filter and exhaust gas-cleaning method
JP4285096B2 (ja) * 2003-06-16 2009-06-24 株式会社デンソー 内燃機関の排ガス浄化装置
CN1875173A (zh) * 2003-11-06 2006-12-06 日立金属株式会社 陶瓷蜂窝式过滤器、排气净化装置及排气净化方法
JP2005169308A (ja) * 2003-12-12 2005-06-30 Ngk Insulators Ltd ハニカムフィルタ及びその製造方法
JP2005344581A (ja) * 2004-06-02 2005-12-15 Hino Motors Ltd パティキュレートフィルタ
EP1837063B1 (en) * 2004-12-22 2011-06-01 Hitachi Metals, Ltd. Method for manufacturing honeycomb filter and honeycomb filter
US7867598B2 (en) * 2005-08-31 2011-01-11 Ngk Insulators, Ltd. Honeycomb structure and honeycomb catalytic body
EP1967265B1 (en) * 2005-12-07 2016-10-19 NGK Insulators, Ltd. METHOD OF PRODUCING A honeycomb structure body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033664A (ja) 2001-07-25 2003-02-04 Ngk Insulators Ltd 排ガス浄化用ハニカム構造体及び排ガス浄化用ハニカム触媒体
JP2003254034A (ja) * 2002-02-26 2003-09-10 Ngk Insulators Ltd ハニカムフィルタ
JP2003269132A (ja) * 2002-03-13 2003-09-25 Ngk Insulators Ltd 排ガス浄化用フィルター
JP2004251266A (ja) * 2002-03-29 2004-09-09 Hitachi Metals Ltd セラミックハニカムフィルタ及び排気ガス浄化方法
JP2005296936A (ja) * 2004-02-12 2005-10-27 Hitachi Metals Ltd セラミックハニカムフィルタ及び排気ガス浄化装置
JP2005262210A (ja) * 2004-02-18 2005-09-29 Hitachi Metals Ltd セラミックハニカムフィルタ及び排気ガス浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1997556A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008052837A1 (de) * 2006-11-03 2008-05-08 Robert Bosch Gmbh Filterelement, insbesondere zur filterung von abgasen einer brennkraftmaschine
JP2013519191A (ja) * 2010-02-02 2013-05-23 ミクロテク エス.アール.エル. X線管
JP2012081415A (ja) * 2010-10-12 2012-04-26 Sumitomo Chemical Co Ltd チタン酸アルミニウム質ハニカム構造体
JP2014104421A (ja) * 2012-11-27 2014-06-09 Ngk Insulators Ltd ハニカム触媒体
GB2593810A (en) * 2020-03-02 2021-10-06 Diesekt3 Ltd Components and assemblies for treating exhaust emissions

Also Published As

Publication number Publication date
EP1997556A1 (en) 2008-12-03
EP1997556A4 (en) 2012-12-19
US20090047188A1 (en) 2009-02-19
JP5202298B2 (ja) 2013-06-05
JPWO2007105736A1 (ja) 2009-07-30

Similar Documents

Publication Publication Date Title
JP5202298B2 (ja) ハニカム触媒体および排気ガス処理システム
US7867598B2 (en) Honeycomb structure and honeycomb catalytic body
US8609581B2 (en) Honeycomb structure and honeycomb catalytic body
EP1839748B1 (en) Honeycomb catalytic body
JP4971166B2 (ja) ハニカム触媒体、ハニカム触媒体製造用のプレコート担体及びハニカム触媒体の製造方法
US7695798B2 (en) Honeycomb structure and honeycomb catalyst
JP6312210B2 (ja) 内燃機関排気ガスの浄化方法
US7754160B2 (en) Honeycomb catalytic body and process for manufacturing honeycomb catalytic body
US20080070776A1 (en) Honeycomb structure and honeycomb catalyst body
CN109973176B (zh) 排气净化过滤器
JP7329950B2 (ja) パティキュレートフィルタ及びキャニング構造体
WO2020202253A1 (ja) 排気浄化フィルタ
JP2017170322A (ja) ハニカムフィルタ
JP7097327B2 (ja) 排ガス浄化フィルタ
EP2368621A1 (en) Honeycomb structure
JP2008136891A (ja) ハニカム触媒コンバータ
JP7178432B2 (ja) 排気浄化フィルタ
JP2013044319A (ja) ハニカム構造体およびこれを用いたガス処理装置
JP2021137766A (ja) 排ガス浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738472

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008505170

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007738472

Country of ref document: EP